GLYPHOSATE (158)

First draft prepared by Dugald MacLachlan, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra.

EXPLANATION

Glyphosate was listed in the Periodic Re-Evaluation Programme of the 34th Session of the CCPR for residue review by 2005 JMPR. It has been reviewed by the JMPR in 1986, 1987, 1994 and 1997.

Relevant data on metabolism and residue trials were submitted to the Meeting. Data to support existing CXLs and critical data required for the estimation of MRLs have been provided by the manufacturer for the following commodities: sugar beet – glyphosate tolerant, beans (dry), peas (dry), soya beans (conventional and glyphosate tolerant), olives, banana, kiwi fruit, barley, maize (conventional and glyphosate tolerant), oats, rye, sorghum, wheat, tree nuts, cotton, linseed, rape, sunflower, coffee, tea and sugarcane as well as for lactating cows, laying hens and pigs.

The Meeting received information on glyphosate metabolism and environmental fate, methods of residue analysis, freezer storage stability, national registered use patterns, supervised residue trials and national MRLs. Some information on GAP and national MRLs were submitted by Australia and The Netherlands.

IDENTITY

ISO common name:	glyphosate
Chemical names	
IUPAC:	N-(phosphonomethyl)glycine
CA:	N-(phosphonomethyl)-glycine
CAS number:	[1071-83-6]
CIPAC number:	177
Synonyms/trade name	s: Roundup®
Structural formula	
Molecular formula:	C ₃ H ₈ NO ₅ P (glyphosate)
Molecular weight:	169.1 g/mol
Physical and Chemica	al Properties
Endpoint	Test material/purity
Annearance	Pure material > White solid

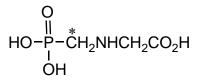
Endpoint	Test material/purity		References
Appearance	Pure material >	White solid	Wollerton, Husband,
	99.6% w/w		1997 RJ2400B
	Technical material	White solid	Wollerton, Husband,
	96.9% w/w		1997a RJ2401B
Vapour pressure	Pure material >	$< 1 \times 10^{-8}$ kPa ($< 1 \times 10^{-7}$ mm	Wollerton, Husband,

Endpoint	Test material/purity		References
Henry's Law	99% w/w	Hg) at 20 °C indicating glyphosate is non-volatile 2×10^{-12} Pa m ³ mol ⁻¹	1997 RJ2400B Wollerton, Husband,
constant Melting point, freezing point or solidification point	Pure material > 99% w/w	Decomposes at 200 °C (473K)	1997 RJ2400B Wollerton, Husband, 1997 RJ2400B
-	Technical material 96.9% w/w	Decomposes at 200 °C (473K)	Wollerton, Husband, 1997a RJ2401B
n-Octanol/water partition co- efficient	Pure material > 99% w/w	$\log P_{ow} \le -1.3$ at 20 °C	Wollerton, Husband, 1997 RJ2400B
Solubility in water	Pure material > 99% w/w	10 g/L in purified water. Solubility will increase with pH and be dependant upon ionic strength. Glyphosate has low solubility	Wollerton, Husband, 1997 RJ2400B
organic solvents	Technical material 98.5% w/w	in common organic solvents at 20 °C: Ethyl acetate 12 mg/L; propan-2-ol 20 mg/L; hexane 26 mg/L; toluene 36 mg/L; acetone 78 mg/L; dichloromethane, methanol 231 mg/L.	Robson, 1991 81 GLY
	96.9% w/w	heptane, octan-1-ol, xylenes, ethyl acetate, acetone, 1,2- dichloroethane: < 0.6 mg/L; acetonitrile 0.8 mg/L and methanol 10 mg/L	Wollerton, Husband, 1997a RJ2401B
Relative density	Pure material > 99% w/w	1.70 g/cm ³ at 20°C	Wollerton, Husband, 1997 RJ2400B
	Technical material 96.9% w/w	1.69 g/cm ³ at 20 °C	Wollerton, Husband, 1997a RJ2401B
Hydrolysis rate at pH 4, 7 and 9 under sterile conditions in the absence of light	[P-methylene - ¹⁴ C] glyphosate acid (radiochemical purity 97.9 %)	Stable at pH 5, 7, and 9 and 25 °C	Bowler, 1996 RR 96-002B
Direct photo- transformation	[P-methylene - ¹⁴ C] glyphosate acid (radiochemical purity 97.5 %)	Stable at pH 5, 7 and 9	Esser, 1996 RR96- 028B
Dissociation constant	Pure material > 99%w/w	Dissociation constants at 20 °C and a constant ionic strength of 0.1 M are <2, 2.25 \pm 0.02, 5.50 \pm 0.02 and 10.34 \pm 0.04.	Wollerton, Husband, 1997 RJ2400B

Formulations

Glyphosate is available in soluble liquid (SL) and soluble granule (SG) formulations in the ammonium, potassium and isopropylamine salt forms. In order to avoid differences due to the molecular weights of salts of glyphosate, the dosage of the active substance is expressed as acid equivalent: kg ae/ha.

Glyphosate and its metabolites were given various trivial names, systematic names and code numbers in study reports. These are summarised below.


Metabolite No.	Code	Term used in evaluation	Formulae, CAS number/name, other names/codes used in study reports
1	CP67573	Glyphosate	
2	CP50435	AMPA	H ₂ NCH ₂ PO ₃ H aminomethyl phosphonic acid
3	CP67205		HO ₂ CCH ₂ N(CH ₃)CH ₂ PO ₃ H ₂
4	CP70948	N-methyl AMPA	CH ₃ N(H)CH ₂ PO ₃ H ₂ [(N- methylamino)methyl]phosphonic acid
5		Methylphosphonic acid	CH ₃ PO ₃ H ₂
6		N-acetyl AMPA	CH ₃ C(O)NHCH ₂ PO ₃ H ₂ [(acetylamino)methyl]phosphonic acid
7		N-glyceryl AMPA	[(2,3-dihydroxy-1- oxopropyl)aminomethyl]phosphonic acid
8		N-malonyl AMPA	3-oxo-3-[(phosphonomethyl)amino]propanoic acid

METABOLISM AND ENVIRONMENTAL FATE

Animal metabolism

The Meeting received animal metabolism studies for glyphosate in rats, lactating goats and laying hens; the rat studies though not reported here, confirm that the metabolism was qualitatively the same as for the lactating goat and laying hens with no additional metabolites identified.

Powles (1994 279 GLY) studied the metabolism of ¹⁴C-glyphosate in lactating goats. Two lactating goats, aged *ca.* 3 years and weighing 61.5 and 70 kg respectively were given repeated doses of (¹⁴C)-glyphosate by gavage at 400 mg/animal equivalent to a daily dietary intake of 200 ppm (2 kg dry matter intake/day). Goat A was given (¹⁴C)-glyphosate for 5 consecutive days and the goat B was given (¹⁴C)-glyphosate for 3 consecutive days. For each animal the daily dose was split and given as two doses within each 24 hour period after milk and excreta collections and before feeding.

* Denotes position of radiolabel (named $({}^{14}C)$ -glyphosate in this evaluation and as $[{}^{14}C]$ -phosphonomethyllabelled glyphosate in the toxicological evaluation

Excreta were collected from both animals at 24 hour intervals. The goats were milked twice daily and the milk was pooled to provide a daily sample for each animal. A blood sample was also taken from goat B at intervals for up to 24 hours after the initial dose. Goat A was killed *ca.* 23.5 hours after the last dose, the liver, kidneys and samples of muscle and fat were removed at necropsy. Goat B was killed when the plasma radioactivity concentration was at a maximum (*ca.* 8 hours after the final dose) and the tissues were collected for analysis.

The urine, faeces and milk collected on day 2 and tissues from goat B (given 3 daily doses) were used to identify the major radioactive residues. Samples were extracted with chloroform/hydrochloric acid (0.1M), the extracts were cleaned up by ion exchange chromatography and then analysed by TLC on cellulose or, after derivatization with 9-fluorenylmethyl chloroformate, by reverse phase HPLC. Components of the residue were identified by comparison with reference standards; residues in selected samples were isolated by preparative TLC and identified by FT-IR.

After giving 5 daily doses of $({}^{14}C)$ -glyphosate to goat A, 90% of the radioactivity was recovered in excreta, milk, tissues, cage washings and debris. The majority of the dose was eliminated in faeces (78%) and only a small proportion was excreted in urine (9.4%); less than 0.05% was present in either milk or tissues. The concentration of ${}^{14}C$ in the milk remained relatively constant after the second dose when the concentration was 0.060 mg equiv/kg. The highest ${}^{14}C$ tissue concentration was present in kidney (3.9 mg equiv/kg); lower concentrations were present in liver (0.40 mg equiv/kg) and muscle (0.035 mg equiv/kg). The concentration of ${}^{14}C$ was below the limit of detection in fat (< 0.028 mg equiv/kg).

For goat B, the concentration of ¹⁴C in plasma reached a maximum 6-8 hours after the first dose. Tissue radioactivity in the kidney, liver and muscle of the goat killed *ca*.8 hours after the last of 3 daily doses was 12, 0.22 and 0.061 mg equiv/kg respectively. Radioactivity was below the limit of detection in fat < 0.036 mg equiv. /kg. The concentration of radioactivity in milk was similar to that found in the goat given 5 doses (Table 1).

Table 1. Concentration of radioactivity (mg equiv/kg) in milk of goats given daily doses of (¹⁴ C)-	
glyphosate equivalent to 200 ppm in diet (Powles 1994 279 GLY).	

Time period after start of dosing (hours)	Goat A (dosed for 5 days)	Goat B (dosed for 3 days)
0-24	0.036	0.040
24-48	0.060	0.066
48-72	0.064	0.086
72-96	0.072	NA
96-138	0.041	NA

NA = Not applicable, milk not collected at this time point

The proportion of tissue radioactivity extracted by CHCl₃/0.1 M HCl was 78% and 76% for liver and kidneys respectively. On further clean-up on cation and anion exchange columns the proportion of tissue radioactivity prior to HPLC analysis was 39% and 45% for liver and kidneys respectively. Recoveries following clean-up could not be calculated for fat, muscle and milk because of the low amounts of radioactivity present. Unchanged glyphosate was the major component of the ¹⁴C analysed by HPLC in urine (ca. 96%), faeces (> 94%), kidney (97%) and liver (96%). Glyphosate was also detected in fat, muscle and milk by TLC, but the amounts of ¹⁴C in the extracts were insufficient for analysis by HPLC. Small amounts of AMPA were also detected in urine, faeces and kidney by TLC but, in each case, the presence of that metabolite could not be confirmed by HPLC. Radiovalidation studies using tissues from a metabolism study where labelled glyphosate and AMPA were fed to lactating goats revealed 65% of the ¹⁴C in liver and 91% of the ¹⁴C in kidney were due to glyphosate and AMPA (Bodden 1998 MSL7586, Feng and Patanella 1988 MSL7458).

Unchanged glyphosate was the only component of the residue identified by HPLC in tissues and milk.

Laying hens of the ISA strain (age 20-22 weeks; weight 1.5 ± 0.2 kg) were given repeated daily doses of (¹⁴C)-glyphosate for 7 (Group A) or 5 (Group B) days (Powles, 1994a 276 GLY). Doses were administered by gavage as a solution in water; the amount given was based on a daily consumption of 150 g DM per bird containing 200 ppm glyphosate. Doses were given after egg and excreta collections and before feeding. Excreta were collected separately from each animal 24 hours after each administration and eggs were collected 3-6 hours after each dose. Egg yolk and white were separated. Blood samples were collected from each animal in group B at intervals after the first dose

and plasma was prepared by centrifugation. Hens in group A were killed 23.5 hours after the last dose; animals in group B were killed when plasma radioactivity was at a maximum at the 1st sample time which was 1 hour after the last dose. The liver and samples of muscle, fat and skin were removed from each bird at sacrifice. Radioactivity was determined in excreta, egg yolk, egg white, liver, muscle, fat and skin. For metabolite identification (Group B) tissues and representative samples of excreta, egg whites and yolks were extracted with chloroform/hydrochloric acid (0.1M), with the extracts cleaned up by ion exchange chromatography and analysed by TLC on cellulose or, after derivatization with 9-fluorenylmethyl chloroformate, by reverse phase HPLC. Components of the residue were identified by comparison with reference standards; residues in selected samples were isolated by preparative TLC and identified by FT-IR.

The overall recovery for birds in group A was 80% within 24 hours of the last dose, 76% being present in excreta (Table 2). The mean concentration of ¹⁴C in egg white reached a plateau (*ca*. 0.049 mg equiv/kg) after 5 doses whilst the concentration in yolks increased throughout the dosing period and was 0.48 ± 0.065 mg equiv/kg at the end of the experiment (Table 2). Approximately 24 hours after the seventh dose the concentrations of ¹⁴C in liver, skin and fat were 1.2 ± 0.36 , 0.21 ± 0.16 and 0.15 ± 0.062 mg equiv/kg respectively. The residue in muscle was below the limit of detection (< 0.043 mg equiv/kg).

The concentration of ¹⁴C in plasma of group B hens attained a maximum (0.48 \pm 0.31 mg equiv/kg) 1 hour after the initial dose. The plasma concentration of ¹⁴C then declined slowly and was still measurable in the plasma of one animal 12 hours after dosing. One hour after the final dose ¹⁴C was present in liver (1.1 \pm 0.39 mg equiv/kg), skin (0.36 \pm 0.07 mg equiv/kg), fat (0.083 \pm 0.076 mg equiv/kg) and muscle (0.041 \pm 0.024 mg equiv/kg). The pattern of residues in eggs was similar to group A.

Time interval after	Group A (dosed for 7 days)		Group B (dos	ed for 5 days)
start of dosing (hr)	Egg white	Egg white Egg yolk		Egg yolk
0-24	ND	ND	ND	ND
24-48	0.029 ± 0.023	ND	0.023 ± 0.010	0.006 ± 0.010
48-72	0.043 ± 0.035	0.090 ± 0.064	0.044 ± 0.008	0.075 ± 0.026
72-96	0.038 ± 0.033	0.198 ± 0.032	0.056 ± 0.006	0.164 ± 0.049
96-120	0.049 ± 0.033	0.318 ± 0.027	0.072 ± 0.001	0.228 ± 0.009
120-144	0.059 ± 0.015	0.365 ± 0.055	NA	NA
144-168	0.053 ± 0.008	0.484 ± 0.065	NA	NA

Table 2. Concentration of radioactivity (mg equiv/kg) in egg white and yolk of hens given daily doses of (14 C)-glyphosate equivalent to 200 ppm in diet.

ND = Not detected,

NA = Not applicable, eggs not collected at this time point

Radioactivity in skin was quantitatively recovered following acidified aqueous extraction; recoveries for liver, fat, muscle, egg yolk and white were 72%, 75%, 81%, 52% and 69% respectively. Procedural losses/gains during the multi-stage clean-up of the extracts were such that only 14–52% of the original tissue and egg ¹⁴C was accounted for by chromatography. Unchanged glyphosate was the major component detected by HPLC/TLC in excreta, liver (61% HPLC; 84–89% TLC), skin (99% HPLC; 79–95% TLC), fat (99% HPLC; 62–67% TLC), muscle (98% HPLC; 45–98% TLC), egg white (one component, radioactivity too low to quantify) and egg yolk (96% HPLC; 23–74% TLC). The presence of glyphosate in excreta, liver and skin was confirmed by FT-IR spectroscopy. Small amounts of aminomethylphosphonic acid were detected in excreta, liver and skin by TLC but, in each case could not be confirmed by HPLC. Radiovalidation studies using tissues from a metabolism study where labelled glyphosate and AMPA were fed to laying hens revealed 74% of the ¹⁴C in liver and

53% of the ¹⁴C in egg yolks were due to glyphosate and AMPA (Bodden 1998a MSL-7591, Feng and Patanella 1988a MSL-7420).

Plant metabolism

Glyphosate is readily degraded in soil forming ${}^{14}CO_2$ which may then be utilised by plants and incorporated into natural products. In order to distinguish between radioactive residues resulting from metabolism of ${}^{14}C$ -glyphosate within the plant and those from uptake of ${}^{14}CO_2$ formed by degradation of ${}^{14}C$ -glyphosate in the soil, the metabolism studies included application groups where the soil was covered during application, the soil was left uncovered as well as control plants, untreated or treated with non-labelled glyphosate using the same rates and timings and grown in close proximity to the ${}^{14}C$ -treated plants to monitor the amount of radioactivity due to incorporation of ${}^{14}CO_2$.

Soya Beans, Cotton, Wheat and Corn

Root uptake and translocation of ¹⁴C-glyphosate and ¹⁴C-AMPA and their metabolites in conventional soya beans, wheat, cotton, and corn grown in soil and hydroponic nutrient solutions was investigated by Rueppel & Suba (1973 FR 304). To determine the extent of uptake of glyphosate from soil, the silty clay loam soil surface of separate pots planted with corn, cotton, soya beans, and wheat were treated one week after planting with ¹⁴C-glyphosate at application rates equivalent to 4.5 kg ae/ha or with ¹⁴C-AMPA at 1.6 kg ae/ha. Additional containers of soil were left untreated to act as controls. The treated and untreated control pots were watered from the top twice daily for the duration of the experiment. At four, six, and eight weeks after treatment, one plant from each treated and untreated control pot was cut off 2.5 cm above the soil surface and analysed for ¹⁴C-radioactivity.

Less than 0.3% of the applied ¹⁴C was taken up by the growing plants at 4, 6 and 8 weeks after application. The very low levels of ¹⁴C-activity plants samples did not allow the distribution and metabolism of glyphosate in plants to be studied further using this method of treatment.

Table 3. Levels of ¹⁴C, expressed in mg glyphosate/kg in corn, cotton, soybean and wheat plants grown in soil treated at the equivalent of 4.5 kg ae/ha. Rueppel & Suba (1973 FR 304).

		Corn	Cotton	Soybeans	Wheat
4 weeks					
	control	0.068	0.04	0.029	0.008
	treated	0.21	0.26	0.20	0.20
6 weeks					
	control	0.089	0.020	0.11	0.015
	treated	0.14	0.21	0.29	0.18
8 weeks					
	control	0.022	0.27	0.045	0.061
	treated	0.079	0.42	0.076	0.35

Table 4. Levels of ¹⁴C, expressed in mg AMPA/kg in corn, cotton, soybean and wheat plants grown in soil treated at the equivalent of 1.65 kg ae/ha. Rueppel & Suba (1973 FR 304).

		Corn	Cotton	Soybeans	Wheat
4 weeks					
	control	0.012, 0.09	0.13, 0.015	0.023, 0.013	0.022, 0.015
	treated	0.021	0.024	0.094	0.075
6 weeks					
	control	0.014, 0.013	0.010, 0.010	0.018, 0.010	0.035, 0.021
	treated	0.032	0.044	0.053	0.084
8 weeks					
	control	0.014, 0.08	0.007, 0.014	0.012, 0.09	0.019, 0.065
	treated	0.031	0.032	0.041	0.058

$$HO - P - CH_2 NHCH_2 CO_2 H$$

¹⁴C]-phosphonomethyl-labelled glyphosate

Gly-1

gly-2

In a separate experiment, sublethal levels of ¹⁴C-glyphosate were continuously administered from aerated hydroponic solutions to 14 day old corn, cotton, wheat, and soya bean seedlings ([¹⁴C]-phosphonomethyl-labelled glyphosate for corn, cotton and wheat and ^{13/14}C-methane, ¹⁴C-glycine-1 and ¹⁴C-glycine-2 labelled glyphosate for soya beans). At periodic intervals samples of the hydroponic solution as well as representative plant samples were removed for analysis. Untreated control plants were also maintained to check for ¹⁴CO₂ evolution and incorporation into natural products. Plants were separated into the root and aerial portions, the roots were washed with distilled water, and the plant parts extracted with water and analysed for both the amount and nature of ¹⁴C-radioactivity.

The total ¹⁴C-radioactivity present in samples was determined directly by combustion of homogenized plant samples. The total ¹⁴C-radioactivity present in samples of hydroponic solutions and extracts of plant samples were determined by liquid scintillation counting. Radioactive components of the plant sample extracts were separated by various chromatographic techniques and identified by comparison to authentic standards using thin-layer-chromatography, column chromatography, and following derivatization ¹H-, ¹³C- and ³¹P-NMR spectroscopy, and mass spectral characterization and identification.

The results of control experiments indicated that ${}^{14}CO_2$ was being evolved from the ${}^{14}C$ -experiments and photosynthetically fixed by both the treated and untreated plants. The amount of ${}^{14}C$ -activity in corn, cotton, and soya beans control plants indicates that at least 5% of the total ${}^{14}C$ -uptake in treated plants occurred due to fixation of ${}^{14}CO_2$, and therefore represents a significant portion of the unidentified radioactivity.

With the exception of corn forage, the major ¹⁴C-containing component in the aqueous extracts in all cases was parent glyphosate at 21–69% of ¹⁴C in aerial parts and 7.6–57% in roots; in corn forage, comparable amounts of glyphosate and AMPA were observed. The major ¹⁴C-containing degradate was ¹⁴C-AMPA accounting for 4.2–28% of the total ¹⁴C-activity in aerial parts and 2.8–7.4% in roots.

Several minor metabolites, which individually constituted less than 2% of the plant-contained ¹⁴C-activity were also detected, and were identified as N-methyl-aminomethylphosphonic acid (Nmethyl AMPA), methylphosphonic acid, and N-methyl-glyphosate, as well as several unknowns. However, it was not possible to determine if these compounds were derived from the *in vivo* plant metabolism of glyphosate. These very minor metabolites may have resulted as artefacts from very small impurities in the starting ¹⁴C-glyphosate or they may have been formed in the hydroponic solutions via microbial degradation of glyphosate.

For all four crops, forage samples could be efficiently extracted with water; 70–90% of the total ¹⁴C-activity was extractable. Thus, it was concluded that the isolated metabolites represent all major plant-contained metabolites. In root samples, the water extractability of ¹⁴C-activity was decreased compared to forage, for root samples water extractabilities of ¹⁴C-activity averaged 49%.

		% TRR ⁴						
Crop	Label			H ₂ O ext	racted			Unextracted
		Glyphosate ¹	AMPA ²	N-methyl AMPA ³	Natural products	Unidentified	Total	
Soybean top	¹⁴ C-methane	69	9.0	1.1	9.0	2.3	90.5	9.5
Soybean root	¹⁴ C-methane	37	3.1	0.3	1.4	1.6	44	56
Soybean top	¹⁴ C-2-gly	49	-	-	14	20	83	17
Soybean root	¹⁴ C-2-gly	22	-	0.4	11	4.2	37	63
Soybean top	¹⁴ C-1-gly	57	-	-	4.2	14	75	25
Soybean root	¹⁴ C-1-gly	57	-	-	1.3	0.4	59	41
Cotton top	¹⁴ C-methane	62	6.8	2.0	8.2	11	90	10
Cotton root	¹⁴ C-methane	7.6	2.8	0.4	1.1	1.1	13	87
Maize top	¹⁴ C-methane	21	28	0	4.0	20	73	27
Maize root	¹⁴ C-methane	46	4.4	0	2.0	12	64	36
Wheat top	¹⁴ C-methane	55	4.2	-	1.0	8	68	32
Wheat root	¹⁴ C-methane	36	7.4	-	1.0	1.3	46	54

Table 5. Identification of ¹⁴C in crops treated hydroponically with ¹⁴C-glyphosate for 28 days (except wheat 10 days). Rueppel & Suba (1973 FR 304).

¹ identified by mass spectrum, ¹H- and ¹²C-NMR and chromatographic behaviour on D-1, D-50 and Bio-Gel P-2 columns ² identified by chromatographic behaviour on D-1, D-50 and Bio-Gel P-2 columns and cellulose TLC

³ N-methyl AMPA = N-methylaminomethylphosphonic acid, identified by chromatographic behaviour on D-1, D-50 and Bio-Gel P-2 columns and cellulose TLC

Note: AMPA (and N-methyl AMPA in ¹⁴C-glycine-1) is not expected to be formed in the ¹⁴C-glycine-1 or 2- glyphosate labelled experiments ⁴ Data corrected for ¹⁴C in controls.

Coffee

Malik (1975 FR 344) studied the extent of uptake and the pattern of distribution of ¹⁴C-glyphosate and its metabolites into coffee plants (fruit, foliage, roots, and stems) following foliar applications, stem treatments, hydroponic solution uptake, and soil treatment.

For soil uptake experiments, seedling coffee plants (38–51 cm tall) were planted singly in plastic pots filled with Drummer silty clay loam soil. The soil surfaces of three pots were treated with ¹⁴C-glyphosate (labelled in the phosphonomethylene carbon) at applications rates equivalent to 4.5 kg ae/ha. In addition, three untreated control pots were placed in close proximity to the treated pots to ascertain the amount of incorporation of ¹⁴CO₂ resulting from the microbial degradation of ¹⁴Cglyphosate in the treated soil. All pots were watered daily from the top for the duration of the experiment. At four, six, and eight weeks after treatment, one treated and one control plant were cut off approximately 2.5 cm above the soil and separately analysed for ¹⁴C-radioactivity.

For the hydroponic solution uptake study, sublethal dose levels of ¹⁴C-glyphosate were continuously administered from aerated hydroponic solutions to several 38–51 cm tall seedling coffee plants. Following 21 days of treatment the plants were removed from the nutrient solutions, separated into the aerial portions and roots, and the roots were washed to remove any surface ¹⁴C-activity. Each sample was then separately analysed for ¹⁴C-activity.

To determine the uptake and distribution of glyphosate in coffee plants following stem applications, a formulated solution containing 0.70 mg of ¹⁴C-glyphosate was uniformly applied to three of the lower segments of the stem of each 51 cm tall seedling coffee plant. Five weeks after treatment the plants were removed from the nutrient solutions, separated into the leaves, untreated stems, treated stems, and roots, and each sample was separately analysed for ¹⁴C-activity.

The distribution and metabolism of glyphosate following foliar applications was investigated in immature coffee plants as well as mature bean producing coffee trees. The uptake, translocation, and metabolism of glyphosate was followed in five immature coffee plants (51 cm high) growing in nutrient solution in a large hydroponic tank. Sub-herbicidal levels of a ¹⁴C-glyphosate solution were applied by micro syringe to selected leaves on each plant. At four and five weeks after treatment, plants were harvested and sectioned into the roots, treated leaves, untreated leaves, and stems, and each sample was separately extracted with water and analysed for both the amount and nature of ¹⁴C-radioactivity.

To study the uptake, translocation, and metabolism of glyphosate in bean-producing coffee plants four to five-year old, 2.1 to 2.4 m tall container grown coffee plants that had bloomed approximately one month prior to treatment and had set beans were used. The lower leaf surface of each of 100 leaves on ten different lower branches of the coffee tree was treated with sublethal dose level of a simulated commercial formulation of ¹³C/¹⁴C-glyphosate. At 4, 8, 12, 16, 20, and 23 weeks after treatment a random sample of beans was removed from the tree and analysed for ¹⁴C-activity. In addition, leaves, which had wilted and fallen off during each four-week period were collected and analysed for ¹⁴C-activity.

The total ¹⁴C-activity present in samples was determined directly by combustion of homogenized and lyophilized plant samples. The total ¹⁴C-activity present in aqueous extracts of plant samples was determined by liquid scintillation counting. Radioactive components of the extracts of plant samples were separated by various chromatographic techniques and identified by comparison to authentic standards using column chromatography and two-dimensional thin layer chromatography (2D-TLC). Chromatographic identifications were verified by ³¹P-NMR and ¹³C-NMR, and gas-chromatographic-mass-spectral and field-desorption-mass-spectral analysis of purified and derivatized compounds isolated from the aqueous plant extracts.

Only a very small amount of glyphosate was taken up by coffee plants from soil; 0.003-0.017% of the administered ¹⁴C at 4-8 weeks after application at the equivalent of 4.5 kg ae/ha. The detection of ¹⁴C residues in the control coffee placed in close proximity to the treated pots indicated that ¹⁴CO₂ was being evolved from the soil degradation of ¹⁴C-glyphosate and photosynthetically fixed by both the treated and untreated plants and this accounted for most of the ¹⁴C incorporation in treated plants.

Significant ¹⁴C-activity was found in the roots of coffee plants grown in hydroponic solutions containing ¹⁴C-glyphosate. Following 21 days of treatment, between 16 and 50% of the applied ¹⁴C-activity was associated with the roots. In contrast, significantly less activity was found in the aerial portions of the coffee plants. The total percentage of applied ¹⁴C-activity found in the aerial portions of plants grown in hydroponic solutions ranged from 0.1 to 0.2%.

The majority of the ¹⁴C-glyphosate applied to the stems of coffee plants at 5 weeks after treatment remained at the site of application (87% of applied ¹⁴C) with only low levels associated with untreated leaves (0.54%), stems (1.7%) and roots (0.5%).

¹⁴C-Glyphosate applied to the foliage of immature coffee plants is rapidly and extensively translocated throughout the coffee trees from the treated leaves. Nonetheless, the majority of the applied ¹⁴C-activity remains on the treated leaves (44 to 86% of the applied ¹⁴C-activity). At three weeks after treatment with formulated ¹⁴C-glyphosate, the percent of ¹⁴C-activity applied to leaf surfaces that had been translocated into the coffee plants ranged from 10 to 27%. At five weeks after treatment, 28% of the applied ¹⁴C-radioactivity was absorbed and translocated.

In the case of the mature, bean-producing coffee tree that received a foliar application of formulated ¹⁴C-glyphosate, approximately 48% of the applied ¹⁴C-activity was absorbed and translocated from the treated leaves. However, less than 2.4% of the applied ¹⁴C-activity was translocated to the developing coffee beans. At 23 weeks after treatment, the percent of applied ¹⁴C-activity found in the green beans and pods, ripe beans, and ripe pods was 0.94, 0.62, and 0.68%, respectively.

Aqueous extraction of the treated leaves, stems, untreated leaves, and roots released 92, 91, 72, and 96% of the plant-contained ¹⁴C-activity, respectively with greater than 99% of the extracted ¹⁴C-activity identified as parent glyphosate. In the case of coffee beans, aqueous extraction released 96-99% of the plant contained ¹⁴C-activity. For beans harvested at four and eight weeks after treatment, greater than 99% of the extracted ¹⁴C-activity was demonstrated to be parent glyphosate. The aqueous extracts of ripe beans and pods harvested 23 weeks after treatment contained 95% parent glyphosate and 5% aminomethylphosphonic acid (AMPA).

Pasture Grasses, Alfalfa and Clover

Sutherland and Banduhn (1976 FR 404) studied the metabolism of glyphosate on pasture crops. In the first experiment, ¹⁴C-glyphosate (labelled in the phosphonomethylene carbon) was applied at the equivalent of 4.5 kg ae/ha to the surface of soil of pots containing three different seed mixes: fescue and alfalfa, brome grass and red clover, and timothy grass and white clover. For each grass and legume seed mixture two replicated, non-treated control pots were also established and placed side-by-side with the ¹⁴C-treated pots to differentiate between the actual uptake from soil of glyphosate and its metabolites and the incorporation of ¹⁴CO₂ resulting from the microbial degradation of ¹⁴C-glyphosate in the soil. The grass and legume forage from each pot was harvested at 6, 12, 18, 24, and 32 weeks after treatment and analysed for ¹⁴C-activity.

For experiment two, established quackgrass was treated with a foliar application of 1.7 kg ae/ha of ¹⁴C-glyphosate formulated as Roundup® herbicide. One week after treatment the quackgrass foliage, roots and soil were thoroughly mixed and then used to form a 3.8 cm deep seedbed on the top of the soil surface of two pots. One month after incorporation of the quackgrass, a mixture of fescue grass and alfalfa were seeded into each pot. The fescue and alfalfa forage were harvested from each pot at 6, 12, 18, and 24, weeks after planting and analysed for ¹⁴C-activity.

For experiment three, three pots each of established fescue grass and alfalfa were treated with a foliar application of 1.1 kg ae/ha of ${}^{13}C/{}^{14}C$ -glyphosate, formulated as Roundup® herbicide. The treated foliage was removed one week after treatment and analysed for ${}^{14}C$ -activity. In addition, subsequent regrowth foliage was removed at 9, 15, and 23 weeks after treatment and analysed separately for ${}^{14}C$ -activity.

For the final experiment, two pots each of established fescue grass and alfalfa were treated with a foliar application of 1.1 kg ae/ha of ¹⁴C-glyphosate formulated as Roundup® herbicide. The fescue and alfalfa forage was harvested one week after treatment and allowed to air dry for an additional week before the samples were separately analysed for ¹⁴C-activity.

All experiments used a silt loam soil with 1.2% organic matter and a pH of 8.1. For all experiments, crops were planted in plastic pots and grown in a greenhouse.

The total ¹⁴C-activity present in samples was determined directly by combustion of homogenized and lyophilized plant samples. The total ¹⁴C-activity present in aqueous extracts of plant samples from experiments three and four were determined by liquid scintillation counting. Radioactive components of the extracts of plant samples were separated by various chromatographic techniques and identified by comparison to authentic standards using column chromatography, ¹³C-NMR spectroscopy, or, following derivatization, mass spectral characterization and identification.

In all cases less than 0.09% of the applied ¹⁴C-activity was found in grasses and legumes harvested at 6, 12, 18, 24, and 32 weeks after a pre-emergence treatment of ¹⁴C-glyphosate at an application rate of 4.5 kg ae/ha. There was negligible uptake of ¹⁴C into fescue and alfalfa forage from soil containing incorporated quackgrass which had been previously treated with glyphosate with \leq 0.09% of the ¹⁴C applied to quackgrass prior to incorporation found in fescue forage at 6, 12, 18, and 24 weeks after planting and \leq 0.04% in alfalfa forage at the same harvest intervals.

One week after foliar treatment, fescue and alfalfa forage contained 69% and 55% of the applied ¹⁴C-activity, respectively of which > 95% was water extractable. Glyphosate was the only compound detectable in the aqueous extracts. The percent of applied ¹⁴C-activity in the forage of fescue and alfalfa which regrew following treatment was 0.17-0.20, 0.18-0.19 and 0.05-0.06% at 9, 15, and 23 weeks after treatment respectively.

Fescue and alfalfa forage harvested one week after a foliar application of glyphosate and allowed to air dry for one week prior to sampling contained 42 and 64% of the applied ¹⁴C-activity, respectively.

Aqueous extraction released greater than 95% of the plant-contained radioactivity. For alfalfa, glyphosate was the only detectable compound in the aqueous extracts while for fescue glyphosate was the major component with approximately 3% aminomethylphosphonic acid also found. Glyphosate applied to the foliage of pasture crops just prior to harvest is not altered during the drying process necessary to produce hay.

Plant Metabolism - Glyphosate Tolerant Crops

Glyphosate binds to and blocks the activity of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS), an enzyme of the aromatic amino acid biosynthetic pathway. Glyphosate inhibition of EPSPS prevents the plant from synthesizing the aromatic amino acids essential for protein synthesis. EPSPS is present in all plants, bacteria, and fungi, but not animals; animals do not make their own aromatic amino acids, but obtain them from their diet.

The development of glyphosate-tolerant crops has utilised the "target-site modification" approach, whereby a glyphosate-tolerant EPSPS was identified and its expression induced in plants by genetic modification techniques. Upon glyphosate treatment, the plant remains unaffected because the continued action of the glyphosate-tolerant EPSPS enzyme (CP4-EPSPS) supplies the plant's need for aromatic amino acids, as outlined in Figure 1.

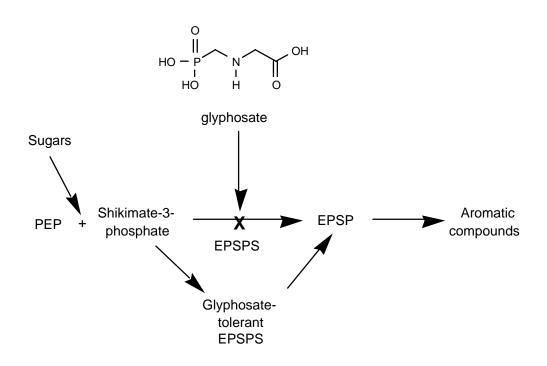


Figure 1. Target-site modification approach to glyphosate tolerance.

Metabolism studies have been completed in glyphosate tolerant soya beans, sugar beet, and cotton crops that contain the CP4-EPSPS gene. At a basic level, the metabolic profile and distribution of metabolites in these crops was not expected to change compared to non-tolerant crops, because the addition of the CP4-EPSPS gene into the plant should not affect the route of metabolism of glyphosate.

These studies used higher treatment rates of glyphosate than possible with non-tolerant crops, involved direct applications of glyphosate to plants at various stages of development, and allowed for an improved understanding of glyphosate metabolism in plants. In all cases, glyphosate was applied as a formulated solution that simulated commercial formulations.

In order to distinguish between radioactive residues resulting from metabolism of ¹⁴Cglyphosate within the plant and those from uptake of ¹⁴CO₂ formed by degradation of ¹⁴C-glyphosate in the soil, the plants were divided into two treatment groups. In one group the soil was covered during application to minimize contact of the test substance with the soil, and in the other group the soil was left uncovered. Additionally, control plants, untreated or treated with non-labelled glyphosate using the same rates and timings, were grown in close proximity to the ¹⁴C-treated plants to monitor the amount of radioactivity due to incorporation of ¹⁴CO₂.

In soya beans, glyphosate is metabolized substantially to AMPA. AMPA can be further conjugated with natural plant constituents to give trace level metabolites, or degraded to one carbon fragments that are incorporated into natural products. None of the trace level metabolites account for greater than 2% of the total radioactive residues (TRR) in any soya bean raw agricultural commodity. Glyphosate plus AMPA account for at least 66% of the total radioactive residues in forage, hay, and grain. Glyphosate residues differ among the plant components accounting for about 90% of the TRR in forage but only about 25% of the TRR in grain. AMPA accounts for only 6.8% of the TRR in forage, but is the major ¹⁴C compound in grain, accounting for up to 49% of the TRR. About 9% of the TRR in grain was shown to be due to incorporation of ¹⁴C into natural products; this was contained in the oil as fatty acids, in the aqueous extract as soluble components, and in the acid hydrolysate of the extracted grain as amino acids and natural organic acids.

In glyphosate tolerant cotton, glyphosate and AMPA account respectively for 91-95% and 0.7-1.6% of the TRR in forage. TRR in cotton seed were low (0.1-0.2 mg equiv/kg) compared to those in forage residues (15-30 mg equiv/kg). Glyphosate is the major extractable radiolabeled compound (12-24% of the TRR) and only trace levels of AMPA are present (< 2% of the TRR). A significant fraction of the residues in the seed are attributed to incorporation into natural products; 10-12% of the TRR was characterized as saponifiable fatty acids in oil and 54-75% of the TRR was characterized natural products.

The metabolism of ¹⁴C-glyphosate in tolerant sugar beet was very similar to soya beans and cotton. Glyphosate is partially metabolized to AMPA and low levels of AMPA conjugates. Glyphosate and AMPA together account for at least 99 and 81% of the TRR in roots and tops, respectively. AMPA is further converted to a limited degree to afford low levels of simple conjugates. In addition to conjugation, ¹⁴C is broadly incorporated into a wide variety of natural products and plant constituents.

The results of all the studies demonstrate that the metabolic fate of glyphosate in tolerant plants is the same as in non-tolerant plants.

Glyphosate Tolerant Cotton

The nature of residues in cotton that has been genetically modified to be tolerant to glyphosate following applications of ¹⁴C-glyphosate was determined by Bleeke (1997 MSL 14113). In order to distinguish between radioactive residues resulting from metabolism of ¹⁴C-glyphosate within the plant and those from uptake of ¹⁴CO₂ formed by microbial degradation of ¹⁴C-glyphosate in the soil, the plants were divided into two treatment groups. In one group the soil surface was covered during application to minimize contact of the test substance with the soil, and in the other group the soil was left uncovered during application. For each type of treatment, there was a ¹²C-treated test group (control plants) adjacent to each ¹⁴C-treated test group; the control plants provided a measure of the contribution of ¹⁴CO₂ uptake to the total radioactive residues in the ¹⁴C-treated plants.

The treatment regimen for both test groups consisted of two sequential post-emergence applications, which were made at the 3- to 4-leaf stage (42 days after planting) and at the 5 to 6 leaf stage (51 days after planting). A formulated solution of ¹⁴C-Glyphosate (labelled in the phosphonomethylene carbon,) was applied to the test groups at target rates of 0.93 kg ae/ha for the first application and 1.26 kg ae/ha for the second application. Crop samples were collected at the forage stage (78 days after planting, or 27 days after the second application) and at maturity (209 days after planting, or 158 days after the second application) to simulate normal agricultural practices. At final harvest, the plants were separated into seed, lint, and stalk fractions.

TRR in all plant samples were determined directly by combustion of homogenized plant samples. The treated forage samples were extracted with water. The treated seed samples (protected and non-protected) and the control non-protected seed sample were first extracted with hexane, then with 50% acetonitrile in water. The total radioactivity in the extracts of plant samples was determined by liquid scintillation counting. Radioactive components of the extracts of plant samples were separated by various chromatographic techniques and identified by comparison to authentic standards.

The total radioactivity found in cotton forage, stalk, lint and seed (expressed as mg/kg glyphosate equivalents) is summarized in Table 6. The TRR in forage were 15 to 30 mg/kg (glyphosate equivalents). In the seed, however, there were much lower residues of < 0.2 mg/kg. In addition, there were relatively high levels of ¹⁴C in the final harvest ¹²C-treated control seed samples, particularly in those from the non-protected plots. The level of residues in the control seed samples indicates that uptake of soil-generated ¹⁴CO₂ and its incorporation into the plant made a significant contribution to the TRR at harvest. The majority of the residue was located on the surface as shown by the ¹⁴C removed by water rinse.

	TRR (glyphosate equivalents, mg/kg)					
Sample	Prot	ected	Unpro	otected		
- -	¹⁴ C-treated	¹² C-treated	¹⁴ C-treated	¹² C-treated		
Forage	30	0.008	15	0.039		
Rinsed forage	7.0	NA	6.3	NA		
Rinsate	16	NA	11	NA		
Cotton seed	0.11	0.018	0.18	0.07		
Mature stalk	0.11	0.08	0.18	0.047		
Cotton lint	0.083	0.016	0.14	0.057		

Table 6. Distribution of ¹⁴C residues in cotton forage stalk, seed and lint samples from treated and control glyphosate resistant plants treated with two applications of [¹⁴C-methyl]glyphosate at 0.93 and 1.3 kg ae/ha (Bleeke 1997 MSL 14113).

NA = not applicable as control of forage was not rinsed

Aqueous extracts of the treated forage samples contained > 95% of the TRR with glyphosate accounting for > 91% and AMPA < 2% of the ¹⁴C. In addition, there were low levels of radioactivity (< 1% TRR) characterized as radiolabeled natural products, and one trace-level component (< 0.6% TRR) that tentatively characterized as a conjugate of glyphosate.

The seed samples were first extracted with hexane to remove the oil, then with 50% acetonitrile in water. The hexane-extracted oil contained 11 to 15% of the TRR, which was characterized as saponifiable fatty acids. The aqueous acetonitrile extracts of seed samples contained 19 to 32% of total radioactive residues. Glyphosate was the major component of the aqueous extracts (12 to 24% TRR), with only low levels of AMPA (< 2% TRR). Other components in aqueous extracts were tentatively characterized as natural products accounting for 6 to 7% TRR (Table 7).

Table 7. Characterisation of ¹⁴C in cotton foliage and seed from glyphosate resistant plants treated with two applications of [¹⁴C-methyl]glyphosate at 0.93 and 1.3 kg ae/ha (Bleeke 1997 MSL 14113).

	TRR (glyphosate equivalents, mg/kg)				
	Forage (I	PHI 27 days)	Seed (PHI 158 days)		
	Protected	Unprotected	Protected	Unprotected	
TRR	30	15	0.11	0.18	
Aqueous extract	30 (99)	15 (97)	0.034 (32)	0.034 (19)	
Glyphosate ¹	29 (96)	14 (92)	0.025 (24)	0.022 (12)	
AMPA ¹	0.20 (0.66)	0.24 (1.6)	0.001 (1.4)	< 0.002 (<1)	
Conjugate ²	0.087 (0.29)	0.082 (0.54)	-	-	
Natural products ²	0.12 (0.40)	0.13 (0.83)	0.007 (6.9)	0.011 (5.8)	
Hexane extract			0.012 (11)	0.027 (15)	
Saponifiable fatty acids ³			0.011 (10)	0.022 (12)	
PES ⁵	0.45 (1.5)	0.71 (4.7)	0.058 (54)	0.14 (75)	
Total	30 (100)	15 (102)	0.10 (97)	0.20 (109)	

Figures in brackets are %TRR

¹ Identified by SAX and SCX HPLC/LSC with co-injection of authentic ¹⁴C-standard

² tentatively assigned to a conjugate of glyphosate based on the predominance of glyphosate in the sample and the late elution time using SAX HPLC ³ the extracted oil was saponified with methanolic KOH and extracted with ether before and after acidification of the

hydrolysate.

The non-extractable residues in seeds following hexane and aqueous extractions accounted for 54 to 75% of the TRR in the treated samples, and about 75% of the TRR in the non-protected control sample. Additional extractions of the treated seed samples were carried out with a variety of solvents at room temperature, in an attempt to release the unextracted radioactivity. The most effective solvents were 0.1 N NaOH and 1% sodium lauryl sulfate, which each extracted about an additional 10% TRR from treated samples. The released ¹⁴C-radioactivity in the 0.1 N NaOH extract from the treated non-protected seed (9.3% TRR, 0.017 ppm) had no detectable levels of either glyphosate or AMPA and is proposed to be due to incorporation of ¹⁴C into a variety of natural products.

Glyphosate Tolerant Soya Beans

Goure *et al.* (1994 MSL 13520) studied the metabolism of ¹⁴C-glyphosate in glyphosate tolerant soya beans (CP4 EPSPS) following a single pre-emergent application and after post-emergent applications. The pre-emergent application was made at 5.4 kg ae/ha. Two different post-emergent application regimes were used. In the first soybeans were sprayed at 0.84 kg ae/ha 21 days after planting when the plants were at the V3 growth stage. In the second two applications were made, the first at 0.84 kg ae/ha applied 21 days after planting and the second at 1.7 kg ae/ha applied 43 days after planting. During the post-emergent applications, care was taken to avoid getting any radiolabeled test substance on the soil in order to minimize formation of ¹⁴CO₂ by microbial degradation of glyphosate in the soil. In addition, ¹²C-treated control plants were grown adjacent to the ¹⁴C-treated test plants to monitor the formation of ¹⁴CO₂. The control plants were treated with non-radiolabeled herbicide using the same application rates and timings as those used for ¹⁴C-treated plants.

Crop samples were collected to simulate normal agricultural practices. Forage, hay, and grain samples were collected 35, 63, and 83 days after the early post-emergence application, respectively. Samples of forage and hay were ground and extracted with water. Grain samples were ground and extracted first with hexane to remove the oil, then with 50% acetonitrile in water, and finally with water; the grain aqueous extracts were combined.

The total ¹⁴C-activity present in samples was determined directly by combustion of homogenized and lyophilized plant samples. The total ¹⁴C-activity present in aqueous extracts of plant samples was determined by liquid scintillation counting. Radioactive components of the extracts of plant samples were separated by various chromatographic techniques and identified by comparison to authentic standards using column chromatography and following derivatization, mass spectral characterization and identification.

The total radioactivity, expressed as mg/kg glyphosate equivalents, found in soya beans forage, hay, and grain and its distribution following extraction is summarized in Table 8. Only low levels of glyphosate (< 0.01 mg/kg) and AMPA (< 0.05 mg/kg) were detected in plants that received the pre-emergence application. The majority of the ¹⁴C was characterized as radiolabeled natural plant constituents most likely due to the incorporation of ¹⁴CO₂ derived from ¹⁴C-glyphosate degradation in the soil.

Extract		TRR (mg/kg as glyphosate)								
	Forage (PHI 56 days)	Hay (PI	HI 84 days)	Grain (PH	Grain (PHI 104 days)				
	¹² C-treated	¹⁴ C-treated	¹² C-treated	¹⁴ C-treated	¹² C-treated	¹⁴ C-treated				
TRR	0.14	0.24	0.12	0.20	0.44	0.75				
Aqueous extract	0.024 (18)	0.056 (24)	0.029 (24)	0.063 (31)	0.092 (21)	0.21 (28)				
Hexane extract					0.076 (17)	0.11 (14)				
Extracted solids	0.11 (84)	0.18 (73)	0.094 (78)	0.15 (74)	0.27 (60)	0.42 (56)				
H ₂ O			0.005 (4.3)	0.009 (4.2)	0.032 (7.1)	0.017 (2.2)				
Protease			0.016 (13)	0.037 (18)	0.062 (14)	0.15 (20)				
Amylase			0.007 (6.1)	0.002 (1.1)	0.014 (3.3)	0.013 (1.8)				
Cellulase			0.019 (16)	0.021 (10)	0.028 (6.2)	0.024 (3.2)				
PES			0.038 (31)	0.074 (36)	0.088 (20)	0.097 (13)				
Total	101	97	102	105	98	98				

Table 8. Total radioactive residues and distribution of residues in extracts of soya beans after preemergent applications of ¹⁴C-glyphosate at 5.4 kg ae/ha (Goure *et al.* 1994 MSL 13520).

Figures in brackets are %TRR

PES = post extraction solids

The nature and magnitude of the radioactive components in forage, hay, and grain obtained from soya beans that received post-emergence applications of radiolabeled glyphosate are summarized below in Tables 9 and 10. Aqueous extraction released the majority of the total radioactivity in forage, hay, and grain samples. Glyphosate and AMPA were the major radiolabeled components present in the aqueous extracts in soya beans forage, hay, and grain accounting for greater than 95%, 66%, and 74% of the TRR, respectively for crops receiving two post-emergent sprays. The portion of the residues present as intact glyphosate was lower in samples collected at later time points, comprising approximately 90% of the TRR in forage but about 25% of the TRR in grain. AMPA accounted for only 6.8% of the TRR in forage but was the major radiolabeled compound in grain, accounting for up to 49% of the TRR. Trace level metabolites present in the aqueous extracts of grain were identified as N-glyceryl-AMPA, N-acetyl-AMPA, N-malonyl-AMPA, and N-methyl-AMPA. No single trace level metabolite accounted for greater than 2% of the TRR in any raw agricultural commodity.

The radioactive residues in the hexane-extracted soya bean oil (0.91% TRR) were shown to be radiolabeled naturally occurring fatty acids. No glyphosate or glyphosate-related metabolites were present in soya bean oil. The oil was saponified and partitioned to give a non-saponifiable ether extract (0.06% TRR), a saponifiable ether extract (0.79% TRR), and an extracted aqueous fraction (0.05% TRR). HPLC analysis of the saponifiable ether fraction showed that the major ¹⁴C-containing peaks had the same retention times as oleic, palmitic, and linoleic acids, and two smaller peaks had the same retention times as linoleic and stearic acids. Isolation of the peaks followed by GC/MS analysis confirmed the identity of the fatty acids in the ¹⁴C-containing HPLC fractions. Thus, most of the radioactivity in the oil was a result of the breakdown of ¹⁴C-glyphosate to one carbon fragments that become incorporated into naturally occurring fatty acids.

Non-extracted ¹⁴C residues were less than 8% of the TRR for all samples. Acid hydrolysis of extracted grain released 85% of the remaining radioactivity. The acid-released radioactivity was shown to be closely associated with natural products such as amino acids and organic acids derived from ¹⁴CO₂ incorporation and the *in vivo* degradation of ¹⁴C-glyphosate to one carbon fragments.

The ¹²C-treated control samples contained less than 1% of the radioactivity found in the ¹⁴C-treated samples, and were not further analysed. The low levels of radioactivity in the control samples indicates that very little of the radioactivity in the ¹⁴C-treated samples is due to ¹⁴CO₂ incorporation; thus, the majority of radioactivity in the ¹⁴C-treated samples is due to the *in vivo* metabolism of glyphosate.

	TR	R (glyphosate equivalents, mg/	kg)
	Forage (PHI 13 days)	Hay (PHI 41 days)	Grain (PHI 61 days)
TRR	0.86	0.55	0.41
Aqueous extract	0.82 (95)	0.44 (80)	0.20 (49)
Glyphosate ¹	0.76 (89)	0.35 (65)	0.041 (10)
AMPA ^{1,2}	0.02 (2.3)	0.029 (5.3)	0.093 (23)
N-methyl-AMPA ²		0.003 (0.6)	
N-glyceryl-AMPA ³		i i	0.005 (1.2)
N-acetyl-AMPA ³			0.004 (1.0)
N-malonyl-AMPA ³			0.31 (1.8)
Natural products ¹	0.013 (1.5)	0.015 (2.7)	0.47 (2.7)
Hexane extract			0.16 (0.9)
Saponifiable fatty acids ⁴			0.14 (0.8)
HCl extract			1.0 (5.8)
Amino acids & natural			0.90 (5.1)
organic acids			
PES^5	0.040 (4.7)	0.048 (8.9)	0.14 (0.8)
Total identified	0.80 (92)	0.40 (73)	0.15 (36)

Table 9. Characterisation of ¹⁴C in soybean foliage and seed from glyphosate resistant plants treated with a single post-emergent application of ¹⁴C-glyphosate at 0.84 kg ae/ha (Goure *et al.* 1994 MSL 13520).

Table 10. Characterisation of ¹⁴C in soybean foliage and seed from glyphosate resistant plants treated with two post-emergent applications of ¹⁴C-glyphosate at 0.84 and 1.7 kg ae/ha (Goure *et al.* 1994 MSL 13520).

	TF	R (glyphosate equivalents, mg/	kg)
	Forage (PHI 13 days)	Hay (PHI 41 days)	Grain (PHI 61 days)
TRR	24	10	17
Aqueous extract	25 (104)	8.0 (77)	15 (88)
Glyphosate ¹	21 (89)	5.6 (54)	4.4 (25)
AMPA ^{1,2}	1.6 (6.8)	1.3 (13)	8.6 (49)
N-methyl-AMPA ²	0.14 (0.6)	0.13 (1.3)	0.13 (0.8)
N-glyceryl-AMPA ³		0.084 (0.8)	0.28 (1.6)
AMPA-conjugate ³			0.18 (1.0)
N-acetyl-AMPA ³			0.24 (1.4)
N-malonyl-AMPA ³			0.31 (1.8)
Natural products ¹	0.62 (2.6)	0.27 (2.6)	0.47 (2.7)
Unknown		0.059 (0.6)	
Hexane extract			0.16 (0.9)
Saponifiable fatty acids ⁴			0.14 (0.8)
HCl extract			1.0 (5.8)
Amino acids & natural			0.90 (5.1)
organic acids			
PES ⁵	0.91 (3.8)	0.79 (7.6)	0.14 (0.8)
Total identified	23 (99)	7.5 (72)	16 (90)

Figures in brackets are %TRR

¹ identified by SAX-HPLC and CX-HPLC and comparison of the chromatographic properties of the metabolites and derivatized metabolites with those of the corresponding reference standards

²identified by CX-HPLC as well as derivatization followed by mass spectral analysis and comparison of the

chromatographic properties of the metabolites and derivatized metabolites with those of the corresponding reference standards.

³ identified by SAX-HPLC and comparison of the chromatographic properties of the metabolites and derivatized metabolites with those of the corresponding reference standards

⁴ HPLC and GC/MS shows that the fatty acids present were palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid

 5 PES = post extraction solids

Glyphosate Tolerant Sugar Beet

Mehrsheikh (2000 MSL 16247) studied the metabolism of glyphosate on tolerant sugar beet (line 77, variety HME Empire RR). ^{13/14}C-glyphosate was applied to box plots as a pre-emergent application one day after planting seeds at the equivalent of 0.9 kg ae/ha in experiment 1 and as two post-emergent applications for experiment 2. The post-emergent applications were made at the true 2–4 and 12–14 leaf stages 35 and 68 days after planting at rates of 1.1 kg ae/ha. The boxes were maintained under protected cover for all but the first week of the experiment. Sugar beet tops and roots were sampled at mature harvest (17–18% sugar content) 159 days after planting.

Plant samples were ground to homogeneity and portions were combusted and analysed by liquid scintillation counting to determine the distribution of total radioactive residues (TRR). The radioactive residues in ground samples were extracted with water. The total ¹⁴C-activity present in aqueous extracts of plant samples was determined by liquid scintillation counting. Radioactive components of the extracts of plant samples were separated by various chromatographic techniques (SAX-HPLC, CX-HPLC, amino column HPLC, RP-paired-ion HPLC, RP-HPLC) and identified by comparison to authentic standards using column chromatography and following derivatization, mass spectral characterization and identification. Analysis of samples was 16–57 days after harvest.

The total radioactivity, expressed as mg/kg glyphosate equivalents, found in sugar beet tops and roots and its distribution following extraction is summarized in Tables 11 and 12. The total radioactive residues in sugar beet tops and roots following two sequential post-emergence applications of ¹⁴C-glyphosate were 3.4 mg/kg and 1.4 mg/kg, respectively. In contrast, control sugar beet tops and roots housed near the ¹⁴C-treated group contained only 0.001 mg/kg of ¹⁴C-activity. Aqueous extractions of sugar beet tops and roots resulted in solubilisation of majority of the radioactive residues. Only 1.8% and 1.3% of the radioactivity remained associated with the extracted tops and roots, respectively.

Table 11. Distribution and characterisation of ^{13/14}C in sugar beet tops and roots harvested 159 days after planting following a single pre-emergent application at 0.9 kg ae/ha. Mehrsheikh (2000 MSL 16247)

	TRR (mg/kg as glyphosate)				
Fraction	Tops	Roots			
TRR	0.005	0.008			
Aqueous extract	0.003 (59)	0.007 (86)			
Unextracted (PES)	0.003 (50)	0.002 (20)			
Total recovery	109%	106%			

Table 12. Distribution and characterisation of 13/14C in sugar beet tops and roots harvested 159 days after planting, 91 days after the last of two post-emergent applications at 1.1 kg ae/ha. Mehrsheikh (2000 MSL 16247).

	TRR (mg/kg as glyphosate)				
Fraction	Tops	Roots			
TRR	3.4	1.4			
Aqueous extract	3.0 (87)	1.4 (103)			
Glyphosate ¹	2.7 (80)	1.3 (95)			
AMPA ²	0.06 (1.8)	0.05 (3.8)			
Natural products ³	0.05 (1.4)	0.02 (1.2)			
Unidentified glyphosate/AMPA acetylated conjugates ⁴	0.03 (0.8)	0.01 (0.55)			
Unextracted (PES)	0.062 (1.8)	0.018 (1.3)			
Acid hydrolysis	0.053 (1.5)	NA			
Total recovery	88%	105%			

¹ glyphosate: isolated using HPLC and identified as the trifluoroethyl derivative by MS. ² AMPA: isolated using HPLC and identified as the trifluoroethyl derivative by MS.

³ natural products: non-phosphonate-containing compounds not retained on Chelex® resin

⁴Glyphosate/AMPA acetylated conjugates: tentatively assigned to glyphosate and AMPA acetylated conjugates based on formation of AMPA and glyphosate on acid hydrolysis of the fraction and similarities with chromatographic and hydrolysis properties of conjugates identified in wheat metabolism study.

Environmental fate in soil

Aerobic soil degradation (glyphosate + AMPA)

Esser (1996 RR96-028B) studied the aerobic soil degradation of ¹⁴C-glyphosate in the dark in a Visalia sandy loam soil (sand 71%, silt 20%, clay 8.8%, %OM 0.6; cation exchange capacity 6.2 meq/100 g; pH 8.3; bulk density 1.46 g/cm³; 75% water holding capacity at 1/3 bar) at a concentration of 4.7 mg/kg. The soil was microbially viable throughout the study. Degradation was monitored for 31 days with samples analysed after 0, 1, 2, 3, 4, 8, 11, 14, 18, 24 and 31 days incubation. Characterisation of the ¹⁴C was by HPLC with LSC detection and for selected samples by TLC.

The only major metabolite observed in this study was AMPA representing 20% of the total applied radioactivity on day 31 (Table 13). A minor metabolite designated degradate 1 was not identified. Degradation occurred via AMPA and mineralization to ¹⁴CO₂.

		% applied radioactivity									
Days of incubation	0	1	2	3	4	8	11	14	18	24	31
% in phosphate buffer	95	62	46	43	39	31	35	28	23	25	23
extract											
Glyphosate	93	50	27	21	15	7.2	9.2	5.9	2.0	1.8	1.3
AMPA	1.6	12	19	21	23	23	24	21	20	22	20
Degradate 1	0	0.3	0.5	0.8	0.9	1.0	1.0	1.0	0.9	1.3	1.2
Others	0.2	0.1	0.2	0.1	0.3	0.1	0.1	0.2	0.0	0.0	0.1
% in PES	2.0	6.9	5.7	5.3	5.3	7.5	6.0	5.8	6.5	6.6	5.9
% in KOH (¹⁴ CO ₂)	ND	24	39	43	52	55	55	52	64	65	64

Table 13. Distribution and characterisation of radioactivity in various fractions following aerobic degradation of ¹⁴C-glyphosate at 25 °C (Esser 1996 RR96-028B).

Extracted = extracted with phosphate buffer, pH 2

PES = post extraction solids and represents the soil buffer unextracted residues

KOH = radioactivity associated with 10% aqueous KOH trap solutions and thought to be due to trapped ${}^{14}CO_2$ as all radioactivity in the day 11 sample was precipitated with BaSO₄

The half-life for glyphosate under aerobic test conditions was estimated to be 5.4 days, calculated assuming pseudo-first order kinetics.

In a separate study, Galicia and Morgenroth (1993 151-GLY) studied the aerobic soil degradation of ¹⁴C-glyphosate in the dark in a Les Evouettes II silt loam soil (sand 38%, silt 51%, clay 11%, %OC 1.4; cation exchange capacity 15.5 meq/100 g; pH 6.1; 40% water holding capacity) at a concentration of 2.4 mg/kg. The soil was microbially viable throughout the study. Degradation was monitored for 364 days with samples analysed after 0, 3, 7, 14, 28, 56, 84, 112, 168, 252 and 364 days incubation. Characterisation of the ¹⁴C was by HPLC with LSC detection and, for selected samples, by TLC.

The only major metabolite observed in this study was AMPA representing 29% of the total applied radioactivity on day 84 and 21% at the end of the study on day 364. Two minor metabolites that exceeded 10% of the applied radioactivity were not identified and were both highly polar in nature (Table 14). It is likely that the two minor metabolites are glyphosate and AMPA bound to humic or fulvic acids co-extracted by the high pH extraction solvent employed. Degradation occurred via AMPA and mineralization to ¹⁴CO₂.

		% applied radioactivity									
Days of incubation	0	3	7	14	28	56	84	112	168	252	364
% in extract	92	83	80	75	64	54	56	50	43	40	36
Glyphosate	78	67	54	44	36	25	20	19	10	8.3	6.7
AMPA	4.0	6.3	13	13	21	22	29	28	19	18	21
Unknowns	9.9	9.5	12	19	6.7	7.1	6.8	3.7	14	13	8.2
% in PES	6.4	9.9	10	12	14	14	13	14	17	13	20
% in NaOH (¹⁴ CO ₂)	ND	5.8	11	16	22	29	32	33	37	39	42

Table 14. Distribution and characterisation of radioactivity in various fractions following aerobic degradation of ¹⁴C-glyphosate at 25 °C (Galicia and Morgenroth, 1993 151-GLY).

Extracted = extracted with 80% methanol, $0.5 \text{ N NH}_4\text{OH}$ and water

PES = post extraction solids and represents the soil bound unextracted residues

NaOH = radioactivity associated with 2N NaOH trap solutions and thought to be due to trapped ${}^{14}CO_2$ as all radioactivity in the day 84, 252 and 364 samples were precipitated with BaSO₄. Negligible radioactivity was contained in the ethylene glycol trap for volatile organic compounds.

The half-life for glyphosate under aerobic test conditions was estimated to be 25 days, calculated assuming pseudo-first order kinetics.

Galicia and Flückiger (1993 157-GLY) studied the aerobic soil degradation of ¹⁴C-glyphosate (methylene) in the dark in three German standard soils: Speyer 2.1 (sand), 2.2 (sand) and 2.3 (loamy sand) at a concentration of 4.8 mg/kg. The soils were microbially viable throughout the study.

Degradation was monitored for 105 days with samples analysed after 0, 7, 14, 28, 56, 84 and 105 days incubation. Characterisation of the ¹⁴C was by HPLC with LSC detection and, for selected samples, by TLC (Tables 15-17).

Table 15. Distribution and characterisation of radioactivity in various fractions following aerobic degradation of ¹⁴C-glyphosate at 20 °C Speyer 2.1 biomass start 12 mg C/100 g soil, at end 7.8 mg C/100 g soil (Galicia and Flückiger, 1993 157-GLY).

		% applied radioactivity							
Days of incubation	0	7	14	28	56	84	105		
% in extract	91	78	82	57	55	53	48		
Glyphosate	87	56	38	23	9.7	9.7	8.0		
% in PES	0.3	2.3	2.5	2.0	2.5	1.6	1.6		
% in NaOH (¹⁴ CO ₂)	ND	12	15	20	24	25	26		

Extracted = extracted with $0.5 \text{ N } \text{NH}_4\text{OH}$

PES = post extraction solids and represents the soil bound unextracted residues

NaOH = radioactivity associated with 2N NaOH trap solutions and thought to be due to trapped ${}^{14}CO_2$ as all radioactivity in the day 28 sample was precipitated with BaSO₄. Negligible radioactivity was contained in the ethylene glycol trap for volatile organic compounds.

Table 16. Distribution and characterisation of radioactivity in various fractions following aerobic degradation of ¹⁴C-glyphosate at 20 °C Speyer 2.2 biomass start 40 mg C/100 g soil, at end 33 mg C/100 g soil (Galicia and Flückiger, 1993 157-GLY).

		% applied radioactivity							
Days of incubation	0	7	14	28	56	84	105		
% in extract	97	84	83	78	73	63	63		
Glyphosate	91	41	49	33	31	19	14		
% in PES	0.8	6.8	7.3	7.1	7.3	4.9	8.6		
% in NaOH ($^{14}CO_2$)	ND	5.8	9.0	14	19	21	24		

Extracted = extracted with $0.5 \text{ N NH}_4\text{OH}$

PES = post extraction solids and represents the soil bound unextracted residues

NaOH = radioactivity associated with 2N NaOH trap solutions and thought to be due to trapped ${}^{14}CO_2$ as all radioactivity in the day 28 sample was precipitated with BaSO₄. Negligible radioactivity was contained in the ethylene glycol trap for volatile organic compounds.

Table 17. Distribution and characterisation of radioactivity in various fractions following aerobic degradation of ¹⁴C-glyphosate at 20 °C Speyer 2.3, biomass start 37 mg C/100 g soil, at end 26 mg C/100 g soil (Galicia and Flückiger, 1993 157-GLY).

		% applied radioactivity							
Days of incubation	0	7	14	28	56	84	105		
% in extract	91	59	45	33	25	22	18		
Glyphosate	91	39	20	5.5	4.3	3.0	2.5		
% in PES	1.4	7.7	7.0	7.0	8.6	6.0	5.0		
% in NaOH ($^{14}CO_2$)	ND	31	40	50	57	59	61		

Extracted = extracted with $0.5 \text{ N NH}_4\text{OH}$

PES = post extraction solids and represents the soil bound unextracted residues

NaOH = radioactivity associated with 2N NaOH trap solutions and thought to be due to trapped ¹⁴CO₂ as all radioactivity in the day 28 sample was precipitated with BaSO₄. Negligible radioactivity was contained in the ethylene glycol trap for volatile organic compounds.

The half-life for glyphosate under aerobic test conditions was estimated to be 7.5, 8.5 and 3.6 days respectively for Speyer soils 2.1, 2.2 and 2.3, calculated assuming pseudo-first order kinetics. The corresponding DT90 values were 83, >200 and 40 days respectively for the same soils.

Aqueous hydrolysis

Bowler (1996 RR 96-002B) studied the hydrolysis of 10 mg/L ¹⁴C-glyphosate sterile solution in buffers at pH 5, 7 and 9 for 30 days at 25°C. The concentration of glyphosate remained constant throughout the study period and no breakdown products were detected by HPLC or TLC.

Rotational crops - confined

No data were provided on residues in rotational crops.

METHODS OF RESIDUE ANALYSIS

The analysis of glyphosate and its major metabolite AMPA is complicated by the polar nature of both compounds and their similarity in properties to naturally occurring compounds such as amino acids. Several different analytical methods have been reported for the analysis of residues of both compounds in plant materials, animal tissues, milk and eggs.

The methods used in field trials and reported as suitable for enforcement purposes were similar. The methods generally involve aqueous extraction of residues, typically with dilute acid, clean-up on cation and anion exchange columns, separation using GC or HPLC and derivatization prior to detection. The efficiency of the aqueous extractions has been demonstrated during the metabolism studies where the majority of the total radioactive residue (TRR) was recovered in the aqueous extracts.

Method 1

The US FDA Pesticide Analytical Manual (PAM) reports a time consuming method that was used in early residue trials but has been superseded. The method involves clean-up of aqueous extracts by anion and cation exchange followed by acylation of the amino nitrogen with trifluoroacetic acid and trifluoroacetic anhydride and methylation of both the phosphonic acid (glyphosate and AMPA) and carboxylic acid groups (glyphosate). Quantification is performed by gas chromatography (GC) with a phosphorous specific flame photometric detector. For the analysed matrices the average recovery by fortification level was < 70% in several cases (Tables 18, 19). The limit of quantification, defined as the lowest level at which an acceptable recovery (70–110%) is obtained, is 0.05 mg/kg for most plant matrices.

Matrix	Fortification level	Ν	Recovery	Recovery	RSD	Reference
	(mg/kg)		range (%)	mean (%)	(%)	
Cotton hay	0.05	2	78-101	89	19	MSL 1283
-	0.10	8	44-84	66	20	
	0.20	6	56-80	68	14	
	0.40	3	57-86	72	20	
Cotton seed	0.05	2	61-75	68	14	MSL 1283
	0.10	5	64-75	68	7	
	0.20	10	59-88	75	12	
	0.40	5	43-65	57	18	
Sugarcane	0.05	2	100-106	103	4	MSL0264
stalks	0.10	4	57-94	71	22	
	0.20	10	56-94	74	16	
	0.40	7	52-91	71	22	
	0.80	5	51-96	68	25	
Sugarcane raw	0.05	6	91-114	102	11	MSL0264
sugar	0.10	2	65-74	69	10	
	0.20	6	65-109	82	19	
	0.40	8	60-100	73	18	
Coffee beans	0.05	4	72-84	77	6	FR 434
	0.10	16	57-94	69	15	
	0.20	15	50-78	59	12	
	0.40	5	46-64	52	14	
Nuts	0.05	13	54-91	75	16	FR 442
	0.10	13	48-92	70	20	
	0.20	12	46-110	72	22	
	0.40	13	49-88	69	15	

Table 18. Method 1 Validation data for glyphosate.

Matrix	Fortification level (mg/kg)	N	Recovery range (%)	Recovery mean (%)	RSD (%)	Reference
Cotton hay	0.05	2	67-103	85	30	MSL 1283
	0.10	10	50-78	69	12	
	0.20	7	57-81	66	13	
	0.40	3	62-72	68	8	
Cotton seed	0.05	2	92-94	93	1	MSL 1283
	0.10	6	49-89	74	19	
	0.20	12	55-82	71	10	
	0.40	6	56-69	63	8	
Sugarcane	0.05	3	83-95	91	8	MSL0264
stalks	0.10	6	61-79	67	11	
	0.20	9	61-102	78	16	
	0.40	9	69-91	77	9	
	0.80	4	59-81	71	13	
Sugarcane	0.05	5	73-93	85	9	MSL0264
raw sugar	0.10	4	51-90	72	23	
	0.20	8	57-90	74	20	
	0.40	10	54-94	76	17	
Coffee beans	0.05	4	83-104	94	10	FR 434
	0.10	16	53-86	66	16	
	0.20	16	51-85	67	17	
	0.40	4	56-66	60	7	
Nuts	0.05	12	59-104	74	19	FR 442
	0.10	14	45-77	62	15	
	0.20	12	53-83	71	12	
	0.40	13	47-92	64	20	

Table 19. Method 1 Validation data for AMPA.

Method 2

Cowell *et al.* (1983) reported the analysis of glyphosate and AMPA isolated by blending samples with CHCl₃ and HCl with clean-up of the aqueous fraction by elution through Chelex 100 resin in the Fe(III) form. The compounds are eluted from the resin with hydrochloric acid and the iron removed using an anion exchange resin. After concentration to dryness to remove the hydrochloric acid, samples are analysed by HPLC equipped with an o-phthalaldehyde (OPA) post-column reactor and a fluorescence detector. Determination involves post-column hypochlorite oxidation and reaction of the amine product with o-phthalaldehyde and mercaptoethanol to produce a fluorescent derivative. Modifications to the method have included adding a column switching step to the HPLC quantitation to reduce low level interferences that were observed with some matrices.

The results of the recovery experiments are presented in Table 20 for glyphosate and Table 21 for AMPA. The average recovery by fortification level exceeded 70% for all matrices/fortification levels. The limit of quantification is 0.05 mg/kg for most plant matrices.

The reproducibility of this analytical method was demonstrated by an interlaboratory study involving 5 independent laboratories (Cowell *et al.*, 1986). Tables 22 (glyphosate) and 23 (AMPA) below list the average recovery and relative standard deviation data from the blind fortified samples for each matrix and laboratory.

This method has also been validated for the determination of glyphosate and AMPA in animal tissues. The validation data are summarized in Table 24 (Pijanowski 1988, Oppenhuizen and Schuette 1995).

Table 20. Method 2 Validation data for glyphosate in plants.

Matrix	Fortification level (mg/kg)	Ν		Recovery mean (%)	RSD (%)	Reference
Dried, shelled		3	91-103	96	7	MSL17194

Matrix	Fortification level	Ν	Recovery range	Recovery mean	RSD (%)	Reference
	(mg/kg)		(%)	(%)		
beans	0.1	4	87-95	91	4	
	1	4	85-99	94	6	
	10	3	89-95	93	4	
Corn grain	0.05	6	62-104	88	20	MSL15334
	0.1	4	80-99	86	10	
	0.5	4	61-110	91	16	
	2.5	4	82-103	89	11	
	5	4	82-86	83	2	
Corn forage	0.05	4	74-91	83	9	MSL15334
_	0.1	5	75-93	83	8	
	0.5	3	82-120	97	21	
	2.5	3	78-86	83	5	
	5	5	84-98	89	7	
	10	2	87-104	95	12	
Corn stover	0.05	5	82-110	98	11	MSL15334
	0.1	5	80-103	93	11	
	0.5	4	92-104	96	5	
	2.5	4	87-114	98	12	
	5	4	75-126	95	24	
Cotton seed	0.05	7	73-106	85	17	MSL17635
	0.1	6	78-96	87	7	
	1	5	74-103	86	14	
	5	3	65-87	80	16	
	10	6	62-89	79	14	
	20	3	83-88	85	3	
	50	2	77-85	81	7	
Sorghum grain	0.05	3	79-90	85	7	MSL14918
5 5	5	3	93-95	94	1	
	20	3	89-94	92	3	
Sorghum	0.05	3	84-109	95	13	MSL14918
stover	20	3	89-108	100	10	
	50	3	75-84	79	6	

Table 21. Method 2 Validation data for AMPA in plants.

Matrix	Fortification level	N	Recovery	Recovery	RSD	Reference
	(mg/kg)		range (%)	mean (%)	(%)	
Dried, shelled	0.05	3	64-72	67	6	MSL17194
beans	0.10	4	83-93	86	6	
	1	4	82-98	91	8	
	10	3	88-95	92	4	
Corn grain	0.05	6	67-113	92	22	MSL15334
-	0.1	3	71-91	82	16	
	0.5	4	73-112	94	17	
	2.5	4	81-97	89	7	
	5	6	83-94	92	5	
Corn forage	0.05	4	62-106	84	26	MSL15334
C C	0.1	5	78-123	99	20	
	0.5	3	86-118	100	16	
	2.5	3	75-84	80	6	
	5	5	81-97	88	7	
	10	2	86-100	93	11	
Corn stover	0.05	5	88-119	100	14	MSL15334
	0.1	5	81-101	92	9	
	0.5	4	87-102	93	7	
	2.5	4	84-114	97	14	
	5	4	70-124	93	26	
Cotton seed	0.05	7	72-108	96	13	MSL17635
	0.1	6	85-126	101	14	
	1	5	81-90	87	4	
	5	3	88-95	92	4	

Matrix	Fortification level (mg/kg)	N	Recovery range (%)	Recovery mean (%)	RSD (%)	Reference
	10	6	64-90	80	14	
	20	3	84-94	88	6	
	50	2	78-85	82	6	
Sorghum	0.05	3	59-79	70	14	MSL14918
grain	5	3	90-97	93	4	
-	20	3	90-91	91	1	
Sorghum	0.05	3	65-84	73	14	MSL14918
stover	20	3	87-98	94	6	
	50	3	70-72	71	2	

Table 22. Method 2 interlaborator	v study validation	n data for glyphosate	(Cowell <i>et al.</i> 1986)
Tuble 22. Method 2 miteriuborutor	y study validation	i dutu ioi Siypiiosute	

		Recovery \pm RSD							
Crop	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5				
Alfalfa	104 ± 19	Not completed	71 ± 26	85 ± 12	97 ± 10				
Cabbage	66 ± 8.2	86 ± 14	71 ± 2.9	76 ± 9.5	74 ± 4.2				
Grapes	74 ± 8.0	90 ± 6.7	72 ± 13	68 ± 16	78 ± 13				
Soybeans	50 ± 29	87 ± 2.6	77 ± 18	77 ± 5.6	81 ± 14				

Table 23. Method 2 interlaboratory study validation data for AMPA (Cowell et al. 1986).

