

#### Introduction:

Phosphorus (P): One of the major plant nutrients.

**Major functions:** Disease resistance, Root development, Grain formation, Constituents of nucleic acid and phytin, energy currency, etc. **Deficiency symptoms:** Dark green coloured leaves, Bronzing appearance, Redpurple coloration, etc. **Different P pools:** Soil solution Pi, Labile Pi, Primary and Secondary minerals (Inorganic), Inositol phosphate, Phospholipids, Nucleic acids, Nucleotides, Sugar phosphates (Organic). **Various forms:** The orthophosphates,  $H_2PO_4$  (primary) and  $HPO_4^{2-}$  (secondary orthophosphate),  $PO_{a}^{3-}$  (tertiary orthophosphate).

**Global Symposium on Soils for Nutrition** | 26-29 July 2022

- 2.24 mha land in Meghalaya is Acidic.
- Majority of the areas in Meghalaya are by default organic in nature.
- Till 2017, 1,410 hectares of agricultural land have been certified for organic farming in the state.
- Focus to develop the default organic areas.
- Ginger, Turmeric, Pineapple, Cashew, Orange, Vegetables, etc. are organically grown in various areas.
- Organic products are preferred by all.
- Conventional soil testing methods: Not valid for organically managed soils.
- The potentially available pools of P in organic soils cannot be extracted by conventional methods.
- Different types of extractants are required to extract the various potentially available pools of P.
   Global Symposium on Soils for Nutrition | 26-29 July 2022

# **Objectives**

- Identification of the suitable organic acid extractants to extract the potentially available insoluble inorganic P pools in acidic soils under organic farming system.
- 2) Developing a ready-to-use soil testing protocol for potentially available phosphorus dedicated to organic farming.



### **Experimental details**

**Locations:** Five sites with two soil orders

- > Conventionally managed field (two): CPGS-AS farm, Umiam and Palwi village, Bhoirymbong (Alfisol).
- > Organically managed field (three): ICAR farm, Umiam; Krydem village, Bhoirymbong (Alfisol) and CPGS-AS farm, Krydemkulai.
- \* The sites other than the ones mentioned are of Inceptisol order.

**Extractants** to be tested for tracking the potentially available P-pools and their sizes in soils of organic production systems:

#### Five with one check

- ➤ Citric acid extractant (Blazer and Blazer-Graf, 1984)
- ➤ Acetic acid extractant (Morgan, 1941)
- ➤ Lactic acid extractant (Egner-Riehm, 1995; Domingo, 1960)
- ➤ Double lactate extractant (Dey et al., 2019)
- > 2, keto-glutaric acid extractant (Dey et al., 2019)
- ➤ Check: Bray 1 extractant (Bray and Kurtz, 1945).







#### Table 1:Chemical properties of the soil sampling sites

| Sites Particulars | CPGS-AS farm,<br>Umiam                                  | Palwi village,<br>Bhoirymbong | ICAR farm,<br>Umiam | Kyrdem village,<br>Bhoirymbong | CPGS-AS farm,<br>Krydemkulai |  |
|-------------------|---------------------------------------------------------|-------------------------------|---------------------|--------------------------------|------------------------------|--|
| Status            | Conventional                                            | Conventional                  | Organic             | Organic                        | Organic                      |  |
| pH                | 4.70±0.20ab                                             | 4.58±0.12b                    | 4.91±0.11ab         | 4.94±0.09ab                    | 5.15±0.09a                   |  |
| SOC (%)           | 1.13±0.06c                                              | 1.20±0.07c                    | 1.81±0.14b          | 1.65±0.10b                     | 2.53±0.13a                   |  |
| Avl. P<br>(kg/ha) | 16.25±0.67a                                             | 11.1±1.02b                    | 16.07±0.82a         | 18.37±0.54a                    | 17.25±0.35a                  |  |
| Total P (kg/ha)   | 1321.58±13.57e                                          | 1542.12±6.59d                 | 1933.35±4.30a       | 1748.18±3.60b                  | 1645.67±4.44c                |  |
|                   | Global Symposium on Soils for Nutrition 26-29 July 2022 |                               |                     |                                |                              |  |

<sup>\*</sup>Means not sharing the same letters in the same column differs significantly (at p<0.01) by DMRT









