

ebinar series

SUSTAINABLE

Understanding the formation of black soils

Ganlin Zhang

Institute of Soil Science, CAS Nanjing Institute of Geography & Limnology, CAS

Blacks soils in different classification systems

Blacks soils in different classification Systems

Key processes in the formation of black soils

Black soils are under threats

(Zhao et al., 2018, PNAS)

Sustainability of black soils

The sustainability of black soils depends on the balance between the rates of soil loss and the rates of soil formation.

(Heimsath et al., 1997, Nature)

Soil thickness = soil formation (e.g., rock weathering, exogenous input) – soil loss (e.g., erosion, denudation)

- Black soils loss at average rates 0.2-0.3cm yr⁻¹
 (Zhang & Liu, 2020)
- How long does it take to form 1cm black soils?
 - 20-40 yrs (Lin et al., 1999)
 - ~100 yrs (Song et. al., 2020)
 - 120-400 yrs (Yan & Tang, 2005)
 - 300-400 yrs (Liu et al., 2003)

Knowledge on the rates of black soil formation is limited by the lack of precise soil chronology!

Previous knowledge on black soil ages

QQHED1

BAC₂

NHA1

470±30

 760 ± 30

6820±30

 13330 ± 40

 16230 ± 50

(a B.P.)

1580±30

 1840 ± 30

2120±30 3640±30

3320±30

1200±30

 4280 ± 30

6320±30

(a B.P.)

砂砾石层

耕作层

(a B.P.)

(Cui et al., 2021)

V 4 V V

- Black soils in Northeast China \triangleright formed during early-mid Holocene, based on ¹⁴C dating of SOM (Cui et al., 2021)
 - Results from other regions of the world (e.g., Mid-USA, Europe, Argentina) also point to a **Holocene age** of black soils. Only in rare cases with an older age.

An open and complex system – dating soil is a challenge

Source of younger C: (1) continuum nature (2) rooting (3) leaching of DOC (4) pedoturbation

Source of older C:(1) inherent(2) erosion-deposition

Source of younger grain:(1) pedoturbation(2) clay migration

Source of older grain:
 erosion-deposition
 bioturbation
 insufficient bleaching

ENT OF BLACK SOILS

Zhang GL, Long H, Yang F. Understanding the formation time of black soils. The Innovation Geoscience. 2023

Protocol 1

To find closed/ semi-closed systems, such as charcoal, or buried soils

Protocol 2

To identify signals of primary age and pedoturbation, fine-grained soil dating, such as single-grain OSL dating and ¹⁴C dating of SOM at molecular level

Upper age limit for black soils – charcoal

- A piece of woody charcoal beneath the Mollic layer aged
 16.9 ka. a BP, setting the upper age limit of black soils in northeast China.
- It could be forest landscape prior to the presence of black soils

85cm	charcoal SOM	<mark>16897±161 a BP</mark> 12742±19 a BP	Mollisols did not form at the time (16.9 ka BP) of the formation of the
	Humin	12992±100 a BP	charcoal
	Humic acid Webinar series	15870±150 a BP	IENT OF BLACK SOILS

¹⁴C age

mollic

layer

Lower age limit for black soils – buried mollic layer

D Buried Mollic layer, fast erosion – deposition protect SOM from deposition

 \square ¹⁴C age of the buried layer = C age prior to burial + time elapse since the burial

¹⁴C age

		SOM	11873±129 a BP	Well-developed black soils
215cm	215cm	Humin	12287± a BP	existed prior to 12.6 ka BP
		Humic acid	12548± a BP	Thus black soils in northeast
				China started to form betwee
		SOM	11835± a BP	16.9-12.6 ka BP.
275cm	275cm	Humin	12571± a BP	
		Humic acid	Webinar series SUST 12071± a BP	AINABLE MANAGEMENT OF BLACK SOILS

plack soils in northeast started to form between 2.6 ka BP.

