

FACTOR SCIENCE AND INNOVATION

Innovations in Soil and Plant Nutrient Management

How to Improve Fertilizer Recommendations for Farmers? Dinesh Panday

FOUNDATION

FOUNDATION

 THE FOUNDATION
 RESEARCH
 PUBLICATIONS
 EDUCATION & TRAINING
 ADVOCACY & OUTREACH
 LEGISLATION REPOSITORY

 OUR APPROACH
 Home » Econ-ity Blog » The Perennial Problem of Fertilizers Shortage in Nepal: Is the government acting as a hurdle?
 Item (Content of Content of

The Perennial Problem of Fertilizers Shortage in Nepal: Is the government acting as a hurdle?

Posted on October 12, 2022

Nepal is an agricultural country, and fertilizers are a critical component of agriculture; however, fertilizer shortage is a chronic problem in Nepal. <u>Numerous policies</u>, such as Working Policies, Subsidy Policy, Deregulation Policy, National Fertilizer Policy, and Chemical Fertilizer Subsidy policy, were introduced from time to time to address this, but none of them were found to be fully effective. <u>Fertilizers are still not available to farmers at the time of harvesting, and if they are, they are untimed, inadequate, and adulterated in nature.</u>

Progressive FARMER

MARKETS NEWS C WEATHER LIVESTOCK CROPS EQUIPME

Rethink Fall N in Wheat

Are We Overfeeding Wheat With Fall Nitrogen Applications?

10/28/2021 | 8:59 AM CDT

By Emily Unglesbee, DTN Staff Reporter Connect with Emily:

Many soils already hold enough nitrogen to get

winter wheat through the fall and winter, which

means fall nitrogen applications rarely pay off.

ROCKVILLE, Md. (DTN) -- With nitrogen supplies tight and costs skyrocketing, there's never been a better year to take advantage of wheat's minimal fertilizer needs in the fall. Take it from Marc Arnusch, a Colorado farmer who discovered he was overfeeding his wheat crop with

nitrogen, in an effort to get the crop up and headed toward its optimal yield. "We used to put nitrogen on in the fall religiously," recalled

Arnusch, who farms in Keenesburg. "We wanted to provide a stocked refrigerator for the crop to pull from in the fall, winter and early spring."

Then, with the help of soil sampling, Arnusch discovered something surprising: The fridge was already full.

Most of his wheat is planted after corn silage crops, and the wheat plants were finding plenty of residual nitrogen to draw from, especially in the dry falls his region has seen in the past decade. Now, the only nutrient he applies at

planting is phosphorus.

(DTN file photo by Elaine Shein)

The reality is that fall-emerging winter wheat doesn't need too much nitrogen, confirmed Dorivar Ruiz Diaz, a Kansas State agronomist who specializes in soil fertility and nutrient management.

"One thing we see pretty consistently is that nitrogen uptake in the fall and winter is no more than 30 to 35 pounds," said Ruiz Diaz. "And depending on when we plant and how much biomass we get, that could be as low as 15 to 20 pounds taken up in the fall and winter."

