

GLOBAL SOIL PARTNERSHIP

12th Plenary Assembly

03-05 June 2024

Opening remarks on MRV tools and systems - tentative definition

Eric Ceschia (INRAE/CESBIO)

Different contexts of MRV for Soil Organic Carbon

- National inventories = Nationally Determined Contributions (NDCs) under the Paris agreement (COP21)
- Carbon offset programs (offsetting/Voluntary Carbon Market) mainly for forest up to now but developing fast for cropland,
- Compensation of GHG emissions inside the supply chain (insetting) → e.g. agri-food companies engaged in SBTI FLAG objectives (to report their environmental progress) → credits used for scope 3 reporting cannot be sold as offset credits,

Common Agricultural Policy in Europe ? → currently lack of political will, of access to plot/farm activity data in most EU countries and of operational methods for monitoring

Partners'

The components of a MRV scheme

Schematic representation of the components/building blocks and information flow for a generic MRV framework

Partners

Conceptual MRV frameworks for cropland

Paustian et al. (2019): NDC, VCM, supply chain in the USA

Smith et al. (2020)

Propositions of MRV methodological framework

Partners'

Day

Measurements of soil SOC content/bulk density → representativity of spatial paterns ?

- Statistical models spatialising in situ soil data using related patterns (e.g. Szatmári et al. 2021) and digital soil mapping (e.g; Vaudour et al. 2020; Heuvelink et al., 2020),
- Management measures (TIER 1 & 2): estimated standard values for Specific Land Management measures (activity X leads to increase/decrease in SOC) → only for NDCs,

Measurements of soil SOC content/bulk density → representativity of spatial paterns ?

- Statistical models spatialising in situ soil data using related patterns (e.g. Szatmári et al. 2021) and digital soil mapping (e.g; Vaudour et al. 2020; Heuvelink et al., 2020),
- Management measures (TIER 1 & 2): estimated standard values for Specific Land Management measures (activity X leads to increase/decrease in SOC) → only for NDCs,
- Monitoring of SOC stock directly from remote sensing?

Measurements of soil SOC content/bulk density → representativity of spatial paterns ?

- Statistical models spatialising in situ soil data using related patterns (e.g. Szatmári et al. 2021) and digital soil mapping (e.g; Vaudour et al. 2020; Heuvelink et al., 2020),
- Management measures (TIER 1 & 2): estimated standard values for Specific Land Management measures (activity X leads to increase/decrease in SOC) → only for NDCs,

• Measurements of soil SOC content/bulk density → representativity of spatial paterns ?

- Statistical models spatialising in situ soil data using related patterns (e.g. Szatmári et al. 2021) and digital soil mapping (e.g; Vaudour et al. 2020; Heuvelink et al., 2020),
- Management measures (TIER 1 & 2): estimated standard values for Specific Land Management measures (activity X leads to increase/decrease in SOC) → only for NDCs,
- Process based models/operational processing chains (TIER 3) simulating plant/soil processes and their interactions and assimilating remote sensing data (e.g. FiON, AgriCarbon-EO, Remote-C, RETINA) or not (e.g. STICS, DNDC, CENTURY, RothC),
- Combination of the above methodologies ?

Measurements of soil SOC content/bulk density → representativity of spatial paterns ?

• Statistical models spatialising in situ soil data using related patterns (e.g. Szatmári et al. 2021) and digital soil mapping (e.g; Vaudour et al. 2020; Heuvelink et al., 2020),

Management measures (TIER 1 & 2): estimated standard values for Specific Land Management measures (activity X leads to increase/decrease in SOC) → only for NDCs,

• Process based models/operational processing chains (TIER 3) simulating plant/soil processes and their interactions and assimilating remote sensing data (e.g. FiON, AgriCarbon-EO, Remote-C, RETINA) or not (e.g. STICS, DNDC, CENTURY, RothC),

• Combination of the above methodologies? The choice depends on the context of application, the availability of input data, models adapted to the local context, cost/benefits ratio...

Monitoring of SOC is an ecosystem issue !!! A MRV method for SOC shall address other compartments than the soil (e.g. biomass) → C budget approach !!!

