

Food and Agriculture Organization of the United Nations

Introduction to RECSOIL: Recarbonization of global soils

Michaela Brown Global Soil Partnership Secretariat

Training material prepared by Guillermo Peralta and Luciano Di Paolo

Introduction to the RECSOIL initiative

Part 1

Part 2

1. What is RECSOIL?

Importance of soil organic carbon (SOC)
 RECSOIL tools for SOC
 RECSOIL tools and Land Degradation Neutrality (LDN)

5. RECSOIL phases

A. Phase I – selection of project areas

B. Phase II – identification of stakeholders and priorities

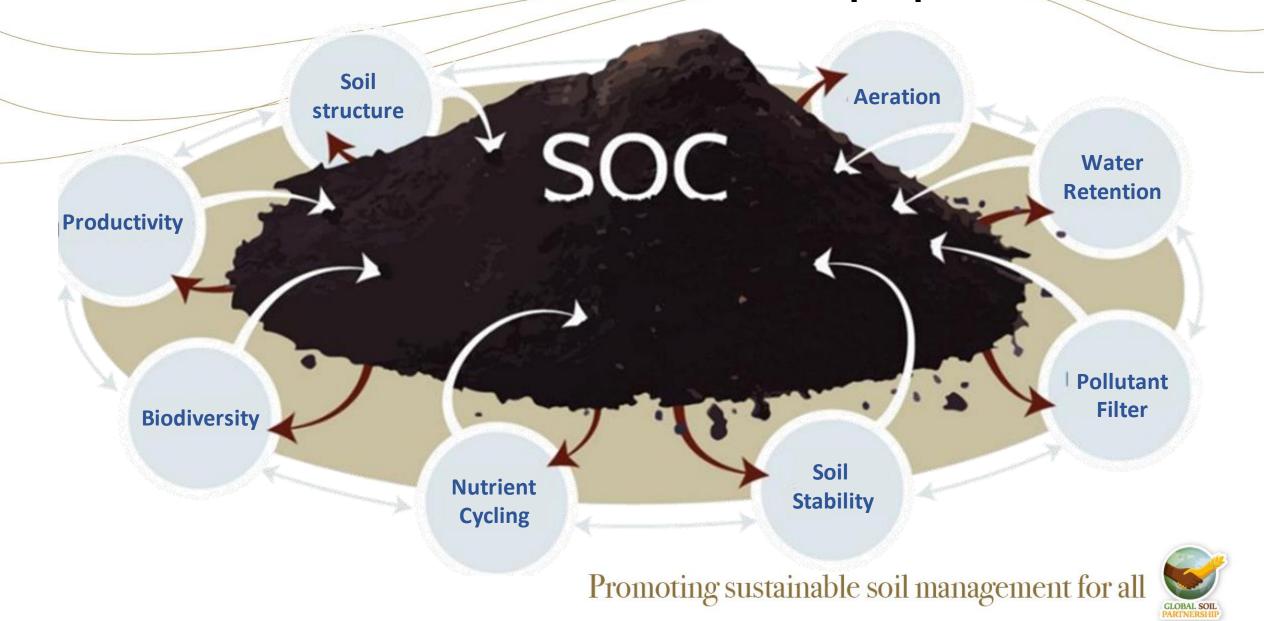
- C. Phase III capacity building
- D. Phase IV stratification and monitoring plan
- E. Phase V baseline assessment
- F. Phase VI implementation and monitoring
- G. Phase VII final analysis

Part 1 - Introduction

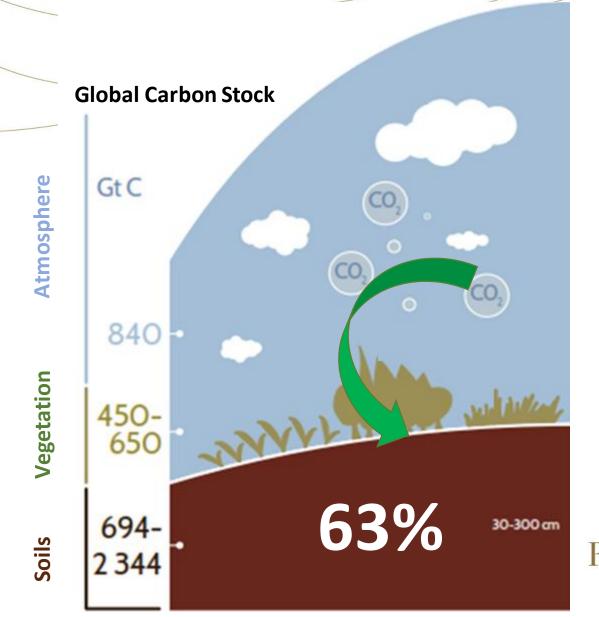
What is RECSOIL?

- It's an innovative initiative with the objective of improving soil health through the maintenance and increase of SOC stocks.
- It is a mechanism whereby farmers are encouraged/compensated to adopt sustainable practices to increase yields.
- Farmers receive **technical support** and **financial incentives** (national and international project funds, donors)

sustainable soil management for all



Soils have become one of the world's most vulnerable resources in the face of climate change and increased demand for food production...


...But also ... part of the solution!

Role of SOC on soil health and properties

Why is soil organic carbon (SOC) so important?

- <u>SOC</u> represents the largest Carbon pool of terrestrial ecosystems
- Due to its magnitude, small increases in SOC can transform soils from C sources to net C sinks (Paustian *et al.*, 2016)
- CO₂ sequestration through sustainable soil management (SSM) stands out as one of the most effective strategies to mitigate greenhouse gases emissions (GHG) (Smith *et al*, 2008; Lal *et al*., 2018; IPCC, 2019; Smith *et al*., 2020).
 Promoting sustainable soil management for all

Why sequester carbon in soils?

