### **CL:AIRE** and its Activities

Nicola Harries – Technical Director CL:AIRE

nicola.harries@claire.co.uk

www.claire.co.uk

### Who is CL:AIRE?

- CL:AIRE is a not for profit organisation that works within the broad environmental and construction sectors promoting "Sustainable Land Reuse"
- Established in 1999
- Works with Industry, Government, Regulators and Academia on collaborative projects within the UK & internationally
- Focussing on improving efficiency and raising industry standards
- Knowledge sharing organisation
- <u>Independent</u> technical advisory group review <u>all</u> CL:AIRE deliverables
- Develop and publish guidance (<u>CL:AIRE Library (claire.co.uk)</u>
- Large library of resources published by others (<u>www.claire.co.uk/wall</u>)
- Popular website <u>www.claire.co.uk</u>



### **CL:AIRE Information Portal**

#### WALL

- Freely available extensive list of links to past and present water and land guidance documents
- People encouraged to recommend references that are missing https://www.claire.co.uk/wall

### **CL:AIRE Publications**

- CL:AIRE Technical Guidance
- Technical Bulletins
- Case Study Bulletins
- Guidance Bulletins
- Research Bulletins
- Treatability Bulletins
- Site Bulletins
- Technology Demonstration Reports
- Research Project Reports
- Project Bulletins





# **Network Capacity Building**

- UK monthly ealerts, industry groups, UK National Brownfield Forum, online and regional forums
- Global Network Links
  - Australia and New Zealand
  - > European
  - Latin America
  - North America
  - > Asia
  - > Sustainable Remediation Fora
  - > Africa
- Social Media: CL:AIRE LINKED-IN, and LINKED-IN Group pages, Twitter



# Reuse of Soil: Development Industry Code of Practice








- Work in partnership with the regulators
- Voluntary approach to materials reuse on site
- Developed by industry, used by industry and endorsed by regulator
- Greater clarity leads to consistency and certainty
- Allows soils and materials reuse within fixed parameters
- Soil considered a valuable resource
- Improves efficiency and sustainability
- Qualified person approves that code of practice has been followed
- Published 2008 and then v2 2011
- International interest to replicate



### Sustainable Remediation



- SuRF-UK established in 2007 collaboration between industry, regulators, academics and consultants
- Published a framework for measuring sustainability when undertaking redevelopment & remediation in 2010
- Developed simple tools to help assess sustainability during site work & remediation
- 3 minute animation on what is sustainable remediation with subtitles in 16 languages
- All resources freely available at <u>www.claire.co.uk/surfuk</u>









## SuRF International/ISRA



SuRF ANZ

SuRF Brazil

SuRF Canada

SuRF Colombia

SuRF France

SuRF Italy

SuRF Japan

SuRF Netherlands

SuRF Taiwan

SuRF UK

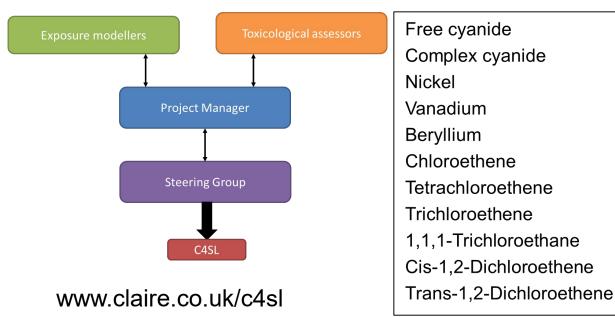
SuRF USA

**NICOLE** 

**NICOLE Latin** 

America

**NICOLA** 


- Meet 2 times a year via teleconference
- CL:AIRE Secretariat
- Share ideas, collaborate on joint initiatives and support new affiliates
- Notes of meetings available on website

www.claire.co.uk/surfinternational www.claire.co.uk/isra



# Generic Soil Screening Values

- Collaborative industry initiative to develop 20 soil screening values for a range of contaminants.
- Delivered by a consortium of expert volunteer partners toxicologists and exposure modellers.
- Overseen by a steering group including Government, regulators and industry group representatives.



Free cyanide 1,2-Dichloroethane Complex cyanide Naphthalene Nickel Toluene Vanadium Ethylbenzene Beryllium Xylenes(o, m, p)Chloroethene 1,3,5-Trimethylbenzene Tetrachloroethene 1,2,4-Trimethylbenzene Trichloroethene 1,2,3-Trimethylbenzene 1,1,1-Trichloroethane Methyl tertiary butyl ether Cis-1,2-Dichloroethene Inorganic Mercury



### Reconstructing soils from waste: Developing a protocol for improved soil sustainability and carbon off-setting

H.K. Schofield, B.J. Reid, N. Willenbrock, M. Guerret and M.F. Fitzsimons



### Reconstructed soils from waste (ReCon Soil)

Soils constructed from waste materials have already been demonstrated to be capable of supporting plant growth and nutrient cycling [8]

The ReCon Soil project aims to:

- 1)Reduce the quantity of soils sent to landfill by the construction sector using a circular economy approach,
- 2)Reduce pressure on natural soils and their associated carbon stocks through the development application-specific soil 'recipes' to reduce the need for translocation of natural soils.
- Contribute to increased soil carbon capture through the incorporation of components capable of long-term carbon storage.

### Applications for reconstructed soils

To ensure the long-term sustainability of reconstructed soils, appropriate recipes will be needed that account for the required soil properties for the intended application, whilst also giving due consideration to local material availability.

#### Example uses for reconstructed soils:

- · Landscaping soils
- Structural/engineering soils
- Recreational facilities
- Land restoration and rehabilitation
- · Controlled growing facilities

### Summary of barriers and challenges

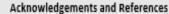
- Regulatory
- Organisational practices
  - Materials quality
  - Public perception
- Logistical and economic challenges

#### Reconstructed soil components

| Inorganic                         | Organic           | Mixed         |
|-----------------------------------|-------------------|---------------|
| components                        | components        | components    |
| Aggregate (e.g.                   | Composted green • | Natural soils |
| gravel, sand, clay)               | waste •           | Biosolids     |
| <ul> <li>Fly ash</li> </ul>       | Wood substrate •  | Dredged       |
| <ul> <li>Volcanic rock</li> </ul> | Composted bark    | sediments     |
| (e.g. basalt, •                   | Manure •          | Biochar       |
| perlite, tuff)                    |                   |               |






Fig 1. Established reconstructed soil at the Eden Project, Cornwall, UK.











With thanks to our funders: ERDF Interreg Channel-Manche.

[1] FAC and UNEP. 2021. Global Assessment of Soil Pollution: Report. [2] Bispo et al. [2017]. Front. Environ. Sci., S, 41. [3] Sandenman. et al. (2018). PNAS, 215(7), E1700. [4] Derg et al. (2016). GECCO., S, 227. [5] WRAP (2018). Project report RCV111-004. [6] DD-RA [2021] UK statistics on waste. [7] UK HMRC [2021]. Charges to landfill tax rates from 1 April 2021. [9] Schofield et al. (2029) Sci. Total Environ., 690, 1228-1236. [9] Royal Society (2018) GGR report.







# Thank you

Nicola Harries nicola.harries@claire.co.uk

www.claire.co.uk