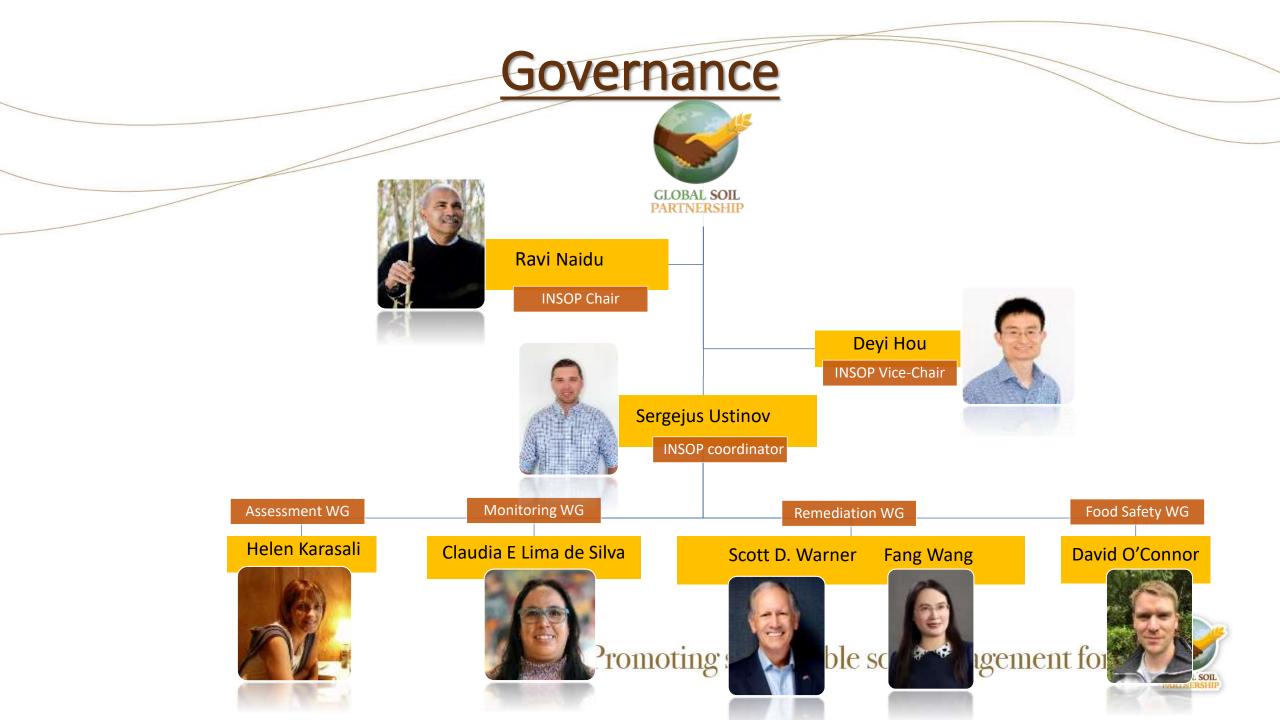


Food and Agriculture Organization of the United Nations

INSOP, COMMON FORUM, ARAGORN workshop on threshold values for soil contaminants

INSOP | COMMON FORUM | ARAGORN workshop 3 October | Online

The session will start in few minutes


- Should you, at any point, lose your connection, you will be able to re join the meeting by using the same link and password
- Kindly keep your microphone **mute**
- To take the floor, please use the RAISE YOUR HAND function. The moderator will take note of the order of discussion
- If you have comments or questions, please use the CHAT function
- Please make sure that your name below the image box indicates: YOUR COUNTRY/YOUR NAME

Meeting Agenda

FAO GSP12:05-12:20National threshold values collected by INSOP membersSergejus U FAO GSP12:20-12:35ARAGORN Horizon project and its work in threshold values compilationNathalie Br Arche Const12:35-12:50A comparison of concepts for establishing soil threshold values – common denominators and differences in EuropeDietmar M COMMON	
12:20-12:35ARAGORN Horizon project and its work in threshold values compilationNathalie Br Arche Cons12:35-12:50A comparison of concepts for establishing soil threshold values – common denominators and differences in EuropeDietmar M COMMON	driguez Eugenio
12:35-12:50 A comparison of concepts for establishing soil threshold values – common denominators and differences in Europe Dietmar M COMMON	stinov
denominators and differences in Europe COMMON	
	lüller-Grabherr FORUM on ated Land in Europe
12:50-13:05 National threshold values and their application in the Russian Federation Ivan Semer Moscow St	nkov tate University
13:05-13:20National threshold values and their application in ChinaDeyi HouINSOP Vice	e-Chair
 13:20-13:55 Open discussion: Identification of further countries with/without soil pollution threshold values INSOP Roadmap for building the database and developing a Global Soil Pollution Threshold Technical Report 	old Values
12:55-14:00 Conclusion Ravi Naidu INSOP Chair	

Promoting sustainable soil management for all

Assessment WG

Priority 1

 Advocate for the development of global harmonized methods including SOPs to identify and measure soil pollutants

➢ Pesticide residue in the soil

Ened and	Agriculture	NETWORK ON
	tion of the	
	ACTION P	LAN Contraction
		S OF THE Sment Working Group Oil Pollution
		OCTOBER 2023 VEF
	Advocate for the development	of global harmonized method
PRIORITY 1 OUTCOME	including standard operating p and measure soil pollutants Soil laboratories are well-informed about their usage	
	and measure soil pollutants Soil laboratories are well-informed about their usage	the harmonized SOPs for soil pollutants
	and measure soil pollutants Soil laboratories are well-informed about	
OUTCOME Key Performance	and measure soil pollutants Soil laboratories are well-informed about their usage LONG TERM By 2025, 80% of soil laboratories working with the CSP will be aware of how to use the harmonized SOPs for measuring	the harmonized SOPs for soil pollutants SHORT TO MEDIUM TERM At least one soil laboratory workin with the GSP from each region is involved in the development of harmonized SOPs
OUTCOME Key Performance Indicators	and measure soil pollutants Soil laboratories are well-informed about their usage LONG TERM By 2025, 80% of soil laboratories working with the GSP will be aware of how to use the harmonized SOPs for measuring soil pollutants in the laboratory	the harmonized SOPs for soil pollutants SHORT TO MEDIUM TERM At least one soil laboratory workin with the GSP from each region is involved in the development of harmonized SOPs the GLOSOLAN;
OUTCOME Key Performance	and measure soil pollutants Soil laboratories are well-informed about their usage LONG TERM By 2025, 80% of soil laboratories working with the GSP will be aware of how to use the harmonized SOPs for measuring soil pollutants in the laboratory • Liaise and work in partnership with the	the harmonized SOPs for soil pollutants SHORT TO MEDIUM TERM At least one soil laboratory workin with the GSP from each region is involved in the development of harmonized SOPs the GLOSOLAN; l pollutants; rn, such as bioavailable heavy metals,

Assessment WG

Priority 2

- Advocate for creating a global database on soil pollutant threshold values in agricultural soils and other land uses focusing on heavy metals and pesticides
- Better understand the existing threshold values and identify gaps
- Database and a Global Technical report on threshold values

KEY PERFORMANCE

INDICATORS

OUTCOME

threshold values in agricultural soils and other land uses focusing on heavy metals and pesticides

Advocate for creating a global database on soil pollutant

(1) Foster a deeper understanding of existing soil pollutant threshold values worldwide; and (2) Countries making informed decisions based on the data and information of soil pollutant threshold values

LONG TERM

Number of countries are working towards the adoption of threshold values for soil contaminants within national regulation

SHORT TO MEDIUM TERM

At least 50% of the countries are involved in the discussions on the establishment of threshold values for soil pollutants

- In support of SoiLEX, launch a survey among INSOP members and GSP focal points to better understand the existence of soil pollutants threshold values and identify gaps;
- INSOP members help to analyze and interpret the generated data from the survey for the preparation of the INSOP global threshold values database on soil pollutants; and
- INSOP members help to develop the INSOP threshold values database on soil
 pollutants and disseminate its findings to the government, policymakers, private
 sector and civil society worldwide.