Crop	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5
Alfalfa	90 ± 15	102 ¹	86 ± 4.4	101 ± 20	87 ± 2.4
Cabbage	66 ± 6.6	71 ± 4.0	72 ± 4.4	69 ± 7.5	70 ± 7.2
Grapes	66 ± 8.2	62 ± 15	72 ± 5.7	61 ± 23	75 ± 16
Soybeans	61 ± 16	103 ± 9.9	70 ± 14	85 ± 8.6	86 ± 5.2

¹Only one sample analysed

Table 24 Method 2 Validation data for glyphosate in an	nimal tissues.
--	----------------

Matrix	Fortification	Ν	Glyphosate	AMPA recovery (%)	Reference
	level (mg/kg)		Recovery (%)		
Beef Muscle	0.05	2	87, 88	89, 78	MSL7358
	0.1		87, 86	83, 82	
	0.25		84, 81	86, 84	
	0.5		89, 90	86, 88	
Beef Kidney	0.05	2	97, 93	103, 98	MSL7358
	0.25		91, 91	96, 92	
	1		92, 90	93, 90	
	5		94, 95	90, 90	
	15		91, 93	90, 92	
Beef Fat	0.05	2	11, 102	86, 90	MSL7358
	0.1		87, 91	91, 87	
	0.25		98, 94	90, 90	
	0.5		98, 94	92, 86	
	1		87, 87	89, 88	
Beef Liver	0.05	2	78,60	84, 94	MSL7358
	0.1		68, 71	85, 88	
	0.25		71, 72	81, 84	
	1		78, 84	80, 87	
	2.5		81, 80	77, 75	
Milk	0.025	2	95, 99	94, 97	MSL7358
	0.05		94, 96	95, 98	
	0.125		89, 89	90, 91	
	0.5		94, 95	92, 95	
	1.25		94, 94	90, 91	
Pork kidney	0.05	2	87, 86	94, 92	MSL7358
	0.1		85, 85	95, 94	

Matrix	Fortification level (mg/kg)	N	Glyphosate Recovery (%)	AMPA recovery (%)	Reference
	0.5		99,98	94, 93	
	1		94, 96	94, 95	
	5		96,97	94, 93	
Pork muscle	0.05	2	79, 85	79, 87	MSL7358
	0.1		85, 87	86, 86	
	0.25		88, 87	84, 86	
	0.5		90, 89	89, 91	
Pork fat	0.05	2	95, 101	98, 101	MSL7358
	0.1		83, 84	77, 76	
	0.25		89, 94	75, 80	
	0.5		94, 90	76, 75	
Pork liver	0.05	2	91, 89	114, 109	MSL7358
	0.1		91, 83	91, 92	
	0.25		80, 81	84, 82	
	0.5		86, 86	80, 80	
	1		81, 80	81, 78	
Chicken	0.05	2	90, 89	86, 82	MSL7358
muscle	0.1		90, 95	82, 91	
	0.25		85, 87	82, 89	
	0.5		96, 95	84, 89	
Chicken liver	0.05	2	73, 68	79, 77	MSL7358
	0.1		68, 74	72, 78	
	0.5		77, 78	76, 77	
	1		89, 88	84, 86	
	5		78, 80	77, 77	
Chicken	0.05	2	75, 72	94, 94	MSL7358
kidney	0.25		83, 88	87, 93	
	1		93, 92	87, 86	
	5		92, 94	84, 88	
	15		91, 92	90, 91	
Chicken fat	0.05	2	88, 86	88, 88	MSL7358
	0.1		90, 89	89, 88	
	0.25		83, 85	85, 84	
	0.5		92, 87	85, 80	
Eggs	0.025	2	91, 92	90, 89	MSL7358
	0.05	2	92, 94	90, 96	
	0.125	2	89, 92	88, 89	
	0.5	2	89, 90	83, 82	

Method 3

Deutsche Forschungsgemeinschaft (DFG). 1992. Manual of Pesticide Residue Analysis, Volume II, Method 405 Glyphosate VCH Publishers Inc., New York, USA

Glyphosate and AMPA are extracted with aqueous HCl and isolated from various matrix extracts by elution through Chelex 100 resin in the Fe(III) form. The compounds are eluted from the resin with hydrochloric acid and the iron is removed using an anion exchange resin. Glyphosate and AMPA are determined separately by HPLC including post-column derivatization. In the fluorogenic step, glyphosate, which has been oxidized to a primary amine, and AMPA (no oxidation step required) react with o-phthalaldehyde and mercaptoethanol to yield a strongly fluorescent compound that is measured using a fluorescence detector.

The results of the recovery experiments are presented in Table 25 for glyphosate and Table 26 for AMPA. The average recovery was above 70% for each matrix/fortification level, with only 2 exceptions. The limit of quantification is in the range 0.03-0.06 mg/kg, depending on the crop matrix.

This method has been extensively validated for crop matrices.

Matrix	Fortification level (mg/kg) ¹	N	Recovery range (%)	Recovery mean (%)	RSD (%)	Reference
Cereal	0.04-0.05	4	84-106	91	11	311 GLY
whole	0.08-0.1	9	66-109	93	16	JII OLI
plant	0.5	6	54-98	71	23	
(wheat,	1	7	62-83	72	11	
barley,	2	7	65-112	84	19	
oat)	5	8	60-88	74	12	
Out)	10	10	60-104	84	14	
	20	5	85-103	92	8	
	50	4	75-106	86	17	
	100	4	80-107	94	16	
	200	4	73-106	90	15	
Cereal	0.03	5	86-109	94	10	311 GLY
grain	0.05	10	73-113	97	14	JII OLI
(wheat,	0.08-0.1	6	62-116	91	20	
barley,	0.3	3	62-85	74	16	
oat)	0.5	4	72-89	80	11	
Out)	1	9	62-112	87	20	
	2	4	62-100	81	20 25	
	5	4	71-108	81	14	
	10	7	63-93	81	13	
	20	3	65-90	79	16	
	50	4	66-94	83	10	
Cereal	0.05	9	61-116	100	14	311 GLY
straw	0.05		61-117	88	22	511 01 1
(wheat,	0.2	9 2	78, 84	81	22	
barley,	0.2	2	81, 105	93		
oat)	1	11	50-114	84	22	
Out)	5	9	69-104	80	14	
	10	10	60-95	77	15	
	20	6	61-94	76	17	
	50	6	60-86	75	12	
	100	4	71-107	84	12	
	200	4	66-83	75	9	
Grass	0.04-0.06	3	74-84	79	6	311 GLY
01055	0.08-0.1	4	81-128	100	22	JII OLI
	0.2	2	80-83	82	22	
	0.5	3	75-99	89	14	
	1	5	58-101	85	20	
	5	6	59-96	82	15	
	10	10	70-91	83	11	
	20	5	67-87	79	11	
	50	6	70-102	83	13	
	100	7	66-91	82	11	
	200	2	85, 88	86		
Hay	1	2	73, 89	81		311 GLY
	10	$\overline{\frac{1}{2}}$	94, 97	96		
	20	2 2	87, 109	98		
	50	2	77, 79	78		
	300	2	90, 105			
Silage	0.06	1	103	103		311 GLY
	0.1	3	73-105	91	18	
	1	2	82, 84	83		
	5	3	84-88	85	3	
	10	3	71-90	78	14	
	200	3 2	70, 78	74		
Flax	0.06	2	72, 107	90		311 GLY
(linseed)	0.5-0.6	2	75, 85	80		511 01 1
(inisecu)	10	2	80, 93	80		
	10	4	00,75	00		

Table 25. Method 3 Validation data for glyphosate

Matrix	Fortification level	N	Recovery range (%)	Recovery	RSD	Reference
	$(mg/kg)^1$			mean (%)	(%)	
Oilseed	0.06	4	58-104	86	24	311 GLY
rape seeds	0.1	3	68-105	84	23	
	0.5-0.6	6	62-100	80	16	
	1	2	78, 78	78		
	2 5-6	2 3	73, 74 59-88	74 74	20	
	10	2	62-63	62	20	
	50-60	3	72-103	84	20	
Oilseed	0.25	1	98	-		311 GLY
rape pods	1	2	78, 80	79		
	5	2	87, 63	75		
	10	2	83, 88	85		
Peas seeds	0.05	2 2	83, 85	84		311 GLY
	0.1	2	87, 102	94 74		
	0.5 1	2 2 2 3	57, 92 88, 89	74 88		
	5	$\frac{2}{2}$	90, 91	90		
	10	3	76-85	81	6	
	100	2	82, 105	94	_	
Pea, haulm	0.05		59, 94, 101			311 GLY
	0.1		84, 108			
	0.5		66, 108			
	1.0		70, 73, 74, 81, 94, 101			
	2		78, 79			
	5 10		71, 81, 110 68, 72, 84, 88			
	20		67, 73, 82, 97			
	50		74, 95			
	100		66, 85, 90			
Winter	0.05	2	79, 86	82		311 GLY
field bean	0.1	3	59-76	68	13	
seeds	0.5	2	67, 86	76		
	1	2 2 2	68, 74	71		
	2	2	73, 79	76		
	10 50	2 2	69, 76 57, 64	72 60		
Winter	0.05	2	57, 64 111	00		311 GLY
field bean	0.03		84, 94, 108			JIIOLI
haulm	0.5		91, 111			
	1		74, 79, 82, 84, 90, 91			
	5		86, 109, 111			
	10		78, 79, 80, 87, 94, 97			
	20		71, 74, 84			
	50		64, 77			
	100 200		68, 76, 83 72, 88			
Apples	0.06	4	68-107	84	20	311 GLY
1 thhice	0.3	2	68, 77	73	20	511 901
Cereal	0.05	11	70-105	87	14	MLL31337
grains	0.5	3	88-93	90	3	
	20	8	83-112	94	11	
Cereal	0.05	12	67-128	88	21	MLL31337
straws	0.5	4	70-83	76	7	
	50	2	70, 75	72		
	100 250	3	73-85	78	8	
	200	3	75-86	82 108	8	MLL31678
Vinzifrait		5				
Kiwifruit	0.05	5	102-111			MELDIOVO
	0.05 0.5	5	90-100	96	4	
Oilseed	0.05 0.5 0.05	5 2	90-100 79, 83	96 81	4	MLL30817
	0.05 0.5	5	90-100	96		

¹Recovery levels for which only one result was available were not included (except if at quantification level)

Matrix	Fortification level	Ν	Recovery range	Recovery mean	RSD	Reference
	(mg/kg)		(%)	(%)	(%)	
Cereal	0.05	11	73-101	88	9	MLL31337
grains	0.5	3	96-100	97	2	
	20	8	75-102	91	11	
Cereal	0.05	11	70-108	85	14	MLL31337
straw	0.5	4	72-92	80	10	
	50	2	73-81	77	7	
	100	3	78-89	83	7	
	250	3	79-85	81	4	
Kiwifruit	0.05	5	89-100	93	5	MLL31678
	0.5	5	88-94	91	2	
OSR seeds	0.05	3	63-93	80	19	MLL30817
	0.1	3	70-92	78	16	
	0.2	3	59-78	67	15	
	0.5	2	79-91	85	10	

Table 26. Method 3 Validation data for AMPA.

Method 4

Alferness and Iwata (1994) reported a method for the analysis of glyphosate and AMPA in plant and animal commodities. Glyphosate and AMPA are extracted from crops by maceration with water and the extracts partitioned with methylene chloride or chloroform to remove nonpolar co-extractives and then cleaned up over a cation exchange column. In the case of muscle, liver, kidney and eggs as well as soybean soapstock the extraction was with 0.1 M HCl/chloroform and the samples centrifuged to obtain the aqueous solution. Fat samples required an additional extraction with chloroform. Milk samples were extracted with 0.6% v/v acetic acid and the extract centrifuged to isolate the aqueous layer which is further extracted with chloroform and filtered. Small aliquots of the purified extracts are directly derivatized with a mixture of trifluoroacetic anhydride and heptafluorobutanol to produce the heptafluorobutylesters of the acid functional groups and the trifluoroacetyl derivatives of the amines. Quantitation is by capillary GC with the derivatives quantified by mass-selective detection using single ion monitoring (m/z 611 for glyphosate and m/z 446 for AMPA derivatives).

The results of the recovery experiments for plant matrices are presented in Tables 27 for glyphosate and 28 for AMPA, and for animal commodities in Table 29. The average recovery was above 70% for each matrix/fortification level. The limit of quantification is 0.05 mg/kg for all matrices.

The reproducibility of this method was demonstrated by an interlaboratory study involving 13 laboratories located in 5 countries; 12 laboratories returned valid data sets. The crops tested were field corn grain, soya forage and walnut meat at concentrations of 0.05, 0.4 and 2 mg/kg. The study used a split-level pair replication scheme with blindly coded laboratory samples. Twelve samples were analysed, including one control and 3 split-level pairs for each matrix, 1 pair at each nominal concentration. For glyphosate, the mean recovery was 91%, the average intralaboratory variance, the repeatability relative standard deviation (RSD_r), was 11% and interlaboratory variance, the reproducibility relative standard deviation (RSD_R), was 16%. For AMPA the mean recovery was 87%, the RSD_r was 16% and the RSD_R was 25% at mg/kg levels. The average recoveries, RSD_r and RSD_R are given by crop/fortification levels in Tables 30 for glyphosate and 31 for AMPA.

Matrix	Fortification level (mg/kg)	Ν	Recovery range (%)	Recovery mean (%)	RSD (%)	Reference
Corn grain	0.05	3	91-116	101	13	RR92-042B RES2
c	0.5	3	75-89	81	9	
Corn forage	0.05	3	92-97	95	3	RR92-042B RES22
_	0.54	3	95-103	99	4	
Corn fodder	0.05	3	80-86	82	4	RR92-042B RES2

Table 27. Method 4 Validation data for glyphosate.

Matrix	Fortification level	Ν	Recovery	Recovery mean	RSD	Reference
	(mg/kg)		range (%)	(%)	(%)	
	0.5	3	77-86	83	6	
Flax	0.05	5	95-126	110	10	Ely 2001
	0.5	5	78-101	91	9	
	5	5	79-99	88	9	
Cabbage	0.05	6	72-94	87	9	Ely 2001
_	0.5	5	88-101	94	6	
	5	5	79-93	87	8	
Melon	0.05	6	84-95	90	5	Ely 2001
	0.5	5	93-113	99	9	
	5	5	83-93	90	4	
Oat grain	0.05	6	85-123	99	13	Ely 2001
	0.5	5	89-96	94	3	
	5	5	88-102	92	6	
Rye straw	0.05	6	89-126	101	14	Ely 2001
	0.5	5	92-110	100	7	
	5	5	89-94	92	2	
Coffee	0.05	6	100-115	108	5	Ely 2001
	0.5	5	101-122	108	8	
	5	5	98-123	106	10	

Table 28. Method 4 Validation data for AMPA.

Matrix	Fortification level	N	Recovery	Recovery mean	RSD	Reference
	(mg/kg)		range (%)	(%)	(%)	
Flax	0.05	5	101-115	105	5	Ely 2001
	0.5	5	83-102	94	8	
	5	5	80-103	89	10	
Cabbage	0.05	6	65-93	74	16	Ely 2001
-	0.5	5	76-100	86	12	
	5	5	53-81	71	16	
Melon	0.05	6	74-108	84	15	Ely 2001
	0.5	5	87-121	98	14	
	5	5	86-95	89	4	
Oat grain	0.05	6	75-91	81	7	Ely 2001
	0.5	5	69-82	76	8	
	5	5	74-98	85	11	
Rye straw	0.05	6	70-84	76	7	Ely 2001
	0.5	5	91-106	99	6	
	5	5	68-80	72	6	
Coffee	0.05	6	76-118	104	14	Ely 2001
	0.5	5	79-91	84	5	
	5	5	87-110	94	10	

Table 29. Method 4 Validation data for animal commo	odities (JAFC 1984 42 (12) 2751-2759).
---	--

Matrix	Ν	Fortification	Glyphosate recovery		AMPA recovery		
		level (mg/kg)	Mean	CV	Mean	CV	
Beef muscle	6	0.03, 0.3	98	8	102	11	
Kidney	6	0.1, 1	105	3	89	5	
Liver	6	0.1, 1	100	5	84	9	
Fat	6	0.01, 0.1	101	3	86	8	
Milk	6	0.01, 0.1	95	4	85	10	
Chicken eggs	6	0.01, 0.1	92	12	87	14	

Сгор	Average residue (mg/kg)	No. of labs	Recovery (%)	RSD _r (repeatability)	RSD _R (reproducibility)	Reference
Corn grain	0.045	11	84	15	15	Alferness & Wiebe
_	0.37	12	88	11	18	(2001)
	1.7	12	90	11	22	
Soya forage	0.046	12	88	17	20	Alferness & Wiebe
	0.41	12	97	10	15	(2001)
	1.8	12	93	8.2	16	
Walnut	0.051	10	97	9.0	9.0	Alferness & Wiebe
meat	0.39	10	92	6.1	12	(2001)
	1.8	9	93	11	20	

Table 30. Method 4 Interlaboratory study results for the determination of glyphosate.

Table 31. Method 4 Interlaboratory study results for the determination of AMPA.

Сгор	Average residue (mg/kg)	No. of labs	Recovery (%)	RSD _r (repeatability)	RSD _R (reproducibility)	Reference
Corn grain	0.046	11	88	24	24	Alferness & Wiebe
	0.37	11	89	11	23	(2001)
	1.7	11	89	14	25	
Soya forage	0.041	12	78	24	43	Alferness & Wiebe
	0.36	12	87	20	24	(2001)
	1.6	12	87	15	20	
Walnut meat	0.048	11	92	16	28	Alferness & Wiebe
	0.35	11	84	11	15	(2001)
	1.7	9	88	11	23	

Method 5

Method 5 developed by Royer et al. (2001 MON/GLY/2000.01) differs from the previous method in that it uses a different clean-up. For plant and animal products this method involves an extraction in acidic medium followed by purification on column chromatography on Chelex® 100 and on strong anion exchange resin (AG 1 X8), followed by derivatization and quantification by GC/MS/MS.

The results of the recovery experiments are presented in Tables 32 and 33. For all the analysed matrices, the average recovery by fortification level was in the range 70 - 110% except for AMPA in lemon at 0.5 mg/kg fortification level. For wheat straw, valid recoveries were only obtained at the 0.5 mg/kg fortification level. The limit of quantification is 0.05 mg/kg for most of the plant and animal matrices (except wheat straw).

Table 32. Method 5 Validation data for glyphosate residues in plant and animal matrices

			Gl	yphosate			AMPA		
Matrix	Fortification	Ν	Recovery	Mean	RSD	Recovery	Mean	RSD	Reference
	level		range	recovery	(%)	range	recovery	(%)	
	(mg/kg)		(%)	(%)		(%)	(%)		
Maize	0.05	5	72 - 108	85	17	72 – 99	81	14	MON/GLY/2000.01
	0.5	5	79 – 105	92	14	66 - 89	77	11	
Tomatoes	0.05	5	70 - 104	85	16	69 - 113	84	23	MON/GLY/2000.01
	0.5	5	68 - 107	92	17	73 - 90	82	9.5	
Lemon	0.05	5	83 - 115	96	17	72 - 104	85	14	MON/GLY/2000.01
	0.5	5	82 - 107	92	13	64 - 121	105	23	
Wheat	0.05	4	71 - 105	91	16	69 – 95*	79	14	MON/GLY/2000.01
grain	0.5	5	51 - 85	71	20	80 - 125	98	18	
Wheat	0.05	2	79, 87	83	-	79 – 96	88	-	MON/GLY/2000.01
straw	0.5	5	66 - 110	90	20	87 - 100	94	6.1	
Milk	0.05	5	58 - 94	80	18	71 – 116	92	22	MON/GLY/2000.01
	0.5	5	75 – 122	100	18	55 - 115	83	28	

			Glyphosate		AMPA				
Matrix	Fortification	Ν	Recovery	Mean	RSD	Recovery	Mean	RSD	Reference
	level		range	recovery	(%)	range	recovery	(%)	
	(mg/kg)		(%)	(%)		(%)	(%)		
Eggs	0.05	5	76 – 91	85	7.1	86 - 107	93	9.6	MON/GLY/2000.01
	0.5	5	87 – 93	90	2.7	67 - 88	77	11	
Meat	0.05	5	86 - 128	106	16	80 - 112	97	15	MON/GLY/2000.01
	0.5	5	88 - 113	100	12	76 - 127	104	20	

RSD = Relative Standard Deviation

Method 6

In method 6, glyphosate and AMPA are isolated from various matrices by elution through Chelex 100 resin in the Fe(III) form. The glyphosate and AMPA are eluted from the resin with hydrochloric acid and the iron is removed using an anion exchange resin. After concentration to dryness to remove the hydrochloric acid, samples are analysed using a two column switching HPLC equipped with a ninhydrin post column reactor and an absorbance detector.

Some matrices showed interferences from co-extractives and made the method unworkable for the given substrate. The results of recovery experiments from soybean grain and hay are presented in Tables 33 for glyphosate and 34 for AMPA. The average recovery by matrix/fortification level exceeded 70% in all cases. The limit of quantification is 0.05 mg/kg.

Matrix	Fortification level (mg/kg)	Ν	Recovery range (%)			Reference
Soybean	0.05	5	71-107	85	20	MSL3259
grain	0.1	2	92-100	96	6	
-	0.5	5	90-103	96	5	
	1	2	92-104	98	9	
	2	2	110-117	114	4	
	3	4	96-100	98	2	
	5	2	97-100	98	2	
	10	2	105-108	106	2	
	20	2	102-108	105	4	
Soybean hay	0.05	2	91-106	98	11	MSL3259
	0.1	2	93-98	96	4	
	0.5	2	99-100	100	1	
	1	4	93-103	98	5	
	3	2	99-101	100	1	
	10	2	104-104	104	0	
	30	2	94-97	96	2	
	100	2	102-104	103	1	
	300	2	99-100	100	1	

Table 33. Method 6 Validation data for glyphosate.

Table 34. Method 6 Validation data for AMPA.

Matrix	Fortification level	Ν	Recovery range $\binom{9}{2}$	Recovery mean (%)	RSD (%)	Reference
	(mg/kg)		range (%)			
Soybean	0.05	5	76-100	85	11	MSL3259
grain	0.1	2	66-67	66	1	
-	0.5	5	86-98	94	6	
	1	2	90-97	94	5	
	2	2	105-105	105	0	
	3	4	94-98	96	2	
	5	2	95-98	96	2	
	10	2	102-104	103	1	
	20	2	97-98	98	1	
Soybean hay	0.05	2	87-90	88	2	MSL3259
	0.1	2	91-92	92	1	

Matrix	Fortification level (mg/kg)	Ν	Recovery range (%)	Recovery mean (%)	RSD (%)	Reference
	0.5	2	94-96	95	1	
	1	4	87-94	91	4	
	3	2	94-97	96	2	
	10	2	98-99	98	1	
	30	2	91-93	92	2	
	100	2	97-97	97	0	
	300	2	98-98	98	0	

Method 7

Method 7 is based on a glyphosate analytical method published as a Notice of the Environment Agency in Japan. It utilizes the same Chelex and ion exchange resin procedures for isolation of glyphosate and AMPA that is used in Methods 2 and 3, and is followed by analysis of the extract using HPLC and pre-column derivatization with 9-fluorenylmethylchloroformate (FMOC) and a fluorescence detector. This method was used in only one of the submitted residue studies (Takano and Fuji 1991). No formal validation report is available.

Two different extraction techniques were used for the tea leaves. One was a standard aqueous extraction. The second used a hot water steeping method that simulated brewing of tea. The results of recovery experiments from tea leaves are summarized in Tables 35 for glyphosate and 36 for AMPA, using both extraction techniques. While glyphosate recovery results are acceptable, the AMPA recoveries are below 70%. There was no difference in recovery using the two extraction techniques. The reported limit of detection for the method is 0.02 mg/kg.

Matrix	Fortification level	Ν	Recovery range	Recovery mean	RSD (%)	Reference	
	(mg/kg)		(%)	(%)			
Tea leaves (cold water extraction)	0.4	4	78-93	87	8	Takano and 1991	l Fuji
Tea leaves (hot water steeping)	0.4	4	86-90	89	2	Takano and 1991	l Fuji

Table 35. Method 7 Va	lidation data	for glyphosate.
-----------------------	---------------	-----------------

Matrix	Fortification level	Ν	Recovery range	Recovery mean	RSD (%)	Reference		
	(mg/kg)		(%)	(%)				
Tea leaves (cold water extraction)	0.4	4	44-68	57	18	Takano a 1991	and	Fuji
Tea leaves (hot water steeping)	0.4	4	53-63	59	7	Takano a 1991	and	Fuji

Table 36. Method 7 Validation data for AMPA.

Stability of residues in stored analytical samples

Beans, oilseed rape, and linseed

Schultz (1997 394 GLY) studied the freezer storage stability of samples of field bean (homogenised), oilseed rape and linseed samples that were fortified with glyphosate. The fortification levels were beans, 2.6 mg/kg; oilseed rape, 0.6 mg/kg; and linseed, 5.7 mg/kg. The Day 0 samples were extracted immediately without prior deep-freezing. Samples were analysed at intervals of 0, 6, 12, 15, and 18 months after fortification. For each analysis date and from each matrix analysed the following samples were analysed: one blank, two storage stability samples, and one freshly prepared fortified blank sample.

Concentrations of glyphosate were determined in all matrices by HPLC with fluorescence detection using post column derivatization. Glyphosate was extracted with aqueous hydrochloric acid

and isolated by a Chelex-100-ligand exchange column. The LOQ for the method was 0.05 mg/kg for beans and 0.06 mg/kg for oilseed rape and linseed.

Results show (Table 37) that residues of glyphosate are stable in beans, oilseed rape, and linseed stored up to 18 months under freezer conditions (-18 °C in the dark).

Table 37. Storage stability data for residues of glyphosate in samples of beans, oilseed rape, and linseed Schultz (1997 394 GLY).

Matrix	Storage Period (Months)	Residue four	nd mg/kg	Procedural recovery (%)
Beans	0	2.3	2.3	81
	6	2.4	2.3	89
	12	2.8	2.8	79
	15	2.7	2.8	84
	18	2.6	2.5	97
Oilseed	0	0.58	0.47	78
rape	6	0.53	0.53	85
²	12	0.56	0.59	68
	15	0.63	0.70	83
	18	0.59	0.58	102
Linseed	0	5.3	5.2	86
	6	5.2	4.8	96
	12	5.0	6.0	74
	15	6.2	5.8	87
	18	5.0	5.1	87

Grain and straw samples of wheat and rye

Morgenroth (1995 325 GLY) studied the freezer storage stability of wheat grain, wheat straw, rye grain, and rye straw samples fortified at the level of 1 mg/kg glyphosate. The fortified samples together with untreated control samples were stored frozen at approximately -20 °C in the dark until analyses were performed. Samples were analysed on days 0, 190, 288, 643, and 1349; the last analysis being performed about 3.5 years after fortification. Storage time was considered from the date of fortification to the date of extraction.

Recoveries from stored samples were calculated by dividing the concentration levels found in stored samples by the actual amount fortified prior to storage. For method validation, at least one procedural recovery at a level of 0.1 mg/kg glyphosate was freshly prepared per sample series and matrix by fortifying untreated control samples with calculated amounts of glyphosate solutions. These fortified samples were analysed using the same method as the storage stability samples. The procedural recoveries were used to confirm validity of the method and to correct for sample recoveries.

Results (Table 38) show that residues of glyphosate are stable in wheat and rye matrices (grain and straw) stored up to 3.5 years under freezer conditions at-20 °C in the dark. The procedural recoveries of the storage stability samples were almost identical to that of the freshly fortified samples.

Table 38. Storage stability data for glyphosate in samples of wheat grain, wheat straw, rye grain, and rye straw maintained frozen up to 3.5 years Morgenroth (1995 325 GLY).

Matrix	Storage period (days)	Fortification (mg/kg)	Residue found (mg/kg)	Procedural recovery (%)
Wheat grain	0	1.0	-	76
-	190		-	80
	288		0.74	82
	643		0.57	65
	1349		0.72	69
Wheat straw	0	1.0	0.70	87

Matrix	Storage period (days)	Fortification (mg/kg)	Residue found (mg/kg)	Procedural recovery (%)
	190		0.86	86
	288		0.82	80
	643		0.75	73
	1349		1.08	108
Rye grain	0	1.0	0.76	71
	190		1.07	88
	288		0.84	88
	643		0.73	75
	1349		0.90	68
Rye straw	0	1.0	0.94	85
	190		-	96
	288		0.82	78
	643		0.82	60
	1349		1.14	85

Pasture grasses

Hubbard (1993 456 GLY) studied pasture grasses fortified with 1 mg/kg of glyphosate or AMPA and stored at *ca.* -10 °C. Pasture grasses were analysed at intervals of 6, 10, 19, 51, 95, 187, and 362 days after fortification. Each analytical set for storage stability analysis included the following samples: a non-treated control, two concurrent freshly fortified matrix samples, and four aged (storage stability) samples. Fresh untreated samples were fortified at 0.1 mg/kg and 1 and analysed concurrently with the aged samples.

The results demonstrated (Tables 39, 40) that residues of glyphosate in samples of pasture grasses are stable up to twelve months when stored at -10 °C.

Table 39. Storage stability data for residues of glyphosate in samples of pasture grasses Hubbard (1993 456 GLY).

	Storage interval (months)	Glyphosate (mg/kg)	residue AMPA residue (mg/kg)	Glyphosate procedural recovery at 1 ppm (%)
Pasture	6	0.78, 0.93	0.10, < 0.1	86
Grasses	10	1.0, 1.1	< 0.1, < 0.1	104
	19	0.92, 0.91	< 0.1, < 0.1	91
	51	0.83, 0.70	< 0.1, < 0.1	98
	95	0.76, 0.64	< 0.1, < 0.1	83
	187	0.70, 0.77	< 0.1, 0.24	79
	362	0.85, 0.76	< 0.1, < 0.1	77

Table 40. Storage stability data for residues of AMPA in samples of pasture grasses Hubbard (1993 456 GLY).

	Storage interval (months)	AMPA	Procedural recovery at 1 ppm
			(%)
Pasture	6	0.63, 0.55	81
Grasses	10	0.71, 0.73	91
	19	0.69, 0.69	80
	51	0.69, 0.64	74
	95	0.54, 0.63	80
	187	0.55, 0.65	74
	362	0.76, 0.73	78

Soybean seeds and straw

Hubbard (1993a 455 GLY) studied the storage stability of soybean seed and straw samples fortified with 1 mg/kg of glyphosate or AMPA and immediately stored at about -10 °C. Soybean seed samples were analysed at intervals of 5, 14, 45, and 183 days after fortification. The soybean straw samples were analysed at intervals of 0, 15, 44, 102, 300, and 394 days after treatment. Each analytical set for storage stability analysis included the following samples: a non-treated control, two concurrent freshly fortified matrix samples, and four aged (storage stability) samples.

Tables 41 and 41 summarize the results for stability of residues of glyphosate and AMPA in soybean seeds and straw. Storage stability results were corrected for procedural recoveries. The recoveries confirm that glyphosate is stable in soybean seeds and straw up to six and thirteen months, respectively, when stored at -10 °C.

Table 41. Storage stability data for residues of glyphosate in samples of soybean seeds and straw
Hubbard (1993 455 GLY).

	Storage interval (days)	Glyphosate (mg/kg)	AMPA (mg/kg)	Procedural recovery (%)
Seeds	5	0.76, 0.74	< 0.1, < 0.1	65
	14	0.74, 0.70	< 0.1, < 0.1	70
	45	0.53, 0.75	< 0.1, < 0.1	50
	183	0.86, 0.80	0.16, 0.17	66
Straw	0	0.84, 0.71	< 0.1, < 0.1	74
	15	0.76, 0.61	< 0.1, < 0.1	80
	44	0.85, 0.80	< 0.1, < 0.1	68
	102	0.71, 0.63	< 0.1, < 0.1	75
	300	0.67, 0.77	< 0.1, < 0.1	91
	398	0.72, 0.79	< 0.1, < 0.1	71

Table 42. Storage stability data for residues of AMPA in samples of soybean seeds and straw Hubbard (1993 455 GLY).

	Storage interval (days)	AMPA (mg/kg)	Procedural recovery (%)
Seeds	5	0.79, 0.78	69
	14	0.74, 0.80	86
	45	0.67, 0.77	52
	183	0.73, 0.70	72
Straw	0	0.80, 0.73	74
	15	0.62, 0.70	76
	44	0.69, 0.68	65
	102	0.52, 0.55	70
	300	0.41, 0.56	88
	398	0.61, 0.52	65

The stability of incurred glyphosate residues was determined in corn grain, soybean forage, sorghum stover, clover and tomatoes under conditions of freezer storage over periods of 2–5 years (Mueth 1991 MSL 10843). The stability of fortified samples of the same five crops was studied from 0 to 2.5 years, the period not covered by the incurred samples. Incurred residues have also been determined for alfalfa seed and potatoes over periods of two years storage at < -18 °C. Samples were analyzed with the residue *Method 2*.

Stability data of the endogenous glyphosate residues are provided in Table 43 and show that the glyphosate residues are very stable over the covered timeframes.

Table 44 provides the stability data for glyphosate and MPA from exogenous fortified samples. Fortification residues of glyphosate are stable in all five crop matrices over the 0 to 2.5

years. AMPA residues are reasonably stable in tomatoes and corn grain, but declined from original levels in clover, sorghum straw and soybean forage. After 2 years, 56, 70 and 82% of the original levels of AMPA remained in clover, sorghum stover and soybean forage respectively. After 2.5 years, the residues had declined further to 53, 37 and 60% respectively.

Matrix	Storage period	d Glyphosate		AMPA	
	(months)	Residue (mg/kg)	Procedural	Residue (mg/kg)	Procedural
			recovery (%)		recovery (%)
Corn grain	13	1.5	83	<loq< td=""><td>88</td></loq<>	88
	23	1.4	82	0.19 c0.12	82
	37	1.2	69	0.12 c0.07	72
Soybean forage	32	0.75 c0.06	112	0.02	102
	57	0.50 c0.03	76	<loq< td=""><td>70</td></loq<>	70
	71	0.53 c0.03	75	<loq< td=""><td>73</td></loq<>	73
Sorghum stover	7	1.5 c0.2	89	0.03 c0.03	77
-	45	2.2 c0.15	92	0.11 c0.04	81
	59	2.1 c0.17	74	0.13 c0.06	69
	71	1.6 c0.15	81	0.07 c0.04	81
Clover	17	3.5 c0.01	96	0.01	88
	61	3.0	81	<loq c0.02<="" td=""><td>83</td></loq>	83
	75	2.7 c0.03	73	<loq c0.02<="" td=""><td>73</td></loq>	73
Tomatoes	4	0.09	83	<loq< td=""><td>82</td></loq<>	82
	48	0.08 c0.01	75	<loq< td=""><td>67</td></loq<>	67
	62	0.04	78	<loq< td=""><td>69</td></loq<>	69
Alfalfa seed	2	16 c0.2	87	0.2	77
	13	13 c0.27	74	0.19 c0.04	73
	25	14 c0.22	99	0.23	91
Potatoes	1	<loq< td=""><td>80</td><td>0.19</td><td>75</td></loq<>	80	0.19	75
	2	<loq c0.01<="" td=""><td>103</td><td>0.23</td><td>97</td></loq>	103	0.23	97
	11	<loq< td=""><td>85</td><td>0.23</td><td>81</td></loq<>	85	0.23	81
	27	<loq< td=""><td>92</td><td>0.16</td><td>90</td></loq<>	92	0.16	90

Table 43. Freezer storage stability data of incurred glyphosate residues in crops (Mueth 1991 MSL 10843).

Table 44. Storage stability of fortified glyphosate and AMPA residues in crops (samples spiked at 0.5 mg/kg for glyphosate and 0.48 mg/kg for AMPA) (Mueth 1991 MSL 10843).

Matrix	Storage period	Glyphosate		AMPA	
	(days)	Procedural recovery (%)	Residue (mg/kg)	Procedural recovery (%)	Residue (mg/kg)
Corn grain	0	82	0.41	82	0.40
	34	78	0.40	74	0.35
	95	78	0.40	63	0.30
	181	61	0.31	65	0.32
	271	63	0.29	69	0.31
	376	69	0.34	72	0.30
	528	69	0.31	73	0.33
	742	72	0.35	82	0.36
	944	75	0.29	71	0.27
Soybean forage	0	76	0.38	70	0.34
	27	84	0.43	80	0.39
	92	77	0.37	79	0.37
	182	80	0.38	81	0.35
	274	78	0.38	77	0.30
	379	75	0.41	73	0.33
	531	80	0.42	80	0.35
	743	82	0.41	91	0.36
	958	80	0.29	79	0.23
Sorghum straw	0	92	0.46	81	0.39
	29	78	0.39	73	0.32
	92	85	0.42	78	0.33
	182	78	0.38	81	0.30

	0.5.1	- 1	0.40	- (2 2 <i>i</i>
	274	74	0.40	76	0.26
	377	74	0.39	69	0.22
	531	84	0.41	81	0.24
	743	81	0.41	81	0.28
	958	74	0.32	69	0.12
Clover	0	81	0.40	83	0.40
	28	85	0.43	86	0.35
	96	81	0.40	70	0.29
	183	78	0.38	86	0.33
	273	78	0.35	77	0.24
	376	73	0.38	73	0.24
	530	78	0.36	79	0.24
	741	84	0.39	85	0.23
	944	98	0.52	89	0.23
Tomatoes	0	75	0.38	67	0.33
	34	78	0.40	67	0.34
	91	78	0.38	73	0.34
	188	81	0.42	73	0.41
	272	79	0.37	75	0.33
	379	78	0.39	69	0.34
	528	85	0.42	83	0.38
	735	82	0.42	82	0.36
	938	82	0.43	74	0.36

Storage Stability in Animal Commodities

Swine, dairy cow and laying hen

The freezer storage stability of glyphosate and AMPA residues in samples of pig, cow and chicken fat, muscle, liver and kidney along with cow milk and chicken eggs was studied by Manning and Mueth (1991 MSL7515). Samples were fortified with a solution of glyphosate and AMPA in ratio of 4/1 or 8/1 and stored frozen (< -20 °C). Each tissue, milk and egg samples was analyzed for glyphosate and AMPA at various storage intervals. The samples were analyzed according to *Method* 2.

The results of the analyses are listed in Table 45 for glyphosate and AMPA. The data indicate a slight decrease in the glyphosate and AMPA residues for most matrices over the course of the study. However, this decrease is statistically significant in only two matrices for glyphosate (pig liver and chicken eggs) and three matrices for AMPA (pig muscle, chicken fat and eggs).

Table 45. Storage stability of glyphosate residues in animal products Manning and Mueth (1991 MSL7515).

Matrix	Storage	Fortification	Gly	phosate	AM	IPA
	(days)	level	Procedural	Residue (mg/kg)	Procedural	Residue
		glyphosate/AMPA	recovery (%)		recovery (%)	(mg/kg)
		(mg/kg)				
Pig fat	0	0.2/0.05	82	0.16, 0.14, 0.15	83	0.042, 0.038,
						0.039
	210		98	0.18, 0.19	93	0.042, 0.043
	437		96	0.16, 0.16	96	0.038, 0.034
	524		101	0.17, 0.16	91	0.034, 0.033
	794		85	0.17, 0.18	84	0.032, 0.032
Pig muscle	0	0.2/0.05	102	0.21, 0.19, 0.18	98	0.050, 0.050,
-						0.047
	223		91	0.17, 0.16	93	0.042, 0.041
	382		106	0.20, 0.20	96	0.040, 0.041
	467		101	0.18, 0.19	94	0.037, 0.042
	794		103	0.17, 0.17	94	0.035, 0.035
Pig liver	0	0.8/0.1	86	0.68, 0.64, 0.66	93	0.093, 0.085,
-						0.088

Matrix	Storage	Fortification		phosate	AN	ЛРА
	(days)	level	Procedural	Residue (mg/kg)	Procedural	Residue
		glyphosate/AMPA (mg/kg)	recovery (%)		recovery (%)	(mg/kg)
	417	· · · · · ·	84	0.61, 0.60	78	0.062, 0.061
	468		93	0.65, 0.65	93	0.076, 0.079
	521	-	79	0.56, 0.56	95	0.081, 0.079
	790		90	0.56, 0.61	98	0.076, 0.081
Pig kidney	0	4/0.5	100	4.0, 4.1, 3.9	99	0.50, 0.50, 0.50
i ig klaitey	241		97	3.8, 3.6	104	0.51, 0.46
	377	_	90	3.4, 3.6	97	0.47, 0.50
	469	-	97	3.6, 3.1	102	0.46, 0.40
	790	_	83	3.2, 3.6	89	0.39, 0.49
Cow fat	0	0.2/0.05	89	0.17, 0.16, 0.18	89	0.042, 0.039,
Cow lat	·	0.2/0.03				0.042
	175		95	0.18, 0.17	96	0.042, 0.038
	349		99	0.17, 0.17	94	0.039, 0.039
	436		96	0.16, 0.16	82	0.032, 0.033
	715		105	0.17, 0.20	93	0.034, 0.041
Cow muscle	0	0.2/0.05	93	0.18, 0.16, 0.18	93	0.042, 0.043, 0.044
	177	-	83	0.15, 0.14	98	0.042, 0.041
	300	-	95	0.17, 0.18	89	0.038, 0.038
	373	-	98	0.17, 0.18	97	0.033, 0.036
	721	_	96	0.18, 0.21	84	0.036, 0.041
Cow liver	0	4/0.5	98	3.9, 3.8, 3.8	93	0.47, 0.46, 0.64
Cow liver	288	4/0.5	98		93	
		_		3.4, 3.3		0.43, 0.41
	380	_	96	3.5, 3.4	98	0.44, 0.43
	433	_	89	3.2, 3.3	100	0.44, 0.43
~	717		93	3.6, 3.7	95	0.45, 0.43
Cow kidney	0	6/1.5	96	5.7, 5.5, 5.6	93	1.4, 1.3, 1.4
	181	_	93	5.2, 5.2	90	1.2, 1.2
	296		90	5.4, 5.3	84	1.2, 1.2
	377		95	5.4, 5.4	91	1.2, 1.2
	717		89	5.5, 5.4	78	1.3, 1.3
Milk	0	0.2/0.05	91	0.17, 0.17	94	0.041, 0.043
	137		95	0.16, 0.16	89	0.037, 0.036
	200		93	0.16, 0.16	103	0.040, 0.039
	473		110	0.19, 0.18	82	0.037, 0.034
Chicken fat	0	0.2/0.05	92	0.16, 0.18, 0.19	91	0.041, 0.046, 0.047
	368		97	0.16, 0.16	89	0.038, 0.039
	420		95	0.16, 0.16	83	0.035, 0.036
	474	-	96	0.16, 0.16	93	0.038, 0.039
	753	-	85	0.16, 0.14	76	0.033, 0.029
Chicken muscle	0	0.2/0.05	84	0.18, 0.17, 0.17	97	0.048, 0.048, 0.049
	361		93	0.18, 0.18	95	0.044, 0.044
	426	-	102	0.18, 0.18	104	0.044, 0.044
	420	-	96	0.17, 0.17	104	0.044, 0.047
	754		88	0.17, 0.17	76	0.039, 0.035
Chicken liver	0	2/0.25	88	1.8, 1.6, 1.6	81	0.039, 0.035
Chicken liver	-	2/0.23				
	384		114	1.6, 1.6	116	0.20, 0.18
	426		93	1.6, 1.7	97	0.20, 0.20
	474	4	103	1.6, 1.6	109	0.21, 0.22
Chicken	747 0	4/0.5	111 94	1.9, 1.9 3.7, 3.7, 3.6	95 105	0.21, 0.21 0.51, 0.52, 0.51
kidney	19	-	98	3.9, 3.9	96	0.49, 0.50
	132		98	3.9, 3.9	<u> </u>	0.49, 0.30
			-			
Chicken eggs	390 0	0.2/0.05	105 89	4.1, 4.3 0.18, 0.17, 0.18	<u>91</u> 97	0.45, 0.46
	368	-	90	0.16, 0.16	89	0.048
	368		90	0.16, 0.16	89	0.040, 0.040

Matrix	Storage	Fortification	Gly	phosate	AM	IPA
	(days)	level	Procedural	Residue (mg/kg)	Procedural	Residue
		glyphosate/AMPA	recovery (%)		recovery (%)	(mg/kg)
		(mg/kg)				
	431		91	0.16, 0.16	94	0.042, 0.042
	755		91	0.073, 0.082	78	0.017, 0.018
	852		66	0.064, 0.063	71	0.017, 0.017

USE PATTERN

Information on registered uses was made available to the Meeting and those uses of relevance to this evaluation, based on label information, are summarized in Table 46.

Crop	Country	Form.	Application type	Growth stage	No	Rate kg	water L/ha	Conc. kg ae/hL	PHI days	
			-91			ae/ha		0		
Alfalfa	USA	SL	Broadcast (ground or aerial)	Before emergence.		0.43- 4.3	28 - 374			
				Pre- emergence, pre- transplanting	-	0.21- 4.2	11- 151			Do not harvest or feed treated vegetation for 8 weeks following pre- emergent/pre-planting application.
			Spot sprays	30-day intervals.		0.43- 4.3	28 - 374	2-38		No more than 10% of field may be treated (some labels). Following spot treatment or selective equipment use, allow 14 days before grazing domestic livestock or harvesting forage grasses and legumes. Some labels state 3 days
			Wiper applications					180 – 540		No more than 10% of field may be treated. Following spot treatment or selective equipment use, allow 14 days before grazing domestic livestock or harvesting forage grasses and legumes. Some labels state 3 days
			Pre-harvest		1	1.7	28 - 374			1.5 (before grazing or harvesting). 6.7 kg ae/ha total annual maximum for all treatments.
Alfalfa	Canada	SL	Boom or boomless	Before or after seeding but before crop emerges		4.3	100- 300	1.4-4.3		
			Wipers and wicks	Before or after seeding but before crop emerges		0.36	2	18		
			Rollers	Before or after seeding but before crop emerges		0.18- 0.36	10	1.8-3.6		

Crop	Country	Form.	Application	Growth	No	Rate	water	Conc.	PHI	
1	5		type	stage		kg	L/ha	kg ae/hL	days	
			Broadcast			ae/ha 0.9-1.8	50- 100	0.9-3.6	-	Application occurs typically 3-7 days before last cut before rotation or forage renovation
Banana	Brazil	SL		After emergence of crop and weed		0.18- 4.3	40 - 400		30	
Banana	USA	SL	Broadcast (ground or aerial)	Before planting or transplanting or for renovation		0.43 – 4.3	28 - 374			8.8 kg ae/ha total annual maximum for all treatments.
			Broadcast (ground)					0.12 – 1.7	1	
			Directed Sprays or Spot sprays			0.43 – 4.3	28 - 374	2-38	1	
			Shielded Sprayer			0.43 – 4.3	187 - 280		1	
			Wiper Applications					180-540	1	
			Bananacide					540 (1 mL/5 cm diameter)		No food may be harvested from treated plants.
Barley	Netherlands	SL	Broadcast	Pre-harvest		2.2	200- 400	0.55-1.1	7	Apply when cereal crop is fully ripened: - flag leaf is fully folded around stem, the cereal kernel is at dough stage and contains < 30% moisture, the straw is fully yellow
Barley	UK	SL		Pre- emergence		0.54	250	022-0.68	-	
				Pre-harvest, < 30% gain moisture	-1	0.54- 1.4	40- 250	0.22-10	7 (14 in dull weather)	
Beans	Canada	SL	Boom or boomless	Before or after seeding but before crop emerges		4.3	100- 300	1.4-4.3		
			Wipers and wicks	Before or after seeding but before crop emerges		0.36	2	18		
			Rollers	Before or after seeding but before crop emerges		0.18- 0.36	10	1.8-3.6		
				Pre-harvest when crop has < 30% grain moisture content		0.9	50- 100	0.9-1.8	- (typically 7-14)	stems are green to brown ir colour; pod are mature (yellow to brown in colour) 80-90% leaf drop (original leaves
Beans	Netherlands	SL	Broadcast	Pre-harvest		2.2	200- 400	0.55-1.1	7	

Crop	Country	Form.	Application	Growth	No	Rate	water		PHI	
			type	stage		kg ae/ha		kg ae/hL	days	
Beans (field)	UK	SL		Pre- emergence	1	0.54	80- 250	022-0.68	-	
				Pre-harvest, < 30% gain moisture	1	1.1-1.4	40- 250	0.44-10	7	
Beans	USA	SL	Broadcast	Pre- emergent /pre- transplanting		0.43- 4.3			-	
Cereals (other)	UK	SL		Pre- emergence	1	0.54	80- 250	022-0.68	-	
				Pre-harvest, < 30% gain moisture	1	0.54		0.22-1.4	7-14	
Coffee	USA	SL	(ground or aerial)	Before planting or transplanting or for renovation		0.43 – 4.3	28 - 374			8.8 kg ae/ha total annual maximum for all treatments.
			Broadcast (ground).			0.12 – 1.7	28 - 234		28	
			Directed Sprays or Spot sprays			0.43- 4.2		2 - 38	28	
			Shielded Sprayer			0.42- 4.3	187 - 280		28	
			Wiper Applications					180 – 540	28	
Cotton	USA	SL	Broadcast (ground or aerial)	Before emergence		0.43 – 4.2	28 - 374			6.7 kg/ha total annual maximum for all treatments.
			Spot sprays	Before boll opening				2-38		No more than 10% of field may be spot treated.
			Hooded Sprayers, Recirculating Sprayers	;		0.43 – 4.2	187 - 280		7	
			Wiper applications.					180 – 540	7	
				Pre-harvest		0.83-1.7	38-76 g 11-38 a		7	Do not feed or graze treated cotton forage or hay following pre-harvest application. Do not apply more than 1.7 kg ae/ha pre- harvest. Max 0.83 kg ae/ha by air
Cotton, glyphosate tolerant varieties	USA	SL	(ground or aerial)	Before emergence		0.43 – 4.2	28 - 374			Seasonal total not to exceed 6.7 kg ae/ha.
			Over-the- Top spray or post-directed / other selective equipment			1.7	28 - 187			Total Over-the-Top and Selective Equipment up to 5.1 kg ae/ha per season.
			Over-the- Top spray or post-directed			1.7	28 - 187		7	Total Over-the-Top and Selective Equipment up to 5.1 kg ae/ha per season.

Crop	Country	Form.	Application	Growth	No	Rate	water	Conc.	PHI	
			type	stage		kg ae/ha	L/ha	kg ae/hL	days	
Grasses	USA	SL	Broadcast	Before emergence		0.43 – 4.3	28 - 374			6.7 kg ae/ha total yearly maximum. Do not harvest or feed treated vegetation for 8 weeks following pre- emergence application. No waiting period for livestock feeding if application is < 0.43 kg ae/ha.
			Spot sprays	30-day intervals.		<2.5	28 - 374	2 - 38		No more than 1/10 th of any acre should be treated at one time. Applications may be made at 30 day intervals. Remove domestic livestock before application and wait 14 days after spot spray application before grazing or harvesting
			Wiper applications	When crop established				180 – 540		No more than 1/10 th of any acre should be treated at one time. Applications may be made at 30 day intervals. Remove domestic livestock before application and wait 14 days after wiper application before grazing or harvesting
			Broadcast	Renovation		0.43- 4.3	28- 374			For rates <2.3 kg ae/ha no grazing or harvesting interval is required. For higher rates, remove domestic livestock before application and wait 8 weeks after application before grazing or harvesting
Kiwi Fruit	Italy	SL	Spray weeds around base of plants, between rows			4.3			-	
Lentils	Canada		Boom or boomless	Before or after seeding but before crop emerges		4.3	100- 300	1.4-4.3		
			Wipers and wicks	Before or after seeding but before crop emerges		0.36	2	18		
			Rollers	Before or after seeding but before crop emerges		0.18- 0.36	10	1.8-3.6		
			Broadcast	Pre-harvest when crop has < 30% grain moisture content		0.9	50- 100	0.9-1.8		lowermost pods (bottom 15%) are brown and seeds rattle
Linseed	UK	SL			1	0.54	80- 250	022-0.68	-	

Crop	Country	Form.	Application	Growth	No	Rate	water	Conc.	PHI	
1			type	stage		kg		kg ae/hL	days	
						ae/ha				
				Pre-harvest,	1	1.1-1.4		0.44-5	14-28	
				< 30% gain moisture			250			
Maize	USA	SL	Broadcast	Before		0.43 -	28 -			6.7 kg ae/ha total annual
10101220	0011	5L	(ground or	emergence		4.2	560			maximum for all treatments.
			aerial)	U						
			Spot sprays	Before				2 – 38		No more than 10% of field
			TT 1 1	silking		0.07	107			may be spot treated.
			Hooded Sprayers	> 30 cm tall.		0.87	187 - 280			No more than 2.5 kg ae/ha per season. Do not graze or
			Sprayers				200			feed corn forage or fodder
										following hooded sprayer
										applications
			Wiper	When crop				180 -		
			applications	established		2.5	20	540	7	
			Pre-harvest	< 35% gain moisture		2.5	28 – 187		7	
Maize,	USA	SL	Broadcast	Pre-	-	4.2	19-			Do not exceed 4.2 kg
glyphosate				emergence			76g			ae/ha/year for pre-pant/pre-
tolerant				-			11-			emergence application.
varieties							57a			Allow a minimum of 50 days
										between application and harvest of corn forage.
			Broadcast	From	_	0.62-	19-			Do not exceed 1.7 kg
			Diouucust	emergence		0.83	76g			ae/ha/year for in-crop
				to 8 leaf			11-			application from emergence
				stage			57a			to 8 leaf (V8)
				Post-	4	0.83	19- 76-			Do not exceed 3.3 kg
			4 leaf, directed	emergent			76g 11-			ae/ha/year for in-crop application
			from 5 leaf				57a			application
			to layby							
			Broadcast	Post –	-	1.7	19-			Allow a minimum of 50 days
				emergent to			76g			between application and
				crop 76 cm high			11- 57a			harvest of corn forage or grain.
			Broadcast	Pre-harvest,	_	0.87	19 -		7 days	Combined applications must
				< 35% grain		,	76g		,	not exceed 6.6 kg ae/ha/year.
				moisture			11-			
	1 117	CT.		D	1	0.54	57a	000 0 (0		
Mustard	UK	SL		Pre- emergence	1	0.54	80- 250	022-0.68	-	
				Pre-harvest,	1	1.1-1.4		0.44-5	8-10	
				< 30% gain	-		250	00	0 10	
				moisture						
Oats	Canada	SL	Boom or	Before or		4.3	100-	1.4-4.3		
			boomless	after seeding but before			300			
				crop						
				emerges						
				Before or		0.36	2	18		
			wicks	after seeding						
				but before crop						
				emerges						
			Rollers	Before or		0.18-	10	1.8-3.6		
				after seeding		0.36		-		
				but before						
				crop						
		1	l	emerges						

Crop	Country	Form.	Application	Growth	No	Rate	water	Conc.	PHI			
1			type	stage		kg		kg ae/hL	days			
				D 1		ae/ha	50	0.0.1.0				
			Broadcast	Pre-harvest when crop		0.9	50- 100	0.9-1.8	- (typically			
				has $< 30\%$			100		(typically 7-14)			
				grain					,)			
				moisture								
-		~~		content								
Oats	UK	SL		Pre-	1	0.54	80- 250	022-0.68	-			
				emergence Pre-harvest,	1	0.54-		0.22-10	7 (14 in			
				< 30% gain	1	1.4	250	0.22-10	dull			
				moisture					weather)			
Olives	Spain	SL	Directed	Trees $3 - 4$		1.4			7 for			
			Sprays or	years old		2.5			fruit on			
			Spot sprays around trees	(some labels)		2.5 2.2			ground			
			or in row	labels)		4.3			1 day			
			middles.						7 days			
Olives	Italy	SL	Directed			4.3			-			
			Sprays or									
			Spot sprays around trees									
			or in row									
			middles.									
Peas	Canada	SL	Boom or	Before or		4.3	100-	1.4-4.3				
			boomless	after seeding but before			300					
				crop								
				emerges								
				Before or		0.36	2	18				
			wicks	after seeding								
				but before								
				crop emerges								
			Rollers	Before or		0.18-	10	1.8-3.6				
				after seeding		0.36						
				but before								
				crop emerges								
				Pre-harvest		0.9	50-	0.9-1.8	-	majority of	pods	(75-80%)
				when crop		0.5	100	0.9 1.0	(typically	are brown	pous	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				has < 30%					7-14)			
				grain								
				moisture content								
Peas	Netherlands	SL	Broadcast	Pre-harvest		2.2	200-	0.55-1.1	7			
							400					
Peas	UK	SL		Pre- emergence	1	0.54	80- 250	022-0.68	-			
				Pre-harvest,	1	1.1-1.4	40-	0.44-10	7			
				< 30% gain			250					
D	LIC 4	CT.	D 1	moisture		0.42						
Peas	USA	SL	Broadcast	Pre- emergent		0.43- 4.3			-			
				/pre-		T.J						
				transplanting								
Rape	Canada	SL	Boom or	Before or		4.3	100-	1.4-4.3				
			boomless	after seeding			300					
				but before crop								
				emerges								
	1	1	<u> </u>		L	<u> </u>	<u> </u>	I	1	I		

Crop	Country	Form.	Application	Growth	No	Rate	water	Conc.	PHI	
			type	stage		kg ae/ha	L/ha	kg ae/hL	days	
			Wipers and wicks	Before or after seeding but before crop emerges		0.36	2	18		
			Rollers	Before or after seeding but before crop emerges		0.18- 0.36	10	1.8-3.6		
			Broadcast	Pre-harvest when crop has < 30% grain moisture content		0.9	50- 100	0.9-1.8	(typically	pods are green to yellow; most seeds are yellow to brown
Rape	UK	SL		Pre- emergence	1	0.54	80- 250	022-0.68	-	
				Pre-harvest, < 30% gain moisture	1	1.1-1.4	200- 250	0.44-0.7	14-21	
Sorghum (Milo)	USA	SL	Broadcast (ground or aerial)	Before emergence		0.43 – 4.2	28 - 560			6.7 kg ae/ha total annual maximum for all treatments.
			Spot sprays	Before heading				2-38		<10% of field may be treated.
			Hooded Sprayers between rows	> 30 cm tall, where equipment can avoid crop contact		0.87	187 - 280			Do not feed foliage to livestock following hooded sprayer application. No more than 2.5 kg ae/ha per season.
			Wiper applications					180 – 540	40	Do not feed foliage to livestock after wiper application.
			Broadcast	Apply at < 30% grain moisture		1.7			7	Max 0.83 kg ae/ha by air
Soya beans	USA	SL	Broadcast (ground or aerial)	Before emergence		0.43 – 4.2	28 - 374			6.7 kg ae/ha total annual maximum for all treatments.
			Spot sprays	Prior to initial pod set.				2-38		No more than 10% of field may be spot treated.
			Hooded, Shielded, or Recirculating Sprayers			0.43 – 4.2	187 - 280		7	
			Wiper or Sponge applications					180 – 540	7	
			Broadcast	Apply after all pods set and lost all green colour		0.21 4.2	11- 151			Do not graze or harvest treated crop for livestock feed within 25 days of last pre-harvest application or if the application rate is < 0.74 kg ae/ha 14 days. Do not apply more than 5 kg ae/ha for pre-harvest application. Max 0.83 kg ae/ha by air

Crop	Country	Form.	Application	Growth	No		water		PHI	
			type	stage		kg ae/ha	L/na	kg ae/hL	days	
Soya beans, glyphosate tolerant varieties	USA	SL	Broadcast	Pre- plant/pre- emergent		4.2	19- 76g 11- 57a			Do not exceed 4.2 kg ae/ha/year for pre-pant/pre- emergence application.
			Broadcast to 4 leaf, directed from 5 leaf to layby	Post- emergent		1.7	19- 76g 11- 57a			Do not exceed 2.5 kg ae/ha/year for in-crop application
			Broadcast	Pre-harvest		0.83	19- 76g 11- 57a		14	Do not exceed 0.83 kg ae/ha/year pre-harvest. Combined applications must not exceed 6.7 kg ae/ha/year. Allow a minimum of 14 days between final application and harvest or feeding of soyabean grain, forage and hay.
Sugar beet, glyphosate tolerant varieties	USA	SL	Broadcast (ground or aerial)	Before emergence		0.43 – 4.2	28 - 374			Do not exceed 4.2 kg ae/ha/season for pre- emergence applications
			Broadcast (ground or aerial)	Emergence to 8 leaf		1.3				Do not exceed 3.8 kg ae/ha per season for application between crop emergence and harvest
			Broadcast (ground or aerial)	8-leaf stage to canopy closure.		0.87	28 - 187		30	Do not exceed 3.8 kg ae/ha per season for application between crop emergence and harvest. Do not exceed 6.7 kg ae/ha/season for combined applications
Sugarcane	USA	SL	Foliar spray	Pre- emergence, pre- transplanting		0.21 4.2	38- 151			Do not harvest or feed treated vegetation for 8 weeks following application. Total application should not exceed 8.7 kg ae/ha/year for sugarcane. Do not feed or graze treated sugarcane forage following application
				Spot application 3 to 10 weeks before		0.49 0.84		2-38	21 – 35 28-70	Do not feed or graze treated sugarcane.
Sunflower	Hungary	SL	Pre-harvest	harvest < 20–30 % gain moisture		0.72 1.8	50 - 60		6 21	Straw from treated crop must not be used for animal feed
Теа	Japan	SL	Inter-row	moisture	1	0.9-2.3	250- 500		7	
Tree Nuts	USA	SL	spray Broadcast (ground or aerial)	Before planting or transplanting		0.43 – 4.2	28 - 374			8.8 kg/ha total annual maximum for all treatments.
			Broadcast (ground) Directed			0.12 - 1.7 0.43 -		2-38	21	
			Sprays or Spot sprays			4.3	374			

Crop	Country	Form.	Application	Growth	No	Rate	water	Conc.	PHI	
			type	stage		kg	L/ha	kg ae/hL	days	
						ae/ha				
			Shielded			0.43 –	187 -		3	
			Sprayer			4.3	280			
			Wiper					180-540	3	
			Applications							
Wheat	Netherlands	SL	Broadcast	Pre-harvest		2.2	200-	0.55-1.1	7	Apply when cereal crop is
							400			fully ripened: - flag leaf is
										fully folded around stem, the
										cereal kernel is at dough
										stage and contains $< 30\%$
										moisture, the straw is fully
										yellow
Wheat	UK	SL		Pre-	1	0.54	80-	022-0.68	-	
				emergence			250			
				Pre-harvest,	1	0.54-	40-	0.22-10	7 (14 in	
				< 30% gain		1.4	250		dull	
				moisture					weather)	

RESIDUES RESULTING FROM SUPERVISED TRIALS

The results for the residue trials are shown in Tables 47 - 88 and are reviewed in the order of the Codex Alimentarius Classification of Foods and Feeds.

Table 47	Olives (Greece, Italy and Spain)
Table 48	Bananas (Brazil)
Table 49	Bananas (Honduras, Panama, Colombia and Ecuador)
Table 50	Kiwifruit (Italy)
Table 51	Beans, dry (Belgium, Denmark, UK and the USA)
Table 52	Peas, dry (Belgium, Canada, Denmark, the UK and the USA)
Table 53	Lentils (Canada)
Table 54	Soya beans (the USA)
Table 55	Soya beans; glyphosate tolerant (the USA)
Table 56	Sugar beet; glyphosate tolerant (the USA)
Table 57	Barley (Belgium, France, the UK)
Table 58	Maize, conventional (USA)
Table 59	Maize, glyphosate tolerant (USA)
Table 60	Oats (Canada, Denmark, the UK)
Table 61	Rye (Denmark)
Table 62	Sorghum (the USA)
Table 63	Wheat (Belgium, France and the UK)
Table 64	Sugarcane (USA)
Table 65	Tree nuts; almonds, pecans, macadamias and walnuts (USA)
Table 66	Cottonseed (USA)
Table 67	Cottonseed; glyphosate tolerant (USA)
Table 68	Cottonseed; glyphosate tolerant (USA)
Table 69	Linseed (UK)
Table 70	Mustard seed (UK)
Table 71	Rape seed (Belgium, Canada, Denmark, Finland, France, Sweden and the UK)
Table 72	Sunflower (Hungary)
Table 73	Coffee (Brazil, Columbia, Costa Rica and the USA)
Table 74	Tea (China, India, Sri Lanka and Japan)
Table 75	Alfalfa (Canada, USA)
Table 76	Grass pasture (USA)
Table 77	Bean fodder (Belgium, UK)

Residue trials

The limits of detection of glyphosate and AMPA are typically 0.05 mg/kg. When glyphosate and AMPA were summed, AMPA was converted to glyphosate equivalents (AMPA mg/kg \times 1.523). All numerical figures for glyphosate application rates (kg ae/ha) or residue levels (mg/kg) are expressed as glyphosate acid equivalents (molecular weight 169 amu), and do not include any mass amounts for the salt cation (e.g. isopropylamine).

If AMPA residues are < 0.05, they are not summed with glyphosate, because they are typically much less than glyphosate residues. If both glyphosate and AMPA are < LOQ, then sum is < LOQ of glyphosate. The exception is where there is evidence that AMPA residues are comparable to glyphosate residues such as for soyabeans in which case the residues are summed and if both glyphosate and AMPA residues are < LOQ, the sum is less than the combined LOQs for glyphosate and AMPA.

Location			Applica	tion	Sample	PHI	Resid	lues (mg/kg)	Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Enofyta, Biotia, Greece (1995) Megaron	SL	1	1.4	weinz	Fruit (G)	1	0.21			RJ2217B
wieguron					Fruit (T)	1	< 0.05			RJ2217B
					Fruit (G)	7	< 0.05			RJ2217B
					Fruit (T)	7	< 0.05			RJ2217B
					Fruit (G)	13	< 0.05			RJ2217B
					Fruit (T)	13	< 0.05			RJ2217B
		1	4.8		Fruit (G)	1	0.23			RJ2217B
					Fruit (T)	1	0.17			RJ2217B
					Fruit (G)	7	<u>0.39</u>			RJ2217B
					Fruit (T)	7	< 0.05			RJ2217B
					Fruit (G)	13	< 0.05			RJ2217B
					Fruit (T)	13	< 0.05			RJ2217B
Enofyta, Biotia, Greece (1995) Manaki	SL	1	1.4		Fruit (G)	1	< 0.05			RJ2217B
					Fruit (T)	1	< 0.05			RJ2217B
					Fruit (G)	7	< 0.05			RJ2217B
	ļ				Fruit (T)	7	< 0.05			RJ2217B

Table 47. Residues in Olives: Directed Ground Spray Application.

Location			Applica	tion	Sample	PHI	Resid	lues (mg/kg)	Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
			ut, nu	ut, iii	Fruit (G)	13	< 0.05			RJ2217B
					Fruit (T)	13	< 0.05			RJ2217B
		1	4.8		Fruit (G)	1	0.17			RJ2217B
					Fruit (T)	1	< 0.05			RJ2217B
					Fruit (G)	7	0.14			RJ2217B
					Fruit (T)	7	< 0.05			RJ2217B
					Fruit (G)	13	< 0.05			RJ2217B
G (100.0	GI	1	1.0	1.0	Fruit (T)	13	< 0.05			RJ2217B
Greece (1996) Megaritiki	SL	1	4.8	1.2	Fruit (G)	7	0.11			RJ2397B
				0 0 -	Fruit (T)	7	< 0.05			RJ2397B
		1	4.8	0.97	Fruit (G)	6	0.07			RJ2397B
					Fruit (T)	6	< 0.05			RJ2397B
					Fruit (G, w) Virgin Oil	6	< 0.05			RJ2397B
					Cake	6 6	< 0.05 < 0.05			RJ2397B RJ2397B
					Solvent	6	< 0.05			RJ2397B RJ2397B
					extr. Oil	0	< 0.03			KJ239/B
					Solvent extr. Cake	6	< 0.05			RJ2397B
Ariccia, Roma, Italy (1996) Rosciola	SL	1	4.8	1.2	Fruit (G)	7	0.30			RJ2383B
(1))))) (0501014					Fruit (T)	7	< 0.05			RJ2383B
Borgo Mezzanone, Foggia, Italy (1996)	SL	1	4.8	1.6	Fruit (G)	7	0.15			RJ2383B
Coratina										
Corutina					Fruit (T)	7	< 0.05			RJ2383B
					Fruit (G, w)	7	0.06			RJ2383B
					Virgin oil	7	< 0.05			RJ2383B
					Cake	7	0.05			RJ2383B
					Solvent extr. oil	7	< 0.05			RJ2383B
					Solvent extr. Cake	7	< 0.05			RJ2383B
Cori, Latina, Italy (1995) Frantoio	SL	1	1.4	0.48	Fruit (G)	1	< 0.05			RJ2218B
(1)))))) 1 function					Fruit (T)	1	< 0.05			RJ2218B
					Fruit (G)	7	0.07			RJ2218B
					Fruit (T)	7	< 0.05			RJ2218B
					Fruit (G)	14	0.05			RJ2218B
					Fruit (T)	14	< 0.05			RJ2218B
		1	4.8	1.6	Fruit (G)	1	0.66			RJ2218B
					Fruit (T)	1	< 0.05			RJ2218B
					Fruit (G)	7	0.27			RJ2218B
					Fruit (T)	7	< 0.05			RJ2218B
					Fruit (G)	14	0.19			RJ2218B
					Fruit (T)	14	< 0.05			RJ2218B
Borgo Mezzanone, Foggia, Italy (1995) Coratina	SL	1	1.4	0.72	Fruit (G)	1	0.05			RJ2218B
Colutinu					Fruit (T)	1	< 0.05			RJ2218B
					Fruit (G)	6	0.16			RJ2218B
					Fruit (C)	6	< 0.05			RJ2218B
					Fruit (G)	13	< 0.05			RJ2218B
					Fruit (T)	13	0.06			RJ2218B
		1	4.8	2.4	Fruit (G)	1	0.10	1	1	RJ2218B
					Fruit (T)	1	< 0.05			RJ2218B
					Fruit (G)	6	0.12			RJ2218B
					Fruit (T)	6	< 0.05			RJ2218B
					Fruit (G)	13	< 0.05			RJ2218B

Location			Applica	tion	Sample	PHI	Resid	ues (mg/kg)	Report/
(year) variety	Form	Ν	kg	kg		(days)	glyphosate	AMPA	Total	reference
	1		ae/ha	ae/hL	Fruit (T)	13	< 0.05			RJ2218B
Francavilla, Puglia,	SG	1	1.4	0.72	Fruit (T)	6	< 0.05 < 0.05	< 0.05	< 0.05	MLL30319
Italy (1993) Nardo	50	1	1.4	0.72	Fruit (T)	13	0.03	< 0.05	0.08	corrected
naly (1775) Naldo					Fruit (G)	6	0.3 0.5 0.5	< 0.05	0.3 0.5	recovery
					Fruit (G)	13	0.6 0.2	(3)	0.5	80% gly and
					Raw oil	6	< 0.05	< 0.05	0.6 0.2	59% AMPA
					Raw oil	13	< 0.05	(2)	< 0.05	fruit, 92%
								< 0.05	< 0.05	gly 78%
								< 0.05		AMPA oil
San Casciano,	SL	1	1.4	0.48	Fruit (T)	7	< 0.05	< 0.05	< 0.05	MLL30319
Toscana, Italy					Fruit (T)	14	< 0.05	< 0.05	< 0.05	corrected
(1993) Leccino					Fruit (G)	7	0.05	< 0.05	0.05	recovery
					Fruit (G)	14	< 0.05	< 0.05	< 0.05	80% gly and
					Raw oil	7	< 0.05	< 0.05	< 0.05	59% AMPA
					Raw oil	14	< 0.05	< 0.05	< 0.05	fruit, 92%
										gly 78% AMPA oil
Cartaojal, Malaga,	SL	1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
Spain (1995)	SL	1	2.2	0.54	Fruit (T)	7	< 0.05	< 0.05	< 0.05	WILL50407
Hojiblanca					Fruit (G)	0	9.2	< 0.05	9.2	
					Fruit (G)	7	0.1	< 0.05	0.1	
					raw oil	7	< 0.05	< 0.05	< 0.05	
					refin. oil	7	< 0.05	< 0.05	< 0.05	
		1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
					Fruit (T)	14	< 0.05	< 0.05	< 0.05	
					Fruit (G)	0	<u>12</u>	< 0.05	<u>12</u>	
					Fruit (G)	14	0.1	< 0.05	0.1	
					raw oil	14	< 0.05	< 0.05	< 0.05	
		1	2.2	0.54	refin. oil Fruit (T)	14 0	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	MLL30469
		1	2.2	0.54	Fruit (T)	28	< 0.05	< 0.05	< 0.05	WILL50409
					Fruit (G)	0	9.8	< 0.05	9.8	
					Fruit (G)	28	< 0.05	< 0.05	< 0.05	
					raw oil	28	< 0.05	< 0.05	< 0.05	
					refin. oil	28	< 0.05	< 0.05	< 0.05	
La Carlotta,	SL	1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
Cordoba, Spain					Fruit (T)	7	< 0.05	< 0.05	< 0.05	
(1995) Picual					Fruit (G)	0	4.2	< 0.05	4.2	
					Fruit (G)	7	0.1	< 0.05	0.1	
					raw oil refin. oil	7 7	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
		1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
		1	2.2	0.51	Fruit (T)	14	< 0.05	< 0.05	< 0.05	INIEES 0 109
					Fruit (G)	0	5.8	< 0.05	5.8	
					Fruit (G)	14	0.1	< 0.05	0.1	
					raw oil	14	< 0.05	< 0.05	< 0.05	
					refin. oil	14	< 0.05	< 0.05	< 0.05	
		1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
					Fruit (T)	28	< 0.05	< 0.05	< 0.05	
					Fruit (G) Fruit (G)	0 28	$<\frac{12}{0.05}$	< 0.05 < 0.05	$<\frac{12}{0.05}$	
					raw oil	28 28	< 0.05	< 0.05 < 0.05	< 0.05	
					refin. oil	28	< 0.05	< 0.05	< 0.05	
Villa del Rio,	SL	1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
Cordoba, Spain				-	Fruit (T)	7	< 0.05	< 0.05	< 0.05	
(1995) Picual					Fruit (G)	0	5.9	< 0.05	5.9	
					Fruit (G)	7	0.5	< 0.05	0.5	
					raw oil	7	< 0.05	< 0.05	< 0.05	
	J				refin. oil	7	< 0.05	< 0.05	< 0.05	

Location			Applica	tion	Sample	PHI	Resid	lues (mg/kg	()	Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
		1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
					Fruit (T)	14	< 0.05	< 0.05	< 0.05	
					Fruit (G)	0	<u>12</u>	< 0.05	<u>12</u>	
					Fruit (G)	14	0.1	< 0.05	0.1	
					raw oil	14	< 0.05	< 0.05	< 0.05	
					refin. oil	14	< 0.05	< 0.05	< 0.05	
		1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
					Fruit (T)	28	< 0.05	< 0.05	< 0.05	
					Fruit (G) Fruit (G)	0 28	9.3 < 0.05	< 0.05 < 0.05	9.3 < 0.05	
					raw oil	28	< 0.05	< 0.05	< 0.05	
					refin. oil	28	< 0.05	< 0.05	< 0.05	
Ubeda, Jaen, Spain	SL	1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
(1995) Picual	SE	1	2.2	0.51	Fruit (T)	7	< 0.05	< 0.05	< 0.05	111111150105
(,)					Fruit (G)	0	6.0	< 0.05	6	
					Fruit (G)	7	0.9	< 0.05	0.9	
					raw oil	7	< 0.05	< 0.05	< 0.05	
					refin. oil	7	< 0.05	< 0.05	< 0.05	
		1	2.2	0.54	Fruit (T)	0	< 0.05	< 0.05	< 0.05	MLL30469
					Fruit (T)	14	< 0.05	< 0.05	< 0.05	
					Fruit (G)	0	<u>6.7</u>	< 0.05	<u>6.7</u>	
					Fruit (G)	14	0.9	< 0.05	0.9	
					raw oil	14	< 0.05	< 0.05	< 0.05	
		1	2.2	0.54	refin. oil	14 0	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	MI I 20460
		1	2.2	0.54	Fruit (T) Fruit (T)	28	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	MLL30469
					Fruit (T) Fruit (G)	28	< 0.03 6.4	< 0.03 < 0.05	6.4	
					Fruit (G)	28	< 0.05	< 0.05	< 0.05	
					raw oil	28	< 0.05	< 0.05	< 0.05	
					refin. oil	28	< 0.05	< 0.05	< 0.05	
Pedrera, Seville,	SL	1	0.36	0.18	Olives	1	0.7			MLL30297
Spain (1990)					Olives	7	0.9			
Hojiblanca					Olive oil	1	< 0.05			
					Olive oil	7	< 0.05			
Puebla de Cazalla,	SL	1	0.36	0.18	Olives	1	0.9			MLL30297
Spain (1990)					Olives	7	1.0			
Verdial					Olive oil	1	< 0.05			
T	CI	1	0.26	0.10	Olive oil	7	< 0.05	< 0.05	1.2	MI I 20207
Torreblascopedro, Jaen, Spain (1992)	SL	1	0.36	0.18	Olives Olives	0 32	1.2	< 0.05 < 0.05	1.2 0.6	MLL30297
Picual					Olive oil	0	0.6 < 0.05	< 0.03 < 0.05	< 0.05	
i icuai					Olive oil	32	< 0.05	< 0.05	< 0.05	
Sierrayegua,	SL	1	0.36	0.18	Olives	0	0.2	< 0.05	0.2	MLL30297
Malaga, Spain	SE	1	0.50	0.10	Olives	24	0.2	< 0.05	0.2	MEES0277
(1992) Hojiblanca					Olive oil	0	< 0.05	< 0.05	< 0.05	
					Olive oil	24	< 0.05	< 0.05	< 0.05	
Linares, Jaen, Spain	SL	1	0.36	0.18	Olives	0	0.1	< 0.05	0.1	MLL30297
(1992) Picual					Olives	30	1.2	< 0.05	1.2	
					Olive oil	0	< 0.05	< 0.05	< 0.05	
~ ~					Olive oil	30	< 0.05	< 0.05	< 0.05	
Cordoba, Cordoba,	SL	1	0.36	0.18	Olives	0	0.06	< 0.05	0.06	MLL30297
Spain (1992) Picual					Olives	41	0.3	< 0.05	0.3	
					Olive oil	0	< 0.05	< 0.05	< 0.05	
Santaalla Carilata	CI	2	2.2		Olive oil	41	< 0.05	< 0.05	< 0.05	A 20 II
Santaella Cordoba,	SL	2	2.2		Table	20	< 0.05	< 0.05	< 0.05	A20-II
Spain, (1977) Nevadillo			4.3		Olives Table		< 0.05	< 0.05	< 0.05	
					Olives					
		1			011/03	1	1		1	1

Location			Applica	tion	Sample	PHI	Resid	lues (mg/kg	()	Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Santaella Cordoba, Spain, (1977) Lechin	SL	2	2.2 4.3		Table Olives Table Olives	20	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Santaella Cordoba, Spain, (1977) Hojiblanca	SL	2	2.2 4.3		Table Olives Table Olives	20	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Santaella Cordoba, Spain, (1977) Ocal	SL	2	2.2 4.3		Table Olives Table Olives	20	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Seville, Spain (1977) Gordal	SL	2	2.2 4.3		Table Olives Table Olives	27	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Seville, Spain (1977) Manzanilla	SL	2	2.2 4.3		Table Olives Table Olives	27	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Aguilarde, La Frontera, Cordoba, Spain (1977) Hojiblanco	SL	2	2.2 4.3		Olive Oil Olive Oil	30	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Aguilarde, La Frontera, Cordoba- Spain (1977) Picudo	SL	2	2.2 4.3		Olive Oil Olive Oil	30	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Aguadulce, Seville, Spain (1977) Hojiblanca	SL	2	2.2 4.3		Olive Oil Olive Oil	32	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
El Fontanal, Montilla, Cordoba, Spain (1977) Hojiblanco	SL	2	2.2 4.3		Olive Oil Olive Oil	54	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
El Fontanal, Montilla, Cordoba, Spain (1977) Nevadillo	SL	2	2.2 4.3		Olive Oil Olive Oil	54	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
La Canaleja Montilla, Cordoba, Spain (1977) Lechin	SL	2	2.2 4.3		Olive Oil Olive Oil	38	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
La Canaleja Montilla, Cordoba- Spain (1977) Hojiblanco	SL	2	2.2 4.3		Olive Oil Olive Oil	38	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II
Uterera, Seville- Spain (1977) Lechin (G) = fruit barvested t	SL	2	2.2 4.3		Olive Oil Olive Oil	30	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	A20-II

(G) = fruit harvested from the ground; (T) = fruit harvested from the tree; (G, w) = fruit harvested from the ground and washed

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	Reference
Brotas, São Paulo, Brazil (2002) Nanica	SL	1	2.2	2.2	Banana	30	< 0.05	< 0.05	< 0.05	57/2003
		1	4.3	4.3	Banana	30	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	57/2003
Taiacu, São Paulo, Brazil (2002) Nanica	SL	1	2.2	2.2	Banana	15	< 0.05	< 0.05	< 0.05	61/2003
		1	4.3	4.3	Banana	15	< 0.05	< 0.05	< 0.05	61/2003
Campinas, São Paulo, Brazil (2000) Nanica	SL	1	2.2	2.2	Banana	30	< 0.02	< 0.02	< 0.02	5385
		1	4.3	4.3	Banana	30	<u>< 0.02</u>	< 0.02	<u>< 0.02</u>	5385
Paulinia, São Paulo, Brazil (2002) Nanica	SL	1	2.2	2.2	Banana	30	< 0.05	< 0.05	< 0.05	37/2002
		1	4.3	4.3	Banana	30	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	37/2002
Avaré, São Paulo, Brazil (2001) Nanica	SL	1	2.2	1.0	Banana	43	< 0.05	< 0.05	< 0.05	53/2002
		1	4.3	2.1	Banana	43	< 0.05	< 0.05	< 0.05	53/2002

Table 48. Residues in Bananas: Directed Ground Spray Application (Brazil) using 480 g ae/L (isopropylamine salt) SL formulation.