#### Potentially available phosphorus extraction by





Table 2: Results of Acetic acid, citric acid, lactic acid, double lactate and 2, ketoglutaric acid soluble P<sub>2</sub>O<sub>5</sub> of different sites

| Site        | Status       | Acetic acid<br>soluble P <sub>2</sub> O <sub>5</sub><br>(kg/ha) | Citric acid soluble<br>P <sub>2</sub> O <sub>5</sub> (kg/ha) | Lactic acid soluble P <sub>2</sub> O <sub>5</sub> (kg/ha) | Double lactate<br>soluble P <sub>2</sub> O <sub>5</sub><br>(kg/ha) | 2, ketoglutaric acid<br>soluble P <sub>2</sub> O <sub>5</sub><br>(kg/ha) |
|-------------|--------------|-----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|
| CPGS-AS     | Conventional | 4.227±0.41b                                                     | 12.220±0.90d                                                 | 18.790±0.75a                                              | 33.180±1.00c                                                       | 29.631±1.06c                                                             |
| Palwi       | Conventional | 3.520±0.41b                                                     | 5.630±0.46e                                                  | 17.983±0.68ab                                             | 27.137±1.06d                                                       | 25.257±1.00c                                                             |
| ICAR        | Organic      | 6.427±0.37a                                                     | 45.365±0.75a                                                 | 16.340±1.00abc                                            | 47.590±1.03a                                                       | 60.413±1.06b                                                             |
| Krydem      | Organic      | 6.599±0.29a                                                     | 32.231±0.90b                                                 | 14.990±0.60c                                              | 43.736±1.29ab                                                      | 63.344±1.49ab                                                            |
| Krydemkulai | Organic      | 6.827±0.63a                                                     | 24.027±1.28c                                                 | 15.693±0.62bc                                             | 42.517±1.28b                                                       | 68.120±1.71a                                                             |

<sup>\*</sup>Means not sharing the same letters in the same column differs significantly (at p<0.01) by DMRT













### Regression analysis

- ➤ Total P, organic carbon and Bray-1 P (check).
- > Total P, organic carbon and citric acid-P.
- > Total P, organic carbon and acetic acid-P.
- > Total P, organic carbon and lactic acid-P.
- > Total P, organic carbon and double lactate-P.
- ➤ Total P, organic carbon and 2, keto-glutaric acid-P.
- Total P, organic carbon, citric acid-P and acetic acid-P.
- Total P, organic carbon, citric acid-P and lactic acid-P.
- Total P, organic carbon, citric acid-P and double lactate-P.
- Total P, organic carbon, citric acid-P and 2, keto-glutaric acid-P.
- Total P, organic carbon, acetic acid-P and lactic acid-P.
- Total P, organic carbon, acetic acid-P and double lactate-P.
- Total P, organic carbon, acetic acid-P and 2, keto-glutaric acid-P.
- Total P, organic carbon, lactic acid-P and double lactate-P.
- Total P, organic carbon, lactic acid-P and 2, keto-glutaric acid-P.
- Total P, organic carbon, double lactate-P and 2, keto-glutaric acid-P.
- ✓ Strong relationship: Better Extractant. Global Symposium on Soils for Nutrition | 26-29 July 2022



Table 7: Regression equations/relations of total P (kg/ha), organic carbon(%) and extractants soluble P (kg/ha)

| Sl. No. | Equation                                                                         | R <sup>2</sup> |
|---------|----------------------------------------------------------------------------------|----------------|
| 1       | Total P= 1289.18 + 36.77 OC% + 12.05 (Citric acid-P)                             | 0.78           |
| 2       | Total P= 804.18 – 19.70 OC% + 22.32 (Double lactate-P)                           | 0.62           |
| 3       | Total P= 1283.70 + 203.10 OC% + 1 (Bray-1 P)                                     | 0.26           |
| 4       | Total P= 2566.36 + 268.41 OC% + 37.75 (Citric acid-P) — 58.63 (Double lactate-P) | 0.93           |











## **Conclusion:**

• The highest R<sup>2</sup> value i.e., 0.93 for citric acid and double lactate extractant defines the highest variation of total P in an organic production system.

#### Hence,

 It is advised to use citric acid and double lactate extractants for P estimation in acidic soils of Ri-Bhoi district under organic production and accordingly suggest P doses through organic sources.