GLOBAL SOIL ORGANIC CARBON MAP (GSOCmap V 1.5.0)

SOC stocks [t/ha] 0-20 20-40 40-70 70-90 >90

SOC depletion has released 78 Pg of C to the atmosphere

Global emissions of C are estimated at 135 Pg due LUC and soil cultivation

http://54.229.242.119/GSOCmap/

SOC Sequestration

Crop Residues Root Biomass Rhizodeposition

Organic amendments

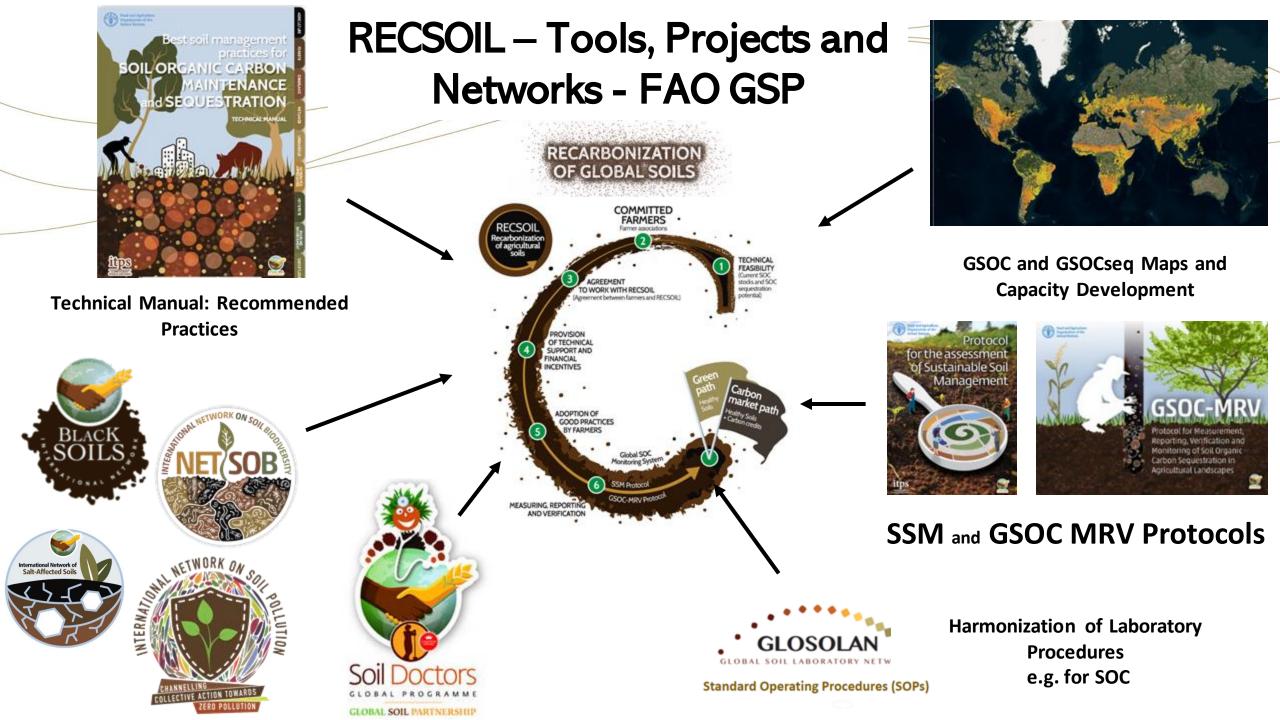
Erosion Lixiviation (DOC) Residue removal – burning

Descomposition/mineralization

C outputs

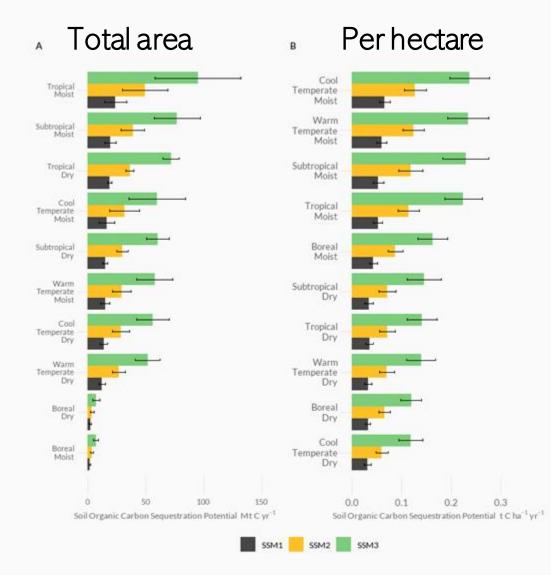
C inputs

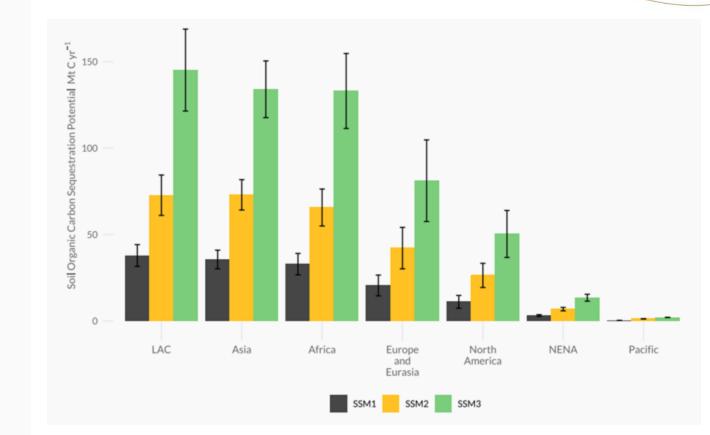
Promoting sustainable soil management for all


Adapted from Lal, 2020

SOC dynamics.... Land use, soil type, climate, vegetation, topography, management practices