Table 49. Residues in Bananas: Injection, Pre-plant and Directed Ground Spray Applications of a 360 g ae/L SL formulation of glyphosate (Honduras, Panama, Colombia, and Ecuador).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Honduras	INJ	1	60 ml*		Pulp	420	< 0.05	< 0.05	< 0.05	MSL00694
(1977) Valery					Peel		< 0.05	< 0.05	< 0.05	
	PD	5	5×3.4		Pulp	1	< 0.05	< 0.05	< 0.05	MSL00694
					Pulp	8	< 0.05	< 0.05	< 0.05	
					Pulp	15	< 0.05	< 0.05	< 0.05	
					Pulp	22	< 0.05	< 0.05	< 0.05	
					Peel	1	< 0.05	< 0.05	< 0.05	
					Peel	8	< 0.05	< 0.05	< 0.05	
					Peel	15	< 0.05	< 0.05	< 0.05	
					Peel	22	< 0.05	< 0.05	< 0.05	
	PD	5	5×7.7		Pulp	1	< 0.05	< 0.05	< 0.05	MSL00694
					Pulp	8	< 0.05	< 0.05	< 0.05	
					Pulp	15	< 0.05	< 0.05	< 0.05	
					Pulp	22	< 0.05	< 0.05	< 0.05	
					Peel	1	< 0.05	< 0.05	< 0.05	
					Peel	8	< 0.05	< 0.05	< 0.05	
					Peel	15	< 0.05	< 0.05	< 0.05	
					Peel	22	< 0.05	< 0.05	< 0.05	
	INJ	6	60 mL*		Pulp	78	< 0.05	< 0.05	< 0.05	MSL00694
	PRE		3.4		Peel		< 0.05	< 0.05	< 0.05	
	PD		4×3.4							
	INJ	6	60 mL*		Pulp	78	< 0.05	< 0.05	< 0.05	MSL00694
	PRE		7.7		Peel		< 0.05	< 0.05	< 0.05	
	PD		4×7.7							
Panama (1977)	INJ	1	60 mL*		Pulp	391	< 0.05	< 0.05	< 0.05	MSL00694
Valery					Peel		< 0.05	< 0.05	< 0.05	

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	· ·	(days)	glyphosate	AMPA	Total	reference
<i></i>	51		0	ae/hL			0 51			
	PD	5	5×3.4		Pulp	1	< 0.05	< 0.05	< 0.05	MSL00694
					Pulp	8	0.11	< 0.05	0.11	
					Pulp	15	< 0.05	< 0.05	< 0.05	
					Pulp	22	< 0.05	< 0.05	< 0.05	
					Peel	1	< 0.05	< 0.05	< 0.05	
					Peel	8	< 0.05	< 0.05	< 0.05	
					Peel	15	< 0.05	< 0.05	< 0.05	
					Peel	22	< 0.05	< 0.05	< 0.05	
	PD	5	5×7.7		Pulp	1	< 0.05	< 0.05	< 0.05	MSL00694
					Pulp	8	0.09	< 0.05	0.09	
					Pulp	15	0.09	< 0.05	0.09	
					Pulp	22	0.10	< 0.05	0.1	
					Peel	1	< 0.05	< 0.05	< 0.05	
					Peel	8	< 0.05	< 0.05	< 0.05	
					Peel	15	< 0.05	< 0.05	< 0.05	
					Peel	22	< 0.05	< 0.05	< 0.05	
	INJ	6	60 mL*		Pulp	56	< 0.05	< 0.05	< 0.05	MSL00694
	PRE		3.4		Peel		< 0.05	< 0.05	< 0.05	
	PD		4×3.4							
	INJ	6	60 mL*		Pulp	56	< 0.05	< 0.05	< 0.05	MSL00694
	PRE		7.7		Peel		< 0.05	< 0.05	< 0.05	
	PD		4×7.7							
Colombia	INJ	1	60 mL*		Pulp	357	< 0.05	< 0.05	< 0.05	MSL00694
(1977)					Peel		< 0.05	< 0.05	< 0.05	
Cavendish										
	PD	5	5×3.4		Pulp	1	< 0.05	< 0.05	< 0.05	MSL00694
					Pulp	7	< 0.05	< 0.05	< 0.05	
					Pulp	14	0.05	< 0.05	0.05	
					Pulp	21	< 0.05	< 0.05	< 0.05	
					Peel	1	< 0.05	< 0.05	< 0.05	
					Peel	7	< 0.05	< 0.05	< 0.05	
					Peel	14	< 0.05	< 0.05	< 0.05	
	DD	~	5.77		Peel	21	< 0.05	< 0.05	< 0.05	NOT ODGOA
	PD	5	5×7.7		Pulp	1	0.12	< 0.05	0.12	MSL00694
					Pulp	7	0.05	< 0.05	0.05	
					Pulp	14	< 0.05	< 0.05	< 0.05	
					Pulp	21	< 0.05	< 0.05	< 0.05	
					Peel	1	< 0.05	< 0.05	< 0.05	
					Peel Peel	7 14	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
					Peel	21	< 0.05	< 0.05	< 0.05	
	INJ	6	60 mL*	<u> </u>	Pulp	21	< 0.05	< 0.05	< 0.05	MSL00694
	PRE	0	3.4		Puip Peel	21	< 0.05	< 0.05	< 0.05	1015L00094
	PRE PD		5.4 4×3.4		1 661		~ 0.05	~ 0.05	~ 0.05	
	INJ	6	60 mL*		Pulp	21	< 0.05	< 0.05	< 0.05	MSL00694
	PRE	0	7.72		Puip Peel	<i>L</i> 1	< 0.05	< 0.05	< 0.05	10151.00094
	PRE		4×7.7		1 661		~ 0.05	~ 0.05	~ 0.05	
Ecuador	INJ	1	60 mL*		Pulp	399	< 0.05	< 0.05	< 0.05	MSL00694
(1977)	11NJ	1	00 IIIL		Pee	599	< 0.05	< 0.05	< 0.05	14151.00074
Cavendish					100		- 0.05	~ 0.05	~ 0.05	
Cuvenuisii	PD	1	3.4		Pulp	2	< 0.05	< 0.05	< 0.05	MSL00694
		1	<i>J</i> .т		Pulp	8	0.07	< 0.05	0.07	115200074
					Pulp	15	< 0.07	< 0.05	< 0.07	
					Pulp	22	< 0.05	< 0.05	< 0.05	
					Peel	2	< 0.05	< 0.05	< 0.05	
					Peel	8	< 0.05	< 0.05	< 0.05	
					Peel	15	< 0.05	< 0.05	< 0.05	
					Peel	22	< 0.05	< 0.05	< 0.05	
	L				1.001		× 0.05	× 0.05	- 0.05	1

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
			-	ae/hL						
	PD	5	5×7.7		Pulp	2	< 0.05	< 0.05	< 0.05	MSL00694
					Pulp	8	0.16	< 0.05	0.16	
					Pulp	15	< 0.05	< 0.05	< 0.05	
					Pulp	22	< 0.05	< 0.05	< 0.05	
					Peel	2	< 0.05	< 0.05	< 0.05	
					Peel	8	< 0.05	< 0.05	< 0.05	
					Peel	15	< 0.05	< 0.05	< 0.05	
					Peel	22	< 0.05	< 0.05	< 0.05	
	INJ	6	60 mL*		Pulp	59	< 0.05	< 0.05	< 0.05	MSL00694
	PRE		3.4		Peel		< 0.05	< 0.05	< 0.05	
	PD		4×3.4							
	INJ	6	60 mL*		Pulp	59	< 0.05	< 0.05	< 0.05	MSL00694
	PRE		7.7		Pee		< 0.05	< 0.05	< 0.05	
	PD		4×7.7							

Treatment types are: INJ = direct injection into stem to remove old plants prior to planting new crop; PRE = pre-planting; PD = post-directed. In treatments that included injection application, the residues were measured in bananas from newly planted crop, not in plants that were injected. * 60 mL of a 25% solution of Roundup

Table 50.	Residues	in Kiw	ifruit:	Directed	Ground	Sprav	Application	(Italy).
						- F J	FF ·····	()).

Location		<u> </u>	Applicati	on	Sample	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	Sumple	(days)	glyphosate	AMPA	Total	reference
Castel, Bolognese, Italy (2001) Hayward	SL	2	1.4 3.1	0.54 1.2	fruit	104	< 0.05	< 0.05	< 0.05	MLL31678
Zevio, Italy (2001) Hayward	SL	2	1.4 2.7	0.54 1.1	fruit	108	< 0.05	< 0.05	< 0.05	MLL31678
Montefiascone, Italy (2001) Hayward	SL	2	1.5 2.6	0.58 1.0	fruit	104	< 0.05	< 0.05	< 0.05	MLL31678
Lagnasco, Italy (2001) Hayward	SL	2	1.5 3.0	0.59 1.2	fruit	104	< 0.05	< 0.05	< 0.05	MLL31678
Emilia Romagna, Italy (2001) Haywood	SL	1	2.8		Flesh	14	< 0.05			01JH133
					Whole fruit	14	< 0.05			01JH133
Cisterna di Latina, Latina, Italy (2001) Haywood	SL	1	3.0	0.74	Flesh	14	< 0.05			01JH034
5					Whole fruit	14	< 0.05			01JH034
Valeggio sul Mincio, Verona, Italy (2001) Haywood	SL	1	2.9	0.72	Flesh	14	< 0.05			01JH131
					Whole fruit	14	< 0.05			01JH131
Trecenta, Rovigo, Italy (2001) Haywood	SL	1	2.9	0.96	Flesh	14	< 0.05			01JH132

Location			Applicati	Sample	PHI	Residues (mg/kg)			Report/	
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
					Whole	14	< 0.05			01JH132
					fruit					

Table 51. Residues in Dry Beans: Pre-harvest Application.

Location		Γ	Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety		Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
•			C	ae/hL			0.11			
5380 Franc-	Κ	1	1.4	0.72	Seed	0	< 0.05	< 0.05	< 0.05	MLL30463
Waret, Belgium						7	< 0.05	< 0.05	<u>< 0.05</u>	
(1995) Mars										
Gothab,	С	1	1.4	0.48	seed	19	< 0.05	< 0.05	< 0.05	MLL30109
Denmark (1982)										
Gammerodgard, Denmark	С	1	1.4	0.45	seed	9	< 0.05	< 0.05	< 0.05	MLL30109
(1982)						21	0.17	< 0.05	0.17	
Wilson,	K	1	1.4	0.72	Seed	0	0.23	< 0.05	0.23	MLL30463
Derbyshire, UK			1.4	0.72	~~~~	7	<u>0.47</u>	< 0.05	<u>0.23</u>	
(1995) Mars						/	<u>0.47</u>	< 0.05	0.47	
Wheaton Aston,	K	1	1.4	0.72	Seed	0	0.28	< 0.05	0.28	MLL30463
Staffordshire,			1.7	0.72	~~~~	7	<u>0.14</u>	< 0.05	<u>0.14</u>	
UK (1995)						/	0.14	< 0.05	0.14	
Sirrocco										
Womesley,	K	1	1.4	0.72	Seed	0	0.21	< 0.05	0.21	MLL30463
Doncaster, UK	ĸ	1	1.4	0.72	Beed	7	0.21 <u>0.34</u>	< 0.05	<u>0.21</u> <u>0.34</u>	MELSONOS
(1995) Victor						/	0.34	< 0.03	0.34	
Isley Walton,	С	1	1.4	0.70	Seed	7	0.18 c0.06			GLY 140
Derbyshire, UK	C	1	1.1	0.70	Seed	,	0.10 00.00			GETTIO
(1992) Banner										
		1	0.72	0.36	Seed	7	0.13 c0.06			GLY 140
Thorne, South Yorkshire, UK (1992) Troy	C	1	1.4	0.70	Seed	7	<u>1.8</u>			GLY 140
		1	0.72	0.36	Seed	7	0.8			GLY 140
Terling, North Chelmsford, Essex, UK (1992) Punch	С	1	1.4	0.70	Seed	7	0.2			GLY 140
		1	0.72	0.36	Seed	7	0.1			GLY 140
Kings Newton, Derbyshire, UK (1993) Boxer	C	1	1.4	0.70	Seed	7	<u>0.11</u>			GLY 264, GLY 305
		1	0.72	0.36	Seed	7	0.11			GLY 264, GLY 305
Sancton, Humberside, UK (1993) Boxer	С	1	1.4	0.70	Seed	7	<u>0.16</u>			GLY 264, GLY 305
Boxer		1	0.72	0.36	Seed	7	0.13			GLY 264, GLY 305
Neston, UK (1986) Banner	А	1	2.9	3.6	seed	7	0.1			MLL30180
	А	1	2.9	1.2	seed	7	0.1			MLL30180
	B	1	2.9	1.2	seed	7	0.2			MLL30180
	C	1	2.9	1.2	seed	7	0.2			MLL30180
	D	1	2.9	1.2	seed	7	0.1			MLL30180

Location			Applicatio	m	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety		Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Stamford, UK (1980) Maris Bead	С	1	1.4	0.65	seed	7	0.12	< 0.05	<u>0.12</u>	MLL30109
	С	1	2.9	1.3	seed	7	0.22	< 0.05	0.22	MLL30109
St. Ives, Cambridgeshire, UK (1982) Herro	С	1	1.4	0.72	seed	7	<u>0.16</u>	< 0.05	<u>0.16</u>	MLL30109
	С	1	2.9	1.4	seed	7	0.32	< 0.05	0.32	MLL30109
Thornhough, UK (1982) Minden	С	1	0.72	0.33	seed	10	0.23 c0.05	< 0.05	0.23 c0.05	MLL30109
	С	1	1.4	0.65	seed	10	0.33 c0.05	< 0.05	0.33 c0.05	MLL30109
	С	1	2.9	1.3	seed	10	0.53 c0.05	< 0.05	0.53 c0.05	MLL30109
Hemingford, UK (1982) Throws As	С	1	0.72	0.33	seed	9	0.08	< 0.05	0.08	MLL30109
	С	1	1.4	0.65	seed	9	0.16	< 0.05	0.16	MLL30109
-	С	1	2.9	1.3	seed	9	0.22	< 0.05	0.22	MLL30109
Wayne County, New York USA (2001) Montcalm	Ν	2	4.2 0.86	4.5 0.90	seed	7	<u>0.10</u>	< 0.05	<u>0.10</u>	MSL17194
	Ν	2	4.2 1.7	4.5 1.8	seed	7	0.19	< 0.05	0.19	MSL17194
Kent County, Michigan USA (2001) Cranberry	N	2	4.3 0.83	4.9 1.0	seed	7	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	MSL17194
	Ν	2	4.2 1.68	4.9 2.1	seed	7	< 0.05	< 0.05	< 0.05	MSL17194
Ottawa County, Michigan (2001) Navy - Avanti	N	2	4.2 0.84	5.2 1.0	seed	7	<u>0.09</u>	< 0.05	<u>0.09</u>	MSL17194
	Ν	2	4.2 1.7	5.1 2.0	seed	7	0.21	< 0.05	0.21	MSL17194
Freeborn County, Minnesota USA (2001) Navy – Norstar	N	2	4.2 0.85	4.0 0.83	seed	7	<u>0.11</u>	< 0.05	<u>0.11</u>	MSL17194
	Ν	2	4.3 1.7	4.0 1.6	seed	1 7	0.19	< 0.05	0.19	MSL17194
York County, Nebraska USA (2001) Navy – Great Northern	N	2	4.20 0.83	4.0 0.78	seed	7	0.32	< 0.05	<u>0.32</u>	MSL17194
	N	2	4.17 1.6	3.9 1.6	seed	1 2 7 13 20	0.96 0.43 0.52 1.8 1.6	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.96 0.43 0.52 1.8 1.6	MSL17194
Hall County, Nebraska USA (2001) Navy – Great Northern	N	2	4.2 0.83	4.0 0.82	seed	7	<u>1.6</u>	< 0.05	<u>1.6</u>	MSL17194
	Ν	2	4.2 1.7	4.0 1.6	seed	7	10	0.12	10	MSL17194

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety		N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Foster County, North Dakota USA (2001) Maverick	Ν	2	4.2 0.83	5.3 0.80	seed	7	<u>0.30</u>	< 0.05	<u>0.30</u>	MSL17194
	Ν	2	4.2 1.7	5.3 1.6	seed	7	0.53	< 0.05	0.53	MSL17194
Eddy County, North Dakota USA (2001) Othello	N	2	4.2 0.84	5.3 0.80	seed	7	<u>0.37</u>	< 0.05	<u>0.37</u>	MSL17194
	Ν	2	4.2 1.6	5.4 1.6	seed	7	0.63	< 0.05	0.63	MSL17194
McHenry County North Dakota USA (2001) Othello	N	2	4.2 0.82	5.3 0.80	seed	7	<u>0.68</u>	< 0.05	<u>0.68</u>	MSL17194
` ,	Ν	2	4.2 1.7	5.3 1.6	seed	7	0.32	< 0.05	0.32	MSL17194
Weld County, Colorado USA (2001) Montrose	N	2	4.2 0.87	4.0 0.83	seed	7	<u>0.19</u>	< 0.05	<u>0.19</u>	MSL17194
	Ν	2	4.3 1.7	4.0 1.6	seed	7	2.6	< 0.05	2.6	MSL17194
Cache County, Utah USA (2001) Othello	N	2	4.2 0.85	4.5 0.94	seed	7	<u>0.13</u>	< 0.05	<u>0.13</u>	MSL17194
`	Ν	2	4.2 1.7	4.5 1.9	seed	7	0.20	< 0.05	0.2	MSL17194
Tulare County, California USA (2001) California Blackeye #5	N	2	4.2 0.85	4.5 0.91	seed	7	0.38 <u>c</u> 0.06	< 0.05	0.38	MSL17194
-	Ν	2	4.2 1.7	4.5 1.8	seed	7	0.80 c0.06	< 0.05	0.8	MSL17194
Payette County, Idaho USA (2001) Othello	N	2	4.2 0.87	4.0 0.82	seed	7	<u>0.07</u>	< 0.05	<u>0.07</u>	MSL17194
	N	2	4.2 1.7	4.0 1.6	seed	7	0.06	< 0.05	0.06	MSL17194

Denmark 1982 and UK 1980 and 1982 trial residue values are corrected for recovery of 72% for glyphosate and 81% for AMPA.

All SL formulations. Formulation A = MON 8795 240 g ae/L SL; Formulation B = MON 8762 + surfactant MON 8137; Formulation C = Roundup® 360 g ae/L SL; Formulation D = MON 8762 480 g ae/L SL; Formulation K = MON 52776 360 g ae/L SL; Formulation N = 500 g/L SL as the isopropylamine salt = 370 g ae/L.

Table 52. Residues in Dry Peas: Pre-harvest Application.	
--	--

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Venurne,	С	1	1.1	0.36	Seed	17	0.6 c0.1	< 0.05	0.6	MLL30131
Belgium							0.9 c0.1	< 0.05	c0.1	
(1982) Finale									0.9	
									c0.1	
Franc-Waret,	K	1	1.4	0.72	Seed	0	0.24	< 0.05	0.24	MLL30464
,			1.4	0.72		7	<u>0.17</u>	< 0.05	<u>0.17</u>	
Belgium										
(1995) Baccara										

Location			Applicati	on	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Clive, Alberta Canada (1988) Princess	С	1	0.67	0.61	Seed	12	0.84	< 0.05	0.84	MSL9398
		1	0.90	0.82	Seed	12	<u>0.82</u>	< 0.05	0.82	MSL9398
Clive, Alberta Canada (1988) Tara	С	1	0.67	0.61	Seed	12	1.6	< 0.05	1.6	MSL9398
		1	0.90	0.82	Seed	12	<u>1.4</u>	< 0.05	<u>1.4</u>	MSL9398
Clive, Alberta Canada (1988) Trapper	С	1	0.67	0.61	Seed	16	4.2	< 0.05	4.2	MSL9398
		1	0.90	0.82	Seed	16	<u>8.9</u>	< 0.05	8.9**	MSL9398
Lacombe, Alberta Canada (1988) Alaska	C	1	0.67	0.61	Seed	14	1.2	< 0.05	1.2	MSL9398
		1	0.90	0.82	Seed	14	0.50	< 0.05	0.50	MSL9398
Torring, Jutland, Denmark (1983)	С	1	0.72	0.24	Seed	12	0.8 c0.2	< 0.05	0.8 c0.2	MLL30131
()		1	1.1	0.36	Seed	12	1.7	< 0.05	1.7	MLL30131
		1	1.8	0.48	Seed	12	2.5	< 0.05	2.5	MLL30131
Gothab, Skandeborg, Denmark (1982)	С	1	1.4	0.44	Seed	6	<u>0.5</u>	< 0.05	<u>0.5</u>	MLL30131
Alborg, Børge Mortensen, Denmark (1982)	С	1	1.4	0.44	Seed	4	1.8	< 0.05	1.8	MLL30131
Kingsbury, Staffordshire, UK (1995) Princess	K	1	1.4	0.72	Seed	0 7	0.23 <u>0.17</u>	< 0.05 < 0.05	0.23 <u>0.17</u>	MLL30464
Banbury,	K	1		a - a	Seed	0	0.13	< 0.05	0.13	MLL30464
Oxfordshire, UK (1995) Princess			1.4	0.72		7	<u>0.13</u>	< 0.05	<u>0.13</u>	
Scunthorpe, Humberside, UK (1995) Montana	K	1	1.4	0.72	Seed	0 7	0.13 <u>0.16</u>	< 0.05 < 0.05	0.13 <u>0.16</u>	MLL30464
Wilson, Derbyshire, UK (1992) Guido	С	1	1.4	0.72	Seed	7	<u>1.8</u>			GLY 141, GLY 222
		1	0.72	0.36	Seed	7	0.8			GLY 141, GLY 222
Goole, Humberside, UK (1992) Solara	С	1	1.4	0.72	Seed	7	2.4 c0.8			GLY 141, GLY 222
		1	0.72	0.36	Seed	7	< 0.05 c0.8			GLY 141, GLY 222

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Market Weighton, Yorkshire, UK (1992) Baroness	С	1	1.4	0.72	Seed	7	<u>1.7</u>			GLY 141, GLY 222
		1	0.72	0.36	Seed	7	0.06			GLY 141, GLY 222
Wilson, Derbyshire, UK (1992) Guido	С	1	1.4	0.72	seed	7	<u>2.1</u>			GLY 143, GLY 221
		1	0.72	0.36	seed	7	1.4			GLY 143, GLY 221
UK Felsted, Essex UK (1986) Progreta	А	1	2.88	3.6	seed	9	0.5			MLL30131
11081010	А	1	2.88	1.15	seed	9	0.3			MLL30131
	В	1	2.88	1.15	seed	9 9	0.7			MLL30131
	С	1	2.88	1.15	seed	9	0.4			MLL30131
	D	1	2.88	1.15	seed	9	0.4			MLL30131
UK Hemmingford, Cambridge UK (1986) Bunting	А	1	2.88	3.6	seed	8	0.1			MLL30131
	А	1	2.88	1.15	seed	8	0.1			MLL30131
	В	1	2.88	1.15	seed	8	0.1			MLL30131
	С	1	2.88	1.15	seed	8	0.1			MLL30131
	D	1	2.88	1.15	seed	8	0.3			MLL30131

Formulation A = MON 8795; Formulation B = MON 8762 + cationic surfactant MON 8137; Formulation C = Roundup® 360 g ae/L SL; Formulation D = MON 8762**samples were threshed twice due to mechanical failures. Grain was in contact with straw for an extended period and that

may have resulted in contamination of the grain.

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Legal, Alberta	С	1	0.67	0.61	Seed	13	1.4	< 0.05	1.4	MSL9398
Canada (1988)										
Laird										
		1	0.90	0.82	Seed	13	<u>3.0</u>	< 0.05	3.0	MSL9398
Gray,	С	1	0.67	0.67	Seed	12	< 0.05	< 0.05	< 0.05	MSL9398
Saskatchewan										
Canada (1988)										
Laird										
		1	0.90	0.90	Seed	12	<u>< 0.05</u>	< 0.05	< 0.05	MSL9398
		1	1.80	1.80	Seed	12	< 0.05	< 0.05	< 0.05	MSL9398

Table 53. Residues in Lentils: Pre-harvest Application (Canada).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	, î	(days)	glyphosate	AMPA	Total	reference
Clinton Co., Illinois USA (1993) Asgrow 4715	РН	1	5.0	2.5	Seed	7	0.22	< 0.05	0.22	MSL13283
Des Moines Co., Iowa USA (1993) Kennedy IV	РН	1	5.0	2.4	Seed	7	1.6	< 0.05	1.6	MSL13283
Redwood Co., Minnesota USA (1993) CX 264	РН	1	5.1	2.4	Seed	8	0.12	< 0.05	0.12	MSL13283
Shelby Co., Missouri USA (1993) Linford	РН	1	5.0	2.8	Seed	7	0.16	< 0.05	0.16	MSL13283
Fayette Co., Ohio USA (1993) GL 2910	РН	1	5.0	2.8	Seed	8	0.68	0.07 c0.11	0.79	MSL13283
Crittenden Co., Arkansas USA (1993) Manokin	РН	1	5.0	2.4	Seed	7	0.56	< 0.05	0.56	MSL13283
St Landry Parish, Louisiana USA (1993) Hartz 5164	РН	1	5.0	3.0	Seed	9	0.94	0.06 c0.07	1.0	MSL13283
Fayette Co., Tennessee USA (1993) Hutcheson	РН	1	5.0	2.4	Seed	7	3.0	0.11 c0.08	3.2	MSL13283
Oglethorpe Co., Georgia USA (1993) Bryan	PH	1	5.1	2.5	Seed	7	0.24	0.07 c0.08	0.35	MSL13283
Wicomico Co., Maryland USA (1993) Stafford	PH	1	5.0	3.2	Seed	7	0.14	< 0.05 c0.08	0.14	MSL13283
Banks, Mississippi USA (1979)	RCS RCS PH	3	2.1 2.1 0.84	1.7 1.2 0.45	seed	15	9.2	1.5	11	MSL3259
	RCS RCS PH	3	2.1 2.1 1.7	1.7 1.2 0.90	seed	15	12	1.3	14	MSL3259
	RCS RCS PH	3	2.1 2.1 3.4	1.7 1.2 1.8	seed	15	11	1.8	14	MSL3259
	RCS RCS PH	3	2.1 2.1 5.0	1.7 1.2 2.70	seed	15	<u>17</u>	1.8	<u>20</u>	MSL3259
Banks, Mississippi USA (1979)	RCS RCS PH	3	2.1 2.1 0.84	1.7 1.2 0.22	seed	9	<u>13</u>	1.9 c0.05	<u>16</u>	MSL3259
	RCS RCS PH	3	2.1 2.1 1.7	1.7 1.2 0.45	seed	9	10	1.5 c0.05	12	MSL3259

Table 54. Residues in Conventional Soyabeans: Pre-harvest Application (USA) with glyphosate 480 SL formulation as the isopropylamine salt (360 g ae/L).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	r ,	(days)	glyphosate	AMPA	Total	reference
			-	ae/hL						
	RCS	3	2.1	1.7	seed	9	6.4	1.0 c0.05	7.9	MSL3259
	RCS PH		2.1 3.4	1.2 0.90						
	RCS	3	2.1	1.7	seed	9	2.6	0.46 c0.05	3.3	MSL3259
	RCS	5	2.1	1.7	seeu	,	2.0	0.40 00.05	5.5	101010207
	PH		5.0	1.4						
Bruins,	RCS	3	2.5	NS	seed	7	0.59 c0.40	0.38 c0.25	1.2	MSL3259
Arkansas USA	RCS		2.5	NS		16	0.71 c0.38	0.46 c0.25	1.4	
(1979)	PH		0.84	0.45		7				
	RCS	3	2.5	NS	seed	16 7	0.94 c0.40	0.50 c0.25	1.7	MSL3259
	RCS	5	2.5	NS	seeu	16	1.1 c0.38	0.50 c0.25 0.52 c0.25	1.7	WISL5259
	PH		1.7	0.45		10		0.02 00.20	1.9	
	RCS	3	2.5	NS	seed	7	1.2 c0.40	0.46 c0.25	1.9	MSL3259
	RCS		2.5	NS		16	0.79 c0.38	0.36 c0.25	1.3	
	PH		3.4	0.45						
	RCS	3	2.5	NS	seed	7	0.52 c0.40	0.24 c0.25	0.89	MSL3259
	RCS PH		2.5 5.0	NS 0.45		16	0.40 c0.38	0.18 c0.25	0.67	
Bruins,	RCS	3	2.5	NS	seed	10	0.43 c0.39	0.27 c0.23	0.84	MSL3259
Arkansas USA	RCS	Ĺ	2.5	NS						
(1979)	PH		0.84	0.45						
	RCS	3	2.5	NS	seed	10	0.39 c0.39	0.24 c0.23	0.76	MSL3259
	RCS		2.5	NS						
	PH RCS	3	1.7	0.45 NS	anad	10	0.82 c0.39	0.46 c0.23	1.5	MSL3259
	RCS	3	2.5 2.5	NS	seed	10	0.82 c0.39	0.46 c0.25	1.5	MSL3239
	PH		3.4	0.45						
	RCS	3	2.5	NS	seed	10	0.52 c0.39	0.3 c0.23	0.98	MSL3259
	RCS		2.5	NS						
	PH		5.0	0.45						
Adel, Iowa	RCS	4	5.0	2.7	seed	11	< 0.05	< 0.05	< 0.05	MSL3259
USA (1979)	RCS RCS		5.0 5.0	2.7 2.7			c0.09		c0.09	
	PH		0.84	0.45						
	RCS	4	5.0	2.7	seed	11	0.09 c0.09	< 0.05	0.09	MSL3259
	RCS		5.0	2.7					c0.09	
	RCS		5.0	2.7						
	PH		1.7	0.90			0.1.1.0.00	0.05		1 101 00 00
	RCS	4	5.0	2.7	seed	11	0.14 c0.09	< 0.05	0.14	MSL3259
	RCS RCS		5.0 5.0	2.7 2.7					c0.09	
	PH		3.4	1.8						
	RCS	4	5.0	2.7	seed	11	0.69 c0.09	< 0.05	0.69	MSL3259
	RCS		5.0	2.7					c0.09	
	RCS		5.0	2.7						
Adal Jama	PH	4	5.0	2.7	and	0	0.06	< 0.05	0.06	MSI 2250
Adel, Iowa USA (1979)	RCS RCS	4	5.0 5.0	2.7 2.7	seed	8 8	0.06	< 0.05	0.06	MSL3259
0011(1979)	RCS		5.0	2.7		0				
	PH		0.84	0.45						
	RCS	4	5.0	2.7	seed	8	0.10	< 0.05	0.10	MSL3259
	RCS		5.0	2.7		8				
	RCS		5.0	2.7						
	PH RCS	4	1.7 5.0	0.90	seed	8	0.19	< 0.05	0.19	MSL3259
	RCS	*	5.0 5.0	2.7	seeu	8	0.17	× 0.05	0.17	111515237
	RCS		5.0	2.7		Ŭ				
	PH		3.4	1.8						
	RCS	4	5.0	2.7	seed	8	<u>0.45</u>	< 0.05	<u>0.45</u>	MSL3259
	RCS		5.0	2.7		8				
	RCS		5.0	2.7						
	PH	L	5.0	2.7	1	l				

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Princeton,	RCS	4	5.0	NS	seed	11	1.9	0.58	2.8	MSL3259
Kentucky USA	RCS		5.0	NS		25	1.3 c1.0	0.46 c0.36	2.0	
(1979)	RCS		5.0	NS						
	PHI		0.84	0.36						
	RCS	4	5.0	NS	seed	11	3.0	0.64	4.0	MSL3259
	RCS		5.0	NS		25	1.7 c1.0	0.59 c0.36	2.6	
	RCS		5.0	NS						
	PH		1.7	0.72						
	RCS	4	5.0	NS	seed	11	8.8	0.64	9.8	MSL3259
	RCS		5.0	NS		25	0.36 c1.0	0.24 c0.36	0.73	
	RCS		5.0	NS						
	PH		3.4	1.4						
	RCS	4	5.0	NS	seed	11	6.2	1.3	8.2	MSL3259
	RCS		5.0	NS		25	6.2 c1.0	1.3 c0.36	8.2	
	RCS		5.0	NS						
	PH		5.0	2.2						
Princeton,	RCS	4	5.0	NS	seed	13	2.8	0.76	4.0	MSL3259
Kentucky USA	RCS		5.0	NS						
(1979)	RCS		5.0	NS						
	PH		0.84	0.36						
	RCS	4	5.0	NS	seed	13	3.4	0.86	4.7	MSL3259
	RCS		5.0	NS						
	RCS		5.0	NS						
	PH		1.7	0.72						
	RCS	4	5.0	NS	seed	13	<u>5.4</u>	1.2	<u>7.2</u>	MSL3259
	RCS		5.0	NS						
	RCS		5.0	NS						
	PH		3.4	1.44						
	RCS	4	5.0	NS	seed	13	3.1	0.71	4.2	MSL3259
	RCS		5.0	NS						
	RCS		5.0	NS						
	PH		5.0	2.2						

Type of applications: RCS = Recirculating sprayer; PH = pre-harvest

Table 55. Residues in Glyphosate Tolerant Soya bean (USA) following application of a 410 SL formulation of glyphosate present as the isopropylamine salt (360 g ae/L).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Clarence,	PRE	2	6.4	6.7	Seed	104	1.8	2.6	5.8	MSL13462
Missouri USA	LPO		0.84	0.89						
(1992) 40-3										
	PRE	2	6.4	6.7	Seed	140	0.06	0.08	0.18	MSL13462
	EPO		0.63	0.42						
	PRE	2	6.4	6.7	Seed	104	<u>2.7</u>	3.6	<u>8.2</u>	MSL13462
	LPO		1.7	1.8						
	PRE	3	6.4	6.7	Seed	104	1.6	2.3	5.1	MSL13462
	EPO		0.84	1.3						
	LPO		0.84	0.89						
	PRE	4	6.4	6.7	Seed	34	1.3	1.6	3.7	MSL13462
	EPO		0.84	1.3						
	LPO		0.84	0.89						
	PH		0.84	0.45						
Elko, South	PRE	2	6.4	3.8	Seed	97	0.69	0.95	2.1	MSL13462
Carolina USA	LPO		0.84	0.52						
(1992) 40-3										

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	1	(days)	glyphosate	AMPA	Total	reference
			-	ae/hL						
	PRE	2	6.4	3.8	Seed	98	0.55	0.78	1.7	MSL13462
	EPO		0.63	0.40						
	PRE	2	6.4	3.8	Seed	97	2.3	2.8	6.6	MSL13462
	LPO		1.7	1.0						
	PRE	3	6.4	3.8	Seed	97	2.1	2.7	6.2	MSL13462
	EPO		0.84	0.54						
	LPO		0.84	0.52						
	PRE	4	6.4	3.8	Seed	10	<u>2.6</u>	3.5	<u>7.9</u>	MSL13462
	EPO		0.84	0.54						
	LPO		0.84	0.52						
	PH		0.84	0.52						
Emporia,	PRE	2	6.4	4.9	Seed	97	0.25	0.28	0.68	MSL13462
Virginia, USA	LPO		0.84	0.64						
(1992) 40-3										
	PRE	2	6.4	4.9	Seed	110	0.57	0.70	1.6	MSL13462
	EPO		0.63	0.48						
	PRE	2	6.4	4.9	Seed	97	1.0	1.0	2.5	MSL13462
	LPO		1.7	1.3						
	PRE	3	6.4	4.9	Seed	97	1.4	1.4	3.5	MSL13462
	EPO		0.84	0.64						
	LPO		0.84	0.64						
	PRE	4	6.4	4.9	Seed	16	1.8	1.9	4.7	MSL13462
	EPO		0.84	0.64		10	<u></u>			
	LPO		0.84	0.64						
	PH		0.84	0.64						
Goldsboro,	PRE	2	6.4	6.9	Seed	89	1.4	2.0	4.4	MSL13462
North Carolina,	LPO		0.84	0.89		0,		2.0		
USA (1992)										
40-3										
	PRE	2	6.4	6.9	Seed	101	0.38	0.43	1.0	MSL13462
	EPO		0.63	0.67		101	0.50	0.15		
	PRE	2	6.4	6.9	Seed	89	4.4	4.5	<u>11</u>	MSL13462
	LPO		1.7	1.79		0,	<u></u>	1.0		
	PRE	3	6.4	6.9	Seed	89	3.0	3.4	8.2	MSL13462
	EPO	_	0.84	0.89		07	5.0	5.1		
	LPO		0.84	0.89						
	PRE	4	6.4	6.9	Seed	13	3.2	3.9	9.1	MSL13462
	EPO		0.84	0.89		15	5.2	5.7		
	LPO		0.84	0.89						
	PH		0.84	0.89						
Greenville,	PRE	2	6.4	6.8	Seed	75	0.9	1.3	2.9	MSL13462
Mississippi,	LPO		0.84	0.72		,5	0.7	1.5		
USA (1992)	2.0		0.01	5.72						
40-3										
	PRE	2	6.4	6.8	Seed	77	0.51	0.85	1.8	MSL13462
	EPO		0.63	0.53		,,	0.01	0.00		
	PRE	2	6.4	6.8	Seed	75	1.7	2.7	5.8	MSL13462
	LPO		1.7	1.4		15	1./	2.1		
	PRE	3	6.4	6.8	Seed	75	<u>3.3</u>	5.0	<u>11</u>	MSL13462
	EPO	5	0.4	0.8	5000	15	<u>3.3</u>	5.0	<u></u>	110215102
	LPO		0.84	0.70						
	LFU		0.84	0.72						

Location		L	Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
	PRE	4	6.4	6.8	Seed	10	2.0	3.0	6.6	MSL13462
	EPO		0.84	0.70						
	LPO		0.84	0.72						
	PH		0.84	0.83	<u>a</u> 1					
Hickory Withe,	PRE	2	6.4	3.4	Seed	81	0.74	1.3	2.7	MSL13462
Tennessee,	LPO		0.84	0.45						
USA (1992) 40-3										
40-3	PRE	2	6.4	3.4	Seed	94	0.26	0.54	1.1	MSL13462
	EPO	~	0.63	0.34	Secu	94	0.20	0.54	1.1	1015215102
	PRE	2	6.4	3.4	Seed	81	3.0	5.4	<u>11</u>	MSL13462
	LPO		1.7	0.89	~~~~	01	<u>5.0</u>	J. T		
	PRE	3	6.4	3.4	Seed	81	1.0	1.7	3.6	MSL13462
	EPO		0.84	0.45		01	1.0	1.7		
	LPO		0.84	0.45						
	PRE	4	6.4	3.4	Seed	13	2.6	4.6	9.6	MSL13462
	EPO		0.84	0.45		-				
	LPO		0.84	0.45						
	PH		0.84	0.45						
La Center,	PRE	2	6.4	5.9	Seed	108	0.16	0.20	0.46	MSL13462
Kentucky,	LPO		0.84	0.83						
USA (1992)										
40-3										
	PRE	2	6.4	5.9	Seed	116	< 0.05	< 0.05	< 0.13	MSL13462
	EPO		0.63	0.59						
	PRE	2	6.4	5.9	Seed	108	0.31	0.40	0.92	MSL13462
	LPO		1.7	1.7	~ .					
	PRE	3	6.4	5.9	Seed	108	0.14	0.18	0.41	MSL13462
	EPO		0.84	0.79						
	LPO	4	0.84	0.83	C 1				1.1	NOT 124(2
	PRE	4	6.4	5.9	Seed	13	<u>0.34</u>	0.48	<u>1.1</u>	MSL13462
	EPO		0.84	0.79						
	LPO		0.84	0.83						
Mantina illa	PH	2	0.84	0.86	Seed	122	0.67	1.1	2.3	MSL13462
Martinsville, Indiana, USA	PRE LPO	2	6.4 0.84	3.5 0.45	Secu	133	0.67	1.1	2.5	WISE15402
(1992) 40-3	LFU		0.04	0.43						
(1772) 40-5	PRE	2	6.4	3.5	Seed	139	0.10	0.19	0.39	MSL13462
	EPO		0.63	0.37		137	0.10	0.19		
	PRE	2	6.4	3.5	Seed	133	1.8	2.7	5.9	MSL13462
	LPO		1.7	0.90			1.0	,		
	PRE	3	6.4	3.5	Seed	133	1.1	1.7	3.7	MSL13462
	EPO		0.84	0.50						
	LPO		0.84	0.45						
	PRE	4	6.4	3.5	Seed	53	2.3	1.6	4.7	MSL13462
	EPO		0.84	0.50						
	LPO		0.84	0.45						
	PH		0.84	0.45						
New Holland,	PRE	2	6.4	4.2	Seed	103	0.09	0.11	0.26	MSL13462
Ohio, USA	LPO		0.84	0.57						
(1992) 40-3									0.00	101 10 100
	PRE	2	6.4	4.2	Seed	126	0.09	0.09	0.23	MSL13462
	EPO		0.63	0.39						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
	PRE	2	6.4	4.2	Seed	103	0.16	0.14	0.37	MSL13462
	LPO	3	1.7	1.1	Seed	102	0.1.4	0.10	0.32	MSL13462
	PRE	3	6.4	4.2	Seed	103	0.14	0.12	0.52	MSL15402
	EPO		0.84	0.53						
	LPO	4	0.84	0.57	Seed	10	1.0	0.11	<u>1.2</u>	MSL13462
	PRE	т	6.4	4.2	Secu	18	<u>1.0</u>	0.11	<u>1.2</u>	WISL19402
	EPO LPO		0.84 0.84	0.53 0.57						
	PH		0.84	0.57						
Proctor,	PRE	2	6.4	3.4	Seed	66	0.56	0.74	1.7	MSL13462
Arkansas, USA (1992) 40-3	LPO	2	0.84	0.45	beed	00	0.50	0.74	1.7	WIGE 13402
< , , , , , , , , , , , , , , , , , , ,	PRE	2	6.4	3.4	Seed	73	0.42	0.50	1.2	MSL13462
	EPO		0.63	0.34						
	PRE	2	6.4	3.4	Seed	66	2.3	3.3	7.3	MSL13462
	LPO		1.7	0.89						
	PRE	3	6.4	3.4	Seed	66	2.3	3.0	6.9	MSL13462
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PRE	4	6.4	3.4	Seed	11	<u>3.6</u>	2.6	<u>7.6</u>	MSL13462
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PH	_	0.84	0.45						
Rosa,	PRE	2	6.4	4.4	Seed	69	0.22	0.47	0.94	MSL13462
Louisiana, USA (1992) 40-3	LPO		0.84	0.55						
40-3	PRE	2	6.4	4.4	Seed	70	0.21	0.49	0.96	MSL13462
	EPO		0.63	0.42		10	0.21	0.19		
	PRE	2	6.4	4.4	Seed	69	0.68	1.1	2.4	MSL13462
	LPO		1.7	1.1		0,2	0.00			
	PRE	3	6.4	4.4	Seed	69	1.0	1.6	3.4	MSL13462
	EPO		0.84	0.56						
	LPO		0.84	0.55						
	PRE	4	6.4	4.4	Seed	13	5.3	1.5	7.6	MSL13462
	EPO		0.84	0.56						
	LPO		0.84	0.55						
	PH		0.84	0.55						
Sandusky,	PRE	2	6.4	5.9	Seed	108	0.32	0.26	0.72	MSL13462
Illinois, USA (1992) 40-3	LPO		0.84	0.83						
	PRE	2	6.4	5.9	Seed	116	0.15	< 0.05	0.23	MSL13462
	EPO		0.63	0.59						
	PRE	2	6.4	5.9	Seed	108	<u>1.9</u>	2.1	<u>5.1</u>	MSL13462
	LPO		1.7	1.7						
	PRE	3	6.4	5.9	Seed	108	0.31	0.26	0.71	MSL13462
	EPO		0.84	0.79						
	LPO		0.84	0.83						
	PRE	4	6.4	5.9	Seed	13	0.84	0.72	1.9	MSL13462
	EPO		0.84	0.79						
	LPO		0.84	0.83						
	PH		0.84	0.86						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	· ·	(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Sedan, Kansas,	PRE	2	6.4	4.6	Seed	80	2.3	3.2	7.2	MSL13462
USA (1992)	LPO		0.84	0.89						
40-3		_			C 1				0.70	MGI 12462
	PRE	2	6.4	4.6	Seed	90	0.26	0.35	0.79	MSL13462
	EPO	2	0.63	0.67	Card				17	MSL13462
	PRE	2	6.4	4.6	Seed	80	<u>5.6</u>	7.6	<u>17</u>	MSL13402
	LPO	3	1.7	1.8	Seed	00	2.4	2.6	7.9	MSL13462
	PRE	5	6.4	4.6 0.89	Seeu	80	2.4	3.6	1.9	WISL15402
	EPO LPO		0.84 0.84	0.89						
	PRE	4	6.4	4.6	Seed	15	2.4	3.9	8.3	MSL13462
	EPO		0.4	0.89	~~~~	15	2.4	5.7	0.0	
	LPO		0.84	0.89						
	PH		0.84	0.89						
Sheridan,	PRE	2	6.4	3.6	Seed	138	< 0.05	0.05	< 0.13	MSL13462
Indiana, USA	LPO		0.84	1.4		100	0.00	0.00		
(1992) 40-3	1		1							
	PRE	2	6.4	3.6	Seed	151	< 0.05	0.12	< 0.23	MSL13462
	EPO		0.63	0.34						
	PRE	2	6.4	3.6	Seed	138	0.11	0.10	0.26	MSL13462
	LPO		1.7	0.99						
	PRE	3	6.4	3.6	Seed	138	0.21	0.21	0.53	MSL13462
	EPO		0.84	0.45						
	LPO		0.84	0.50	G 1				2.4	NGT 104(0
	PRE	4	6.4	3.6	Seed	52	2.9	0.32	3.4	MSL13462
	EPO		0.84	0.45						
	LPO		0.84	0.50						
C1 CC	PH	2	0.84	0.45	Seed	0.1	0.70	1.2	2.7	MSL13462
Shoffner, Arkansas, USA	PRE LPO	2	6.4 0.84	3.4 0.45	Seeu	81	0.70	1.3	2.1	WISE15402
(1992) 40-3	LPU		0.84	0.43						
(1992) 40-3	PRE	2	6.4	3.4	Seed	83	0.41	0.71	1.5	MSL13462
	EPO	_	0.63	0.34	Secu	05	0.41	0.71	1.0	110210102
	PRE	2	6.4	3.4	Seed	81	<u>1.9</u>	2.8	<u>6.2</u>	MSL13462
	LPO		1.7	0.90		01	1.7			
	PRE	3	6.4	3.4	Seed	81	1.5	2.4	5.2	MSL13462
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PRE	4	6.4	3.4	Seed	13	1.8	2.7	5.9	MSL13462
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PH		0.84	0.45						
Steele,	PRE	2	6.4	5.9	Seed	97	1.0	1.1	2.7	MSL13462
Missouri, USA	LPO		0.84	0.79						
(1992) 40-3					Car 1			• • -	< 0.10	MCI 124/2
	PRE	2	6.4	5.9	Seed	106	0.11	< 0.05	< 0.19	MSL13462
	EPO		0.63	0.58	Saad	~-	1.0	• •	4.0	MSL13462
	PRE	2	6.4	5.9	Seed	97	1.9	2.0	4.9	IVISL 13462
	LPO	3	1.7	1.6	Seed	07	0.57	0.57	1.4	MSL13462
	PRE EPO		6.4 0.84	5.9 0.83	Beeu	97	0.57	0.56	1.4	1101110402
	EPO LPO		0.84 0.84	0.83						
l	LFU		0.04	0.78	L		I		1	1

Location			Applicatio		Sample	PHI		idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	_	(days)	glyphosate	AMPA	Total	reference
	DDE	4	6.4	ae/hL	Seed	14	0.7	1.0	5.4	MSL13462
	PRE EPO	4	6.4 0.84	5.9 0.83	Seed	14	<u>2.7</u>	1.8	<u>5.4</u>	MSL15402
	LPO		0.84	0.85						
	PH		0.84	0.78						
Winterville,	PRE	2	6.4	4.0	Seed	66	1.3	1.9	4.2	MSL13462
Georgia, USA	LPO	-	0.84	0.50	Seea	00	1.5	1.7		
(1992) 40-3	LIU		0.04	0.50						
(1))2) 10 5	PRE	2	6.4	4.0	Seed	74	0.72	1.2	2.5	MSL13462
	EPO		0.63	0.39		, 1	0.72	1.2		
	PRE	2	6.4	4.0	Seed	66	1.9	2.6	5.9	MSL13462
	LPO		1.7	0.99		00	,	2.0		
	PRE	3	6.4	4.0	Seed	66	2.0	3.1	6.7	MSL13462
	EPO		0.84	0.53						
	LPO		0.84	0.50						
	PRE	4	6.4	4.0	Seed	10	2.0	3.0	<u>6.6</u>	MSL13462
	EPO		0.84	0.53						
	LPO		0.84	0.50						
	PH		0.84	0.50						
York,	PRE	2	6.4	6.8	Seed	91	< 0.05	0.07	< 0.16	MSL13462
Nebraska, USA	LPO		0.84	0.90						
(1992) 40-3										
	PRE	2	6.4	6.8	Seed	108	< 0.05	< 0.05	< 0.13	MSL13462
	EPO	_	0.63	0.68						
	PRE	2	6.4	6.8	Seed	91	0.16	0.21	0.48	MSL13462
	LPO		1.7	1.8	~					
	PRE	3	6.4	6.8	Seed	91	0.07	0.11	0.24	MSL13462
	EPO		0.84	0.90						
	LPO	4	0.84	0.90	G 1				4.2	MGI 124(2
	PRE	4	6.	6.8	Seed	12	<u>3.7</u>	0.42	<u>4.3</u>	MSL13462
	EPO		0.84	0.90						
	LPO		0.84	0.90						
Cont to Illinois	PH	2	0.84	0.89	Seed	00	1.1	1.0	<u>4.0</u>	MGI 12464
Carlyle, Illinois	PRE	2	6.4	6.1	Seeu	90	<u>1.1</u>	1.9	<u>4.0</u>	MSL13464
USA (1993) 40-3	LPO	3	0.84	0.55	Seed	00	1 1	1.0	3.8	MSL13464
	PRE EPO	5	6.4 0.84	6.13 0.56	Secu	90	1.1	1.8	5.0	WISL15404
	LPO		0.84	0.55						
	PRE	4	6.4	6.13	Seed	12	0.93	1.5	3.2	MSL13464
	EPO		0.84	0.15	~~~~~	12	0.75	1.5		
	LPO		0.84	0.55						
	PH		0.84	0.56						
Carman,	PRE	2	6.4	3.39	Seed	93	0.28	0.40	0.89	MSL13464
Illinois USA	LPO		0.84	0.45			<u></u>			
(1993) 40-3	-									
× ′	PRE	3	6.4	3.39	Seed	93	0.24	0.39	0.83	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PRE	4	6.4	3.39	Seed	16	0.16	0.27	0.57	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PH		0.84	0.45						
Conklin,	PRE	2	6.4	4.23	Seed	94	0.40	0.54	1.2	MSL13464
Michigan USA	LPO		0.84	0.53						
(1993) 40-3										

Location			Applicatio		Sample	PHI		idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
	PRE	3	6.4	4.23	Seed	94	0.50	0.71	1.6	MSL13464
	EPO		0.84	0.53						
	LPO		0.84	0.53						
	PRE	4	6.4	4.23	Seed	15	<u>1.7</u>	0.96	<u>3.2</u>	MSL13464
	EPO		0.84	0.53						
	LPO		0.84	0.53						
	PH		0.84	0.55						
Danville, Iowa	PRE	2	6.4	3.39	Seed	90	0.11	0.16	0.35	MSL13464
USA (1993)	LPO		0.84	0.45						
40-3		-			0 1				0.47	
	PRE	3	6.4	3.39	Seed	90	0.18	0.19	0.47	MSL13464
	EPO		0.84	0.45						
-	LPO		0.84	0.45	0 1				0.70	NGL 12464
	PRE	4	6.4	3.39	Seed	12	<u>0.37</u>	0.27	<u>0.78</u>	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PH	2	0.84	0.45	G 1				67	MGI 12464
Faiborn, Ohio	PRE	2	6.4	3.60	Seed	90	<u>1.4</u>	2.8	<u>5.7</u>	MSL13464
USA (1993) 40-3	LPO		0.84	0.43						
40-3	PRE	3	6.4	3.60	Seed	90	0.62	1.1	2.3	MSL13464
	EPO	-	0.84	0.41	~~~~	70	0.02	1.1		
	LPO		0.84	0.41						
-	PRE	4	6.4	3.60	Seed	12	0.97	1.6	3.4	MSL13464
	EPO		0.84	0.41		12	0.97	1.0		
	LPO		0.84	0.43						
	PH		0.84	0.62						
Grangeburg,	PRE	2	6.4	3.32	Seed	106	0.33	0.08	0.45	MSL13464
Alabama USA	LPO		0.84	0.45		100	0.55	0.00		
(1993) 40-3										
	PRE	3	6.4	3.32	Seed	116	0.30	0.58	1.2	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.44						
-	PRE	4	6.4	3.32	Seed	14	<u>0.44</u>	0.46	<u>1.1</u>	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.44						
	PH		0.84	0.44						
Hills, Minnesota	PRE	2	6.4	6.72	Seed	95	0.42	0.48	1.2	MSL13464
USA (1993) 40-3	LPO		0.84	0.87						
	PRE	3	6.4	6.72	Seed	95	<u>0.60</u>	0.61	<u>1.5</u>	MSL13464
	EPO		0.84	0.83						
	LPO		0.84	0.87						
	PRE	4	6.4	6.72	Seed	11	0.58	0.60	1.5	MSL13464
	EPO		0.84	0.83						
	LPO		0.84	0.87						
	PH		0.84	0.88						
Lamberton,	PRE	2	6.4	3.41	Seed	75	1.6	1.3	3.6	MSL13464
Minnesota USA (1993) 40-3	LPO		0.84	0.45						
	PRE	3	6.4	3.41	Seed	75	<u>3.5</u>	3.3	<u>8.5</u>	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.45						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
	PRE	4	6.4	3.41	Seed	12	2.8	2.5	6.6	MSL13464
	EPO		0.84	0.45						
	LPO		0.84	0.45						
	PH		0.84	0.45						
Martinsville,	PRE	2	6.4	3.47	Seed	86	< 0.05	< 0.05	< 0.13	MSL13464
Indiana USA	LPO		0.84	0.83						
(1993) 40-3										
	PRE	3	6.4	3.47	Seed	91	0.48	1.1	2.2	MSL13464
	EPO		0.84	0.83						
	LPO		0.84	0.76						
	PRE	4	6.4	3.47	Seed	11	0.56	1.2	<u>2.4</u>	MSL13464
	EPO		0.84	0.83						
	LPO		0.84	0.76						
	PH		0.84	0.76						
New Holland,	PRE	2	6.4	3.66	Seed	87	0.53	1.0	2.1	MSL13464
Ohio USA	LPO		0.84	0.43		0,	0.00			
(1993) 40-3		2			0 1				7.1	NOL 12464
	PRE	3	6.4	3.66	Seed	87	<u>1.9</u>	3.4	<u>7.1</u>	MSL13464
	EPO		0.84	0.47						
	LPO		0.84	0.43						
	PRE	4	6.4	3.67	Seed	10	0.57	1.1	2.2	MSL13464
	EPO		0.84	0.47						
	LPO		0.84	0.43						
	PH		0.84	0.63						
Renner, South	PRE	2	6.4	6.58	Seed	96	0.98	1.2	2.8	MSL13464
Dakota USA	LPO		0.84	0.82						
(1993) 40-3										
	PRE	3	6.4	6.58	Seed	96	<u>1.4</u>	1.7	4.0	MSL13464
	EPO		0.84	0.84						
	LPO		0.84	0.82						
	PRE	4	6.4	6.58	Seed	11	1.4	1.6	3.8	MSL13464
	EPO		0.84	0.84						
	LPO		0.84	0.82						
	PH		0.84	0.84						
Richland, Iowa	PRE	2	6.4	3.78	Seed	95	0.25	0.38	0.83	MSL13464
USA (1993)	LPO		0.84	0.49						
40-3										
	PRE	3	6.4	3.78	Seed	95	0.21	0.33	0.71	MSL13464
	EPO		0.84	0.48						
	LPO		0.84	0.49						
	PRE	4	6.4	3.78	Seed	10	0.42	0.54	<u>1.2</u>	MSL13464
	EPO		0.84	0.48		10	0.12	0.27		
	LPO		0.84	0.40						
	PH		0.84	0.47						
Salisbury,	PRE	2	6.4	4.73	Seed	106	0.06	< 0.05	< 0.14	MSL13464
Maryland USA	LPO	-	0.4	0.57		100	0.00	× 0.05		
(1993) 40-3			0.04	0.57						
(1995) 40-3	PRE	3	6.4	4.73	Seed	106	0.10	0.21	0.42	MSL13464
	PRE EPO	5	6.4 0.84	4.73 0.59	5000	100	0.10	0.21	0.72	115015404
	LPO	4	0.84	0.57	Seed	10	0.27	0.21	<u>0.59</u>	MSL13464
	PRE	-+	6.4	4.73	Seeu	12	<u>0.27</u>	0.21	0.37	1015115404
	EPO		0.84	0.59						
	LPO		0.84	0.57						
	PH	1	0.84	0.59						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Sheridan,	PRE	2	6.4	3.45	Seed	88	<u>1.5</u>	2.2	<u>4.9</u>	MSL13464
Indiana USA	LPO		0.84	0.75						
(1993) 40-3										
	PRE	3	6.4	3.45	Seed	88	0.57	0.92	2.0	MSL13464
	EPO		0.84	0.89						
	LPO		0.84	0.75						
	PRE	4	6.4	3.45	Seed	11	0.43	0.68	1.5	MSL13464
	EPO		0.84	0.89						
	LPO		0.84	0.75						
	PH		0.84	0.69						
Steele,	PRE	2	6.4	5.50	Seed	90	0.05	0.05	0.13	MSL13464
Missouri USA	LPO		0.84	0.58						
(1993) 40-3										
	PRE	3	6.4	5.45	Seed	76	0.33	0.48	1.1	MSL13464
	EPO		0.84	0.59						
	LPO		0.84	0.76						
	PRE	4	6.4	5.50	Seed	10	<u>0.51</u>	0.33	<u>1.0</u>	MSL13464
	EPO		0.84	0.59						
	LPO		0.84	0.75						
	PH		0.84	0.62						
Webster City,	PRE	2	6.4	4.52	Seed	99	0.24	0.25	0.62	MSL13464
Iowa USA	LPO		0.84	0.52						
(1993) 40-3										
	PRE	3	6.4	4.52	Seed	99	0.48	0.51	1.3	MSL13464
	EPO		0.84	0.57						
	LPO		0.84	0.52						
	PRE	4	6.4	4.52	Seed	10	<u>0.7</u>	0.6	<u>1.6</u>	MSL13464
	EPO		0.84	0.57						
	LPO		0.84	0.52						
A 1' /' /	PH		0.84	0.55			DO 14			

Application type: PRE = pre-emergence; EPO = early post-emergence; LPO = late post-emergence; PH = pre-harvest

Table 56. Residues in Glyphosate tolerant sugar beet root (USA) following application of an SL formulation of glyphosate (410SL as the isopropylamine salt = 360 g ae/L).

Location		Application			PHI	Residues (mg/kg)			Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Clay county,	PRE	4	4.4	4.20	59	0.69	< 0.05	0.69	MSL14542
Minnesota, USA	2-4		0.86	0.84					
(1996) Event 77	6-8		0.85	0.84					
	PH		0.85	0.84					
	PRE	4	3.4	3.36	28	8.6	0.25	9.0	MSL14542
	2-4		0.85	0.84					
	12-14		0.86	0.84					
	PH		1.7	1.68					
Polk, Minnesota	PRE	4	4.1	2.40	58	0.06	< 0.05	0.06	MSL14542
USA (1996)	2-4		0.81	0.48					
Event 77	6-8		0.87	0.48					
	PH		0.83	0.48					
	PRE	4	3.4	1.92	31	8.5	0.17	8.8	MSL14542
	2-4		0.82	0.48					
	12-14		0.83	0.48					
	PH		1.7	0.96					

Location			Applicatio	ı	PHI	Residues (mg/kg)			Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Renville, Minnesota USA	PRE 2-4	4	4.3 0.84	3.36 0.48	56	1.0	< 0.05	1.0	MSL14542
(1996) Event 77	6-8		0.83	0.48					
	PH		0.84	0.48					
	PRE	4	3.2	2.69	28	6.8	0.17	7.1	MSL14542
	2-4 12-14		0.84 0.82	0.48 0.56					
	12-14 PH		0.82 1.7	0.36					
Saginaw,	PRE	4	4.1	2.10	70	0.05	< 0.05	0.05	MSL14542
Michigan, USA	2-4		0.84	0.42	95	< 0.05	< 0.05	< 0.05	
(1996) Event 77	6-8		0.84	0.42					
	PH		0.83	0.42					
	PRE	4	3.3	1.68	31	6.5	0.11	6.7	MSL14542
	2-4 12-14		0.85 0.83	0.42 0.42	56	6.0	0.05	6.1	
	12-14 PH		1.7	0.42					
Richland, North	PRE	4	4.1	2.80	52	2.4	0.07	2.5	MSL14542
Dakota USA	2-4	.	0.83	0.56	59	2.7	< 0.05	2.7	
(1996) Event 77	6-8		0.84	0.56	66	2.1	0.08	2.2	
	PH		0.84	0.56	73	1.5	0.08	1.6	
					80	1.9	0.09	2.0	
	PRE	4	3.3	2.24	22	8.1	0.16	8.3	MSL14542
	2-4 12-14		0.84 0.84	0.56 0.56	29 36	7.0 5.3	0.09 0.15	7.1 5.5	
	PH		1.7	1.12	43	5.0	0.15	5.2	
			1.7	1.12	50	6.4	0.19	6.7	
Scottsbluff,	PRE	4	4.1	2.10	59	0.06	< 0.05	0.06	MSL14542
Nebraska USA	2-4		0.82	0.42	98	< 0.05	< 0.05	< 0.05	
(1996) Event 77	6-8		0.81	0.42					
	PH	4	0.83	0.42	20	4.0	0.07	4.0	MGT 14542
	PRE 2-4	4	3.2 0.82	1.68 0.42	29 68	4.8 2.9	0.07 0.05	4.9 3.0	MSL14542
	12-14		0.82	0.42	08	2.9	0.05	5.0	
	PH		1.7	0.84					
Hockley, Texas	PRE	4	4.3	2.80	59	0.42	< 0.05	0.42	MSL14542
USA (1996)	2-4		0.83	0.56	92	0.21	< 0.05	0.21	
Event 77	6-8		0.85	0.56					
	PH PRE	4	0.84	0.56	29	7.7	0.19	8.0	MSL14542
	2-4	4	5.5 0.84	2.24 0.56	62	3.9	0.19	8.0 4.0	MSL14542
	12-14		0.85	0.56	02	5.7	0.09	7.0	
	PH		1.7	1.12					
Weld, Colorado,	PRE	4	4.3	2.40	63	0.24	0.05	0.32	MSL14542
USA (1996)	2-4		0.85	0.48					
Event 77	6-8		0.87	0.56					
	PH PRE	4	0.84 3.4	0.56	31	3.2	0.10	3.4	MSL14542
	2-4	4	5.4 0.84	0.48	31	3.2	0.10	5.4	1015114342
	12-14		0.85	0.48					
	PH		1.7	1.12					
Stanislaus,	PRE	4	4.2	2.10	61	0.46	0.07	0.57	MSL14542
California USA	2-4		0.86	0.37	99	0.23	< 0.05	0.23	
(1996) Event 77	6-8		0.86	0.37					
	PH PRE	4	0.86	0.37	31	6.8	0.46	7.5	MSL14542
	2-4	1	0.87	0.37	69	0.8 4.7	0.46	5.2	1015114342
	12-14		0.83	0.42		,	0.01	0.2	
	PH		1.8	0.75					
Stanislaus,	PRE	4	4.4	1.87	62	0.41	< 0.05	0.41	MSL14542
California USA	2-4		0.87	0.37	99	0.23	0.13	0.43	
(1996) Event 77	6-8		0.83	0.42					
	PH		0.82	0.42					

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
	PRE	4	3.4	1.68	32	7.5	0.54	8.3	MSL14542
	2-4		0.83	0.42	69	2.5	0.26	2.9	
	12-14		0.83	0.42					
	PH		1.7	0.84					
Power, Idaho	PRE	4	4.3	2.80	60	0.21	< 0.05	0.21	MSL14542
USA (1996)	2-4		0.90	0.56					
Event 77	6-8		0.86	0.56					
	PH		0.86	0.56					
	PRE	4	3.4	2.24	29	3.3	0.15	3.5	MSL14542
	2-4		0.90	0.56					
	12-14		0.84	0.56					
	PH		1.6	0.56					
Twin Falls,	PRE	4	4.2	2.80	58	0.14	0.05	0.22	MSL14542
Idaho USA	2-4		0.84	0.56					
(1996) Event 77	6-8		0.85	0.56					
	PH		0.85	0.56					
	PRE	4	3.3	2.24	30	8.1	0.15	8.3	MSL14542
	2-4		0.86	0.56					
	12-14		0.88	0.56					
	PH		1.7	1.12					

The first application is a pre-emergent application. Subsequent applications are in-crop post-emergent applications, 2-4 leaf stage, 4-8 leaf stage, 12-14 leaf stage and pre-harvest rescue.

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Franc Warret,	С	1	2.2		0	29	0.05	29	MLL31337
Belgium (1999)					7	<u>10</u>	0.13	$\frac{10}{10}$	
Marilor					14	10	0.15		
	G	1	2.2		0	20	< 0.05	20	MLL31337
					7	9.5	0.11	9.7	
					14	7.7	0.12	7.9	
Franc Warret,	С	1	2.2		0	16	< 0.05	16	MLL30815
Belgium (1998)					7	<u>20</u>	0.12	$\frac{\underline{20}}{7.8}$	
Marilor					14	7.8	< 0.05		
	Н	1	2.2		0	12	< 0.05	12	MLL30815
					7	14	0.12	14	
	_			à - (-	14	7.5	< 0.05	7.5	
Ansoville,	E	1	2.1	0.67	7	<u>6.3</u>			RJ2907B
Loiret, France (1999) Esterel									
(1999) Esterer	F	1	2.12	0.69	7	5.5			RJ2907B
Coupigny,	E F	1	2.12	0.69	7	1.3			RJ2907B
Seine-et-Marne,	L	1	2.0	0.08	/	1.5			KJ2907D
France (1999)									
Esterel									
Esterer	F	1	2.1	0.69	7	1.5			RJ2907B
Duras	C	1	2.2	0.07	0	10	< 0.05	10	MLL31337
Aquitaine,	-				7	8.5	0.07		
France (1999)					14	3.0	< 0.05	$\frac{8.6}{3.0}$	
Intro									
	G	1	2.2		0	19	< 0.05	19	MLL31337
					7	5.5	< 0.05	5.5	
					14	7.1	0.07	7.2	
St Paul les	С	1	2.2		0	19	0.09	19	MLL31337
Romans, Rhône-					7	<u>19</u> 15	0.20	$\frac{19}{15}$	
Aples, France					14	15	0.22	15	
(1999) Platine									

Location			Applicatio	n	PHI		idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
	G	1	2.2		0	9.3	< 0.05	9.3	MLL31337
					7	19	0.19	19	
					14	12	0.20	12	
Ploudalmézeau,	С	1	2.2		0	15	0.08	15	MLL31337
Bretagne,					7	16	0.22	16	
France (1999) Scarlett					14	1.8 c0.11	0.10	2.0	
	G	1	2.2		0	16	0.08	16	MLL31337
					7	<u>19</u>	0.21	$\frac{19}{5.0}$	
		<u> </u>			14	4.8 c0.11	0.16		
Levroux, Centre,	С	1	2.2		0	12	< 0.05	12	MLL31337
France (1999) Scarlett					7	4.4	< 0.05	4.4	
Scarlett	G	1	2.2		14 0	4.8 16	0.08	4.9	MLL31337
	G	1	2.2		7	3.8	< 0.06	3.8	MLL31337
		1			14	5.8 <u>5.5</u>	< 0.05 0.08	3.8 <u>5.6</u>	1
Favières,	С	1	2.2		0	<u> </u>	< 0.08	12	MLL31337
Lorraine, France	C		2.2		7	12	0.13	12	
(1999)		1			14	12	0.13	<u>12</u> <u>14</u>	1
Emeraude						<u> </u>	0.20	<u> </u>	
-	G	1	2.2		0	19	0.06	19	MLL31337
					7	11	0.14	11	
					14	10	0.15	10	
Duras	С	1	2.1		0	21	0.08	21	MLL30815
Aquitaine,					7	5.2	0.06	5.3	
France (1998) Express					15	2.6	< 0.05	2.6	
	Н	1	2.0		0	13	< 0.05	13	MLL30815
					7	<u>6.7</u>	0.06	<u>6.8</u>	
~ ~	~				15	4.7	0.06	4.8	
St Paul les	С	1	2.4		0	18	0.07	18	MLL30815
Romans, Rhône-					7 15	$\frac{15}{14}$	0.17	$\frac{15}{14}$	
Alpes, France (1998) Deborah					15	14	0.2	14	
	Н	1	2.2		0	21	0.08	21	MLL30815
					7	12	0.16	12	
					15	9.9	0.16	10	
Ploudalmézeau,	С	1	2.1		0	9.9	< 0.05	9.9	MLL30815
Bretagne,					7	12	0.11	12	
France (1998) Intro					14	<u>19</u>	0.16	<u>19</u>	
1	Н	1	2.1		0	9.3	< 0.05	9.3	MLL30815
		1			7	9.9	0.13	10	1
					14	0.93	< 0.05	0.93	
Levroux, Centre,	С	1	2.2		0	17	0.05	17	MLL30815
France (1998)		1			9	5.8	0.05	5.9	1
Nevada					14	4.2	0.05	4.3	
	Н	1	2.2		0	15	< 0.05	15	MLL30815
		1			9	$\frac{5.9}{4.9}$	0.05	$\frac{6.0}{1.0}$	
Facility	0	1	2.1		14	4.0	< 0.05	4.0	MI 1 2001 7
Favières, Lorraine, France	С	1	2.1		0 7	22 1.8	0.06 < 0.05	22 1.8	MLL30815
(1998) Scarlet		1			14	1.8 1.4	< 0.05 < 0.05	1.8 1.4	1
(1990) Scallet	Н	1	2.3		0	1.4	0.06	1.4	MLL30815
	п	1	2.3		7	2.0	< 0.06	2.0	WILLSU813
		1			14	2.0 2.2	< 0.03	<u>2.0</u> <u>2.2</u>	
57°11	Ι	1	2.1	1 1		10	< 0.05	10	GLY 528
Villeneuve,	1		2.1	1.1	0	2.5	0.051	2.6	GL1 520
South France		1			7	1.6	< 0.051	1.6	
(1998) Sunrise [winter barley]					14	1.0	0.00	1.0	

Location			Applicatio	on	PHI	Res	sidues (mg/kg)		Report/	
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference	
	J	1	2.1	1.1	0	10	0.070	10	GLY 528	
				-	7	<u>2.9</u>	0.069	<u>3.0</u>		
					14	2.1	0.058	2.2		
Bron, France	Ι	1	2.3	1.1	0	10	0.072	10	GLY 528	
(1998) Cameo					7	6.1	0.074	6.2		
[spring barley]					14	3.8 c0.087	0.083	3.9		
	J	1	2.2	1.1	0	7.2	< 0.05	7.2	GLY 528	
	5	1	2.3	1.1	7	4.6	0.074	4.7	GE1 520	
					14	<u>7.9</u> c0.087	0.097	<u>8.0</u>		
Berstheim, Alsace, France (1998) Nevacla	Ι	1	2.1	1.1	7	<u>13</u> c0.047	0.077	0.0	GLY 418	
	J	1	2.1	1 1	7	11 c0.047			GLY 418	
	5	1	2.1	1.1						
	J	1	1.7	0.81	7	6.2 c0.047			GLY 418	
Vayres sur	K	1	1.1	0.54	8	1.0	< 0.05	1.0	MLL30281	
Essonne, La Ferte-Alais, France (1991) Volga	ĸ	1	1.1	0.54	0	1.0	< 0.05	1.0	MLL30281	
C	Κ	1	2.2	1.1	8	1.8	< 0.05	1.8	MLL30281	
	L	1	1.0	0.53	8	0.07	< 0.05	0.07	MLL30281	
	L	1	2.1	1.0	8	2.8	< 0.05	2.8	MLL30281	
	C	1	2.2	1.1	8	1.6	< 0.05	1.6	MLL30281	
Champmotteux, Maisse, France (1991) Natacha	K	1	1.1	0.54	7	1.2	< 0.05	1.2	MLL30281	
(1))1)110000	K	1	2.2	1.1	7	1.6	< 0.05	1.6	MLL30281	
	L	1	1.0	0.53	7	1.0	< 0.05	1.0	MLL30281	
	L	1	2.1	1.0	7	2.2	< 0.05	2.2	MLL30281	
	C	1	2.1	1.0	7	3.3	< 0.05	<u>3.3</u>	MLL30281	
Sept Sauly, Reims, France	K	1	1.1	0.54	7	4.3	0.06	<u>9.9</u> 4.4	MLL30281 MLL30281	
(1991) Volga	V	1	2.2	1 1	7	5.4	0.00	5.5	MI I 20201	
	K	1	2.2	1.1	7	5.4	0.08	5.5	MLL30281	
	L		1.0	0.53	7	3.2	< 0.05	3.2	MLL30281	
	L	1	2.1	1.0	7	4.4	0.06	4.5	MLL30281	
	C	1	2.2	1.1	7	7.2	0.07	<u>7.3</u>	MLL30281	
Verneuil sur Serre, Laon, France (1991) Natacha	K	1	1.1	0.54	7	4.4	0.06	4.5	MLL30281	
	K	1	2.2	1.1	7	5.9	0.09	6.0	MLL30281	
	L	1	1.0	0.53	7	2.8	< 0.05	2.8	MLL30281	
	L	1	2.1	1.0	7	4.0	0.06	4.1	MLL30281	
	С	1	2.2	1.1	7	<u>9.6</u>	0.09	<u>9.7</u>	MLL30281	
Denton, Lincolnshire, UK (1999) Gleam	E	1	2.0		7	<u>6.3</u>		<u>6.3</u>	RJ2907B	
	F	1	2.1		7	5.1		5.1	RJ2907B	
Elford, Staffordshire, UK (1999) Regina	E	1	2.0	0.68	7	8.1		8.1	RJ2907B	
- 0*	F	1	2.1	0.69	7	8.4		8.4	RJ2907B	
Normanton, UK (1982) Igri	С	1	1.4	0.56	9	3.3	< 0.01	<u>3.3</u>	MLL30087	
Lechdale, UK (1982) Igri	С	1	1.4	0.70	12	1.6	< 0.05	1.6	MLL30087	

Location			Application	1	PHI	Res		Report/	
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
East Lothians, UK (1982) Igri	С	1	1.4	0.70	6	<u>4.4</u>	< 0.05	<u>4.4</u>	MLL30087
Bossal, UK (1982) Igri	С	1	1.4	0.54	8	<u>11</u>	0.09	<u>11</u>	MLL30087
Cottenham, UK (1982) Triumph	С	1	1.4	0.70	7	<u>1.4</u>	< 0.05	<u>1.4</u>	MLL30087

Formulation C = Roundup® 360 g ae/L SL; Formulation E = 337 g ae/L SL (trimesium salt); Formulation F = 347 g ae/L SL; Formulation G = MON 78294 450 g ae/L SL; Formulation H = MON 14420 680 g ae/kg SG; Formulation I and J both 360 g ae/L SL formulations; Formulation K = MON52776 360 g ae/L SL; Formulation L = MON44068 420 g ae/kg SG

Location			Application	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Greene Co., Iowa, USA (1997) DR592SR	SL	1	2.5	1.3	7	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	MSL14917
Guthrie Co., Iowa, USA (1997) 2547	SL	1	2.5	1.4	7	<u>0.06</u>	< 0.05	<u>0.06</u>	MSL14917
Jefferson Co., Iowa, USA (1997) 34RO6	SL	1	2.6	1.6	7	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	MSL14917
Clinton Co., Illinois, USA (1997) Pioneer 3394	SL	1	2.5	1.5	7	<u>< 0.05</u>	< 0.05	<u><0.05</u>	MSL14917
Jersey Co., Illinois, USA (1997) Pioneer 3394	SL	1	2.5	1.3	7	<u>0.09</u>	< 0.05	<u>0.09</u>	MSL14917
Burt Co., Nebraska, USA (1997) P34RO6 B+	SL	1	2.5	1.3	7	<u>< 0.05</u>	< 0.05	<u><0.05</u>	MSL14917
York Co., Nebraska, USA (1997) 3394	SL	1	2.5	1.2	6	<u>0.05</u>	< 0.05	<u>0.05</u>	MSL14917
Wayne Co., New York, USA (1997) Agway 266	SL	1	2.6	1.2	7	<u>3.0</u>	< 0.05	<u>3.0</u>	MSL14917
Wilson Co., North Carolina USA (1997) Pioneer 3163	SL	1	2.7	1.2	7	<u>0.06</u>	< 0.05	<u>0.06</u>	MSL14917
Monmouth, Illinois USA (1993) Asgrow 707/623	SL	1	2.5	1.6	6	<u>0.07</u>	0.08	<u>0.19</u>	MSL13654
Fishers, Indiana USA (1993) Select 3720	SL	1	2.5	1.9	7	<u>< 0.05</u>	< 0.05	<u>≤0.05</u>	MSL13654
Danville, Iowa USA (1993) Querna 7670	SL	1	2.5	1.2	7	<u>< 0.05</u>	0.13	<u>≤0.25</u>	MSL13654
Lexington, Kentucky, USA (1993) Pioneer 3320	SL	1	2.5	1.7	7	<u>0.05</u>	0.06	<u>0.14</u>	MSL13654

Table 58. Residues in	Conventional	Maize grain:	Pre-harvest	Ap	olication	(USA).	