KEY ACTIVITIES

Promoti

Definition

Soil guideline values

Screening values

Soil standards

Action values

Target values

Trigger values

Intervention values

Acceptable concentrations Regulatory guidance values (RGVs)

Threshold values

Clean-up values

Promoting sustainable soil management for all

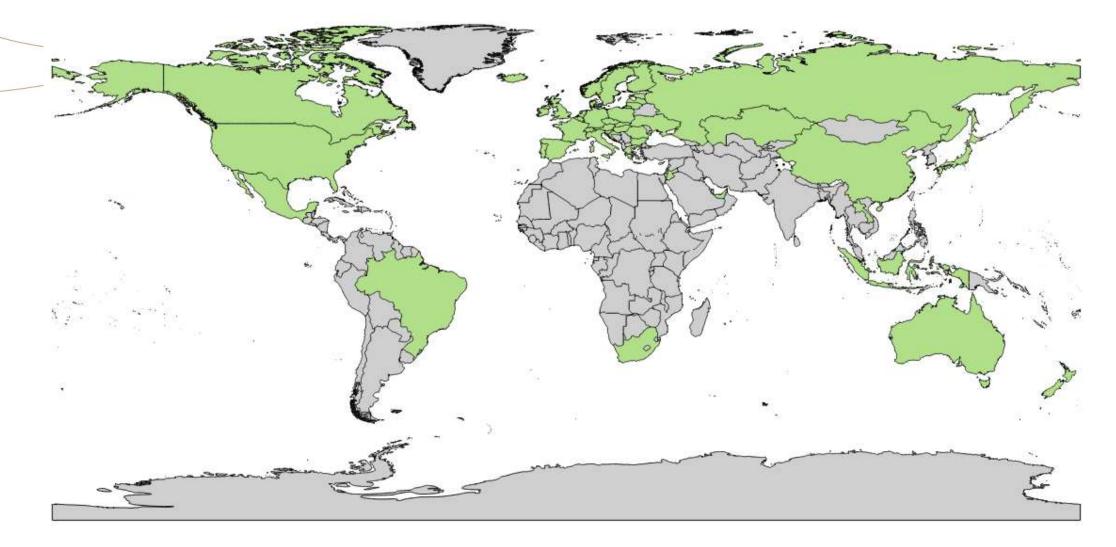
INSOP definition

Screening values

Values above which additional investigation/risk assessment is required to determine whether a risk is acceptable

• Intervention values:

➢Values above which remediation or risk management actions are required; represent an unacceptable risk and require certain remediation/risk management action.



INSOP threshold values compilation

- Focuses on different land uses, such as residential, industrial, agricultural
- Focuses on the INSOP priority contaminants: Heavy metals(lloids) and pesticides

Name of Country:						- 11			
				Threshold Values for differen	nt land use types				-
				Note: based on exposure scenarios where residents, often children, are the most sensitive receptors		Note: based on exposure scenarios where workers (adults) are the most sensitive receptors		Note: based on agricultural plant growth and uptake	0
Type of Pollutants	Constituents of Concern	Units	Country	Residential land use		Industrial land use		Agricultural land use	
		12533-0560		Screening value	Intervention value	Screening value	Intervention value	Screening value	Intervention value
	Arsenic (As)	mg/kg							
	Cadmium (Cd)	mg/kg							
	Antimony (Sb)	mg/kg							
	Copper (Cu)	mg/kg							
	Chromium (Cr) (IV)	mg/kg							
	Cobalt (Co)	mg/kg							
Heavy metals	Mercury (Hg)	mg/kg							
	Lead (Pb)	mg/kg							
	Nickel (Ni)	mg/kg							
	Thallium (TI)	mg/kg							
	Vanadium (V)	mg/kg							
	Beryllium (Be)	mg/kg							
	Selenium (Se)	mg/kg							

Contributing countries

Contributing partners

Promoting sustainable soil management for all

INSOP contributing members

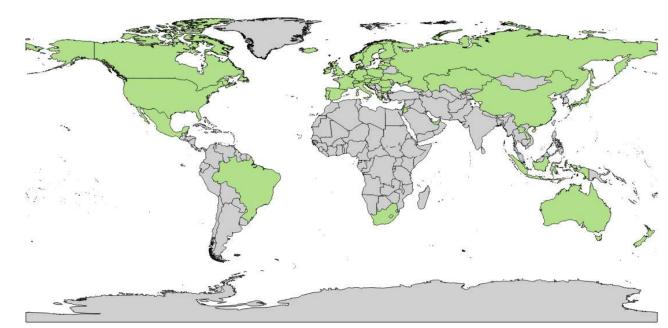
Region	Country	INSOP member	
	Czechia	Sarka Polakova	
	Denmark	Xenia Trier	
	Germany	Annegret Biegel-Engler	
	Greece	Elen Karasali	
	France	Tiphaine Lucas	
	Israel	Ellen Graber	
		Paola Grenni	
Europa and Europia		Elena Leide	
Europe and Eurasia	Italy	Chiara Cassinari	
	the Netherlands	Illona van der Koref	
	Poland	Agnieszka Klimkowicz-Pawlas	
	Russian Federation	Ivan Semenkov	
	Switzerland	Mathieu Renaud	
	Ukraine	Dmytro Semenov	
	United Kingdom of Great Britain and		
	Northern Ireland	lan Martin	

INSOP contributing members

	Region	Country	INSOP member
		Australia	Ayanka Wijayawardena
		the People's Republic of China	Deyi Hou
	Asia and the Pacific	Japan	Tetsuo Yasutaka
	Asia and the Patilit	The Lao People's Democratic Republic	Xaysatith Souliyavongsa
		Pakistan	Amanullah Amanullah
		Viet Nam	Tống Quốc Nghị

Region	Country	INSOP member
Africa	South Africa	Ivan Semenkov

INSOP contributing members

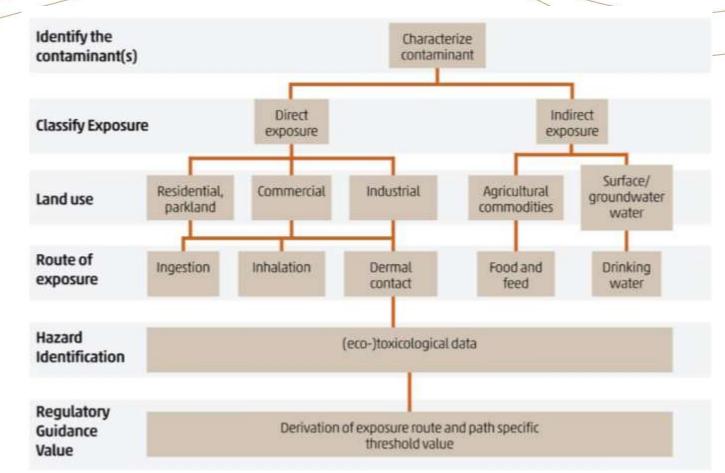

_	Region	Country	INSOP member		
	Latin America and the	Brazil	Ekos Brasil		
	Caribbean	Mexico	Lenin Medina-Orozco		

Region	Country	INSOP member
Near East and North	Jordan	Nabeel Bani Hani
Africa	United Arab Emirates	Bayan Mahmoud Athamneh

Next steps

- Identification of further countries with/without soil pollution threshold values:
- ➢ South Korea➢ India➢ Argentina
- ➢Islamic Republic of Iran (the)
- ≻Peru
- ≻Algeria
- ➤Malaysia

Promoting sustainable soil management for all


Next steps

- Understand and describe the differences in the approaches used for derivation of threshold values
- > How did the threshold values been derived?
- > Have all major pathways of human exposure been taken into account?

