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> 1000 compounds
Lipid and water repellent
Persistent, Stable — C-F Bond

lonic state (anion, cation,
zwitterion)

Different composition, sizes,
structure, and functions

Widely used, ubiquitous

Known Legacy PFAS

Sub-classes of PFASs Examples of

Individual compounds*
PFBA (n=4)

PFPeA (nes)
PEFCA (net)
p

PFCAs.

(CpyFa14=COOH)

PFSAs

(CFann=S505H)

' ana

perfluoroalkyl acids
(PFAAs) PFPAS.
(CiFaniy=PO;H,)
Ca/Ca PFPIA [o.m=a)
Ry

fluorotelomer-based

*. Charged e seomer
\ Functional G

perfluoropolyethers (PFPEs)

(CoFans=POH=CrFomsy) COIC8 PFFiA (16
PFECAS & PFESAs fi j-c
(CaFanin=0=CrnFoma=R) =
PFASS PASF-based
(€ Fyni=R) substances
e (CoF1nia=50,~R)
Precursors and Unknowns > over 3000
PFASS may PFAA
~ have been precursors
on the global

100s of others

Number of peer-reviewed
articles since 2002**

)

O0H)
¥

0~C f~O~CHICF,~COOH)

] H d G polytetraflucroethyiene (PTFE)
ea rou polyvinylidene fluoride (PVDF)

1 p fluoropolymers fluorinated ethylene propylene (FEP)
7 others. perfluoroalkaxyl polymer (PFA)

Wang et al. (2017)

* PFASs in RED are those that have been restricted under nati /
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with or without specific exemptions (for details, see OECD (2015), Risk reduction approaches for PFASs. http://oe.cd/1AN)
** The numbers of articles (related to all aspects of research) were retrieved from SciFinder® on Nov.1, 2016.
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PFAS Retention Mechanisms in Soil
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Separation and Lithological Mapping
of PFAS Mixtures in the Vadose Zone
at a Contaminated Site

Dawit N. Bekele "%, Yanju Liu*?, Mark Donaghey?, Anthony Umeh "2,
Chamila S. V. Arachchige', Sreenivasulu Chadalavada'? and Ravi Naidu %*
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®  Deep groundwater monitoring well (SWT~12.5 m bgs)
¢  Perched aquifer monitoring well (SWT ~1.5m bgs)

Bekele,....., Umeh et al. 2020
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Adapted from Naidu et al. 2020

North

5 Decreasing organic Matter Content

g

Increasing Oxidic Material

RN

Soil Properties Influence PFAS Retention

Sorption of PFOS in 114 Well-Characterized Tropical and Temperate
Soils: Application of Multivariate and Artificial Neural Network

Analyses

Anthony C. Umeh,* Ravi Naidu,* Sonia Shilpi, Emmanuel B. Boateng, Aminur Rahman, lan T. Cousins,

Sreenivasulu Chadalavada, Dane Lamb, and Mark Bowman

Cite This: hitps:/dz.doi.org/10.1021 /acs.est.0c07202 I: I Read Online

 Soil from over 40 sites

in Australia and Fiji
« Australia:

— Queensland
Hcteregencty — New south Wales
= Soil properties - VlCtO”a
= Organic Matter .
- caymnelogy  —  South Australia

= Salinity

* Hydrogeology 4 Fij i

— Highly weathered,
low activity clay
minerals, variable
charged

— Collected from
uncultivated and
cultivated lands

Soil Organic Carbon and Surface Chemical Properties

Influence PFAS Retention in Soils

TOC
pH

EC
AEC
CEC
Sand
Silt
Clay
Ox_Al
Ox_Fe
Ox_Mn
DCB_AI
DCB_Fe
DCB_Mn
Caz+
DOC_N
2+

All+
Kd
LogKd
Ae (%)

(Umeh, Naidu et al. 2021, Env. Sci. Tech)
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Key Points
« PFOS sorption range from 36.5- 95.3% (median: 69.3 in soils)
* Nonlinear sorption isotherms
» Soil Organic Carbon (TOC) alone explained only 35% of the variations in K.
« Key influencing soil properties include:
— TOC, AEC, Oxalate-extractable Al & Fe oxides, pH and Silt content of soils
— Asole K, capproach is error-prone
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Mixture Effects on PFAS Retention

NEWCASTLE

AUSTRALIA
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Multicomponent PFAS Umeh et al. (in Peer Review)
KEY POINTS:

=  Sorption followed PFOS > PFOA > PFHXS

=  Generally decreasing % sorption as initial aqueous phase PFAS concentration increases

= 9% PFAS sorbed decreased in the presence of mixtures, especially for PFOA and PFHXS

» The influence of mixture interactions (competitive effects) on leachable and sorbed PFAS will be significant in saturated soils -
around source zone areas where PFAS concentrations are elevated, especially for PFOA and PFHXS. itp S '
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Umeh et al. (in Peer Review)
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Forever Chemiicals’ - PFAS - in Drinking Water