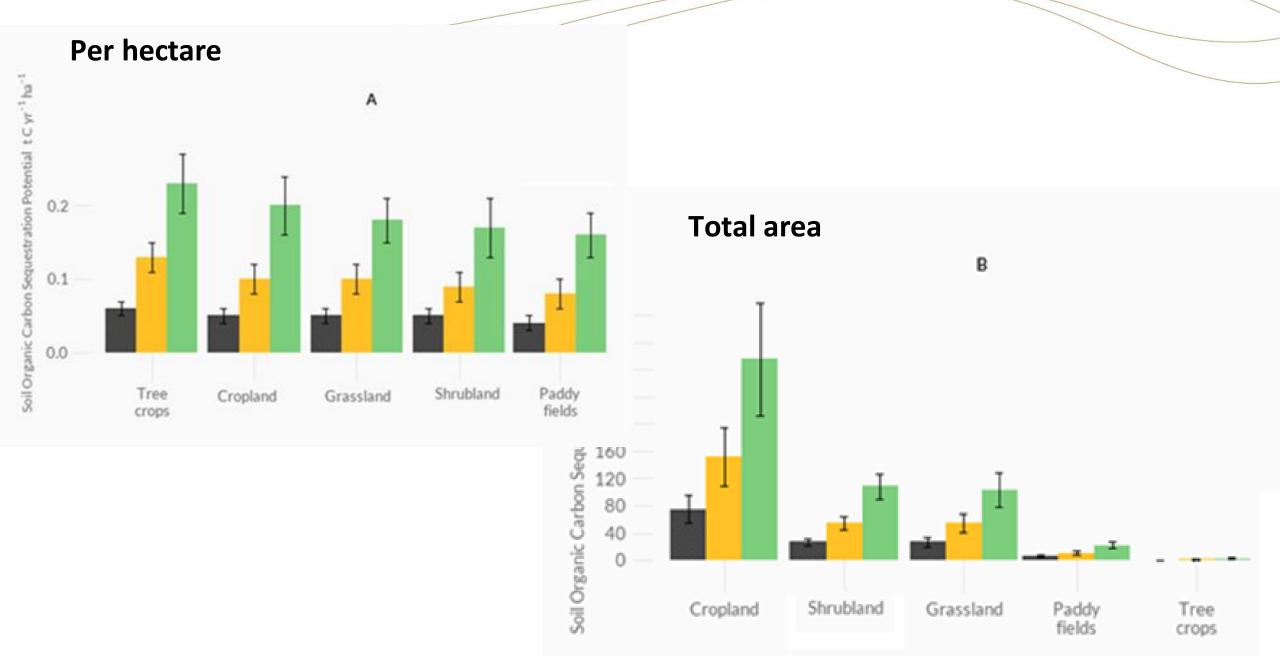
The potential exists... now we must bring it down to earth... How?

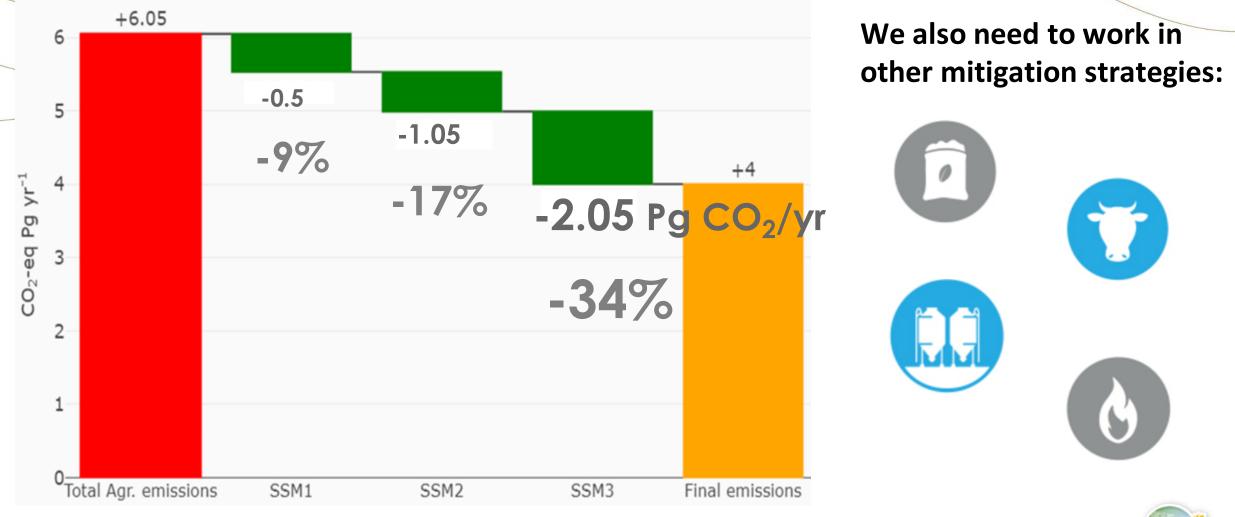



FAO ITPS Tools . GSOCseq v1.1

tonnes.ha-1.y-1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 >0.4

GSOCseq http://54.229.242.119/GloSIS/ 10 m


GSOCseq - Which Climates and Regions have greater SOC Sequestration Potential?



GSOCseq - Which Land Uses have greater SOC Sequestration Potential?

GHG mitigation potential from C sequestration

*Total Agricultural Emissions from FAOSTAT (2019)

GLOBAL SOIL PARTNERSHIP

Soil carbon sequestration can also address the three Rio conventions

United Nations Framework Convention on Climate Change

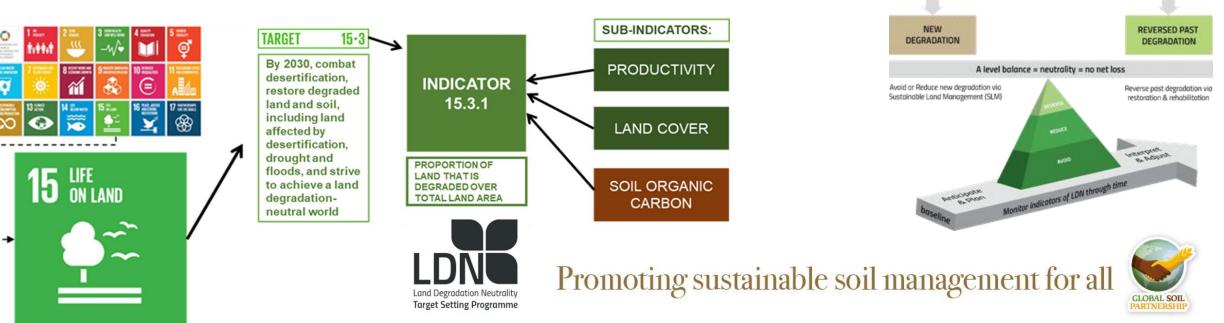
United Nations Convention to Combat Desertification