businessine Companies / Markets / Portfolio / Economy / Opinion

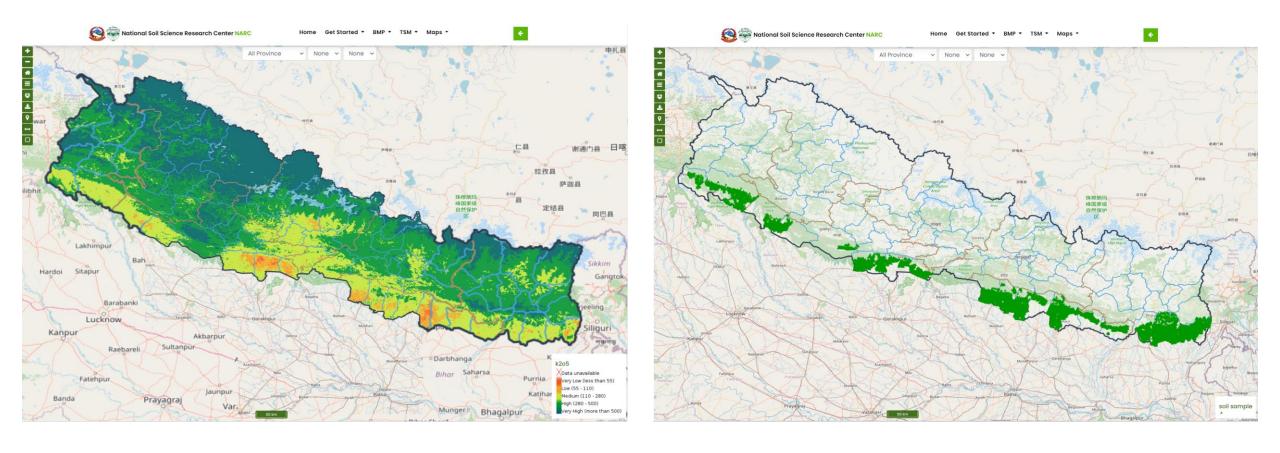
The ruinous impact of chemical farming

December 06, 2021 - Updated 06:22 pm IST

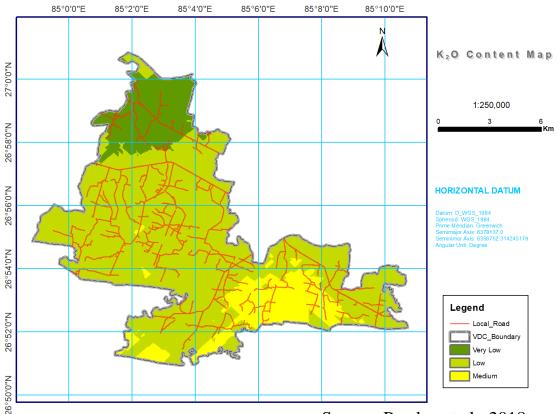
The lip-service paid to organic farming must be backed by budgetary intent. Chemical farming is undeniably harmful

BY MINA ANAND

O COMMENTS SHARE



The huge fertiliser subsidy bill has hardly benefited the farmer | Photo Credit: A MURALITHARAN


FA SCIENCE AND INNOVATION

Source: Panday et al., 2018

RESEARCH ARTICLE

Potassium nutrient response in the ricewheat cropping system in different agro-ecozones of Nepal

Roshan Babu Ojha o^{1e}*, Shova Shrestha^{1e}, Yajna Gajadhar Khadka^{1e}, Dinesh Panday o^{2e}

1 Soil Science Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Nepal, 2 Department of Biosystems Engineering and Soil Science, University of Tennessee-Knoxville, Knoxville, TN, United States of America

These authors contributed equally to this work.
<u>roshanbachhan@gmail.com</u>

Abstract

Most of the soils of Nepal had a higher potassium (K, expressed as K₂O) level inherently. Later in 1976, the Government of Nepal has recommended K fertilizer rate at 30 kg K₂O ha⁻¹ in rice-wheat cropping systems. However, those crops began showing K deficiency symptoms in recent decades, which could be due to a large portion of soils with depleted K level or the insufficient input of K fertilizer for crop production. This study explored a limitation of K nutrient in the crops by establishing field trials from 2009-2014 at three agro-ecozones i.e., inner-Terai (2009-2010), high-Hills (2011-2012), and Terai (2012-2014) in Nepal. Seven rates of K fertilizer at 0, 15, 30, 45, 60, 75, and 90 kg K₂O ha⁻¹ were replicated four times in a randomized complete block design, where crop yields and yield-attributing parameters of rice-wheat cropping system were recorded. Results revealed that an increase in K rates from 45 to 75 kg K₂O ha⁻¹ under inner-Terai and Terai conditions and 45 to 60 kg ha⁻¹ under high-Hills conditions produced significantly higher grain yields compared to the recommended K dose. Economically, the optimum rate of K fertilizer should not exceed 68 kg K₂O ha⁻¹ for rice in all agro-ecozones, or 73 kg K₂O ha⁻¹ for wheat in inner-Terai and 60 kg K₂O ha⁻¹ for wheat in high-Hills and Terai. Our findings suggest to increase potassium application in between 1.5 to 2.5 times of the current K fertilizer rate in rice-wheat cropping system of Nepal that need to be tested further in different locations and crop varieties.

Source: Ojha et al., 2021

FA SCIENCE AND INNOVATION

Journal of Crop Improvement 🕨 List of Issues 🕨 Volume 32, Issue 1 🕨 Improving fertilizer recommendations for

Improving fertilizer recommendations for Nepalese farmers with the help of soil-testing mobile van

Sunil Pandey, Netra Prasad Bhatta, Prakash Paudel, Rajan Pariyar, Kiran Hari Maskey, Janardan Khadka, Tuk Bahadur Thapa, Balaram Rijal & Dinesh Panday 🕿 🔞 ...show less

Pages 19-32 | Received 07 Jul 2017, Accepted 30 Sep 2017, Published online: 29 Nov 2017