Next steps

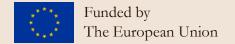
 Assist countries to derive their own national/regional threshold values based on the GSP/FAO conceptual model that considers all the fundamental parameters for deriving threshold values

Rationale for deriving soil threshold values, includes consideration of the type and concentration of the pollutants concerned, detailed examination of the possible exposure routes and hazard identification considering compound specific toxicological data. Source: FAO and UNEP, 2021

Meeting Agenda

FAO GSP12:05-12:20National threshold values collected by INSOP membersSergejus U FAO GSP12:20-12:35ARAGORN Horizon project and its work in threshold values compilationNathalie Br Arche Const12:35-12:50A comparison of concepts for establishing soil threshold values – common denominators and differences in EuropeDietmar M COMMON	
12:20-12:35ARAGORN Horizon project and its work in threshold values compilationNathalie Br Arche Cons12:35-12:50A comparison of concepts for establishing soil threshold values – common denominators and differences in EuropeDietmar M COMMON	driguez Eugenio
12:35-12:50 A comparison of concepts for establishing soil threshold values – common denominators and differences in Europe Dietmar M COMMON	stinov
denominators and differences in Europe COMMON	
	lüller-Grabherr FORUM on ated Land in Europe
12:50-13:05 National threshold values and their application in the Russian Federation Ivan Semer Moscow St	nkov tate University
13:05-13:20National threshold values and their application in ChinaDeyi HouINSOP Vice	e-Chair
 13:20-13:55 Open discussion: Identification of further countries with/without soil pollution threshold values INSOP Roadmap for building the database and developing a Global Soil Pollution Threshold Technical Report 	old Values
12:55-14:00 Conclusion Ravi Naidu INSOP Chair	

Promoting sustainable soil management for all



ARAGORN Horizon project and its work in threshold values compilation

Nathalie Briels & Stijn Van Hees

ARCHE Consulting


INSOP workshop, 3rd of October 2024

ARAGORN project

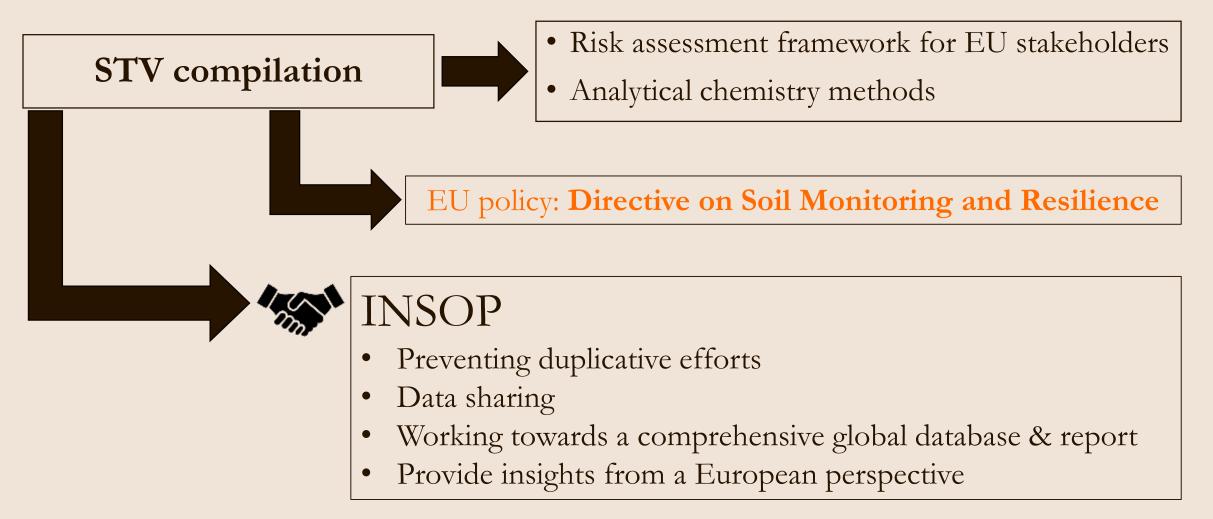
- Horizon Europe project
- October 2023 2027
- EU Mission: « A Soil Deal for Europe »

Achieving Remediation And GOverning Restoration of contaminated soils Now

ARAGORN project

Main objectives:

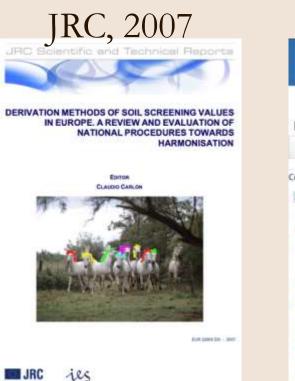
- Map contaminated sites in Europe
- Evaluate remediation- and immobilization techniques
- Investigate resilience and ecological restoration after remediation
- Develop a **risk assessment framework** for stakeholders
 - Guidelines including socio-economic analysis and remediation options


Avoid regrettable remediation

arag*rn

ARAGORN project

EU soil threshold compilation


Sources & previous work

Soll monitoring in Europe — Indicators and thresholds for soil health assessments

The Report | No Ob/2222

EEA, 2023

FAO Food and Agriculture Organization of the United Nations **FAOLEX** Database Background Country Profiles Thematic Collections Associate **Country Profiles** A Alghanistan Ecuaidor Albania Envolt. Algeria El Salvador Andoma Equatorial Guinea Eritrua Angola Antigua and Barbuda Estonia Argentina Eswatteri Armenia Ethiopia Australia European Urvon Austria **101** Azerbaijan

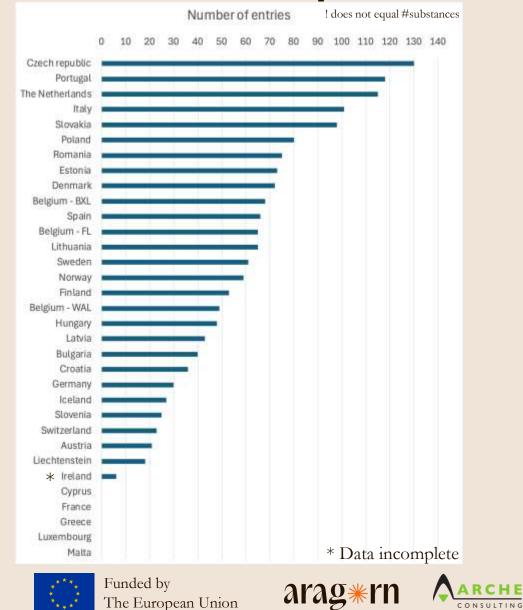
THE HERACLES FRAMEWORK HUMAN AND ECOLOGICAL RISK ASSESSMENT FOR CONTAMINATED LAND IN EUROPEAN MEM-BER STATES Towards the development of common references