Location			Application	1	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Conklan, Michigan USA (1993) Pioneer 3563	SL	1	2.6	1.5	6	<u>< 0.05</u>	< 0.05	<u><0.05</u>	MSL13654
Lamberton, Minnesota USA (1993) Pioneer 3563	SL	1	2.5	1.2	6	<u>0.19</u>	< 0.05	<u>0.19</u>	MSL13654
Leonard, Missouri USA (1993) C-G- 4490	SL	1	2.5	1.4	6	<u>< 0.05</u>	< 0.05	<u><0.05</u>	MSL13654
York, Nebraska USA (1993) Pioneer 3162	SL	1	2.5	2.4	6	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	MSL13654
New Holland, Ohio USA (1993) Madison Seed GL 235	SL	1	2.5	1.4	6	<u>0.54</u>	< 0.05	<u>0.54</u>	MSL13654
Valley Springs, South Dakota USA (1993) Pioneer 3563	SL	1	2.5	2.3	7	<u>< 0.05</u>	< 0.05	<u><0.05</u>	MSL13654
Uvalde, Texas USA (1993) Pioneer 3245	SL	1	2.5	1.2	6	<u>< 0.05</u>	0.12	<u>< 0.23</u>	MSL13654
Delavan, Wisconsin USA (1993) RK 702	SL	1	2.5	1.3	7	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	MSL13654

410SL as isopropylamine salt = 300 g ae/L

Table 59. Residues in Glyphosate Tolerant Maize following application of glyphosate SL formulation as the isopropylamine salt (360 g ae/L).

Location			Application	1	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Chula, Tift County,	PRE	4	4.3	2.1	68	0.09	< 0.05	0.09	MSL15334
Georgia USA	EPO		0.86	0.42					
(1998) GA21	LPO		0.85	0.48					
	DN		0.84	0.67					
	PRE	4	3.4	2.1	68	0.11	< 0.05	0.11	MSL15334
	EPO		0.86	0.42					
	LPO		0.86	0.48					
	DN		1.7	1.34					
	PRE	3	4.3	2.1	74	<u>0.28</u>	< 0.05	0.28	MSL15334
	EPO		0.87	0.42					
	LPO		1.7	0.96					
Richland, Jefferson	PRE	4	4.2	2.1	77	0.05	< 0.05	0.05	MSL15334
County Iowa USA	EPO		0.84	0.42					
(1999) GA21	LPO		0.84	0.42					
	DN		0.84	0.42					
	PRE	4	3.5	2.1	77	0.06	< 0.05	0.06	MSL15334
	EPO		0.85	0.42					
	LPO		0.85	0.42					
	DN		1.7	0.84					
	PRE	3	4.2	2.1	85	0.05	< 0.05	0.05	MSL15334
	EPO		0.86	0.42					
	LPO		1.7	0.84					

Location			Applicatio	on	PHI	Re	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Webster City,	PRE	4	4.2	2.8	98	0.07	< 0.05	0.07	MSL15334
Hamilton County, Iowa USA (1998)	EPO		0.84	0.56					
GA21	LPO DN		0.84 0.84	0.56 0.48					
	PRE	4	3.3	2.8	98	0.07	< 0.05	0.07	MSL15334
	EPO		0.84	0.56	20	0.07	0.00	0.07	1010110001
	LPO		0.84	0.56					
	DN		1.7	0.96					
	PRE	3	4.3	2.8	107	<u>0.12</u>	< 0.05	<u>0.12</u>	MSL15334
	EPO		0.85	0.56					
Bagley, Guthrie	LPO PRE	4	<u>1.7</u> 4.3	1.12	96	0.06	< 0.05	0.06	MSL15334
County Iowa USA	EPO	4	0.88	0.42	90	0.00	< 0.05	0.00	WISL15554
(1998) GA21	LPO		0.84	0.42					
	DN		0.80	0.48					
	PRE	4	3.5	2.1	96	0.08	< 0.05	0.08	MSL15334
	EPO		0.87	0.42					
L	LPO		0.84	0.42					
	DN	3	1.6	0.96	105	0.14	< 0.05	0.14	MCI 15224
	PRE EPO	3	4.2 0.88	2.1 0.42	105	<u>0.14</u>	< 0.05	<u>0.14</u>	MSL15334
	LPO		1.7	0.84					
Berkley, Boone	PRE	4	4.3	2.1	93	< 0.04	< 0.05	< 0.04	MSL15334
County Iowa USA	EPO		0.88	0.42					
(1998) GA21	LPO		0.85	0.42					
	DN		0.80	0.48					
	PRE	4	3.4	2.1	93	<u>0.08</u>	< 0.05	<u>0.08</u>	MSL15334
	EPO LPO		0.87 0.84	0.42 0.42					
	DN		1.6	0.42					
	PRE	3	4.2	2.1	103	0.04	< 0.05	0.04	MSL15334
	EPO		0.88	0.42					
	LPO		1.7	0.84					
Dow, Jersey	PRE	4	4.2	2.4	77	0.04 c0.09	< 0.05 c0.1	0.04	MSL15334
County, Illinois USA (1998) GA21	EPO		0.84	0.48				c0.09	
05/1 (1990) 0/121	LPO DN		0.84 0.85	0.48 0.48					
	PRE	4	3.4	2.4	77	0.26 c0.09	< 0.05 c0.1	0.26	MSL15334
	EPO	-	0.85	0.48	//	0.20 00.07	< 0.05 C0.1	c0.09	IVISL15554
	LPO		0.86	0.48				00.09	
	DN		1.6	0.96					
	PRE	3	4.2	2.4	84	0.18 c0.09	< 0.05 c0.1	0.18	MSL15334
	EPO		0.85	0.48				c0.09	
Carlyle, Clinton	LPO	4	1.7	0.96	0.4	0.04	< 0.05	0.04	MOI 15224
County Illinois	PRE EPO	4	4.2 0.84	2.8 0.56	84	0.04	< 0.05	0.04	MSL15334
USA (1998) GA21	LPO		0.84	0.30					
	DN		0.82	0.56					
	PRE	4	3.4	2.8	84	0.10	< 0.05	0.10	MSL15334
	EPO		0.84	0.56					
	LPO		0.85	0.48					
	DN		1.6	1.12		<u> </u>	0.05	0.04	
	PRE EPO	3	4.2 0.86	2.8	93	< 0.04	< 0.05	< 0.04	MSL15334
	EPO LPO		0.86 1.7	0.56 0.96					
Wyoming,, Stark	PRE	4	4.2	2.4	101	0.04	< 0.05	0.04	MSL15334
County Illinois	EPO		0.84	0.56	101	0.0 f	- 0.05	0.07	
USA (198) GA21	LPO		0.84	0.67					
	DN		0.84	0.67					
	PRE	4	3.4	2.4	101	0.04	< 0.05	0.04	MSL15334
	EPO		0.84	0.56					
	LPO		0.84	0.67					
L	DN		1.7	1.34					

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
	PRE	3	4.2	2.4	108	<u>0.06</u>	< 0.05	<u>0.06</u>	MSL15334
	EPO		0.86	0.56					
N 11 '11	LPO	4	1.7	1.34	01	10.04	10.05	10.04	NOT 15224
Noblesville, Hamilton County	PRE	4	4.2	2.1	91	< 0.04	< 0.05	< 0.04	MSL15334
Indiana, USA	EPO LPO		0.84 0.85	0.42 0.42					
(1998) GA21	DN		0.83	0.42					
	PRE	4	3.4	2.1	91	0.04	< 0.05	0.04	MSL15334
	EPO		0.85	0.42	71	0.01	- 0.05	0.01	1015115551
	LPO		0.85	0.42					
	DN		1.7	0.96					
	PRE	3	4.2	2.1	102	<u>0.09</u>	< 0.05	0.09	MSL15334
	EPO		0.85	0.42					
	LPO		1.7	0.96					
	DN								
Williamston,	PRE	4	4.1	2.8	88	< 0.04	< 0.05	< 0.04	MSL15334
Ingham County Michigan USA	EPO		0.84	0.56					
(1998) GA21	LPO		0.84	0.56					
() -	DN	4	0.84	0.56	88	< 0.04	< 0.05	< 0.04	MSL15334
	PRE EPO	4	3.3 0.84	2.8 0.56	88	< 0.04	< 0.05	< 0.04	MSL15334
	LPO		0.84	0.56					
	DN		1.7	1.12					
	PRE	3	4.2	2.8	98	< 0.04	< 0.05	< 0.04	MSL15334
	EPO	5	0.84	0.56	70	<u></u>	- 0.05	<u>- 0.01</u>	1015115551
	LPO		1.7	1.12					
Conklin, Ottawa	PRE	4	4.2	2.4	94	0.07	< 0.05	0.07	MSL15334
County Michigan	EPO		0.84	0.48					
USA (1998) GA21	LPO		0.84	0.48					
	DN		0.84	0.48					
	PRE	4	3.4	2.4	94	0.12	< 0.05	0.12	MSL15334
	EPO		0.84	0.48					
	LPO		0.85	0.48					
	DN	2	1.7	0.96	104	0.15	< 0.05	0.15	MOL 15224
	PRE EPO	3	4.2 0.84	2.4 0.48	104	<u>0.15</u>	< 0.05	<u>0.15</u>	MSL15334
	LPO		0.84 1.7	0.48					
Campbell, Wilkin	PRE	4	4.3	2.1	75	0.07	< 0.05	0.07	MSL15334
County Minnesota	EPO	-	0.85	0.84	15	0.07	~ 0.05	0.07	110010007
USA (1998) GA21	LPO		0.85	0.84					
	DN		0.84	0.84					
	PRE	4	3.4	2.1	75	0.07	< 0.05	<u>0.07</u>	MSL15334
	EPO		0.85	0.84					
	LPO		0.85	0.84					
	DN		1.7	1.68				0.0-	1.01.1.222.1
	PRE	3	4.2	2.1	86	0.07	< 0.05	0.07	MSL15334
	EPO		0.85	0.84					
Hollandale,	LPO	4	1.7	1.68	91	0.19	< 0.05	0.10	MGI 15224
Freeborn County	PRE EPO	4	4.0 0.84	2.8 0.56	91	0.19	~ 0.05	0.19	MSL15334
Minnesota USA	EPO LPO		0.84	0.56					
(1998) GA21	DN		0.84	0.56					
	PRE	4	3.2	2.8	85	0.07	< 0.05	0.07	MSL15334
	EPO	r	0.86	0.56	05	0.07	- 0.05	0.07	1,10113337
	LPO		0.87	0.56					
	DN		1.7	1.12					
	PRE	3	4.1	2.8	102	0.23	< 0.05	0.23	MSL15334
	EPO		0.86	0.56					
	LPO		1.7	1.12					

Location			Application	n	PHI	Re	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Rose Hill,	PRE	4	4.1	2.8	67	0.28	< 0.05	0.28	MSL15334
Sampson County North Carolina	EPO		0.84	0.56					
USA (1998) GA21	LPO DN		0.84 0.84	0.56 0.56					
	PRE	4	3.3	2.8	67	0.25	< 0.05	0.25	MSL15334
	EPO		0.84	0.56	07	0.25	0.05	0.20	MBEI000
	LPO		0.84	0.56					
	DN		1.7	1.12					
	PRE	3	4.1	2.8	71	<u>0.33</u>	< 0.05	<u>0.33</u>	MSL15334
	EPO		0.84	0.56					
York, York County	LPO PRE	4	<u>1.7</u> 4.2	1.12 2.8	75	0.31	< 0.05	0.31	MSL15334
Nebraska (1998)	EPO	4	4.2 0.84	0.56	15	0.31	< 0.03	0.51	WISL15554
GA21	LPO		0.84	0.56					
	DN		0.85	0.56					
	PRE	4	3.3	2.8	75	0.25	< 0.05	0.25	MSL15334
	EPO		0.84	0.56					
	LPO		0.84	0.56					
	DN	2	1.67	1.12	01	0.00	10.05	0.00	NOT 15224
	PRE EPO	3	4.2 0.84	2.8 0.56	81	0.08	< 0.05	0.08	MSL15334
	LPO		1.7	1.12					
Osceola, Polk	PRE	4	4.2	2.1	70	0.05	< 0.05	0.05	MSL15334
County Nebraska	EPO		0.84	0.56	, 0	0.00	0.00	0.00	110210001
(1998) GA21	LPO		0.84	0.56					
	DN		0.84	0.84					
	PRE	4	3.3	2.1	70	0.05	< 0.05	0.05	MSL15334
	EPO		0.84	0.56					
	LPO		0.84	0.56					
	DN PRE	3	<u>1.7</u> 4.2	1.68 2.1	78	0.11	< 0.05	0.11	MSL15334
	EPO	3	4.2 0.84	0.56	/8	<u>0.11</u>	< 0.03	<u>0.11</u>	MSL15554
	LPO		1.7	1.12					
New Holland,	PRE	4	4.1	2.4	84	0.19	< 0.05	0.19	MSL15334
Fayette County	EPO		0.84	0.42					
Ohio USA (1998) GA21	LPO		0.85	0.48					
UA21	DN		0.84	0.67					
	PRE	4	3.3	2.4	84	0.19	< 0.05	0.19	MSL15334
	EPO LPO		0.85 0.85	0.42 0.48					
	DN		1.7	1.34					
	PRE	3	4.2	2.4	88	0.42	< 0.05	0.42	MSL15334
	EPO	-	0.84	0.42		<u></u>			
	LPO		1.7	0.96					
Germansville,	PRE	4	4.3		102	0.08	0.05	0.16	MSL15334
Leigh Co. Pennsylvania USA	EPO		0.85						
(1998) GA21	LPO		0.86						
	DN PRE	4	0.86	2.1	102	0.09	< 0.05	0.09	MSL15334
	EPO	4	0.85	0.42	102	0.09	< 0.05	0.09	WISL15554
	LPO		0.85	0.42					
	DN		1.7	1.68					
	PRE	3	4.3	2.1	110	<u>0.12</u>	< 0.05	0.12	MSL15334
	EPO		0.86	0.42					
D	LPO	$\left \right $	1.7	0.84				~ ~ -	
Britton, Marshall County South	PRE	4	4.2	4.2	101	0.08	< 0.05	0.08	MSL15334
Dakota USA	EPO L PO		0.84	0.84					1
(1998) GA21	LPO DN		0.84 0.84	0.84 0.56					
	PRE	4	3.3	4.2	101	0.09	< 0.05	0.09	MSL15334
	EPO	,	0.84	0.84	101	0.09	~ 0.05	0.07	1910110004
	LPO		0.84	0.84					1
	DN	1 1	1.7	1.12	1	1			1

Location			Application	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
			-	ae/hL					
	PRE	3	4.2	4.2	106	<u>0.10</u>	< 0.05	0.10	MSL15334
	EPO		0.84	0.84					
	LPO		1.7	1.68					
Buffalo Springs,	PRE	4	4.3	2.8	46	0.49	< 0.05	0.49	MSL15334
Clay County Texas	EPO		0.86	0.48					
USA (1998) GA21	LPO		0.85	0.56					
	DN		0.85	0.67					
	PRE	4	3.4	2.8	46	0.52	< 0.05	0.52	MSL15334
	EPO		0.86	0.48					
	LPO		0.84	0.56					
	DN		1.7	1.34					
	PRE	3	4.3	2.8	54	0.83	< 0.05	0.83	MSL15334
	EPO		0.86	0.48					
	LPO		1.7	1.12					
Verona, Dane	PRE	4	4.2	3.4	99	0.07	< 0.05	0.07	MSL15334
County Wisconsin	EPO		0.85	0.56					
USA (1998) GA21	LPO		0.87	0.48					
	DN		0.86	0.48					
	PRE	4	3.2	3.4	99	0.06	< 0.05	0.06	MSL15334
	EPO		0.82	0.56					
	LPO		0.82	0.48					
	DN		1.7	0.96					
	PRE	3	4.2	3.4	111	0.07	< 0.05	0.07	MSL15334
	EPO		0.84	0.56					
	LPO		1.7	0.96					
Delavan, Walworth	PRE	4	4.3	2.4	102	0.10	< 0.05	0.10	MSL15334
County Wisconsin	EPO		0.82	0.48					
USA (1998) GA21	LPO		0.84	0.48					
	DN		0.85	0.67					
	PRE	4	3.4	2.4	102	0.09	< 0.05	0.09	MSL15334
	EPO		0.85	0.48					
	LPO		0.82	0.48					
	DN		1.7	1.34					
	PRE	3	4.1	2.4	110	0.12	< 0.05	0.12	MSL15334
	EPO		0.84	0.48					
	LPO		1.6	0.96					

Treatment types include: PRE = pre-emergence; EPO = early post-emergence; LPO = late post-emergence; DN = drop nozzle.

Table 60. Residues in Oat grain: Pre-harvest Application.

Location			Application	on	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Elm Creek Manitoba, Canada (2001) Triple Crown	С	1	0.90	-	7	<u>0.70</u> , 0.42	< 0.05, < 0.05	<u>0.70</u> , 0.42	CER 01307/01
	М	1	0.90	-	7	0.54, 0.24	< 0.05, < 0.05	0.54, 0.24	CER 01307/01
Vanscoy, Saskatchewan, Canada (2001) Calibre	С	1	0.90	-	6	<u>4.6</u> , 2.7	0.16, 0.055	<u>4.8</u> , 2.8	CER 01307/01
	М	1	0.90	-	6	3.7, 3.2	0.06, < 0.05	3.8, 3.2	CER 01307/01
Minto, Manitoba, Canada (2001) AC Assiniboia	C	1	0.90	-	6	<u>3.1</u> , 1.2	0.051, 0.051	<u>3.2</u> , 1.3	CER 01307/01
	М	1	0.90	-	6	2.2, 2.4	< 0.05, < 0.05	2.2, 2.4	CER 01307/01

Location			Applicat	ion	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Fyn, Denmark	С	1	1.1	0.54	0	4.5 c0.1			MLL30150
(1984) Selma					4	6.1 c0.2			
					7	7.1 c0.2			
					10	8.2			
		_			15	<u>8.6</u> c0.3			
		1	2.2	1.1	0	6.3 c0.1			MLL30150
					4	19 c0.2			
					7 10	17 c0.2 18			
					10	17 c0.3			
Fyn, Denmark	С	1	1.1	0.54	0	3.0 c0.3			MLL30150
(1984) Selma	C	1	1.1	0.54	4	7.3 c0.3			WILL50150
(1)01) Sellina					7	13 c0.2			
					10	8.1 c0.1			
					15	14 c0.1			
		1	2.2	1.1	0	5.8 c0.3			MLL30150
					4	17 c0.3			
					7	18 c0.2			
					10	17 c0.1			
					15	21 c0.1			
Oglland,	С	1	1.1	0.54	0	4.0 c0.1			MLL30150
Denmark (1984)					4	5.1 c0.2			
Selma					7	$\frac{4.9}{0.1}$ c0.1			
					10	2.1 c0.1			
0 11 1	9	1		1.1	15	3.6 c0.1			N. H. J. 20150
Oglland,	С	1	2.2	1.1	0	5.4 c0.1			MLL30150
Denmark (1984) Selma					4 7	9.1 c0.2 5.3 c0.1			
Sellila					10	5.5 c0.1 5.1 c0.1			
					10	3.6 c0.1			
Newark,	С	1	1.44	0.72	7	<u>4.9</u>			GLY 282,
Nottinghamshire,	C	1	1.11	0.72	,	1.2			GLY 297
UK (1993) Craig									GET 277
- () 0		1	0.72	0.36	7	3.2			GLY 282,
									GLY 297
		1	0.72+0.825	0.36+0.41	7	3.4			GLY 282,
			Frigate	Frigate					GLY 297
		1	0.36+0.825	0.18+0.41	7	0.8			GLY 282,
		-	0.36+0.825 Frigate	0.18+0.41 Frigate	,	0.0			GLY 297
	С	1			7	<u>3.4</u> c0.03			GLY 282,
East Rounton,	C	1	1.44	0.72	/	<u>5.4</u> c0.05			GLY 282, GLY 297
Yorkshire, UK									GL1 277
(1993) Mirabel									
		1	0.72	0.36	7	2.5 c0.03			GLY 282,
					_				GLY 297
		1	0.72 + 0.825	0.36+0.41	7	3.3 c0.03			GLY 282,
			Frigate	Frigate					GLY 297
		1	0.36+0.825	0.18+0.41	7	0.4 c0.03			GLY 282,
		1	Frigate	Frigate					GLY 297
Brockhampton,	С	1	1.44	0.72	7	<u>4.1</u> c0.05			GLY 282,
Herefordshire,		1	1.77	0.72					GLY 297
UK (1993)		1							
Image									1
		1		0.07	7	2.8 c0.05			GLY 282,
		1	0.72	0.36	'	2.0 00.00			GLY 282, GLY 297
		1	0.70 . 0.005	0.26:0.41	7	3.1 c0.05			GLY 282,
		1	0.72+0.825	0.36+0.41	'	5.1 00.05			GLY 297
		-	Frigate	Frigate	7	0.0.007			
		1	0.36+0.825	0.18 + 0.41	7	0.8 c0.05			GLY 282,
		1	Frigate	Frigate					GLY 297

Location			Applicati	on	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Disewort, Leicestershire, UK (1993) Aintree	С	1	1.4	0.72	7	<u>5.2</u>			GLY 261, GLY 270
		1	0.72	0.36	7	2.8			GLY 261, GLY 270
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	7	3.8			GLY 261, GLY 270
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	7	1.4			GLY 261, GLY 270
East Rounton, North Yorkshire, UK (1993) Mirabel	С	1	1.4	0.72	7	<u>0.9</u> c0.03			GLY 261, GLY 270
		1	0.72	0.36	7	0.6 c0.03			GLY 261, GLY 270
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	7	1.9 c0.03			GLY 261, GLY 270
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	7	0.3 c0.03			GLY 261, GLY 270
Buckingham, UK (1982) Pennal	С	1	1.4	0.72	12	1.2	0.04	1.3	MLL30087
Cottenham, UK (1982) Trafalsar	C	1	1.4	0.72	7	<u>6.0</u> c0.1	0.05	<u>6.1</u>	MLL30087
Edinburgh, UK (1982) Maris Tabard	С	1	1.4	0.72	7	<u>3.4</u>	0.06	<u>3.5</u>	MLL30087
Skelton, UK (1982) Maris Quest	С	1	1.4	0.72	7	<u>8.1</u> c0.1	0.22	<u>8.4</u>	MLL30087

Formulation C = 360 g ae/L SL; Formulation M = 640 g ae/L (trimesium salt) SL + 0.5% v/v surfactant

Table 61.	Residues	in Rve g	rain: Pre-	-harvest A	Application	(Denmark).
		J - U			FF ···· ·	(-)

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Fyn, Denmark (1984) Petkus2	С	1	1.1	0.54	0 4 7 10 15	3.1 2.4 c0.1 2.2 c0.1 2.0 c0.2 2.1 c0.1 2.1 c0.2 2.2 c0.2 c0.2 c0.2 2.2 c0.2 c0.2 c0.2 c0.2 c0.2 c0.2 c0.2 c			MLL30150
		1	2.2	1.08	0 4 7 10 15	2.1 c0.1 5.2 5.9 c0.1 3.5 c0.1 5.3 c0.2 5.4 c0.1			MLL30150
Oglland, Denmark (1984) Petkus2	С	1	1.1	0.54	0 4 7 10 15	1.3 c0.1 1.6 <u>1.6</u> c0.1 1.2 c0.2 1.6 c0.1			MLL30150
		1	2.2	1.08	0 4 7 10 15	1.7 c0.1 2.8 1.9 c0.1 2.9 c0.2 2.3 c0.1			MLL30150

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Fyn, Denmark	С	1	1.1	0.54	0	4.6 c0.1			MLL30150
(1984) Petkus2					4	1.7			
					7	1.3 c0.1			
					10	1.6 c0.2			
					15	1.5			
		1	2.2	1.08	0	4.2 c0.1			MLL30150
					4	3.2			
					7	2.8 c0.1			
					10	3.1 c0.2			
					15	2.8			

Limit of detection of glyphosate is 0.05 ppm

Table 62.	Residues	in Sorgh	um grain:	Pre-harvest	Appli	ication (USA).
			0				~~/·

Location			Applicatio	n	PHI	Res		Report/	
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Wilson, North Carolina, USA (1997) Pioneer 8446	SL	1	1.7	0.82	7	<u>6.4</u>	0.15	<u>6.6</u>	MSL14918
Waller, Texas USA (1997) Mycogen 1558	SL	1	1.7	0.90	7	<u>1.3</u>	0.05	<u>1.4</u>	MSL14918
Uvalde, Texas USA (1997) Pioneer 8313	SL	1	1.7	1.08	7	<u>1.1</u>	< 0.05	<u>1.1</u>	MSL14918
Pratt, Kansas USA (1997) Pioneer 8414	SL	1	1.7	0.90	7	<u>4.6</u>	0.13	<u>4.8</u>	MSL14918
Stafford, Kansas USA (1997) Pioneer 8601	SL	1	1.7	0.90	7	<u>4.4</u>	0.08	<u>4.5</u>	MSL14918
Jackson, Arkansas USA (1992) Pioneer 8333	SL	1	1.7	0.81	8	<u>1.7</u>	0.09	<u>1.8</u>	MSL13037
Chautauqua, Kansas USA (1992) Garst 5319	SL	1	1.7	0.84	6	<u>5.3</u>	0.09	<u>5.4</u>	MSL13037
Pratt, Kansas USA (1992) NK 2030	SL	1	1.7	0.93	8	<u>12</u>	0.09	<u>12</u>	MSL13037
Shelby, Missouri USA (1992) Horizon 101-G	SL	1	1.7	0.81	7	<u>6.0</u>	0.11	<u>6.2</u>	MSL13037
York, Nebraska USA (1992) Pioneer 2030	SL	1	1.7	1.6	8	<u>1.8</u>	< 0.05	<u>1.8</u>	MSL13037
Caddo, Oklahoma USA (1992) Pioneer 8500	SL	1	1.7	1.1	7	<u>6.3</u>	0.22	<u>6.6</u>	MSL13037
Tripp, South Dakota USA (1992) DeKalb	SL	1	1.7	0.86	7	<u>13</u>	0.08	<u>13</u>	MSL13037
Burleson, Texas USA (1992) 522DR	SL	1	1.7	1.3	8	<u>1.4</u>	0.10	<u>1.6</u>	MSL13037

386

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Franc Warret, Belgium (1999)	С	1	2.2		0 7	4.7 2.9	< 0.05 0.05	4.7 3.0	MLL31337
Soissons	G	1	2.2		14 0 7	3.4 0.91 2.2	0.07 < 0.05 < 0.05	3.5 0.91 2.2	MLL31337
Franc Warret, Belgium (1998)	С	1	2.2		14 0 7	<u>3.6</u> 2.5 1.4	0.06 0.05 < 0.05	<u>3.7</u> 2.6 1.4	MLL30815
Rialto	Н	1	2.2		14 0 7	<u>1.7</u> 1.6 1.4	0.12 < 0.05 < 0.05	<u>1.9</u> 1.6 1.4	MLL30815
Audeville, Loiret, France	F	1	2.1	-	14 7	<u>1.1</u> <u>1.7</u>	0.12	1.3	RJ2910B
(1999) Courtot IQ	Е	1	2.0		7	1.4			RJ2910B
Coupigny, Seine-et-Marne, France (1999) Isengrain IQ	F	1	2.1	-	7	1.1			RJ2910B
isongrum i Q	Е	1	2.0		7	1.3			RJ2910B
Duras Aquitaine, France (1999) Isengrain	С	1	2.2		0 7 14	1.9 c0.10 0.71 c0.09 0.4	< 0.05 < 0.05 < 0.05	1.9 c0.10 0.71 c0.09 0.4	MLL31337
	G	1	2.2		0 7 14	2.5 c0.10 0.90 c0.09 <u>1.2</u>	< 0.05 < 0.05 < 0.05	2.5 c0.10 0.90 c0.09 <u>1.2</u>	MLL31337
St Paul les Romans,Rhône- Alpes, France (1999) Aztec	С	1	2.2		0 7 14	2.3 <u>0.53</u> 0.42	< 0.05 < 0.05 < 0.05	2.3 <u>0.53</u> 0.42	MLL31337
((,,,,))	G	1	2.2		0 7 14	2.4 0.32 0.30	< 0.05 < 0.05 < 0.05	2.4 0.32 0.30	MLL31337
Fessenheim, Alsace, France (1999) Camp Remy	С	1	2.2		0 7 14	4.6 0.36 0.34	< 0.05 < 0.05 < 0.05	4.6 0.36 0.34	MLL31337
	G	1	2.2		0 7 14	2.6 <u>0.99</u> 0.55	< 0.05 0.05 < 0.05	2.6 <u>1.1</u> 0.55	MLL31337
Battigny, Lorraine, France (1999) Camp Rémy	С	1	2.2		0 7 14	6.0 3.4 3.3	< 0.05 < 0.05 < 0.05	6.0 3.4 3.3	MLL31337
-	G	1	2.2		0 7 14	5.3 3.7 <u>6.3</u>	< 0.05 0.07 0.14	5.3 3.8 <u>6.5</u>	MLL31337
Ploudalmézeau, Bretagne, France (1999) Cyrano	С	1	2.2		0 7 14	1.6 <u>3.9</u> 0.66 c0.09	< 0.05 < 0.05 < 0.05	1.6 <u>3.9</u> 0.66 c0.09	MLL31337

Table 63. Residues in Wheat grain: Pre-harvest Application.

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
	6			ae/hL	<u>^</u>	• •	0.05		
	G	1	2.2		0	2.0	< 0.05	2.0	MLL31337
					7	3.5	< 0.05	3.5	
					14	0.54 0.09	< 0.05	0.54 0.09	
Duras	С	1	2.2	-	0	4.1	< 0.05	4.1	MLL30815
Aquitaine,	C	1	2.2		7	0.12	< 0.05	0.12	WILL50815
France (1998)					15	0.12	< 0.05	0.12	
Soissons					15	0.20	< 0.05	0.20	
Delebend	Н	1	2.3		0	3.0	< 0.05	3.0	MLL30815
					7	0.66	< 0.05	0.66	
					15	0.29	< 0.05	0.29	
St Paul les	С	1	2.1		0	4.6	< 0.05	4.6	MLL30815
Romans, Rhône-					10	$\frac{4.9}{1.2}$	< 0.05	$\frac{4.9}{1.3}$	
Alpes, France					18	1.2	0.05	1.3	
(1998) Trémie									
	Н	1	2.2		0	4.1	< 0.05	4.1	MLL30815
		1			10	0.66	< 0.05	0.66	
		<u> </u>			18	0.70	0.17	0.96	
Ploudalmézeau,	С	1	2.2		0	2.2	< 0.05	2.2	MLL30815
Bretagne,		1			7	$\frac{4.0}{2.1}$	< 0.05	$\frac{4.0}{3.1}$	
France (1998)					14	3.1	< 0.05	3.1	
Tremie	TT	1	2.2		0	1.1	0.05	1.2	MI I 20015
	Н	1	2.2		0 7	1.1 3.7	0.05 < 0.05	1.2 3.7	MLL30815
					7 14	2.3	< 0.05 < 0.05	2.3	
Levroux, Centre,	С	1	2.2		0	2.0 c0.16	< 0.05	2.0	MLL30815
France (1998)	C	1	2.2		9	0.16	< 0.05	c0.16	WILL50015
Oracle					14	0.16	0.05	0.16	
						0.10	0.02	0.24	
	Н	1	2.2		0	1.7 c0.16	< 0.05	1.7	MLL30815
					9	0.16	0.05	c0.16	
					14	0.15	0.05	0.24	
								0.23	
Fessenheim,	С	1	2.2		0	6.3	0.05	6.4	MLL30815
Alsace, France					7	2.3	< 0.05	2.3	
(1998) Sideral					14	3.1	< 0.05	3.1	
	Н	1	2.2		0	12	0.05	12	MLL30815
					7	3.6	0.06	3.7	
					14	<u>3.8</u>	< 0.05	<u>3.8</u>	
Illiat, South	Ι	1	2.2	1.1	0	1.8	< 0.05	1.8	GLY 528
France (1998)					7	0.093 c0.033	< 0.05	0.093	
Soissons [winter					14	0.042	< 0.05	c0.033	
soft wheat]	T	1	2.1	1 1	0	0.80	< 0.05	0.042	CLV 529
	J	1	2.1	1.1	0 7	0.80 0.081 c0.033	< 0.05 < 0.05	0.80	GLY 528
					14	1.2	< 0.05	0.081 c0.033	
		1			14	1.2	~ 0.03	1.2	
Lavannes,	Ι	1	2.2	1.1	0	0.64	< 0.05	0.64	GLY 528
France (1998)					7	0.31	< 0.05	0.31	021020
Tremie [winter		1			14	1.1	< 0.05	1.1	
wheat]		1					-		
-	J	1	2.2	1.1	0	0.71	< 0.05	0.71	GLY 528
		1			7	<u>1.5</u> 1.1	< 0.05	<u>1.5</u>	
					14		< 0.05	<u>1.5</u> 1.1	
Entzheim,	Ι	1	2.1	1.1	7	<u>9.5</u>			GLY 418
Alsace, France		1							
(1996) Sideral			ļ						
	J	1	2.1	1.1	7	6.4			GLY 418
	J	1	1.6	0.81	7	4.8			GLY 418

Location			Applicatio	on	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Hilsprich, Lorraine, France (1996) Scheiersmatt	Ι	1	2.0	1.1	7	2.3			GLY 418
	J	1	2.1	1.1	7	<u>2.4</u>			GLY 418
	J	1	1.5	0.81	7	1.5 c0.18			GLY 418
Boyer, Tounus, France (1991) Campremy	K		1.1	0.54	7	0.40	< 0.05	0.40	MLL30281
	K	1	2.2	1.1	7	<u>0.80</u>	< 0.05	0.80	MLL30281
	L	1	1.0	0.53	7	0.30	< 0.05	0.30	MLL30281
	L	1	2.1	1.0	7	0.60	< 0.05	0.60	MLL30281
T DI 1	C	1	2.2	1.1	7	0.70	< 0.05	0.70	MLL30281
La Planche, Cely, France (1991) Pernel	К	1	1.1	0.54	7	0.30	< 0.05	0.30	MLL30281
	K	1	2.2	1.1	7	0.60	< 0.05	0.60	MLL30281
	L	1	1.0	0.53	7	0.20	< 0.05	0.20	MLL30281
	L	1	2.1	1.0	7	0.40	< 0.05	0.40	MLL30281
	С	1	2.2	1.1	7	<u>1.1</u>	< 0.05	<u>1.1</u>	MLL30281
Secqueville, Caen, France (1991) Thesee	К	1	1.1	0.54	10	0.70	< 0.05	0.70	MLL30281
	K	1	2.2	1.1	10	<u>2.1</u>	0.05	<u>2.2</u>	MLL30281
	L	1	1.0	0.53	10	0.50	< 0.05	0.50	MLL30281
	L	1	2.1	1.0	10	1.7	< 0.05	1.7	MLL30281
	С	1	2.2	1.1	10	1.4	< 0.05	1.4	MLL30281
Montigny sur Crecy, Laon, France (1991) Slepner	К	1	1.1	0.54	10	0.50	< 0.05	0.50	MLL30281
•	K	1	2.2	1.1	10	0.90	< 0.05	0.90	MLL30281
	L	1	1.0	0.53	10	0.30	< 0.05	0.30	MLL30281
	L	1	2.1	1.0	10	0.60	< 0.05	0.60	MLL30281
	С	1	2.2	1.1	10	0.80	< 0.05	0.80	MLL30281
Norton, Worcestershire, UK (1999) Equinox	F	1	2.1	-	7	<u>1.2</u>			RJ2910B
- -	Е	1	2.0		7	1.1			RJ2910B
Wilson, Derbyshire, UK (1999) Rialto IQ	F	1	2.1	-	7	<u>1.1</u> c0.10			RJ2910B
	Е	1	2.0		7	0.84_c0.10			RJ2910B
Debden, Essex, UK (1982) Norman	С	1	1.4		7	<u>0.7</u>	< 0.05	<u>0.7</u>	MLL30087
Debden, Essex, UK (1982 Norman	С	1	1.4		7	<u>0.5</u>	< 0.05	<u>0.5</u>	MLL30087
Tadcaster, Yorkshire, UK (1982) Bounty	С	1	1.4		7	<u>0.1</u>	< 0.05	<u>0.1</u>	MLL30087
Edinburgh, UK (1982) Mardlor	С	1	1.4		8	<u>0.1</u>	< 0.05	<u>0.1</u>	MLL30087
Chiseldon, Wiltshire, UK (1982) Avalon	С	1	1.4		8	<u>0.3</u>	< 0.05	<u>0.3</u>	MLL30087
Foxearth, Suffolk, UK (1982) Avalon	С	1	0.72		7	0.2	< 0.05	0.2	MLL30087

Location			Application	1	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
		1	1.4		7	<u>0.3</u>	< 0.05	0.3	MLL30087
		1	2.9		7	0.6	< 0.05	0.6	MLL30087
Dodington,	С	1	0.72		6	0.3 c0.1	< 0.05	0.3 c0.1	MLL30087
Cambridgeshire,									
UK (1982)									
Kador									
		1	1.4		6	0.4 c0.1	< 0.05	0.4 c0.1	MLL30087
		1	2.9		6	0.8 c0.1	< 0.05	0.8 c0.1	MLL30087
Cooksmill	С	1	0.72		6	0.4 c0.05	< 0.05	0.4	MLL30087
Green, Essex,								c0.05	
UK (1982)									
Avalon									
		1	1.4		6	<u>1.0</u> c0.05	< 0.05	1.0	MLL30087
								c0.05	
		1	2.9		6	0.9 c0.05	< 0.05	0.9	MLL30087
								c0.05	

Formulation C = Roundup® 360 g ae/L SL; Formulation E = 337 g ae/L SL (trimesium salt); Formulation F = 347 g ae/L SL; Formulation G = MON 78294; Formulation H = MON 14420 680 g ae/kg SG; Formulation I and J both 360 g ae/L SL; Formulation K = MON 52776 360 g ae/L SL; Formulation L = MON 44068 420 g ae/kg SG

Location			Applicati		Sample	PHI		lues (mg/kg		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Oahu, Hawaii	SL	1	1.1		Cane	10	0.40	< 0.05	0.4	MSL0264
USA (1977)					Bagasse	10	0.34	< 0.05	0.34	
					Molasses	10	11	0.30	11	
					Raw sugar	10	0.96	< 0.05	0.96	
					Cane	28	0.97	< 0.05	0.97	
					Bagasse	28	0.18	< 0.05	0.18	
					Molasses	28	5.2	0.17	5.5	
					Raw sugar	28	0.36	< 0.05	0.36	
					Refined sugar	28	< 0.05	< 0.05	< 0.05	
	SL	1	2.2		Cane	10	2.2	< 0.05	2.2	MSL0264
					Bagasse	10	0.48	< 0.05	0.48	
					Molasses	10	15	0.38	16	
					Raw sugar	10	1.5	< 0.05	1.5	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	0.82	< 0.05	0.82	
					Bagasse	28	0.20	< 0.05	0.2	
					Molasses	28	7.4	0.23	7.8	
					Raw sugar	28	0.41	< 0.05	0.41	
Oahu, Hawaii	SL	1	1.1		Cane	10	1.0	< 0.05	1	MSL0264
USA (1977)					Bagasse	10	0.33	< 0.05	0.33	
					Molasses	10	14	0.35	15	
					Raw sugar	10	0.89	< 0.05	0.89	
					Cane	28	0.69	< 0.05	0.69	
					Bagasse	28	0.20	< 0.05	0.2	
					Molasses	28	5.8	0.20	6.1	
					Raw sugar	28	1.3	< 0.05	1.3	
	SL	1	2.2		Cane	10	3.8	< 0.05	3.8	MSL0264
					Bagasse	10	0.69	< 0.05	0.69	
					Molasses	10	12	0.34	13	
					Raw sugar	10	2.5	0.06	2.6	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	0.94	< 0.05	0.94	
					Bagasse	28	0.24	< 0.05	0.24	
					Molasses	28	7.6	0.28	8.0	
					Raw sugar	28	0.63	< 0.05	0.63	

Table 64. Residues in Sugarcane (USA).

Location			Applicati	on	Sample	PHI	Resid	lues (mg/kg	g)	Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
Weslaco,	SL	1	0.56	ae/hL	Cane	10	0.31	< 0.05	0.31	MSL0264
Texas USA	SL	1	0.50		Bagasse	10	0.14	< 0.05	0.14	WIGE0204
(1976)					Molasses	10	2.4	0.08	2.5	
(1) (0)					Raw sugar	10	0.38	< 0.05	0.38	
					Refined sugar	10	0.07	< 0.05	0.07	
					Cane	28	0.24	< 0.05	0.24	
					Bagasse	28	0.06	< 0.05	0.06	
					Molasses	28	2.2	0.08	2.3	
					Raw sugar	28	0.26	< 0.05	0.26	
					Refined sugar	28	0.19	< 0.05	0.19	
	SL	1	1.1		Cane	10	0.15	< 0.05	0.15	MSL0264
					Bagasse	10	0.08	< 0.05	0.08	
					Molasses	10	2.3	0.09	2.4	
					Raw sugar	10	0.83	< 0.05	0.83	
					Refined sugar	10	0.36	< 0.05	0.36	
					Cane	28	0.21	< 0.05	0.21	
					Bagasse	28	0.08	< 0.05	0.08	
					Molasses	28	2.1	0.06	2.2	
					Raw sugar Refined sugar	28 28	0.51 0.31	< 0.05 < 0.05	0.51 0.31	
St	SL	1	0.56		Cane	10	0.31	< 0.05	0.31	MSL0264
Martinsville,	SL	1	0.30		Bagasse	10	0.29	< 0.03	0.29	MSL0204
Louisiana					Molasses	10	2.5	0.08	2.6	
USA (1976)					Raw sugar	10	0.19	< 0.08	0.19	
USA (1770)					Cane	35	0.1)	< 0.05	0.1)	
					Bagasse	35	< 0.05	< 0.05	< 0.05	
					Molasses	35	1.6	0.06	1.7	
					Raw sugar	35	0.06	< 0.05	0.06	
					Refined sugar	35	< 0.05	< 0.05	< 0.05	
	SL	1	1.1		Cane	10	0.67	< 0.05	0.67	MSL0264
					Bagasse	10	0.17	< 0.05	0.17	
					Molasses	10	3.6	0.10	3.8	
					Raw sugar	10	0.24	< 0.05	0.24	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	35	0.28	< 0.05	<u>0.28</u>	
					Bagasse	35	0.27	< 0.05	0.27	
					Molasses	35	3.2	0.12	3.4	
D 1 1	GT	1	0.54		Raw sugar	35	0.26	< 0.05	0.26	10100(1
Pahokee,	SL	1	0.56		Cane	10	0.11	< 0.05	0.11	MSL0264
Florida USA (1977)					Bagasse	10	< 0.05	< 0.05	< 0.05	
(1977)					Molasses Raw sugar	10 10	0.81 0.08	0.07 < 0.05	0.92 0.08	
					Refined sugar	10	< 0.08	< 0.05	< 0.08	
					Cane	28	< 0.05	< 0.05	< 0.05	
					Bagasse	28	< 0.05	< 0.05	< 0.05	
					Molasses	28	0.32	< 0.05	0.32	
					Raw sugar	28	0.05	< 0.05	0.05	
	SL	1	1.1		Cane	10	0.03	< 0.05	0.17	MSL0264
					Bagasse	10	0.11	< 0.05	0.11	
					Molasses	10	1.4	0.14	1.6	
					Raw sugar	10	0.21	< 0.05	0.21	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	0.13	< 0.05	0.13	
					Bagasse	28	0.07	< 0.05	0.07	
					Molasses	28	0.87	< 0.05	0.87	
					Raw sugar	28	0.08	< 0.05	0.08	

Location			Applicati	on	Sample	PHI	Resid	lues (mg/kg	g)	Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Belle Glade,	SL	1	0.56		Cane	10	0.07	< 0.05	0.07	MSL0264
Florida USA					Bagasse	10	< 0.05	< 0.05	< 0.05	
(1977)					Molasses	10	0.28	< 0.05	0.28	
					Raw sugar	10	0.11	< 0.05	0.11	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	< 0.05	< 0.05	< 0.05	
					Bagasse	28	< 0.05	< 0.05	< 0.05	
					Molasses	28	0.16	< 0.05	0.16	
					Raw sugar	28	0.06	< 0.05	0.06	
Belle Glade,	SL	1	1.1		Cane	10	0.36	< 0.05	0.36	MSL0264
Florida USA					Bagasse	10	0.12	< 0.05	0.12	
(1977)					Molasses	10	2.1	0.07	2.2	
					Raw sugar	10	0.60	< 0.05	0.6	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	0.07	< 0.05	0.07	
					Bagasse	28	< 0.05	< 0.05	< 0.05	
					Molasses	28	0.31	< 0.05	0.31	
					Raw sugar	28	< 0.05	< 0.05	< 0.05	
Arecibo,	SL	1	0.56		Cane	10	< 0.05	< 0.05	< 0.05	MSL0264
Puerto Rico					Bagasse	10	< 0.05	< 0.05	< 0.05	
(1977)					Molasses	10	0.16	< 0.05	0.16	
					Raw sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	< 0.05	< 0.05	< 0.05	
					Bagasse	28	< 0.05	< 0.05	< 0.05	
					Molasses	28	0.18	< 0.05	0.18	
					Raw sugar	28	< 0.05	< 0.05	< 0.05	
	SL	1	1.1		Cane	10	0.20	< 0.05	0.2	MSL0264
					Bagasse	10	0.18	< 0.05	0.18	
					Molasses	10	1.7	< 0.05	1.7	
					Raw sugar	10	0.25	< 0.05	0.25	
					Refined sugar	10	< 0.05	< 0.05	< 0.05	
					Cane	28	0.27	< 0.05	0.27	
					Bagasse	28	0.10	< 0.05	0.1	
					Molasses	28	1.6	0.07	1.7	
					Raw sugar	28	0.40	< 0.05	0.4	
					Refined sugar	28	< 0.05	< 0.05	< 0.05	

Table 65. Residues in Tree Nu	s (nutmeat): Directed Ground	d Spray Application (USA).

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Almond									
Esparto, California USA (1975)	SL	2	9.0 9.0		21	0.11	< 0.05	0.11	FR 442
	SL	3	9.0 9.0 9.0		1 14	0.12 0.05	< 0.05 < 0.05	0.12 0.05	FR 442
Fresno, California (1975)	SL	2	9.0 9.0		21	< 0.05	< 0.05	< 0.05	FR 442
	SL	3	9.0 9.0 9.0		1 14	0.11 0.83	< 0.05 < 0.05	0.11 0.83	FR 442
Fresno, California USA (1989) Mission	SL	1	8.9	3.2	3 10	0.10 0.06	< 0.05 < 0.05	0.10 0.06	MSL11011, MSL11519
Hughson, California USA (1989) Thompson	SL	1	8.9	7.4	3 10	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	MSL11011, MSL11519

		Applicatio	n	PHI	Res	idues (mg/kg)		Report/
Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
SL	1	8.9	3.7	3 10	0.58 0.50	< 0.05 < 0.05	0.58 0.50	MSL11011, MSL11519
SL	1	8.9	3.4	3 10	< 0.05 0.15	< 0.05 < 0.05	< 0.05 0.15	MSL11011, MSL11519
SL	1	8.9	6.8	3 10	0.06 0.05	< 0.05 < 0.05	0.06 0.05	MSL11011, MSL11519
CI		0.0	T	1	< 0.05	< 0.05	< 0.05	FR 442
SL	3	9.0 9.0 9.0		1 14	< 0.05	< 0.05	< 0.05	FK 442
SL	3	9.0		1 14	0.21 < 0.05	< 0.05 < 0.05	0.21 < 0.05	FR 442
SL	3	9.0 9.0		1	0.08	< 0.05	0.08	FR 442
SL	3	9.0 9.0		23	0.06	< 0.05	0.06	FR 442
SL	4	9.0 9.0 9.0		1 14	0.31 0.12	< 0.05 < 0.05	0.31 0.12	FR 442
SL	1	8.9	4.7	3 10	0.14 < 0.05	< 0.05 < 0.05	0.14 < 0.05	MSL11011, MSL11519
SL	1	8.9	4.7	3 10	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	MSL11011, MSL11519
SL	1	8.9	4.7	3 10	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	MSL11011, MSL11519
~~			1					
SL	3	9.0 9.0 9.0		1 14	0.10 0.06	< 0.05 < 0.05	0.10 0.06	FR 442
SL	3	9.0 9.0 9.0		1 14	0.07 0.07	< 0.05 < 0.05	0.07 0.07	FR 442
SL	1	8.9	3.2	3 10	0.06 < 0.05	< 0.05 < 0.05	0.06 < 0.05	MSL11011, MSL11519
SL	1	8.9	7.4	3 10	0.69 0.08	< 0.05 < 0.05	0.69 0.08	MSL11011, MSL11519
SL	1	8.9	3.7	3 10	0.44 0.20 c0.11	< 0.05 < 0.05	0.44 0.20 c0.11	MSL11011, MSL11519
	SL SL SL SL SL SL SL SL SL SL SL SL SL S	SL 1 SL 1 SL 1 SL 1 SL 3 SL 3 SL 3 SL 3 SL 3 SL 1 SL 1 SL 1 SL 1 SL 1 SL 1 SL 3 SL 1 SL 1 SL 1 SL 1 SL 1 SL 1 SL 1	Form N kg ae/ha SL 1 8.9 SL 3 9.0 SL 3 9.0 SL 3 9.0 SL 3 9.0 9.0 9.0 9.0 SL 3 9.0 9.0 9.0 9.0 SL 3 9.0 9.0 9.0 9.0 SL 1 8.9 SL 1 8.9 SL 1 8.9 SL 3 9.0 9.0 9.0 9.0 SL 1 8.9 SL 3 9.0 9.0 9.0 9.0 9.0 9.0 </td <td>Form N kg ac/ha kg ac/hL SL 1 8.9 3.7 SL 1 8.9 3.7 SL 1 8.9 3.4 SL 1 8.9 3.4 SL 1 8.9 6.8 SL 3 9.0 9.0 SL 1 8.9 4.7 SL 1 8.9 4.7 SL 1 8.9 4.7 SL 1 8.9 9.0 9.0 9.0 9.0 9.0 SL 1 8.9 3.2 SL</td> <td>Form N kg ac/ha kg ac/hL (days) SL 1 8.9 3.7 3 10 SL 1 8.9 3.4 3 10 SL 1 8.9 3.4 3 10 SL 1 8.9 6.8 3 10 SL 3 9.0 1 14 9.0 9.0 14 14 SL 3 9.0 1 14 9.0 9.0 1 14 9.0 1 SL 3 9.0 1 14 9.0 SL 3 9.0 1 14 9.0 SL 3 9.0 1 14 9.0 1 SL 3 9.0 1 1 14 9.0 1 SL 1 8.9 4.7 3 10 10 SL 1 8.9 3.2</td> <td>Form N kg ac/ha kg ac/hL (days) (days) glyphosate SL 1 8.9 3.7 3 0.58 SL 1 8.9 3.4 3 < 0.05 SL 1 8.9 3.4 3 < 0.05 SL 1 8.9 6.8 3 0.06 SL 1 8.9 6.8 3 0.06 SL 3 9.0 14 < 0.05 SL 3 9.0 14 < 0.05 SL 3 9.0 1 0.08 9.0 9.0 1 0.08 0.0 SL 3 9.0 23 0.06 SL 3 9.0 14 0.12 9.0 9.0 14 0.12 0.05 SL 4 9.0 1 0.14 0.12 9.0 9.0 14 0.05 < 0.05 $<$</td> <td>Form N kg ac/ha kg ac/hL (days) ac/hL glyphosate AMPA SL 1 8.9 3.7 3 0.58 < 0.05</td> < 0.05	Form N kg ac/ha kg ac/hL SL 1 8.9 3.7 SL 1 8.9 3.7 SL 1 8.9 3.4 SL 1 8.9 3.4 SL 1 8.9 6.8 SL 3 9.0 9.0 SL 1 8.9 4.7 SL 1 8.9 4.7 SL 1 8.9 4.7 SL 1 8.9 9.0 9.0 9.0 9.0 9.0 SL 1 8.9 3.2 SL	Form N kg ac/ha kg ac/hL (days) SL 1 8.9 3.7 3 10 SL 1 8.9 3.4 3 10 SL 1 8.9 3.4 3 10 SL 1 8.9 6.8 3 10 SL 3 9.0 1 14 9.0 9.0 14 14 SL 3 9.0 1 14 9.0 9.0 1 14 9.0 1 SL 3 9.0 1 14 9.0 SL 3 9.0 1 14 9.0 SL 3 9.0 1 14 9.0 1 SL 3 9.0 1 1 14 9.0 1 SL 1 8.9 4.7 3 10 10 SL 1 8.9 3.2	Form N kg ac/ha kg ac/hL (days) (days) glyphosate SL 1 8.9 3.7 3 0.58 SL 1 8.9 3.4 3 < 0.05 SL 1 8.9 3.4 3 < 0.05 SL 1 8.9 6.8 3 0.06 SL 1 8.9 6.8 3 0.06 SL 3 9.0 14 < 0.05 SL 3 9.0 14 < 0.05 SL 3 9.0 1 0.08 9.0 9.0 1 0.08 0.0 SL 3 9.0 23 0.06 SL 3 9.0 14 0.12 9.0 9.0 14 0.12 0.05 SL 4 9.0 1 0.14 0.12 9.0 9.0 14 0.05 < 0.05 $<$	Form N kg ac/ha kg ac/hL (days) ac/hL glyphosate AMPA SL 1 8.9 3.7 3 0.58 < 0.05	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Location			Applicatio	n	Form	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Malone, Florida USA (1974)	PRE PH	2	9.0 4.5		А	9	0.54	< 0.05	0.54	MSL 1283
Ropesville, Texas USA (1974)	PRE PH	2	9.0 4.5		B C	13	3.6	0.06	3.7	MSL 1283
Sasser, Georgia USA (1974)	PRE RCS RCS PH	4	9.0 6.7 6.7 4.5		B C D	9	2.7	0.08	2.8	MSL 1283
Mount Pleasant, Mississippi USA (1974)	PRE RCS RCS RCS PH	5	9.0 6.7 6.7 6.7 4.5		A C	13	2.9	0.06	3.0	MSL 1283
St. Joseph, Louisiana UDSA (1974)	PRE PRE RCS PH	4	9.0 9.0 11 4.5		A C	9	5.9 c0.2	0.07	6.0	MSL 1283
Five Points, California USA (1974)	PRE PH	2	9.0 4.5		B C	13	1.9	< 0.05	1.9	MSL 1283
Kernan, California USA (1975)	PH	1	5.0	2.2	А	10	0.49	0.06	0.58	MSL 1283
Weldon, North	PH PH	1 1	5.0 5.0	2.2 4.0	A A	3 10	1.5 c0.06 0.92	< 0.05 0.20	1.5 1.2	MSL 1283 MSL 1283
Carolina USA (1975)	DU	1	5.0	1.0		2	2.0	.0.05		NGL 1202
Cheneyville, Louisiana USA (1975)	PH PH	1	5.0 5.0	4.0	A A	3 14	2.0 0.15	< 0.05 < 0.05	2 0.15	MSL 1283 MSL 1283
Sledge, Mississippi USA (1975)	PH PH	1	5.0 5.0	2.2 2.5	A A	7 10	2.2 0.27	< 0.05 < 0.05	2.2 0.27	MSL 1283 MSL 1283
Ropesville, Texas USA (1975)	PH PH	1	5.0 5.0	2.5 2.2	A A	5 10 3	0.63 0.47 0.26	< 0.05 < 0.05 < 0.05	0.63 0.47 0.26	MSL 1283 MSL 1283
Dawson, Georgia USA (1975)	PH	1	5.0	2.2	А	8	2.9 c0.09	0.06	3.0	MSL 1283
· · ·	PH	1	5.0	2.2	А	3	4.1 c0.09	< 0.05	4.1	MSL 1283

Table 66. Residues in Conventional Cotton (cottonseed = fuzzy or non-delinted): Pre-emergence, Recirculating Sprayer and Pre-harvest Application (USA).

Treatment types are: PRE = pre-emergence; RCS = Recirculating sprayer; PH = pre-harvest *Formulations used at each site are listed A = MON 2139; B = MON 3139; C = MON 0139; D = MON 0011. All SL formulations. Not specified which formulation was used for each application.

Location			Applicatio	n	GSLT	PHI	Res	idues (mg/kg))	Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL	-	(days)	glyphosate	AMPA	Total	reference
Crittendon	LPO	4	2.5	1.4	80%	7	6.4	0.22	6.7	MSL17635
Co., Arkansas	FWF		1.7	0.95	open					
USA (2002)	FOB		0.84	0.42	bolls					
MON88913	PH		1.7	0.95	0.000/		10	0.40	1.4	17/05
	FWF	3	3.3	1.9	80%	7	<u>13</u>	0.40	<u>14</u>	MSL17635
	FOB PH		1.7 1.7	0.83 0.95	open bolls					
MON88915	FWF	3	3.3	1.9	80%	7	10	0.24	10	MSL17635
WION00915	FOB	3	3.3 1.7	0.83	open		10	0.24	10	MSL17033
	PH		1.7	0.85	bolls					
MON88903	FWF	3	3.3	1.9	80%	7	12	0.35	13	MSL17635
11201100900	FOB	2	1.7	0.83	open	,		0.20	10	
	PH		1.7	0.95	bolls					
Jackson Co.,	LPO	4	2.5	1.2	70-80%	6	3.6	0.11	3.8	MSL17635
Arkansas USA	FWF		1.7	0.83	open					
(2002)	FOB		0.84	0.42	bolls					
MON88913	PH		1.7	0.83						
	FWF	3	3.3	1.7	70-80%	6	<u>7.2</u>	0.19	7.5	MSL17635
	FOB		1.7	0.83	open					
	PH		1.7	0.83	bolls					
MON88915	FWF	3	3.3	1.7	70-80%	6	6.9	0.14	7.1	MSL17635
	FOB		1.7	0.83	open					
MON199002	PH FWF	3	1.7	0.83	bolls 70-80%	6	5.9	0.15	(1	MSL17635
MON88903	FWF FOB	3	3.3 1.7	0.83	open	0	5.9	0.15	6.1	MSL1/035
	PH PH		1.7	0.83	bolls					
Pinal Co.,	LPO	4	2.5	1.7	60-70%	7	12	0.26	12	MSL17635
Arizona USA	FWF	-	1.7	1.7	open		12	0.20	12	WISL17055
(2002)	FOB		0.84	0.56	bolls					
MON88913	PH		1.7	1.1	00110					
	FWF	3	3.3	2.2	60-70%	7	18	0.36	<u>19</u>	MSL17635
	FOB		1.7	1.1	open				_	
	PH		1.7	1.1	bolls					
Tulare Co.	LPO	4	2.5	1.7	80-100%	7	12	0.45	13	MSL17635
California	FWF		1.7	1.1	open					
USA (2002)	FOB		0.84	0.56	bolls					
MON88913	PH		1.7	1.1					1.0	
	FWF	3	3.3	2.2	80-100%	7	18	0.77	19	MSL17635
	FOB		1.7	1.1	open					
MON100015	PH LPO	4	1.7	1.1	bolls 80-90%	7	10	0.70	10	MSL17635
MON88915	FWF	4	2.5 1.7	1.7 1.1	open		18	0.70	19	IVISL1/033
	FOB		0.84	0.56	bolls					
	PH	1	1.7	1.1	00115					
	FWF	3	3.3	2.2	80-90%	-1	12	0.62	13	MSL17635
	FOB		1.7	1.1	open	1	14	0.72	15	
	PH	1	1.7	1.1	bolls	7	17	0.71	18	
						14	12	0.67	13	
						21	12	0.67	13	
						35	12	0.59	13	
	FWF	3	3.3	2.2	80-100%	7	<u>21</u>	0.66	<u>22</u>	MSL17635
	FOB		1.7	1.1	open					
	PH	 	1.7	1.1	bolls			-		
MON88903	FWF	3	3.3	2.2	80-100%	7	16	0.56	17	MSL17635
	FOB		1.7	1.1	open					
	PH	1	1.7	1.1	bolls					

Table 67. Residues in Glyphosate Tolerant Cotton (cottonseed: fuzzy or undelinted) (Roundup Ready Flex cotton – improved 2nd generation tolerant cotton (USA) – 3 different lines trialled (MON 88913, MON 88915, MON 88903), Roundup UltraMAX Herbicide (372 g ae/L) SL.

Location			Applicatio	on	GSLT	PHI				
(year) variety	Туре	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Clarke Co.,	LPO	4	2.5	1.4	80%	8	5.7	0.14	5.9	MSL17635
Georgia USA	FWF		1.7	0.95	open					
(2002)	FOB		0.84	0.67	bolls					
MON88915	PH		1.7	1.1	0.00 (0		0.16	(-	101 17(25
	FWF	3	3.3	1.9	80%	-0	6.5	0.16	6.7	MSL17635
	FOB PH		1.7 1.7	1.3 1.1	open bolls	1 8	9.9 7.1	0.35 0.20	10 7.4	
	РΠ		1.7	1.1	DOIIS	8 15	5.2	0.20	7.4 5.4	
						22	5.4	0.13	5.7	
						35	7.5	0.25	7.9	
Tift Co.,	LPO	4	2.5	1.7	88-95%	6	7.9	0.29	8.3	MSL17635
Georgia USA	FWF		1.7	1.1	open					
(2002)	FOB		0.84	0.56	bolls					
MON88913	PH		1.7	1.1	00.050/			0.45		
	FWF	3	3.3	2.2	88-95%	6	<u>16</u>	0.47	<u>17</u>	MSL17635
	FOB PH		1.7 1.7	1.1 1.1	open bolls					
Washita Co.	LPO	4	2.5	2.5	25-30%	7	3.3	0.05	3.4	MSL17635
Oklahoma	FWF	1	2.3	1.1	open	/	5.5	0.05	5.4	11011/033
USA (2002)	FOB		0.84	0.67	bolls					
MON88913	PH		1.7	1.1						
	FWF	3	3.3	2.7	90%	7	<u>18</u>	0.34	<u>19</u>	MSL17635
	FOB		1.7	1.1	open					
	PH		1.7	1.3	bolls					
Waller Co.	LPO	4	2.5	1.2	80%	7	11	0.31	11	MSL17635
Texas USA	FWF		1.7	0.83	open					
(2002)	FOB		0.84	0.42	bolls					
MON88913	PH FWF	3	1.7	0.83	200/	7	22	0.40	22	MSL17635
	FWF FOB	3	3.3 1.7	1.7 0.83	80% open	/	<u>22</u>	0.40	<u>23</u>	MSL1/035
	PH		1.7	0.83	bolls					
Armstrong	LPO	4	2.5	1.4	80-85%	8	3.4	< 0.05	3.4	MSL17635
Co., Texas	FWF	1.	1.7	1.1	open	Ũ	5.1	0.05	5.1	11021/055
USA (2002)	FOB		0.84	0.56	bolls					
MON88913	PH		1.7	1.1						
	FWF	3	3.33	2.2	80-85%	8	<u>9.7</u>	0.07	<u>9.8</u>	MSL17635
	FOB		1.7	1.1	open					
	PH	<u> </u>	1.7	1.1	bolls	_			/	
Uvalde Co.	LPO	4	2.50	1.7	75%	7	7.3	0.18	7.6	MSL17635
Texas USA (2002)	FWF FOB		1.7 0.84	0.83 0.56	open bolls					
2002) MON88913	РН		0.84 1.7	1.1	DOIIS					
WI01000913	FWF	3	3.3	1.7	75%	7	13	0.31	13	MSL17635
	FOB	5	3.3 1.7	1.7	open	,	1.5	0.51	15	11011/033
	PH		1.7	1.1	bolls					
MON88915	FWF	3	3.3	1.7	75%	7	<u>18</u>	0.28	<u>18</u>	MSL17635
	FOB		1.7	1.1	open					
	PH		1.7	1.1	bolls					
MON88903	FWF	3	3.3	1.7	75%	7	14	0.28	14	MSL17635
	FOB		1.7	1.1	open					
X 7	PH	4	1.7	1.1	bolls		2.0	0.12	2.1	MOL 17(25
Washington	6-8 Lf	4	2.5	1.4	90-95%	6	2.9	0.13	3.1	MSL17635
Co., Mississippi	FWF FOB		1.7 0.84	1.3 0.56	open bolls					
USA (2002)	РН		1.7	1.1	00115					
MON88903	1 11	1	1.7	1.1						
	FWF	3	3.3	2.7	90-95%	6	4.9	0.15	<u>5.1</u>	MSL17635
	FOB		1.7	1.1	open	Ŭ			<u>v.1</u>	
	PH		1.7	1.1	bolls					
Hockley Co.,	LPO	4	2.5	1.2	70%	7	13	0.15	13	MSL17635
Texas USA	FWF		1.7	0.83	open					
(2002)	FOB	1	0.84	0.42	bolls					
MON88903	PH	1	1.7	0.83		1				

Location			Applicatio	GSLT	PHI	Res	sidues (mg/kg))	Report/	
(year) variety	Type	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
			-	ae/hL						
	FWF	3	3.3	1.7	70%	7	28	0.28	28	MSL17635
	FOB		1.7	0.83	open					
	PH		1.7	0.83	bolls					

Types of applications: LPO = Late post-emergence (6-8 leaf stage); FWF = First White Flower; FOB = First Open Boll; PH = Pre-harvest

AR1 – John Deere 9900 cotton picker; AR2- John Deere 699 cotton picker; AZ - International 728 Harvester (cotton picker); CA1 – samples collected by hand; CA2 – samples collected by hand; GA1 - John Deere 9930 cotton picker, spindle type;

GA2 – samples collected by hand; MS – modified International 622 spindle picker; OK – John Deere 33 row stripper and by hand; TX1 – Farmall-McCormick 4M-120 spindle picker; TX2 - John Deere 33 cotton stripper; TX3 - John Deere 33 cotton stripper; TX4 - John Deere 9900 spindle type cotton picker

Bolls open at harvest ranged 70-80% to 97-99% at the plots with the exception of OK which only had 25-30% bolls open at harvest.

Table 68. Residues in Glyphosate Tolerant Cotton genotype1445 and 1698 (USA) (cottonseed: fuzzy or undelinted) (Formulation 410 g/L glyphosate isopropylamine salt SL= 307 g ae/L).

Location			Applicatio	m	GSLT	PHI	Resid	lues (mg/kg)	Report/
(year) variety	Туре	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
			Ũ	ae/hL			0.14			
Houston Co.	PRE	4	3.4	1.7	70%	7	0.46 c0.05	< 0.05	0.46	MSL13884
Alabama USA	EPO		1.3	0.63	Bolls				c0.05	
(1994) 1445	PD		1.3	0.63	Open					
	PH		1.7	0.75						
	PRE	5	3.4	1.7	70%	7	<u>0.46</u> c0.05	< 0.05	0.46	MSL13884
	EPO		0.84	0.42	Bolls					
	MPO		1.3	0.63	Open					
	PD		1.3	0.63						
	PH		1.7	0.75						
	PRE	5	3.4	1.7	70%	7	0.44 c0.05	< 0.05	0.44	MSL13884
	EPO		0.84	0.42	Bolls				c0.05	
	LPO		1.3	0.63	Open					
	PD		1.7	0.84						
	PH		1.7	0.75						
Crittenden Co.	PRE	4	3.4	3.4	70%	8	0.41	0.21	0.73	MSL13884
Arkansas USA	EPO		1.3	1.0	Bolls					
(1994) 1445	PD		1.3	0.72	Open					
	PH		1.7	1.3						
	PRE	5	3.4	3.4	70%	8	0.33	0.06	0.42	MSL13884
	EPO		0.84	0.67	Bolls					
	MPO		1.3	1.3	Open					
	PD		1.3	0.72						
	PH	_	1.7	1.3						
	PRE	5	3.4	3.4	70%	8	0.43	< 0.05	0.43	MSL13884
	EPO		0.84	0.67	Bolls					
	LPO		1.3	1.3	Open					
	PD		1.7	0.96						
1.600	PH		1.7	1.3	-		0.67	~ ~ -	A (7	10004
1698	PRE	4	3.4	3.4	70%	8	0.67	< 0.05	0.67	MSL13884
	EPO		1.3	1.0	Bolls					
	PD		1.3	0.72	Open					
	PH	-	1.7	1.3	700/	0	0.50	10.05	0.50	NGL 12004
	PRE	5	3.4	3.4	70%	8	0.58	< 0.05	0.58	MSL13884
	EPO	1	0.84	0.67	Bolls					
	MPO PD		1.3	1.3 0.72	Open					
		1	1.3							
	PH PRE	5	1.7 3.4	1.3	70%	0	0.60	< 0.05	0.00	MSL13884
	PRE EPO	З	3.4 0.84	3.4 0.67	70% Bolls	8	<u>0.69</u>	< 0.05	<u>0.69</u>	MSL13884
	EPO LPO	1								
		1	1.3	1.3	Open					
	PD		1.7	0.96						
	PH		1.7	1.3					l	

Location			Applicatio	m	GSLT	PHI	Resid	lues (mg/kg))	Report/
(year) variety	Туре	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Maricopa Co.	PRE	4	3.4	1.9	Maturity	7	<u>1.3</u>	0.06	<u>1.4</u>	MSL13884
Arizona USA	EPO PD		1.3	0.63 0.72						
(1994) 1445	PD PH		1.3 1.7	0.72						
	PRE	5	3.4	1.9	Maturity	7	0.43	< 0.05	0.43	MSL13884
	EPO	5	0.84	0.42	Watarity	,	0.15	• 0.05	0.15	MBE15001
	MPO		1.3	0.72						
	PD		1.3	0.72						
	PH		1.7	0.84						
	PRE	5	3.4	1.9	Maturity	7	1.0	< 0.05	1.0	MSL13884
	EPO		0.84	0.42						
	LPO PD		1.3 1.7	0.72 0.96						
	PD PH		1.7	0.96						
Tulare Co.	PRE	4	3.4	2.2	Maturity	6	2.8	0.08	<u>2.9</u>	MSL13884
California	EPO	1	1.3	0.84	1.1acailey	Ũ	2.0	0.00	<u>=.</u> .	
USA (1994)	PD		1.3	0.84						
1445	PH		1.7	1.1						
	PRE	5	3.4	2.2	Maturity	6	2.0	0.07	2.1	MSL13884
	EPO		0.84	0.56						
	MPO		1.3 1.3	0.84 0.84						
	PD PH		1.5	0.84						
	PRE	5	3.4	2.2	Maturity	6	1.4	0.08	1.5	MSL13884
	EPO	5	0.84	0.56	Watarity	Ŭ	1.1	0.00	1.0	MBE15001
	LPO		1.3	0.84						
	PD		1.7	1.1						
	PH		1.7	1.1						
St Landry Co.	PRE	4	3.4	2.2		17	0.43	< 0.05	0.43	MSL13884
Louisiana USA	EPO		1.3	1.3						
(1994) 1445	PD PH		1.3 1.7	1.3 1.7						
	PRE	5	3.4	2.2		17	0.50	0.05	0.58	MSL13884
	EPO	5	0.84	0.84		17	0.50	0.05	0.50	WISE15004
	MPO		1.3	1.3						
	PD		1.3	1.3						
	PH		1.7	1.7						
	PRE	5	3.4	2.2		17	0.40	< 0.05	0.40	MSL13884
	EPO		0.84	0.84						
	LPO PD		1.3 1.7	1.3 1.7						
	PH		1.7	1.7						
1698	PRE	4	3.4	2.2		17	0.44	< 0.05	0.44	MSL13884
	EPO		1.3	1.3						
	PD		1.3	1.3						
	PH		1.7	1.7						
	PRE	5	3.4	2.2		17	0.30	< 0.05	0.30	MSL13884
	EPO		0.84	0.84						
	MPO PD		1.3 1.3	1.3 1.3						
	PH		1.7	1.7						
	PRE	5	3.4	2.2		17	0.30	< 0.05	0.30	MSL13884
	EPO		0.84	0.84						
	LPO	1	1.3	1.3						
	PD	1	1.7	1.7						
D.I. C	PH	<u> </u>	1.7	1.7			2.6.0.05	0.07		
Bolivar Co.	PRE	4	3.4	2.2	Mature	6	<u>3.6</u> c0.05	0.07	<u>3.7</u>	MSL13884
Mississippi USA (1994)	EPO PD	1	1.3 1.3	1.0 1.0						
1445	PD PH	1	1.5	1.0						
		1	±.,	1.1	1	1	I	1		1 1

Location			Applicatio	n	GSLT	PHI	Resid	lues (mg/kg))	Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
	PRE EPO MPO PD PH	5	3.4 0.84 1.3 1.3 1.7	2.2 0.67 1.0 1.0 1.1	Mature	6	3.4 c0.05	0.05	3.5 c0.05	MSL13884
	PRE EPO LPO PD PH	5	3.4 0.84 1.3 1.7 1.7	2.2 0.67 1.0 1.3 1.1	Mature	6	0.69 c0.05	< 0.05	0.69 c0.05	MSL13884
Washington Co. Mississippi USA (1994) 1445	PRE EPO PD PH	4	3.4 1.3 1.3 1.7	1.7 0.63 1.0 1.1	Open Bolls	9	0.43	< 0.05	0.43	MSL13884
	PRE EPO MPO PD PH	5	3.4 0.84 1.3 1.3 1.7	1.7 0.42 0.72 1.0 1.1	Open Bolls	9	0.41	< 0.05	0.41	MSL13884
	PRE EPO LPO PD PH	5	3.4 0.84 1.3 1.7 1.7	1.7 0.42 1.0 1.3 1.1	Open Bolls	9	0.13	< 0.05	0.13	MSL13884
1698	PRE EPO PD PH	4	3.4 1.3 1.3 1.7	1.7 0.63 1.0 1.1	Open Bolls	9	<u>1.2</u>	< 0.05	<u>1.2</u>	MSL13884
	PRE EPO MPO PD PH	5	3.4 0.84 1.3 1.3 1.7	1.7 0.42 0.72 1.0 1.1	Open Bolls	9	0.98	< 0.05	0.98	MSL13884
	PRE EPO LPO PD PH	5	3.4 0.84 1.3 1.7 1.7	1.7 0.42 1.0 1.3 1.1	Open Bolls	9	0.60	< 0.05	0.60	MSL13884
Fayette Co. Tennessee USA (1994) 1445	PRE EPO PD PH	4	3.4 1.3 1.3 1.7	3.4 1.0 0.72 1.3	70% Bolls Open	8	2.1	0.10	2.3	MSL13884
	PRE EPO MPO PD PH	5	3.4 0.84 1.3 1.3 1.7	3.4 0.67 1.0 0.72 1.3	70% Bolls Open	8	5.0	0.13	<u>5.2</u>	MSL13884
	PRE EPO LPO PD PH	5	3.4 0.84 1.3 1.7 1.7	3.4 0.67 1.3 0.96 1.3	70% Bolls Open	8	2.5	< 0.05	2.5	MSL13884
Uvalde Co. Texas USA (1994) 1445	PRE EPO PD PH	4	3.4 1.3 1.3 1.7	2.7 1.3 1.3 1.3	60% Bolls Open	6	2.0	< 0.05	2.0	MSL13884
	PRE EPO MPO PD PH	5	3.4 0.84 1.3 1.3 1.7	2.7 0.84 1.0 1.3 1.3	60% Bolls Open	6	2.1	< 0.05	2.1	MSL13884

Location	Application GSI		GSLT	PHI	Resid)	Report/			
(year) variety	Туре	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
	PRE	5	3.4	ae/hL 2.7	60%	6	2.4	< 0.05	2.4	MSL13884
	EPO	5	0.84	0.84	Bolls	0	2.7	< 0.05	2.4	WISE15004
	LPO		1.3	1.3	Open					
	PD		1.7	1.7	- r -					
	PH		1.7	1.3						
1698	PRE	4	3.4	2.7	60%	6	2.5	< 0.05	2.5	MSL13884
	EPO		1.3	1.3	Bolls					
	PD		1.3	1.3	Open					
	PH		1.7	1.3	_					
	PRE	5	3.4	2.7	60%	6	2.1	< 0.05	2.1	MSL13884
	EPO		0.84	0.84	Bolls					
	MPO		1.3	1.0	Open					
	PD		1.3	1.3						
	PH		1.7	1.3						
	PRE	5	3.4	2.7	60%	6	1.8	< 0.05	1.8	MSL13884
	EPO		0.84	0.84	Bolls					
	LPO		1.3	1.3	Open					
	PD		1.7	1.7						
	PH	4	1.7	1.3	N	0	2.5	10.05	2.5	MGI 12004
Willacy Co.	PRE	4	3.4	1.7	Maturity	8	2.5	< 0.05	2.5	MSL13884
Texas USA	EPO		1.3	0.63						
(1994) 1445	PD PH		1.3 1.7	0.63 0.84						
	PRE	5	3.4	1.7	Maturity	8	2.7	< 0.05	2.7	MSL13884
	EPO	Э	5.4 0.84	0.42	Maturity	8	2.7	< 0.05	2.7	MSL13884
	MPO		1.3	0.42						
	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	3.0	< 0.05	3.0	MSL13884
	EPO	5	0.84	0.42	waturity	0	5.0	0.05	5.0	MBE15001
	LPO		1.3	0.63						
	PD		1.7	0.84						
	PH		1.7	0.84						
1698	PRE	4	3.4	1.7	Maturity	8	4.0 c0.09	0.14	4.2	MSL13884
	EPO		1.3	0.63	5					
	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	<u>4.2</u> c0.09	0.14	<u>4.4</u>	MSL13884
	EPO		0.84	0.42						
	MPO		1.3	0.63						
	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	4.0 c0.09	0.13	4.2	MSL13884
	EPO		0.84	0.42						
	LPO	1	1.3	0.63						
	PD		1.7	0.84						
H 11 C	PH		1.7	0.84	36	-	1.7	.0.05	1.7	10004
Hockley Co	PRE	4	3.4	2.2	Maturity	7	1.7	< 0.05	1.7	MSL13884
Texas USA	EPO		1.3	0.84						
(1994) 1445	PD		1.3	0.84						
	PH	-	1.7	1.1	Math	7	2.0	< 0.05	2.0	MCI 12004
	PRE	5	3.4	2.2	Maturity	7	2.8	< 0.05	2.8	MSL13884
	EPO MPO	1	0.84	0.56 0.84						
	PD	1	1.3							
	PD PH	1	1.3	0.84						
	PH PRE		1.7 3.4	1.1 2.2	Metarita	7	A C	< 0.05	1.6	MSL13884
	EPO		3.4 0.84	2.2 0.56	Maturity	/	<u>4.6</u>	< 0.05	<u>4.6</u>	INISL13884
	LPO	1	0.84 1.3	0.56						
	PD	1	1.3	0.84 1.1						
	PD PH	1	1.7	1.1						
		1			l		/PO = Mid-Po			1

Application types: PRE = Pre-emergence; EPO = Early Post-emergence; MPO = Mid-Post-emergence; LPO = Late Post-emergence; PD = Post-Directed; PH = Pre-harvest

AL – hand harvested, processed research-type gin; AR – Mechanical John Deere 99 cotton picker, 10 saw gin; AZ – hand harvested, research type gin; CA – Hand harvested, research type gin; LA – mechanical IH 622 cotton picker, 20 saw table top gin; MS1 – Hand harvested research type gin; MS2 – hand harvested research type gin; TN - mechanical IH 416 row picker, research type gin; TX1 – Mechanical John Deere 9900 picker, Dennis 20 saw gin; TX2 – Mechanical picker, Denis 20 saw gin; TX3 – Hand harvested, Dennis 20 saw gin.