Biological Diversity

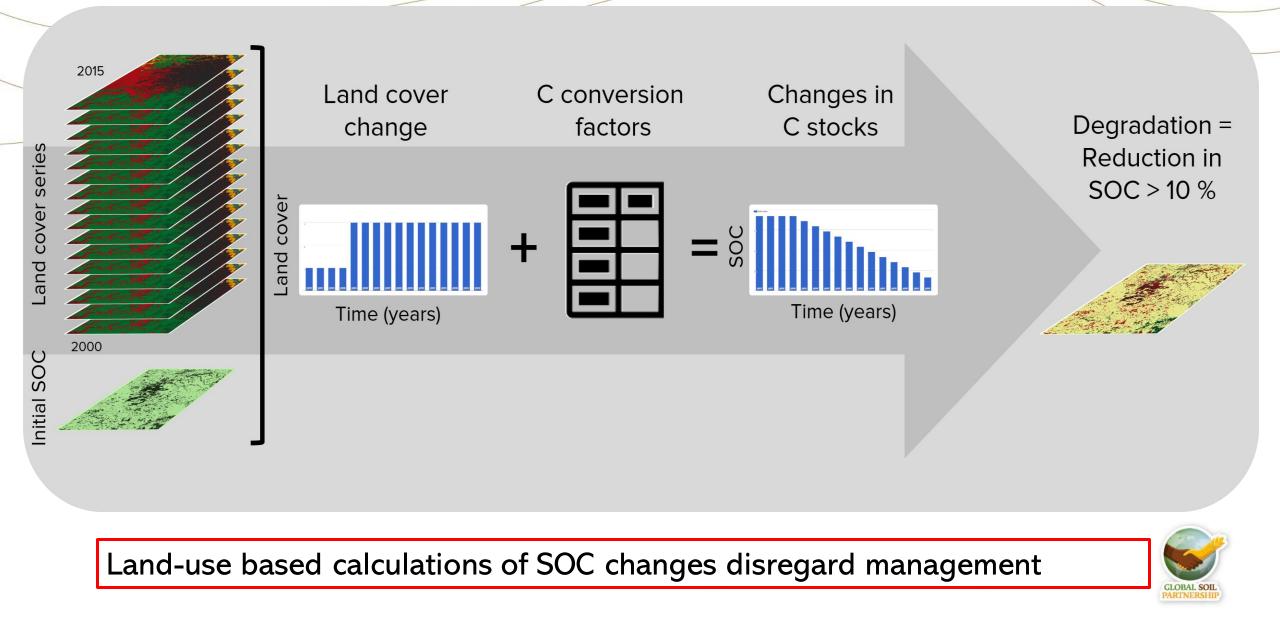
Stabilize GHGs in the Combat desertification Conservation of biological atmosphere at a level that and mitigate the effects of diversity, the sustainable drought in countries use of its components and would prevent dangerous anthropogenic experiencing serious the fair and equitable interference with the drought and/or sharing of the benefits climate system (Art.2) desertification (Art. 2) arising out of the utilization of genetic resources (Art. 1) DLDD **AFOLU** sector Conservation of biological Mitigation diversity EbA SLM Adaptation SSM NDCs targets LDN targets **AICHI targets** Sanz et al 2017 Promoting sustainable soil management for all

What is considered in Land Degradation Neutrality (LDN) monitoring?

United Nations Convention to Combat Desertification


Combat desertification and mitigate the effects of drought in countries experiencing serious drought and/or desertification (Art. 2)

The UNCCD's objectives for LDN include:


- Maintaining or improving the sustainable delivery of ecosystem services
- Maintaining or improving land productivity to enhance global food security
- Increasing the resilience of land and the populations dependent on it

7 Puni 1130

- Seeking synergies with other social, economic, and environmental objectives
- Reinforcing and promoting responsible and inclusive land governance

Method combining land cover and conversion factors in TRENDS.EARTH

Greater accuracy can be achieved in LDN monitoring using RECSOIL tools

RECSOIL tools

Core indicators

Enabling environment activities

SLM practices and restoration

Part 2 – RECSOIL phases

Technical training and capacity building

- Farmers (Global Soil Doctors) Programme)
- Soil laboratories (through GLOSOLAN)
- National technical support (through GSP Secretariat)

PHASEIII

PHASE II

.

Preparation, agreement and launch

- Identify and select project stakeholders including government representatives, technical support, soil labs, and farmers' associations
- Identification of target regions and SSM practices
- Agree on initial project plan and budget

PHASEI

Implementation steps of the RECSOIL **GREEN PATH**

Definition of project areas, practices and monitoring plan

- · Refine and finalize exact project areas through further land eligibility analysis
- Gathering of spatial, management and socioeconomic data of the project area - Metadata
- Stratification of the project area
- Definition of the sampling design and density
- Selection of additional indicators

Baseline assessment

 Baseline assessment through application of the SSM protocol

PHASEV

Identification of Based on country priority countries expression

to implement RECSOIL

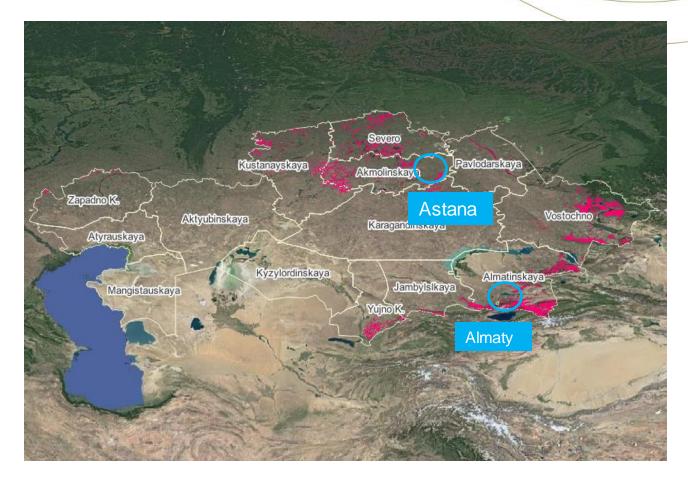
of interest and hotspot analysis using the GSOCseq map

PHASE IV

PHASE VII

- **Final analysis** and closure
- Final assessment of SOC changes, GHG emissions and soil health status (4 years after the implementation of SSM practices)
- Final project reporting
- Continuity planning

Implementation, monitoring and communication


- Implementation of SSM practices
- Annual monitoring

PHASE VI

Mid-term reporting

Selection of countries and hotspot analysis

- 1. We identify the best countries using GSOCseq.
- 2. We also examine the country's commitment to soil health and GHG emissions reduction, as well as its readiness.
- 3. We combine different layers to identify "hot spots" for RECSOIL implementation in the country.
 E.g. 1) Areas with high Sequestration and high convergence of issues

Selection of areas

Applicability of the GSOC MRV Protocol: Eligible lands and restricted lands

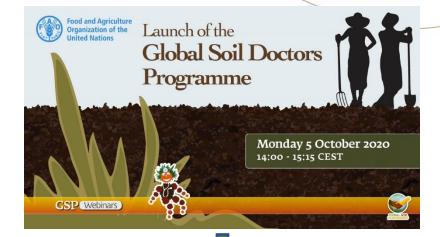
These eligibility checks are not strictly required, but recommended

The FAO Protocol restricts/limits its implementation under the following conditions:

- a) Wetlands and peatlands, or lands that have been subject to the drainage of a wetland or peatland during the past 10 years (or other baseline periods determined by obligations under national and international legislation)
- b) Organic soils, Histosols, or soils having a histic or folic horizon.
 1 m (FAO, 2015);
- c) current **native forest lands**, or lands that have been native forest lands and were converted to grasslands or croplands, at any point during the **past 10 years** (or other baseline periods determined by obligations under national and international legislation)

Identification of soil threats

- During the introductory meetings, soil threats affecting the project area are identified.
- Practices that could be adopted to sequester carbon and minimize these threats are also identified.
- Identification of practices and soil
 threats is a joint process and
 government, farmers, technician,
 researchers and other stakeholders
 participate in the process.