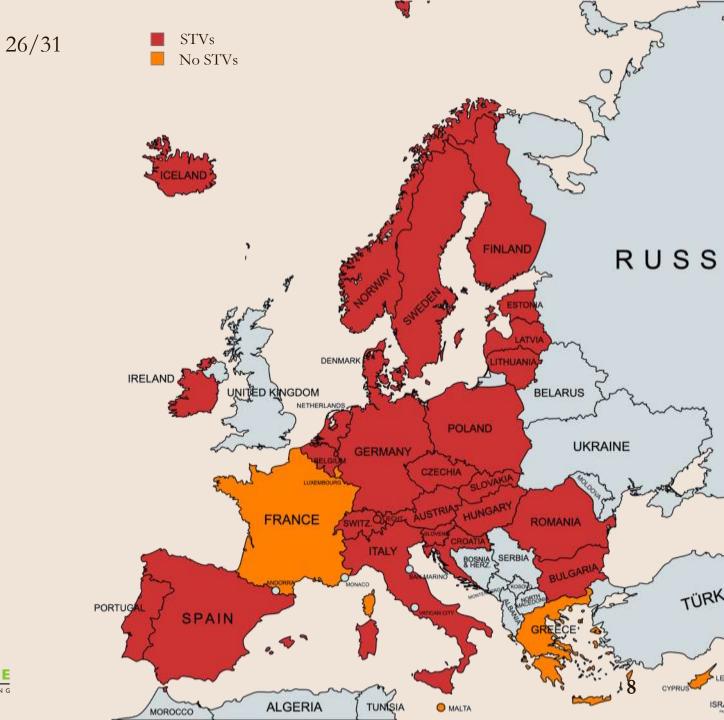
EU soil threshold compilation

Validation

! Note

Derivation methods out of scope of the risk assessment framework for stakeholders





STVs in Europe

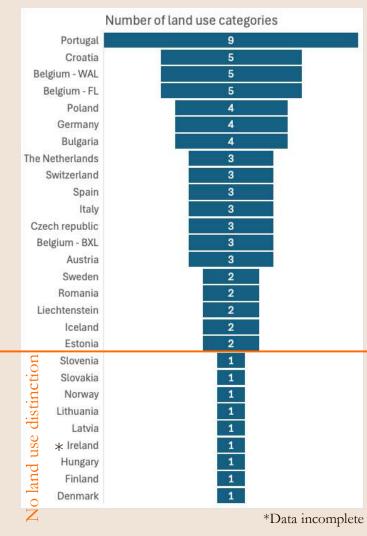
Metals and metalloids

N	lumber of metals	
Romania	21	
Czech republic	20	
Lithuania	20	
Portugal	19	
Denmark	17	
Estonia	17	
The Netherlands	17	
Italy	16	
Hungary	15	
Slovakia	15	
Austria	14	L
Sweden	14	
Croatia	13	
Iceland	13	
Germany	12	
Poland	12	
Switzerland	12	
Finland	11	
Slovenia		
Liechtenstein	10	
Belgium - WAL	9	
Bulgaria	9	
Norway	9	
Belgium - BXL	8	
Belgium - FL	8	
Latvia	. 8	
* Ireland	6	
Cyprus		
France		
Greece		
Luxembourg		
Malta		
Spain		

Spain The responsibility for the development of STVs for metals is transferred to the autonomous regions.

*Data incomplete

Cd


Cu

Hg Ni

Pb

Zn

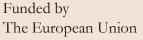
Land use

Most common:

- Industrial
- Recreational
- Residential
- Agricultural
- Nature
- Children's playground

Very specific:

- With or without use of subterranean water
- Distance <30m from a surface water body

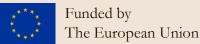

Very vague:

- "Special zones"
- Sensitive / less-sensitive

Related to protection goal

Other approaches

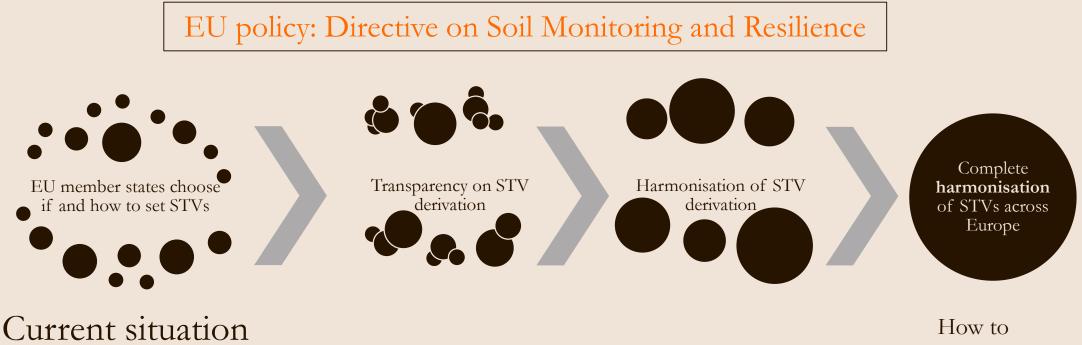
Germany

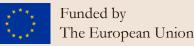

Distinction between the **soilhuman** pathway and **soil-crop** pathway

Tiered approach

- 1. Acceptable value
- 2. Warning value
- 3. Action value

9 countries Corrections for soil characteristics:


pH, clay, TOC, water permeability


Towards a degree of harmonization

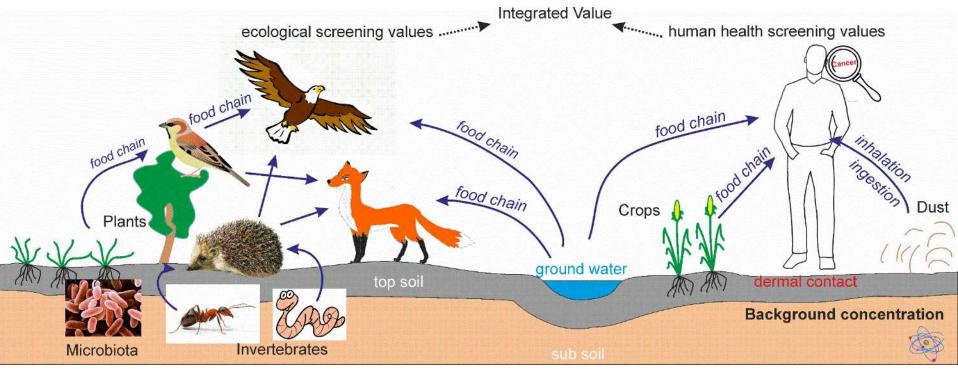
implement this?

Repository with national STVs that is kept up to date?

European soil quality standards analogous to the WFD?

Thank you for your attention

Nathalie Briels nathalie.briels@arche-consulting.be Find us online www.aragorn-horizon.eu



Funded by The European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

National threshold values and their application in the Russian Federation

Canadian Council for Ministers for the Environment. Canadian Environmental Quality Guidelines. 2018. http://st-ts.ccme.ca/en/index.html

Ivan Semenkov

Lomonosov Moscow State University

2024

Principals for establishing soil threshold values

Country		E	nd p	oint			sk		karound	Scientifi				
						asses	sment		cal background versatility		LIIILY	ent		
	ecosystem	human	plants	water	air indoor /outdoor	negative effects	cancer	auxiliary	necessary	soil specific	local risk	reassessment	diet	
China	?	+	+	?	?	?	?	+	?	+	?	?	?	
SAR	_	+	l	+	I	+	+	+	I	I	1	_	+	
Australia	+	+	+	I	I	+	I	+	+	I	+	+	+	
New Zeeland	+	+	+	?	?	+	+	+	—	1	+	-	+	
Netherlands	+	+	+	+	+	+	+	+	_	—	+	+	+	
Russia	+	+	+	+	+	-	_	+	-	+	-	+	+	
USA	+	+	+	+	+	+	+	+	-	_	+	+	+	
Germany	_	+	+	+	I	+	+	_	_	-	+	_	+	
Canada	+	+	+	+	+	+	+	+	I	I	+	+	+	
Finland	+	+	+	+	+	+	+	_	+	I	+	_	+	
Sweden	+	+	+	+	+	+	+	+	_	-	+	_	+	
Czech Republic	+	+	+	I	+	+	+	_	+	+	I	_	l	