25

BΑ

HL1

HL2

OSL age

H-

30

20

⊢●

¹⁴C and OSL dating of three soils from flat terrain

Lower boundary of mollic layers

- OSL ages are much older than ¹⁴C ages, especially in deeper soils.
- \succ The OSL ages at the bottom of the mollic layer 13.5-14 ka BP, agree well with aforementioned results.

Bølling-Allerød warm period (14.7~12.7 ka BP)

- Previous¹⁴C dating of SOM may have underestimated the age of black soils.
- Contamination by younger C from roots exudates, DOC leaching, pedoturbation...

Favorable environment for black soils formation

Study 1

Climate is favorable for black soil formation prior to the Holocene

Study 1 Dust as a major source for parent material of black soils

Particle-size distribution of quartz

- The surface of the quartz particles shows the mechanical impact characteristics typically generated during the wind transport
- The primary peak at ~37µm was identical with typical loess, suggesting their aolian origin.

Variations in rates for dust accumulation

Based on the depth-OSL ages, dust accumulates continuously since glacial period
 Black soils formed (dust accumulated since B-A period) at a rate of ~6 cm ka⁻¹

An accretionary pedogenic model for black soil formation

Black soils grow upwards by incorporating the continuous dust inputs and the accumulation of SOM.
 The model explains that the ¹⁴C ages are progressively younger than OSL ages with increasing depth.

Pedoturbation and black soils formation

The widespread Krotovinas (rodents burrow) indicate the intense bioturbation in black soils

Pedoturbation and black soils formation

Study 2

Charles Darwin

on Humus and the Earthworm THE FORMATION OF FEGETABLE MOULD Through the Adion of Worms With Observations on their Habits by Charles Darwin With an introduction by Sir Albert Howard

Sketch of black soils by Darwin (1840s)

Based on observations, Darwin proposed that bioturbation is an important factor in forming soils

How deep can bioturbation reach? Relations between intensity and depth?

Krotovinas in black soils

How to quantify pedoturbation/ soil mixing?

Single-grain luminescence as a bioturbation tracer

Optically Stimulated Luminescence (OSL) dating records the time elapsed since the last exposure to sunlight of soils (quartz or feldspar)

Age (ka) $= \frac{\text{Measured amount of$ *luminescence* $in a grain}{\text{The radiation received by the grain from the surroundings}}$

Research site and soil

GLOBAL SOIL

Study 2 **Bioturbation quantified by single-grain luminescence**

P₀: quantification of recent downward mixing

(e.g., Bateman et al., 2007; Gliganic et al., 2016; Reimann et al., 2017)

OD: quantification of overall mixing intensity

(e.g., Bateman et al., 2007; Gliganic et al., 2016) SUSTAINABLE MANAGEMENT OF BLACK SOILS

Study 2 Deciphering black soils formation through bioturbation

Conclusions

- The onset time for black soils was 16.9-12.5ka BP, most probably during the Bølling-Allerød period. This is much earlier than previously reported.
- Black soils formed at a rate ~6 cm ka⁻¹. Black soils grew upwards by incorporating the continuous dust inputs and the accumulation of SOM.
- Modern bioturbation can reach 80cm, its intensity decrease exponentially. Bioturbation intensified since 16.4 ka, which can be viewed as a starting point for black soil formation.

Related publications

- Zhang, G., Long, H., Yang, F., 2023. Understanding the formation time of black soils. The Innovation Geoscience 1(1): 100010.
- Yang, F., Long, H., Gong, K., Shi, Y., Zhang, J., Zhang, A., Yang, N., Cheng, P., Pan, X., Zhang, G., 2023. Onset time and accretionary formation of Mollisols in Northeast China. Science Bulletin 68, 1999-2002.
- Gong Keyang, Yang Fei, Long Hao, Gu Jun, Zhang Ganlin, 2023. Thermostability of soil organic matter under different soil formation patterns. Acta Pedologica Sinica, DOI: 10.11766/trxb202211180627.
- Aimin Zhang, Hao Long, Fei Yang, Jingran Zhang, Jun Peng, Yonghui Shi and Ganlin Zhang, Single-grain luminescence deciphers pedoturbation along the formation of Mollisols, submitted

Thank you for your attention!