Gin BP from the Arkansas and Tennessee trial sites were collected from gin material while the other sites were simulated gin BP by collecting a mixture of leaves, burs and stems.

AR – Mechanical John Deere 99 cotton picker, 10 saw gin; LA – mechanical IH 622 cotton picker, 20 saw table top gin; MS – hand harvested research type gin; TX1 – Mechanical John Deere 9900 picker, Dennis 20 saw gin; TX2 – Mechanical picker, Denis 20 saw gin.

Gin BP from the Arkansas trial site were collected from gin material while the other sites were simulated gin BP by collecting a mixture of leaves, burs and stems.

Location			Applicatio	n	Sample	PHI		idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		days	glyphosate	AMPA	Total	reference
Tetsworth, Oxfordshire, UK (1993) Antares	SL	1	1.4	0.70	Seed	7	<u>2.0</u>			GLY 267, GLY 296
		1	0.72	0.36	Seed	7	0.61			GLY 267, GLY 296
Melbourne, Derbyshire, UK (1992) Flanders	SL	1	1.4	0.70	Seed	7	<u>4.6</u>			GLY 134, GLY 218
		1	0.72	0.36	Seed	7	1.9			GLY 134, GLY 218
Arbroath, UK (1982) Regina	SL	1	1.4	0.72	Seeds Capsules Cake Oil Stems	5 5 5 5 50	1.3 c0.65 250 c2.8 2.1 < 0.05 0.8 c0.1	<0.05 1.2 <0.05 <0.05 0.06	1.3 252 2.1 < 0.05 0.89 c0.1	ML30106
		1	2.9	1.4	Seeds Capsules Cake Oil Stems	5 5 5 5 50	2.2 c0.65 230 c2.8 2.4 < 0.05 1.9 c0.1	< 0.05 1.8 < 0.05 < 0.05 0.13	2.2 233 2.4 < 0.05 2.1	ML30106
		1	1.4	0.72	Stems	82	1.0 c0.1	< 0.05	1.0	ML30106
		1	2.8	1.4	Stems	82	1.5 c0.1	0.06	1.6	ML30106
Backboath, UK (1982) Hera	SL	1	1.4	0.72	Seeds Capsules Cake Oil Stems	5 5 5 5 40	1.1 c1.6 103 c1.1 1.6 < 0.05 0.8 c0.05	< 0.05 1.0 < 0.05 < 0.05 0.07	1.1 105 1.6 < 0.05 0.91	ML30106
		1	2.9	1.4	Seeds Capsules Cake Oil Stems	5 5 5 5 40	3.5 c1.6 85 c1.1 6.3 < 0.05 0.9 c0.05	< 0.05 3.2 < 0.05 < 0.05 0.10	3.5 90 6.3 < 0.05 1.1	ML30106
		1	1.4	0.72	Stems	72	0.8 c0.05	0.07	0.91	ML30106
		1	2.9	1.4	Stems	72	1.2 c0.05	0.16	1.4	ML30106
Lisburn, Ireland (1982) Reina	SL	1	1.4	0.58	Seeds Capsules Fibres Shives	35 35 35 35	24 22 6.6 c0.2 2.7	0.31 0.8 0.23 0.10	24 23 7.0 2.9	ML30106

Table 69. Residues in linseed (flax): Pre-harvest Application (United Kingdom).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		days	glyphosate	AMPA	Total	reference
			_	ae/hL						
		1	2.9	1.2	Seeds	35	24	0.26	24	ML30106
					Capsules	35	22	0.4	23	
					Fibres	35	6.3 c0.2	0.09	6.4	
					Shives	35	3.6	0.06	3.7	
		1	1.4	0.58	Seeds	46	128	1.3	130	ML30106
					Capsules	46	44	0.8	45	
					Fibres	46	6.2 c0.2	0.18	6.5	
					Shives	46	2.2	0.05	2.3	
			2.9	1.2	Seeds	46	189	1.9	192	ML30106
					Capsules	46	45	0.9	46	
					Fibres	46	5.9 c0.2	0.21	6.2	
					Shive	46	3.4	0.11	3.6	

Table 70. Residues in Mustard seed (entire grain): Pre-harvest Application (United Kingdom).

Location			Application	n	PHI	Re	sidues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Bixley, Norwich, UK (1980) Newton	SL	1	1.4	0.7	8	<u>0.25</u>	< 0.05	<u>0.25</u>	ML30104
		1	2.9	1.4	8	0.5	< 0.05	0.5	ML30104
Long Sutton, Lincolnshire, UK (1980) Tilney	SL	1	1.4	0.7	7	<u>2.6</u>	< 0.05	<u>2.6</u>	ML30104
		1	2.9	1.4	7	3.2	< 0.05	3.2	ML30104

Table 71. Residues in Rape/Canola (seed): Pre-harvest Application, single spray of glyphosate
formulations.

Location		App	olication		PHI	Res	idues (mg/kg	g)	Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Franc-Waret,	А	1	1.4	0.72	0	5.4	< 0.05	5.4	MLL31336
Belgium (1999)					12	<u>4.6</u>	< 0.05	<u>4.6</u>	
Olara					-				
	С	1	1.4	0.72	0	2.8	< 0.05	2.8	MLL31336
					12	0.40	< 0.05	0.40	
Franc-Waret,	А	1	1.3	0.65	0	1.7 c0.18	< 0.05	1.7 c0.18	MLL30817
Belgium (1998)					14	<u>0.23</u>	< 0.05	<u>0.23</u>	
Synergie	5			0.50	0		0.05		
	D	1	1.4	0.70	0	2.7 c0.18	< 0.05	2.7 c0.18	MLL30817
			0.00		14	0.12	< 0.05	0.12	GED 4402/04
Elm Creek,	А	1	0.90	-	7	1.1, 1.3	< 0.05, <	1.1, 1.3	CER 1403/01
Manitoba,							0.05		
Canada (2001)									
Ebony	В	1	0.90	-	7	1101	< 0.05 <	1121	CED 1402/01
	В	1	0.90	-	/	1.1, <u>2.1</u>	< 0.05, <	1.1, <u>2.1</u>	CER 1403/01
Variation	А	1	0.90		7	0.52.0(1	0.05	0.52.0(1	CER 1403/01
Vanscoy,	A	1	0.90	-	/	0.52, <u>0.61</u>	< 0.05, < 0.05	0.52, <u>0.61</u>	CER 1405/01
Saskatchewan, Canada (2001)							0.03		
Clearfield									
Clearnelu	В	1	0.90	-	7	0.33, 0.54	< 0.05, <	0.33, 0.54	CER 1403/01
	Б	1	0.90	-	/	0.35, 0.34	0.05	0.35, 0.34	CER 1405/01
Kipp, Alberta,	А	1	0.90	-	6	2.2, 2.6	0.053,	2.3, 2.7	CER 1403/01
Canada (2001)						-	0.052		
Q2									

Location		App	olication		PHI	Res	g)	Report/	
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
	В	1	0.90	-	6	<u>3.6</u> , 3.1	0.07, < 0.05	<u>3.7</u> , 3.1	CER 1403/01
Minto, Manitoba, Canada (2001) 46A76	A	1	0.90	-	7	0.54, 0.33	< 0.05, < 0.05	0.54, 0.33	CER 1403/01
Lacombe, Alberta Canada (2001) Reward	А	1	0.90	-	7	1.6, <u>1.8</u>	< 0.05, < 0.05	1.6, <u>1.8</u>	CER 1403/01
Denmark (1981) Line	С	1	1.4	0.72	17	<u>10</u>	0.05	<u>10</u>	ML30104
Denmark (1981) Sulliver	С	1	1.4	0.72	17	<u>12</u>	0.10	<u>12</u>	ML30104
Hasley Denmark (1982) Hasley	С	1	1.4	0.72	21	<u>8.6</u>	< 0.05	<u>8.6</u>	ML30104
Horsens Denmark (1982) Brutor	С	1	1.4	0.72	21	<u>6.7</u>	< 0.05	<u>6.7</u>	ML30104
Slaselse Denmark (1982) Karat	С	1	1.4	0.72	21	<u>4.1</u>	< 0.05	<u>4.1</u>	ML30104
Finland (1981) Torch	С	1	1.4	0.72	7 14	6.3 <u>1.5</u>	0.08 0.06	6.4 <u>1.6</u>	ML30104
Finland (1981) Oro	С	1	1.4	0.72	2 20	4.3 0.8	0.07 < 0.05	4.4 0.8	ML30104
Duras, Aquitaine, France (1999) Corrida	А	1	1.4	0.81	0 10	1.4 <u>0.23</u>	< 0.05 < 0.05	1.4 <u>0.23</u>	MLL31336
	С	1	1.4	0.82	0 10	2.3 0.08	< 0.05 < 0.05	2.3 0.08	MLL31336
St Paul les Romans, Rhône-Alpes, France (1999) Bristol	A	1	1.5	0.82	0 13	2.4 1.2	< 0.05 < 0.05	2.4 1.2	MLL31336
	С	1	1.5	0.82	0 13	1.3 <u>1.4</u>	< 0.05 < 0.05	1.3 <u>1.4</u>	MLL31336
Levroux, Centre, France (1999) Pollen	А	1	1.5	0.82	0 17	2.9 0.86	< 0.05 < 0.05	2.9 0.86	MLL31336
	С	1	1.4	0.82	0 17	2.3 <u>0.96</u>	< 0.05 < 0.05	2.3 <u>0.96</u>	MLL31336
Seebach, Alsace, France (1998) Capitol	A	1	1.4	0.82	0 11	6.5 0.32	< 0.05 < 0.05	6.5 0.32	MLL31336
	С	1	1.4	0.82	0 11	1.9 0.35	< 0.05 < 0.05	1.9 <u>0.35</u>	MLL31336
Fessenheim, Alsace, France (1999) Coctail	А	1	1.4	0.82	0 10	6.6 <u>0.87</u>	< 0.05 < 0.05	6.6 <u>0.87</u>	MLL31336
	С	1	1.5	0.82	0 10	5.8 0.54	< 0.05 < 0.05	5.8 0.54	MLL31336
Duras, Aquitaine, France (1998) Mavaja	А	1	1.5	0.71	0 12	3.4 0.40	< 0.05 < 0.05	3.4 0.40	MLL30817
- -	D	1	1.5	0.70	0 12	3.1 0.93	< 0.05 < 0.05	3.1 0.93	MLL30817

Location		App	plication		PHI	Res	sidues (mg/kg	g)	Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
St Paul les Romans, Rhône-Alpes, France (1998) Cocktail	A	1	1.5	0.71	0 10	21 1.8	0.07 < 0.05	21 1.8	MLL30817
	D	1	1.5	0.74	0 10	19 <u>5.6</u>	0.07 0.07	19 5.7	MLL30817
Levroux, Centre, France (1998) Contact	А	1	1.5	0.74	0 10	0.80 0.32	< 0.05 < 0.05	0.80 0.32	MLL30817
	D	1	1.5	0.74	0 10	1.4 0.50	< 0.05 < 0.05	1.4 <u>0.50</u>	MLL30817
Vaudemont, Alsace, France (1998) Colombus	A	1	1.4	0.72	0 14	0.98 0.06	< 0.05 < 0.05	0.98 0.06	MLL30817
	D	1	1.4	0.71	0 14	2.1 0.21	< 0.05 < 0.05	2.1 <u>0.21</u>	MLL30817
Fessenheim, Alsace, France (1998) Lisabeth	А	1	1.4	0.73	0 10	2.0 <u>1.9</u>	< 0.05 < 0.05	2.0 <u>1.9</u>	MLL30817
()	D	1	1.5	0.74	0 10	4.6 1.5	< 0.05 < 0.05	4.6 1.5	MLL30817
Sweden (1981) Skaberjo	С	1	0.72	0.36	16	1.1 c0.2	0.09 c0.06	1.2	ML30104
5		1	1.1 1.4	0.54 0.72	16 16	1.8 c0.2 2.8 c0.2	0.15 c0.06 0.13 c0.06	2.0 3.0	ML30104 ML30104
Sweden (1981) Svalof	С	1	1.4	0.72	10	<u>0.4</u>	< 0.05	<u>0.40</u>	ML30104 ML30104
Sweden (1980)	С	1	1.4	0.72	18	<u>2.0</u> c0.1	< 0.05	2.0	ML30104
Wilson, Derbyshire UK (1992) Lictor	A	1	2.2 1.4	1.01 0.72	18 0 14	1.4 c0.1 4.5 c0.2 <u>0.9</u>	< 0.05 < 0.05 < 0.05	1.4 4.5 c0.2 <u>0.9</u>	ML30104 MLL30321
	А	1	2.9	1.4	0 14	4.9 c0.2 1.8	< 0.05 < 0.05	4.9 c0.2 1.8	MLL30321
	Е	1	1.4	0.72	0 14	4.8 c0.2 0.9	< 0.05 < 0.05	4.8 c0.2 0.9	MLL30321
	Е	1	2.9	1.4	0 14	12 c0.2 2.5	< 0.05 < 0.05		MLL30321
	F	1	1.5	0.74	0 14	7.3 c0.2 0.9	< 0.05 < 0.05	7.3 c0.2 0.9	MLL30321
	F	1	2.9	1.5	0 14	13 c0.2 2.6	0.1 < 0.05	13 2.6	MLL30321
Wintringham, Yorkshire UK (1992) Samuri	А	1	1.4	0.72	0 14	3.6 c0.1 0.4	<0.05 0.2	3.6 0.70	MLL30321
(1992) Sumur	А	1	2.9	1.4	0 14	23 c0.1 1.1	< 0.05 < 0.05	23 c0.1 1.1	MLL30321
	Е	1	1.4	0.72	0 14	5.0 0.4	0.1	5.2 0.4	MLL30321
	Е	1	2.9	1.4	0 14	28 c0.1 1.3	< 0.05 < 0.05 < 0.05	28 c0.1 1.3	MLL30321
	F	1	1.5	0.74	0 14	8.0 c0.1 <u>0.7</u>	0.1	8.2 0.7	MLL30321
	F	1	2.9	1.5	0 14	45 c0.1 1.0	< 0.05 < 0.05 < 0.05	45 c0.1 1.0	MLL30321
Terling, Essex UK (1992) Falcon	А	1	1.4	0.72	0 14	4.2 <u>0.7</u>	< 0.05 < 0.05 < 0.05	4.2 <u>0.7</u>	MLL30321
- 410011	А	1	2.9	1.4	0	5.8	< 0.05	5.8	MLL30321

Location		Ap	olication		PHI	Res	idues (mg/kg	g)	Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
			-	ae/hL					
	Е	1	1.4	0.72	0	4.7	< 0.05	4.7	MLL30321
					14	0.5	< 0.05	0.5	
	E	1	2.9	1.4	0	8.8	< 0.05	8.8	MLL30321
					14	0.9	< 0.05	0.9	
	F	1	1.5	0.74	0	3.1	< 0.05	3.1	MLL30321
					14	0.6	< 0.05	0.6	
	F	1	2.9	1.5	0	18	0.1	18	MLL30321
D 1		1		0.70	14	0.7	< 0.05	0.7	N (1 1 20221
Burnham on	А	1	1.4	0.72	0	6.9	< 0.05	6.9	MLL30321
Crouch, Essex					14	<u>0.4</u>	< 0.05	<u>0.4</u>	
UK (1992) Lictor									
LICIOI	А	1	2.9	1.4	0	7.3	< 0.05	7.3	MLL30321
	A	1	2.9	1.4	14	0.3	< 0.05	0.3	WILL50521
	Е	1	1.4	0.72	0	3.1	< 0.05	3.1	MLL30321
	Ľ	1	1.1	0.72	14	0.3	< 0.05	0.3	WIELS0521
	Е	1	2.9	1.4	0	5.8	< 0.05	5.8	MLL30321
	2	-	,		14	1.2	< 0.05	1.2	
	F	1	1.5	0.74	0	6.6	< 0.05	6.6	MLL30321
					14	0.4	< 0.05	0.4	
	F	1	2.9	1.5	0	10	< 0.05	10	MLL30321
					14	1.0	< 0.05	1.0	
Bottisham,	С	1	1.4	0.72	14	0.16	< 0.05	0.16	ML30104
Cambridgeshire									
UK (1982)									
Brutor									
		1	2.9	1.4	14	0.48	< 0.05	0.48	ML30104
Easton	С	1	1.4	0.72	14	<u>1.5</u>	< 0.05	<u>1.5</u>	ML30104
Cambridgeshire									
UK (1982) Jet									
Neuf		1	2.0	1.4	1.4	2.2	< 0.05	2.2	NII 20104
Fastan	С	1	2.9 1.4	1.4 0.72	14 14	3.2	< 0.05 < 0.05	3.2	ML30104 ML30104
Easton Cambridgeshire	C	1	1.4	0.72	14	<u>2.7</u>	< 0.05	<u>2.7</u>	MIL30104
UK (1982) Jet									
Neuf									
		1	2.9	1.4	14	4.0	< 0.05	4.0	ML30104
Cattenham,	С	1	0.72	0.36	7	0.30	< 0.05	0.30	ML30104
Cambridgeshire	Ũ	1		0.00	,	0.00	0.00	0.00	
UK (1980) Jet									
Neuf.									
		1	1.4	0.72	7	<u>0.60</u>	< 0.05	0.60	ML30104
		1	2.9	1.4	7	1.8	< 0.05	1.8	ML30104
Sheardown,	С	1	1.4	0.72	11	<u>0.35</u>	< 0.05	0.35	ML30104
Grantham,									
Lincolnshire,									
UK (1980)									
Brutor					<u> </u>				
		1	2.9	1.4	11	0.95	< 0.05	0.95	ML30104
UK – Cliffield	С	1	1.4	0.72	11	<u>0.80</u>	< 0.05	<u>0.80</u>	ML30104
30058-1980									

Formulations A = 360 g ae/L SL; B = 440 g ae/L as trimesium salt+surfactant Rely 0.5% v/v; C = MON 78294 (450 g/L SL); D = MON 14420 (680 g/kg SG); Formulation E = MON 52276 (360 g/L = SL); F = MON 44068 (420 g/kg = SG)

Table 72. Residues of glyphosate in Sunflower seed (Hungary).

Location			Application	1	PHI	Residu	es (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Enying, Fejér Co., Hungary (2000) Alexandra	SL	1	0.70	0.48	7 14 21	0.20 0.13 0.18			00 MON AA 0504
	SL	1	1.7	1.2	7 14 21	1.3 0.99 <u>3.7</u>			00 MON AA 0504
Kápolnásnyék, Fejér Co., Hungary (2000) Arena	SL	1	0.68	0.47	7 14 21	2.9 8.4 8.6			00 MON AA 0504
	SL	1	1.8	1.2	7 14 21	13 16 <u>5.6</u>			00 MON AA 0504
Bőcs, Borsod- Abaúj-Zemplén Co., Hungary (2000) EX-399	SL	1	0.71	0.48	7 14 21	0.21 < 0.05 < 0.05			00 MON AA 0504
	SL	1	1.8	1.2	7 14 21	0.35 0.65 <u>0.16</u>			00 MON AA 0504
Felsőzsolca, Borsod-Abaúj- Zemplén Co., Hungary (2000) Util	SL	1	0.75	0.48	7 14 21	0.46 0.65 0.74			00 MON AA 0504
eth	SL	1	1.8	1.1	7 14 21	4.5 5.4 <u>4.9</u>			00 MON AA 0504
Nyíregyháza, Szabolcs- Szatmár-Bereg Co., Hungary (2000) Semu	SL	1	0.70	0.24	7 14 21	0.55 0.35 0.27			00 MON AA 0504
(,	SL	1	1.8	0.6	7 14 21	0.75 1.8 0.40			00 MON AA 0504
Kápolnásnyék, Fejér Co., Hungary (1999) Arena	SL	1	0.72	0.49	7 14 21	0.91 0.56 0.20	0.13 < 0.05 < 0.05	1.1 0.56 0.20	99 GLY 01
	SL	1	1.6	1.2	7 14 21	1.3 1.5 <u>0.39</u>	< 0.05 < 0.05 < 0.05	1.3 1.5 <u>0.39</u>	99 GLY 01
Nyíregyháza, Szabolcs- Szatmár-Bereg Co., Hungary (1999) Semu	SL	1	0.76	0.46	7 14 21	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	99 GLY 01
	SL	1	1.9	1.2	7 14 21	0.10 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	0.10 < 0.05 < 0.05	99 GLY 01
Nyíregyháza, Szabolcs- Szatmár-Bereg Co., Hungary (1999) Util	SL	1	0.81	0.47	7 14 21	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	<0.05 <0.05 <0.05	99 GLY 01
(- <i></i>) 0 m	SL	1	1.9	1.2	7 14 21	0.09 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	0.09 < 0.05 < 0.05	99 GLY 01

Location		Ap	plication		Sample	PHI		lues (mg/kg	g)	Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Sao Paulo,	SL	1	4.5		Green beans	14	< 0.05	< 0.05	< 0.05	FR 434
Brazil (1973)					Green beans	28	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	
					Green beans	56	< 0.05	< 0.05	< 0.05	
		2	4.5 4.5		Green beans	84	< 0.05	< 0.05	< 0.05	FR 434
Cali,	SL	1	2.2		Green beans	8	0.71	< 0.05	0.71	FR 434
Columbia					Green beans	21	0.57	< 0.05	0.57	
(1972)					Green beans	49	0.27	< 0.05	0.27	
					Roasted	49	0.07	< 0.05	0.07	
					beans	49	0.23	< 0.05	0.23	
					Instant coffee					
		2	2.2		Green beans	1	0.11	< 0.05	0.11	FR 434
		~	2.2		Green beams	1	0.11	0.05	0.11	110 15 1
		1	4.5		Green beans	8	0.41	< 0.05	0.41	FR 434
					Green beans	21	0.24	< 0.05	0.24	
					Green beans	49	0.30	< 0.05	0.30	
					Roasted	49	0.11	< 0.05	0.11	
					beans	49	0.34	< 0.05	0.34	
					Instant coffee					
		2	4.5 4.5		Green beans	1	0.62	< 0.05	0.62	FR 434
Kona Branch	SL	1	4.5 2.2	-	Green beans	14	< 0.05	< 0.05	< 0.05	FR 434
Station,	SL	1	2.2		Green beans	27	< 0.05	< 0.05	< 0.05	1 K 434
Hawaii USA					Green beans	53	0.38	< 0.05	0.38	
(1972/3)					Green beans	55	0.50	< 0.05	0.50	
()		2	2.2		Green beans	1	0.08	< 0.05	0.08	FR 434
			2.2		Green beans	27	0.31	< 0.05	0.31	
					Green beans	56	0.11	< 0.05	0.11	
		1	4.5		Green beans	14	< 0.05	< 0.05	< 0.05	FR 434
					Green beans	27	0.07	< 0.05	0.07	
					Green beans	53	0.16	< 0.05	0.16	
		2	4.5		Green beans	1	0.35	< 0.05	0.35	FR 434
			4.5		Green beans	28	0.58	< 0.05	0.58	
					Roasted	28	0.06	< 0.05	0.06	
			1		beans	28	0.20	< 0.05	0.20	
			1							
					Green beans	2,	÷,	0.00	·· /	
San Jose,	SL	1	4.5		Green beans	14	< 0.05	< 0.05	< 0.05	FR 434
Costa Rica			1		Green beans			< 0.05	< 0.05	
			1							
< - · /		2	4.5							FR 434
		_								
			1.5							
	SL	1	4.5 4.5 4.5		Instant coffee Green beans Green beans	57	0.27	< 0.05	0.27 < 0.05	FR 434 FR 434

Table 73. Residues in Coffee: Directed Ground Spray Application (Brazil, Colombia, Costa Rica, USA).

Roasted beans were prepared in the laboratory. Instant coffee was prepared from roasted beans by percolator-extraction and the solution dried to simulate commercial practices (limited details provided)

Table 74. Residues in Tea: Directed Ground Spray App	oplication.
--	-------------

Location			Applicati	on	Sample	PHI	Res		Report/	
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Kyoto, Japan (1990) Kyouken No. 129	SL	3	4.5 4.5 4.5	0.90 0.90 0.90	Tea, ground	3	0.11	< 0.02	0.11	Takano and Fuji 1991
					Tea, hot water steeping)		0.13	< 0.02	0.13	Takano and Fuji 1991

Location			Applicati	ion	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Kagoshima,	SL	3	4.5	0.90	Tea,	7	0.04	< 0.02	0.04	Takano and
Japan (1990) Okumidori			4.5 4.5	0.90 0.90	ground					Fuji 1991
Okumuon			ч.5	0.70	Tea, hot		0.02	< 0.02	0.02	Takano and
					water		0.02	0.02	0.02	Fuji 1991
					steeping					
Wategoda	SL	1	2.2		Tea	1	1.7 c0.18	< 0.08	1.7	MSL01582
Estate, Talawakale,					(black)	7 14	$\frac{0.42}{0.26}$	< 0.08 < 0.08	c0.18 0.42	
Sri Lanka						14	0.20	< 0.08	0.26	
(1980)									0.20	
		2	2.2		Tea	1	2.9	< 0.08	2.9	MSL01582
			2.2		(black)	7	1.2	< 0.08	1.2	
		3	2.2	-	Теа	14	0.36	< 0.08 < 0.08	0.36	MSL01582
		3	2.2		(black)	7	0.40 c0.17	< 0.08	0.40	WISL01382
			2.2		(ondex)	14	0.33 c0.17	< 0.08	c0.17	
									0.33	
									c0.17	
Wategoda	SL	1	2.2		Tea	1	0.94	< 0.08	0.94	MSL01582
Estate, Talawakale,					(black)	7 14	0.12 <u>0.21</u>	< 0.08 < 0.08	0.12 <u>0.21</u>	
Sri Lanka						14	0.21	< 0.08	0.21	
(1980)										
		2	2.2		Tea	1	1.9	< 0.08	1.9	MSL01582
			2.2		(black)	7	1.3	< 0.08	1.3	
		3	2.2		Теа	14	0.36	< 0.08 0.08	0.36	MSL01582
		3	2.2		(black)	1 7	0.44	< 0.08	0.44	WISL01382
			2.2		(olucik)	14	0.26	< 0.08	0.26	
St. Coombs,	SL	1	2.2		Tea	1	0.73	< 0.08	0.73	MSL01582
Tri,					(black)	7	<u>0.12</u>	< 0.08	<u>0.12</u>	
Talawakale, Sri Lanka						14	0.11	< 0.08	0.11	
(1980)										
(1900)		2	2.2		Теа	1	2.9	< 0.08	2.9	MSL01582
			2.2		(black)	7	0.41	< 0.08	0.41	
						14	0.17	< 0.08	0.17	
		3	2.2 2.2		Tea (black)	17	0.84 0.42	< 0.08 < 0.08	0.84 0.42	MSL01582
			2.2		(Diack)	14	0.42	< 0.08	0.42	
St. Coombs,	SL	1	2.2		Теа	1	1.8	< 0.08	1.8	MSL01582
Tri,					(black)	7	0.27	< 0.08	0.27	
Talawakale,						14	0.13	< 0.08	0.13	
Sri Lanka (1980)										
(1900)		2	2.2		Теа	1	9.6	< 0.08	9.6	MSL01582
		Ĩ	2.2		(black)	7	0.81	< 0.08	0.81	
					· ·	14	0.26	< 0.08	0.26	
		3	2.2		Tea	1	2.2	< 0.08	2.2	MSL01582
			2.2 2.2		(black)	7 14	0.66 0.20	< 0.08 < 0.08	0.66 0.20	
Tocklai Tea	SL	3	2.2	2.2	Теа	14 1A	< 0.08	< 0.08	< 0.08	MSL0980
Estate, Tocklai				2.2	(black)	1B	0.15	< 0.08	0.15	
Division,				2.2	È	1C	0.35	< 0.08	0.35	
Jorhat, Assam,						14	< 0.08	< 0.08	< 0.08	
India (1977)		3		6.5	Taa	1 4	0.40	< 0.08	0.40	MCL0000
		5		6.5 6.5	Tea (black)	1A 1B	0.40 0.18	< 0.08 < 0.08	0.40 0.18	MSL0980
				6.5	(orack)	1B 1C	0.18	< 0.08	0.18	
						14	0.11	0.08	0.23	

Location			Applicati	on	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Tocklai Tea Estate, Cinnamara Division	SL	3		2.2 2.2 2.2	Tea (black)	1A 1B 1C 14	$\begin{array}{c} 0.09 \\ < 0.08 \\ 0.25 \\ < 0.08 \end{array}$	$\begin{array}{c} 0.11 \\ < 0.08 \\ < 0.08 \\ < 0.08 \end{array}$	0.26 < 0.08 0.25 < 0.08	MSL0980
(1977) Jorhat, Assam, India		3		6.5 6.5 6.5	Tea (black)	1A 1B 1C 14	0.43 0.10 1.2 0.11	< 0.08 < 0.08 0.08 < 0.08	0.43 0.10 1.3 0.11	MSL0980
Lin-Kou, SL Taiwan (1978)	SL	3		2.2 2.2 2.2	Tea (black)	1A 1B 1C 15	< 0.08 0.11 0.20 0.10	< 0.08 < 0.08 < 0.08 < 0.08 < 0.08	< 0.08 0.11 0.20 0.10	MSL0980
		3		6.5 6.5 6.5	Tea (black)	1A 1B 1C 15	0.21 0.56 1.1 0.24	< 0.08 < 0.08 < 0.08 < 0.08	0.21 0.56 1.1 0.24	MSL0980
Holyrood Estate, Talawakale, Sri Lanka (1978)	SL	3		2.2 2.2 2.2	Tea (black)	1A 1B 1C 8 15	2.1 7.4 2.6 0.80 0.43	< 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08	2.1 7.4 2.6 0.80 0.43	MSL0980
		3		6.5 6.5 6.5	Tea (black)	1A 1B 1C 8 15	2.4 2.8 14 1.1 0.53	$\begin{array}{r} 0.00 \\ \hline 0.09 \\ < 0.08 \\ < 0.08 \\ < 0.08 \\ < 0.08 \\ < 0.08 \end{array}$	2.5 2.8 14 1.1 0.53	MSL0980
St Coombs, Tri, Talawakale, Sri Lanka (1977)	SL	3		2.2 2.2 2.2	Tea (black)	1A 1B 1C 8 15	0.24 12 4.5 0.64 0.32	< 0.08 < 0.08 0.08 < 0.08 < 0.08	0.24 12 4.6 0.64 0.32	MSL0980
		3		6.5 6.5 6.5	Tea (black)	1A 1B 1C 8 15	1.2 17 5.7 0.82 0.23	$\begin{array}{c} 0.08 \\ 0.22 \\ 0.11 \\ < 0.08 \\ < 0.08 \end{array}$	1.3 17 5.9 0.82 0.23	MSL0980

1A = 1 day after 1^{st} spray, 1B = 1 day after 2^{nd} spray and 1C = 1 day after 3^{rd} spray. Processed tea (Sri Lanka trials) withered 4-6 hours (reduces moisture from ca. 75% to ca. 35%), rolling (partial grinding), sifting to remove midribs and other large leaf sections, roll breaking to grind to into smaller pieces, fermentation, firing to reduce the moisture content from ca 25% to 3% in a dryer. All Sri Lankan trials are for processed tea.

Table 75.	Residues in	Conventional Alfa	lfa (forage a	and hav): P	Pre-harvest Application.
		• • • • • • • • • • • • • • • • • • • •			

Location			Applicatio	m	Sample PHI Residues (mg/kg)					Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Brantford, Ontario Canada (1992)	SL	1	0.91	0.82	Нау	3 (3)	30	0.28	30	MSL12617
		1	1.8	1.5	Hay	3 (3)	57	0.40	<u>58</u>	MSL12617
Cambridge, Ontario Canada (1992)	SL	1	0.91	0.81	Hay	4 (2)	45 c0.33	0.31	45	MSL12617
		1	1.7	1.6	Hay	4 (2)	<u>78</u>	0.62	79	MSL12617
Strathroy, Ontario Canada (1992)	SL	1	0.91	0.81	Hay	4 (2)	41	0.39	42	MSL12617
		1	1.7	1.6	Hay	4 (2)	<u>77</u>	0.70	<u>78</u>	MSL12617

Location			Applicatio	on	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	r	(days)	glyphosate	AMPA	Total	reference
			Ū	ae/hL			0.51			
California	SL	1	0.84	0.60	Forage	1	60	0.47	61	MSL12953
USA (1992)					Hay	4	165 c0.06	1.2	167	
GT13R Plus										
		1	1.7	1.2	Forage	1	<u>85</u>	0.51	<u>86</u>	MSL12953
					Hay	4	<u>256</u> c0.06	2.3	<u>260</u>	
Colorado USA	SL	1	0.84	0.68	Forage	1	33	0.15	33	MSL12953
(1992) Pioneer 521					Нау	5	127	0.83	128	
		1	1.7	1.4	Forage Hay	1 5	$\frac{107}{341}$	0.42 2.0	$\frac{108}{344}$	MSL12953
Idaho USA (1992) WL 312	SL	1	0.85	0.82	Forage Hay	1 3	42 164	0.20 0.70	42 165	MSL12953
(1))2) 112 512		1	1.7	1.6	Forage	1	122	0.51	123	MSL12953
		-	1.7	1.0	Hay	3	$\frac{122}{280}$	1.6	282	110212/00
Illinois USA	SL	1	0.85	0.45	Forage	1	66 c0.07	0.40	67	MSL12953
(1992) Pioneer 5010					Нау	4	110 c0.29	0.79	111	
5010		1	1.7	0.90	Forage	1	<u>114</u> c0.07	0.55	115	MSL12953
		1	1./	0.90	Hay	4	$\frac{114}{208}$ c0.29	1.1	$\frac{113}{210}$	MSL12933
Iowa USA	SL	1	0.86	0.45	Forage	1	38	0.16	38	MSL12953
(1992) Pioneer 8010	5L	1	0.00	0.45	Hay	3	76	0.46	77	WIGE12933
0010		1	1.7	0.90	Forage	1	<u>76</u>	0.27	<u>76</u>	MSL12953
	CT.	1	0.05	0.45	Hay	3	<u>189</u>	0.94	<u>190</u>	MOL 10052
Iowa USA	SL	1	0.85	0.45	Forage	1	54	0.37	55	MSL12953
(1992) Pioneer 5010					Hay	4	120 c0.07	0.76	121	
5010		1	1.7	0.90	Forage	1	153	0.63	154	MSL12953
		1	1.7	0.90	Hay	4	195 c0.07	1.0	<u>194</u> 197	WISL12755
Michigan USA	SL	1	0.84	0.52	Forage	1	<u>199</u> 00.07	0.29	54	MSL12953
(1992) Rin 5432	52		0.01	0.02	Hay	4	188 c0.08	1.2	190	
0.02		1	1.7	1.0	Forage	1	70	0.44	71	MSL12953
					Hay	4	<u>335 c0.08</u>	2.0	338	
Minnesota	SL	1	0.84	0.52	Forage	1	35	0.19	35	MSL12953
USA (1992) Pioneer 5432					Hay	3	40	0.26	40	
		1	1.7	1.0	Forage	1	<u>58</u>	0.21	<u>58</u>	MSL12953
					Hay	3	<u>83</u>	0.47	<u>84</u>	
Minnesota	SL	1	0.84	0.84	Forage	1	23	0.16	23	MSL12953
USA (1992)					Hay	4	51	0.38	52	
Pioneer 5432										
		1	1.7	1.7	Forage	1	<u>99</u>	0.47	<u>100</u>	MSL12953
	<i>a</i> +		0.04	0.67	Hay	4	<u>131</u>	0.94	<u>132</u>	1001 100 50
Montana USA	SL	1	0.84	0.67	Forage	1	24	0.09	24	MSL12953
(1992)		1	1.7	1.2	Hay	4	44	0.17	44	MOL 10052
		1	1.7	1.3	Forage Hay	1 4	<u>54</u> <u>97</u>	0.20 0.43	<u>54</u> <u>98</u>	MSL12953
Nebraska USA	SL	1	0.76	0.81	Forage	1	36	0.14	36	MSL12953
(1992)					Hay	4	52	0.64	53	
Wrangle										
		1	1.5	1.6	Forage	1	<u>54</u>	0.22	<u>54</u>	MSL12953
					Hay	4	<u>187</u>	0.97	<u>188</u>	
New York	SL	1	0.84	0.45	Forage	1	30	0.13	30	MSL12953
USA (1992)		1			Hay	4	102	0.53	103	
Onieda										
		1	1.7	0.90	Forage	1	<u>66</u>	0.25	<u>66</u>	MSL12953
		<u> </u>			Hay	4	<u>204</u>	1.1	<u>206</u>	
North Dakota	SL	1	0.84	0.45	Forage	1	21	0.08	21	MSL12953
USA (1992) Vernal					Нау	4	18	0.10	18	

Location			Applicatio	on	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
		1	1.7	0.90	Forage Hay	1 4	<u>55</u> 0.45	0.22 0.22	<u>55</u> 0.79	MSL12953
Oklahoma USA (1992) Oklahoma Common	SL	1	0.84	0.63	Forage Hay	1 3	48 91	0.23 0.45	48 92	MSL12953
		1	1.7	1.3	Forage Hay	1 3	<u>98</u> 214	0.43 0.83	<u>99</u> 215	MSL12953
Pennsylvania USA (1992) Arrow	SL	1	0.84	0.50	Forage Hay	1 4	36 83	0.14 0.47	36 84	MSL12953
		1	1.7	1.0	Forage Hay	1 4	<u>74</u> 196	0.29 0.96	<u>74</u> 197	MSL12953
South Dakota USA (1992) Northrup King	SL	1	0.84	0.52	Forage Hay	1 5	31 62	0.13 0.33	31 63	MSL12953
1 0		1	1.7	1.0	Forage Hay	1 5	<u>61</u> 148	0.24 0.73	<u>61</u> 149	MSL12953
South Dakota USA (1992) 4- Star	SL	1	0.83	0.76	Forage Hay	1 4	23 73	0.18 c0.11 0.51	23 74	MSL12953
		1	1.7	1.5	Forage Hay	1 4	<u>77</u> <u>117</u>	0.44 c0.11 1.2	<u>78</u> 119	MSL12953
Washington USA (1992) WL 316	SL	1	0.85	0.46	Forage Hay	1 3	27 c0.16 103 c0.08	0.17 c0.14 0.47	27 104	MSL12953
		1	1.7	0.92	Forage Hay	1 3	<u>57</u> c0.16 <u>219</u> c0.08	0.27 c0.14 1.1	<u>57</u> 221	MSL12953
Wisconsin USA (1992) Vernal	SL	1	0.84	0.53	Forage Hay	1 4	24 21	0.12 0.16	24 21	MSL12953
		1	1.7	1.1	Forage Hay	1 4	<u>64</u> 97	0.29 0.64	<u>64</u> 98	MSL12953
Wisconsin USA (1992) Vernal	SL	1	0.84	0.47	Forage Hay	1 6	42 123	0.25 0.50	42 124	MSL12953
		1	1.7	0.92	Forage Hay	1 6	<u>94</u> 257	0.45 1.2	<u>95</u> 259	MSL12953

Hay from Cambridge and Strathroy collected prior to drying to required moisture due to impending rain

480SL = 480 g/L as isopropylamine salt = 360 g ae/L

Table 76. Residues in Grass: Pre-harvest Application (USA).

Location			Applicatio	n	Sample	PHI	Resi	dues (mg/kg)*	k	Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Wilson Co. North	SL	1	1.3	0.63	forage	0	296 c0.2	1.1	298	MSL14992
Carolina, USA					forage	3	121	1.9	123	
(1997) Bermuda, grass, 1 st cutting										
	SL	1	2.5	1.3	forage	0	773	2.7	777	MSL14992
					forage	3	227	1.9	230	
					forage	7	277	2.9	282	
	SL	1	1.3	0.63	hay	3 (7)	128 c0.06	1.3	130	MSL14992
	SL	1	2.5	1.3	hay	3 (7)	<u>259</u> c0.06	1.9	262	MSL14992
					hay	7(11)	94 c0.06	1.8	97	
Lake Co., Florida,	SL	1	1.3	0.63	forage	0	349 c0.3	1.4	351	MSL14992
USA (1997) Bermuda, 1 st cutting					forage	3	89 c0.4	1.6	92	

Location			Application	on	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
	SL	1	2.5	ae/hL 1.3	forage	0	<u>664</u> c0.3	2.2	660	MSL14992
	SL	1	2.5	1.5	forage	3	$\frac{664}{419}$ c0.3	3.6	<u>668</u> 424	MSL14992
					forage	7	337	3.6	343	
	SL	1	1.3	0.63	hay	3 (7)	69 c0.09	1.4	71	MSL14992
	SL	1	2.5	1.7	hay	3 (4)	<u>7.3</u> c0.09	1.7	9.9	MSL14992
					hay	7 (8)	116 c0.16	2.6	120	
St. Landry,	SL	1	1.3	0.84	forage	0	283	1.3	285	MSL14992
Louisiana, USA (1997) Bermuda, 1 st cutting					forage	3	144	4.3	151	
0	SL	1	2.5	1.7	forage	0	<u>527</u>	2.2	530	MSL14992
					forage	3	293	6.2	302	
					forage	7	159	6.0	168	
	SL	1	1.3	0.84	hay	3 (7)	110 c0.06	2.7	114	MSL14992
1	SL	1	2.5	1.7	hay	3 (7)	<u>233</u> c0.06	4.5	<u>240</u>	MSL14992
					hay	7 (10)	181	4.1	187	
Waller Co., Texas,	SL	1	1.3	0.63	forage	0	348	2.0	351	MSL14992
USA (1997) Bermuda, 1 st cutting					forage	3	36 c0.2	1.4	38	
	SL	1	2.5	1.3	forage	0	<u>869</u>	3.6	<u>875</u>	MSL14992
					forage	3	91 c0.2	2.4	95	
	CT	1	1.2	0.(2	forage	7	71	2.2	75	MCI 14002
	SL SL	1	1.3 2.5	0.63	hay	3 (6)	106 c0.05 203 c0.05	<u>3.0</u> 4.5	111	MSL14992 MSL14992
	SL	1	2.5	1.3	hay	3 (6) 7 (10)	<u>203</u> c0.05 161	4.5 4.7	<u>210</u> 168	MSL14992
Wayne Co., New	SL	1	1.3	0.63	hay forage	0	373	1.3	375	MSL14992
York, USA (1997) Kentucky Blue, 2 nd cutting	SL		1.5	0.05	forage	3	97	1.5	100	MSL14772
C C	SL	1	2.5	1.3	forage	0	<u>657</u>	2.0	660	MSL14992
					forage	3	136	1.7	139	
					forage	7	131	1.7	133	
	SL	1	1.3	0.63	hay	3 (6)	54 c0.07	0.80	55	MSL14992
	SL	1	2.5	1.3	hay	3 (6)	<u>75</u> c0.07	1.0	<u>77</u>	MSL14992
~ ~ ~	~~				hay	7 (9)	59 c0.12	1.2	61	
Guthrie Co., Iowa, USA (1997) Blue grass, 1 st cutting	SL	1	1.3	0.63	forage forage	0 3	195 c0.2 308 c0.2	0.57 2.4	196 312	MSL14992
8	SL	1	2.5	1.3	forage	0	<u>881</u> c0.2	< 0.06	881	MSL14992
					forage	3	756 c0.2	3.5	762	
					forage	6	200	2.2	203	
	SL	1	1.3	0.63	hay	3 (6)	124 c0.10	1.3	126	MSL14992
	SL	1	2.5	1.3	hay	3 (6)	<u>215</u> c0.10	1.8	<u>218</u>	MSL14992
					hay	7 (10)	290 c0.09	4.1	296	
Grant Co., Washington, USA (1997) Kentucky Blue, 2 nd cutting	SL	1	1.3	0.84	forage forage	0 3	257 25	0.77 0.34	258 26	MSL14992
,	SL	1	2.5	1.7	forage	0	689	1.6	691	MSL14992
		-			forage	3	58	0.43	59	
		1			forage	7	40	0.40	41	
	SL	1	1.3	0.84	hay	3 (4)	32 c0.10	0.32	32	MSL14992
	SL	1	2.5	1.7	hay	3 (4)	<u>66</u> c0.10	0.58	<u>67</u>	MSL14992
					hay	7 (8)	32 c0.07	0.41	33	
Walworth Co., Wisconsin, USA (1997) Kentucky Blue, 1 st cutting	SL	1	1.3	0.72	forage forage	0 2	163 131	0.92 2.1	164 134	MSL14992
	SL	1	2.5	1.4	forage	0	456	2.5	460	MSL14992
		1	2.0	1.1	forage	2	$\frac{430}{303}$	4.9	311	1110111772
		1			forage	7	46	1.6	49	
	SL	1	1.3	0.72	hay	3 (5)	13 c0.09	0.44	14	MSL14992

Location			Applicatio	on	Sample	PHI	Resi	dues (mg/kg) ³	*	Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
	SL	1	2.5	1.4	hay	3 (5)	<u>38</u> c0.09	0.75	<u>39</u>	MSL14992
Tulare Co.	SL	1	1.3	0.72	hay forage	7 (10)	21 c0.09 605	0.74	22 608	MSL14992
California, USA	SL	1	1.5	0.72	forage	3	145	2.1	149	MSL14992
(1997) Fescue, 6^{th}					loluge	5	115	2.0	115	
cutting										
	SL	1	2.5	1.4	forage	0	<u>1093</u>	3.7	<u>1099</u>	MSL14992
					forage forage	3 7	320 107	3.3 1.6	325 110	
	SL	1	1.3	0.72	hay	3(7)	94 c0.05	1.0	96	MSL14992
	SL	1	2.5	1.4	hay	3 (7)	<u>244 c0.05</u>	2.3	248	MSL14992
					hay	7 (9)	207 c0.11	2.4	211	
	at		1.0	0.60				• •	2.11	
York Co., Nebraska, USA (1997), Brome	SL	1	1.3	0.63	forage forage	03	238 c0.2 213 c0.3	2.0 1.6	241 215	MSL14992
grass					lotage	5	215 00.5	1.0	215	
0	SL	1	2.5	1.3	forage	0	<u>431</u> c0.2	2.9	435	MSL14992
					forage	3	466 c0.3	3.1	471	
	CI	1	1.2	0.(2	forage	7	385	2.6	389	MGL 14002
	SL SL	1	1.3 2.5	0.63	hay hay	3 (5) 3 (5)	94 <u>212</u>	0.64	95 <u>214</u>	MSL14992 MSL14992
	SL	1	2.5	1.5	hay	7 (8)	$\frac{212}{62}$	0.75	$\frac{214}{63}$	WIGE14772
Cache Co., Utah,	SL	1	1.3	1.0	forage	0	439 c0.2	1.5	442	MSL14992
USA (1997)					forage	3	257 c0.2	1.8	259	
Brome grass/Fescue/smooth										
Broome/Alta										
Fescue, 2 nd cutting										
	SL	1	2.5	2.0	forage	0	<u>884</u> c0.2	4.4	<u>891</u>	MSL14992
					forage	3	507 c0.2	3.1	512	
	SL	1	1.3	1.0	forage hay	7 3 (7)	428 47 c0.07	3.8 0.49	433 48	MSL14992
	SL	1	2.5	2.0	hay	3(7)	<u>122</u> c0.07	1.3	124	MSL14992
					hay	7 (9)	35 c0.07	1.1	37	
Eddy Co., North	SL	1	1.3	0.84	forage	0	366	2.7	370	MSL14992
Dakota, USA (1997) Brome grass, 1 st					forage	3	218	1.5	220	
cutting										
• uum g	SL	1	2.5	1.7	forage	0	<u>616</u>	5.0	623	MSL14992
					forage	3	515	3.2	520	
	GT	1	1.0	0.04	forage	7	201	1.4	203	N 601 1 4000
	SL SL	1	1.3 2.5	0.84	hay	3 (7) 3 (7)	63 c0.06 100 c0.06	0.57 0.79	64 101	MSL14992 MSL14992
	SL	1	2.3	1./	hay hay	7 (10)	<u>100</u> c0.06 66	0.79	67	14772
Armstrong Co.,	SL	1	1.3	0.72	forage	0	291	1.0	293	MSL14992
Texas, USA (1997)					forage	3	150 c0.1	1.2	152	
Fescue (Tall), 3 rd										
cutting	SL	1	2.5	1.4	forage	0	713	2.9	718	MSL14992
	5L	1	2.5	1.4	forage	3	$\frac{715}{332 \text{ c0.2}}$	2.9	335	11151214772
		L			forage	7	289	2.6	293	
	SL	1	1.3	0.72	hay	3 (7)	58 c0.09	1.0	59	MSL14992
	SL	1	2.5	1.4	hay	3 (7)	153 c0.09	1.5	155	MSL14992
Plots were cut and sa	1.1.0			<u> </u>	hay	7 (10)	<u>187</u>	2.1	<u>190</u>	<u> </u>

Plots were cut and sampled for forage on the same day. Hay was cut and then field dried prior to sampling. The pre-harvest interval between application and cutting is given, followed by the interval from application to sampling (in parentheses) for hay.

*forage expressed on a dry weight basis following correction for moisture content; residues in hay samples were not corrected for moisture content

T /:	1		A 11 /		DIII	D	· 1 (/1)		D (/
Location	г	N	Applicatio		PHI		sidues (mg/kg)	T . (. 1	Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
5380 Franc-	K	1	1.4	0.72	0	40 c0.34	0.18	40	MLL30463
Waret, Belgium			1.1	0.72	7	<u>28</u> c0.28	0.20	<u>28</u>	
-					/	<u>28</u> CO.28	0.20		
(1995) Mars	V	1			<u>^</u>	01.071	0.00	02	MLI 20462
Wilson,	K	1	1.4	0.72	0	91 c0.74	0.39	92	MLL30463
Derbyshire, UK					7	63 c14	0.60 c0.08	64	
(1995) Mars									
Wheaton Aston,	K	1	1.4	0.72	0	51 c0.71	0.22	51	MLL30463
Staffordshire,					7	36 c6.0	0.31 c0.05	36	
UK (1995)					/	50 00.0	0.51 00.05		
Sirrocco	IZ.	1						(0	NILL 204(2
Womesley,	K	1	1.4	0.72	0	62 c0.50	0.27	62	MLL30463
Doncaster, UK					7	<u>51</u> c0.23	0.48	<u>52</u>	
(1995) Victor									
Isley Walton,	С	1	1.4	0.70	7	16			GLY 140
Derbyshire, UK									
(1992) Banner									
· · · ·		1	0.72	0.36	7	9.3			GLY 140
Thorne, South	С	1	1.4	0.70	7	17			GLY 140
Yorkshire, UK	-	_							
(1992) Troy									
		1	0.72	0.36	7	7.0			GLY 140
Terling, North	С	1	1.4	0.70	7	<u>4.4</u> c0.1			GLY 140
Chelmsford,	C	1	1.1	0.70	,	<u></u> 00.1			GETTIO
Essex, UK									
(1992) Punch									
(1))2)1 unon		1	0.72	0.36	7	3.4 c0.1			GLY 140
Kings Newton,	С	1	1.4	0.70	4 hrs	16 c0.61			GLY 264,
Derbyshire, UK	C	1	1.1	0.70	1	15 c0.07			GLY 305
(1993) Boxer					3	3.6			GET 505
(1)))) Boner					7	<u>3.4</u> c0.09			
		1	0.72	0.36	4 hrs	14 c0.61			GLY 264,
		-	0.72	0.00	1	14 c0.07			GLY 305
					3	3.3			021 200
					7	3.0 c0.09			
Sancton,	С	1	1.4	0.70	4 hrs	20 c0.15			GLY 264,
Humberside,	-				1	4.1* c0.16			GLY 305
UK (1993)					3	7.8			
Boxer					7	<u>7.8</u> c0.13			
		1	0.72	0.36	4 hrs	14 c0.15			GLY 264,
					1	17* c0.16			GLY 305
					3	2.0			
					7	3.3 c0.13			
Neston, UK	А	1	2.9	3.6	7	170 c0.4			MLL30180
(1986) Banner		1							
· •	А	1	2.9	1.2	7	160 c0.4			MLL30180
	В	1	2.9	1.2	7	100 c0.4			MLL30180
	С	1	2.9	1.2	7	130 c0.4			MLL30180
	D	1	2.9	1.2	7	140 c0.4			MLL30180
St. Ives,	C	1	1.4	0.72	7	$\frac{50}{50}$ c0.1	0.47	<u>51</u>	MLL30109
Cambridgeshire,	-	1					÷• • •		
UK (1982) Herro		1							
		1	2.9	1.4	7	70 c0.1	0.51	71	MLL30109
Thornhough,	С	1	1.4	0.65	10	<u>46</u>	0.39	u	MLL30109
UK (1982)		1		5.00			0.07	u	
Minden									
		1	2.9	1.3	10	63	0.68	64	MLL30109
Hemingford,	С	1	1.4	0.65	9	93	0.99	<u>95</u>	MLL30109
UK (1982)			4.1	0.05	,	<u> </u>	0.77	<u></u>	1011111111111111
Throws As		1							
1110 10 113	1	L	1	1	1	1			1

Table 77. Residues in Dry Beans (haulm/straw): Pre-harvest Application.

Location			Application	n	PHI	Res		Report/	
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate AMPA Total			reference
				ae/hL					
		1	2.9	1.3	9	160	1.21	162	MLL30109

Residue values are corrected for recovery of 72% for glyphosate and 81% for AMPA.

Table 78. Residues in Dry Peas (haulm/straw): Pre-harvest Application.

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
(Jour) variety			ng uo, nu	ae/hL	(uuys)				
Franc-Waret,	K	1	1.4	0.72	0	111 c0.09	0.51	112	MLL30464
Belgium (1995)				•••	7	<u>125</u>	1.6	<u>127</u>	
Baccara									
Venurne,	С	1	1.1	0.36	17	<u>78</u> c0.4	0.47	<u>79</u>	MLL30131
Belgium (1982)	e			0.00	17	$\frac{1}{65}$ c0.4	0.40	66	
Finale					- /				
Clive, Alberta	С	1	0.67	0.61	12	13	0.16	13	MSL9398
Canada (1988)									
Princess									
<u></u>	~	1	0.90	0.82	12	<u>19</u>	0.17	<u>19</u>	MSL9398
Clive, Alberta	С	1	0.67	0.61	12	<u>20</u>	0.18	<u>20</u>	MSL9398
Canada (1988)									
Tara		1	0.90	0.82	12	17	0.16	17	MSL9398
Clive, Alberta	С	1	0.90	0.82	12	<u>16</u>	0.16	<u>16</u>	MSL9398 MSL9398
Canada (1988)	C	1	0.07	0.01	10	<u>10</u>	0.10	10	WISL/3/8
Trapper									
		1	0.90	0.82	16	12	0.11	12	MSL9398
Lacombe,	С	1	0.67	0.61	14	21	0.16	21	MSL9398
Alberta Canada									
(1988) Alaska									
		1	0.90	0.82	14	<u>28</u>	0.26	<u>28</u>	MSL9398
Kingsbury,	К	1	1.4	0.72	0	148 c0.14	0.56	149	MLL30464
Staffordshire,			1.4	0.72	7	<u>154</u> c0.09	0.92	<u>155</u>	
UK (1995)					/				
Princess									
Banbury,	Κ	1	1.4	0.72	0	130 c0.06	0.50	131	MLL30464
Oxfordshire, UK			1.4	0.72		<u>79</u> c0.08	0.48	<u>80</u>	
(1995) Princess					7				
Scunthorpe,	Κ	1				170 c0.50	0.78	171	MLL30464
Humberside,			1.4	0.72	0	179 c0.40	1.5	181	
UK (1995)					7	<u>115</u> 00.10	1.0		
Montana									
Wilson,	С	1	1.4	0.72	7	<u>27</u> c0.07			GLY 141,
Derbyshire, UK	C	1	1.1	0.72	,	<u>27</u> 00.07			GLY 222
(1992) Guido									
		1	0.72	0.36	7	6.2 c0.07			GLY 141,
									GLY 222
Goole,	С	1	1.4	0.72	7	118 c25			GLY 141,
Humberside,		1							GLY 222
UK (1992)									
Solara		1	0.72	0.36	7	0.7 c25			GLY 141,
		1	0.72	0.50	/	0.7 023			GLY 141, GLY 222
Market	С	1	1.4	0.72	7	<u>27</u> c0.08			GLY 141,
Weighton,	C		1	0.72	,	<u>27</u> 00.00			GLY 222
Yorkshire, UK									
(1992) Baroness		L							
		1	0.72	0.36	7	18 c0.08			GLY 141,
									GLY 222

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
			_	ae/hL					
Wilson,	С	1	1.4	0.72	4 hrs	33 c0.14			GLY 143,
Derbyshire, UK					1	38 c0.11			GLY 221
(1992) Guido					3	13			
					7	<u>31</u> c0.08			
		1	0.72	0.36	4 hrs	14 c0.14			GLY 143,
					1	13 c0.11			GLY 221
					3	5.2			
					7	8.2 c0.08			
UK	А		2.9	1.2	9	240			MLL30131
Felsted, Essex									
UK (1986)									
Progreta	C		2.0	1.0	0	270			MI I 20121
	C		2.9	1.2	9	270			MLL30131
1.117	D		2.9	1.2	9	<u>320</u>			MLL30131
UK	А		2.9	3.6	8	150			MLL30131
Hemmingford,									
Cambridge UK									
(1986) Bunting	A		2.9	1.2	8	160			MLL30131
	B		2.9	1.2	8	180			MLL30131 MLL30131
	В С								
			2.9	1.2	8	<u>200</u>			MLL30131
	D		2.9	1.2	8	190			MLL30131

All SL formulations

Table 79. Residues in Lentils	straw): Pre-harvest Application	(Canada).

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Legal, Alberta	С	1	0.67	0.61	13	8.2	0.17	8.5	MSL9398
Canada (1988)									
Laird									
		1	0.90	0.82	13	<u>11</u>	0.16	<u>11</u>	MSL9398
Gray,	С	1	0.67	0.67	12	< 0.05	< 0.05	< 0.05	MSL9398
Saskatchewan									
Canada (1988)									
Laird									
		1	0.90	0.90	12	<u>< 0.05</u>	< 0.05	<u>< 0.05</u>	MSL9398
		1	1.8	1.8	12	< 0.05	< 0.05	< 0.05	MSL9398

Table 80. Residues in Conventional Soya bean (hay): Pre-harvest Application (USA) with glyphosate 360 SL formulation.

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	Type	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Banks,	RCS	3	2.1	1.7	15	<u>3.4</u>	<u>0.18</u>	<u>3.7</u>	MSL3259
Mississippi	RCS		2.1	1.2					
USA (1979)	PH		0.84	0.45					
	RCS	3	2.1	1.7	15	7.9	0.38	8.5	MSL3259
	RCS		2.1	1.2					
	PH		1.7	0.90					
	RCS	3	2.1	1.7	15	10	0.32	10	MSL3259
	RCS		2.1	1.2					
	PH		3.4	1.8					
	RCS	3	2.1	1.7	15	10	0.44	11	MSL3259
	RCS		2.1	1.2					
	PH		5.0	2.70					

Location			Applicatio	on	PHI	Re	sidues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Banks,	RCS	3	2.1	1.7	9	7.1	0.32	7.6	MSL3259
Mississippi	RCS		2.1	1.2					
USA (1979)	PH		0.84	0.22		1.5	0.50		
	RCS RCS	3	2.1 2.1	1.7 1.2	9	15	0.52	16	MSL3259
	PH		2.1 1.7	0.45					
	RCS	3	2.1	1.7	9	21	0.44	22	MSL3259
	RCS		2.1	1.2					
	PH		3.4	0.90					
	RCS	3	2.1	1.7	9	29	0.42	30	MSL3259
	RCS PH		2.1 5.0	1.2 1.4					
Bruins,	RCS	3	2.5	NS	7	2.1 c0.40	0.11 c0.07	2.3	MSL3259
Arkansas USA	RCS	5	2.5	NS	16	1.8 c0.37	0.14 c0.07	2.0	
(1979)	PH		0.84	0.45					
	RCS	3	2.5	NS	7	5.9 c0.40	0.18 c0.07	6.2	MSL3259
	RCS PH		2.5 1.7	NS 0.45	16	5.0 c0.37	0.20 c0.07	5.3	
	RCS	3	2.5	0.43 NS	7	13 c0.40	0.29 c0.07	13	MSL3259
	RCS	5	2.5	NS	16	12 c0.37	0.26 c0.07	12	101010200
	PH		3.4	0.45					
	RCS	3	2.5	NS	7	22 c0.40	0.32 c0.07	22	MSL3259
	RCS		2.5	NS	16	20 c0.37	0.33 c0.07	21	
Bruins,	PH RCS	3	5.0 2.5	0.45 NS	10	7.2 c0.42	0.17 c0.07	7.5	MSL3259
Arkansas USA	RCS	5	2.5	NS	10	7.2 00.42	0.17 00.07	7.5	WISL5259
(1979)	PH		0.84	0.45					
	RCS	3	2.5	NS	10	14 c0.39	0.31 c0.07	14	MSL3259
	RCS		2.5	NS					
	PH RCS	3	1.7 2.5	0.45 NS	10	34 c0.39	0.54 c0.07	35	MSL3259
	RCS	3	2.5	NS NS	10	34 00.39	0.54 c0.07	33	MSL3239
	PH		3.4	0.45					
	RCS	3	2.5	NS	10	31 c0.39	0.49 c0.07	32	MSL3259
	RCS		2.5	NS					
A 1 1 T	PH	4	5.0	0.45	11	0.0	0.10	10	NGL 2250
Adel, Iowa USA (1979)	RCS RCS	4	5.0 5.0	2.7 2.7	11	<u>9.9</u>	<u>0.10</u>	<u>10</u>	MSL3259
0511(1777)	RCS		5.0	2.7					
	PH		0.84	0.45					
	RCS	4	5.0	2.7	11	49	0.38	50	MSL3259
	RCS		5.0	2.7					
	RCS PH		5.0 1.7	2.7 0.90					
	RCS	4	5.0	2.7	11	87	0.72	88	MSL3259
	RCS	·	5.0	2.7		0,	0.72	00	
	RCS		5.0	2.7					
	PH		3.4	1.8		100	1.5	• • •	
	RCS RCS	4	5.0 5.0	2.7 2.7	11	199	1.7	202	MSL3259
	RCS		5.0 5.0	2.7					
	PH		5.0	2.7					
Adel, Iowa	RCS	4	5.0	2.7	8	13	0.12	13	MSL3259
USA (1979)	RCS		5.0	2.7					
	RCS		5.0	2.7					
	PH RCS	4	0.84 5.0	0.45	8	42	0.31	42	MSL3259
	RCS	-	5.0	2.7	0	72	0.31	72	WIGL5257
	RCS		5.0	2.7					
	PH		1.7	0.90					

Location			Applicatio	n	PHI		idues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
	RCS	4	5.0	2.7	8	89	0.78	90	MSL3259
	RCS		5.0	2.7					
	RCS		5.0	2.7					
	PH		3.4	1.8					
	RCS	4	5.0	2.7	8	195	1.6	197	MSL3259
	RCS		5.0	2.7					
	RCS		5.0	2.7					
	PH		5.0	2.7					
Princeton,	RCS	4	5.0	NS	11	4.1	0.13	4.3	MSL3259
Kentucky USA	RCS		5.0	NS	25	3.3	0.23	3.7	
(1979)	RCS		5.0	NS					
	PHI		0.84	0.36					
	RCS	4	5.0	NS	11	6.5	0.34	7.0	MSL3259
	RCS		5.0	NS	25	4.7	0.29	5.1	
	RCS		5.0	NS					
	PH		1.7	0.72					
	RCS	4	5.0	NS	11	17	0.66	18	MSL3259
	RCS		5.0	NS	25	<u>8.5</u>	0.30	<u>9.0</u>	
	RCS		5.0	NS					
	PH		3.4	1.4					
	RCS	4	5.0	NS	11	30	0.76	31	MSL3259
	RCS		5.0	NS	25	16	0.72	17	
	RCS		5.0	NS					
	PH		5.0	2.2					
Princeton,	RCS	4	5.0	NS	13	<u>2.5</u>	<u>0.16</u>	<u>2.7</u>	MSL3259
Kentucky USA	RCS		5.0	NS					
(1979)	RCS		5.0	NS					
	PH		0.84	0.36					
	RCS	4	5.0	NS	13	3.6	0.23	4.0	MSL3259
	RCS		5.0	NS					
	RCS		5.0	NS					
	PH		1.7	0.72					
	RCS	4	5.0	NS	13	7.0	0.32	7.5	MSL3259
	RCS	1	5.0	NS					
	RCS		5.0	NS					
	PH	<u> </u>	3.4	1.44					
	RCS	4	5.0	NS	13	14	0.30	14	MSL3259
	RCS	1	5.0	NS					
	RCS	1	5.0	NS					
	PH		5.0	2.2					

Type of applications: RCS = recirculating sprayer; PH = pre-harvest

Location			Applicatio	n	Sample	PHI	Resi	idues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		days	glyphosate	AMPA	Total	reference
Clarence, Missouri USA (1992) 40-3	PRE LPO	2	6.4 0.84	6.7 0.89	Forage (1) Hay (2)	55 51	0.12 2.4	0.16 0.67	0.36 3.4	MSL13462
(,	PRE EPO	2	6.4 0.63	6.7 0.42	Forage (2) Hay (2)	15 87	1.5 0.09	0.23 < 0.05	1.9 0.09	MSL13462
	PRE LPO	2	6.4 1.7	6.7 1.8	Forage (1) Hay (2)	55 51	2.2 7.2	0.27 1.4	2.6 9.3	MSL13462
	PRE EPO LPO	3	6.4 0.84 0.84	6.7 1.3 0.89	Forage (2) Hay (3)	15 51	0.12 3.8	0.16 0.76	0.36 5.0	MSL13462

Table 81. Residues in Glyphosate Tolerant Soyabean forage and hay (USA) following application of a SL formulation of glyphosate (as the isopropylamine salt) containing 360 g ae/L.