Semenkov I.N., Koroleva T.V. 2019. Eurasian Soil Science. https://doi.org/10.1134/S1064229319100107

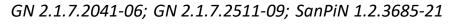
-translocation to plants – safe level in agricultural plants

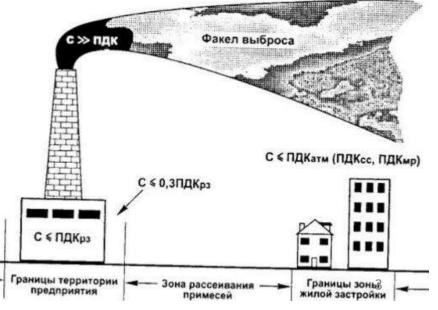
Russian (Soviet) permissible concentrations for soils

-ecological – ability of soil to self-purification and biological activity

- -translocation to surface water safe level in surface water
- -translocation to air safe level in atmospheric air

*Preliminary analysis: consideration of production, already available MPCs in air and water and approved detection methods

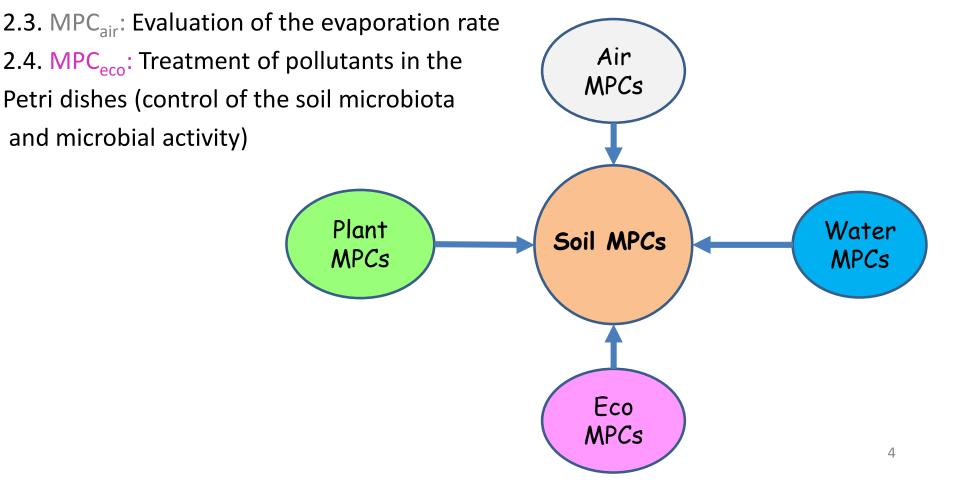

2. Estimated permissible concentration is a <u>calculated value</u> for 3 groups of soils:


1. Maximal permissible concentration (MPC) is an experimentally validated value*.

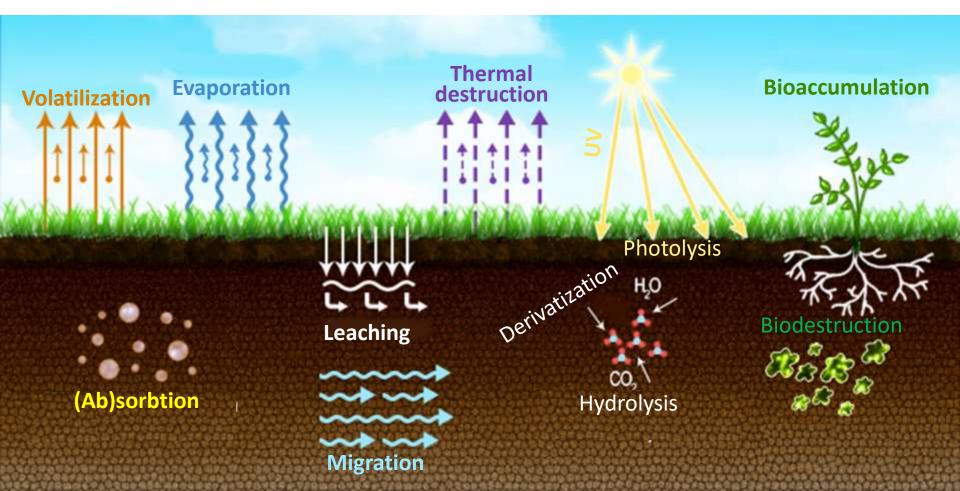
-sandy and sandy-loamy soils; -loamy and clayey acidic soils;

Four indicators of harmfulness:

-loamy and clayey near-neutral soils.



The lowest one is MPC


Regulatory development

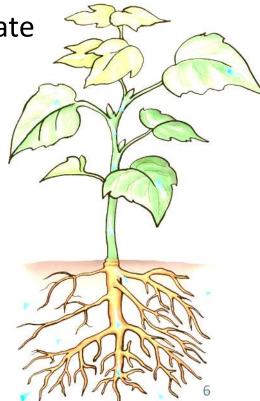
- 1. Study of the substance stability and mobility in the environments
- 2. Identifying the most sensitive component:
- 2.1. MPC_{plants}: Pot and field experiments with plants
- 2.2. MPC_{water}: Experiments with filtration units or columns

Regulatory development

- Experiments in thermostats under different air humidity & temperature, soil organic matter content and acidity e.g., in Chernozems, Albeluvisols etc.
- For trace elements, it is more relevant to assess mobility and the degree of transformation

1. Evaluation of from soil to plant translocation in control conditions

1.1 Preliminary pot experiments in Petri dishes


Modelling the maximum translocation of the substance from soil to plants in a short period of time:

-growing of agricultural products on a model substrate

-germination bio-tests on the sand

1.2 Field experiments

Justification of the permissible level of substance in soil, providing a safe level for human health in agricultural plants.

1.1. Preliminary pot experiments in Petri dishes

The model substrate:

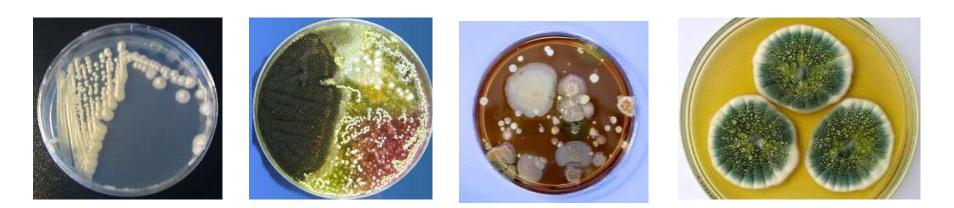
- medium-grained quarry sand \emptyset <2 mm
- sampled from a depth of at least 3 m
- free of organic and mineral inclusions
- -SOM=0%. CEC 1.5 mmol/100 g
- -PM₁₀≤12%. PM₅₀₋₂₅₀=55%
- -treatment with Pryanishnikov's mixture(g/kg):
- 0.24 NH₄NO₃ + 0.172 CaHPO₄ + 0.6 MgSO₄ + 0.344 CaO×2H₂O + 0.16 KCl + 0.025 FeCl₃
- Plant germination test (wheat, barley, oats, peas, cucumbers, white mustard)

1.2. Field experiments

- Plant species: i. accumulators and widely represented in the diet (wheat, potatoes, carrot, beetroot, radish, peas, leafy vegetables)
- For pesticides: only target plants and crops that are grown after treatment
- Calculation for marketable products

2. Evaluation of from soil to surface water translocation in control conditions

- Filtration units or columns
- Soil layers: 0–25, 25–50, 50–75, 75–100 cm
- Duration of the experiment is 3 months
- 600 mm of water average annual precipitation rate for the middle part of the USSR (for irrigated soils - irrigation rate)
- 20–25 ml every 5 days with a 2-day break
- Determination of substance content in every 100 ml of filtrate


3. Evaluation of from soil to air translocation in control conditions

- Only for substances and their derivatives which concentration or pressure of saturated vapours in the surface air layer (T=20-50°C) is greater than the maximal permissible concentration in atmospheric air
- •If the saturated vapour pressure is known, it is calculated for temperatures of 20 and 50°C
- •If the data are not available, experiment at moisture range 0–100% and temperature 20–50°C
- •0-20 cm topsoil layer

4. Ecological threshold value

- Accounting for:
- changes in the intensity of biochemical processes: ammonification, nitrification and decomposition of C-containing substances
- the number of cultivated microorganisms
- Stages:
- 4.1. preliminary screening studies
- 4.2. main studies.