Soil Doctors Programme – trainings for farmers

- GSP
- ✓ Offers certified training for trainers
- ✓ Provides posters and scientific support
- ✓ Supports trainings for soil doctors
- \checkmark Provides soil education kits

PROMOTERS

- ✓ Support training of trainers
- ✓ Adapt educational material to the local context
- Provide feedback on educational material
- ✓ Provide training for soil doctors in the field

611 Trainers and 1 407 Soil Doctors certified in 14 countries 7 517 farmers reached (estimated)

The involvement of extension agencies is essential!


Soil Doctors Programme – Education materials

What is soil?

What is soil pH?

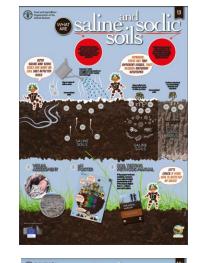
SOM-Colour Aggregate stability Soil structure

Mottles

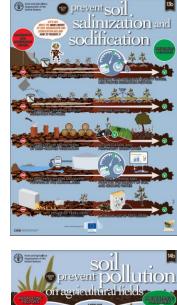
Texture

Earthworms and macroinvertebrates

Roots


GLOBAL SOI

Soil Doctors Programme – soil threats


Develop generic material on soil threats to be used around the Globe

- 1. Adjust exisiting posters to local conditions
- 2. Develop field exercises on specific soil threats
- 3. Work with farmers and local stakeholders to better communicate and disseminate SSM

What is?

Prevention

Trainings for field technicians

- Stratification in homogeneous units and definition of sampling scheme (online);
- Use of Google Earth Engine (online);
- Data collection and management (online);
- SSM and GSOC-MRV protocols (online);
- Sample collection and visual soil assessment (on the field);
- Data analysis soil health and greenhouse gas emissions estimates (EX-ACT).

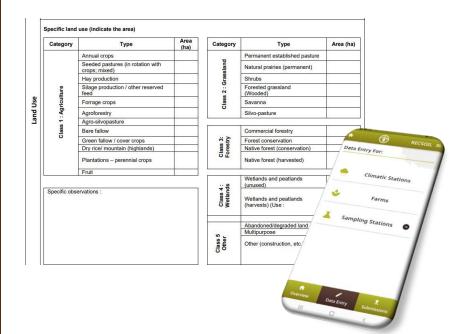
Trainings for lab technicians

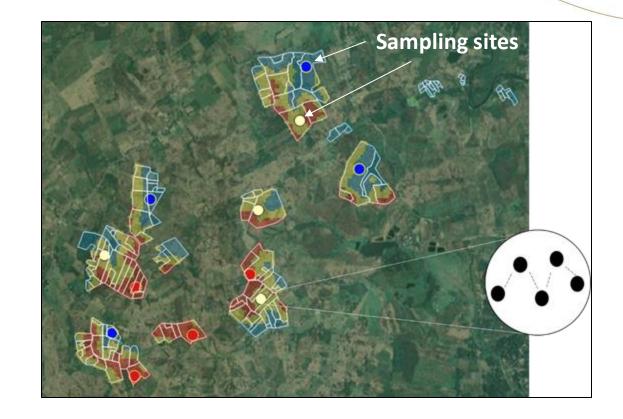
- Use of harmonized lab procedures standard operating procedures (SOPs);
- Quality control procedures;
- Safety and security in the lab.

The methods to quantify SOC already harmonized by GLOSOLAN are the following:

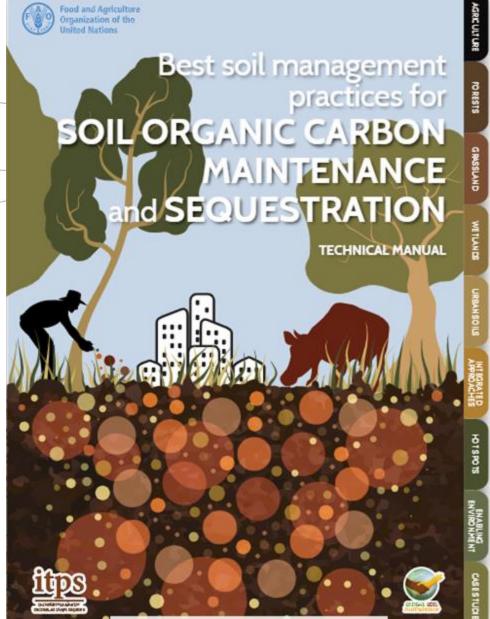
- SOP Walkley-Black method titration and colorimetric method (EN | ES | RU)
 - Soil organic carbon Tyurin spectrophotometric method (EN | RU)
 - Training video: Walkley and Black titration and colorimetric method
 - Training video: Tyurin spectrophotometric method

Method	Risk for human health related to the use of chemicals and the overall implementation of procedure by staff	Environmental risk (waste disposal)	Level of technology required	Average duration of the analysis	Global median price of the analysis (for the customers	
Walkley & Black	High	High	Low	Up to one working day	6 USD	
Tyurin	High	High	Low	Up to one working day	7.6 USD	
	Google Sheets - Report Abuse					


