Micronutrient constraints in sodic soils of Israna, Haryana (India) Dr. Seema Chahal, JNU, India

SOILS:
 WHERE FOOD
 BEGINS

Outline of the presentation

Sodic soils

Some statistics...

Sodic soils are widespread in semi-arid subtropical regions of world (Singh et al., 2013)

Solobal extent : 581 Mha (CSSRI-Karnal, 2015)

Largest sodic area: Asia and Australia (Leogrande and Vitti, 2018)

Singh et al., 2013)

India: 3,770,659 ha (Chhabra et al., 2005)
 Haryana: 2,55,700 ha

► Mostly in its central part (Chhabra et al., 2005)

Micronutrient (MN) constraints in sodic soils

Low in plant available cationic MNs

- Anionic MNs often display toxicity
- > Various edafic factors affect their availability in soil (Qadir et al. 2006)

MN deficiency is a global problem

≻Affects 2 billion people

(De-Regil et al. 2013; Voortman and Bindraban 2015; Dhaliwal et al. 2019)

- Reduces crop output
- Adversely impacts human health

(Graham and Welch 2000)

https://www.mssoy.org/uploads/files/micronutrients-pioneer-mar-2017.pdf

Purpose of the investigation

To determine the availability of B, Cu, Fe, Mn, Mo and Zn in sodic and farmland soils of Israna, Panipat

> To study the influence of various edafic variables on their phyto-availability

Methodology

pH and EC

Eutech Cyberscan 510

Texture

Laser particle size analyser Microtrac S3500 (Konert and Vandenberghe, 1997)

Total calcium carbonate content

Titrimetric method

(Bashour and Sayegh, 2007)

Available B

Hot water soluble method (hws-B) (MoA, 2011)

Available Mo

Ammonium acetate method

(MoA, 2011)

Available Cu, Fe, Mn & Zn

DTPA extraction method

(Lindsay and Norvell, 1978)

Soil properties and MN availability

Soil properties		Soi	l Types	Available micronutrient concentration	Soil Types		
		Sodic soils	Farmland soils	(mg/Kg)	Sodic soils	Farmland soils	
	рН	9.41	7.39	В	8.59	0.46	
	EC (dS/m)	1.38	2.42	Cu	0.65	2.41	
	ESP (%)	57.64	7.97		0.00		
	Calcite (%)	21.38	11	Fe	3.84	11.4	
	Sand (%)	15.96	18.59	Mn	4.44	14.46	
	Silt (%)	69.04	66.44	Мо	1 87	0.41	
	Clay (%)	14.99	14.98		1.07	0.41	
	CEC (cmol _c /Kg)	10.06	13.61	Zn	0.82	2.06	

Available content of MNs in surface soils

Available content (contd...)

Global Symposium on Soils for Nutrition | 26-29 July 2022

GLOBAL SOIL

Correlation and regression analyses

	Av.B	Av.Cu	Av. Fe	Av. Mn	Av. Mo	Av. Zn	pН	EC	ESP	Calcite	Sand	Silt	Clay		
Av.B	1	-0.83	-0.83	-0.69	0.29	-0.43	0.86	-0.5	0.29	0.61	-0.02	0.13	-0.13		1
Av.Cu	-0.83	1	0.7	0.7	-0.09	0.54	-0.81	0.53	-0.47	-0.55	0.08	-0.09	-0.04		0.
Av. Fe	-0.83	0.7	1	0.74	-0.12	0.26	-0.78	0.82	0.15	-0.4	-0.24	0.05	0.38		0.
Av. Mn	-0.69	0.7	0.74	1	0.32	0.54	-0.87	0.78	-0.05	0.02	-0.27	0.39	0.002		0.
Av. Mo	0.29	-0.09	-0.12	0.32	1	-0.004	-0.04	0.23	-0.03	0.5	-0.61	0.75	0.15		0.
Av. Zn	-0.43	0.54	0.26	0.54	-0.004	1	-0.67	0.1	-0.46	0.07	-0.07	0.37	-0.36		0
pН	0.86	-0.81	-0.78	-0.87	-0.04	-0.67	1	-0.61	0.25	0.27	0.24	-0.29	-0.06		0
EC	-0.5	0.53	0.82	0.78	0.23	0.1	-0.61	1	0.34	-0.03	-0.32	0.22	0.3		-0
ESP	0.29	-0.47	0.15	-0.05	-0.03	-0.46	0.25	0.34	1	0.47	-0.07	-0.01	0.14		-0
Calcite	0.61	-0.55	-0.4	0.02	0.5	0.07	0.27	-0.03	0.47	1	-0.16	0.52	-0.38		-0
Sand	-0.02	0.08	-0.24	-0.27	-0.61	-0.07	0.24	-0.32	-0.07	-0.16	1	-0.85	-0.74		-0.
Silt	0.13	-0.09	0.05	0.39	0.75	0.37	-0.29	0.22	-0.01	0.52	-0.85	1	0.28		-0
Clay	-0.13	-0.04	0.38	0.002	0.15	-0.36	-0.06	0.3	0.14	-0.38	-0.74	0.28	1		-1