Partners'

Soil Partners' Day | 03-05 June 2024

Propositions of MRV methodological framework

Partners'

Day

accuracy

Data SPOT4/5

Most crops & carbon farming practices

Cost (mostly acivity data collection)

Uncertainty assessment

Scalability

18/07/2012 06/09/2012 15/11/2012 29/12/2012

Hybrid approach (combining modeling, remote sensing for biomass, in-situ data) → AgriCarbo dedicated to upsaclling the C budget components and their uncertainties

See Wijmer et al. 2024 (V1)

https://gmd.copernicus.org/articles/17/997/2024/

Partners

Straw cereals aboveground biomass in France in 2019

Soil Partners' Day | 03-05 June 2024

Hybrid approach (combining modeling, remote sensing for biomass, in-situ data) → AgriCarbo dedicated to upsaclling the C budget components and their uncertainties

See Wijmer et al. 2024 (V1)

https://gmd.copernicus.org/articles/17/997/2024/

https://www.cesbio.cnrs.fr/agricarboneo/

Straw cereals aboveground biomass in France in 2019

Soil Partners' Day | 03-05 June 2024

Hybrid approach (combining modeling, remote sensing for biomass, in-situ data) → AgriCarbo dedicated to upsaclling the C budget components and their uncertainties

See Wijmer et al. 2024 (V1)

https://gmd.copernicus.org/articles/17/997/2024/

https://www.cesbio.cnrs.fr/agricarboneo/

Main crops & not all C farming practices

Plot level (even pixel → best for validation)

Cost (mostly acivity data collection)

Scalability

Uncertainty assessment

Accuracy (depends on access or not to local soil and activity data)

Many other MRV tools based on modeling

© UCSC

Light use efficiency approach for estimating biomass input to the RothC soil model Australia (NDC)

COMET-Farm: C market

RETINA Project (UK): C market

© FMI Field observatory network

Constraining existing crop/grassland models (e.g. STICS) with satellite observations

Soil Partners' Day | 03-05 June 2024

Decision tree to choose the Monitoring approach tailored to the local context

Partners'

Day

Key message

One of the main challenge for promoting SOC storage and to assess the impacts of management practices on the agricultural soils concerns Monitoring (MRV) → need for scalable, multi-context (NDC, C market...), automatized, cheep, reliable, transparent methods for monitoring the effect of management on SOC stock changes in agricultural soils,

Following as much as possible CIRCASA's recommendations:

- Modular & transparent approach with uncertainty assessment on SOC stocks,
- Several soil models instead of one allowing ensemble modeling approach,
- Assessment of the different components of the C budget in the development/verification process,
- Relying on strong data infrastructures following the FAIR principles: e.g. Copernicus, Fluxnet sites...
- High resolution, relying on remote sensing (e.g. Sentinel 2) to quantify biomass production & restitution to the soil,
- ...

Key message

One of the main challenge for promoting SOC storage and to assess the impacts of management practices on the agricultural soils concerns Monitoring ($\underline{M}RV$) \rightarrow need for scalable, multi-context (NDC, C market...), automatized, cheep, reliable, transparent methods for monitoring the effect of management on SOC stock changes in agricultural soils,

Following as much as possible CIRCASA's recommendations:

- Modular & transparent approach with uncertainty assessment on SOC stocks,
- Several soil models instead of one → allowing ensemble modeling approach,
- Assessment of the different components of the C budget in the development/verification process,
- Relying on strong data infrastructures following the FAIR principles: e.g. Copernicus, Fluxnet sites...
- High resolution, relying on remote sensing (e.g. Sentinel 2) to quantify biomass production & restitution to the soil,

- ...

will provide guidelines, recommendations, methodological frameworks and tools for using/developpingmulti-ecosystem and multi context MRV tools

THANKYOU

Visit our websites:

https://irc-orcasa.eu/join-the-soil-carbon-irc/

https://www.project-marvic.eu/

https://www.cesbio.cnrs.fr/agricarboneo/agricarbon-eo/

Operational processing chains for arable land

Examples

	ur	mod	اما	cata	loc	ше
U	uı	HIOU	E	Cata	U	lue

Model	Time-step	N ₂ O	Soils	Pros	Cons
SVM	hourly/ daily	N	Mineral	In house development	Development not complete yet PEcAn coupling has not begun
Basgra-Yasso	daily	Y	Mineral	Can turn features on/off Advanced PEcAn coupling	Grassland only
Basgra-BGC	daily	N	Organic	Includes specific adaptations for cultivated peatlands	Grassland only
STICS	daily	Y	Mineral, Organic(?)	Wide applicability	Heavily parameterized
-DNDC	flexible	Υ	Mineral, Organic	Wide applicability	Heavily parameterized

© FMI

Constraining with EO data existing crop/grassland models (e.g. STICS) and soil model (e.g. YASSO)

Parcimonious crop model dedicated to upscalling assimilating EO data coupled to AMG soil model

© INRAE/CESBIO

Light use efficiency approach for estimating crop/cover crop biomass input to the RothC soil model