Matrix to assess risk in the laboratory You can download this file and fill it according to your laboratory's situation, in order to evaluate the risk and take the adequate	Consequences to People		Minor impact on skills	Minor impact on capability	Unavailability of core skills (affecting services)	Unavailability of critical skills or personnel	Prolonged unavailability of critical skills /people
actions. Plese consult the instruction available on the GLOSOLAN website on how to fill the matrix and the table to evaluate the results obtained,			Minor injury or first aid treatment	Injury requiring treatment by medical practitioner	Major injury/ hospitalization	Single death and or multiple major injuries	Multiple deaths
	Multiply the two numbers and report the result in the table, where the axes of the two numbers intersect		Severity				
Quantitative Likelihood			Insignificant 1	Negligible 2	Moderate 3	Extensive 4	Significant 5
Has occurred on an annual basis in this organization or given the current situation, it is predicted that this will occur	L i e I i h o o d	Almost certain 5					
Has occurred in the last few years in this organization or recently in other similar organizations or, given recent circumstances it is predicted to occur in the near future		Likely 4					
Has occurred at least once in the history of this organization or is considered to have 5% chance of occurring in the near future		Possible 3					
Has never occurred in this organization but has occurred infrequently in other similar organizations or is considered to have 1% chance of occurring in the next few years		Unlikely 2					
Is possible but has not occurred to date in this organization or in any similar organization, and is considered to have much less than 1% chance of occurring in the next few years		Rare 1					



►

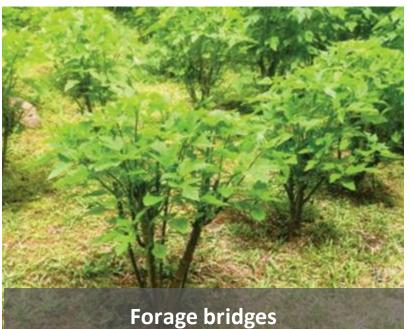

Trainings for lab technicians

Refine stratification;
 Define sampling strategy;
 Collect Project metadata;
 Define additional indicators.

Selection of sustainable soil management practices

- Knowledge of local experts, extension agents, soil scientist, farmers, and agronomists
- 2. Technical Manual: Recommended Practices

https://www.fao.org/documents/card/en/c/cb6606en/


- Practices to maintain or increase SOC, improve soil Health
- Costs (\$)
- Labour burden

Grazing management ("rational grazing" e. PRV)

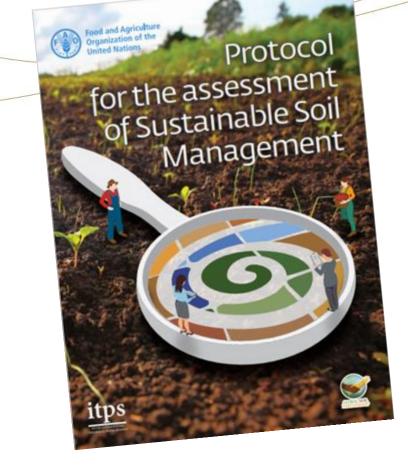
"living fences" - legumes

Sowing improved pastures

Nutrients and amendments management

Erosion control: curves, terraces, etc

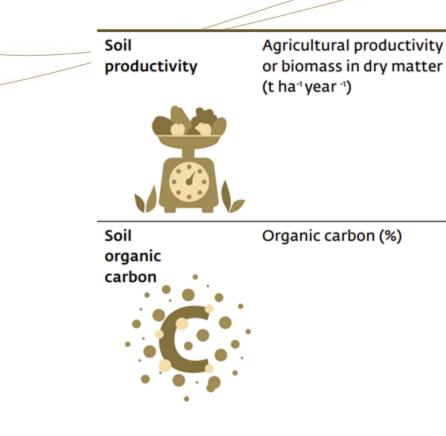
Organic and inorganic amendments


Agroforestry systems (shade, soil protection)

Green manure, cover crops

Grass/Vetiver(Chrysopogon)

SSM Protocol



Phase IV

- Provides key indicators (common to all RECSOIL projects) and a set of additional indicators
- Provides the tools to assess soil health and monitor the impact of management practices on soil properties (physical, chemical and biological indicators)

SSM Protocol - 4 Key indicators

Soil physical properties

Bulk density (kg dm⁻³)

In some cases, bulk density can be complemented by available water capacity, or other relevant soil physical properties (See additional indicators)

Soil biological activity

Soil respiration rate $(gCO_2 m^{-2} d^{-1})$

Ideally combined with at least one other biological indicator (See soil biological activity p. 4 and 5)

Additional indicators for monitoring

Soil Nutrients (P, N, K, etc)

Available water capacity (FC-PWP)

Biological activity (Enzimatic activity, microbial biomass, etc.)

Phase IV

Soil salinity (EC- Electrical conductivity)

Water infiltration

Soil penetration

resistance

Soil Biodiversity (e.g. pitfall traps, etc)

Acidity – Alkalinity pH

Erosion (USLE, erosión pins, Gerlacht boxes, etc)

Soil pollution (concentration, trace elements, pesticides, etc)

Key indicators sampling and monitoring

Total SOC (%)

Bulk density (t /m3)

What to measure?

Phase

• Particulate Organic Carbon (POC, optional)

- Soil respiration (+ other biological parameters
- Soil productivity (per hectare)

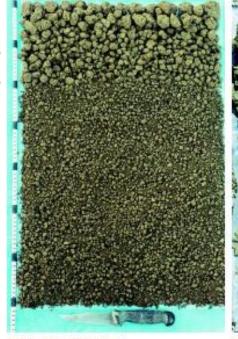
Key indicators sampling and monitoring

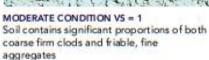
Depth?

Minimum:

- 0-30 cm (for SOC, chemical and physical parameters)
- 0 10 cm (for biological parameters)
- Recommended: 0-10 cm + 10-30 cm
- Adaptations (to use chemical sampling data) E.g. 0-20 cm + 20-40 cm (+40-60 cm)

Frequency?