Per- and Polyfluoroalkyl Substances (PFAS) in Select U.S. Tapwater Locations

120“W 1 10"W 100°W | 70"W

Environment International 178 (2023) 108033

Contents lists available at ScienceDirect

Environment International
ELSEVIER journal homepage: www elsevier.com/locate/envint
Full length article )
Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: 8
Comparison of underserved private-well and public-supply exposures and
associated health implications
i - : b o °N -]
Kelly L. Smalling ™ , Kristin M. Romanok *, Paul M. Bradley b, Mathew C. Morriss , @
James L. Gray “, Leslie K. Kanagy °, Stephanie E. Gordon ‘, Brianna M. Williams ",
Sara E. Breitmeyer °, Daniel K. Jones*, Laura A. DeCicco', Collin A. Eagles-Smith #,
h
Tyler Wagner = E== | health Lfe, ButBetter Fitness Food Sleep Mindfulness  Relationships
* U.S. Geological Survey, Lawrenceville, NJ, USA
" U.S. Geological Survey, Columbia, SC, USA . .
© USS. Geological Survey, West Valley City, UT, USA
e e I Nearly half of the tap water in the US is
:U,& Geological Survey, Keameysville, WV, USA - - [ - E]
U.S. Geological /, Madison, Wi, USA'

e contaminated with ‘forever chemicals,
" U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA government study ﬁnds
ARTICLE INFO ABSTRACT Explanation
Handling Editor: Marti Nadal Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess

exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl Number of PFAS
Keywords: substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater 30°N] :
Per- and polyfluoroalkyl substances at the point-of-use, especially from pri lls. We conducted a national reconnaissance to compare human Detections
:I"b':’,““*'“"l"’ PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations
briviend (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations
S where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and o Not Detected
Health effect compared with land-use and potential-source merics to explore drivers of contamination. The number of indi- Alaska

vidual PFAS observed ranged from 1 to 9 (median: 2) with jons (sum of ® 1-3

detected PFAS) ranging from 0.348 t0 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS

and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and ' 4-6

estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We

estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection

probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. 7-9

Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS,

when detected. Potential source and land-use was related to PFAS and

the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low

detection frequencies and higher detection limits. Information generated supports the need for further assess- N

ments of cumulative health risks of PFAS as a class and in combination with other g

in pri lis where i is limited or not available. ,d&" B % .
<
J
20°N-] =7 ;
1. Introduction in the United States (US) because of population-driven water demands, 0 500 Mi
increasing contamination of drinking-water resources, and a growing " @ "
The quality and sustainability of drinking-water are rising concerns understanding of potential human-health consequences associated with / 1,040 Mi 60 Mi 100 Mi
LS Leeolaaal Localene] Ll 0 780 Km

* Corresponding author.
E-mail address: ksmall@

https://doi.org/10.1016/j.envint.2023.108033

gov (K.L. Smalling).

Received 17 March 2023; Received in revised form 8 June 2023; Accepted 9 June 2023

Available online 17 June 2023

0160-4120/Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses /by /4.0/).

ZUSGS

Smalling et al. (2023)

Map represents all sampling locations not the
only locations where PFAS was observed.
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Groundwater pH Influences PFAS Retention
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[ lonic Composition of Groundwater Influences
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Soil and water Working Group scope

International Network on Soil Pollution (INSOP)

Channelling collective action towards Zero Pollution
The Network

The International Network on Soil Pollution (INSOP) has the overall
aim of stopping soil pollution and achieve the global goal of zero
pollution. To this end, INSOP works to improve knowledge on the full
cycle of soil pollution, from assessment to remediation, as well as on
the effect on environmental and human health and the provision of soil
ecosystem functions and services. It also aims to strengthen technical
capacities and legislative frameworks for the prevention of soil
pollution, and promotes the exchange of experiences and technologies
for the sustainable management and remediation of polluted soils. ‘

The scope

Most contaminants in aquatic ecosystems come from anthropogenic land-based
sources. Therefore, soil management can have an enormous impact on water quality,
including pollution. The overall objective of the soil and water Working Group (WG)
is to raise awareness on the effects different contaminants of terrestrial origin could
have on marine and aquatic ecosystems. Contaminants of concern such as plastic
pollution of which 80% entering the ocean has a land origin, eutrophication and other
land-based contaminants reaching the fresh and marine environments will be
discussed and knowledge gaps addressed.

In collaboration with the assessment WG, the WG will create a knowledge exchange
platform on the environmental and associated ecotoxicological risks on soil and water
pollution. In addition, joint experts from the monitoring and remediation WG will
work together to create a stronger regulation and policies which will protect and
reduce the soil pollution impact on the aquatic environment.

Other tasks of interests and feasibility will be defined and agreed during the upcoming
‘brainstorm’ meeting which will be held in autumn 2022.

INSOP WA approach: Soil and Water

* Objective:

» Strengthen knowledge on the environmental and
associated ecotoxicological risks, environmental fate
and behaviour of soil and water pollutants

COLLECTIVE ACTION TOWARDS

ZERO POLLUTION
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Activity Deliverable

Globally harmonized SOP protocol for soil
pollutants leaching potential

Assessment of soil pollutants prone to leaching and risks they Report publication and training on leached
have to groundwater pollution pollutants and their risks to aquatic health
Publication of posters to raise awareness on
direct and indirect groundwater pollution

SOPs for measuring leaching potential of soil pollutants

Identification of indicators relevant to the groundwater
assessment affected by soil pollutants

indicators

Preparation of a publication and guidelines
Address and strengthen environmental components of the One that reviews state-of-the-art knowledge of
Health approach antimicrobial resistance (AMR) to enhance

One Health action plan
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Key Conclusions And Looking Ahead

Understanding the fate and behaviour of PFAS in soils is important for
preventing extensive water contamination.

More research is required focusing on uncommon and short chain PFAS

Exposure to emerging chemicals, such as PFAS, can adversely impact the
actualisation of the UN SDGs, if not effectively and quickly managed.
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