General Station Antips://doi.org/10.1080/15427528.2017.1387837

🖾 Figures & data 🛛 🖉 References 🛛 👪 Citations 🔄 🔟 Metrics 🛛 🖨 Reprints & Permissions

Related research 1

🕒 View PDF

ABSTRACT

Smallholder farmers dominate agriculture in Nepal. These farmers have poor knowledge about agriculture and lack of support for soil management and integrated plant-nutrient systems. Focusing on the importance and need for soil-fertility management, a soil-testing mobile van program has recently been introduced in Nepal by Soil Management Directorate, Hariharbhawan. With the introduction of the mobile lab, famers can get their soil tested for nutrient deficiencies and fertilizer requirements at their doorsteps. Using mobile lab, spatial distributions of chemical properties, including pH, organic matter (OM), total nitrogen (N), available phosphorus (as P_2O_5), and available potassium (as K₂O) were examined in soil samples taken from the 0 to 15 cm depth from selected agricultural fields in eight different districts in the mid-hills and Terai regions of Nepal. Tests conducted on 1,479 soil samples in the soil-testing mobile van revealed the following: the mean soil OM ranged from 0.01 to 1.77%; total N content ranged from 0.01 to 0.08%; mean available P_2O_5 ranged from 16.47 to 197.82 kg ha⁻¹; and mean available K_2O ranged from 84.3 to 422.57 kg ha⁻¹. For each crop to be grown, farmers were provided with individual soil health reports and fertilizer recommendations (rate, amount, and type). This program not only allows scientists and farmers to work closely and share information but also serves as a model for the nation to successfully transfer technology for improving soil health and sustainability.

People also
readRecommended
articlesCited by
3Spatial variability of soil properties under
different land use in the Dang district of

🔽 🗘 🖂

Nepal > Dinesh Panday et al.

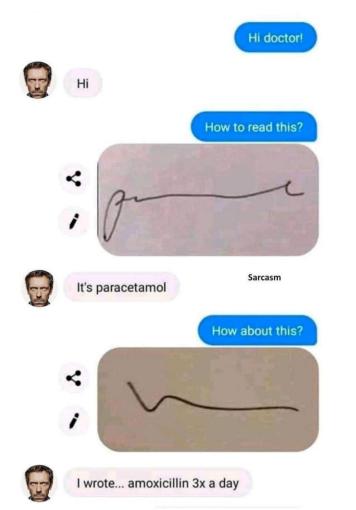
Cogent Food & Agriculture Published online: 25 Apr 2019

Source: Soil Resource Development Institute, Bangladesh

IPNI and partners helping South Asian smallholder cereal farmers reduce environmental footprint of fertilizer use Credit: International Plant Nutrition Institute

Work Resources News Events About

Blogs > Nepal Government endorses new site-specific fertilizer recommendations for rice


Nepal Government endorses new site-specific fertilizer recommendations for rice

CIMMYT supports the development of site-specific fertilizer recommendations to increase rice productivity in Nepal. By Bandana Pradhan and Yam Gaihre August 9, 2022

						-		
			ation card based	on soil test				
	Soil Res	sources Develo	pment Institute					
	Ministry	of Agriculture						
Farmer,s	Md. Ano	wer Hossain		Soil test numbe	r			
	Abul Kas		Date of sample	-				
Father/Husband,s nar	me			collection				
Mother,s name				Soil depth (cm)				
Village	Gagonpu	ır		Land type				
Mouja number				Flooding depth (cm)				
Post				Soil series				
Union	Handial			Name of crops				
Upazilla	Chutmol	nor		Rabi	Mustard-	Boro		
District	Pubna			Kharif-1	Sesame			
Possible cropping pattern				Kharif-2	Aman			
					Quantit	y of fer	tilizer (g	/decima
Analysis nutrient element		Fertility status	Name of fertiliz	Season	Rabi		Kha ri f-1	l Kharif-2
Name &unit	Weight			Сгор	Mustard	Boro	Sesame	Aman
N (%)		Low	Urea		1000	1400	660	765
P (µg/g soil)	24	Optimum	TSP		250	250	250	150
K (meq/100g soil)	0.13	Low	МОР		620	605	330	330
S (µg/g soil)	13.9	Low	Gypsum		435	340	340	220
Zn (µg/g soil)		Low	Znc sulphate		30	40	30	15
B (µg/g soil)		Low	Boric acid		20	-	15	-
Ph	7.4	Slightly alkaline	Lime (kg/decimel)	-	-	-	-
Salinity					-	-	-	-
Organic matter (%)			CD/Compost		10	20	10	10
			(kg/decimel					
			Others					

Source: Sultana et al., 2015

Thank you!