- Baseline (time= 0) Mandatory
- 2 years (optional)
- 4 years (mandatory)

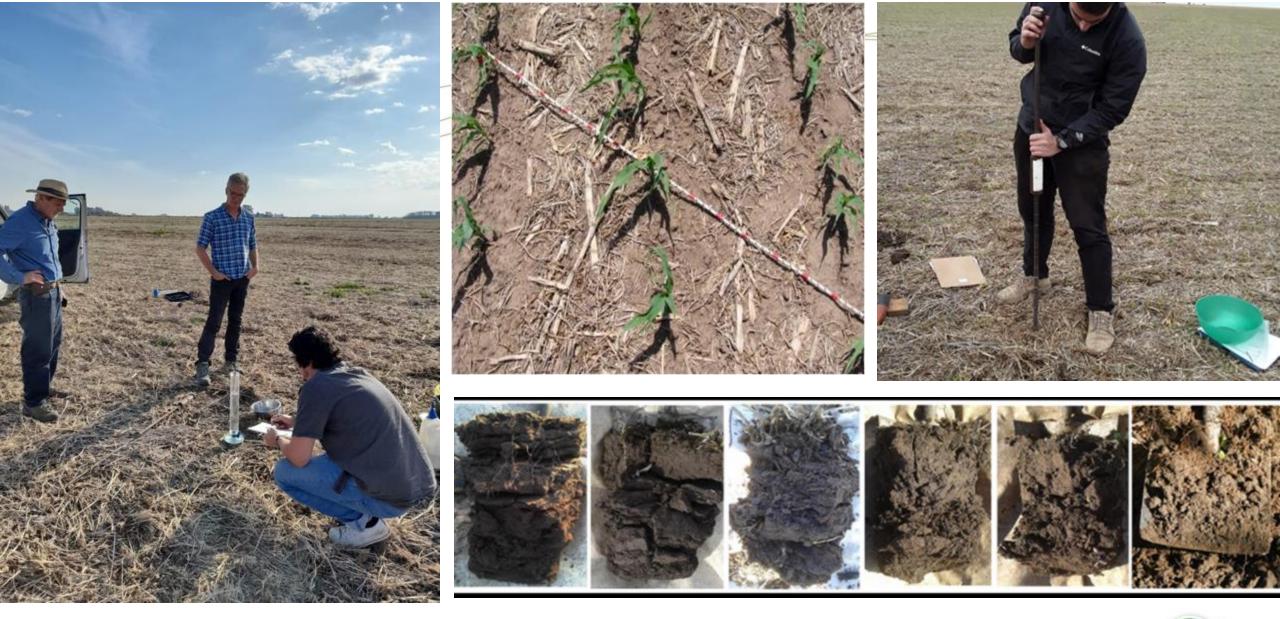

Soil health monitoring

VSA -Visual Soil Assessment

(quali – quantititative) (Based on Shepherd 2008 – FAO)

GOOD CONDITION VS = 2 Good distribution of friable finer aggregates with no significant clodding

clods with very few finer aggregates

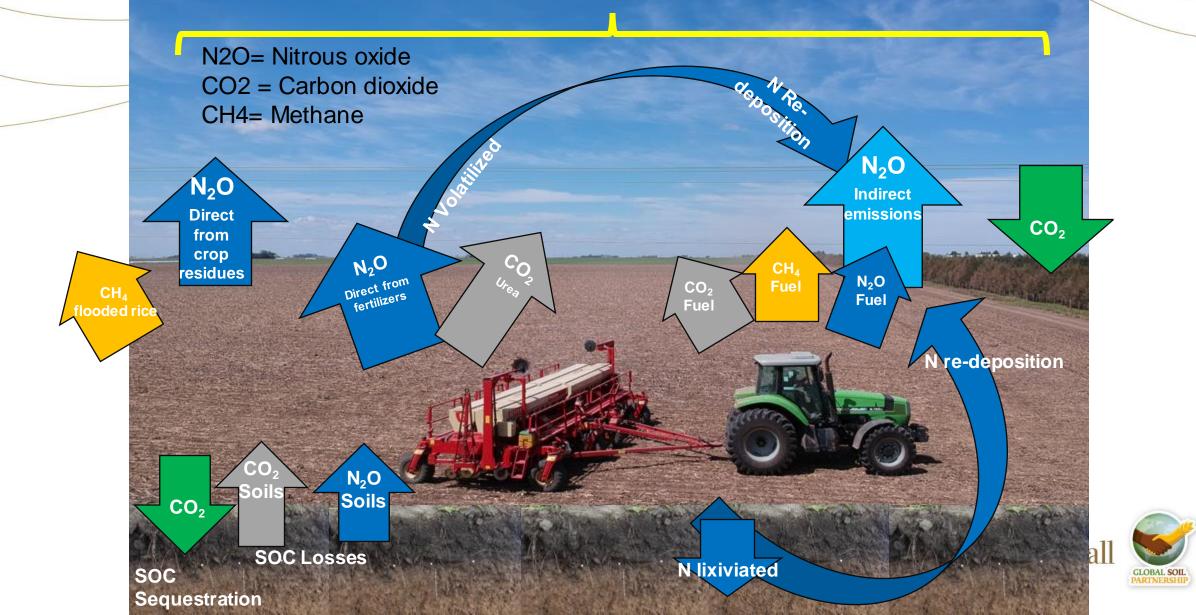

Measured every year – based on the results SSM practices may be adapted

VSA of indicators such as: Soil structure Porosity Color and mottles Growth of roots, etc