Location			Applicatio	n	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	. 1	days	glyphosate	AMPA	Total	reference
3 / 5	51		e	ae/hL		5	0 71			
	PRE	3	6.4	6.7	Forage	15	2.4	0.30	2.9	MSL13462
	EPO		0.84	1.3	(2)	51	2.8	0.50	3.6	
	LPO		0.84	0.89	Hay (3)					
Conklin,	PRE	2	6.4	4.1	Forage	49	0.11	0.074	0.22	MSL13462
Michigan, USA	LPO		0.84	0.52	(1)	33	8.2	0.71	9.3	
(1992) 40-3					Hay (2)					
	PRE	2	6.4	4.1	Forage	9	6.8	0.37	7.4	MSL13462
	EPO		0.63	0.38	(2)	93	0.46	0.08	0.58	
					Hay (2)					
	PRE	2	6.4	4.1	Forage	49	0.069	0.067	0.17	MSL13462
	LPO		1.7	1.0	(1)	33	14	1.3	16	
					Hay (2)					
	PRE	3	6.4	4.1	Forage	9	0.91	0.48	1.6	MSL13462
	EPO		0.84	0.50	(2)	33	6.9	0.64	7.9	
	LPO		0.84	0.52	Hay (3)				0.1	
	PRE	4	6.4	4.1	Forage	9	7.9	0.43	8.6 8 1	MSL13462
	EPO		0.84	0.50	(2)	33	7.1	0.65	8.1	
	LPO		0.84	0.52	Hay (3)					
	PH								~ ~ -	
Danville, Iowa,	PRE	2	6.4	3.4	Forage	56	< 0.05	< 0.05	< 0.05	MSL13462
USA (1992)	LPO		1.7		(1)	42	6.9	0.94	8.3	
40-3					Hay (2)					
	PRE	2	6.4	3.4	Forage	14	5.2	0.34	5.7 0.93	MSL13462
	EPO		1.3		(2)	80	0.67	0.17	0.95	
		2			Hay (2)				. 0. 0.5	MGI 124(2
	PRE	2	6.4	3.4	Forage	56	< 0.05	< 0.05	< 0.05 15	MSL13462
	LPO		3.4		(1)	42	12	1.7	15	
		2			Hay (2)				()	NGT 124(2
	PRE	3	6.4	3.4	Forage	14	5.5	0.31	6.0 5.2	MSL13462
	EPO		1.7		(2)	42	4.2	0.68	5.2	
	LPO	2	1.7		Hay (3)				0.0	MOI 124(2
	PRE	3	6.4	3.4	Forage	14	<u>9.1</u>	0.49	<u>9.8</u> 13	MSL13462
	EPO		1.7		(2)	42	10	1.7	15	
	LPO	2	1.7		Hay (3)	_			7.0	MOL 124(2
Elko, South	PRE	2	6.4	3.8	Forage	5	7.3	0.38	7.9 4.7	MSL13462
Carolina USA	LPO		0.84	0.52	(2)	38	3.6	0.72	ч ./	
(1992) 40-3		2			Hay (2)				4.2	MCI 124(2
	PRE	2	6.4	3.8	Forage	6	3.9	0.21	4.2 2.5	MSL13462
	EPO		0.63	0.40	(2)	39	1.8	0.43	2.5	
	DDE	2	<i>.</i>	2.0	Hay (2)	~	10	0.60	19	MSL13462
	PRE	2	6.4	3.8	Forage	5	18	0.69	19	MSL15402
	LPO		1.7	1.0	(2)	38	8.0	1.4	10	
	DDT	3	<i>C</i> A	2.0	Hay (2)	-	0.0	0.71	10	MSL13462
	PRE	3	6.4	3.8	Forage	5	8.9	0.71	10 8.5	IVISE 13402
	EPO		0.84	0.54	(3)	38	6.5	1.3	0.0	
	LPO	3	0.84	0.52	Hay (3)	-	0.0	0.00	9.5	MSL13462
	PRE	3	6.4	3.8	Forage	5	8.2	0.88	9.5 8.6	WISL13402
	EPO		0.84	0.54	(3)	38	6.6	1.3	0.0	
Euro i	LPO	2	0.84	0.52	Hay (3)	_	()	0.10	6.5	MSL13462
Emporia,	PRE	2	6.4	4.9	Forage	2	6.2	0.18	6.5 0.39	MISL 13402
Virginia, USA	LPO		0.84	0.64	(2)	71	0.31	0.05	0.57	
(1992) 40-3					Hay (2)					I

Location			Applicatio	n	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	1	days	glyphosate	AMPA	Total	reference
				ae/hL						
	PRE	2	6.4	4.9	Forage	16	4.8	0.24	5.2	MSL13462
	EPO		0.63	0.48	(2)	85	0.47	0.11	0.64	
					Hay (2)					
	PRE	2	6.4	4.9	Forage	2	8.9	0.36	9.4 1.1	MSL13462
	LPO		1.7	1.3	(2)	71	0.94	0.10	1.1	
		2			Hay (2)				0.1	NGL 124(2
	PRE	3	6.4	4.9	Forage	2	8.2	0.61	9.1 1.1	MSL13462
	EPO		0.84	0.64	(3)	71	0.88	0.13	1.1	
	LPO	3	0.84	0.64	Hay (3)				8.7	MSL13462
	PRE	3	6.4	4.9	Forage	2	7.6	0.75	8.7 1.2	MSL15402
	EPO		0.84	0.64	(3)	71	1.0	0.16	1.2	
C . 11.1	LPO PRE	2	0.84	0.64	Hay (3)	2	8.6	0.40	9.2	MSL13462
Goldsboro, North Carolina,	PRE LPO	2	6.4 0.84	6.9 0.89	Forage	2 40	8.0 3.4	0.40 0.69	4.5	WISL19402
USA (1992)	LPO		0.84	0.89	(2) Hay (2)	40	5.4	0.09		
40-3					Пау (2)					
40-5	PRE	2	6.4	6.9	Forage	14	3.5	0.32	4.0	MSL13462
	EPO	_	0.63	0.67	(2)	52	2.2	0.32	2.9	
	LIU		0.05	0.07	(2) Hay (2)	52	2.2	0.49		
	PRE	2	6.4	6.9	Forage	2	29	1.1	31	MSL13462
	LPO		1.7	1.79	(2)	40	10	1.7	13	
	LIO		1.,	1.75	(2) Hay (2)	10	10	1.7		
	PRE	3	6.4	6.9	Forage	2	20	1.1	22	MSL13462
	EPO		0.84	0.89	(3)	40	8.4	1.3	10	
	LPO		0.84	0.89	Hay (3)		0.1	1.0		
	PRE	3	6.4	6.9	Forage	2	20	0.95	21	MSL13462
	EPO		0.84	0.89	(3)	40	6.6	1.0	8.1	
	LPO		0.84	0.89	Hay (3)					
Greenville,	PRE	2	6.4	6.8	Forage	6	20	0.81	21	MSL13462
Mississippi,	LPO		0.84	0.72	(2)	47	2.6	0.70	3.7	
USA (1992)					Hay (2)					
40-3										
	PRE	2	6.4	6.8	Forage	8	11	0.68	12	MSL13462
	EPO		0.63	0.53	(2)	49	5.3	1.2	7.1	
					Hay (2)					
	PRE	2	6.4	6.8	Forage	6	18	1.5	20	MSL13462
	LPO		1.7	1.4	(2)	47	1.3	0.39	1.9	
					Hay (2)					2.67.12.16
	PRE	3	6.4	6.8	Forage	6	14	1.1	16	MSL13462
	EPO		0.84	0.70	(3)	47	5.1	1.4	7.2	
	LPO	2	0.84	0.72	Hay (3)	-			20	MGT 124/2
	PRE	3	6.4	6.8	Forage	6	18	1.3	20 8.0	MSL13462
	EPO		0.84	0.70	(3)	47	5.9	1.4	0.0	
TT' 1 TT'-1	LPO	2	0.84	0.72	Hay (3)	1	10	0.25	19	MSL13462
Hickory Withe,	PRE	2	6.4	3.4	Forage	1	18	0.35	2.3	WISL13402
Tennessee,	LPO		0.84	0.45	(2)	43	1.7	0.39	2.5	
USA (1992)					Hay (2)					
40-3	DDT	2	(A	2.4	Escore	14	2.2	0.24	3.7	MSL13462
	PRE	2	6.4	3.4	Forage	14	3.2	0.34	5.7 1.7	1915113402
	EPO		0.63	0.34	(2)	56	1.3	0.26	1./	
	דחח	2	6 1	2.4	Hay (2)	1	20	0.70	40	MSL13462
	PRE LPO	ź	6.4 1.7	3.4 0.89	Forage	1 43	39 8 7	0.70 1.9	12	11101110402
	LFU		1.7	0.89	(2)	43	8.7	1.9	-	
		1			Hay (2)	1				1

Location			Applicatio		Sample	PHI		dues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		days	glyphosate	AMPA	Total	reference
	PRE	3	6.4	3.4	Forage	1	25	0.78	26	MSL13462
	EPO		0.84	0.45	(3)	43	2.5	0.44	3.2	
	LPO		0.84	0.45	Hay (3)					
	PRE	3	6.4	3.4	Forage	1	31	1.1	33	MSL13462
	EPO		0.84	0.45	(3)	43	6.0	1.3	8.0	
	LPO		0.84	0.45	Hay (3)					
La Center,	PRE	2	6.4	5.9	Forage	7	4.3	0.34	4.8	MSL13462
Kentucky,	LPO		0.84	0.83	(2)	71	0.59	0.15	0.82	
USA (1992)					Hay (2)					
40-3										
	PRE	2	6.4	5.9	Forage	15	0.87	0.12	1.1	MSL13462
	EPO		0.63	0.59	(2)	79	0.20	< 0.05	0.2	
					Hay (2)					
	PRE	2	6.4	5.9	Forage	7	7.2	0.52	8.0	MSL13462
	LPO		1.7	1.7	(2)	71	1.2	0.24	1.6	
					Hay (2)					
	PRE	3	6.4	5.9	Forage	7	4.5	0.39	5.1	MSL13462
	EPO		0.84	0.79	(3)	71	0.95	0.20	1.3	
	LPO		0.84	0.83	Hay (3)					2.007.10.100
	PRE	3	6.4	5.9	Forage	7	7.7	0.61	8.6 0.72	MSL13462
	EPO		0.84	0.79	(3)	71	0.52	0.13	0.72	
	LPO	2	0.84	0.83	Hay (3)				11	NOT 124(2
Martinsville,	PRE	2	6.4	3.5	Forage	6	10	0.61	11 2.4	MSL13462
Indiana, USA	LPO		0.84	0.45	(2)	62	1.8	0.42	2.4	
(1992) 40-3		2			Hay (2)					101 10 400
	PRE	2	6.4	3.5	Forage	12	3.3	0.25	3.7 0.71	MSL13462
	EPO		0.63	0.37	(2)	68	0.47	0.16	0.71	
		2			Hay (2)				20	MCI 124(2
	PRE	2	6.4	3.5	Forage	6	28	1.3	30 5.1	MSL13462
	LPO		1.7	0.90	(2)	62	4.0	0.74	5.1	
		2			Hay (2)				12	MSL13462
	PRE	3	6.4	3.5	Forage	6	12	0.73	13 4.3	MSL13462
	EPO		0.84	0.50	(3)	62	3.4	0.59	4.5	
	LPO	2	0.84	0.45	Hay (3)				15	MCI 124(2
	PRE	3	6.4	3.5	Forage	6	14	0.84	15 2.8	MSL13462
	EPO		0.84	0.50	(3)	62	2.1	0.47	2.0	
NT. TT 11 1	LPO	2	0.84	0.45	Hay (3)		0.07	< 0.05	0.05	MSL13462
New Holland,	PRE	4	6.4	4.2	Forage	56	0.05	< 0.05	< 0.05	1915115402
Ohio, USA	LPO		0.84	0.57	(1) Hay (2)	69	< 0.05	< 0.05	0.00	
(1992) 40-3	חחח	2	6.4	4.2	Hay (2)	22	1.2	0.14	1.5	MSL13462
	PRE	2	6.4	4.2	Forage	22	1.3	0.14	1.3	1013113402
	EPO		0.63	0.39	(2)	92	1.2	0.14		
	DDE	2	61	4.2	Hay (2)	57	< 0.05	< 0.05	< 0.05	MSL13462
	PRE	-	6.4	4.2	Forage	56 60	< 0.05 0.06	< 0.05 < 0.05	0.06	1915115402
	LPO		1.7	1.1	(1)	69	0.00	< 0.05		
	דחח	3	6 1	4.2	Hay (2)	22	1.2	0.10	1.5	MSL13462
	PRE	5	6.4	4.2	Forage	22	1.3	0.10	1.6	1915115-102
	EPO		0.84	0.53	(2)	69	1.4	0.15		
	LPO	3	0.84	0.57	Hay (3)	22	1.2	0.12	1.5	MSL13462
	PRE	5	6.4	4.2	Forage	22	1.3	0.12	1.5	1013113402
	EPO		0.84	0.53	(2)	69	1.3	0.15	1.0	
	LPO		0.84	0.57	Hay (3)	L				I

Location			Applicatio		Sample	PHI		idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg ae/hL		days	glyphosate	AMPA	Total	reference
Proctor,	PRE	2	6.4	3.4	Forage	6	2.6	0.17	2.9	MSL13462
Arkansas, USA	LPO		0.84	0.45	(2)	35	1.4	0.37	2.0	
(1992) 40-3					Hay (2)					
	PRE	2	6.4	3.4	Forage	13	4.2	0.29	4.6 2.1	MSL13462
	EPO		0.63	0.34	(2)	42	1.6	0.30	2.1	
		2	<i></i>		Hay (2)			0.00	12	MSL13462
	PRE	2	6.4	3.4	Forage	6	11	0.80	8.3	MSL15402
	LPO		1.7	0.89	(2) Hay (2)	35	6.6	1.1	0.5	
	PRE	3	6.4	3.4	Forage	6	12	0.73	13	MSL13462
	EPO	5	0.4	0.45	(3)	35	5.9	0.75	7.2	110210102
	LPO		0.84	0.45	(3) Hay (3)	55	5.5	0.07		
	PRE	3	6.4	3.4	Forage	6	12	0.83	13	MSL13462
	EPO		0.84	0.45	(3)	35	5.7	0.90	7.1	
	LPO		0.84	0.45	Hay (3)					
Rosa,	PRE	2	6.4	4.4	Forage	10	1.7	0.19	2.0	MSL13462
Louisiana,	LPO		0.84	0.55	(2)	39	0.94	0.26	1.3	
USA (1992) 40-3					Hay (2)					
	PRE	2	6.4	4.4	Forage	11	2.4	0.24	2.8	MSL13462
	EPO		0.63	0.42	(2)	40	1.3	0.30	1.8	
					Hay (2)					
	PRE	2	6.4	4.4	Forage	10	<u>4.5</u>	0.41	$\frac{5.1}{2.6}$	MSL13462
	LPO		1.7	1.1	(2)	39	2.8	0.54	3.6	
		3			Hay (2)				6.9	MSL13462
	PRE	3	6.4	4.4	Forage	10	6.1	0.53	6.9 3.9	MSL13402
	EPO LPO		0.84 0.84	0.56 0.55	(3) Hey (2)	39	3.0	0.57	5.9	
	PRE	2	6.4	4.4	Hay (3) Forage	10	5.3	0.46	6.0	MSL13462
	EPO	-	0.4	0.56	(3)	39	2.7	0.40	3.5	115215102
	LPO		0.84	0.55	(3) Hay (3)	57	2.7	0.51		
Sandusky,	PRE	2	6.4	5.9	Forage	7	3.8	0.37	4.4	MSL13462
Illinois, USA	LPO		0.84	0.83	(2)	71	0.87	0.21	1.2	
(1992) 40-3					Hay (2)					
	PRE	2	6.4	5.9	Forage	15	0.56	0.10	0.71	MSL13462
	EPO		0.63	0.59	(2)	79	0.15	< 0.05	0.15	
					Hay (2)					
	PRE	2	6.4	5.9	Forage	7	12	0.98	13	MSL13462
	LPO		1.7	1.7	(2)	71	5.4	0.82	6.6	
	DDD	3	<i>(</i>)	5.0	Hay (2)	-	1.7	0.01	2.0	MSL13462
	PRE	3	6.4	5.9	Forage	7	1.7	0.21	2.0 0.71	MISL13402
	EPO LPO		0.84 0.84	0.79 0.83	(3) Hay (3)	71	0.50	0.14	0.71	
	PRE	3	0.84 6.4	5.9	Hay (3) Forage	7	7.0	0.70	8.1	MSL13462
	EPO	5	0.4	0.79	(3)	71	2.2	0.70	2.7	
	LPO		0.84	0.75	(3) Hay (3)	, 1	2.2	0.54		
Sedan, Kansas,	PRE	2	6.4	4.6	Forage	50	0.13	< 0.05	0.13	MSL13462
USA (1992)	LPO		0.84	0.89	(1)	51	2.9	1.1	4.6	
40-3	-		-		Hay (2)					
	PRE	2	6.4	4.6	Forage	9	0.89	0.23	1.2	MSL13462
	EPO		0.63	0.67	(2)	61	0.29	0.14	0.50	
					Hay (2)					

Location	[Applicatio		Sample	PHI	Resi	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	1	days	glyphosate	AMPA	Total	reference
	PRE	2	6.4	ae/hL 4.6	Forage	50	0.11	< 0.05	0.11	MSL13462
	LPO	-	0.4 1.7	4.0	(1)	51	8.7	< 0.05 3.1	13	1010110102
			1./	1.0	(1) Hay (2)	51	0.7	5.1		
	PRE	3	6.4	4.6	Forage	9	1.1	0.25	1.5	MSL13462
	EPO		0.84	0.89	(2)	51	2.9	1.2	4.7	
	LPO		0.84	0.89	(2) Hay (3)	51	2.9	1.2		
	PRE	3	6.4	4.6	Forage	9	0.98	0.24	1.3	MSL13462
	EPO		0.84	0.89	(2)	51	3.7	1.6	6.1	
	LPO		0.84	0.89	Hay (3)					
Sheridan,	PRE	2	6.4	3.6	Forage	6	5.7	0.69	6.8	MSL13462
Indiana, USA	LPO		0.84	1.4	(2)	63	0.34	0.05	0.42	
(1992) 40-3					Hay (2)					
	PRE	2	6.4	3.6	Forage	19	1.0	0.095	1.1	MSL13462
	EPO		0.63	0.34	(2)	76	0.06	< 0.05	0.06	
					Hay (2)					
	PRE	2	6.4	3.6	Forage	6	9.8	0.49	11	MSL13462
	LPO		1.7	0.99	(2)	63	1.6	0.18	1.9	
	L				Hay (2)					
	PRE	3	6.4	3.6	Forage	6	6.2	0.32	6.7	MSL13462
	EPO		0.84	0.45	(3)	63	1.6	0.19	1.9	
	LPO		0.84	0.50	Hay (3)					
	PRE	3	6.4	3.6	Forage	6	7.5	0.37	8.1	MSL13462
	EPO		0.84	0.45	(3)	63	1.4	0.17	1.7	
	LPO		0.84	0.50	Hay (3)					
Shoffner,	PRE	2	6.4	3.4	Forage	12	4.0	0.48	4.7	MSL13462
Arkansas, USA	LPO		0.84	0.45	(2)	32	3.5	0.68	4.5	
(1992) 40-3	L				Hay (2)					
	PRE	2	6.4	3.4	Forage	14	1.9	0.21	2.2	MSL13462
	EPO		0.63	0.34	(2)	34	2.3	0.48	3.0	
					Hay (2)					
	PRE	2	6.4	3.4	Forage	12	<u>12</u>	0.89	$\frac{13}{14}$	MSL13462
	LPO		1.7	0.90	(2)	32	11	1.8	14	
					Hay (2)					
	PRE	3	6.4	3.4	Forage	12	8.9	0.62	9.8 8.4	MSL13462
	EPO		0.84	0.45	(3)	32	6.9	1.0	0.4	
	LPO		0.84	0.45	Hay (3)				10	1.61.12.462
	PRE	3	6.4	3.4	Forage	12	9.2	0.70	10 10	MSL13462
	EPO		0.84	0.45	(3)	32	8.2	1.3	10	
	LPO	2	0.84	0.45	Hay (3)	50			< 0.05	MSI 12462
Webster City,	PRE	2	6.4	4.3	Forage	58	< 0.05	< 0.05	< 0.05 1.7	MSL13462
Iowa (1992)	LPO		0.84		Hay (2)	60	1.4	0.21	1./	
40-3	DDT	2	<i>C</i> A	4.2	Г	17	1.7	0.17	1.7	MSL13462
	PRE		6.4	4.3	Forage	17	1.5	0.15	1.7	10151.15402
	EPO		0.63		(2)	80	0.9	0.09	1.5	
	DDE	2	6 4	4.2	Hay (2)	50	0.07	< 0.05	0.07	MSL13462
	PRE LPO		6.4 1.7	4.3	Forage	58 60	0.07 3.1	< 0.05 0.41	3.7	115115702
	PRE	3	6.4	4.3	Hay (2) Forage		3.1 1.7	0.41	2.0	MSL13462
	EPO EPO		6.4 0.84	4.3	Hay (3)	17 60	2.2	0.18 0.29	2.6	1101110402
	LPO		0.84		11ay (5)	00	2.2	0.29		
	PRE	3	6.4	4.3	Forage	17	1.5	0.16	1.7	MSL13462
	EPO		0.4 0.84	4.3	Hay (3)	60	1.5	0.16	2.0	115115102
	LPO		0.84		11ay (3)	00	1.0	0.24		
	LIU	1	0.04	1	1	1	1		1	1

Location			Applicatio	n	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	1	days	glyphosate	AMPA	Total	reference
				ae/hL						
Steele,	PRE	2	6.4	5.9	Hay (2)	39	2.5	0.76	3.7	MSL13462
Missouri, USA	LPO		0.84	0.79						
(1992) 40-3	DDE	2	()	5.0	II. (0)	01	0.20	0.20	0.60	MSL13462
	PRE EPO	2	6.4 0.63	5.9 0.58	Hay (2)	81	0.30	0.20	0.00	WISL15402
	PRE	2	6.4	5.9	Have (2)	72	7.3	2.1	10	MSL13462
	LPO	2	0.4 1.7	1.6	Hay (2)	12	7.5	2.1	10	1010110102
•	PRE	3	6.4	5.9	Hay (3)	72	1.7	0.55	2.5	MSL13462
	EPO	5	0.84	0.83	11ay (5)	12	1.7	0.55	2.0	110210102
	LPO		0.84	0.78						
	PRE	3	6.4	5.9	Hay (3)	72	4.4	1.2	6.2	MSL13462
	EPO		0.84	0.83	11 u j (0)			·. _		
	LPO		0.84	0.78						
Winterville,	PRE	2	6.4	4.0	Forage	14	3.3	0.34	3.8	MSL13462
Georgia, USA	LPO		0.84	0.50	(2)	46	1.7	0.55	2.5	
(1992) 40-3					Hay (2)					
	PRE	2	6.4	4.0	Forage	22	1.6	0.19	1.9	MSL13462
	EPO		0.63	0.39	(2)	54	0.87	0.26	1.3	
					Hay (2)					
	PRE	2	6.4	4.0	Forage	14	<u>4.1</u>	0.48	<u>4.8</u>	MSL13462
	LPO		1.7	0.99	(2)	46	2.8	0.76	4.0	
					Hay (2)					
	PRE	3	6.4	4.0	Forage	14	3.7	0.40	4.3	MSL13462
	EPO		0.84	0.53	(3)	46	1.8	0.76	3.0	
	LPO	2	0.84	0.50	Hay (3)				10	161.10460
	PRE	3	6.4	4.0	Forage	14	4.2	0.45	4.9 3.1	MSL13462
	EPO		0.84	0.53	(3)	46	2.1	0.63	5.1	
TT 1	LPO	2	0.84	0.50	Hay (3)		0.0 -	0.05	< 0.05	MSL13462
York,	PRE	2	6.4	6.8	Forage	56	< 0.05	< 0.05	0.45	WISL13402
Nebraska, USA (1992) 40-3	LPO		0.84	0.90	(1)	60	0.27	0.12	0.15	
(1992) 40-3	PRE	2	6.4	6.8	Hay (2)	16	1.3	0.08	1.4	MSL13462
	EPO	2	0.63	0.8	Forage (2)	16 77	< 0.05	< 0.05	< 0.05	1010110102
	LIU		0.05	0.08	(2) Hay (2)	//	< 0.05	< 0.05		
·	PRE	2	6.4	6.8	Forage	56	< 0.05	< 0.05	< 0.05	MSL13462
	LPO	_	1.7	1.8	Hay (2)	60	1.0	0.19	1.3	
	PRE	3	6.4	6.8	Forage	16	1.1	< 0.05	1.1	MSL13462
	EPO		0.84	0.90	(2)	60	0.41	0.15	0.64	
	LPO		0.84	0.90	Hay (3)					
•	PRE	3	6.	6.8	Forage	16	1.1	0.05	1.2	MSL13462
	EPO		0.84	0.90	(2)	60	0.52	0.16	0.76	
	LPO		0.84	0.90	Hay (3)					
Carlyle, Illinois	PRE	2	6.4	6.1	Forage	9	5.8	0.48	6.5	MSL13464
JSA (1993) 40-3	LPO		0.84	0.55	(2)	44	3.9	1.2	5.7	
					Hay (2)					
	PRE	3	6.4	6.13	Forage	9	6.8	0.50	7.6	MSL13464
	EPO		0.84	0.56	(3)	44	2.1	0.76	3.3	
	LPO		0.84	0.55	Hay (3)					
	PRE	3	6.4	6.13	Forage	9	5.5	0.46	6.2	MSL13464
	EPO		0.84	0.56	(3)	44	2.0	0.63	3.0	
	LPO	_	0.84	0.55	Hay (3)	ļ			2.0	NOT 1215
Carman,	PRE	2	6.4	3.39	Forage	8	2.5	0.19	2.8	MSL13464
Illinois USA	LPO		0.84	0.45	(2)	62	0.61	0.23	0.96	
(1993) 40-3					Hay (2)					

Location			Applicatio	n	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		days	glyphosate	AMPA	Total	reference
	PRE	3	6.4	3.39	Forage	8	2.4	0.18	2.7	MSL13464
	EPO		0.84	0.45	(3)	62	0.68	0.29	1.1	
	LPO		0.84	0.45	Hay (3)					
					Seed (3)					
	PRE	3	6.4	3.39	Forage	8	2.2	0.17	2.5	MSL13464
	EPO		0.84	0.45	(3)	62	0.31	0.11	0.48	
	LPO		0.84	0.45	Hay (3)					
Conklin,	PRE	2	6.4	4.23	Forage	6	7.7	0.37	8.3	MSL13464
Michigan USA	LPO		0.84	0.53	(2)	54	0.83	0.18	1.1	
(1993) 40-3					Hay (2)					
-	PRE	3	6.4	4.23	Forage	6	8.2	0.44	8.9	MSL13464
	EPO		0.84	0.53	(3)	54	1.6	0.34	2.1	
	LPO		0.84	0.53	Hay (3)					
-	PRE	3	6.4	4.23	Forage	6	8.2	0.45	8.9	MSL13464
	EPO		0.84	0.53	(3)	54	2.1	0.46	2.8	
	LPO		0.84	0.53	Hay (3)					
Danville, Iowa	PRE	2	6.4	3.39	Forage	8	1.6	0.12	1.8	MSL13464
USA (1993)	LPO		0.84	0.45	(2)	62	0.15	0.07	0.26	
40-3					Hay (2)					
	PRE	3	6.4	3.39	Forage	8	1.4	0.14	1.6	MSL13464
	EPO		0.84	0.45	(3)	62	0.19	0.07	0.30	
	LPO		0.84	0.45	Hay (3)					
-	PRE	3	6.4	3.39	Forage	8	1.6	0.14	1.8	MSL13464
	EPO		0.84	0.45	(3)	62	0.17	0.08	0.29	
	LPO		0.84	0.45	Hay (3)					
Faiborn, Ohio	PRE	2	6.4	3.60	Forage	13	4.5	0.44	5.2	MSL13464
USA (1993)	LPO		0.84	0.43	(2)	55	4.1	1.1	5.8	
40-3					Hay (2)		-	-		
	PRE	3	6.4	3.60	Forage	13	5.7	0.47	6.4	MSL13464
	EPO		0.84	0.41	(3)	55	2.3	0.76	3.5	
	LPO		0.84	0.43	Hay (3)					
ľ	PRE	3	6.4	3.60	Forage	13	4.6	0.40	5.2	MSL13464
	EPO		0.84	0.41	(3)	55	2.5	0.80	3.7	
	LPO		0.84	0.43	Hay (3)					
Grangeburg,	PRE	2	6.4	3.32	Forage	21	0.11	< 0.05	0.11	MSL13464
Alabama USA	LPO		0.84	0.45	(2)	80	0.15	< 0.05	0.15	
(1993) 40-3					Hay (2)					
()	PRE	3	6.4	3.32	Forage	0	40	0.35	41	MSL13464
	EPO		0.84	0.45	(3)	59	0.98	0.32	1.5	
	LPO		0.84	0.44	Hay (3)					
-	PRE	3	6.4	3.32	Forage	0	81	0.59	82	MSL13464
	EPO		0.84	0.45	(3)	59	0.98	0.34	1.5	
	LPO		0.84	0.44	Hay (3)					
Hills, Minnesota	PRE	2	6.4	6.72	Forage	17	1.9	0.21	2.2	MSL13464
USA (1993) 40-3	LPO		0.84	0.87	(2)	65	0.65	0.20	0.95	
			0.01	0.07	(2) Hay (2)		0.00	0.20		
-	PRE	3	6.4	6.72	Forage	17	2.7	0.28	3.1	MSL13464
	EPO		0.84	0.83	(3)	65	0.75	0.20	1.1	
	LPO		0.84	0.87	(3) Hay (3)		5.75	5.21		
-	PRE	3	6.4	6.72	Forage	17	2.6	0.25	3.0	MSL13464
	EPO		0.84	0.72	(3)	65	0.33	0.23	0.47	
	LPO		0.84	0.87	(3) Hay (3)		5.55	5.07		

Location			Applicatio	n	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	F .	days	glyphosate	AMPA	Total	reference
	51		e	ae/hL		5	0 71			
Lamberton,	PRE	2	6.4	3.41	Forage	11	1.9	0.16	2.1	MSL13464
Minnesota USA	LPO		0.84	0.45	(2)	41	1.7	0.35	2.2	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	3.41	Forage	11	3.3	0.36	3.8	MSL13464
	EPO		0.84	0.45	(3)	41	3.8	0.82	5.0	
	LPO		0.84	0.45	Hay (3)					
	PRE	3	6.4	3.41	Forage	11	2.9	0.31	3.4	MSL13464
	EPO		0.84	0.45	(3)	41	2.9	0.61	3.8	
	LPO		0.84	0.45	Hay (3)					
Martinsville,	PRE	2	6.4	3.47	Forage	29	0.12	< 0.05	0.12	MSL13464
Indiana USA	LPO		0.84	0.83	(2)	78	< 0.05	< 0.05	< 0.05	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	3.47	Forage	10	3.6	0.33	4.1	MSL13464
	EPO		0.84	0.83	(3)	59	0.84	0.40	1.4	
	LPO		0.84	0.76	Hay (3)					
ſ	PRE	3	6.4	3.47	Forage	10	4.1	0.38	4.7	MSL13464
	EPO		0.84	0.83	(3)	59	0.84	0.39	1.4	
	LPO		0.84	0.76	Hay (3)					
New Holland,	PRE	2	6.4	3.66	Forage	9	6.1	0.57	7.0	MSL13464
Ohio USA	LPO		0.84	0.43	(2)	45	1.1	0.43	1.8	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	3.66	Forage	9	18	1.2	20	MSL13464
	EPO		0.84	0.47	(3)	45	4.1	1.2	5.9	
	LPO		0.84	0.43	Hay (3)					
-	PRE	3	6.4	3.67	Forage	9	4.6	0.40	5.2	MSL13464
	EPO		0.84	0.47	(3)	45	0.87	0.29	1.3	
	LPO		0.84	0.43	Hay (3)					
Renner, South	PRE	2	6.4	6.58	Forage	17	2.7	0.29	3.1	MSL13464
Dakota USA	LPO		0.84	0.82	(2)	66	1.0	0.27	1.4	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	6.58	Forage	17	4.0	0.44	4.7	MSL13464
	EPO		0.84	0.84	(3)	66	1.6	0.37	2.2	
	LPO		0.84	0.82	Hay (3)					
	PRE	3	6.4	6.58	Forage	17	5.0	0.66	6.0	MSL13464
	EPO		0.84	0.84	(3)	66	2.0	0.49	2.7	
	LPO		0.84	0.82	Hay (3)					
Richland, Iowa	PRE	2	6.4	3.78	Forage	15	1.5	0.13	1.7	MSL13464
USA (1993)	LPO		0.84	0.49	(2)	52	0.44	0.14	0.65	
40-3					Hay (2)					
ſ	PRE	3	6.4	3.78	Forage	15	1.7	0.15	1.9	MSL13464
	EPO		0.84	0.48	(3)	52	0.51	0.16	0.75	
	LPO		0.84	0.49	Hay (3)					
	PRE	3	6.4	3.78	Forage	15	2.0	0.16	2.2	MSL13464
	EPO		0.84	0.48	(3)	52	0.51	0.15	0.74	
	LPO		0.84	0.49	Hay (3)					
Salisbury,	PRE	2	6.4	4.73	Forage	22	0.87	0.10	1.0	MSL13464
Maryland USA	LPO		0.84	0.57	(2)	57	0.30	0.07	0.41	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	4.73	Forage	22	2.2	0.21	2.5	MSL13464
	EPO		0.84	0.59	(3)	57	0.72	0.15	0.95	
	LPO		0.84	0.57	Hay (3)					
	PRE	3	6.4	4.73	Forage	22	1.7	0.16	1.9	MSL13464
	EPO		0.84	0.59	(3)	57	0.62	0.14	0.83	
	LPO		0.84	0.57	Hay (3)					

Location			Applicatio	n	Sample	PHI	Resi	idues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		days	glyphosate	AMPA	Total	reference
Sheridan,	PRE	2	6.4	3.45	Forage	20	6.5	0.74	7.6	MSL13464
Indiana USA	LPO		0.84	0.75	(2)	56	2.7	0.93	4.1	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	3.45	Forage	20	3.2	0.36	3.7	MSL13464
	EPO		0.84	0.89	(3)	56	0.95	0.33	1.5	
	LPO		0.84	0.75	Hay (3)					
	PRE	3	6.4	3.45	Forage	20	2.1	0.25	2.5	MSL13464
	EPO		0.84	0.89	(3)	56	0.66	0.28	1.1	
	LPO		0.84	0.75	Hay (3)					
Steele,	PRE	2	6.4	5.50	Forage	20	0.31	0.084	0.44	MSL13464
Missouri USA	LPO		0.84	0.58	(2)	66	0.12	< 0.05	0.12	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	5.45	Forage	6	2.4	0.22	2.7	MSL13464
	EPO		0.84	0.59	(3)	52	0.83	0.30	1.3	
	LPO		0.84	0.76	Hay (3)					
	PRE	3	6.4	5.50	Forage	6	1.6	0.17	1.9	MSL13464
	EPO		0.84	0.59	(3)	52	0.54	0.19	0.83	
	LPO		0.84	0.75	Hay (3)					
Webster City,	PRE	2	6.4	4.52	Forage	14	1.8	0.12	2.0	MSL13464
Iowa USA	LPO		0.84	0.52	(2)	56	0.44	0.09	0.58	
(1993) 40-3					Hay (2)					
	PRE	3	6.4	4.52	Forage	14	3.4	0.18	3.7	MSL13464
	EPO		0.84	0.57	(3)	56	0.75	0.15	0.98	
	LPO		0.84	0.52	Hay (3)					
	PRE	3	6.4	4.52	Forage	14	4.1	0.21	4.4	MSL13464
	EPO		0.84	0.57	(3)	56	1.1	0.25	1.5	
	LPO		0.84	0.52	Hay (3)					

Application type: PRE = pre-emergence; EPO = early post-emergence; LPO = late post-emergence; PH = pre-harvest Figures in brackets for forage and hay are the number of applications prior to sampling. In some cases not all the applications for a given treatment were made prior to the forage or hay sampling.

Table 82. Residues in Glyphosate tolerant sugar beet (tops) (USA) following application of an SL
formulation of glyphosate (SL as the isopropylamine salt = 360 g ae/L).

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	type	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Clay county,	PRE	4	4.4	4.2	59	0.49	0.10	0.64	MSL14542
Minnesota,	2-4		0.86	0.84					
USA (1996)	6-8		0.85	0.84					
Event 77	PH		0.85	0.84					
	PRE	4	3.4	3.4	28	3.6	0.17	3.9	MSL14542
	2-4		0.85	0.84					
	12-14		0.86	0.84					
	PH		1.7	1.68					
Polk,	PRE	4	4.1	2.4	58	0.13	0.09	0.27	MSL14542
Minnesota	2-4		0.81	0.48					
USA (1996)	6-8		0.87	0.48					
Event 77	PH		0.83	0.48					
	PRE	4	3.4	1.920.48	31	5.6	0.19	5.9	MSL14542
	2-4		0.82	0.48					
	12-14		0.83	0.96					
	PH		1.7						
Renville,	PRE	4	4.3	3.4	56	0.66	< 0.05	0.66	MSL14542
Minnesota USA	2-4		0.84	0.48					
(1996) Event 77	6-8		0.83	0.48					
_	PH		0.84	0.48					

Location			Applicati	on	PHI	Resi	dues (mg/kg)	(mg/kg) Report/			
(year) variety	type	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference		
				ae/hL							
	PRE	4	3.2	2.7	28	4.2	0.09	4.3	MSL14542		
	2-4		0.84	0.48							
	12-14		0.82	0.56							
G	PH	4	1.7	0.96	70	0.05	< 0.05	0.05	MCI 14540		
Saginaw, Michigan, USA	PRE 2-4	4	4.1 0.84	2.1 0.42	70 95	0.05 < 0.05	< 0.05 < 0.05	0.05 < 0.05	MSL14542		
(1996) Event 77	2-4 6-8		0.84	0.42	95	< 0.03	< 0.03	< 0.03			
(1990) Event //	0-8 PH		0.84	0.42							
	PRE	4	3.3	1.7	31	4.3	0.05	4.4	MSL14542		
	2-4		0.85	0.42	56	3.2	< 0.05	3.2	1010111012		
	12-14		0.83	0.42		5.2	0.00	0.2			
	PH		1.7	0.84							
Richland, North	PRE	4	4.1	2.8	52	1.8	0.05	1.9	MSL14542		
Dakota USA	2-4		0.83	0.56	59	1.7	< 0.05	1.7			
(1996) Event 77	6-8		0.84	0.56	66	1.4	< 0.05	1.4			
	PH		0.84	0.56	73	0.82	< 0.05	0.82			
					80	1.4	< 0.05	1.4			
	PRE	4	3.3	2.2	22	5.2	0.09	5.3	MSL14542		
	2-4		0.84	0.56	29	4.6	< 0.05	4.6			
	12-14 DU		0.84	0.56	36	4.0	0.07	4.1			
	PH		1.7	1.12	43 50	3.4 4.4	0.05 0.07	3.5 4.5			
Scottsbluff,	PRE	4	4.1	2.1	59	0.05	< 0.07	0.05	MSL14542		
Nebraska USA	2-4	4	0.82	0.42	98	< 0.05	< 0.05	< 0.05	WISL14342		
(1996) Event 77	6-8		0.81	0.42	70	< 0.05	< 0.05	< 0.05			
	PH		0.83	0.42							
	PRE	4	3.2	1.7	29	1.8	< 0.05	1.8	MSL14542		
	2-4		0.82	0.42	68	1.4	< 0.05	1.4			
	12-14		0.83	0.42							
	PH		1.7	0.84							
Hockley, Texas	PRE	4	4.3	2.8	59	0.34	< 0.05	0.34	MSL14542		
USA (1996)	2-4		0.83	0.56	92	0.23	< 0.05	0.23			
Event 77	6-8		0.85	0.56							
	PH	<u> </u>	0.84	0.56	•	2.0		4.0	2 6 7 1 1 7 1 9		
	PRE	4	3.5	2.2 0.56	29	3.9	0.09	4.0	MSL14542		
	2-4 12-14		0.84 0.85	0.56	62	3.2	0.12	3.4			
	12-14 PH		1.7	1.12							
Weld,	PRE	4	4.3	2.4	63	0.13	< 0.05	0.13	MSL14542		
Colorado, USA	2-4	т	0.85	0.48	05	0.15	< 0.05	0.15	1010114042		
(1996) Event 77	6-8		0.87	0.56							
(PH		0.84	0.56							
	PRE	4	3.4	1.92	31	2.2	0.10	2.4	MSL14542		
	2-4		0.84	0.48							
	12-14	1	0.85	0.56							
	PH		1.7	1.12							
Stanislaus,	PRE	4	4.2	2.1	61	0.39	< 0.05	0.39	MSL14542		
California USA	2-4	1	0.86	0.37	99	0.11	< 0.05	0.11			
(1996) Event 77	6-8		0.86	0.37							
	PH	4	0.86	0.37	21	60	0.00	0.0	MSI 14540		
	PRE 2-4	4	3.4 0.87	1.5 0.37	31 69	6.8 2.4	0.80 0.11	8.0 2.6	MSL14542		
	2-4 12-14		0.87	0.37	09	2.4	0.11	2.0			
	PH		1.8	0.42							
Stanislaus,	PRE	4	4.4	1.9	62	0.23	< 0.05	0.23	MSL14542		
California USA	2-4		0.87	0.37	99	0.12	< 0.05	0.23	110 L1 10 T2		
(1996) Event 77	6-8		0.83	0.42							
, , , , , , , , , , , , , , , , , , , ,	PH	1	0.82	0.42							
	PRE	4	3.4	1.7	32	8.4	0.56	9.3	MSL14542		
	2-4		0.83	0.42	69	3.4	0.24	3.8			
	12-14		0.83	0.42							
	PH	1	1.7	0.84							

Location			Applicatio	n	PHI	Res	sidues (mg/kg)		Report/
(year) variety	type	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Power, Idaho	PRE	4	4.3	2.8	60	0.11	< 0.05	0.11	MSL14542
USA (1996)	2-4		0.90	0.56					
Event 77	6-8		0.86	0.56					
	PH		0.86	0.56					
	PRE	4	3.4	2.2	29	2.0	0.06	2.1	MSL14542
	2-4		0.90	0.56					
	12-14		0.84	0.56					
	PH		1.6	0.56					
Twin Falls,	PRE	4	4.2	2.8	58	0.16	< 0.05	0.16	MSL14542
Idaho USA	2-4		0.84	0.56					
(1996) Event 77	6-8		0.85	0.56					
	PH		0.85	0.56					
	PRE	4	3.3	2.2	30	3.9	0.11	4.1	MSL14542
	2-4		0.86	0.56					
	12-14		0.88	0.56					
	PH		17	1.12					

The first application is a pre-emergent application. Subsequent applications are in-crop post-emergent applications, 2-4 leaf stage, 4-8 leaf stage, 12-14 leaf stage and pre-harvest rescue.

Location			Applicatio	n	PHI	Res	g)	Report/	
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Franc Warret,	С	1	2.2		0	80 c0.16	0.66	81	MLL31337
Belgium (1999)					7	25 c0.22	0.40	26	
Marilor					14	22 c0.06	0.42	23	
	G	1	2.2		0	90 c0.16	0.82	91	MLL31337
					7	<u>29</u> c0.22	0.44	<u>30</u>	
					14	18 c0.06	0.34	19	
Franc Warret,	С	1	2.2		0	117	0.83	118	MLL30815
Belgium (1998)					7	<u>86</u> c0.08	1.9 c0.05	8 <u>9</u>	
Marilor					14	25 c0.08	0.92 c0.05	26	
	Н	1	2.2		0	145	0.79	146	MLL30815
					7	75 c0.08	2.2 c0.05	78	
					14	30 c0.08	1.1 c0.05	32	
Ansoville,	Е	1	2.1	0.67	7	<u>39</u>		<u>39</u>	RJ2907B
Loiret, France									
(1999) Esterel									
	F	1	2.12	0.69	7	18		18	RJ2907B
Coupigny,	Е	1	2.0	0.68	7	6.4 c0.06		6.4 c0.06	RJ2907B
Seine-et-Marne,									
France (1999)									
Esterel									
	F	1	2.1	0.69	7	<u>6.9</u> c0.06		<u>6.9</u> c0.06	RJ2907B
Duras	С	1	2.2		0	184 c0.10	1.8	187	MLL31337
Aquitaine,					7	40 c0.11	0.98	41	
France (1999)					14	22 c0.10	0.62	23	
Intro									
	G	1	2.2		0	161 c0.10	1.2	163	MLL31337
					7	<u>59</u> c0.11	0.99	<u>61</u>	
					14	26 c0.10	0.71	27	
St Paul les	С	1	2.2		0	112 c0.11	1.7	115	MLL31337
Romans,					7	61	1.2	63	
Rhône-Aples,					14	26 c0.37	0.97	27	
France (1999)									
Platine									
	G	1	2.2		0	120 c0.11	1.5	122	MLL31337
					7	<u>71</u>	1.6	$\frac{73}{30}$	
					14	28 c0.37	1.1	30	

Table 83. Residues in Barley (straw): Pre-harvest Application.

Location			Applicatio	on	PHI	Re	sidues (mg/kg	()	Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
			Ū	ae/hL		0.71			
Ploudalmézeau,	С	1	2.2		0	84	2.0	87	MLL31337
Bretagne,					7	62 c0.05	2.1	65	
France (1999) Scarlett					14	9.1 c0.14	0.95	11	
Scallett	G	1	2.2		0	145	1.4	147	MLL31337
	U	1	2.2		7	140 c 0.05	3.0	<u>115</u>	WILLS1357
					14	$\frac{110}{15}$ c0.14	1.7	18	
Levroux,	С	1	2.2		0	189 c0.05	1.4	191	MLL31337
Centre, France					7	41	0.69	42	
(1999) Scarlett					14	24	0.78	25	
	G	1	2.2		0	180 c0.05	2.1	183	MLL31337
					7	80	1.2	<u>82</u>	
F :)	0	1	2.2		14	31	0.90	32	NII 1 21227
Favières, Lorraine, France	С	1	2.2		0 7	110 31	0.83 0.49	111 32	MLL31337
(1999)					14	29	0.49	32 30	
Emeraude					14	2)	0.04	50	
Lineraude	G	1	2.2		0	110	0.87	111	MLL31337
	~	-	-		7	<u>43</u>	0.57	<u>44</u>	,
					14	38	0.66	39	
Duras	С	1	2.1		0	63	0.24	63	MLL30815
Aquitaine,					7	28	0.6	29	
France (1998)					15	12 c0.14	0.65 c0.05	13	
Express		1	2.0		0	70	0.24	71	NUL 20015
	Н	1	2.0		0 7	70 40	0.34 0.6	71	MLL30815
					15	$\frac{40}{31 \text{ c}0.14}$	1.1 c0.05	$\frac{41}{33}$	
St Paul les	С	1	2.4		0	116 c0.08	0.75 c0.05	117	MLL30815
Romans,	C	1	2.1		7	102	2.0	105	MEESOOIS
Rhône-Alpes,					15	61 c0.2	1.9 c0.05	64	
France (1998)									
Deborah									
	Н	1	2.2		0	98 c0.08	0.63 c0.05	99	MLL30815
					7	$\frac{102}{2}$	2.2	<u>105</u>	
Ploudalmézeau,	С	1	2.1		15 0	69 c0.2 174	2.4 c0.05 1.0	73 176	MLL30815
Bretagne,	C	1	2.1		7	174	2.4	178	MILL50815
France (1998)					14	84	2.4	88	
Intro					11	01	2.1	00	
	Н	1	2.1		0	164	1.0	166	MLL30815
					7	<u>147</u>	2.4	<u>151</u>	
					14	56	2.4	50	
Levroux,	С	1	2.2		0	250 c0.34	0.97 c0.05	251	MLL30815
Centre, France					9	11	0.26	11	
(1998) Nevada	11	1	2.2		14	<u>12</u> c0.1	0.4 c0.05	<u>13</u>	MI I 20015
	Н	1	2.2		0 9	206 c0.34 11	0.78 c0.05 0.38	207 12	MLL30815
					14	12 c0.1	0.3 c0.05	12	
Favières,	С	1	2.1	1	0	225 c0.07	0.74 c0.05	226	MLL30815
Lorraine, France	÷	1			7	4.4	< 0.05	4.4	
(1998) Scarlet		1			14	<u>6.0</u>	0.06	<u>6.1</u>	
	Н	1	2.3		0	208 c0.07	0.79 c0.05	209	MLL30815
		1			7	< 0.05	< 0.05	< 0.05	
		<u> </u>		-	14	3.2	< 0.05	3.2	
Villeneuve,	Ι	1	2.1	1.1	0	74	3.0	79 20	GLY 528
South France		1			7	19 c0.16	0.79	20	
(1998) Sunrise					14	<u>33</u> c0.096	0.67	<u>34</u>	
[winter barley]									
	J	1	2.1	1.1	0	156	0.76	157	GLY 528
					7	21 c0.16	0.90	22	
					14	32 c0.096	0.66	33	

Location			Applicatio	on	PHI	Res	idues (mg/kg	g)	Report/	
(year) variety	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference	
D F	Ι	1	2.2		0	218 c0.18	1.4	220	GLY 528	
Bron, France (1998) Cameo		1	2.3	1.1	7	<u>96</u> c0.059	2.6	100	GE1 520	
[spring barley]					14	59 c0.11	2.3	63		
[J	1	2.2	1.1	0	162 c0.18	1.9	165	GLY 528	
	5	1	2.3	1.1	7	72 c0.059	2.4	76	GE1 520	
					14	58 c0.11	3.1	63		
Berstheim, Alsace, France (1998) Nevacla	Ι	1	2.1	1.1	7	93 c0.37		93 c0.37	GLY 418	
	J	1	2.1	1.1	7	1 <u>26</u> c0.37		<u>126</u> c0.37	GLY 418	
	J	1	1.7	0.81	7	115 c0.37		115 c0.37	GLY 418	
Vayres sur	K	1	1.1	0.54	8	9.0	0.07	9.1	MLL30281	
Essonne, La Ferte-Alais, France (1991) Volga	n	1		0.01	0	2.0	0.07	5.1		
-	K	1	2.2	1.1	8	<u>15</u>	0.10	<u>15</u>	MLL30281	
	L	1	1.0	0.53	8	0.30	< 0.05	0.3	MLL30281	
	L	1	2.1	1.0	8	7.5	0.06	7.6	MLL30281	
	С	1	2.2	1.1	8	9.0	0.06	9.1	MLL30281	
Champmotteux, Maisse, France (1991) Natacha	К	1	1.1	0.54	7	7.9 c0.07	0.10	8.1	MLL30281	
	Κ	1	2.2	1.1	7	<u>17</u> c0.07	< 0.05	<u>17</u>	MLL30281	
	L	1	1.0	0.53	7	4.2 c0.07	< 0.05	4.2	MLL30281	
	L	1	2.1	1.0	7	16 c0.07	0.20	16	MLL30281	
	С	1	2.2	1.1	7	12 c0.07	0.10	12	MLL30281	
Sept Sauly, Reims, France (1991) Volga	K	1	1.1	0.54	7	61 c0.1	0.50	62	MLL30281	
	K	1	2.2	1.1	7	<u>140</u> c0.1	1.3	<u>142</u>	MLL30281	
	L	1	1.0	0.53	7	49 c0.1	0.40	50	MLL30281	
	L	1	2.1	1.0	7	72 c0.1	0.50	73	MLL30281	
	С	1	2.2	1.1	7	140 c0.1	1.0	142	MLL30281	
Verneuil sur	Κ	1	1.1	0.54	7	70	0.70	71	MLL30281	
Serre, Laon, France (1991) Natacha										
	K	1	2.2	1.1	7	<u>160</u>	1.6	<u>162</u>	MLL30281	
	L	1	1.0	0.53	7	30	0.30	30	MLL30281	
	L	1	2.1	1.0	7	140	1.8	143	MLL30281	
	С	1	2.2	1.1		120	1.2	122	MLL30281	
Denton, Lincolnshire, UK (1999) Gleam	E	1	2.0		7	43		43	RJ2907B	
	F	1	2.1		7	<u>56</u>		<u>56</u>	RJ2907B	
Elford, Staffordshire, UK (1999) Regina	E	1	2.0	0.68	7	22		22	RJ2907B	
č	F	1	2.1	0.69	7	22		22	RJ2907B	
Normanton, UK (1982) Igri	С	1	1.4	0.56	9	<u>47</u>	0.82	<u>48</u>	MLL30087	
Lechdale, UK (1982) Igri	C	1	1.4	0.70	12	14	0.35	15	MLL30087	
East Lothians, UK (1982) Igri	С	1	1.4	0.70	6	<u>41</u>	0.73	<u>42</u>	MLL30087	

Location			Applicatio	n	PHI	Res	sidues (mg/kg	g)	Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Bossal, UK (1982) Igri	С	1	1.4	0.54	8	<u>62</u>	1.4	<u>64</u>	MLL30087
Cottenham, UK (1982) Triumph	С	1	1.4	0.70	7	<u>13</u> c0.1	0.52	<u>14</u>	MLL30087

Formulation C = Roundup® 360 g ae/L SL; Formulation E = 337 g ae/L SL (trimesium salt); Formulation F = 347 g ae/L SL; Formulation G = MON 78294 450 g ae/L SL; Formulation H = MON 14420 680 g ae/kg SG; Formulation I and J both 360 g ae/L SL formulations; Formulation K = MON52776 360 g ae/L SL; Formulation L = MON44068 420 g ae/kg SG

Table 84. Residues in Conventional Maize stover and aspirate grain f	fractions: Pre-harvest
Application (USA).	

Location			Applicatio		Sample	PHI		idues (mg/kg)	-	Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Greene Co., Iowa, USA (1997) DR592SR	SL	1	2.5	1.3	Stover AGF	7	$\frac{4.8}{1.6}$	< 0.05 < 0.05	$\frac{4.8}{1.6}$	MSL14917
Guthrie Co., Iowa, USA (1997) 2547	SL	1	2.5	1.4	Stover	7	<u>6.7</u>	0.09	<u>6.8</u>	MSL14917
Jefferson Co., Iowa, USA (1997) 34RO6	SL	1	2.6	1.6	Stover	7	<u>3.4</u>	0.05	<u>3.5</u>	MSL14917
Clinton Co., Illinois, USA (1997) Pioneer 3394	SL	1	2.5	1.5	Stover	7	<u>44</u>	0.40	<u>45</u>	MSL14917
Jersey Co., Illinois, USA (1997) Pioneer 3394	SL	1	2.5	1.3	Stover	7	<u>35</u>	0.48	<u>36</u>	MSL14917
Burt Co., Nebraska, USA (1997) P34RO6 B+	SL	1	2.5	1.3	Stover	7	<u>2.6</u>	< 0.05	<u>2.6</u>	MSL14917
York Co., Nebraska, USA (1997) 3394	SL	1	2.5	1.2	Stover AGF	6	<u>2.1</u> 0.71	< 0.05 < 0.05	<u>2.1</u> 0.71	MSL14917
Wayne Co., New York, USA (1997) Agway 266	SL	1	2.6	1.2	Stover	7	<u>53</u>	0.38	<u>54</u>	MSL14917
Wilson Co., North Carolina USA (1997) Pioneer 3163	SL	1	2.7	1.2	Stover	7	<u>43</u>	1.1	<u>45</u>	MSL14917
Monmouth, Illinois USA (1993) Asgrow 707/623	SL	1	2.5	1.6	stover	6	<u>23</u>	0.66	<u>24</u>	MSL13654
Fishers, Indiana USA (1993) Select 3720	SL	1	2.5	1.9	stover	7	<u>8.4</u>	0.26	<u>8.8</u>	MSL13654
Danville, Iowa USA (1993) Querna 7670	SL	1	2.5	1.2	stover	7	<u>28</u>	0.41	<u>29</u>	MSL13654

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Lexington, Kentucky, USA (1993) Pioneer 3320	SL	1	2.5	1.7	stover	7	<u>43</u>	0.52	<u>44</u>	MSL13654
Conklan, Michigan USA (1993) Pioneer 3563	SL	1	2.6	1.5	stover	6	<u>3.7</u>	0.09	<u>3.8</u>	MSL13654
Lamberton, Minnesota USA (1993) Pioneer 3563	SL	1	2.5	1.2	stover	6	<u>82</u>	0.46	<u>83</u>	MSL13654
Leonard, Missouri USA (1993) C-G- 4490	SL	1	2.5	1.4	stover	6	<u>8.8</u>	0.13	<u>9.0</u>	MSL13654
York, Nebraska USA (1993) Pioneer 3162	SL	1	2.5	2.4	stover	6	<u>92</u>	0.81	<u>93</u>	MSL13654
New Holland, Ohio USA (1993) Madison Seed GL 235	SL	1	2.5	1.4	stover	6	<u>11</u>	0.14	<u>11</u>	MSL13654
Valley Springs, South Dakota USA (1993) Pioneer 3563	SL	1	2.5	2.3	stover	7	<u>55</u>	0.33	<u>56</u>	MSL13654
Uvalde, Texas USA (1993) Pioneer 3245	SL	1	2.5	1.2	stover	6	<u>54</u>	0.61	<u>55</u>	MSL13654
Delavan, Wisconsin USA (1993) RK 702	SL	1	2.5	1.3	stover	7	<u>18</u>	0.12	<u>18</u>	MSL13654

AGF = aspirated grain fraction

Table 85. Residues in Glyphosate Tolerant Maize forage and stover.

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Chula, Tift	PRE	4	4.3	2.1	forage	34	0.94	0.03	0.99	MSL15334
County, Georgia	EPO		0.86	0.42	stover	68	1.6	< 0.06	1.6	
USA (1998)	LPO		0.85	0.48						
GA21	DN		0.84	0.67						
	PRE	4	3.4	2.1	forage	34	1.3	0.04	1.4	MSL15334
	EPO		0.86	0.42	stover	68	2.6	< 0.06	2.6	
	LPO		0.86	0.48						
	DN		1.7	1.34						
	PRE	3	4.3	2.1	forage	40	2.6	0.06	2.7	MSL15334
	EPO		0.87	0.42	stover	74	5.7	< 0.06	5.7	
	LPO		1.7	0.96						
Richland,	PRE	4	4.2	2.1	forage	56	<u>0.66</u>	0.06	0.75	MSL15334
Jefferson County	EPO		0.84	0.42	stover	77	0.87	< 0.06	0.87	
Iowa USA (1999)	LPO		0.84	0.42						
GA21	DN		0.84	0.42						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	-	(days)	glyphosate	AMPA	Total	reference
				ae/hL						
	PRE	4	3.5	2.1	forage	56	0.47	0.05	0.55	MSL15334
	EPO		0.85	0.42	stover	77	0.81	< 0.06	0.81	
	LPO DN		0.85	0.42 0.84						
	PRE	3	1.7 4.2	2.1	forage	64	0.32	0.03	0.37	MSL15334
	EPO	5	0.86	0.42	stover	85	0.43	< 0.05	0.43	WISE15554
	LPO		1.7	0.84	510 (C1	05	0.15	0.00	0.15	
Webster City,	PRE	4	4.2	2.8	forage	42	0.93	< 0.03	0.93	MSL15334
Hamilton	EPO		0.84	0.56	stover	98	1.4	< 0.06	1.4	
County, Iowa USA (1998)	LPO		0.84	0.56						
GA21	DN		0.84	0.48						
	PRE	4	3.3	2.8	forage	42	1.2	0.05	1.3	MSL15334
	EPO		0.84	0.56	stover	98	1.4	< 0.06	1.4	
	LPO		0.84	0.56						
	DN	2	1.7	0.96	C	51	1.0	0.04	1.0	NGT 15004
	PRE	3	4.3	2.8	forage	51 107	$\frac{1.8}{2.3}$	0.04	<u>1.9</u> 2.3	MSL15334
	EPO LPO		0.85 1.7	0.56 1.12	stover	107	2.3	< 0.06	2.5	
Bagley, Guthrie	PRE	4	4.3	2.1	forage	65	0.55	0.03	0.60	MSL15334
County Iowa	EPO		0.88	0.42	stover	96	0.89	< 0.05	0.89	1115115557
USA (1998)	LPO		0.84	0.42						
GA21	DN		0.80	0.48						
	PRE	4	3.5	2.1	forage	65	0.49	0.03	0.54	MSL15334
	EPO		0.87	0.42	stover	96	0.98	< 0.06	0.98	
	LPO		0.84	0.42						
	DN PRE	3	1.6 4.2	0.96	forage	74	0.85	< 0.03	0.85	MSL15334
	EPO	3	4.2 0.88	0.42	stover	105	2.0	< 0.03	2.0	MSL15554
	LPO		1.7	0.84	510 101	105	2.0	0.00	2.0	
Berkley, Boone	PRE	4	4.3	2.1	forage	64	0.26	< 0.03	0.26	MSL15334
County Iowa	EPO		0.88	0.42	stover	93	0.48	< 0.06	0.48	
USA (1998) GA21	LPO		0.85	0.42						
UA21	DN		0.80	0.48	-					
	PRE	4	3.4	2.1	forage	64	1.5	0.03	1.5	MSL15334
	EPO LPO		0.87 0.84	0.42 0.42	stover	93	1.8	0.05	1.9	
	DN		1.6	0.42						
	PRE	3	4.2	2.1	forage	74	0.91	< 0.03	0.91	MSL15334
	EPO		0.88	0.42	stover	103	0.49	< 0.06	0.49	
	LPO		1.7	0.84						
Dow, Jersey	PRE	4	4.2	2.4	forage	40	0.72	0.05	0.80	MSL15334
County, Illinois USA (1998)	EPO		0.84	0.48	stover	77	1.2	< 0.06	1.2	
GA21	LPO		0.84	0.48						
	DN PRE	4	0.85	0.48	forma	40	1.2	0.08	1.4	MGI 15224
	EPO EPO	4	3.4 0.85	2.4 0.48	forage stover	40 77	1.3 2.2	< 0.08	1.4 2.2	MSL15334
	LPO		0.85	0.48	50000	,,	2.2	- 0.00	2.2	
	DN		1.6	0.96						
	PRE	3	4.2	2.4	forage	47	1.8	0.04	<u>1.9</u>	MSL15334
	EPO		0.85	0.48	stover	84	2.6	< 0.06	2.6	
0.1.1.00	LPO		1.7	0.96						
Carlyle, Clinton County Illinois	PRE	4	4.2	2.8	forage	43	0.56	0.04	0.62	MSL15334
USA (1998)	EPO LPO		0.84	0.56	stover	84	0.79	< 0.06	0.79	
GA21	DN LPO		0.84 0.82	0.48 0.56						
	PRE	4	3.4	2.8	forage	43	0.82	0.05	0.90	MSL15334
	EPO		0.84	0.56	stover	84	1.5	< 0.05	1.5	1110113334
	LPO		0.85	0.48	5.5,01		1.0	0.00	1.5	
	DN		1.6	1.12						
	PRE	3	4.2	2.8	forage	52	<u>1.1</u>	0.04	<u>1.2</u>	MSL15334
	EPO		0.86	0.56	stover	93	1.8	< 0.06	1.8	
	LPO		1.7	0.96						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	- ·	(days)	glyphosate	AMPA	Total	reference
. .			e	ae/hL			0.71			
Wyoming,, Stark	PRE	4	4.2	2.4	forage	50	0.38	0.04	0.44	MSL15334
County Illinois	EPO		0.84	0.56	stover	101	0.85	< 0.06	0.85	
USA (198) GA21	LPO		0.84	0.67						
	DN		0.84	0.67						
	PRE	4	3.4	2.4	forage	50	0.42	0.05	0.50	MSL15334
	EPO		0.84	0.56	stover	101	0.84	< 0.06	0.84	
	LPO		0.84	0.67						
	DN		1.7	1.34	2			0.02	0.04	2 607 4 500 4
	PRE	3	4.2	2.4	forage	57	<u>0.79</u> 1.1	0.03	<u>0.84</u>	MSL15334
	EPO LPO		0.86	0.56	stover	108	1.1	< 0.06	1.1	
Noblesville,	PRE	4	<u>1.7</u> 4.2	1.34 2.1	foraça	59	0.51	< 0.03	0.51	MSL15334
Hamilton County	EPO	4	4.2 0.84	0.42	forage stover	91	0.31	< 0.03	0.31	MSL15554
Indiana, USA	LPO		0.84	0.42	stover	91	0.28	< 0.00	0.28	
(1998) GA21	DN		0.83	0.42						
	PRE	4	3.4	2.1	forage	59	1.3	0.04	1.4	MSL15334
	EPO		0.85	0.42	stover	91	0.38	< 0.06	0.38	1010110001
	LPO		0.85	0.42	500701	<i>,</i> .	0.50	0.00	0.00	
	DN		1.7	0.96						
	PRE	3	4.2	2.1	forage	70	0.82	< 0.03	0.82	MSL15334
	EPO		0.85	0.42	stover	102	1.3	< 0.06	1.3	
	LPO		1.7	0.96						
	DN									
Williamston,	PRE	4	4.1	2.8	forage	50	<u>0.54</u>	< 0.03	0.54	MSL15334
Ingham County	EPO		0.84	0.56	stover	88	0.83	< 0.06	0.83	
Michigan USA (1998) GA21	LPO		0.84	0.56						
(1996) GA21	DN		0.84	0.56						
	PRE	4	3.3	2.8	forage	50	0.30	< 0.03	0.30	MSL15334
	EPO		0.84	0.56	stover	88	0.57	< 0.06	0.57	
	LPO		0.84	0.56						
	DN	3	<u>1.7</u> 4.2	1.1	famaaa	(0)	0.19	< 0.03	0.10	MSL15334
	PRE EPO	3	4.2 0.84	2.8 0.56	forage	60 98	0.19 0.36	< 0.03 < 0.06	0.19 0.36	MSL15334
	LPO		0.84 1.7	1.1	stover	90	0.50	< 0.00	0.50	
Conklin, Ottawa	PRE	4	4.2	2.4	forage	49	0.81	0.06	0.90	MSL15334
County Michigan	EPO	4	0.84	0.48	stover	49 94	0.81	< 0.06	0.90	WISL15554
USA (1998)	LPO		0.84	0.48	510 101	71	0.72	0.00	0.72	
GA21	DN		0.84	0.48						
	PRE	4	3.4	2.4	forage	49	1.0	0.09	1.1	MSL15334
	EPO		0.84	0.48	stover	94	1.2	< 0.06	1.2	
	LPO		0.85	0.48						
	DN		1.7	0.96						
	PRE	3	4.2	2.4	forage	59	<u>1.3</u>	0.06	1.4	MSL15334
	EPO		0.84	0.48	stover	104	2.0	< 0.06	2.0	
~	LPO		1.7	0.96						
Campbell, Wilkin	PRE	4	4.3	2.1	forage	54	0.26	< 0.03	0.26	MSL15334
County Minnesota USA	EPO		0.85	0.84	stover	75	0.58	< 0.06	0.58	
(1998) GA21	LPO		0.85	0.84						
` '	DN	4	0.84	0.84	former	E 1	0.27	< 0.02	0.27	MOI 15224
	PRE EPO	4	3.4 0.85	2.1 0.84	forage	54 75	0.27 0.63	< 0.03 < 0.06	0.27 0.63	MSL15334
	EPO LPO		0.85	0.84	stover	15	0.05	~ 0.00	0.03	
	DN		0.83 1.7	1.68						
	PRE	3	4.2	2.1	forage	65	0.50	< 0.03	0.5	MSL15334
	EPO	5	0.85	0.84	stover	86	<u>0.50</u> 1.0	< 0.05	$\frac{0.5}{1.0}$	11151213337
	LPO		1.7	1.68			1.0	0.00	1.0	
Hollandale,	PRE	4	4.0	2.8	forage	52	0.68	0.04	0.74	MSL15334
Freeborn County	EPO		0.84	0.56	stover	91	1.5	< 0.06	1.5	
Minnesota USA	LPO		0.84	0.56						
(1998) GA21			0.84	0.56						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	1	(days)	glyphosate	AMPA	Total	reference
				ae/hL						
	PRE	4	3.2	2.8	forage	45	0.21	< 0.03	0.21	MSL15334
	EPO		0.86	0.56	stover	85	0.25	< 0.06	0.25	
	LPO		0.87	0.56						
	DN	2	1.7	1.1	famora	(2	1.2	0.04	1.2	MCI 15224
	PRE EPO	3	4.1 0.86	2.8 0.56	forage	63 102	$\frac{1.2}{2.9}$	0.04 < 0.06	$\frac{1.3}{2.9}$	MSL15334
	LPO		1.7	1.1	stover	102	2.9	< 0.00	2.9	
Rose Hill,	PRE	4	4.1	2.8	forage	39	1.5	0.05	1.6	MSL15334
Sampson County	EPO	7	0.84	0.56	stover	67	3.9	< 0.05	3.9	WISL15554
North Carolina	LPO		0.84	0.56	510 / 01	07	5.9	0.00	5.9	
USA (1998)	DN		0.84	0.56						
GA21		4	3.3		C	20	1.0	0.06	2.0	MOT 15224
	PRE EPO	4	3.3 0.84	2.8 0.56	forage stover	39 67	1.9 4.0	0.06 < 0.06	2.0 4.0	MSL15334
	LPO		0.84	0.56	stover	07	4.0	< 0.00	4.0	
	DN		1.7	1.12						
	PRE	3	4.1	2.8	forage	43	2.2	0.11	<u>2.4</u>	MSL15334
	EPO	5	0.84	0.56	stover	71	<u>2.2</u> 5.2	< 0.06	<u>2.4</u> 5.2	
	LPO		1.7	1.12				0.00	0.2	
York, York	PRE	4	4.2	2.8	forage	54	0.52	< 0.03	0.52	MSL15334
County Nebraska	EPO		0.84	0.56	stover	75	0.80	< 0.06	0.80	
(1998) GA21	LPO		0.84	0.56						
	DN		0.85	0.56						
	PRE	4	3.3	2.8	forage	54	0.53	0.03	0.58	MSL15334
	EPO		0.84	0.56	stover	75	0.79	< 0.06	0.79	
	LPO		0.84	0.56						
	DN	2	1.67	1.1	6	(0)	0.07	0.02	0.02	NGL 15224
	PRE	3	4.2	2.8	forage	60	<u>0.87</u>	0.03	<u>0.92</u>	MSL15334
	EPO LPO		0.84 1.7	0.56 1.1	stover	81	1.3	< 0.06	1.3	
Osceola, Polk	PRE	4	4.2	2.1	forage	44	0.50	0.03	0.55	MSL15334
County Nebraska	EPO	7	0.84	0.56	stover	70	0.82	< 0.05	0.82	WISL15554
(1998) GA21	LPO		0.84	0.56	510 101	10	0.02	0.00	0.02	
	DN		0.84	0.84						
	PRE	4	3.3	2.1	forage	44	0.50	< 0.03	0.50	MSL15334
	EPO		0.84	0.56	stover	70	0.76	< 0.06	0.76	
	LPO		0.84	0.56						
	DN		1.7	1.7						
	PRE	3	4.2	2.1	forage	52	<u>0.92</u>	0.04	<u>0.98</u>	MSL15334
	EPO		0.84	0.56	stover	78	2.0	< 0.06	2.0	
X X 11 1	LPO		1.7	1.1						
New Holland, Favette County	PRE	4	4.1	2.4	forage	54	2.8	0.05	2.9	MSL15334
Ohio USA (1998)	EPO		0.84	0.42	stover	84	4.3	< 0.06	4.3	
GA21	LPO DN		0.85 0.84	0.48 0.67						
	PRE	4	3.3	2.4	forage	54	2.4	0.06	2.5	MSL15334
	EPO	7	0.85	0.42	stover	84	2.4 5.1	< 0.06	2.5 5.1	115115554
	LPO		0.85	0.42	510 101		5.1	- 0.00	5.1	
	DN		1.7	1.34						
	PRE	3	4.2	2.4	forage	58	4.6	0.08	4.7	MSL15334
	EPO		0.84	0.42	stover	88	14	0.09	14	
	LPO		1.7	0.96						
Germansville,	PRE	4	4.3	2.1	forage	66	4.2	0.09	4.3	MSL15334
Leigh Co.	EPO		0.85	0.42	stover	102	1.1	< 0.06	1.1	
Pennsylvania USA (1998)	LPO		0.86	0.42						
GA21	DN		0.86	1.7						
	PRE	4	3.4	2.1	forage	66	5.2	0.11	5.4	MSL15334
	EPO		0.85	0.42	stover	102	1.5	< 0.06	1.5	
	LPO		0.85	0.42						
	DN		1.7	1.7						
	PRE	3	4.3	2.1	forage	74	5.5	0.08	5.6	MSL15334
	EPO		0.86	0.42	stover	110	2.3	< 0.06	2.3	
	LPO		1.7	0.84						

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Ν	kg ae/ha	kg	Î	(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Britton, Marshall	PRE	4	4.2	4.2	forage	56	0.06	0.04	0.12	MSL15334
County South Dakota USA	EPO		0.84	0.84	stover	101	0.64	< 0.06	0.64	
(1998) GA21	LPO		0.84	0.84						
(1))0)0/121	DN		0.84	0.56						
	PRE	4	3.3	4.2	forage	56	0.15	0.03	0.20	MSL15334
	EPO		0.84 0.84	0.84	stover	101	2.3	< 0.06	2.3	
	LPO DN		0.84	0.84 1.1						
	PRE	3	4.2	4.2	forage	61	0.30	0.03	0.35	MSL15334
	EPO	3	4.2 0.84	4.2 0.84	stover	106	$\frac{0.30}{1.2}$	< 0.05	$\frac{0.33}{1.2}$	MSL15554
	LPO		1.7	1.7	Stover	100	1.2	< 0.00	1.2	
Buffalo Springs,	PRE	4	4.3	2.8	forage	25	2.4	0.15 c0.08	2.6	MSL15334
Clay County	EPO		0.86	0.48	stover	46	5.4	0.07	5.5	MBE15551
Texas USA	LPO		0.85	0.56				,		
(1998) GA21	DN		0.85	0.67						
	PRE	4	3.4	2.8	forage	25	2.8	0.36 c0.08	3.3	MSL15334
	EPO		0.86	0.48	stover	46	4.6	< 0.06	4.6	
	LPO		0.84	0.56						
	DN		1.7	1.34						
	PRE	3	4.3	2.8	forage	33	2.54	0.13 c0.08	2.7	MSL15334
	EPO		0.86	0.48	stover	54	5.9	< 0.06	5.9	
Varia David	LPO	4	<u>1.7</u> 4.2	1.12	C	5(0.49	0.02	0.54	MOL 15224
Verona, Dane County	PRE EPO	4	4.2 0.85	3.4 0.56	forage	56 99	0.49	0.03 < 0.06	0.54 0.75	MSL15334
Wisconsin USA	LPO		0.83	0.38	stover	99	0.75	< 0.00	0.75	
(1998) GA21	DN		0.87	0.48						
	PRE	4	3.2	3.4	forage	56	0.66	0.04	0.72	MSL15334
	EPO		0.82	0.56	stover	99	0.90	< 0.06	0.90	100210001
	LPO		0.82	0.48						
	DN		1.7	0.96						
	PRE	3	4.2	3.4	forage	68	0.73	0.03	0.78	MSL15334
	EPO		0.84	0.56	stover	111	0.95	< 0.06	0.95	
	LPO		1.7	0.96						
Delavan,	PRE	4	4.3	2.4	forage	54	0.65 c0.05	< 0.03	0.65	MSL15334
Walworth County Wisconsin USA	EPO		0.82	0.48	stover	102	1.0	< 0.06	1.0	
(1998) GA21	LPO		0.84	0.48						
(DN		0.85	0.67	6	5.4	0.67.0.05	0.04	0.72	NOI 15224
	PRE	4	3.4 0.85	2.4 0.48	forage	54	0.67 c0.05	0.04	0.73	MSL15334
	EPO LPO		0.85 0.82	0.48 0.48	stover	102	1.0	< 0.06	1.0	
	DN		0.82	0.48 1.3						
	PRE	3	4.1	2.4	forage	62	<u>1.1</u> c0.05	0.04	1.2	MSL15334
	EPO	5	0.84	0.48	stover	110	<u>1.1</u> co.o5 1.5	< 0.04	$\frac{1.2}{1.5}$	1010110004
	LPO		1.6	0.96	50000	110	1.0	0.00	1.0	
	L I U	1	1.0	0.70	i	I				1

Treatment types include: PRE = pre-emergence; EPO = early post-emergence; LPO = late post-emergence; DN = drop nozzle.

Table 86. Residues in Oat plants and straw: Pre-harvest Application.

Location			Applicat	ion	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Elm Creek	C	1	0.90	-	Straw	7	1.7, 1.5	0.058,	1.8,	CER
Manitoba,								< 0.05	1.5	01307/01
Canada (2001)										
Triple Crown										
	М	1	0.90	-	Straw	7	<u>3.5</u> , 1.5	0.08,	<u>3.6</u> ,	CER
								< 0.05	1.5	01307/01
Vanscoy,	С	1	0.90	-	Straw	6	<u>33,</u> 19	0.51, 0.24	<u>34</u> , 19	CER
Saskatchewan,								-		01307/01
Canada (2001)										
Calibre										

Location			Applicat	tion	Sample	PHI	Resi	dues (mg/kg))	Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
	М	1	0.90	-	Straw	6	21, 16	0.22, 0.47	21, 17	CER 01307/01
Minto, Manitoba, Canada (2001) AC Assiniboia	С	1	0.90	-	Straw	6	16, 19	0.16, 0.38	16, 20	CER 01307/01
	М	1	0.90	-	Straw	6	14, <u>27</u>	0.098, 0.36	14, <u>28</u>	CER 01307/01
Newark, Nottinghamshire, UK (1993) Craig	С	1	1.4	0.72	Straw	7	<u>16</u> c0.06			GLY 282, GLY 297
		1	0.72	0.36	Straw	7	4.8 c0.06			GLY 282, GLY 297
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	Straw	7	6.2 c0.06			GLY 282, GLY 297
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	Straw	7	3.7 c0.06			GLY 282, GLY 297
East Rounton, Yorkshire, UK (1993) Mirabel	С	1	1.4	0.72	Straw	7	<u>12</u> c0.07			GLY 282, GLY 297
		1	0.72	0.36	Straw	7	7.6 c0.07			GLY 282, GLY 297
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	Straw	7	10 c0.07			GLY 282, GLY 297
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	Straw	7	2.9 c0.07			GLY 282, GLY 297
Brockhampton, Herefordshire, UK (1993) Image	С	1	1.4	0.72	Straw	7	<u>64</u>			GLY 282, GLY 297
		1	0.72	0.36	Straw	7	36			GLY 282, GLY 297
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	Straw	7	2.6/63/50*) 58			GLY 282, GLY 297
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	Straw	7	12			GLY 282, GLY 297
Disewort, Leicestershire, UK (1993) Aintree	С	1	1.4	0.72	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	39 32 34 c0.05 <u>33</u> c0.1			GLY 261, GLY 270
		1	0.72	0.36	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	22 24 22 c0.05 8.7 c0.1			GLY 261, GLY 270
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	21 18 17 c0.05 15 c0.1			GLY 261, GLY 270

Location			Applicat	ion	Sample	PHI	Resi	dues (mg/kg))	Report/
(year) variety	Form	Ν	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	8.8 12 9.6 c0.05 5.7 c0.1			GLY 261, GLY 270
East Rounton, North Yorkshire, UK (1993) Mirabel	С	1	1.4	0.72	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	24 19 c0.1 6.7 c0.12 <u>21</u> c0.6			GLY 261, GLY 270
		1	0.72	0.36	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	11 12 c0.1 6.3 c0.12 11 c0.6			GLY 261, GLY 270
		1	0.72+0.825 Frigate	0.36+0.41 Frigate	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	7.5 11 c0.1 3.6 c0.12 6.6 c0.6			GLY 261, GLY 270
		1	0.36+0.825 Frigate	0.18+0.41 Frigate	Whole plant Whole plant Whole plant Straw	4 (hrs) 1 3 7	8.6 5.6 c0.1 2.3 c0.12 4.5 c0.6			GLY 261, GLY 270
Buckingham, UK (1982) Pennal	С	1	1.4	0.72	Straw	12	8.2 c0.1	0.20	8.5	MLL30087
Cottenham, UK (1982) Trafalsar	С	1	1.4	0.72	Straw	7	<u>25</u> c0.1	0.54	<u>26</u>	MLL30087
Edinburgh, UK (1982) Maris Tabard	С	1	1.4	0.72	Straw	7	<u>35</u> c0.9	0.99	<u>37</u>	MLL30087
Skelton, UK (1982) Maris Quest	С	1	1.4	0.72	Straw	7	4 <u>9</u>	0.48	<u>50</u>	MLL30087

Formulation C = 360 g/L SL; Formulation M = 640 g/L trimesium salt SL + 0.5% v/v surfactant; Frigate = tallow amine ethoxylate

Table 87. Residues in Rye straw: Pre-harvest Application (I	Denmark).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Fyn, Denmark (1984) Petkus2	С	1	1.1	0.54	Straw	0	134 c1.3			MLL30150
		1	2.2	1.1	Straw	0	263 c1.3			MLL30150
Oglland, Denmark (1984) Petkus2	С	1	1.1	0.54	Straw	0	198 c1.5			MLL30150
		1	2.2	1.1	Straw	0	279 c1.5			MLL30150

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)	_	Report/
(year) variety	Form	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
				ae/hL						
Fyn, Denmark (1984) Petkus2	С	1	1.1	0.54	Straw	0	193 c0.6			MLL30150
		1	2.2	1.1	Straw	0	362 c0.6			MLL30150

Table 88. Residues in Sorghum stover and hay: Pre-harvest Application (USA).

Location			Applicatio	n	Sample	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	···· F ·	(days)	glyphosate	AMPA	Total	reference
<u> </u>			C	ae/hL			0.71			
Wilson, North Carolina, USA (1997) Pioneer 8446	SL	1	1.7	0.82	Stover	7 (0)	<u>16</u>	<u>0.27</u>	16	MSL14918
Waller, Texas USA (1997) Mycogen 1558	SL	1	1.7	0.90	Stover	9 (2)	<u>21</u>	<u>0.44</u>	22	MSL14918
Uvalde, Texas USA (1997) Pioneer 8313	SL	1	1.7	1.08	Stover	14 (7)	17	0.17	17	MSL14918
Pratt, Kansas USA (1997) Pioneer 8414	SL	1	1.7	0.90	Stover	17 (10)	19	0.45	20	MSL14918
Stafford, Kansas USA (1997) Pioneer 8601	SL	1	1.7	0.90	Stover	16 (9)	17	0.37	18	MSL14918
Jackson, Arkansas USA (1992) Pioneer 8333	SL	1	1.7	0.81	stover hay	8 12 (4)	<u>16</u> 18	0.29 0.36	<u>16</u> 19	MSL13037
Chautauqua, Kansas USA (1992) Garst 5319	SL	1	1.7	0.84	stover hay	6 11 (5)	<u>33</u> 15	0.33 0.22	<u>33</u> 15	MSL13037
Pratt, Kansas USA (1992) NK 2030	SL	1	1.7	0.93	stover hay	8 11 (3)	$\frac{29}{37}$	0.27 0.31	$\frac{29}{37}$	MSL13037
Shelby, Missouri USA (1992) Horizon 101-G	SL	1	1.7	0.81	stover hay	7 15 (8)	<u>28</u> 15	0.22 0.15	<u>28</u> 15	MSL13037
York, Nebraska USA (1992) Pioneer 2030	SL	1	1.7	1.6	stover hay	8 12 (4)	<u>7.0</u> 4.3	0.09 0.08	<u>7.1</u> 4.4	MSL13037
Caddo, Oklahoma USA (1992) Pioneer 8500	SL	1	1.7	1.1	stover hay	7 11 (4)	<u>30</u> 36	0.41 0.45	<u>30</u> 37	MSL13037
Tripp, South Dakota USA (1992) DeKalb	SL	1	1.7	0.86	stover hay	7 10 (3)	<u>2.9</u> 6.4	< 0.05 < 0.05	$\frac{2.9}{6.4}$	MSL13037
Burleson, Texas USA (1992) 522DR	SL	1	1.7	1.3	stover hay	8 11 (3)	<u>8.2</u> 3.1	0.16 < 0.05	$\frac{8.4}{3.1}$	MSL13037

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Franc Warret, Belgium (1999) Soissons	С	1	2.2		0 7 14	135 c0.08 88 c0.24 79 c0.12	1.5 1.4 1.2	137 90 81	MLL31337
501550115	G	1	2.2		0 7	147 c0.08 103 c0.24	1.4 1.4	149 <u>105</u>	MLL31337
Franc Warret, Belgium (1998)	С	1	2.2		14 0 7	60 c0.12 156 <u>198</u> c0.28	1.2 0.67 2.4 c0.05	62 157 <u>202</u> 106	MLL30815
Rialto	Н	1	2.2		14 0 7	103 c0.28 111 c0.05 151 c0.28	2.2 c0.05 0.84 2.4 c0.05	106 112 155	MLL30815
Audeville, Loiret, France (1999) Courtot IQ	F	1	2.1	-	14 7	<u>152 c028</u> <u>68</u>	3.2 c0.05	<u>157</u> <u>68</u>	RJ2910B
IQ .	Е	1	2.0		7	67		67	RJ2910B
Coupigny, Seine-et-Marne, France (1999) Isengrain IQ	F	1	2.1	-	7	<u>109</u> c0.14		<u>109</u>	RJ2910B
	Е	1	2.0		7	60 c0.14		60 c0.14	RJ2910B
Duras Aquitaine, France (1999) Isengrain	С	1	2.2		0 7 14	53 c1.1 25 c0.06 21	0.55 0.77 0.99	54 26 23	MLL31337
	G	1	2.2		0 7 14	61 c1.1 <u>32</u> c0.06 28	0.52 0.72 1.1	$\begin{array}{r} 62\\ \underline{33}\\ 30 \end{array}$	MLL31337
St Paul les Romans, Rhône-Alpes, France (1999) Aztec	С	1	2.2		0 7 14	67 c0.06 19 19 c0.06	0.91 0.61 0.58	68 20 20	MLL31337
	G	1	2.2		0 7 14	100 c0.06 $\frac{25}{19 \text{ c}0.06}$	0.86 0.95 0.57	$ \begin{array}{r} 101 \\ \underline{26} \\ 20 \end{array} $	MLL31337
Fessenheim, Alsace, France (1999) Camp Remy	С	1	2.2		0 7 14	44 13 7.8	0.55 0.38 0.20	45 14 8.1	MLL31337
itenty	G	1	2.2		0 7 14	57 <u>23</u> 13	0.60 0.56 0.31	58 <u>24</u> 13	MLL31337
Battigny, Lorraine, France (1999) Camp Remy	С	1	2.2		0 7 14	84 0.08 <u>25</u> 21	0.97 0.41 0.39	85 <u>26</u> 22	MLL31337
Keniy	G	1	2.2		0 7 14	84 c0.08 25 21	0.48 0.27 0.40	85 25 22	MLL31337
Ploudalmézeau, Bretagne, France (1999) Cyrano	С	1	2.2		0 7 14	106 91 16	0.40 0.99 1.9 1.3	108 94 18	MLL31337
- , 14110	G	1	2.2		0 7 14	113 <u>107</u> 14	1.2 2.8 1.0	115 <u>111</u> 16	MLL31337

Table 89. Residues in Wheat straw: Pre-harvest Application.