4.1. Preliminary screening studies

- Aqueous solution of the substance
- 3 5 varieties of *Escherichia coli*
- Suppression by at least 50% relative to the control
- Selection of the most sensitive microorganisms (actinomycetes, fungi, spore bacteria, etc.) for the main experiment.

4.2. The main experiment

- Control of microbiological indicators (dynamics of saprophytic bacteria, *Escherichia coli*, etc.) and biochemical (protease, cellulase, respiration (according to CO₂ level), NH₄⁺ and NO₃⁻ content in 3, 7, 10, 14, 20, 30 days and further every 14 days.
- + additional indicators depending on the substance
- Any reliable changes in at least 2 indicators for:
- -biochemical indices >25% relative to control for >7 days
- -microbiological parameters >50%

Permissible concentrations (PCs) in Russian soils (total content)

Element	MPCs,	Estir	mated PCs,	The most sensitive	
	mg/kg	sandy	1	loamy	end point
			pH _{KCI} <5,5	рН _{ксі} > 5,5	P K
As	2	2	5	10	—
Cd	-	0,5	1	2	—
Cr ⁶⁺	0,05	—	_	—	soil microbiota
Cu	-	33	66	132	—
Hg	2,1	_	_	—	plants
Mn	1500	-	-	-	soil microbiota
Ni	_	20	40	80	—
Pb	32	32	65	130	_
S	160	_	_	_	soil microbiota
Sb	4,5	_	_	-	water
V	150	_	_	_	soil microbiota
Zn	-	55	110	220	_
V+Mn	100+1000	_	_	_	soil microbiota
Hg+Pb	20+1	-	-	-	plants

SanPiN 1.2.3685-21

Permissible concentrations (PCs) in Russian soils (mobile fraction), mg/kg

Element	PCs	Solvent	Soils
Со	5,0	AAc	all
Mn	700	0,1n H ₂ SO ₄	Chernozems
	300	0,1n H ₂ SO ₄	Albeluvisols, pH 4,0
(60)	400	0,1n H ₂ SO ₄	Albeluvisols, pH 5,1 – 5,9
	500	0,1n H ₂ SO ₄	Albeluvisols, pH > 5,9
XY	140	AAc 🔨	Chernozems
$\langle $	60	AAc	Albeluvisols, pH 4,0
	80	AAc	Albeluvisols, pH 5,1 – 5,9
Λ	100	AAc /	Albeluvisols, pH > 5,9 Λ
Cu	3,0	AAc	all
Ni	4,0	AAc	all
Pb	6,0	AAc	all
F	2,8	0,006n HCl (pH _{soil} <6,6) or 0,03n K ₂ SO ₄ (pH _{soil} >6,5)	all
Cr ³⁺	6,0	AAc	all
Zn	23,0	AAc	all SanPiN 1.2.3685-21 ¹⁴

Chemical elements controlled in soils

Country	Total content		Mobile fraction	n
	metals	non-metals		
The Nitherlands	Ag, <u>Ba</u> , Be, <mark>Cd</mark> , Co, Cr, Cr ³⁺ , Cr ⁶⁺ , Cu, Hg, Mo, Ni, Pb, Sn, Te, Tl, <i>V</i> , Zn	As, Sb, Se	Cr	22
Canada	Ag, <u>Ba</u> , Be, <mark>Cd</mark> , Co, Cr, Cr ⁶⁺ , Cu, Hg, Mo, Ni, Pb, Sn, Tl, U, V, Zn	As, B, Sb, Se	_	21
The USA	Ag, Al, <u>Ba</u> , <mark>Cd, Co, Cr³⁺, Cr⁶⁺, Cu, Fe, Hg, Li, Mn, Mo, Sn, Zr</mark>	As, Cl, F, I, Sb, Se	_	21
Australia	<u>Ba</u> , Be, Cd, Co, Cr ³⁺ , Cr ⁶⁺ , Cu, Hg, Mn, Mo, Ni, Pb, Sn, V, Zn	As, Sb	_	17
Czech	Be, <mark>Cd, Co, Cr,</mark> Cu, Hg, Mn, Ni , Pb, <i>V</i> , Zn, Tl	As	<mark>As, Cd</mark> , Cu, Ni, Pb, Tl, Zn	20
South Africa	Cd, Co, Cr ³⁺ , Cr ⁶⁺ , Cu, Hg, Mn, Ni, Pb, V, Zn	As, Cl, F	_	14
Russia	Cd, Cr ⁶⁺ , Cu, Hg, Mn, Ni, Pb, V, Zn, Mn+V, Hg+Pb	As, S, Sb	<mark>Co,Cr⁶⁺ ,Cu , F ,</mark> Mn, Ni ,Pb, Zn	25
Finland	<mark>Cd, Co, Cr,</mark> Cu, Hg, N i, Pb, V, Zn	As, Sb	-	11
Germany	Cd, Cr, Cu, Hg, Ni, Pb, Tl, Zn	As	<mark>As,Cd</mark> ,Cu <mark>,Ni</mark> ,Pb, Tl,Zn	16
China	<mark>Cd, Cr³⁺, Cu, Hg, Ni,</mark> Pb, Zn	As	-	8
New Zeeland	Cd, Cr ³⁺ , Cr ⁶⁺ , Cu, Pb	As, B	- 15	7

Application in the Russian Federation

Specified to soils in:

- -all settlements,
- -agricultural lands,
- -zones of sanitary protection of water supply sources,
- -territories of resorts and several institutions.
- **Compliance** is mandatory for citizens, individual entrepreneurs and legal entities.
- **Guarantee one health** in case of control of the level of application or ingestion of substances into the soil.

Using:

- -environmental impact assessment (As, Cd, Cu, Hg, Ni, Pb, Zn; 3,4- benzpyrene, TPHs in all kinds)
- -reclamation of disturbed lands
- -impacted lands of formal dump piles

References

Legislative acts (in Russia; open access):

SanPiN 1.2.3685-21 (actual) <u>https://docs.cntd.ru/document/573500115</u> GN 2.1.7.2041-06 (outdated) <u>https://ohranatruda.ru/upload/iblock/c0a/4293850511.pdf</u> GN 2.1.7.2511-09 (outdated) <u>https://ohranatruda.ru/upload/iblock/708/4293828439.pdf</u>

Scientific publications (in English):