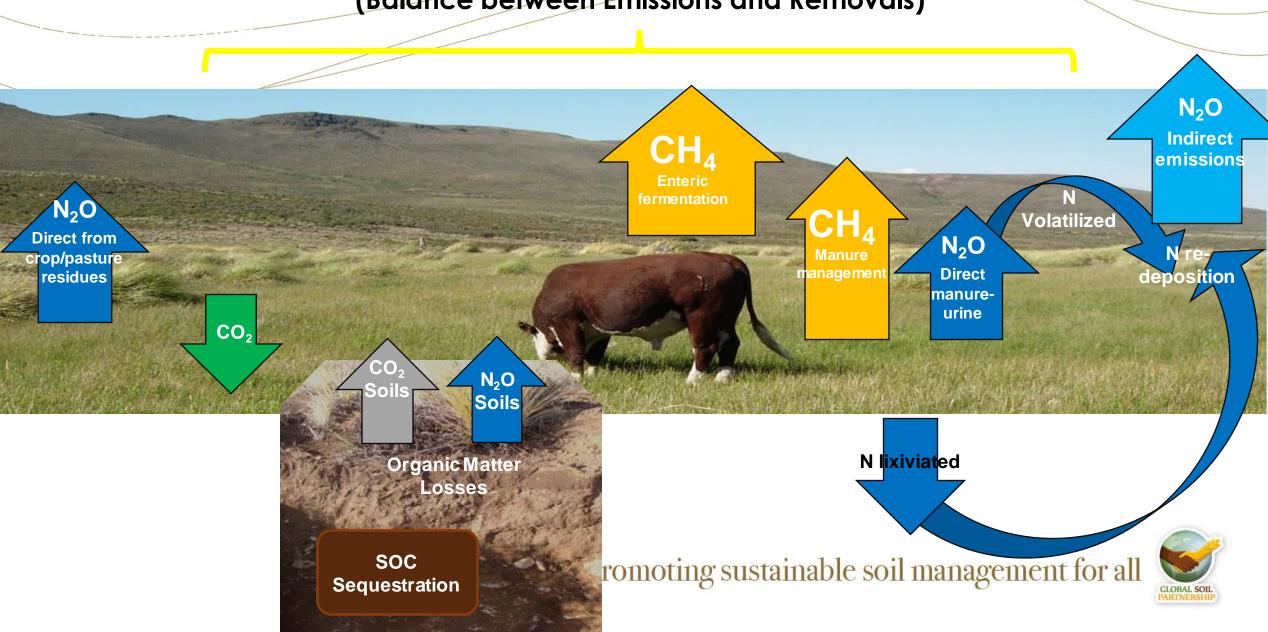
Moderate condition

Good condition

E.g. Soil Health assessment no-till Argentina


Phase

Estimation of GHG emissions


- Basic estimate of the project's GHG emissions (IPCC 2019) (using EX-ACT or another peer reviewed tool)
- Done at the baseline and at the end of the Project
- Other tools allow to monitor on annual basis

Total Net emissions – Agriculture / Feed Production (Balance between Emissions and Removals)

Total Net emissions – Livestock (Balance between Emissions and Removals)

Adoption of SSM practices

Improved Crop rotation and intercropping

Grazing management to promote soil cover

of organic amendments*

compost, digestates, biocha

Restoring abandoned cropland

Conservation tillage/ reduced /No till

Cover Crops Hairy Vetch +no till- Pergamino Argentina Soil water conservation practices - terracing

Adoption of SSM practices

- Focus on SSM practices for soil pollution mitigation and remediation
- Ecosystem-based solutions for soil remediation - use micro and macroorganisms and plants
- Bioremediation
- > Phytoremediation
- > Vermiremediation

Code	Code LU	Land Use	Code type	Type of practices	Code P	Practices
1.5.1	1	Croplands	5	Chemical and mineral additions	1	Mineral fertilization (macro, secondary and micronutrients)
1.5.2	1	Croplands	5	5 Chemical and mineral additions	2	Pertigation
1.5.3	1	Croplands	5	5 Chemical and mineral additions	3	Enhanced efficiency fertilizers
1.5.4	1	Croplands		5 Chemical and mineral additions	4	Improved application method (incorporated, fractionned, site specific)
1.5.5	۲ 1	Croplands	r :	Chemical and mineral additions	5	Mineral (Ca) amendments to sequester soil inorganic carbon
1.5.6	1	Croplands	5	5 Chemical and mineral additions	6	Use of emissions inhibitors (nitrification, urease)
1.6.1	1	Croplands	6	5 Addition of other living organism	1	Biofertilizers application
1.6.2	1	Croplands	(5 Addition of other living organism	r 2	Bioles or organic liquid fertilizers
1.6.3	1	Croplands	(5 Addition of other living organism	r 3	Use of emissions inhibitors (nitrification, urease)
1.6.4	1	Croplands	6	5 Addition of other living organism	4	Bioinoculants
1.6.5	1	Croplands	(5 Addition of other living organism	r 5	Biostimulants and phytohormones
1.6.6	1	Croplands	6	5 Addition of other living organism	r 6	Bioremediation and bioaugmentation
1.6.7	1	Croplands	6	5 Addition of other living organism	r 7	'Earthworm inoculation
1.6.8	1	Croplands	(5 Addition of other living organism	r 8	Hyperaccumulators
1.6.9	1	Croplands	(Addition of other living organism	9	Use of biocontrol organisms
1.6.10	1	Croplands	(5 Addition of other living organism	10	Use of oxalogenic plants to sequester soil inorganic carbon
1.6.11	1	Croplands	(Addition of other living organism	11	Pollinators
1.6.12	1	Croplands	(Addition of other living organism	12	Use of adapted crops (crop suitability)
1.7.1	1	Croplands	1	7 Genetic engineered crops	1	Genetic engineered salt- tolerant crops
1.7.1	1	Croplands	1	7 Chemical amendments	1	Liming and calcium amendments
1.8.2	1	Croplands	8	3 Chemical amendments	2	Biochar
194	1	Cronlands		Chemical amondments	4	Gunsum on sodic soils

Phytoremediation

Site Name	Plant species	Contaminant	
Guadiamar river area, (Aznalcollar mine, Spain)	Various	Pb, Cu, Zn, Cd, Ti, Sb, As	
BTEX-contaminated groundwater (Genk, Belgium)	Populus x canadensis (poplar)	BTEX	
Eka Chemicals site (Bohus, Sweden)	Various	Chlorinated organics, mercury	
Former municipal gaswork site (Holte, Denmark)	Poplar and willow	Cyanide, BTEX, PAHs, oil	
Pesticides storage (Niedwiady, Poland)	Poplars	Pesticides	

Schwitzguébel et al. 2002. J. Soil & Sediments. DOI: 10.1007/BF02987877

Standardized reporting templates and feedback workshops for:

- Baseline assessment
- Annual Report
- Final report
- Continuity Planning

Food and Agriculture Organization of the **United Nations**

RECSOIL Baseline Report Green Path

Instructions to the authors: Please replace information in italics with project specific details and ensure all directions in italics are deleted before submission.

Author Information

Please add rows as necessary to include additional authors

Name of Author	Institution of Author	Institution of Author [Institution of author 1]	
[Name of author 1]	[Institution of author 1]		
	ıtion of author 2]		
	tion of author 3]		

RECSOIL Midterm Report

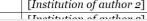
Green Path

Date of Report: [DD Mon, YYYY]

Instructions to the authors: Please replace information in italics with project specific details and ensure all directions in italics are deleted before submission.

Author Information

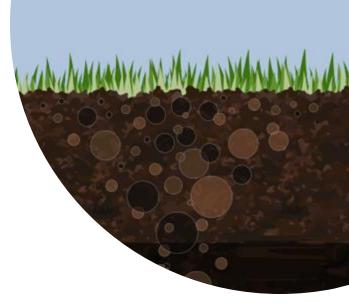
Food and Agriculture Organization of the


United Nations

Please add rows as necessary to include additional authors

Reporting

Name of Author	Institution of Author	
[Name of author 1]	[Institution of author 1]	
[Name of author 2]	[Institution of author 2]	


[Name of authon o]

Thank you!