Form C H C H H	N 1 1 1	kg ae/ha 2.2 2.3 2.1	kg ae/hL	(days) 0 7 15 0 7 15 0	glyphosate 39 c0.14 5.1 c0.05 15 53 c0.14 13 c0.05 16	AMPA 0.26 c0.05 < 0.05 c0.05 3.7 0.41 c0.05 0.18 c0.05	Total 39 5.1 <u>21</u> 54 13	MLL30815 MLL30815
H C H	1	2.3		7 15 0 7 15	5.1 c0.05 15 53 c0.14 13 c0.05	< 0.05 c0.05 3.7 0.41 c0.05	5.1 <u>21</u> 54	
C H C	1			15 0 7 15	15 53 c0.14 13 c0.05	3.7 0.41 c0.05	<u>21</u> 54	MLL30815
C H C	1			0 7 15	53 c0.14 13 c0.05	0.41 c0.05	54	MLL30815
C H C	1			7 15	13 c0.05			MLL30815
H C	1	2.1		15		0 18 c0 05	13	
H C	1	2.1			17	0.10 00.00		
H C	1	2.1		0	<u>16</u>	0.44	17	
С				-	67	0.61	68	MLL30815
С			1	10	16	0.49	17	
С				18	16	0.67	17	
С		2.2		0	86	0.75	87	MLL30815
		2.2		10	<u>24</u>	0.58	25	MEESOOIS
				18	<u>9.7</u>	0.26	10	
	1	2.2		0	95 c0.7	0.75 c0.05	96	MLL30815
Н				7	79 c0.7	0.12 c0.05	79	
Н	1			14	90	0.24 c0.05	90	
Н	1						l	
	1	2.2		0	88 c0.70	0.78 c0.05	89	MLL30815
	1			7	<u>80</u> c0.70	0.08 c0.05	80	
	L			14	66	0.89 c0.05	67	
С	1	2.2		0	140 c0.76	0.54 c0.05	141	MLL30815
				9	7.5 c0.08	1.4 c0.05	9.6	
				14	9.8 c0.06	3.2	15	
Н	1	2.2		0	139 c0.76	0.55 c0.05	140	MLL30815
				9	5.6 c0.08	1.5 c0.05	7.9	
				14	<u>20</u> c0.06	1.8	23	
С	1	2.2		0	95	0.41	96	MLL30815
				7	64	0.61	65	
				14		0.71	60	
Η	1	2.2		0				MLL30815
				7				
Ι	1	2.2	1.1	-				GLY 528
				-	<u>7.1</u>			
				14	3.5	0.89	4.9	
							L	
J	1	2.1	1.1					GLY 528
				-				
	-		1.					OL LE SEG
I	1	2.2	1.1					GLY 528
	1							
	1			14	30 CU.U93	0.82	31	
т	1	2.2	1 1	0	05	1.7	00	GLY 528
J	1	2.2	1.1					GL 1 528
	1							
T	1	2.1	11			1.4		GLY 418
1	1	2.1	1.1	1	<u>90</u> c0.091		<u> </u>	GL1 410
J	1	2.1	1.1	7	78 c0.051		78	GLY 418
J	1	1.6	0.81	7	60 c0.051		60	GLY 418
Ι	1	2.0	1.1	7	41 c0.055		41	GLY 418
	1	2.1	1 1	7	46 00 055		16	CI V 410
т				/			<u>46</u>	GLY 418
J	1 1	115	0.01		27 0 055			CI V 410
J J	1	1.5	0.81	7	37 c0.055		37 c0.055	GLY 418
	I J I J J I I I	I 1 J 1 I 1 J 1 J 1 J 1 J 1 J 1 I 1 J 1	I 1 2.2 J 1 2.1 I 1 2.2 J 1 2.2 J 1 2.2 I 1 2.1 J 1 2.1 J 1 2.0 J 1 2.1	I 1 2.2 1.1 J 1 2.1 1.1 J 1 2.1 1.1 I 1 2.2 1.1 J 1 2.2 1.1 J 1 2.2 1.1 J 1 2.1 1.1 J 1 2.1 1.1 J 1 2.0 1.1 J 1 2.0 1.1 J 1 2.0 1.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Location			Applicatio	on	PHI	Res	Report/		
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
	Κ	1	2.2	1.1	7	<u>70</u>	0.70	71	MLL30281
	L	1	1.0	0.53	7	28	0.30	28	MLL30281
	L	1	2.1	1.0	7	57	0.70	58	MLL30281
	С	1	2.2	1.1	7	63	0.50	64	MLL30281
La Planche, Cely, France (1991) Pernel	K	1	1.1	0.54	7	50	0.70	51	MLL30281
	K	1	2.2	1.1	7	87	1.6	89	MLL30281
	L	1	1.0	0.53	7	74	1.7	77	MLL30281
	L	1	2.1	1.0	7	79	1.6	81	MLL30281
	С	1	2.2	1.1	7	<u>120</u>	2.2	<u>123</u>	MLL30281
Secqueville, Caen, France (1991) Thesee	K	1	1.1	0.54	10	42 c0.2	0.80	43	MLL30281
	Κ	1	2.2	1.1	10	85 c0.2	1.8	88	MLL30281
	L	1	1.0	0.53	10	31 c0.2	0.80	32	MLL30281
	L	1	2.1	1.0	10	<u>98</u> c0.2	2.2	101	MLL30281
	С	1	2.2	1.1	10	71 c0.2	1.6	73	MLL30281
Montigny sur Crecy, Laon, France (1991) Slepner	K	1	1.1	0.54	10	56 c0.4	0.60	57	MLL30281
	Κ	1	2.2	1.1	10	<u>130</u> c0.4	1.4	<u>132</u>	MLL30281
	L	1	1.0	0.53	10	33 c0.4	0.40	34	MLL30281
	L	1	2.1	1.0	10	87 c0.4	1.1	89	MLL30281
	С	1	2.2	1.1	10	70 c0.4	0.70	71	MLL30281
Norton, Worcestershire, UK (1999) Equinox	F	1	2.1	-	7	<u>23</u> c0.26		<u>23</u>	RJ2910B
	Е	1	2.0		7	17 c0.26		17	RJ2910B
Wilson, Derbyshire, UK (1999) Rialto IQ	F	1	2.1	-	7	<u>27</u> c0.36		<u>27</u>	RJ2910B
	E	1	2.0		7	25 c0.36		25	RJ2910B
Debden, Essex, UK (1982) Norman	С	1	1.4		7	<u>47</u>	0.44	<u>48</u>	MLL30087
Debden, Essex, UK (1982 Norman	С	1	1.4		7	<u>47</u> c0.1	0.62	<u>48</u>	MLL30087
Tadcaster, Yorkshire, UK (1982) Bounty	С	1	1.4		7	<u>6.3</u> c0.3	0.13	<u>6.5</u>	MLL30087
Edinburgh, UK (1982) Mardlor	С	1	1.4		8	<u>7.3</u> c0.1	0.31	<u>7.8</u>	MLL30087
Chiseldon, Wiltshire, UK (1982) Avalon	С	1	1.4		8	<u>18</u>	0.28	<u>18</u>	MLL30087

H = MON 14420 680 g ae/kg SG Formulation C = Roundup® 360 g ae/L SL; Formulation F = 347 g ae/L SL; E = 337 g ae/L SL (trimesium salt); Formulation G = MON 78294 SL; Formulation I and J both 360 g ae/L SL Formulation K = MON 52776 360 g ae/L SL; Formulation L = MON 44068 420 g ae/kg SG

Table 90. Residues in almond hulls: Directed Ground Spray Application (USA).
--

Location			Applicatio	n	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference

Location			Applicatio	on	PHI	Res	idues (mg/kg)		Report/
(year) variety	Form	N	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Fresno, California USA (1989) Mission	SL	1	8.9	3.2	3 10	18 7.2	0.06 0.06	18 7.3	MSL11022, MSL11519
Hughson, California USA (1989) Thompson	SL	1	8.9	7.4	3 10	0.70 0.78	0.06 0.06	0.79 0.87	MSL11022, MSL11519
Popular, California USA (1989) Mission	SL	1	8.9	3.7	3 10	13 c0.12 15	< 0.05 0.08	13 15	MSL11022, MSL11519
Porterville, California USA (1989) Non-Pareil)	SL	1	8.9	3.4	3 10	0.62 2.9	< 0.05 0.10	0.62 3.1	MSL11022, MSL11519
Turlock, California USA (1989) Thompson	SL	1	8.9	6.8	3 10	2.6 1.5	< 0.05 < 0.05	2.6 1.5	MSL11022, MSL11519
Esparto, California USA (1975)	SL	2	2×9.0		21	0.28 c0.05	0.12	0.46	FR 442
	SL	3	3×9.0		1 14	6.8 0.13	0.22 < 0.05	7.1 0.13	FR 442
Fresno, California (1975)	SL	2	2×9.0		21	0.41	< 0.05	0.41	FR 442
· ·	SL	3	3×9.0		1 14	3.6 14	0.07 0.59	3.7 15	FR 442

Table 91. Residues in Conventional Cotton hay:	Pre-emergence, Recirculating Sprayer and Pre-
harvest Application (USA).	

Location		1	App	lication		PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
Malone, Florida	PRE	А	2	9.0		9	15	0.11	15	MSL1283
USA (1974)	PH			4.5						
Ropesville,	PRE	В	2	9.0		13	29	0.17	29	MSL1283
Texas USA	PH	С		4.5						
(1974)										
Sasser, Georgia	PRE	В	4	9.0		9	7.4	0.08	7.5	MSL1283
USA (1974)	RCS	С		6.7						
	RCS	D		6.7						
	PH			4.5						
Mount Pleasant,	PRE	Α	5	9.0		13	18	0.13	18	MSL1283
Mississippi USA		С		6.7						
(1974)	RCS			6.7						
	RCS			6.7						
	PH			4.5						
St. Joseph,	PRE	А	4	9.0		9	33	0.24	33	MSL1283
Louisiana UDSA		С		9.0						
(1974)	RCS			11						
	PH			4.5						
Five Points,	PRE	В	2	9.0		13	17	0.18	17	MSL1283
California USA	PH	С		4.5						
(1974)										
Kernan,	PH	А	1	5.0	2.2	10	84 c0.08	0.45	85	MSL1283
California USA									99	
(1975)										

Location		1	٩pp	lication		PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	Form	Ν	kg ae/ha	kg ae/hL	(days)	glyphosate	AMPA	Total	reference
	PH	А	1	5.0	2.2	3	98 c0.08	0.46	11 119	MSL1283
Weldon, North Carolina USA (1975)	РН	А	1	5.0	4.0	10	11 c0.10	0.09	11	MSL1283
	PH	Α	1	5.0	4.0	3	118 c0.10	0.83	119	MSL1283
Cheneyville, Louisiana USA (1975)	РН	Α	1	5.0	2.2	14	11 c0.14	0.10	11	MSL1283
	PH	А	1	5.0	2.2	7	24 c0.14	0.20	24	MSL1283
Sledge, Mississippi USA (1975)	РН	А	1	5.0	2.5	10	6.30 c0.10	0.09	6.4	MSL1283
. ,	PH	Α	1	5.0	2.5	5	20 c0.10	0.18	20	MSL1283
Ropesville, Texas USA (1975)	РН	А	1	5.0	2.2	10 3	19 c0.16 60 c0.16	0.20 0.21	19 60	MSL1283
Dawson, Georgia USA (1975)	PH	А	1	5.0	2.2	8	3.8 c0.13	0.21	4.1	MSL1283
	PH	А	1	5.0	2.2	3	27 c0.13	0.44	28	MSL1283

Treatment types are: PRE = pre-emergence; RCS = recirculating sprayer; PH = pre-harvest

*Formulations used at each site are listed. Not specified which formulation was used for each application.

Table 92. Residues in Glyphosate Tolerant Cotton (Roundup Ready Flex cotton gin by-products — 2
different lines of 2 nd generation tolerant cotton (USA) trialled (MON 88913, MON 88903), Roundup
UltraMAX Herbicide (372 g ae/L).

Location			Applicatio	n	GSLT	PHI	Res	idues (mg/kg)		Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference
Tift Co., Georgia USA	FWF FOB	3	3.3 1.7	2.2 1.1	88- 95%	6	<u>67</u>	0.72	<u>68</u>	MSL17635
(2002) MON88913	PH		1.7	1.1	open bolls					
Washita Co. Oklahoma USA (2002) MON88913	FWF FOB PH	3	3.3 1.7 1.7	2.7 1.1 1.3	90% open bolls	7	<u>91</u>	0.59	<u>92</u>	MSL17635
Waller Co. Texas USA (2002) MON88913	FWF FOB PH	3	3.3 1.7 1.7	1.7 0.83 0.83	80% open bolls	7	<u>126</u>	1.51	<u>128</u>	MSL17635
Armstrong Co., Texas USA (2002) MON88913	FWF FOB PH	3	3.33 1.7 1.7	2.2 1.1 1.1	80- 85% open bolls	8	<u>37</u>	0.29	<u>37</u>	MSL17635
Washington Co., Mississippi USA (2002) MON88903	FWF FOB PH	3	3.3 1.7 1.7	2.7 1.1 1.1	90- 95% open bolls	6	<u>19</u>	0.24	<u>19</u>	MSL17635
Hockley Co., Texas USA (2002) MON88903	FWF FOB PH	3	3.3 1.7 1.7	1.7 0.83 0.83	70% open bolls	7	<u>70</u>	0.54	<u>71</u>	MSL17635

Types of applications: LPO = Late post-emergence (6-8 leaf stage); FWF = First White Flower; FOB = First Open Boll; PH = Pre-harvest GA – 88913 spindle picker; OK – 88913 stripper; TX Waller Co. – 88913 spindle picker; TX Armstrong Co. 88913 Stripper; MS – 88913 Spindle picker; TX Hockley – 88913 Stripper

Location			Applicatio	m	GSLT	PHI	Resid	lues (mg/kg)	Report/	
(year) variety	Туре	Ν	kg ae/ha	kg ae/hL		(days)	glyphosate	AMPA	Total	reference	
Houston Co.	PRE	4	3.4	1.7	70%	7	9.8	0.09	9.9	MSL13884	
Alabama USA	EPO		1.3	0.63	Bolls						
(1994) 1445	PD		1.3	0.63	Open						
_	PH		1.7	0.75							
	PRE	5	3.4	1.7	70%	7	8.3	0.08	8.4	MSL13884	
	EPO		0.84	0.42	Bolls						
	MPO PD		1.3 1.3	0.63 0.63	Open						
	PH		1.7	0.03							
	PRE	5	3.4	1.7	70%	7	<u>16</u>	0.18	<u>16</u>	MSL13884	
	EPO		0.84	0.42	Bolls						
	LPO		1.3	0.63	Open						
	PD		1.7	0.84							
	PH		1.7	0.75							
Crittenden Co.	PRE	4	3.4	3.4	70%	8	4.2	0.05	4.3	MSL13884	
Arkansas USA (1994) 1445	EPO PD		1.3 1.3	1.0 0.72	Bolls Open						
(1994) 1443	PH		1.5	1.3	Open						
	PRE	5	3.4	3.4	70%	8	7.2	0.07	7.3	MSL13884	
	EPO	-	0.84	0.67	Bolls	, in the second s		,	,		
	MPO		1.3	1.3	Open						
	PD		1.3	0.72							
	PH	_	1.7	1.3							
	PRE	5	3.4	3.4	70%	8	<u>8.6</u>	0.08	<u>8.7</u>	MSL13884	
	EPO LPO		0.84 1.3	0.67 1.3	Bolls Open						
	PD		1.5	0.96	Open						
	PH		1.7	1.3							
1698	PRE	4	3.4	3.4	70%	8	4.0	0.08	4.1	MSL13884	
	EPO		1.3	1.0	Bolls						
	PD		1.3	0.72	Open						
	PH	_	1.7	1.3							
	PRE	5	3.4	3.4	70%	8	7.8	0.09	7.9	MSL13884	
	EPO MPO		0.84 1.3	0.67 1.3	Bolls Open						
	PD		1.3	0.72	Open						
	PH		1.7	1.3							
	PRE	5	3.4	3.4	70%	8	6.2	0.10	6.3	MSL13884	
	EPO		0.84	0.67	Bolls						
	LPO		1.3	1.3	Open						
	PD		1.7	0.96							
Maricopa Co.	PH PRE	4	1.7 3.4	1.3 1.9	Maturity	7	<u>41</u> c0.12	0.27	41	MSL13884	
Arizona USA	EPO	4	1.3	0.63	Maturity	/	$\frac{41}{2}$ c0.12	0.27	<u>41</u>	MSL13884	
(1994) 1445	PD		1.3	0.03							
	PH		1.7	0.84							
	PRE	5	3.4	1.9	Maturity	7	23 c0.12	0.20	23	MSL13884	
	EPO		0.84	0.42							
	MPO		1.3	0.72							
	PD		1.3	0.72							
	PH PRE	5	1.7 3.4	0.84	Maturity	7	32 c0.12	0.19	32	MSL13884	
	EPO	5	0.84	0.42	wiaturity	/	52 00.12	0.17	22	1015115004	
	LPO		1.3	0.72							
	PD		1.7	0.96							
	PH		1.7	0.84							
Tulare Co.	PRE	4	3.4	2.2	Maturity	6	<u>36</u>	0.39	<u>37</u>	MSL13884	
California	EPO		1.3	0.84							
USA (1994)	PD		1.3	0.84							
1445	PH	1	1.7	1.1	1	1				1	

Table 93. Residues in gin by-products from Glyphosate Tolerant Cotton genotypes 1445 and 1698 (USA) .

Location			Applicatio	n	GSLT	PHI	Resid	lues (mg/kg	;)	Report/
(year) variety	Туре	Ν	kg ae/ha	kg	1	(days)	glyphosate	AMPA	Total	reference
	DDE	-	2.4	ae/hL		-	26	0.05	26	MGI 12004
	PRE EPO	5	3.4 0.84	2.2 0.56	Maturity	6	26	0.25	26	MSL13884
	MPO		1.3	0.84						
	PD		1.3	0.84						
	PH		1.7	1.1						
	PRE	5	3.4	2.2	Maturity	6	20	0.18	20	MSL13884
	EPO		0.84	0.56						
	LPO		1.3	0.84						
	PD PH		1.7 1.7	1.1 1.1						
St Landry Co.	PRE	4	3.4	2.2		17	1.1	< 0.05	1.1	MSL13884
Louisiana USA	EPO	7	1.3	1.3		17	1.1	< 0.05	1.1	WISL15004
(1994) 1445	PD		1.3	1.3						
	PH		1.7	1.7						
	PRE	5	3.4	2.2		17	0.79	< 0.05	0.79	MSL13884
	EPO		0.84	0.84						
	MPO		1.3	1.3						
	PD PH		1.3 1.7	1.3 1.7						
	PRE	5	3.4	2.2		17	0.86	< 0.05	0.86	MSL13884
	EPO	5	0.84	0.84		17	0.00	< 0.05	0.00	WIGE15004
	LPO		1.3	1.3						
	PD		1.7	1.7						
	PH		1.7	1.7						
1698	PRE	4	3.4	2.2	7 Day	17	2.2	< 0.05	2.2	MSL13884
	EPO		1.3	1.3	PHI					
	PD PH		1.3 1.7	1.3 1.7						
	PRE	5	3.4	2.2	7 Day	17	2.0	< 0.05	2.0	MSL13884
	EPO	5	0.84	0.84	PHI	17	2.0	< 0.05	2.0	WIGE15004
	MPO		1.3	1.3						
	PD		1.3	1.3						
	PH		1.7	1.7						
	PRE	5	3.4	2.2	7 Day	17	0.99	< 0.05	0.99	MSL13884
	EPO LPO		0.84 1.3	0.84 1.3	PHI					
	PD		1.5	1.3						
	PH		1.7	1.7						
Bolivar Co.	PRE	4	3.4	2.2	Mature	6	30 c0.05	0.26	30	MSL13884
Mississippi	EPO		1.3	1.0						
USA (1994)	PD		1.3	1.0						
1445	PH	-	1.7	1.1	26.	6	21 0.05	0.00	21	10004
	PRE	5	3.4	2.2	Mature	6	<u>31</u> c0.05	0.23	<u>31</u>	MSL13884
	EPO MPO		0.84 1.3	0.67 1.0						
	PD		1.3	1.0						
	PH		1.7	1.1						
	PRE	5	3.4	2.2	Mature	6	27 c0.05	0.13	27	MSL13884
	EPO		0.84	0.67						
	LPO		1.3	1.0						
	PD PH		1.7	1.3						
Washington	PRE	4	1.7 3.4	1.1 1.7	Open	9	5.8	0.05	5.9	MSL13884
Co. Mississippi	EPO	-	1.3	0.63	Bolls	,	<u>J.0</u>	0.05	<u></u>	115115004
USA (1994)	PD		1.3	1.0						
1445	PH		1.7	1.1						
	PRE	5	3.4	1.7	Open	9	3.7	< 0.05	3.7	MSL13884
	EPO		0.84	0.42	Bolls					
	MPO		1.3	0.72						
	PD PH		1.3	1.0						
	гп	L	1.7	1.1						

glyphosate

Location			Applicatio	n	GSLT	PHI	Resi	dues (mg/kg)	Report/
(year) variety	Туре	N	kg ae/ha	kg ae/hL	1	(days)	glyphosate	AMPA	Total	reference
	PRE	5	3.4	1.7	Open	9	4.0	< 0.05	4.0	MSL13884
	EPO		0.84	0.42	Bolls					
	LPO		1.3	1.0						
	PD		1.7	1.3						
1698	PH PRE	4	1.7 3.4	1.1 1.7	0	9	5.0	0.05	5.1	MSL13884
1098	EPO	4	5.4 1.3	0.63	Open Bolls	9	5.0	0.05	5.1	MSL13884
	PD		1.3	1.0	Dons					
	PH		1.7	1.1						
	PRE	5	3.4	1.7	Open	9	4.3	< 0.05	4.3	MSL13884
	EPO		0.84	0.42	Bolls					
	MPO		1.3	0.72						
	PD		1.3	1.0						
	PH PRE	5	1.7 3.4	1.1 1.7	Open	9	5.1	0.05	5.2	MSL13884
	EPO	3	0.84	0.42	Bolls	9	5.1	0.05	3.2	MSL13004
	LPO		1.3	1.0	Dons					
	PD		1.7	1.3						
	PH		1.7	1.1						
Fayette Co.	PRE	4	3.4	3.4	70%	8	<u>34</u> c0.97	0.45	<u>35</u>	MSL13884
Tennessee	EPO		1.3	1.0	Bolls					
USA (1994)	PD		1.3	0.72	Open					
1445	PH	5	1.7	1.3 3.4	70%	8	26 c0.97	0.26	20	MCI 12004
	PRE EPO	5	3.4 0.84	5.4 0.67	70% Bolls	8	26 c0.97	0.26	26	MSL13884
	MPO		1.3	1.0	Open					
	PD		1.3	0.72	open					
	PH		1.7	1.3						
	PRE	5	3.4	3.4	70%	8	29 c0.97	0.27	29	MSL13884
	EPO		0.84	0.67	Bolls					
	LPO		1.3	1.3	Open					
	PD PH		1.7 1.7	0.96 1.3						
Uvalde Co.	PRE	4	3.4	2.7	60%	6	32	0.30	32	MSL13884
Texas USA	EPO	7	1.3	1.3	Bolls	0	52	0.50	52	WISL15004
(1994) 1445	PD		1.3	1.3	Open					
	PH		1.7	1.3	î					
	PRE	5	3.4	2.7	60%	6	<u>84</u>	0.84 0.54	<u>85</u>	MSL13884
	EPO		0.84	0.84	Bolls					
	MPO		1.3	1.0	Open					
	PD PH		1.3 1.7	1.3 1.3						
	PRE	5	3.4	2.7	60%	6	32	0.33	33	MSL13884
	EPO		0.84	0.84	Bolls	Ĭ		0.00	55	
	LPO	1	1.3	1.3	Open					
	PD		1.7	1.7	_					
	PH		1.7	1.3						
1698	PRE	4	3.4	2.7	60%	6	26	0.31	26	MSL13884
	EPO PD	1	1.3 1.3	1.3 1.3	Bolls					
	PD PH		1.3	1.3	Open					
	PRE	5	3.4	2.7	60%	6	65	0.54	66	MSL13884
	EPO		0.84	0.84	Bolls	Ĭ				
	MPO		1.3	1.0	Open					
	PD		1.3	1.3						
	PH		1.7	1.3						
	PRE	5	3.4	2.7	60%	6	74	0.67	75	MSL13884
	EPO		0.84	0.84	Bolls					
	LPO PD		1.3 1.7	1.3 1.7	Open					
	PH		1.7	1.7						
		1	1.1	1.0	1	1	1	1		1

Location			Applicatio	n	GSLT	PHI	Resid	lues (mg/kg	;)	Report/
(year) variety	Туре	Ν	kg ae/ha	kg	1	(days)	glyphosate	AMPA	Total	reference
			C	ae/hL			0.11			
Willacy Co.	PRE	4	3.4	1.7	Maturity	8	18	0.21	18	MSL13884
Texas USA	EPO		1.3	0.63	-					
(1994) 1445	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	21	0.31	<u>21</u>	MSL13884
	EPO		0.84	0.42						
	MPO		1.3	0.63						
	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	19	0.25	19	MSL13884
	EPO		0.84	0.42						
	LPO		1.3	0.63						
	PD		1.7	0.84						
	PH		1.7	0.84						
1698	PRE	4	3.4	1.7	Maturity	8	15	0.18	15	MSL13884
	EPO		1.3	0.63						
	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	16	0.15	16	MSL13884
	EPO		0.84	0.42						
	MPO		1.3	0.63						
	PD		1.3	0.63						
	PH		1.7	0.84						
	PRE	5	3.4	1.7	Maturity	8	18	0.16	18	MSL13884
	EPO		0.84	0.42						
	LPO		1.3	0.63						
	PD		1.7	0.84						
	PH		1.7	0.84						
Hockley Co	PRE	4	3.4	2.2	Maturity	7	29 c0.05	0.12	29	MSL13884
Texas USA	EPO		1.3	0.84						
(1994) 1445	PD		1.3	0.84						
	PH		1.7	1.1						
	PRE	5	3.4	2.2	Maturity	7	<u>42</u> c0.05	0.25	<u>42</u>	MSL13884
	EPO		0.84	0.56						
	MPO		1.3	0.84						
	PD		1.3	0.84						
	PH		1.7	1.1						
	PRE	5	3.4	2.2	Maturity	7	31 c0.05	0.15	31	MSL13884
	EPO		0.84	0.56						
	LPO		1.3	0.84						
	PD		1.7	1.1						
	PH		1.7	1.1						

Application types: PRE = Pre-emergence; EPO = Early Post-emergence; MPO = Mid-Post-emergence; LPO = Late Post-emergence; PD = Post-Directed; PH = Pre-harvest

AL – hand harvested, processed research-type gin; AR – Mechanical John Deere 9900 cotton picker, 10 saw gin; AZ – hand harvested, research type gin; CA – Hand harvested, research type gin; LA – mechanical IH 622 cotton picker, 20 saw table top gin; MS1 – Hand harvested research type gin; MS2 – hand harvested research type gin; TN - mechanical IH 416 row picker, research type gin; TX1 – Mechanical John Deere 9900 picker, Dennis 20 saw gin; TX2 – Mechanical picker, Dennis 20 saw gin; TX3 – Hand harvested, Dennis 20 saw gin.

Gin by-products from the Arkansas and Tennessee trial sites were collected from gin material while the other sites were simulated gin by-products by collecting a mixture of leaves, burs and stems.

Table 94.	Residues in	Rape/Canol	la straw: Pre-	harvest App	olication.

Location			Application	n	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Form	Ν	kg ae/ha	kg	(days)	glyphosate	AMPA	Total	reference
				ae/hL					
Sweden (1981)	SL	1	1.4	0.72	10	30.0	0.4	31	ML30104
Svalof									
Sweden (1980)	SL	1	1.4	0.72	18	<u>30 c</u> 0.1	0.3	<u>30</u>	ML30104
		1	2.2	1.0	18	16 c0.1	0.1	16	ML30104

FATE OF RESIDUE IN STORAGE AND PROCESSING

Olives

The residue data for processing of olives into raw and refined olive oil were included in the same reports with data on the Raw Agricultural Commodities.

Olives were crushed/ground and pressed in through nylon cloth to separate the vegetable water and oil from pulp. The oil and water mixture was warmed to 30 °C until a deposit and the crude oil recovered. Refined oil was prepared by addition of NaOH, heating the mixture to 60–70 °C and the refined oil decanted off (Hontis 1996, MLL30469).

Olives were cleaned by sieving to remove small impurities while larger ones were removed manually. The olives were washed, excess water removed and the olives meshed in a laboratory scale olive grindstone mill. NaCl was added to facilitate separation of oil and water and the mixture centrifuged to separate solids from the unstable emulsion (Hontis 1993 MLL30319).

Olives were washed, blended for 2 minutes to a paste and the paste stirred for 20 minutes in a water bath at 50 °C, water added and the mixture heated to 80 °C and stirred for 10 minutes prior to centrifugation to separate oil and water from solids Hontis 1992, MLL30297).

Residues of AMPA were < 0.05 mg/kg in all samples. The mean processing factor for olive oil was < 0.2 for both glyphosate and total residue.

Location (year) variety	Application rate (kg ae/ha)	Portion analyzed	PHI (days)	Residues glyphosate (mg/kg)	Processing Factor for Oil
Villa del Rio 14640 [MLL30469]	2.2	Fruit (ground) raw oil refin. oil	0 7 7 7	5.9 0.5 < 0.05 < 0.05	< 0.1 < 0.1
Ubeda 23400 [MLL30469]	2.2	Fruit (ground) raw oil refin. oil	0 7 7 7	6.0 0.9 < 0.05 < 0.05	< 0.06 < 0.06
	2.2	Fruit (ground) raw oil refin. oil	0 14 14 14	6.7 0.9 < 0.05 < 0.05	< 0.06 < 0.06
Francavilla, Puglia Italy [MLL30319]	1.4	Fruit (ground) Fruit (ground) Raw oil Raw oil	6 13 6 13	0.35 0.30 < 0.05 < 0.05	< 0.14 < 0.17
Pedrera Spain [MLL30297]	0.36	Olives Olives Olive oil Olive oil	1 7 1 7	0.7 0.9 < 0.05 < 0.05	< 0.07 < 0.06
Puebla de Cazalla Spain [MLL30297]	0.36	Olives Olives Olive oil Olive oil	1 7 1 7	0.9 1.0 < 0.05 < 0.05	< 0.06 < 0.05

Table 95. Processing olives.

Location (year) variety	Application rate (kg ae/ha)	Portion analyzed	PHI (days)	Residues glyphosate (mg/kg)	Processing Factor for Oil
Torreblascopedro Spain [MLL30297]	0.36	Olives Olives Olive oil Olive oil	0 32 0 32	1.2 0.6 < 0.05 < 0.05	< 0.04 < 0.08
Sierrayegua Spain [MLL30297]	0.36	Olives Olives Olive oil Olive oil	0 24 0 24	0.2 0.2 < 0.05 < 0.05	< 0.25 < 0.25
Linares Spain [MLL30297]	0.36	Olives Olives Olive oil Olive oil	0 30 0 30	0.1 1.2 < 0.05 < 0.05	< 0.5 < 0.04
Cordoba Spain [MLL30297]	0.36	Olives Olives Olive oil Olive oil	0 41 0 41	0.06 0.3 < 0.05 < 0.05	< 0.8 < 0.17

All values are uncorrected for analytical recovery. Limit of detection of glyphosate is 0.05 ppm ground = ground fallen olives

Glyphosate tolerant sugar beet

Steinmetz and Bleeke (1999 MSL 16087) studied the effect of processing on residues in glyphosate tolerant sugar beet. Bulk sugar beet root samples were harvested at two field sites in two states (Washington and North Dakota), representing major sugar beet-producing regions of the United States and sent to the processor for processing. Treatment was four applications: 3.4 kg ae/ha at preemergence; 0.84 kg ae/ha at the 2–4 leaf and 12–14 leaf stages and 1.7 kg ae/ha, 30 + 2 days after the 12–14 leaf stage application. Sugar beet roots (102-172 kg) were tub washed, cut into thick pieces (5 cm) and sliced into cossettes 0.01–0.03 cm \times 3-8 cm. Sugar was extracted from the cossettes in a series of steam heated cells with a mixture of fresh and pulp press water. Extracted pulp was pressed to recover pulp press water. A sample of wet pulp was retained for analysis with the remainder dried to a moisture content less than 10% and milled. Raw juice was purified in a steam jacketed kettle by addition of lime and carbon dioxide; precipitated impurities were coagulated by a settling agent and clarified. Clear juice was obtained by decanting and screening to remove any larger particles; the sludge was vacuum filtered. The combined clarified liquids were further clarified with a second carbonation with CO_2 gas and filtration. The resulting concentrated juice was heated to 75–85 °C and vacuum filtered over diatomaceous earth. The concentrated juice was warmed to 50 °C and fed into a laboratory vacuum pan and granulator for crystallisation of sugar. Refined sugar was obtained by centrifuge filtration of the massecuite previously heated to 70-75 °C, washed with warm purified water (86–96 °C) and dried under a stream of hot air. Molasses was collected from the centrifuge as the initial spin-off syrup. The residue levels of glyphosate in the raw agricultural commodity (whole root) and the processed samples, and the concentration factors, are summarized below. AMPA levels ranged from ca. < 0.05 to 0.21 mg/kg. Concentration factors for AMPA were not calculated.

glyphosate

Location	I	Application	n	Sample	PHI	Resi	dues (mg/kg)		Report/
(year) variety	Form	kg	kg		(days)	glyphosate	AMPA	Total	reference
		ae/ha	ae/hL						
Sargent Co.,	PRE	3.4	3.6	Root	48	6.0	0.21 c0.06	6.3	MSL16087
North Dakota	EPO	0.86	0.80	Wet pulp		0.51	< 0.05	0.51	
USA (1998)	EPO	0.86	0.80	Dry pulp		4.3	0.17	4.6	
Empire RR	LPO	1.7	1.8	Molasses		< 0.05	< 0.05	< 0.05	
_				Sugar, refined		< 0.05	< 0.05	< 0.05	
Cront Co	PRE	3.4	2.4	Root	60	3.8	0.13	4.0	MSL16087
Grant Co.,	EPO	0.86	0.62	Wet pulp		0.23	< 0.05	0.23	
Washington	EPO	0.86	0.62	Dry pulp		1.9	0.09	2.0	
USA (1998) Pillar RR	LPO	1.7	1.2	Molasses		< 0.05	< 0.05	< 0.05	
rinai KK				Sugar, refined		< 0.05	< 0.05	< 0.05	

Table 96. Residues in glyphosate tolerant sugar beet and processed commodities (USA) Steinmetz and Bleeke (1999 MSL 16087).

Values are the mean of two or three determinations, and are uncorrected for recovery.

PRE = pre-emergent; EPO = early post emergent, the 1^{st} at 2-4 leaf stage and the 2^{nd} at 12-14 leaf stage; LPO = late post emergent and is 30 days after the 12-14 leaf stage application.

Table 97. Processing Factors in Glyphosate Tolerant Sugar Beet Processed Commodities.

		Glyphosate PF	Total residue PF			
Matrix	North Dakota	Washington	Mean	North Dakota	Washington	Mean
Wet Pulp	0.09	0.06	0.08	0.08	0.06	0.07
Dry Pulp	0.71	0.51	0.61	0.73	0.50	0.62
Molasses	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sugar, Refined	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Soya Beans - Conventional

The grain samples from the Banks, Mississippi trials collected 15 days after treatment were used for the processing experiment (Kunstman 1983 MSL3259) grain was mechanically shelled using a McGill sheller and the hulls and meal separately ground with dry ice in a Waring blender. The meal was further fractionated before extraction of oil with hexane. Residual solvent from the extracted meal was allowed to dissipate by evaporation. Crude oil was obtained by evaporation of hexane from the miscella (hexane oil mixture). Refined oil was prepared by alkali saponification with NaOH and separated from the soapstock by centrifugation.

Table 98. Residues in conventional soya beans and processed commodities (USA) Kunstman 1983 MSL3259.

Rate		Residue (mg/kg)								
(kg ae/ha)	G	rain	Fat fre	e meal		Hulls	Crud	le oil	Soaps	tock
	Gly	AMPA	Gly	AMPA	Gly	AMPA	Gly	AMPA	Gly	AMPA
0.84*	9.2	1.5	7.6	1.3	42	3.3 c0.12	0.06	< 0.05	< 0.05	< 0.05
3.4	11	1.8	10	1.5	60	5.3 c0.12	0.10	< 0.05	< 0.05	< 0.05

Recirculating + pre-harvest application

Table 99. Processing factors for conventional soya beans and processed commodities (USA) Kunstman 1983 MSL3259.

Rate		Processing factors							
(kg ae/ha)	Fat fre	e meal	Hulls		Crude oil		Soapstock		
	Glyphosate	Total	Glyphosate	Total	Glyphosate	Total	Glyphosate	Total	
0.84	1.0	0.83	4.5	4.1	< 0.01	< 0.01	< 0.02	< 0.01	
3.4	1.0	0.89	5.2	5.0	< 0.01	< 0.01	< 0.02	< 0.01	
Mean	1.0	0.86	4.9	4.6	< 0.01	< 0.01	< 0.02	< 0.01	

Soybean seed was composited from fourteen field residue trials treated in 1992 with glyphosate and processed to afford the following food and feed fractions: coarse, medium and fine dust; hulls; dehulled seed; meal; crude and refined oil; and soap stock (Goure and Steinmetz 1994 MSL13463). All samples were maintained frozen during storage and shipment.

Recoveries from laboratory-fortified control samples spiked with glyphosate and AMPA are summarized in the following table.

Table 100. Recovery of Glyphosate and AMPA from Fortified Soyabean Processed Samples (Goure and Steinmetz 1994 MSL13463).

Crop Matrix	Fortification Level (mg/kg)	Glyphosate mean %recovery (range)	AMPA mean % recovery(range)
Seed VD 0541	0.05-20	91 (81-102)	88 (74-102)
coarse dust	0.05-8.0	94 (89-99)	85 (81-88)
medium dust	0.05-5.0	101 (92-110)	98 (90-106)
fine dust	0.03-3.0	93 (91-94)	84 (80-88)
hulls	0.05-10	96 (782-111)	95 (87-104)
meal	0.05-15	89 (75-99)	83 (70-98)
crude oil OC 0541	0.05-5.0	81 (72-91)	78 (69-89)
refined oil OR 0541	0.05-5.0	83 (74-88)	83 (74-88)
soap stock	0.05-5.0	84 (75-95)	70 (67-76)

The seed from field trials was dried to a moisture content of 7–10% and aspirated to remove light impurities and screened to separate whole seed from small and large plant material which were further screened and classified into coarse, medium and fine dust fractions. Hulls were removed from seed using a mill which cracked the seed into 2–6 pieces air aspiration yielding hulls and kernels. Kernels were heated to 66–74 °C, flaked in a flaking roll (0.2–3 mm gap) and crude oil extracted from the flaked kernels using warm hexane 49-60 °C. Residual hexane was removed from the extracted flakes using warm air to yield soybean meal. The hexane extracts (miscella) was concentrated at 75–90 °C to remove hexane and yield crude oil. Further extraction of the crude oil with water at 68–72 °C afforded degummed oil which was neutralised with NaOH to give refined oil and saopstock which were separated.

The field collected seed, prior to processing (unmilled seed), contained an average combined glyphosate and AMPA residue level of 5.9 mg/kg. Milled soybean seed (dust and hulls removed) contained an average combined glyphosate and AMPA residue level of 5.8 mg/kg. Combined average glyphosate and AMPA residues in coarse, medium and fine dust were 7.9, 6.4 and 3.8 mg/kg, respectively. Soybean hulls contained the highest combined glyphosate and AMPA residues of 15.8 mg/kg. The concentration factors for combined glyphosate and AMPA residues in coarse and medium dust and hulls were 1.3, 1.1, and 2.7, respectively.

The combined average glyphosate and AMPA residue level in meal was 5.4 mg/kg. This residue level is similar to that in unmilled and dehulled seed, and demonstrates that residues do not concentrate in soybean meal. In contrast, combined glyphosate and AMPA residues in crude and refined oil and soap stock were significantly less than those in unmilled seed. Total combined residues in crude and refined oil and soap stock were 0.2, 0.02, and 0.9 mg/kg, respectively.

glyphosate

Location (Year)	Application Rate (kg ae/ha) ¹	Application volume (L/ha)	PHI (days)	Sample	Glyphosate (mg/kg) ³	AMPA (mg/kg) ³	Glyphosate PF	Total PF
USA, 1992	6.4 1.7	148 144	91 (xx- xx)	unmilled seed coarse dust medium dust fine dust hulls dehulled seed meal crude oil refined oil soapstock	2.4 5.5 4.1 2.5 9.2 2.4 1.9 0.04 0.01 0.26	3.5 2.4 c0.06 2.3 c0.07 1.3 c0.05 6.6 c0.06 3.4 3.6 0.17 0.01 0.66 c0.06	- 2.3 1.7 1.0 3.8 1.0 0.8 0.02 < 0.01 0.1	- 1.2 0.99 0.58 2.1 0.98 0.95 0.04 < 0.01 0.16

Table 101. Residues in glyphosate tolerant soya beans and processed commodities (USA) (Goure and Steinmetz 1994 MSL 13463).

PHI is the average pre-harvest interval in days between the late post-emergence application and sample harvest.

Values are the average of replicate analysis (typically duplicate), and are not corrected for recovery

Concentration factors were calculated by dividing the average glyphosate and AMPA residues found in each processed fraction by that found in unmilled seed.

Coarse dust = >2540 microns, medium >1190 to <2540 microns, fine <1190 microns.

Maize – Conventional

Glyphosate 360 g/L SL formulation was applied to conventional maize during the 1993 growing season as a single, pre-harvest treatment six or seven days before harvest to plots in Illinois and Iowa, respectively. The actual herbicide application rates were 2.5 kg ae/ha in spray solution volumes of 135 and 190 L/ha for the Illinois and Iowa sites, respectively.

Treated and control grain samples were collected six or seven days after ground-applied, broadcast applications and were frozen within two hours of collection. The corn grain (191 kg shelled corn Illinois; 131 kg shelled corn Iowa per study) was processed using simulated industrial practices for dry and wet milling to provide commercially representative samples. Whole grain samples were dried and cleaned by aspiration and screening with light impurities classified as chaff and grain dust.

<u>Dry milling.</u> Grain was conditioned to a moisture content of 20-22% prior to impact milling after which the cornstock was dried at 54–71 °C for 30 minutes, cooled and screened (3.2 mm) to produce on sifting medium (> 2 mm) and small grits (1.4–2 mm)), coarse meal (0.6–1.4 mm), meal (0.24–0.6 mm) and flour (< 0.24 mm). The retained material in the screen (> 3.2 mm) was further processed by aspiration to separate hulls from hulls with germ and germ and large grits.

To extract oil, germ was conditioned to 12% moisture content, heated to 88–104 °C, flaked and pressed to give crude oil and presscake. The presscake was extracted with hexane and the miscella (hexane and crude oil) separated, the crude oil heated to 73–94 °C to remove residual hexane. The presscake was dried under a stream of warm air to remove residual solvent and ground to produce meal. The combined crude oil (press and solvent extracted) was caustic refined by addition of NaOH to yield soapstock and refined oil. The following dry milled fractions were analyzed: cleaned grain, grain dust, grain screenings, grits, meal, flour, and crude and refined oils. The grain dust analyzed was a composite sample made by combining an equal fraction (by weight) of each of the screened grain dust subsamples. The grain screenings, consisting of material with particle sizes > 2.5 mm was analyzed separately. The large, medium and small grits were combined into a composited grits sample and the coarse meal and meal into a composited meal sample.

Wet milling Cleaned grain was steeped in water (49–54°C; 0.1-0.2% SO₂) for 22–48 h and ground to give cornstock which was flooded in salt water to remove the germ. The grinding process was repeated and the recovered germ dried at 74–91 °C to a constant moisture content of 7–10%. The cornstock was ground and passed through a 3.2 mm screen separate the hull material (bran). The

cornstock passing through the screen is ground several times and sieved, material > 0.6 mm is added to the hulls, material not passing through a 43 micron screen is coarse gluten-starch and dried to a final moisture content of 15%. Material passing through the screen is refrigerated for > 12 hours to allow the starch and gluten to settle, the water removed and the starch separated from the gluten by centrifugation. Oil was extracted from germ in the same process as for dry milled grain. Samples analyzed as a result of the wet milling process were starch, crude oil, and refined oil.

Recoveries from laboratory-fortified corn processed commodity control samples spiked with glyphosate and AMPA over the range of 0.05 to 20 mg/kg averaged 85% for glyphosate, and ranged from 65% to 104%. The recoveries of AMPA from the same samples averaged 85%, and ranged from 60% to 117%.

Table 102. Effects of industrial processing on the nature and magnitude of residues (Over-the-top
applications to conventional maize Oppenhuizen 1995 MSL13655) SAI 3 to 391 days.

Location (Year) variety	Application Rate (kg ae/ha) ¹	Application volume (L/ha)	PHI (days)	Sample	Glyphosate (mg/kg) ³	AMPA (mg/kg) ³
Waren Co. Illinois, USA, (1993) Asgrow 707/623	2.5	135	6	Grain Clean grain Dry milled crude oil Dry milled refined oil Flour Grain dust Grain dust screenings Grits Meal Starch Wet milled crude oil	$< 0.05 \\ 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 8.3 \text{ c}0.14 \\ 14 \text{ c}0.19 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\$	$\begin{array}{c} 0.08 \ \text{c0.07} \\ 0.10 \ \text{c0.05} \\ < 0.05 \\ < 0.05 \\ 0.07 \ \text{c0.06} \\ 1.6 \ \text{c1.3} \\ 1.7 \ \text{c1.8} \\ < 0.05 \\ 0.07 \ \text{c0.07} \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$
Des Moines Co. Iowa USA (1993) Querna 7670	2.5	190	7	Wet milled refined oil Grain Clean grain Dry milled crude oil Dry milled refined oil Flour Grain dust Grain dust screenings Grits Meal Starch Wet milled crude oil Wet milled refined oil	$\begin{array}{r} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ c 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ c 0.05 \\ 0.64 \\ c 0.28 \\ 0.40 \\ c 0.15 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	$\begin{array}{c} < 0.05 \\ \hline 0.12 \ c0.12 \\ 0.09 \ c0.06 \\ < 0.05 \ c0.07 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$

Values are the average of replicate analysis (typically duplicate), and are not recovery corrected

Concentration factors were not calculated as the residues in grain, between LOD and LOQ, were too low to obtain meaningful results.

Illinois 15 m \times 30 m, backpack CO₂ sprayer, flat fan 11002 nozzles; Iowa 9.1 m \times 58 m, Hi-Boy CO₂ sprayer, flat fan 8003 nozzles

Maize – Glyphosate Tolerant

Glyphosate tolerant corn received a pre-emergence application of glyphosate at 4.2 kg ae/ha, followed by two post-emergence over-the-top applications of 0.84 and 1.68 kg ae/ha. At the processing facility, the grain was dried, and then cleaned to generate aspirated grain dust. The cleaned grain underwent both dry milling and wet milling processing. Dry milling fractions included: bran, flour, solvent-extracted presscake, grits, meal, and refined oil. Wet milling fractions included: bran, solvent-extracted presscake, gluten, refined oil, starch, and steepwater concentrate.

The process for dry (267 kg) and wet (258 kg) milling of grain was essentially as described above for conventional corn with the exception of refined oil which was bleached and deodorised using activated bleaching earth and citric acid.

The only fractions with glyphosate concentration factors greater than 1.5 were aspirated grain dust (1.6), solvent extracted presscake (2.5) and steepwater concentrate (2.4).

Table 103. Glyphosate Residue Data and Processing Factors for Glyphosate Tolerant Corn Processed
Fractions (Kunda and Bleeke 2005 MSL16757).

Location (Year) variety	Application Rate (kg ae/ha) ¹	Application volume (L/ha)	PHI (days)	Sample	Glyphosate (mg/kg)	AMPA (mg/kg)	Glyphosate PF	Total residues PF
variety Carlyle, Illinois, USA (2000) DK626 RR	ae/ha) ¹ 4.2 PRE 0.84 EPO 1.7 LPO	(L/ha) 157 134 153	108	Grain Dried grain Cleaned grain Aspirated grain dust Dry milling Bran Flour Extracted presscake Grits Meal Refined oil Wet milling Bran Extracted presscake Gluten Refined oil Starch	$\begin{array}{c} 0.15\\ 0.20\\ 0.19\\ 0.23\\ \end{array}\\ \begin{array}{c} 0.18\\ 0.17\\ 0.37\\ 0.12\\ 0.17\\ < 0.05\\ \end{array}\\ \begin{array}{c} 0.07\\ 0.13\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ 0.36\\ \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	$\begin{array}{c} - \\ 1.3 \\ 1.3 \\ 1.6 \\ 1.2 \\ 1.1 \\ 2.5 \\ 0.82 \\ 1.1 \\ < 0.33 \\ 0.45 \\ 0.85 \\ < 0.33 \\ < 0.33 \\ < 0.33 \\ < 0.33 \\ 2.4 \end{array}$	PF 1.3 1.3 1.6 1.2 1.1 3.6 0.82 1.1 < 0.33 0.45 0.85 < 0.33 < 0.33 < 0.33 3.8
				Steepwater				

PRE = pre-emergent but after planting; EPO = corn plants at V5 20 cm stage; LPO = corn plants V7-V8 stage, 61-76 cm tall. A non-ionic surfactant was added to the spray mixture at 0.5% together with ammonium sulfate.

Plot 9.1 m \times 91 m; application by side mount boom (power-take-off pressure source) Teejet flat fan nozzles

Values are the average of replicate analysis (typically duplicate), and are not recovery corrected.

PHI is the average pre-harvest interval in days between the late post-emergence application and sampling. PHI includes a 5 day drying period after harvest and before sampling, during which the grain was air-dried to an appropriate moisture content of 18%.

Prior to generation of aspirated grain dust at the processing facility, the corn grain was further dried to 10-13% moisture content.

Oats

Grain samples were obtained following treatment with rates ranging from 0.36 kg ae/ha to 1.4 kg ae/ha, with or without addition of the additive, Frigate. Samples of oat grains were harvested during the field trial AS/22056/CN for processing into rolled oats. Oat samples were processed in the pilot plants of a manufacturer of machinery for oat processing, according to commercial practices. The LOQ for the method were 0.03 mg/kg for grain, kernels, and rolled oats; and 0.05 mg/kg for hulls.

The method was validated by fortification of oat grains, kernels (groats), and flakes (rolled oats) with glyphosate at levels ranging from 0.05 mg/kg to 10 mg/kg. Four to six samples of each matrix were fortified. The concentration level of fortified hulls ranged from 0.5 mg/kg to 18 mg/kg (5 spiked samples). The mean procedural recovery for all fortified samples was 93%, with a coefficient of variation of 9.5% (n = 20). The mean recovery rates for glyphosate in different spiked materials were 88% in hulls (CV= 17.1%, n = 5); 95% in grain (CV = 1.7%, n = 4); 93% in kernels (CV = 0.7%, n = 6); and 91% in rolled oats (CV = 9.7%, n = 5).

Oat grain was aspirated and screened to remove light impurities, sticks, seeds and dust from grain. Grain (4-5 kg) was milled and aspirated and screened to separate hulls from kernels. Heat and steam treatment of kernels inactivated fat-splitting enzymes and the moisture adjusted prior to flaking in a two roller mill. Rolled oats were dried in a fluid bed dryer (50 °C). The residues determined in the processed fractions are summarized in Table 104. No residues were detected in the untreated samples except in hulls. Residues in treated samples were dependent on the application rate of glyphosate.

They indicate that the major part of the residue was located on the surface of the grains and could be separated with the hulls. Processing factors were calculated from the ratio of the residues in the processed fraction to those in the raw agricultural commodity. The average processing factors were 1.9 for hulls, 0.2 for kernels (groats) and 0.2 for rolled oats (flakes).

Application rate	Matrix	Glyphosate Residues (mg/kg)	Processing factor (PF)
0.72 kg ae/ha	Grain	2.5	
-	Hull	5.7 c0.1	2.3
	Kernel	0.60	0.2
	Rolled oats (flakes)	0.81	0.3
1.4 kg ae/ha	Grain	6.6	
-	Hull	13 c0.1	2.0
	Kernel	1.6	0.2
	Rolled oats (flakes)	0.43	0.1
0.36 kg ae/ha + 0.825 kg/ha	Grain	1.9	
Frigate			
-	Hull	3.3 c0.1	1.7
	Kernel	0.39	0.2
	Rolled oats (flakes)	0.32	0.2
0.72 kg ae/ha + 0.825 kg/ha	Grain	2.9	
Frigate			
	Hull	4.3 c0.1	1.5
	Kernel	0.63	0.2
	Rolled oats (flakes)	0.51	0.2
	· · ·		
			Average PF
Hull	Hull		1.9, median 1.8
Kernel	Kernel		0.2
Rolled oats (flakes)	Rolled oats (flakes)		0.2

Table 104. Residues in oats processed fractions (Zietz 1995 IF-94/00453-01 300 GLY).

The oat samples provided for processing were stored at room temperature to simulate common practice in the industry. On the day of shipments to the mill, a portion was taken from each sample and stored deep-frozen until the processed samples were analysed. The stored oats were analysed at the same time as the processed samples. The residue data from these samples were compared to the results of the present study.

The results of storage stability tests for all samples analysed showed that the conditions of storage of oats prior to processing did not significantly affect the content of glyphosate in the samples processed. The average residue in samples stored frozen was 3.1 mg/kg while that for samples stored at room temperature was 3.5 mg/kg. Table 105 summarizes the results.

Table 105. Storage stability data for oat grain samples for processing.

Field treatment	Residues (mg/kg) from samples stored deep-frozen	Residue (mg/kg) from samples stored at room temperature and
	from harvest	processed
Untreated samples	< 0.03	0.03
720 g ae/ha treatment	3.2	2.5
1440 g ae/ha treatment	4.9	6.6
360 g ae/ha + 825 g/ha Frigate	0.8	1.9
720 g ae/ha + 825 g/ha Frigate	3.4	2.9
Average from all treatments	3.1	3.5

Sorghum

Grain harvested from glyphosate treated sorghum crops trials in Kansas and Texas in 1992 at a target rate of 1.7 kg ae/ha 6 to 8 days before grain harvest were used for a processing study (Oppenhuizen 1994 MSL13038). Sorghum grain was stored frozen until processing. For dry processing, the grain (64-67 kg) was cleaned by aspiration and screening to give clean grain and grain dust. The cleaned grain was abrasively milled (decortified) to remove the majority of the bran and grits (coarse ground hulled grain between 1678 and 2540 microns) from the seed, the latter was ground into flour (<520 micron). For wet processing the aspirated and screened grain (clean grain) was steeped in water and then milled to recover germ (floating portion of ground steeped grain), hulls, coarse gluten starch, gluten and starch.

Location	Application		Sample	PHI	Resid	lues (mg/kg))	Report/	
(year) variety	Ν	kg ae/ha	kg		(days)	glyphosate	AMPA	Total	reference
		_	ae/hL						
Chautauqua	1	1.7		Grain	6	4.5	< 0.05	4.5	MSL13038
Co., Kansas				Bran		18	0.22	18	
USA (1992)				Clean grain		5.9	0.10	6.0	
Garst 5319				Flour		1.5	< 0.05	1.5	
				Germ		< 0.05	< 0.05	< 0.05	
				Grain dust		28	0.29	28	
				Grits, medium		2.7	< 0.05	2.7	
				Starch		< 0.05	< 0.05	< 0.05	
				Steepwater		3.3	0.10	3.4	
	1	1.7		Grain	8	1.1	< 0.05	1.1	MSL13038
				Bran		6.4	0.12	6.6	
				Clean grain		1.1	< 0.05	1.1	
Burleson Co.,				Flour		0.35	< 0.05	0.35	
Texas, USA				Germ		< 0.05	< 0.05	< 0.05	
(1992) 522DR				Grain dust		3.8	0.07	3.9	
				Grits, medium		0.35	< 0.05	0.35	
				Starch		< 0.05	< 0.05	< 0.05	
				Steepwater		0.39	< 0.05	0.39	

Table 106. Residues in Glyphosate sorghum (USA) $SAI \le 626$ days (Oppenhuizen 1994 MSL13038).

* Values are the mean of two or three determinations, and are uncorrected for recovery.

Table 107. Processing	Factors for	Glyphosate	Residues in	Sorghum	Fractions.
10010 101110000000000000000000000000000	1 00000 101	or price and	1	- Sor Bright	1 1000 0101101

		Glyphosate PF	7	Т	Total Residues PF	
Commodity	Kansas	Texas	Mean PF	Kansas	Texas	Mean PF
Bran	4.0	5.9	5.0	4.0	6.0	5.0
Clean Grain	1.3	1.0	1.2	1.3	1.0	1.2
Flour	0.34	0.33	0.34	0.33	0.32	0.32
Germ	0.01	0.02	0.02	< 0.01	< 0.05	< 0.03
Grain Dust	6.3	3.5	4.9	6.2	3.5	4.8
Grits, Medium	0.61	0.32	0.47	0.60	0.32	0.46
Starch	0.01	0.01	0.01	< 0.01	< 0.05	< 0.03
Steepwater	0.73	0.36	0.55	0.76	0.35	0.56

* Processing Factors are calculated by dividing the glyphosate residue in each commodity by that in the Raw Grain.

Wheat

Samples of wheat grain were obtained from four trials conducted in 1991 in Germany, where plants receiving one application at the rate of 1.8 kg ae/ha of an SL formulation containing 360 g/L of glyphosate. Samples of approximately 10 kg collected from treated and untreated plots were processed into wholemeal, flour, bran, and wholemeal bread, using procedures simulating commercial processing conditions (Zietz, E., 1993 IF-92/11567-01 149 GLY).

Table 108. Concurrent mean recoveries in different matrices.

Matrix	Mean recoveries of Glyphosate (%)
Wheat whole meal	70
Wheat flour	82
Wheat bran	72
Whole meal bread	82

The analyses demonstrated that residues of glyphosate do not concentrate in wheat whole meal, flour, and bread. A slight concentration occurs in wheat bran.

Table 109. Processing Factors for Glyphosate Residues in Wheat Fractions (2	Zietz E. 1993 IF-
92/11567-01 149 GLY).	

Location (year)	Rate (kg	PHI	Sample	Glyphosate	AMPA	Glyphosate	Total
variety	ae/ha)	(days)				PF	residue PF
Goch-Nierswalde,	1.8	21	Grain	0.28	< 0.03		
Germany (1992)			Wholemeal	0.13	< 0.05	0.46	0.46
Glyphos			Wholemeal	0.12	0.08	0.43	0.86
			bread				
			Flour (550)	< 0.05	< 0.05	< 0.18	< 0.18
			Bran	0.36	< 0.05	1.3	1.3
Angermünde,	1.8	21	Grain	0.49	< 0.03		
Germany (1992)			Wholemeal	0.16	< 0.05	0.33	0.33
Glyphos			Wholemeal	0.11	< 0.05	0.22	0.22
			bread				
			Flour (550)	< 0.05	< 0.05	< 0.10	< 0.10
			Bran	0.25	< 0.05	0.51	0.51
Goch-Nierswalde,	1.8	21	Grain	0.18	< 0.03		
Germany (1992) Roundup 360 g/L SL			Wholemeal	0.16	< 0.05	0.89	0.89
			Wholemeal bread	0.12	0.08	0.67	1.3
			Flour (550)	< 0.05	< 0.05	< 0.28	< 0.28
			Bran	0.43	< 0.05	2.4	2.4
Angermünde, Germany (1992)	1.8	21	Grain	1.0	< 0.03		
Roundup 360 g/L SL			Wholemeal	0.16	< 0.05	0.16	0.16
			Wholemeal bread	0.14	< 0.05	0.14	0.14
			Flour (550)	< 0.05	< 0.05	< 0.05	< 0.05
			Bran	0.45	< 0.05	0.45	0.45

Mean glyphosate processing factors for whole meal, flour, bran and whole meal bread were 0.46, < 0.15, 1.2 and 0.36 respectively. The corresponding factors for total residues were 0.46, < 0.15, 1.2 and 0.63 respectively

Mestdagh (1981 MLL30069) studied the effect of processing on residues of glyphosate in wheat flour and bread. Wheat grain from supervised field trials conducted in the UK was milled according to standard industrial procedures at the Flour Milling and Baking Research Association, Chlorleywood, UK and bread loaves produced (no description of milling or baking provided).

			Glyphosa	te residues ((mg/kg)	
Location (year) variety	Rate (kg ae/ha)	Whole grain	Bran	Offal	Flour	Loaves**
Holbeach Hurn, Lincolnshire UK (1980) Bounty	1.4	0.5	1.7	0.9	< 0.05	< 0.05
	4.3	1.1	1.9	2.7	0.10	0.07
Peterborough, Cambridgeshire UK (1980) Armada	1.4	0.3	0.5	0.3	< 0.05	< 0.05
	4.3	1.0	1.7	1.5	0.10	0.06
Swineshead, Lincolnshire UK (1980) Hustler	1.4	0.9	1.7	1.3	0.10	0.05
	4.3	1.6	3.4	4.9	0.35	0.15

Table 110. Glyphosate Residue	es in Wheat Processed Fractions	(Mestdagh 1981 MLL30069).
		(

*AMPA residues were all < 0.05 in grain and also in derived commodities

**no indication of type of bread, wholemeal, white etc.

Processing factors were calculated as the ratio of the residues in processed fractions to the residues in the raw untreated wheat grain. The analyses demonstrated that residues of glyphosate do not concentrate in wheat flour or bread. A slight concentration occurs in offal and wheat bran.

			Glyphosa	te residues (r	ng/kg)	
Location (year) variety	Rate (kg ae/ha)	Whole grain	Bran	Offal	Flour	Loaves
Holbeach Hurn,	1.4	-	3.4	1.8	< 0.1	< 0.1
Lincolnshire UK (1980)						
Bounty						
	4.3	-	1.7	2.4	0.09	0.64
Peterborough,	1.4	-	1.7	1.0	< 0.17	< 0.17
Cambridgeshire UK (1980)						
Armada	4.2		17	1.5	0.10	0.07
	4.3	-	1.7	1.5	0.10	0.06
Carriege has de Linge hashing	1 4		1.0	1.4	0.11	0.00
Swineshead, Lincolnshire UK (1980) Hustler	1.4	-	1.9	1.4	0.11	0.06
	4.3	-	2.1	3.1	0.22	0.09
Mean			2.1	1.9	0.13	0.21

Cotton – Glyphosate Tolerant

Oppenhuizen (1995 MSL13884) studied the processing of bulk cottonseed obtained from the 1994 Uvalde, Texas trial in glyphosate tolerant cotton. Ginned seed was processed in 30–33 kg batches. The ginned seed was saw-delinted to reduce the lint content of the seed from 11-15% to 3% prior to mechanically hulling to separate the majority of the hull from the kernel. The moisture content of the kernels was adjusted to 12% and the kernels flaked and heated to 77–82 °C and held at this temperature for 15–30 minutes. The kernel material was extruded with steam injected during this process. The resulting collets were extracted three times with hexane at 49–60 °C. After draining the hexane the spent collets were toasted to remove residual hexane. Some of the miscella (crude oil and hexane mixture) was evaporated to remove the hexane and obtain crude oil. The remaining miscella was adjusted to a 60:40 ratio crude oil to hexane and refined by addition of NaOH, centrifugation to

remove the soapstock, removal of the hexane by evaporation under vacuum and the refined oil bleached by heating with activated bleaching earth followed by hydrogenisation over a silver catalyst and deodorisation by heating under vacuum to yield bleached deodorised refined oil.

Location	Applic	ation		Sample	Glyphosate	AMPA	PHI	Glyphosate	Total
(Year)	Type ¹	kg ae/ha	Water L/ha		(mg/kg)	(mg/kg)	(days)	PF	residue PF
Uvalde,	PRE	3.4	112	undelinted seed 5	3.7	< 0.05	7		
Texas, USA	EPO	0.84	94	delinted seed	0.63	< 0.05		0.17	0.17
(1994)	MPO	1.3	113	cotton kernels	0.24	< 0.05		0.07	0.07
	PD	1.3	94	cotton hulls	1.2	< 0.05		0.33	0.33
	PH	1.7	114	cotton meal	0.39	< 0.05		0.11	0.11
				crude oil	< 0.05	< 0.05		< 0.1	< 0.1
				soapstock	< 0.05	< 0.05		< 0.1	< 0.1
				refined oil	< 0.05	< 0.05		< 0.1	< 0.1
				bleached oil	< 0.05	< 0.05		< 0.1	< 0.1

Table 112. Glyphosate Residue Data and Processing Factors for Glyphosate Tolerant Cotton Processed Fractions SAI 35-53 days from processing to analysis (Oppenhuizen 1995 MSL13884).

¹Application type: PRE = pre-emergence, EPO = early post-emergence, MPO = mid post-emergence; PD = post directed, PH = pre-harvest

Linseed / Flax

Linseed obtained from crop treated 5 days before harvest was crushed and extracted with hexane in a continuous Soxhlet extractor. The resulting oil and meal fractions were analyzed.

Table 113.	Residue Levels i	n Linseed / Fla	x Processed Fractions	(Mestdagh P. 1983 MLL30106).

				Glyphosate R	esidue (mg/kg)	
Site	Application rate (kg ae/ha)	PHI (days)	Seeds	Capsules	Cake (meal)	Oil
	1.44	5	1.3	250	2.1	< 0.05
Arbroath Scotland, UK	2.88	5	2.2	230	2.4	< 0.05
	1.44	5	1.3	103	1.6	< 0.05
Backboath Scotland, UK	2.88	5	4.0	85	6.3	< 0.05

Table 114.	Processing Factors	for Linseed	/ Flax Processed I	Fractions.
------------	--------------------	-------------	--------------------	------------

Site	Capsules	Cake (meal)	Oil
Arbroath Scotland, UK	land, UK 192 1.6		< 0.04
	104	1.1	< 0.02
Backboath Scotland, UK	79	1.2	< 0.04
	21	1.6	< 0.01
Mean Processing Factor	99	1.4	< 0.03

Oilseed Rape

Samples of rape seed were processed to meal and oil according to an industrial process. The resulting crude and refined oil, plus the extracted meal (cake) were analyzed (ML30104 see residue table).

glyphosate

			Gl	yphosate R	esidue (mg	/kg)
Site	Application. rate (kg ae/ha)	PHI (days)	Seed	Cake	Crude Oil	Refined Oil
Bottisham, Cambridgeshire UK (1982)						
Brutor	1.4	14	0.16	0.34	< 0.05	< 0.05
	2.9	14	0.48	3.4	< 0.05	< 0.05
Easton Cambridgeshire UK (1982) Jet						
Neuf	1.4	14	1.5	1.7	< 0.05	< 0.05
	2.9	14	3.2	4.9	< 0.05	< 0.05
UK - Easton Cambs 1982/15 Site 2	1.4	14	2.7	3.1	< 0.05	< 0.05
	2.9	14	4.0	8.9	< 0.05	< 0.05

Table 115. F	Residue Levels in Rape /	Canola Processed Fractions Mestdagh P. 1983 ML30104.
--------------	--------------------------	--

Table 116. Processing Factors for Rape Processed Fractions.

Site	Cake	Crude Oil	Refined Oil
Bottisham, Cambridgeshire UK (1982) Brutor	2.1	< 0.3	< 0.3
	7.0	< 0.1	< 0.1
Site 1 Easton Cambridgeshire UK (1982) Jet Neuf	1.2	< 0.03	< 0.03
	1.5	< 0.02	< 0.02
Site 2 Easton Cambridgeshire UK (1982) Jet Neuf	1.1	< 0.02	< 0.02
	2.2	< 0.01	< 0.01
Mean Processing Factor	2.5	< 0.1	< 0.1

Coffee

The data for the fate of glyphosate residues in roasted coffee beans and instant coffee were included in the same report with data on the Raw Agricultural Commodity coffee beans. Coffee beans were roasted, ground, percolated-extracted and dried to obtain instant coffee (FR 434 see residue table).

Table 117. Glyphosate Residue levels in Coffee Beans, Roasted Beans a	and Instant Coffee (FR 434].
---	------------------------------

Site	Rate (kg ae/ha)	PHI (days)	Residue Glyphosate (mg/kg)			PF		
Site			Beans Roasted Beans Instant Coffee					
Cali Colombia	1 × 2.2	49	0.27	0.07	0.23	0.26	0.85	
	1 × 4.5	49	0.32	0.11	0.34	0.34	1.1	
Kona Hawaii	2 × 4.5	28	0.58	0.06	0.20	0.10	0.34	

Mean processing factors for roasted beans and instant coffee are 0.23 and 0.76 respectively.

Tea

Tea leaves were withered, reducing the moisture content from ca. 75% to 35% over a period of 6-8 hours. The leaves were partially ground by rolling, sifted to separate the midribs and larger leaf sections from rolled leaves. The leaves were further roller ground prior to fermentation and final

firing in a dryer to reduce moisture from ca. 25% to ca. 3%. The tea leaves were extracted with hot water and then the extract was dried to a powder referred to as "instant tea".

Table 118. Glyphosate Residue levels in Processed Tea Leaves and Instant Tea (Brasziz et al. 1979,
1981 MSL01582, MSL0980].

Site	Application rate	PHI (days)	Residue Glypho		
	(kg ae/ha)		Leaves	Instant Tea	PF Instant Tea
Assam India	3×2.2	1	0.36	1.5	4.3
	3×2.2	14	< 0.08	< 0.33	<4.1
Lin-Kou Taiwan	3×2.2	1	0.29	1.6	5.6
	3×2.2	15	0.15	< 0.33	<2.2
Talawakele Sri Lanka - St. Coombs, Tri	3×2.2	1	6.7	19	2.9
	3×2.2	15	0.46	1.9	4.2

The mean processing factor for instant tea was 3.8.

Sugar cane

Sugar cane samples in the study were processed into bagasse, molasses, and raw sugar. Some were also processed into refined sugar. The applications rates of 1.1 and 2.2 kg/ha exceed modern GAP.

Site	kg/ha	PHI		Glyph	osate Residue ((mg/kg)	
		(days)	Cane	Bagasse	Molasses	Raw Sugar	Refined Sugar
Oahu, Hawaii 1	1.1	10	0.40	0.34	11	0.96	
		28	0.97	0.18	5.2	0.36	< 0.05
	2.2	10	2.2	0.48	15	1.5	< 0.05
		28	0.82	0.20	7.4	0.41	
Oahu, Hawaii 2	1.1	10	1.0	0.33	14	0.89	
		28	0.69	0.20	5.8	1.3	
	2.2	10	3.8	0.69	12	2.5	< 0.05
		28	0.94	0.24	7.6	0.63	
Weslaco Texas	0.56	10	0.31	0.14	2.4	0.38	0.07
		28	0.24	0.06	2.2	0.26	0.19
	1.1	10	0.15	0.08	2.3	0.83	0.36
		28	0.21	0.08	2.1	0.51	0.31
St. Martinsville,	0.56	10	0.29	0.09	2.5	0.19	
Louisiana		35	0.21	< 0.05	1.6	0.06	< 0.05
	1.1	10	0.67	0.17	3.6	0.24	< 0.05
		35	0.28	0.27	3.2	0.26	
Pakohe, Florida	0.56	10	0.11	< 0.05	0.81	0.08	< 0.05
		28	< 0.05	< 0.05	0.32	0.05	
	1.1	10	0.17	0.11	1.4	0.21	< 0.05
		28	0.13	0.07	0.87	0.08	
Bell Glade, Florida	0.56	10	0.07	< 0.05	0.28	0.11	< 0.05
		28	< 0.05	< 0.05	0.16	0.06	
	1.1	10	0.36	0.12	2.1	0.60	< 0.05
		28	0.07	< 0.05	0.31	< 0.05	

Table 119. Glyphosate residue data for sugar cane processed fractions Beasley 1978 MSL0264.

	0.56	10	< 0.05	< 0.05	0.16	< 0.05	
Arecibo, Puerto Rico		28	< 0.05	< 0.05	0.18	< 0.05	
	1.1	10	0.20	0.18	1.7	0.25	< 0.05
		28	0.27	0.10	1.6	0.40	< 0.05

Table 120. Processing factors for glyphosate residues in sugar cane processed fractions.

		PHI		Process	ing factor	
		(days)	Bagasse	Molasses	Raw Sugar	Refined Sugar
Oahu, Hawaii 1	1.1	10	0.85	27	2.4	
		28	0.19	5.4	0.37	< 0.05
	2.2	10	0.22	7.1	0.68	< 0.02
		28	0.24	9.0	0.50	
Oahu, Hawaii 2	1.1	10	0.32	14	0.87	
		28	0.29	8.4	1.9	
	2.2	10	0.18	3.2	0.64	< 0.01
		28	0.26	8.1	0.67	
Weslaco Texas	0.56	10	0.45	7.7	1.2	0.23
		28	0.25	9.2	1.1	0.79
	1.1	10	0.53	15	5.5	2.4
		28	0.38	10	2.4	1.5
St. Martinsville,	0.56	10	0.31	8.8	0.66	
Louisiana		35	< 0.24	7.7	0.29	< 0.24
	1.1	10	0.25	5.4	0.36	0.07
		35	0.96	11	0.93	
Pakohe, Florida	0.56	10	< 0.45	7.4	0.73	< 0.45
		28		< 6.4		
	1.1	10	0.65	8.4	1.2	< 0.29
		28	0.54	6.7	0.62	
Bell Glade, Florida	0.56	10		4.0	1.6	< 0.71
		28		< 3.2		
	1.1	10	0.33	5.8	1.7	< 0.14
		28		4.4		
	0.56	10		< 3.2		
		28		< 3.6		
Arecibo, Puerto Rico	1.1	10	0.90	8.6	1.2	< 0.25
		28	0.37	6.1	1.5	< 0.19

Table 121. Total glyphosate residue data (glyphosate + AMPA) for sugar cane processed fractions Beasley 1978 MSL0264.

Site	kg/ha	PHI	Glyphosate Residue (mg/kg)					
		(days)	Cane	Bagasse	Molasses	Raw Sugar	Refined Sugar	
Oahu, Hawaii 1	1.1	10	0.40	0.34	11	0.96		
		28	0.97	0.18	5.5	0.36	< 0.05	
	2.2	10	2.2	0.48	16	1.5	< 0.05	
		28	0.82	0.20	7.8	0.41		
Oahu, Hawaii 2	1.1	10	1.0	0.33	15	0.89		
		28	0.69	0.20	6.1	1.3		

	2.2	10	3.8	0.69	13	2.6	< 0.05
		28	0.94	0.24	8.0	0.63	
Weslaco Texas	0.56	10	0.31	0.14	2.5	0.38	0.07
		28	0.24	0.06	2.3	0.26	0.19
	1.1	10	0.15	0.08	2.4	0.83	0.36
		28	0.21	0.08	2.2	0.51	0.31
St. Martinsville,	0.56	10	0.29	0.09	2.6	0.19	
Louisiana		35	0.21	< 0.05	1.7	0.06	< 0.05
	1.1	10	0.67	0.17	3.8	0.24	< 0.05
		35	0.28	0.27	3.4	0.26	
Pakohe, Florida	0.56	10	0.11	< 0.05	0.92	0.08	< 0.05
		28	< 0.05	< 0.05	0.32	0.05	
	1.1	10	0.17	0.11	1.6	0.21	< 0.05
		28	0.13	0.07	0.87	0.08	
Bell Glade, Florida	0.56	10	0.07	< 0.05	0.28	0.11	< 0.05
		28	< 0.05	< 0.05	0.16	0.06	
	1.1	10	0.36	0.12	2.2	0.60	< 0.05
		28	0.07	< 0.05	0.31	< 0.05	
	0.56	10	< 0.05	< 0.05	0.16	< 0.05	
Arecibo, Puerto Rico		28	< 0.05	< 0.05	0.18	< 0.05	
	1.1	10	0.20	0.18	1.7	0.25	< 0.05
		28	0.27	0.10	1.7	0.40	< 0.05

Table 122. Processing factors total residues in sugar cane processed fractions.

		PHI		Process	ing factor	
		(days)	Bagasse	Molasses	Raw Sugar	Refined Sugar
Oahu, Hawaii 1	1.1	10	0.85	28	2.4	
		28	0.19	5.7	0.37	< 0.05
	2.2	10	0.22	7.3	0.68	< 0.02
		28	0.24	9.5	0.50	
Oahu, Hawaii 2	1.1	10	0.32	15	0.87	
		28	0.29	8.8	1.9	
	2.2	10	0.18	3.4	0.68	< 0.01
		28	0.26	8.5	0.67	
Weslaco Texas	0.56	10	0.45	8.1	1.2	0.23
		28	0.25	9.6	1.1	0.79
	1.1	10	0.53	16	5.5	2.4
		28	0.38	10	2.4	1.5
St. Martinsville,	0.56	10	0.31	9.0	0.66	
Louisiana		35	< 0.24	8.1	0.29	< 0.24
	1.1	10	0.25	5.7	0.36	0.07
		35	0.96	12	0.93	
Pakohe, Florida	0.56	10	< 0.45	8.4	0.73	< 0.45
		28		<6.4		
	1.1	10	0.65	9.4	1.2	< 0.29
		28	0.54	6.7	0.62	
Bell Glade, Florida	0.56	10		4.0	1.6	< 0.71

		28		< 3.2		
	1.1	10	0.33	6.1	1.7	< 0.14
		28		4.4		
	0.56	10		< 3.2		
		28		< 3.6		
Arecibo, Puerto Rico	1.1	10	0.90	8.6	1.2	< 0.25
		28	0.37	6.3	1.5	< 0.19

RESIDUES IN ANIMAL COMMODITIES

Farm animal feeding studies

Lactating Cow

Nineteen lactating Holstein dairy cows (444–642 kg bw), each producing 13–29 kg of milk per day, were acclimatised for 14 days prior to incorporation of glyphosate and AMPA in the feed (Manning and Wilson 1987 MSL6729). The animals were divided into a untreated control group of four animals and three treated tests groups of five animals each. The control group received basal rations without glyphosate and AMPA. The basal rations for the three treated test groups contained a 9:1 mixture of glyphosate and AMPA at total combined daily dietary levels of 40, 120, and 400 ppm (mg of test materials per kg of ration). The basal diet was composed of alfalfa hay and a concentrated commercial milking ration. The concentrated milking ration was limit fed daily at a rate of 1 kg of ration to 2.5 kg of milk produced, with half given at the a.m. milking and the remainder at the p.m. milking. Alfalfa hay and water were supplied ad libitum.

The concentrated milking ration was used to deliver the test material. The animals were fed the treated concentrate as 25% of their total daily dry matter feed consumption. Therefore, the concentrated milking rations were fortified at the following levels which are four times the levels of the total daily dose: 160 ppm for test group 1; 480 ppm for test group 2; and 1600 ppm for test group 3. The amount of fortified concentrate fed to each animal was based on the average dry matter feed intake for the first five days of the previous week. Glyphosate and AMPA were thoroughly blended with the commercial concentrated milking ration to assure a uniform distribution. Analysis of samples from the top, middle and bottom portions of the mixed feed for each dose level demonstrated homogeneity of the mixing. Although the feed mix was shown to be stable for at least 14 days, new batches were mixed at 7 day intervals.

Milk samples were taken from each cow on the day prior to initiation of dosing (test day -1) and on test days 1, 2, 4, 7, 14, 21, and 28 for analysis. On the day following the 28th day of dosing, three cows from each test group were sacrificed.

The remaining animals for each test group were placed on a 28 day depuration period. One animal from each of the treated test groups was sacrificed after a seven day depuration period and the remaining animals in the control and treated test groups were sacrificed after a 28 day depuration period. Milk samples were taken from each of the depurated cows on the depuration test days 1, 2, 4, 7, 14, 21, and 28.

Samples of liver, kidney, fat, and skeletal muscle were collected from each animal for analysis. Fat samples were a composite of equal amounts of omental and subcutaneous back fat. Muscle samples were a composite of equal amounts of triceps, gracilis, and longissimus dorsi muscle.

		Mean % Recovery	$v \pm sd^*$
Matrix	Fortification Range (mg/kg)	Glyphosate	AMPA
Milk	0.025	96 ± 5.6	99 ± 5.6
Muscle	0.05	94 ± 5.1	94 ± 6.1
Fat	0.05	96 ± 1.5	89 ± 8.2
Liver	0.05 - 1.00	83 ± 10.8	90 ± 6.5
Kidney	0.05 - 5.00	95 ± 1.9	90 ± 4.2

Table 123. Analytical recovery data for glyphosate and AMPA in cow tissues and milk from fortified control samples (Manning and Wilson 1987 MSL6729.

Glyphosate and AMPA residues were non-detectable (less than 0.025 mg/kg) in all milk samples collected from cows dosed at the highest dose level. Since glyphosate and AMPA were not detected in the highest dosed milk samples, analysis of the low and medium dosed milk samples was not conducted.

Table 124. Glyphosate and AMPA residues in tissues of cow fed a diet incorporating 9:1 mixtures of glyphosate and AMPA for 28 consecutive days (Manning and Wilson 1987 MSL6729.

				Residue (mg/kg)			
Tissue and Sampling		Diet Dose 40 ppm		Diet Dose 120 ppm		Diet Dose 400 ppm	
Time (day	ys)	Glyphosate	AMPA	Glyphosate	AMPA	Glyphosate	AMPA
	28	< 0.05 (3)	< 0.05 (3)	< 0.05 (3)	< 0.05 (3)	< 0.05 (2)	< 0.05 (2)
Fat	+7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	28	< 0.05 (3)	< 0.05 (3)	< 0.05 (3)	< 0.05 (3)	< 0.05 (2)	< 0.05 (2)
Muscle	+7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	28	< 0.05 (2) 0.06	< 0.05 (3)	0.07 0.05 < 0.05	< 0.05 (2) 0.05	0.21 0.20	0.12 0.18
Liver	+7	< 0.05	< 0.05	< 0.05	< 0.05	0.11	0.08
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	28	0.32 0.24	0.07 (2) <	0.69 0.74	0.19 0.13	2.7 3.3	0.91 0.79
	28	0.16	0.05	0.82	0.24		
Kidney	+7	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.07
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

*during the 2^{nd} week of dosing, animals in the 120 ppm feed group mistakenly received 160 ppm, returning to 120 ppm for the rest of the study.