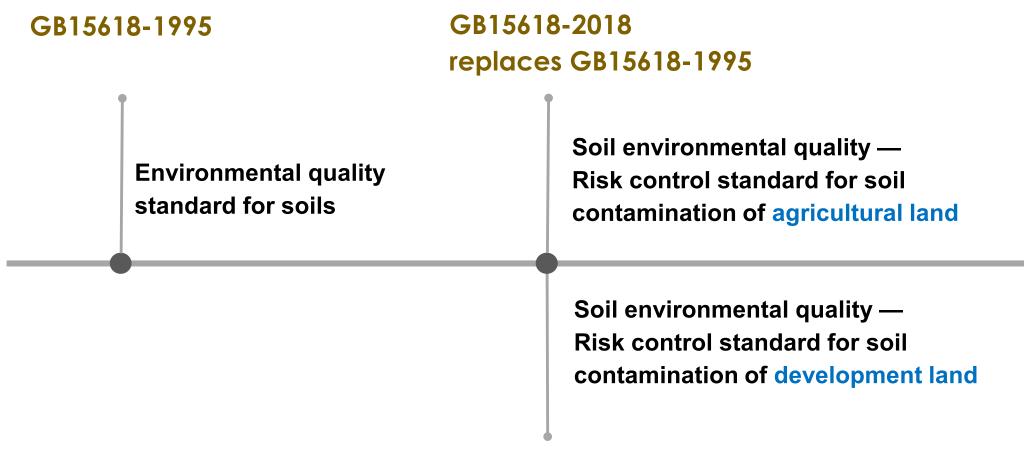
- Chernova O.V., Beketskaya O.V. Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements). *Eurasian Soil Science*. 2011. https://doi.org/10.1134/S106422931109002X
- 2. Vodyanitskii Y.N. Standards for the contents of heavy metals and metalloids in soils. *Eurasian Soil Science*. 2012. https://doi.org/10.1134/S1064229312030131
- 3. Nesterova O.V., Tregubova V.G., Semal V.A. Use of regulatory documents for assessing the contamination of soils with heavy metals. *Eurasian Soil Science*. 2014. https://doi.org/10.7868/S0032180X14110082
- 4. Semenkov I.N., Koroleva T.V. International environmental legislation on the content of chemical elements in soils: guidelines and schemes. *Euras. Soil Sc.* 2019. https://doi.org/10.1134/S1064229319100107
- 5. Semenkov I., Koroleva T. Heavy metals content in soils of Western Siberia in relation to international soil quality standards. *Geoderma Regional*, 2020. https://doi.org/10.1016/j.geodrs.2020.e00283
- 6. Semenkov I.N., Koroleva T.V. Guideline values for the content of chemical elements in soils of urban functional zones: a review. *Eurasian Soil Science*. 2022. https://doi.org/10.1134/S1064229322010100
- 7. Yakovlev A.S., Evdokimova M.V. Approach to Establishment of Environmental Responsibility Zones of Enterprises and Natural–Anthropogenic Background Soil Values. *Eurasian Soil Sc.* 2022. https://doi.org/10.1134/S1064229322090150
- 8. Yakovlev A.S., Evdokimova M.V. Approaches to the Regulation of Soil Pollution in Russia and Foreign Countries. *Eurasian Soil Sc.* 2022. https://doi.org/10.1134/S1064229322050131

Thank you for your attention!

semenkov@geogr.msu.ru

Food and Agriculture Organization of the United Nations

National threshold values and their application in China


Deyi Hou

October 3rd, 2024

Development stages of national standard for soil contamination

GB36600-2018

Environmental quality standard for soils: GB15618-1995

od and Agriculture

Environmental Quality Standards (EQSs) for soils (GB15618-1995) in China were derived based on several factors:

- Data on the soil background in China
- Data from soil ecological tests
- Data from geographically anomalous areas in China
- Information on soil standards or guidelines from abroad

These EQSs set the maximum acceptable concentration of pollutants and relevant monitoring methods in the soil based on different soil functions/uses, protection targets and soil properties.

Environmental quality standard for soils: GB15618-1995

According to the soil application function and conservation objectives, three types of standard were set:

- Type I is protective of soils in national nature reserves, centralized drinking water resources, tea plantations, pasture and other protected areas, and the goal is to basically maintain the natural background level.
- Type II is applicable to the soil in general farmland, land for growing vegetables, tea plantations, orchards, pasture etc., where the goal is to not cause harm and pollution to plants and the environment.
- Type III is applicable to woodland soil, and farmland soils near to high background soils of more pollutant capacity and mineral fields, where the goal is basically to not cause harm and pollution to plants and the environment.

Environmental quality standard for soils: GB15618-1995

Soil Environmental Quality Standards

Unit: mg/kg

Contamination			Type I		Type II			
			Natural Background	pH<6.5	6.5 <ph<7.5< th=""><th>pH>7.5</th><th>pH>6.5</th></ph<7.5<>	pH>7.5	pH>6.5	
Cadmium		≤	0.2	0.3	0.3	0.6	1	
Mercury		≤	0.15	0.3	0.5	1	1.5	
Arsenic	Paddy	≤	15	30	25	20	30	
	Dry land	≤	15	40	30	25	40	
Copper	Arable land	≤	35	50	100	100	400	
	Orchard	≤	/	150	200	200	400	
Lead		≤	35	250	300	350	500	
Chromium	Paddy	≤	90	250	300	350	400	
	Dry land	≤	90	150	200	250	300	
Zinc		≤	100	200	250	300	500	
Nickel		≤	40	40	50	60	200	
Hexachlorocyclohexanes (HCHs)		≤	0.05	0.5		1		
Dichlorodiphenyltrichloro ethanes (DDTs)		≤	0.05	0.5			1	

The switch from 1995 version to 2018 version

GB15618-1995, which follows the framework of water and air quality standards, is insufficient for addressing the current needs of soil environmental management.

In May 2016, the State Council issued the "Action Plan for Soil Pollution Prevention and Control", which urgently requires the revision of standards to meet the needs of soil pollution risk control.

20 years after the release of GB15618-1995, a new risk control standard for soil contamination of agricultural land (GB15618-2018), was issued in 22nd June 2018, to replace GB15618-1995 and to take effect on 1st August 2018

Additionally, a risk control standard for soil contamination on development land (GB36600-2018) was issued and implemented simultaneously to safeguard human health and environmental security.

ganization of the

Soil environmental quality — Risk control standard for soil contamination of agricultural land:

- This standard regulates the soil risk screening values and risk intervention values in agricultural land, and the requirements of monitoring, implementation and supervision.
- Exposure pathway considered: Ingestion of contaminated crops.

Agricultural land is classified into three types:

- Arable land (paddy, irrigated land, dry land)
- Garden (orchard, tea garden)
- Pasture (natural pasture and artificial pasture)
- In this standard, 'others' include all kinds of agricultural land except for paddy

7

Two sets of threshold values:

• Risk screening value

When the contaminant levels are equal to or below this value, the risk to the quality of agricultural products, crop growth, or soil ecological environment is considered low and generally negligible. However, if the contaminant levels exceed this value, there may be potential risks to the quality of agricultural products, crop growth, or the soil ecological environment. In such cases, it is necessary to enhance soil environment monitoring and agricultural product monitoring, and, in principle, implement safety utilization measures.

Risk intervention value

When contaminant levels exceed this value, the risk of soil contamination is high, meaning that edible agricultural products do not meet quality and safety standards. In such cases, stringent control measures should be implemented as a matter of principle.