Metal	Extraction method	Equations	R ²
		Y = 6.15 pH - 49.30	0.75**
в	HWS	Y = 5.37 pH + 0.45 Calcite - 51.65	0.90**
		Y = 6.16 pH + 0.28 Calcite - 0.34 Silt - 78.84	0.94*
		Y = 2.41 - 0.19 pH	0.65**
		Y = 2.48 - 0.17 pH- 0.01 Calcite	0.77**
Cu	DTPA	Y = 2.75 - 0.16 pH- 0.02 Calcite- 0.02 Clay	0.82*
		Y = 2.27 - 0.11 pH- 0.02 Calcite- 0.02 Clay + 0.13 EC	0.88*
		Y = 2.21 - 0.07 pH- 0.02 Calcite- 0.02 Clay + 0.21 EC - 0.01 ESP	0.93**
		Y = 1.20 + 1.91 EC	0.67**
Fa	DTPA	Y = 2.96 + 1.88 EC - 0.08 Calcite	0.81**
гe		Y = 7.58 + 1.42 EC - 0.06 Calcite - 0.46 pH	0.87*
		Y = 7.96 + 0.84 EC - 0.09 Calcite - 0.75 pH + 0.6 ESP	0.93**
		Y = 24.02 - 2.08 pH	0.76**
Mn	DTPA	Y = 16.40 - 1.50 pH + 1.58 EC	0.86**
		Y = 16.87 - 1.71 pH + 1.40 EC + 0.08 Calcite	0.90*
Мо	Ammonium acetate (pH = 7)	Y = 0.14 Silt - 8.09	0.57**
		Y = 3.52 - 0.29 pH	0.44**
Zn	DTPA	Y = 4.28 - 0.30 pH -0.04 Clay	0.60*
		Y = 2.10 - 0.26 pH -0.05 Clay + 0.03 Silt	0.70*

Conclusion

>The micronutrients followed the order:

- Sodic soils: B > Mn > Fe > Mo > Zn > Cu
- Farmland soils: Mn > Fe > Cu > Zn > B > Mo
- Sodic soils had significantly lower concentrations of Cu, Fe, Mn and Zn than non-sodic farmland soils
- > Mo and B were found to be in *toxic range* in sodic soils
- **pH** and **EC** exhibited strong influences on MN availability
- Regression models suggested that the phyto-availability of MNs was largely controlled by pH, followed by other soil attributes
- >Judicious management of these nutrients requires regular monitoring of
 - a) their status
 - b) various soil variables

Relevance

Sodic soils *cover huge expanse* of terrestrial surface

- Their global extent is projected to increase in future as a result of climate change induced variations
- Socio-ecological significance of such degraded lands will grow further in coming years
- Sodic soils display a range of nutrient imbalances
- Affect the crop quality and productivity adversely
- Profoundly influence human health as soil is an important source of nutrients in our food supply

You can trace every sickness, every disease and every ailment to a mineral deficiency Dr. Linus Pauling, Nobel laureate (1954)

Thank you !

References

- Bashour, I. I., Sayegh, A. H., 2007. Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations, Rome, pp. 49-50.
- Chhabra, R., 2005. Classification of salt-affected soils. Arid Land Res Manag., 19, 61-79.
- CSSRI-Karnal, 2015. Vision 2050. <u>www.icar.org.in/files/Vision-2050-ICAR.pdf</u>
- Voortman R, Bindraban PS (2015) Beyond N and P: toward a land resource ecology perspective and impactful fertilizer interventions in Sub-Saharan Africa. VFRC Report 2015/1. Virtual Fertilizer Research Center, Washington DC, USA, pp. 49
- Graham RD, Welch RM (2000) Plant food micronutrient composition and human nutrition. Commun Soil Sci Plant Anal 31: 1627-1640
- Konert, M., Vandenberghe, J. E. F., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44, 523-535.
- Leogrande, R., Vitti, C., 2018. Use of organic amendment to reclaim saline and sodic soils: a review, Arid Land Research and Management, 33: 1, 1-21. doi:10.1080/15324982.2018.1498038
- Lindsay, W. L., Norvell, W. A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J, 42(3), 421-428.
- Mandal, A. K., Sharma, R. C., Singh, G., 2009. Assessment of salt-affected soils in India using GIS. Geocarto International, 24, 437-456.
- MoA, Ministry of Agriculture, 2011. Methods manual: Soil testing in India. Department of Agriculture and cooperation, Govt of India, New Delhi, pp. 106-121.
- Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., Arslan, A., 2006. Sodicity induced land degradation and its sustainable management: Problems and prospects. Land Degrad. Develop., 17: 6, 661-676.
- Richards, L. A., 1954. Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Agriculture Handbook no. 60, Washington, DC.
- Singh, K., Pandey, V. C., Singh, R. P., 2013. Cynodon dactylon: An efficient perennial grass to revegetate sodic lands. Ecol. Eng., 54, 32-38.
- Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., Faaij, A., 2011. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci., 4, 2669-2681.
- Dhaliwal SS, Naresh RK, Mandal A, Singh R, Dhaliwal MK (2019) Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A
 review. Environmental and Sustainability Indicators 1-2:100007Fageria NK, Stone LF (2008) Micronutrient deficiency problems in South America. In: Alloway BJ (ed) Micronutrient
 deficiencies in global crop production. Springer, Dordrecht, pp. 245-266

GLOBAL SOIL PARINERSHIP