The determination of threshold values takes into account the following aspects:

To protect crop growth

Based on the dose-response relationship between soil contamination and crop yield, a predictive model is established

To protect soil microorganisms

Based on the dose-effect relationship between soil contamination and the number of soil microorganisms or the inhibition rate of biochemical indicators

Risk Screening Values for Soil Contamination of Agricultural Land (Basic Items)
 Unit: mg/kg

	Contamination		Risk screening values						
Number	Contam	ination	pH≤5.5	5.5 <ph≤6.5< th=""><th>6.5<ph≤7.5< th=""><th>pH>7.5</th></ph≤7.5<></th></ph≤6.5<>	6.5 <ph≤7.5< th=""><th>pH>7.5</th></ph≤7.5<>	pH>7.5			
		Paddy	0.3	0.4	0.6	0.8			
1	Cadmium	Others	0.3	0.3	0.3	0.6			
2	Mercury	Paddy	0.5	0.5	0.6	1			
2	wercury	Others	1.3	1.8	2.4	3.4			
3	Arsenic	Paddy	30	30	25	20			
3	Alsenic	Others	40	40	30	25			
4	Lead	Paddy	80	100	140	240			
4	Leau	Others	70	90	120	170			
5	Chromium	Paddy	250	250	300	350			
5	Chronnum	Others	150	150	200	200			
G	Coppor	Orchard	150	150	200	200			
6	Copper	Others	50	50	100	100			
7	Nic	kel	60	70	100	190			
8	Zii	าด	200	200	250	300			

Risk Screening Values for Soil Contamination of Agricultural Land (Other Items)

Unit: mg/kg

Number	Contamination	Risk screening values
1	Hexachlorocyclohexanes (HCHs)	0.1
2	Dichlorodiphenyltrichloroethanes (DDTs)	0.1
3	Benzo[a]pyrene	0.55

GOAL

Risk Intervention Values for Soil Contamination of Agricultural Land

Unit: mg/kg

		Risk intervention values					
Number	Contamination	pH≤5.5	5.5 <ph≤6.5< th=""><th>6.5<ph≤7.5< th=""><th>pH>7.5</th></ph≤7.5<></th></ph≤6.5<>	6.5 <ph≤7.5< th=""><th>pH>7.5</th></ph≤7.5<>	pH>7.5		
1	Cadmium	1.5	2.0	3.0	4.0		
2	Mercury	2.0	2.5	4.0	6.0		
3	Arsenic	200	150	120	100		
4	Lead	400	500	700	1000		
5	Chromium	800	850	1000	1300		

Soil environmental quality —

Risk control standard for soil contamination of development land:

- Issued in 22nd June 2018, took effect on 1st August 2018
- This standard regulates the soil risk screening values and risk intervention values for development land, and the requirements of monitoring, implementation and supervision.

Development land is divided into two categories (based on GB 50137).

Type I includes land used for:

- Residential
- Primary and secondary school
- Medical and health care
- Social welfare facility
- Community park or children's park

Type II includes land used for :

- Industrial
- Logistics and warehousing
- Commercial
- Utility
- Road and transportation facility
- Public management and public service
- Greenspaces and squares

Two sets of threshold values:

Risk Screening Value:

 When contaminant levels are equal to or below this value, the risk to human health can be considered negligible. If the levels exceed this value, there may be potential risks to human health, and further detailed investigation and risk assessment should be conducted to determine the specific extent and level of contamination.

Risk Intervention Value:

When contaminant levels exceed this value, there is usually an unacceptable risk to human health, and risk control or remediation measures should be implemented.

Main exposure pathways considered:

- Oral ingestion of soil
- Skin contact with soil
- Inhalation of soil particulate matter
- Inhalation of gaseous pollutants from surficial soil in outdoor air
- Inhalation of gaseous pollutants from the subsoil soil in the outdoor air
- Inhalation of gaseous pollutants from the subsoil soil in the indoor air

Risk Screening Values and Intervention Values for Soil Contamination of • **Development Land**

Unit: mg/kg

			Screenin	g Values	Intervention Values			
Number	Contamination	CAS Number	Type I Land	Type II Land	Type I Land	Type II Land		
	Metal(loid)s							
1	Arsenic	7440-38-2	20	60	120	140		
2	Cadmium	7440-43-9	20	65	47	172		
3	Chromium (VI)	18540-29-9	3.0	5.7	30	78		
4	Copper	7440-50-8	2000	18000	8000	36000		
5	Lead	7439-92-1	400	800	800	2500		
6	Mercury	7439-97-6	8	38	33	82		
7	Nickel	7440-02-0	150	900	600	2000		

EVELOPMEN

 Risk Screening Values and Intervention Values for Soil Contamination of Development Land

Unit: mg/kg

			Screenin	Screening Values		on Values
Number	Contamination	CAS Number	Type I Land	Type II Land	Type I Land	Type II Land
		VOC	S			
8	tetrachloromethane	56-23-5	0.9	2.8	9	36
9	chloroform	67-66-3	0.3	0.9	5	10
10	chloromethane	74-87-3	12	37	21	120
11	1,1-dichloroethane	75-34-3	3	9	20	100
12	1,2-dichloroethane	107-06-2	0.52	5	6	21
13	1,1-dichloroethene	75-35-4	12	66	40	200
14	(Z)-1,2-dichloroethene	156-59-2	66	596	200	2000
15	(Z)-1,2-dichloroethene	156-60-5	10	54	31	163
16	dichloromethane	75-09-2	94	616	300	2000
17	1,2-dichloropropane	78-87-5	1	5	5	47
18	1,1,1,2-tetrachloroethane	630-20-6	2.6	10	26	100
19	1,1,2,2-tetrachloroethane	79-34-5	1.6	6.8	14	50
20	tetrachloroethylene	127-18-4	11	53	34	183

 Risk Screening Values and Intervention Values for Soil Contamination of Development Land
 Unit: mg/kg

Number	Contamination	CAS Number	Screenin	g Values	Intervention Values	
Number	Containination	CAS Number	Type I Land	Type II Land	Type I Land	Type II Land
		VOCs				
21	1,1,1-trichloroethane	71-55-6	701	840	840	840
22	1,1,2-trichloroethane	79-00-5	0.6	2.8	5	15
23	1,1,2-trichloroethene	79-01-6	0.7	2.8	7	20
24	1,2,3-trichloropropane	96-18-4	0.05	0.5	0.5	5
25	chloroethene	75-01-4	0.12	0.43	1.2	4.3
26	benzene	71-43-2	1	4	10	40
27	chlorobenzene	108-90-7	68	270	200	1000
28	1,2-dichlorobenzene	95-50-1	560	560	560	560
29	1,4-dichlorobenzene	106-46-7	5.6	20	56	200
30	ethylbenzene	100-41-4	7.2	28	72	280
31	styrene	100-42-5	1290	1290	1290	1290
32	toluene	108-88-3	1200	1200	1200	1200
33	1,3-xylene +1,4-xylene	108-38-3,106-42-3	163	570	500	570
34	1,2-xylene	95-47-6	222	640	640	640

Risk Screening Values and Intervention Values for Soil Contamination of Development Land

Unit: mg/kg

		CAS	Screening Values		Intervention Values	
Number	Contamination	Number	Type I Land	Type II Land	Type I Land	Type II Land
		SVOCs				
35	nitrobenzene	98-95-3	34	76	190	760
36	aniline	62-53-3	92	260	211	663
37	2-chlorophenol	95-57-8	250	2256	500	4500
38	benzo[a]anthracene	56-55-3	5.5	15	55	151
39	benzo[a]pyrene	50-32-8	0.55	1.5	5.5	15
40	benzo[b]fluoranthene	205-99-2	5.5	15	55	151
41	benzo[k]fluoranthene	207-08-9	55	151	550	1500
42	chrysene	218-01-9	490	1293	4900	12900
43	dibenz[a,h]anthracene	53-70-3	0.55	1.5	5.5	15
44	indeno[1,2,3-cd]pyrene	193-39-5	5.5	15	55	151
45	naphthalene	91-20-3	25	70	255	700

۲

EVELOPMEN GÖAL

Take home message

GB15618-2018: Agricultural land; GB36600-2018: Development land

Two sets of thresholds for both standards: risk screening and risk intervention values

Exposure pathways considered in GB15618-2018: ingestion of contaminated crop

4

Exposure pathways considered in GB36600-2018: oral ingestion, skin contact, inhalation (including soil particles and gaseous contaminants)

Food and Agriculture Organization of the United Nations