Analysis of tissues following the 7 and 28 day depuration period demonstrated that glyphosate and AMPA are rapidly eliminated. Following a 7-day depuration period, glyphosate and AMPA residues were less than 0.05 mg/kg in all samples except the kidney and liver samples from animals dosed at the highest dose level. Glyphosate residues in kidney and liver samples from the 7 day depurated animal dosed at the highest dose level were 0.13 and 0.06 mg/kg, respectively, and 0.08 mg/kg AMPA was found in both samples. At the end of the 28 day depuration period glyphosate and AMPA residues were non-detectable (less than 0.05 mg/kg) in all samples from all treatment levels.

Poultry

One hundred female, single comb, White Leghorn chickens, 20-28 weeks of age, 1.7 kg bw, egg laying efficiency 85%, were selected for use in this study (Manning and Wilson 1987 MSL6676). The hens were divided into one control group of forty hens and three treatment groups with twenty hens each. The hens in the control and treatment groups were further subdivided into four sub-sets of five hens each that shared a communal feeder and waterer. Eggs and tissue samples from each sub-set were separately composited for analysis.

All hens were subjected to a 14-day acclimation period prior to dosing, and were housed in individual laying cages throughout the study. Each animal received a physical examination by a

veterinarian at the beginning of the acclimation period, at the beginning of the dosing period, and just prior the sacrifice.

The basal diet contained 25.25% Purina Accu-line Chicken Blend Concentrate®, 67.25% ground yellow corn, and 7.50% ground limestone. The control treatment group received basal rations without glyphosate and AMPA. The basal rations for the three treated test groups contained a 9:1 mixture of glyphosate and AMPA at total combined dietary levels of 40, 120, and 400 ppm (mg of test materials per kg of ration), respectively. Glyphosate and AMPA were thoroughly blended with the diet to assure a uniform distribution. The diet and water were supplied ad libitum. Feed consumption was 110-140 g/day.

Eggs were collected on the day prior to initiation of dosing (test day -1) and on test days 1, 2, 4, 7, 14, 21, and 28 for analysis. On the day following the 28th day of dosing, twenty hens from the control group and ten hens from each test group were sacrificed. The remaining animals were placed on a 28 day depuration period. During the depuration period all hens were fed a untreated basal diet. After a seven day depuration period, ten hens from the control group and five hens from each test group were sacrificed. The remaining hens in the control and treated test groups were sacrificed after a 28 day depuration period. Egg samples were collected from the depurated hens on days 1, 2, 4, 7, 14, 21, and 28 of the depuration period.

Tissues were collected for analysis: kidneys, liver, thigh and breast muscle, and abdominal fat. Tissues were pooled from each subset of five birds within each control or treatment group.

		Mean % Recovery \pm sd*		
Matrix	Fortification Range (mg/kg)	Glyphosate	AMPA	
Fat	0.05 - 0.10	85 ± 1.4	85 ± 2.6	
Muscle	0.05	96 ± 6.5	95 ± 1.6	
Liver	0.05 - 1.00	78 ± 3.1	79 ± 3.7	
Kidney	0.05 - 5.00	84 ± 10.9	87 ± 1.9	
Eggs	0.025 - 0.10	89 ± 8.3	86 ± 8.2	

Table 125. Analytical recovery data for glyphosate and AMPA in chicken tissues and eggs from fortified control samples (Manning and Wilson 1987 MSL6676).

sd= standard deviation (%)

The residue levels of glyphosate and AMPA in tissues and eggs are summarized in Tables 126 and 127. Glyphosate and AMPA residues were non-detectable (less than 0.05 mg/kg) in all fat and muscles samples from all treatment levels, with the exception of two fat tissue samples from the highest dose level following the 28 day dosing period that contained 0.06 and 0.07 mg/kg of glyphosate. The highest glyphosate and AMPA residues were found in kidneys. At the end of the 28-day dosing period average glyphosate residues were 0.38, 1.17, and 4.54 mg/kg in the kidneys of animals dosed at the low, medium, and high dose levels, respectively. AMPA residue levels in the same tissues were < 0.05, 0.06, and 0.33 mg/kg, respectively. Significantly lower levels of glyphosate and AMPA were found in liver tissues collected at the end of the 28 day dosing period. For the low, medium, and high dose level liver samples, glyphosate residues were 0.07, 0.20, and 0.78 mg/kg, respectively. AMPA residues in the same tissues were < 0.05, 0.10, and 0.38 mg/kg, respectively.

Analysis of tissues following the 7 and 28 day depuration period demonstrated that glyphosate and AMPA are rapidly eliminated. Following a 7 day depuration period, AMPA residues were less than 0.05 mg/kg in all samples except the liver samples from hens dosed at the highest level, which contained 0.15 mg/kg. Glyphosate residues in the 7 day depurated animal were non-detectable (less than 0.05 mg/kg) in all tissues except kidney samples at all three dose levels and liver samples from the highest dose level. Glyphosate residues in the high dose level liver samples and the low, medium, and high dose level kidney samples were 0.15, 0.06, 0.23, and 0.35 mg/kg, respectively. At the end of the 28 day depuration period, glyphosate and AMPA residues were non-detectable (less than 0.05 mg/kg) in all samples from all treatment levels, except kidney samples from animals dosed

at the medium and highest dose levels that contained glyphosate residues of 0.17 and 0.08 mg/kg, respectively.

1		Residue (mg/kg)						
Tissue and Sampling		Diet Dose 40 ppm		Diet Dose 120 ppm		Diet Dose 400 ppm		
Time (days	5)	Glyphosate	AMPA	Glyphosate	AMPA	Glyphosate	AMPA	
	28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	
Fat	+7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	
Muscle	+7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	28	0.06 < 0.05	< 0.05 (2)	0.14 0.17	0.07 0.08	0.61 0.59	0.33 0.27	
Liver	+7	< 0.05	< 0.05	< 0.05	< 0.05	0.11	0.11	
	+28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	28	0.27 0.35	< 0.05 (2)	0.73 1.2	< 0.05 0.06	3.3 4.3	0.27 0.30	
Kidney	+7	< 0.05	< 0.05	0.19	< 0.05	0.29	< 0.05	
	+28	< 0.05	< 0.05	0.14	< 0.05	0.07	< 0.05	

Table 126. Glyphosate and AMPA residues in tissues of chicken fed a diet incorporating 9:1 mixtures of glyphosate and AMPA for 28 consecutive days (Manning and Wilson 1987 MSL6676).

Glyphosate and AMPA residues were non-detectable (less than 0.025 mg/kg) in all egg samples collected from hens dosed at the low dose level. In the eggs of hens dosed at the medium dose level, low residues of glyphosate (0.026-0.029 mg/kg) were found on test days 7, 14, 21, and 28. AMPA residues in these same samples were less than 0.025 mg/kg in all cases. Eggs from hens dosed for 28 days at the highest dose level contained glyphosate residues that ranged from 0.076–0.103 mg/kg on days 7, 14, 21, and 28. With the exception of two egg samples collected on test day 21 that contained AMPA residues of < 0.027 and 0.031 mg/kg, AMPA residues were less than 0.025 mg/kg in all egg samples from hens dosed at the highest dose level.

Analysis of eggs during the depuration period demonstrated that glyphosate and AMPA are rapidly eliminated. AMPA residues were non-detectable (less than 0.025 mg/kg) in all samples at all three dose levels. Glyphosate residues were non-detectable (less than 0.025 mg/kg) in all egg samples from hens dosed and the low dose level. For hens dosed at the medium dose level, glyphosate residues were 0.030 mg/kg in eggs collected for the first two days of the depuration period, and then declined to non-detectable (less than 0.025 mg/kg) in all subsequent samples. For hens dosed at the highest dose level, glyphosate residues in eggs collected on depuration days 1, 2, 4, and 7 were 0.088, 0.093, 0.067, and < 0.026 mg/kg, respectively. All subsequent samples of eggs from hens dosed at the high dose level contained less than 0.025 mg/kg glyphosate.

glyphosate

8 51			2 (e		,	
			Residue (mg/kg)				
		Diet Dose 40 ppm		Diet Dose 120 ppm		Diet Dose 400 ppm	
Sampling Time (da	ıys)	Glyphosate	AMPA	Glyphosate	AMPA	Glyphosate	AMPA
Dosing Days	1	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)
	2	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)
	4	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)
	7	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	< 0.025 (4)	0.06 (2) 0.08 0.07	< 0.025 (4)
	14	< 0.025 (4)	< 0.025 (4)	0.026 (3) < 0.025	< 0.025 (4)	0.10 0.07 0.09 0.08	< 0.025 (4)
	21	< 0.025 (4)	< 0.025 (4)	0.026 0.027 < 0.025 (2)	< 0.025 (4)	0.08 (3) 0.12	< 0.025 (2) 0.026
	28	< 0.025 (4)	< 0.025 (4)	0.026 0.027 < 0.025 (2)	< 0.025 (4)	0.08 (2) 0.10 0.07	< 0.025 (4)
Depuration Days	1	< 0.025 (2)	< 0.025 (2)	0.028 < 0.025	< 0.025 (2)	0.08 0.08	< 0.025 (2)
	2	< 0.025 (2)	< 0.025 (2)	0.026 0.027	< 0.025 (2)	0.08 0.08	< 0.025 (2)
	4	< 0.025 (2)	< 0.025 (2)	< 0.025 (2)	< 0.025 (2)	0.06 0.06	< 0.025 (2)
	7	< 0.025 (2)	< 0.025 (2)	< 0.025 (2)	< 0.025 (2)	< 0.025 (2)	< 0.025 (2)
	14	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
	21	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
	28	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025

Table 127. Glyphosate and AMPA residues in eggs of chicken fed a diet incorporating 9:1 mixtures of glyphosate and AMPA for 28 consecutive days (Manning and Wilson 1987 MSL6676).

Swine

Sixteen crossbred swine (eight gilts 71-81 kg and eight barrows, 65-81 kg) were acclimatised for 15 days (Manning and Wilson 1987 MSL6627). The animals were divided into four test groups of four animals each: a control test group and three treated test groups. Each test group contained two gilts and two barrows. The control group received basal rations without glyphosate and AMPA. The basal rations for the three treated test groups contained a 9:1 mixture of glyphosate and AMPA at total combined daily dietary levels of 40, 120, and 400 ppm (mg of test materials per kg of ration). The basal diet was a mixture of 18.5% Ralston Purina Farm Blend Hog Chow® and 81.5% ground yellow corn. Glyphosate and AMPA were thoroughly blended with the diet to assure a uniform distribution confirmed by analysis of samples in the mixer. Although glyphosate and AMPA were demonstrated to be stable in the feed mix for at least 12 days at 25 °C, new batches were prepared every 7 days. Diets and water were supplied to each animal ad libitum. Individual feed consumption was 1.7-4.3 kg/day for the barrows and 1.1–3.8 kg for the gilts. Animals in all three treated test groups were fed dosed feed for 28 consecutive days. Within 24 hours after receiving their last dose, one gilt and one barrow from each test group were sacrificed. The remaining animals for each test group were placed on a 28 day depuration period. Each animal received untreated feed during the depuration period. At the end of the 28 day depuration period, the remaining animals in each test group were sacrificed and samples of liver, kidney, fat, and skeletal muscle were collected for analysis. Fat samples were a composite of omental and subcutaneous fat. Muscle samples were a composite of triceps, gracilis, and longissimus dorsi muscle.

Samples of liver, kidney, muscle, and fat were analyzed for AMPA and glyphosate residues according to Residue Method 2 (Table 128). The analytical method was validated at 0.05 mg/kg each of glyphosate and AMPA in all tissues. Recovery data for glyphosate and AMPA from fortified control samples analyzed concomitantly with treated samples are summarized in Table 128.

		Mean % Recovery ± sd*		
Matrix	Fortification Range (mg/kg)	Glyphosate	AMPA	
Fat	0.05 - 0.10	97 ± 6.8	87 ± 7.1	
Muscle	0.05	90 ± 11.6	90 ± 2.4	
Liver	0.05 - 0.50	80 ± 8.4	85 ± 2.7	
Kidney	0.05 - 2.50	98 ± 4.6	91 ± 6.0	

Table 128. Analytical recovery data for glyphosate and AMPA in swine tissues from fortified control samples (Manning and Wilson 1987 MSL6627).

* sd= standard deviation (%)

The residue levels of glyphosate and AMPA in tissues are summarized in Table 129. Glyphosate and AMPA residues were non-detectable (less than 0.05 mg/kg) in all fat and muscles samples from all treatment levels, with the exception of three of six muscle samples from the highest dose level following the 28 day dosing period that each contained 0.06 mg/kg of glyphosate. The highest glyphosate and AMPA residues were found in kidneys. At the end of the 28 day dosing period average glyphosate residues were 0.37, 2.6, and 7.8 mg/kg in the kidneys of animals dosed at the low, medium, and high dose levels, respectively. AMPA residue levels in the same tissues were < 0.07, 0.29, and 0.96 mg/kg, respectively. Significantly lower levels of glyphosate and AMPA were found in liver tissues collected at the end of the 28 day dosing period; < 0.05, 0.21, and 0.75 mg/kg respectively for glyphosate in the low, medium, and high dose level liver samples and < 0.05, 0.12, and 0.39 mg/kg, respectively for AMPA.

Table 129. Glyphosate and AMPA residues in tissues of swine fed a diet incorporating 9:1 mixtures of glyphosate and AMPA for 28 consecutive days (Manning and Wilson 1987 MSL6627).

		Residue (mg/kg)					
Tissue and	Sampling	Diet Dose 40 (36:4) ppm		Diet Dose 120 (108:12) ppm		Diet Dose 400 (360:40) ppm	
Time (days)		Glyphosate	AMPA	Glyphosate	AMPA	Glyphosate	AMPA
Fat	28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)
	+28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)
Muscle	28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	0.06 < 0.05	< 0.05 (2)
	+28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)
Liver	28	< 0.05 (2)	< 0.05 (2)	0.17 0.15	0.11 0.09	0.72 0.48	0.45 0.22
	+28	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)	< 0.05 (2)
Kidney	28	0.14 0.60	< 0.05 0.08	2.9 2.1	0.31 0.22	9.1 6.1	0.97 0.77
	+28	< 0.05 (2)	< 0.05 (2)	0.10 < 0.05	< 0.05 (2)	0.16 0.20	< 0.05 (2)

Analysis of tissues following the 28-day depuration period demonstrated that glyphosate and AMPA are rapidly eliminated. Following a 28-day depuration period, AMPA residues were less than 0.05 mg/kg in all samples. Glyphosate residues in the 28-day depurated animal tissues were less than 0.05 mg/kg in all tissues except kidney samples at the medium and high dose levels that contained average glyphosate residues of 0.08 and 0.18 mg/kg, respectively.

APPRAISAL

Glyphosate is a herbicide with uses on many crops. Glyphosate has been evaluated several times with the initial evaluation in 1986 and the latest in 1997. It was listed under the Periodic Re-evaluation Programme of the 34th Session of the CCPR for residue review by 2005 JMPR (ALINORM 03/24). The Meeting received information on glyphosate metabolism and environmental fate, methods of residue analysis, freezer storage stability, national registered use patterns, supervised residue trials on conventional and glyphosate tolerant crops and national MRLs.

The 2004 JMPR concluded that the metabolite AMPA is of no greater toxicological concern than the parent glyphosate and established an ADI for the sum of glyphosate and AMPA of 0-1 mg/kg bw. The same meeting considered an ARfD unnecessary.

Some information on GAP and national MRLs were submitted by Australia and The Netherlands.

The following abbreviations are used for the metabolites discussed below:

AMPA	aminomethyl phosphonic acid
N-methyl AMPA	[(N-methylamino)methyl]phosphonic acid

Glyphosate is available in a variety of different salt forms including as the sodium, potassium, ammonium and isopropylamine salts. To assist uniform interpretation of GAP application rates have been expressed in terms of glyphosate acid equivalents (ae). Applications of glyphosate can be made at different stages of crop growth. The following abbreviations are used for the main stages of application:

PRE = pre-emergent or pre crop emergence

EPO = early post-emergence

LPO = late post-emergence

PH = pre-harvest, specifically within a few weeks prior to harvest

Animal metabolism

The Meeting received metabolism studies for glyphosate in rats, lactating goats and laying hens.

The biotransformation and degradation pathways in the goat and hen are similar to those established in rat metabolism. In animals, ¹⁴C-glyphosate is excreted unchanged. The only residue identified in tissues of goats and laying hens was glyphosate although there were indications that small amounts of AMPA may be formed. A significant proportion of the ¹⁴C in the goat and hen metabolism experiments was retained on columns used for separation and characterization. The possible identity of the retained ¹⁴C activity was not explored. Metabolism studies on rats samples were analysed both with and without clean-up on cation and anion columns detecting only unchanged glyphosate and small amounts of AMPA. Experiments on rats determined that no AMPA was formed following intravenous administration suggesting that microbial degradation on oral administration may be responsible for the minor amounts of AMPA detected.

Plant metabolism

The Meeting received plant metabolism studies for glyphosate on coffee, corn, cotton, soya beans, wheat, pasture grasses and alfalfa as well as on the glyphosate tolerant crops cotton, soya beans and sugar beet. Pre-emergent application of ¹⁴C-glyphosate at application rates equivalent to 4.5 kg ae/ha resulted in low levels of ¹⁴C in plants collected 4–8 weeks after application. Control plants also contained ¹⁴C probably from incorporation of ¹⁴CO₂ liberated during soil microbial degradation of ¹⁴C-glyphosate.

For the same crops grown hydroponically and exposed to sublethal doses of ¹⁴C-glyphosate in the growth solution, glyphosate was the major component of the total radioactive residue (TRR) in the aerial parts of the plants (21–69%). Other compounds identified were AMPA (4.2–28%), N-methyl AMPA (0–2.0%) as well as small amounts of natural products. The proportion of ¹⁴C extracted with water was higher for aerial parts (70–90%) compared with roots (36–87%). In the case of roots, glyphosate was the major compound detected (7.6-57%) together with smaller amounts of AMPA (2.8–7.4%), N-methyl AMPA (0–0.4%) and natural products (1–11%). In summary, several minor metabolites were present at < 2% TRR (N-methyl AMPA, methylphosphonic acid and N-methyl glyphosate) though their origin was unclear; *in vivo* metabolism, microbial degradation or impurities in the material administered.

The metabolism of ¹⁴C-glyphosate on both immature and mature coffee plants following uptake from soil, from hydroponic solution, stem injection and foliar application was studied. ¹⁴C was translocated from the sites of application. In all cases glyphosate was the major component of the ¹⁴C residue. For example 5 weeks after foliar application to mature coffee plants glyphosate comprised

72–99% of the residue in leaves, 91% in stems, 96% in roots and 94% in beans. Residues of AMPA were 5% or less of the TRR and were generally present in ratios with glyphosate comparable to that present in the administered formulation.

Only low levels of radioactivity were recovered in grasses, alfalfa and clover grown on ¹⁴Cglyphosate treated soil or in soil into which ¹⁴C-glyphosate treated quackgrass was incorporated. Glyphosate was the only component of the ¹⁴C residue of foliar treated grass and alfalfa extracted with water, a process that recovered > 95% of the TRR. Small amounts of AMPA were detected in grass samples following foliar application of ¹⁴C-glyphosate. Drying grass and alfalfa to form hay did not alter the ¹⁴C residues.

Metabolism studies have been completed in glyphosate tolerant soya beans, sugar beet, and cotton crops that contain the CP4-EPSPS gene. In tolerant soya beans, glyphosate is metabolized substantially to AMPA, the latter can be conjugated with natural plant constituents to give trace level metabolites, or degraded to one carbon fragments that are incorporated into natural products. None of the trace level metabolites account for greater than 2% of the TRR in any soya bean raw agricultural commodity. Glyphosate plus AMPA account for at least 66% of the total radioactive residues in forage, hay, and grain. Glyphosate residues differ among the plant components accounting for about 90% of the TRR in forage but only about 25% of the TRR in grain. AMPA accounted for only 6.8% of the TRR in forage, but was the major ¹⁴C compound in grain accounting for up to 49% of the TRR. About 9% of the TRR in grain was shown to be due to incorporation of ¹⁴C into natural products; in the oil as fatty acids, in the aqueous extract as soluble components, and in the acid hydrolysate of the extracted grain as amino acids and natural organic acids.

In glyphosate tolerant cotton, glyphosate and AMPA account respectively for 91-95% and 0.7–1.6% of the TRR in forage. In cottonseed glyphosate is the major extractable radiolabeled compound (12–24 % of the TRR) and only trace levels of AMPA are present (< 2% of the TRR). A significant fraction of the residues in the seed are attributed to incorporation into natural products; 10–12% of the TRR was characterized as saponifiable fatty acids in oil and 54–75% of the TRR was present as natural products.

The metabolism of ¹⁴C-glyphosate in tolerant sugar beet was very similar to soya beans and cotton. Glyphosate is partially metabolized to AMPA and low levels of AMPA conjugates. Glyphosate and AMPA together account for at least 99 and 81% of the TRR in roots and tops, respectively. AMPA is further converted, to a limited degree, to low levels of simple conjugates. In addition to conjugation, ¹⁴C is broadly incorporated into a wide variety of natural products and plant constituents.

The results of all the studies demonstrate that the metabolic fate of glyphosate in tolerant plants is the same as in non-tolerant plants.

Environmental fate

The Meeting received information on the behaviour and fate of glyphosate during solution photolysis and aerobic soil metabolism. Consistent with the policy outlined by the 2003 JMPR only the environmental fate data relevant to the residues of glyphosate in crops were evaluated.

Crop rotation studies were not provided. However, aerobic soil metabolism of glyphosate was rapid with inferred degradation half-lives of 3.6-25 days depending on the soil system studied. The major metabolite formed was AMPA which was further degraded to CO₂. In aqueous solution glyphosate is stable to hydrolysis. The rate of degradation in field and in aquatic environments is such that glyphosate is not expected to persist in the environment.

Methods of analysis

Glyphosate and AMPA residues are measured as derivatives following clean-up of aqueous extracts by cation and anion exchange, the derivatization reaction varying with the chromatographic method used for separation (GC, HPLC) and detection system employed (FPD in phosphorous mode,

fluorescence detector, UV, MS and MS/MS). Satisfactory recoveries at the LOQs of 0.05 mg/kg for both glyphosate and AMPA were reported for numerous commodities.

Stability of pesticide residues in stored analytical samples

The Meeting received information on the stability of glyphosate residue samples during storage of analytical samples at freezer temperatures. The available storage stability data indicate that residues of glyphosate and AMPA are stable under frozen storage conditions (-20°C) in/on the following commodities (storage interval in parentheses): beans, rape and linseed (18 months), wheat grain and straw, rye grain and straw (1349 days), pasture grass (362 days), soya bean seed (183 days) soya bean straw (398 days), corn grain (944 days), sorghum forage (958 days), sorghum straw (958 days), clover (944 days) and tomatoes (938 days). Residues were stable in animal commodities (pig, cow and chicken tissues and milk) for at least 700 days. For eggs residues were stable for 431 days.

Residues of AMPA are stable under frozen storage conditions (-20°C) in/on the following commodities (storage interval in parentheses): pasture grass (362 days), soya bean seed (183 days) soya bean straw (398 days), corn grain (944 days), sorghum forage (958 days), sorghum straw (958 days), clover (944 days) and tomatoes (938 days). Residues were stable in animal commodities (pig, cow and chicken tissues and milk) for at least 700 days. For eggs residues were stable for 431 days.

Definition of the residue

The metabolism studies in coffee, corn, cotton, soya beans, wheat, pasture grasses and alfalfa as well as on the glyphosate tolerant crops cotton, soya beans and sugar beet patterns of metabolites were similar in different species of plants. The main metabolite found in plant metabolism studies was AMPA. The Meeting agreed that glyphosate together with AMPA should be regarded as the residues of toxicological concern.

For the purposes of estimation of dietary intake and to enable comparison of the calculated intakes with the ADI it is preferable to express the residues in terms of glyphosate (glyphosate = $1.5 \times AMPA$).

Currently, the residue definition for glyphosate is "glyphosate". In national systems the residue definition for glyphosate is generally also the parent compound.

The Meeting agreed that the residue definition applicable to glyphosate would continue to be the parent compound. As for estimation of dietary intake and the risk assessment component relating to exposure, the 2004 JMPR concluded that AMPA was of no greater toxicological concern than its parent compound and set a group ADI of 0-1 mg/kg bw for the sum of glyphosate and AMPA.

For glyphosate STMR estimation, residue = glyphosate + $1.5 \times AMPA$

Definition of glyphosate residue (for compliance with MRLs): glyphosate

Definition of glyphosate residue (for estimation of dietary intake): sum of glyphosate and AMPA, expressed as glyphosate.

These definitions apply to plant and animal commodities.

Results of supervised trials on crops

The Meeting received data from supervised trials on the following crops: olives, bananas, kiwifruit, beans (dry), peas (dry), lentils, soya beans (conventional and tolerant), sugar beet (glyphosate tolerant), barley, maize (conventional and tolerant), oats, rye, sorghum, wheat, sugarcane, almonds, pecan, macadamia, walnuts, cotton (conventional and tolerant), linseed, mustard, rape, sunflower, coffee, tea, alfalfa and grasses.

Glyphosate may be applied prior to crop emergence (pre-emergence = PRE), shortly after crop emergence (early post-emergence = EPO), between EPO and a few weeks before harvest (late post-emergence = LPO) and prior to harvest (pre-harvest = PH). In addition glyphosate may be applied to weeds in the crop as a spot treatment or by wiper application to weeds in which case the area treated is generally less than 10% of the area planted and a directed sprays in which the crop is not exposed. The Meeting considered these later methods of application as unlikely to result in significant residues in crops. As such spot, wiper and directed sprays (e.g., hooded sprayers) were not included in consideration of GAP.

When applied as pre-harvest residues in the raw agricultural commodity (RAC) are mainly determined by applications made when the plant is growing and transport from the application site to the RAC occurs, rather than applications made to senescing crops where the RAC is protected from the spray, such as beans in pods. For commodities that are exposed and glyphosate is applied as a pre-harvest application to senescent crops, it is the pre-harvest spray that has the greatest influence on residues. If a range of application protocols involving different numbers of sprays, timing and application rates were used for a crop grown at a single location, the highest residue from any trial at the location and carried out with numbers of applications and rates within the range permitted by GAP was selected.

The limits of detection of glyphosate and AMPA are typically 0.05 mg/kg. When glyphosate and AMPA were summed, AMPA was converted to glyphosate equivalents (AMPA mg/kg \times 1.5). If AMPA residues are < 0.05, they are not summed with glyphosate, because they are typically much less than glyphosate residues. If both glyphosate and AMPA are < LOQ, then sum is < LOQ of glyphosate. The exception is where there is evidence that AMPA residues are comparable to glyphosate residues such as for soya beans in which case the residues are summed and if both glyphosate and AMPA residues are < LOQ, the sum is less than the combined LOQs for glyphosate and AMPA.

Olives

Trials on olives were conducted in Greece (no GAP provided), Italy (GAP 4.3 kg ae/ha; no PHI specified) and Spain (directed sprays/spot sprays GAP 2.5 kg ae/ha, PHI not specified, assumed 0 days or 4.3 kg ae/ha, PHI 7 days for fruit on the ground, the lower rate, shorter PHI was taken to be the critical use for Spain). Two trials from Italy and two from Spain matched Italian GAP. Glyphosate residues found in fruit, harvested from the ground one or more days after application were 0.39 and 0.66 mg/kg, for the Italian trials, and 0.17 and 0.12 mg/kg for the Spanish trials. Residues of AMPA were not measured in these trials. Four trials from Spain matched that countries GAP (2.5 kg ae/ha). Residues in fruit collected from the ground were 6.7, 12, 12 and 12 mg/kg for glyphosate. Residues of AMPA were all < 0.05 mg/kg; the sum of glyphosate and AMPA residues were 6.7, 12, 12 and 12 mg/kg.

The Meeting decided that the residues from trials complying with the GAP of Italy and Spain were from different populations and that they could not be combined for estimating a maximum residue level. The Meeting agreed that the number of residue trials was insufficient to estimate a maximum residue level for olives.

Bananas

Trials on bananas were conducted in Brazil (GAP of 4.3 kg ae/ha, with a PHI of 30 days), Honduras, Panama, Colombia and Ecuador (no GAP supplied). For three trials from Brazil that matched Brazilian GAP residues found of glyphosate and AMPA were < 0.05 mg/kg. In four trials conducted in Honduras, Panama, Colombia and Ecuador, at applications rates higher than Brazilian GAP, residues found in pulp and peel, when expressed as whole bananas, were < 0.05 mg/kg for both glyphosate and AMPA. The Meeting decided to utilize the trials at higher application rates in support

of the Brazil trials to recommend a maximum residue level of 0.05 (*) for glyphosate in bananas. The HR and STMR for total residues are both 0.05 mg/kg.

Kiwifruit

Trials on kiwifruit were conducted in Italy (GAP of 4.3 kg ae/ha ground directed spray, with no PHI specified). None of the trials matched GAP. The Meeting agreed to withdraw its previous recommendation of 0.1 (*) mg/kg for kiwifruit.

Beans, dry

Trials on beans, dry were conducted in Belgium (no GAP provided), Denmark (no GAP provided), the UK (GAP of 1.4 kg ae/ha when grain moisture is < 30% generally applied 7–14 days before harvest), the USA (GAP 0.43–4.2 kg ae/ha pre-emergent). The Netherlands GAP is 0.72–2.2 kg ae/ha, PHI 7 days. In Canada GAP is 0.9 kg ae/ha when grain moisture is < 30% generally 7–14 days before harvest. Trials from Belgium and Denmark were evaluated against UK GAP.

Five trials from the UK matching GAP had residues of 0.11, 0.12, 0.16, 0.20 and 1.8 mg/kg. One trial each from Belgium and Denmark matched UK GAP with residues of < 0.05 and 0.17 mg/kg respectively. Residues of AMPA were < 0.05 mg/kg.

None of the USA trials matched GAP for that country and were evaluated against the GAP of Canada. Thirteen trials conducted in the USA approximated Canadian GAP. Residues found in beans (dry) were < 0.05, 0.07, 0.09, 0.10, 0.11, 0.13, 0.19, 0.30, 0.32, 0.37, 0.38, 0.68 and 1.6 mg/kg. Residues of AMPA were all < 0.05 mg/kg.

The Meeting considered that the field trials conducted according to the GAP of the UK and the USA were from similar residue populations and could be combined for the purposes of estimating a maximum residue level. Glyphosate residues, in ranked order were (n = 19) : < 0.05, < 0.05, 0.07, 0.09, 0.10, 0.11, 0.12, 0.13, 0.16, 0.17, 0.19, 0.20, 0.30, 0.32, 0.37, 0.38, 0.68, 1.6 and 1.8 mg/kg. The Meeting confirmed its previous recommendation of a maximum residue level for glyphosate in beans (dry) of 2 mg/kg.

As residues of AMPA were < 0.05 mg/kg, total residues for the purposes of estimating an STMR and highest residues are the same as the glyphosate values. The highest residue and STMR are estimated to be 1.8 and 0.17 mg/kg respectively.

Peas, dry

Trials on peas, dry were conducted in Belgium (no GAP provided), Canada (GAP of 0.9 kg ae/ha, when grain moisture is < 30% generally applied, 7–14 days before harvest), Denmark (no GAP provided), the UK (GAP 1.4 kg ae/ha, when grain moisture is < 30% generally 7–14 days before harvest) and the USA (GAP 0.43–4.2 kg ae/ha pre-emergent). The Netherlands GAP is 0.72–2.2 kg ae/ha, PHI 7 days. Trials from Belgium and Denmark were evaluated against UK GAP.

Residues in six UK trials that approximated GAP of that country were 0.13, 0.16, 0.17, 1.7, 1.8 and 2.1 mg/kg. Residues in a single trial from Belgium and Denmark that approximated the UK GAP were 0.17 and 0.5 mg/kg respectively. When measured, residues of AMPA were < 0.05 (4) mg/kg.

In four trials from Canada that approximated GAP of that country, residues of glyphosate were 0.5, 0.82, 1.4 and 8.9 mg/kg. AMPA residues were < 0.05 mg/kg.

The Meeting considered that the field trials conducted according to the GAP of the UK and Canada were from similar residue populations and could be combined for the purposes of estimating a maximum residue level. Glyphosate residues, in ranked order were (n=11): 0.13, 0.16, 0.17, 0.17, 0.5,

0.5, 0.82, 1.4, 1.7, 1.8 and 2.1 mg/kg. The Meeting estimated a maximum residue level for glyphosate in peas (dry) of 5 mg/kg confirming its previous recommendation.

As residues of AMPA were < 0.05 mg/kg, total residues for the purposes of estimating an STMR and highest residue are the same as the glyphosate values. The STMR is estimated to be 0.5 mg/kg and highest residue 2.1 mg/kg.

Lentils

Trials on lentils were conducted in Canada (GAP of 0.9 kg ae/ha, when crop has < 30% grain moisture content and lowermost pods (bottom 15%) are brown and seeds rattle, with a 7-14 days PHI). Two trials matched GAP of Canada with residues of glyphosate of < 0.05 and 3.0 mg/kg and AMPA of < 0.05 mg/kg. The total residues were < 0.05 and 3.0 mg/kg.

The Meeting considered there were insufficient trials to recommend a maximum residue level for lentils.

Soya beans

Trials on conventional soya beans were conducted in the US (GAP of 4.2 kg ae/ha PRE, 4.2 kg ae/ha PH, with a PHI of 7 days). Four trials approximated GAP for the USA had glyphosate residues of 0.45, 5.4, 13 and 17 mg/kg. Corresponding AMPA residues were < 0.05, 1.2, 1.9 and 1.8 mg/kg respectively.

Additionally, trials were conducted on glyphosate tolerant soya beans (GAP of 0.43–4.2 kg ae/ha PE, 1.7 kg ae/ha LPO, 0.83 kg ae/ha PH, combined LPO+PH < 2.5 kg ae/ha, PHI 14 days). GAP allows pre-harvest applications together with post-emergent directed sprays as well as preharvest over the top sprays. The Meeting considered that a single pre-harvest application made close to harvest would not give rise to residues in beans (dry) representative of GAP as when the last application is made the crop has entered into senescence, limiting transport of residues to the seed. Only trials that included pre-emergent and in-crop applications were considered as compliant with US GAP. The Meeting also noted that in trials conducted in the USA the pre-emergent application was typically at a higher rate than permitted by GAP, 6.4 versus 4.2 kg ae/ha, but considered the difference in application rates to account for less than 10% difference in the residue at harvest and that the later post-emergent sprays determined the residue. In a metabolism study on soya beans residues in seed after a single pre-emergent application at 5.4 kg ae/ha were < 0.01 mg/kg. While residues found after one or two post-emergent applications at 0.84 or 1.7 kg ae/ha, with the last application occurring 61 days prior to harvest, were 0.04 and 4.4 mg/kg respectively. Thirty-two trials from the USA approximated GAP of that country. Residues of glyphosate were 0.27, 0.28, 0.34, 0.37, 0.42, 0.44, 0.51, 0.56, 0.60, 0.70, 1.0, 1.1, 1.4, 1.4, 1.5, 1.7, 1.8, 1.9, 1.9, 1.9, 2.0, 2.6, 2.7, 2.7, 3.0, 3.3, 3.5, 3.6, 3.7, 4.4, 5.3 and 5.6 mg/kg. Total residues were 0.59, 0.78, 0.89, 1.0, 1.1, 1.1, 1.2, 1.2, 1.5, 1.6, 2.4, 3.2, 4.0, 4.0, 4.3, 4.7, 4.9, 5.1, 5.4, 5.7, 6.2, 6.6, 7.1, 7.6, 7.6, 7.9, 8.2, 8.5, 11, 11, 11 and 17 mg/kg.

The Meeting considered that the field trials conducted on conventional and glyphosate tolerant soya beans according to the GAP of the USA to be from similar residue populations and could be combined for the purposes of estimating a maximum residue level. Glyphosate residues, in ranked order were (n = 36): 0.27, 0.28, 0.34, 0.37, 0.42, 0.44, 0.45, 0.51, 0.56, 0.60, 0.70, 1.0, 1.1, 1.4, 1.4, 1.5, 1.7, 1.8, 1.9, 1.9, 1.9, 2.0, 2.6, 2.7, 2.7, 3.0, 3.3, 3.5, 3.6, 3.7, 4.4, 5.3, 5.4, 5.6, 13 and 17 mg/kg. The Meeting confirmed its previous recommendation of a maximum residue level for glyphosate in soya beans (dry) of 20 mg/kg.

Total residues were (n = 36): 0.45, 0.59, 0.78, 0.89, 1.0, 1.1, 1.1, 1.2, 1.2, 1.5, 1.6, 2.4, 3.2, 4.0, 4.0, 4.3, 4.7, <u>4.9</u>, <u>5.1</u>, 5.4, 5.7, 6.2, 6.6, 7.1, 7.2, 7.6, 7.6, 7.9, 8.2, 8.5, 11, 11, 11, 16, 17 and 20 mg/kg. The highest residue and STMR for total residues are 20 and 5.0 mg/kg respectively.

Glyphosate

No residue data was available for immature seed and the Meeting agreed to recommend withdrawal of its previous recommendation for soya bean (immature seed) of 0.2 mg/kg.

Sugar beet (glyphosate tolerant)

Trials on sugar beet (glyphosate tolerant) were conducted in the US (GAP of 0.43–4.2 kg ae/ha PRE, 1.3 kg ae/ha EPO from emergence to 8-leaf stage, 0.87 kg ae/ha from 8-leaf stage to canopy closure, 3.8 kg ae/ha combined maximum rate for all applications from emergence to harvest, PHI 30 days). The metabolism study indicated that pre-emergent applications of glyphosate do not make a significant contribution to the residue in sugar beet roots at harvest. An examination of the trial data indicated that it was probable that the last application contributed most to the residue at harvest. The Meeting considered that none of the trials matched GAP.

Cereal grains

The Meeting decided to evaluate the residue trial data for barley, maize, oats, rye, sorghum and wheat for a possible cereal grains recommendation. Estimates of values for total residues (HR and STMR) that are required for dietary intake and animal dietary burden calculations are discussed under each commodity while maximum residue level estimation is discussed at the end after wheat.

Barley

Trials on barley were conducted in Belgium (no GAP provided), France (no GAP provided) and the UK (GAP of 0.54-1.4 kg ae/ha, when grain moisture is < 30% generally 7–14 days before harvest). Trials conducted in Belgium and France were evaluated against the GAP of the Netherlands (GAP of 0.72-2.2 kg ae/ha, with a PHI of 7 days).

Residues of glyphosate in four UK trials approximating UK GAP were 1.4, 3.3, 4.4 and 11 mg/kg. Total residues were 1.4, 3.3, 4.4 and 11 mg/kg. Residues in two trials from Belgium (10 and 20 mg/kg), two from the UK (6.3 and 8.4 mg/kg) and nineteen from France (1.5, 2.2, 2.8, 2.9, 3.3, 5.5, 5.9, 6.3, 6.7, 7.2, 7.9, 8.5, 9.6, 13, 14, 15, 19, 19 and 19 mg/kg) approximated the GAP of the Netherlands.

The Meeting considered the trials to all be from similar populations and decided to combine the results for the purpose of maximum residue level recommendation. Glyphosate residues in rank order were (n=27): 1.4, 1.5, 2.2, 2.8, 2.9, 3.3, 3.3, 4.4, 5.5, 5.9, 6.3, 6.3, 6.7, 7.2, 7.9, 8.4, 8.5, 9.6, 10, 11, 13, 14, 15, 19, 19, 19 and 20 mg/kg. Total residues (where glyphosate and AMPA were reported) were (n=22): 1.1, 2.2, 2.8, 3.0, 3.3, 3.3, 4.4, 5.6, 6.0, 6.8, 7.3, 8.0, 8.6, 9.7, 10, 11, 14, 15, 19, 19, 19 and 20 mg/kg. The Meeting estimated a high residue and STMR for total residues in barley of 20 and 7.65 mg/kg respectively.

Maize

Trials on conventional maize were conducted in the US (GAP of 0.43-4.2 kg ae/ha PRE, 0.87 kg ae/ha directed spray when the crop is > 30 cm tall and 2.5 kg ae/ha PH when grain moisture is < 35%, with a PHI of 7 days).

Trials on conventional maize were conducted in the US (GAP of 0.43–4.2 kg ai/ha PRE, 0.87 kg ai/ha directed spray when crop > 30 cm tall and 2.5 kg ai/ha PH grain moisture < 35%, with a PHI of 7 days). From 21 trials that approximated US GAP, which involved a single pre-harvest application to conventional maize residues of < 0.05 (12), 0.05 (2), 0.06 (2), 0.07, 0.09, 0.19, 0.54 and 3.0 mg/kg were found. Corresponding total residues were < 0.12 (11), < 0.14 (2), 0.14, < 0.16, 0.19, < 0.23, < 0.25, < 0.26, < 0.62 and 3.0 mg/kg respectively.

Additionally, trials were conducted on glyphosate tolerant maize (GAP 0.43–4.2 kg ae/ha PRE, 0.83 kg ae/ha EPO, 1.7 kg ae/ha LPO, total EPO and LPO applications < 2.5 kg ae/ha, 0.87 kg ae/ha PH < 35% grain moisture, PHI 7 days). None of the trials on glyphosate tolerant maize

incorporated a pre-harvest application. Trials on conventional maize showed that pre-harvest applications made a significant contribution to the final residues found. The Meeting considered that none of the trials on glyphosate tolerant maize matched GAP of the USA.

Oats

Trials on oats were conducted in Canada (GAP of 0.18–4.3 kg ae/ha PRE, 0.9 kg ae/ha PH, application at < 30% grain moisture typically 7–14 days before harvest), Denmark (no GAP provided) and the UK (GAP 0.54-1.4 kg ae/ha, < 30% grain moisture typically 7–14 days before harvest). Three trials from Canada matched GAP of that country with glyphosate residues of 0.70, 3.1 and 4.6 mg/kg (total residues 0.70, 3.2 and 4.8 mg/kg). Eight trials from the UK and three from Denmark approximated UK GAP with glyphosate residues of 0.9, 3.4, 3.4, 4.1, 4.9, 4.9, 5.2, 6.0, 8.1, 8.6 and 14 mg/kg. Total residues in three trials that also measured AMPA levels were 3.5, 6.1 and 8.4 mg/kg.

The Meeting considered the trials approximating GAP in Canada and the UK to be from the same population and decided to combine the results for the purpose of estimating the maximum residue level and STMR. Residues of Glyphosate in ranked order were (n = 14): 0.7, 0.9, 3.1, 3.4, 3.4, 4.1, 4.6, 4.9, 4.9, 5.2, 6.0, 8.1, 8.6 and 14 mg/kg. AMPA residues were only measured in six of the fourteen trials considered giving total residues of 0.7, 3.2, <u>3.5, 4.8, 6.1 and 8.4 mg/kg</u>. The Meeting estimated a high residue of 14 mg/kg and an STMR of 4.15 mg/kg.

Rye

Trials on rye were conducted in Denmark (no GAP provided) and were evaluated against the GAP of the UK (GAP 0.54–1.4 kg ae/ha, < 30% grain moisture PHI 7–14 days). Three trials approximated UK GAP with glyphosate residues of 1.6, 1.6 and 2.2 mg/kg (AMPA not measured).

The Meeting considered three trials insufficient to estimate a maximum residue level for rye.

Sorghum

Trials on sorghum were conducted in the USA (GAP of 0.43–4.2 kg ae/ha PRE, 0.87 kg ae/ha directed spray when crop > 30 cm tall and 1.7 kg ae/ha PH grain moisture < 35%, PHI 7 days). Thirteen trials matched GAP for the USA with glyphosate residues of 1.1, 1.3, 1.4, 1.7, 1.8, 4.4, 4.6, 5.3, 6.0, 6.3, 6.4, 12 and 13 mg/kg (total residues 1.1, 1.4, 1.6, 1.8, 1.8, 4.5, <u>4.8</u>, 5.4, 6.2, 6.6, 6.6, 12 and 13 mg/kg). The Meeting estimated a highest residue of 13 mg/kg and an STMR of 4.8 mg/kg for total residues in sorghum grain.

Wheat

Trials on wheat were conducted in Belgium (no GAP provided), France (no GAP provided) and the UK (GAP of 0.54–1.4 kg ae/ha, < 30% grain moisture with a PHI of 7 days). Trials conducted in Belgium and France were evaluated against the GAP of the Netherlands (GAP is 0.72–2.2 kg ae/ha, PHI 7–14 days). Seven trials approximated GAP of the UK with glyphosate residues of 0.1, 0.1, 0.3, 0.3, 0.5, 0.7 and 1.0 mg/kg (residues of AMPA were all < 0.05 mg/kg). Two trials from Belgium (1.7 and 3.6 mg/kg), two from the UK (1.1 and 1.2 mg/kg) and nineteen from France (0.16, 0.53, 0.66, 0.80, 0.90, 0.99, 1.1, 1.2, 1.3, 1.5, 1.7, 2.1, 2.4, 3.8, 3.9, 4.0, 4.9, 6.3 and 9.5) approximated GAP of the Netherlands.

The Meeting decided that the residues conducted according to GAP of the Netherlands and the UK could be combined for the purposes of STMR and maximum residue level recommendation. Residues of glyphosate in rank order were (n = 30): 0.1, 0.1, 0.16, 0.3, 0.3, 0.5, 0.53, 0.66, 0.7, 0.80, 0.90, 0.99, 1.0, 1.1, <u>1.1</u>, <u>1.2</u>, 1.2, 1.3, 1.5, 1.7, 1.7, 2.1, 2.4, 3.6, 3.8, 3.9, 4.0, 4.9, 6.3 and 9.5 mg/kg. Total residues were (n=24): 0.1, 0.1, 0.24, 0.3, 0.3, 0.5, 0.53, 0.66, 0.7, 0.80, 0.90, <u>1.0</u>, <u>1.1</u>, 1.1, 1.2, 1.5, 1.9, 2.2, 3.7, 3.8, 3.9, 4.0, 4.9 and 6.5 mg/kg where measured. The Meeting recommended a high residue of 9.5 mg/kg and an STMR of 1.05 mg/kg for total residues in wheat grain.

Glyphosate

Data are available for a large range of cereal grains and the Meeting considered it appropriate to estimate a group maximum residue level for cereal grains. As the residues of glyphosate in maize are much lower than in the other cereal grains due to the protection afforded by the husk and also the absence of data for rice, the Meeting decided to recommend a group maximum residue level for cereal grain except maize and rice of 30 mg/kg. The estimated maximum residue level replaces the previous recommendations for barley, oats and sorghum of 20 mg/kg and wheat of 5 mg/kg.

Total residues for cereal grains except maize and rice were (n = 65) 0.1, 0.1, 0.24, 0.3, 0.3, 0.5, 0.53, 0.66, 0.7, 0.7, 0.80, 0.90, 1.0, 1.1, 1.1, 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 1.8, 1.9, 2.2, 2.2, 2.8, 3.0, 3.2, 3.3, 3.5, <u>3.7</u>, 3.8, 3.9, 4.0, 4.4, 4.5, 4.8, 4.8, 4.9, 5.4, 5.6, 6.0, 6.1, 6.2, 6.5, 6.6, 6.6, 6.8, 7.3, 8.0, 8.4, 8.6, 9.7, 10, 11, 12, 13, 14, 15, 19, 19 and 20 mg/kg. The Meeting estimated an STMR of 3.7 mg/kg for total residues in cereal grains except maize and rice. This STMR value will be used in the dietary intake calculations for cereal grain commodities other than barley, maize, oats, sorghum and wheat.

Using the results for conventional maize of (n = 21) < 0.05 (12), 0.05 (2), 0.06 (2), 0.07, 0.09, 0.19, 0.54 and 3.0 mg/kg and corresponding total residues of <math>< 0.12 (11), < 0.14 (2), 0.14, < 0.16, 0.19, < 0.23, < 0.25, < 0.26, < 0.62 and 3.0 mg/kg, the Meeting recommended a maximum residue level of 5 mg/kg for maize. The Meeting estimated highest residue and STMR levels for total residues in maize of 3.0 and <math>< 0.12 mg/kg respectively.

Sugarcane

Trials on sugarcane were conducted in the USA (GAP of 0.49 kg ae/ha, PHI 21–35 days, 0.84 kg ae/ha; PHI 28–70 days). Seven trials from the USA matched GAP with residues 0.07, 0.13, 0.21, 0.27, 0.28, 0.69 and 0.97 mg/kg (total residues 0.07, 0.13, 0.21, 0.27, 0.28, 0.69 and 0.97 mg/kg).

The Meeting recommended a maximum residue level of 2 mg/kg for residues of glyphosate in sugarcane. The high residue and STMR levels for total residues are 0.97 and 0.27 mg/kg respectively.

Tree nuts

Trials on tree nuts (almonds, pecans, macadamias and walnuts) were conducted in the USA (GAP 0.43–4.3 kg ae/ha, directed applications, PHI 3 days). None of the trials matched GAP.

Cottonseed

Trials on conventional cotton were conducted in the US (GAP of 0.43–4.2 kg ae/ha PRE, 0.43–4.2 kg ae/ha directed spray and 0.43–1.7 kg ae/ha PH, PHI 7 days). No trials matched GAP for conventional cotton.

Additionally, trials were conducted on glyphosate tolerant cotton (US GAP of 0.43–4.2 kg ae/ha PRE do not exceed 4.2 kg ae/ha/season for pre-emergent application, 0.83 kg ae/ha for in-crop directed applications which must not exceed 3.3 kg ae/ha/season, 1.7 kg ae/ha PH do not exceed 1.7 kg ae/ha/season for pre-harvest application; combined applications must not exceed 6.6 kg ae/ha/season, PHI 7 days). US GAP allows pre-harvest applications together with post-emergent directed sprays as well as pre-harvest over the top sprays. The Meeting considered that a single pre-harvest application would not give rise to residues in cottonseed representative of GAP as the timing last application coincides with crop senescence, limiting potential transport of residues to the seed. Only trials that included pre-emergent and in-crop applications were considered as compliant with US GAP.

Twenty-three trials from the USA approximated US GAP with glyphosate residues of 0.46, 0.50, 0.69, 1.2, 1.3, 2.5, 2.8, 3.6, 4.2, 4.6, 4.9, 5.0, 7.2, 7.5, 9.7, 13, 16, 18, 18, 18, 21, 22 and 28 mg/kg (total residues 0.46, 0.58, 0.69, 1.2, 1.4, 2.5, 2.9, 3.7, 4.4, 4.6, 5.1, <u>5.2</u>, 7.5, 7.9, 9.8, 14, 17, 18, 19, 19, 22, 23 and 28 mg/kg). The Meeting estimated a maximum residue level of 40 mg/kg for

glyphosate to replace its previous recommendation of 10 mg/kg and estimated a highest residue of 28 mg/kg and an STMR of 5.2 mg/kg for total residues in cottonseed.

Linseed (flax)

Trials on linseed were conducted in the UK (GAP 1.1–1.4 kg ae/ha, < 30% grain moisture PHI 7–28 days). Two trials from the UK matched GAP from that country with glyphosate residues of 2.0 and 4.6 mg/kg. The Meeting agreed the number of trials was insufficient for the purposes of estimating a maximum residue level.

Mustard seed

Trials on mustard were conducted in the UK (GAP 1.1–1.4 kg ae/ha, < 30% grain moisture, with a PHI of 8–10 days). Two trials matched GAP in the UK with glyphosate residues of 0.25 and 2.6 mg/kg (total residues 0.25 and 2.6 mg/kg). The Meeting considered two trials insufficient to estimate a maximum residue level.

Rape (Canola)

Trials on rape were conducted in Belgium (no GAP provided), Canada (0.18–4.3 kg ae/ha PRE; 0.9 kg ae/ha PH, < 30% grain moisture, with a PHI of 7–14 days), Denmark (no GAP provided), Finland (no GAP provided) France (no GAP provided), Sweden (no GAP provided) and the UK (GAP 1.1–1.4 kg ae/ha, < 30% grain moisture with a PHI of 14–21 days). Trials from Belgium, France, Denmark, Finland and Sweden were evaluated against the GAP of the UK.

Four trials from Canada matched GAP of that country with residues found of 0.61, 1.8, 2.1 and 3.6 mg/kg (total residues 0.61, 1.8, 2.1 and 3.7 mg/kg). Two trials from Belgium (0.23 and 4.6 mg/kg), ten trials from France (0.21, 0.23, 0.35, 0.50, 0.87, 0.93, 0.96, 1.4, 1.9 and 5.6 mg/kg), ten from the UK (0.16, 0.4, 0.35, 0.60, 0.7, 0.7, 0.80, 0.9, 1.5 and 2.7 mg/kg), five from Denmark (4.1, 6.7, 8.6, 10 and 12 mg/kg), one from Finland (1.5 mg/kg) and three from Sweden (0.40, 2.0 and 2.8 mg/kg) approximated GAP from the UK. The Meeting agreed that the residue populations for trials approximating the GAP of Canada and the UK could be combined for the purpose of recommending maximum residue levels and STMRs.

Residues of glyphosate in ranked order were (n = 35): 0.16, 0.21, 0.23, 0.23, 0.4, 0.35, 0.35, 0.40, 0.50, 0.60, 0.61, 0.7, 0.7, 0.80, 0.87, 0.9, 0.93, 0.96, 1.4, 1.5, 1.5, 1.8, 1.9, 2.0, 2.1, 2.7, 2.8, 3.6, 4.1, 4.6, 5.6, 6.7, 8.6, 10 and 12 mg/kg. The Meeting recommended a maximum residue level of 20 mg/kg for glyphosate residues in rape seed. The new recommendation replaces the previous recommendation of 10 mg/kg.

Total residues in rank order were (n = 31): 0.16, 0.21, 0.23, 0.23, 0.35, 0.35, 0.4, 0.40, 0.50, 0.60, 0.7, 0.7, 0.80, 0.87, 0.9, 0.93, 0.96, 1.4, 1.5, 1.6, 1.9, 2.0, 2.7, 3.0, 4.1, 4.6, 5.7, 6.7, 8.6, 10 and 12 mg/kg. The Meeting estimated a highest residue of 12 mg/kg and an STMR of 0.93 mg/kg for total residues in rape seed.

Sunflower

Trials on sunflowers were conducted in Hungary (GAP 0.54-4.3 kg ae/ha PRE, 1.8 kg ae/ha PH 20-30% grain moisture, with a PHI of 6 days if rate is 0.54 kg ae/ha PH, otherwise a PHI of 21 days). Eight trials matched GAP of Hungary with glyphosate residues of < 0.05, < 0.05, 0.16, 0.39, 0.40, 3.7, 4.9 and 5.6 mg/kg. Total residues in the three trials that also measured AMPA were < 0.05, < 0.05 and 0.39 mg/kg. The Meeting estimated a maximum residue level of 7 mg/kg for residues in sunflower seed. Available evidence suggests residues of AMPA in sunflower seed are unlikely to exceed 10% of the glyphosate residue. The Meeting decided to utilize the glyphosate residues to estimate a highest residue and an STMR for total residues in sunflower seed of 5.6 and 0.395 mg/kg respectively.

Coffee beans

Trials on coffee were conducted in Brazil (no GAP provided), Columbia (no GAP provided), Costa Rica (no GAP provided) and the USA (GAP 0.43-4.3 kg ae/ha PRE and as directed sprays, with a PHI of 28 days). All trials were evaluated against the GAP of the USA yielding four trials that approximated GAP with glyphosate residues of < 0.05, < 0.05, 0.30 and 0.58 mg/kg). The Meeting considered four trials insufficient to estimate a maximum residue level for coffee beans.

Tea

Trials on tea were conducted in China (no GAP provided), India (no GAP provided), Sri Lanka (no GAP provided) and Japan (GAP single application at 0.9–2.3 kg ae/ha directed spray, with a PHI of 7 days). All trials were evaluated against the GAP of Japan. Four trials from Sri Lanka matched GAP for Japan with glyphosate residues of 0.12, 0.21, 0.27 and 0.42 mg/kg (total residues 0.12, 0.21, 0.27 and 0.42 mg/kg). The Meeting considered four trials insufficient to estimate a maximum residue level for tea.

Alfalfa

Trials on alfalfa were conducted in Canada (GAP of 0.9-1.8 kg ae/ha, PHI not specified but typically 3–7 days before last cut before rotation of renovation) and the USA (GAP 0.43-4.3 kg ae/ha PRE, 1.7 kg ae/ha PH for renovation, PHI 1.5 days).

Twenty trials approximated the GAP of the USA with glyphosate residues (as received) in forage of 54, 54, 55, 57, 58, 61, 64, 66, 70, 74, 76, 77, 85, 94, 98, 99, 107, 114, 122 and 153 mg/kg. Total residues were 54, 54, 55, 57, 58, 61, 64, 66, 71, 74, 76, 78, 86, 95, 99, 100, 108, 115, 123 and 154 mg/kg. The Meeting estimated a high residue of 154 mg/kg together with a median residue of 75 mg/kg for total residues in alfalfa forage all on an as received basis. The Meeting agreed to withdraw its previous recommendation for alfalfa forage.

Three trials from Canada matched GAP of that country with glyphosate residues in fodder (hay) of 57, 77 and 78 mg/kg (total residues 58, 78 and 79 mg/kg). Residues in hay from USA trials that matched GAP were 0.45, 83, 97, 97, 117, 131, 148, 187, 189, 195, 196, 204, 208, 214, 219, 256, 257, 280, 335 and 341 mg/kg. Total residues were: 0.79, 84, 98, 98, 119, 132, 149, 188, 190, 197, 197, 206, 210, 215, 221, 260, 259, 282, 338 and 344 mg/kg.

Residues of glyphosate in alfalfa fodder (hay) in ranked order were (n = 23): 0.45, 57, 77, 78, 83, 97, 97, 117, 131, 148, 187, 189, 195, 196, 204, 208, 214, 219, 256, 257, 280, 335 and 341 mg/kg (as received). Total residues in rank order were; 0.79, 58, 78, 79, 84, 98, 98, 119, 132, 149, 188, <u>190</u>, 197, 197, 206, 210, 215, 221, 260, 259, 282, 338 and 344 mg/kg.

The Meeting recommended maximum residue level of 500 mg/kg (dry weight basis) for glyphosate in alfalfa fodder based on a high residue of 383 mg/kg ($341 \text{ mg/kg} \div 0.89$ default dry matter content) together with highest residue and median residue levels of 344 and 190 mg/kg (as received) respectively for total residues.

Grass pasture

Trials on grass pasture were conducted in the USA (GAP of 0.31-4.3 kg ae/ha PRE, 4.3 kg ae/ha PH for pasture renovation, if application is less than 2.3 kg ae/ha no grazing or harvest interval is required, if > 2.3 kg ae/ha a waiting period 8 weeks applies before grazing or harvesting). Thirteen trials matching USA GAP were provided. Residues of glyphosate found in forage (from grass 15–20 cm high to boot stage) were 431, 456, 527, 616, 657, 664, 689, 713, 773, 869, 881, 884 and 1093 mg/kg (dry weight basis). Total residues were 435, 460, 530, 623, 660, 668, <u>691</u>, 718, 777, 875, 881, 891 and 1099 mg/kg. The Meeting decided to utilize the averages of residues over 7 days (263, 273, 311, 333, 348, 430, <u>431</u>, 449, 449, 478, 511, 612 and 615 mg/kg) to estimate a highest residue level of

615 mg/kg and a median residue of 431 mg/kg for total residues in grass forage, both on a dry weight basis.

Residues found in hay, cut when the grass was at boot to early head growth stage, were (n = 13): 7.3, 38, 66, 75, 100, 122, 187, 203, 212, 215, 233, 244 and 259 mg/kg (as received). Total residues were: 9.9, 39, 67, 77, 101, 124, <u>190</u>, 210, 214, 218, 240, 248 and 262 mg/kg. The Meeting recommended a maximum residue level of 500 mg/kg (dry weight basis) for glyphosate based on a high residue of 294 mg/kg (259 mg/kg \div 0.88 default dry matter content) and highest and median residue levels of 262 and 190 mg/kg (as received) respectively for total residues in hay or fodder (dry) of grasses. The recommended maximum residue level replaces the previous recommendation of 50 mg/kg.

Bean fodder

Trials on beans haulm/straw were conducted in Belgium (no GAP provided) and the UK (GAP of 1.4 kg ae/ha, with a PHI of 7 days). Trials from Belgium were evaluated against UK GAP. Residues of glyphosate in haulm/straw at harvest were (n = 10): 3.4, 4.4, 7.8, 16, <u>17</u>, <u>28</u>, 46, 50, 51 and 93 mg/kg. AMPA was measured in four of the trials, with AMPA residues found to be less than 10% of the glyphosate residues. The therefore, Meeting agreed to use glyphosate residues to estimate the high and median residue levels. The Meeting estimated a maximum residue level of 200 mg/kg (dry weight basis) based on a highest residue of 103 mg/kg (93 mg/kg \div 0.90 default dry matter content) and high and median residue levels of 93 and 22.5 mg/kg (as received) for bean fodder.

Pea fodder

Trials on pea haulm/straw were conducted in Belgium (no GAP provided), Canada (GAP of 0.9 kg ae/ha, when the crop has < 30% grain moisture content and lower most pods (bottom 15%) are brown and seeds rattle, with a 7–14 days PHI) and the UK (GAP of 1.4 kg ae/ha, with a PHI of 7 days). Some trials from the UK conducted at higher rates were evaluated against the GAP of the Netherlands (0.72–2.2 kg ae/ha, PHI 7 days). Trials from Belgium were evaluated against the GAP of the UK. Residues in pea straw from Canada (16, 19, 20 and 28 mg/kg) appeared to be from a different population to that data approximating the GAP of the UK and the Netherlands; the latter were used for the purposes of maximum residue level estimation. Residues in ranked order were (n = 10): 27, 27, 31, 78, <u>79, 125, 154, 179, 200 and 320 mg/kg (as received)</u>. Total residues were 79, 80, 127, 155 and 181 mg/kg. AMPA was measured in five of the trials, with AMPA residues found to be less than 10% of the glyphosate residues. The Meeting therefore agreed to use glyphosate residues to estimate the high and median residue levels of 364 mg/kg (320 mg/kg \div 0.88 default dry matter content) and high and median residue levels of 320 and 102 mg/kg (as received) respectively for pea hay or fodder (dry).

Lentil fodder

Trials on lentil straw were conducted in Canada (GAP of 0.9 kg ae/ha, when crop has < 30% grain moisture content and lowermost pods (bottom 15%) are brown and seeds rattle, with a 7–14 days PHI). Residues of glyphosate were < 0.05 and 11 mg/kg. The Meeting considered two trials inadequate for the purposes of estimating an MRL for lentil straw.

Soya bean forage and fodder

Trials on conventional soya beans were conducted in the US (GAP 3.7 kg ae/ha for PH use, do not graze or harvest treated hay or fodder for livestock feed within 25 days of last application. If application rate for PH is less than 0.74 kg ae/ha the livestock feed interval is reduced to 14 days after last application). The Meeting considered that pre-harvest application would give rise to residues in bean forage and fodder representative of GAP. Four trials approximating GAP for the USA had glyphosate residues in hay of 2.5, 3.4, 8.5 and 9.9 mg/kg (as received). Corresponding AMPA

residues were 0.16, 0.18, 0.30 and 0.1 mg/kg respectively. The Meeting considered four trials insufficient to estimate a maximum residue level for soya bean hay. The Meeting agreed to withdraw its previous recommendation of 200 mg/kg for soya bean fodder.

Additionally, trials were conducted on glyphosate tolerant soya beans (GAP 1.7 kg ae/ha LPO; 0.83 kg ae/ha PH, do not graze or harvest treated hay or fodder for livestock feed within 14 days of last application). Residues of glyphosate in forage in trials that approximated USA GAP were 4.1, 4.5, 9.1, and 12 mg/kg (as received). No trials matched GAP for hay. The Meeting considered four trials inadequate for the purpose of estimating a maximum residue level and agreed to withdraw the previous recommendation of 5 mg/kg for soya bean forage.

Sugar beet tops

Trials were provided on sugar beet (glyphosate tolerant) from the US (GAP 0.43–4.2 kg ae/ha PRE, 0.43–1.3 kg ae/ha LPO, 0.43–0.87 kg ae/ha PH, PHI 30 days). No trials matched GAP.

Barley straw

Trials on barley straw were conducted in Belgium (no GAP provided), France (no GAP provided) and the UK (GAP of 0.54—1.4 kg ae/ha, PHI 7 days). Trials conducted in Belgium, France as well as some UK trials were evaluated against the GAP of the Netherlands (GAP is 0.72–2.2 kg ae/ha, PHI 7 days). Residues in straw in four UK trials that matched the GAP of that country were 13, 41, 47 and 62 mg/kg. In twenty-three trials that matched GAP of the Netherlands residues of glyphosate in straw were 29 and 86 mg/kg for Belgium trials, 6.0, 6.9, 12, 15, 17, 33, 39, 40, 43, 59, 71, 80, 96, 102, 110, 126, 140, 147 and 160 mg/kg for trials conducted in France and 22 and 56 mg/kg for two UK trials.

The Meeting considered the residues to be from the same population and decided to pool the results. Residues of Glyphosate in barley straw in ranked order were (n = 27): 6.0, 6.9, 12, 13, 15, 17, 22, 29, 33, 39, 40, 41, 43, 47, 56, 59, 62, 71, 80, 86, 96, 102, 110, 126, 140, 147 and 160 mg/kg (as received). Total residues, where measured, were: 6.1, 6.9, 13, 14, 15, 17, 22, 30, 34, 39, 41, 42, 44, 48, 56, 61, 64, 73, 82, 89, 100, 105, 115, 126, 142, 151 and 162 mg/kg (as received). The Meeting recommended a maximum residue level for glyphosate of 400 mg/kg (dry weight basis) based on a highest residue of 180 mg/kg (160 mg/kg \div 0.88 default dry matter content) and highest and median residue levels for total residues of 162 and 48 mg/kg (as received) for residues in barley straw.

Maize forage and fodder

Trials on conventional maize were conducted in the US (GAP 4.2 kg ae/ha PRE; 0.87 kg ae/ha hooded sprayers, Do not graze or feed maize forage or fodder following hooded sprayer applications; 2.5 kg ae/ha PH grain moisture < 35%, PHI 7 days). Glyphosate residues in stover/fodder 7 days after a pre-harvest application according to US GAP were 2.1, 2.6, 3.4, 3.7, 4.8, 6.7, 8.4, 8.8, 11, 18, 23, 28, 35, 43, 43, 44, 53, 54, 55, 82, and 92 mg/kg. Total residues were: 2.1, 2.6, 3.5, 3.8, 4.8, 6.8, 8.8, 9.0, 11, 18, <u>24</u>, 29, 36, 44, 45, 45, 54, 55, 56, 83 and 93 mg/kg.

Additionally, trials were conducted on glyphosate tolerant maize (GAP 4.2 kg ae/ha PRE; 1.7 kg ae/ha LPO, allowing a minimum of 50 days between application and harvest of corn forage; 0.87 kg ae/ha PH < 30% grain moisture, combined LPO+PH < 2.5 kg ae/ha, PHI 7 days). Seventeen trials on forage but no trials on tolerant maize fodder matched GAP. Glyphosate residues were (n = 17): 0.30, 0.50, 0.54, 0.66, 0.73, 0.79, 0.87, 0.92, 1.1, 1.1, 1.2, 1.3, 1.3, 1.8, 1.8, 2.2 and 4.6 mg/kg. Total residues were: 0.35, 0.50, 0.54, 0.75, 0.78, 0.84, 0.92, 0.98, <u>1.2</u>, 1.2, 1.3, 1.4, 1.4, 1.9, 1.9, 2.4 and 4.7 mg/kg.

Using the residue trials for conventional maize crops, the Meeting recommended a maximum residue level of 150 mg/kg (dry weight basis) for maize fodder based on a highest residue of 111 mg/kg (92 mg/kg \div 0.83 default dry matter content). The Meeting also estimated a highest residue of 93 mg/kg and a median residue of 24 mg/kg for total residues in maize fodder, both on an as received basis.

The highest and median residues for total residues in maize forage were 4.7 and 1.2 mg/kg respectively, both on an as received basis. The Meeting considered that maize forage is not traded and agreed to withdraw its previous recommendation of 1 mg/kg.

Oat straw

Trials on oats straw were conducted in Canada (GAP 0.9 kg ae/ha PH, PHI growth stage dependent < 30% grain moisture 7–14 days) and the UK (GAP 0.54–1.4 kg ae/ha, < 30% grain moisture PHI 7–14 days). Residues in the trials from Canada conducted according to GAP were 3.5, 27 and 33 mg/kg. Residues in the UK trials were 12, 16, 21, 25, 33, 35, 49 and 64 mg/kg. Total residues where AMAP residues were also measured were: 26, 28, 34, 37 and 50 mg/kg. In all cases AMPA residues were much less than 10% of the glyphosate residue. The Meeting decided to pool the data from the Canada and UK trials to estimate a maximum residue level for glyphosate in oat straw of 100 mg/kg (dry weight basis weight) based on a highest residue of 71 mg/kg (64 mg/kg \div 0.90 default dry matter content) and to utilize the glyphosate residues to estimate highest and median residue levels of 64 and 27 mg/kg (as received).

Rye straw

Trials on rye straw were conducted in Denmark (no GAP provided) and were evaluated against the GAP of the UK (GAP 0.54-1.4 kg ae/ha, < 30% grain moisture PHI 7–14 days). No trials matched GAP.

Sorghum fodder and hay

Trials on sorghum were conducted in the USA (GAP of 1.7 kg ae/ha PH grain moisture < 35%, PHI 7 days). Residues of glyphosate in fodder (stover) in trials approximating USA GAP were (n = 10): 2.9, 7.0, 8.2, 16, 16, 21, 28, 29, 30 and 33 mg/kg (total residues 2.9, 7.1, 8.4, 16, <u>16, 22</u>, 28, 29, 30 and 33 mg/kg). The Meeting recommended a maximum residue level for residues of glyphosate in sorghum fodder of 50 mg/kg (dry weight basis) based on a highest residue of 37.5 mg/kg (33 mg/kg \div 0.89 default dry matter content) and total residues highest and median levels of 33 and 19 mg/kg (as received) respectively.

Wheat straw

Trials on wheat were conducted in Belgium (no GAP provided), France (no GAP provided) and the UK (GAP of 0.54-1.4 kg ae/ha, < 30% grain moisture PHI 7 days). Trials conducted in Belgium, France and some UK trials were evaluated against the GAP of the Netherlands (GAP is 0.72–2.2 kg ae/ha, PHI 7–14 days).

Five trials in the UK matched GAP of that country with residues in straw of 6.3, 7.3, 18, 47 and 47 mg/kg (total residues 6.5, 7.8, 18, 48 and 48 mg/kg).

In four trials conducted in the UK according to GAP of the Netherlands residues in straw were 23, 27, 68 and 109 mg/kg. Two trials from Belgium matched GAP of the Netherlands with residues of 103 and 198 mg/kg (total residues 105 and 202 mg/kg). In eighteen trials conducted in France matching the GAP of the Netherlands glyphosate residues in straw were 7.8, 16, 20, 23, 24, 25, 25, 32, 46, 58, 70, 77, 90, 96, 98, 107, 120 and 130 mg/kg (total residues 7.9, 17, 23, 24, 25, 26, 33, 60, 71, 78, 90, 101, 111, 123 and 132 mg/kg).

The Meeting considered the residues from trials conducted according to the GAP of the UK and the Netherlands to be from the same population and to combine the residues for the purposes of estimation of a maximum residue level and STMR. Residues in wheat straw, in rank order were (n = 29): 6.3, 7.3, 7.8, 16, 18, 20, 23, 23, 24, 25, 25, 27, 32, 46, 47, 47, 58, 68, 70, 77, 90, 96, 98, 103, 107, 109, 120, 130 and 198 mg/kg (where measured total residues were 6.5, 7.8, 7.9, 17, 18, 23, 24, 25, 26, 26, 33, <u>48</u>, 48, 60, 71, 78, 90, 101, 105, 111, 123, 132 and 202 mg/kg). The Meeting recommended a

maximum residue level for glyphosate in wheat straw of 300 mg/kg (dry weight basis) based on a highest residue of 225 mg/kg (198 mg/kg \div 0.88 default dry matter content) as well as highest and median values for total residues of 202 and 48 mg/kg respectively, both on an as received basis.

The Meeting agreed to withdraw its previous recommendation for straw and fodder (dry) of cereal grains of 100 mg/kg.

Almond hulls

Trials on tree nuts (almonds, pecans, macadamias and walnuts) were conducted in the USA (GAP of 0.43–4.3 kg ae/ha, directed applications, with a PHI of 3 days). No trials matched GAP.

Cotton gin by-products

Trials on conventional cotton were conducted in the US (GAP of 1.7 kg ae/ha, with a PHI of 7 days). No trials matched GAP for conventional cotton.

Trial data on glyphosate tolerant cotton (GAP 1.7 kg ae/ha, PHI 7 days) was also submitted. Residues of glyphosate in cotton gin by-products were found to be (n = 16): 5.8, 8.6, 16, 19, 21, 31, 34, 36, 37, 41, 42, 67, 70, 84, 91 and 126 mg/kg (total residues 5.9, 8.7, 16, 19, 21, 31, 35, 37, 37, 41, 42, 68, 71, 85, 92 and 128 mg/kg).

The Meeting estimated a highest residue level for cotton by-products of 128 mg/kg and a median level of 37 mg/kg, both on an as received basis.

Rape straw

Trials on conventional rape were conducted in the Sweden (No GAP) and were evaluated against the GAP of the UK (GAP 1.4 kg ae/ha, PHI 14 days). One trial matched GAP of the UK with residues in straw of 30 mg/kg The Meeting considered a single trial insufficient for estimation of a maximum residue level.

Fate of residues during processing

The Meeting received processing studies for glyphosate in olives, soya beans, sugar beet, barley, maize, oats, sorghum, wheat, cotton seed, linseed, rape seed, sugarcane, coffee beans and tea leaves, investigating the effects of washing and further processing on incurred residues of glyphosate and AMPA in a range of processing fractions. Only the processing studies relevant to commodities for which maximum residue levels were estimated are reported below.

In trials from the US conventional and glyphosate tolerant <u>soya beans</u> were processed according to simulated commercial practices into hulls, meal and oil (crude and refined). Median processing factors for hulls, meal and oil prepared according to commercial procedures were 4.5 (n = 3, range 3.8–5.2) for hulls, 1.0 (n = 3, range 0.8–1.0) for meal and < 0.01 (n = 4, range < 0.01–0.02) for crude and refined oil. Median processing factors for total residues were 4.1 (n = 3, range 2.1–5.0) for hulls, 0.89 (n = 3, range 0.83–0.95) for meal and < 0.02 (n = 4, range 0.01–< 0.04) for crude and refined oil.

The Meeting considered that using the median processing factors from the various studies would be appropriate, to reflect the different commercial practices, and estimated soya bean processing factors for glyphosate of 4.5 in hulls, 1.0 in meal and < 0.01 in oil. For total residues, processing factors of 4.1 in hulls, 0.89 in meal and < 0.02 in oil are established. As residues did not concentrate in oil the Meeting did not consider it necessary to recommend a maximum residue level.

Processing studies for <u>barley</u> to beer and distilled spirit were reported however the reported processing factors would exceed the theoretical maximum transfer and the results were not considered further.

In a study on processing (wet and dry milling) of glyphosate tolerant maize, processing factors for aspirated grain dust were 1.6 for both glyphosate and total residues. For bran, the processing factor for dry milling was 1.2 and for wet milling 0.45. Flour and meal had processing factors of 1.1 for glyphosate and total residues while the processing factors for gluten, starch and refined oil were all < 0.05 for glyphosate and < 0.33 for total residues.

Median processing factors for glyphosate in oat processed commodities for hulls, kernels and rolled oats were 1.8 (n = 4, range 1.5–2.3), 0.2 (n = 4, range 0.2-0.2) and 0.2 (n = 4, range 0.1–0.3) respectively.

Sorghum was processed in a study that approximated commercial practices to yield bran, flour, germ, grain dust, grits (medium) and starch. Mean processing factors (n = 2) for glyphosate residues were 5.0, 0.34, 0.02, 4.9, 0.47 and 0.01 respectively for bran, flour, germ, grain dust, grits (medium) and starch.

Four wheat processing studies were made available to the Meeting. Median glyphosate or best estimates of processing factors for bran, whole meal, flour and whole meal bread were 1.7, 0.46, 0.105 and 0.36. As residues concentrate in bran, the Meeting decided to estimate highest anticipated residues in bran based on the highest residue found from trials used to estimate the maximum residue level and mean processing factor. The Meeting confirmed its previous recommendation of a maximum residue level for wheat bran (unprocessed) of 20 mg/kg based on a high glyphosate residue of $9.5 \times 1.7 = 16$ mg/kg. The Meeting agreed to withdraw its recommendations for other processed commodities for which residues did not concentrate, i.e., wheat flour and wheat wholemeal.

Data on processing of sugar cane approximating commercial practices were made available to the Meeting. Although the application rates used on the cane processed to bagasse, molasses, raw and refined sugar were higher than the current GAP in the USA the Meeting decided to use the processing data for cane harvested 28 to 35 days after the last application. Median or best estimates of glyphosate processing factors for bagasse, molasses, raw and refined sugar were: 0.275, 8.25, 0.80 and 0.24 respectively. Using the STMR of 0.27 and high residue of 0.97 for sugar cane and the relevant processing factors, the Meeting estimated a maximum residue level for glyphosate of 10 mg/kg for sugar cane molasses together with a median residue of 2.3 mg/kg for total residues.

In a cotton processing study approximating commercial practices glyphosate processing factors for kernels, hulls, meal, crude oil, refined oil and bleached oil were 0.07, 0.33, 0.11, < 0.1, < 0.1 and < 0.1 respectively. As residues of AMPA were all below the limit of quantification, the processing factors for total residues are the same as for glyphosate. Residues did not concentrate in cotton seed oil. The Meeting agreed to withdraw its previous recommendations for the commodities cotton seed oil (crude) and cotton seed oil (edible).

Processing factors and high residue values relevant to maximum residue estimation (glyphosate) and STMR and median residue based on total residues are summarized below in Table 130.

Commodity	HR _{glyphosate} (mg/kg)	PFglyphosate	High residue (mg/kg)	STMR _{total} (mg/kg)	PF _{total residue}	STMR-P/ median residue (mg/kg)
Soya beans	17			5.0		
Meal		1.0			0.89	4.45
Hulls		4.5			4.1	20.5
Crude oil		< 0.01			< 0.02	< 0.1
Maize	3.0		•	< 0.12		
Aspirated grain dust		1.6			1.6	0.19
Bran		1.2	3.6		1.2	0.14
Flour		1.1	3.3		1.1	0.13
Meal		1.1			1.1	0.13
Gluten		< 0.05			< 0.33	0.04
Refined oil		< 0.05			< 0.33	0.04
Starch		< 0.05			< 0.33	0.04
Oats	14			4.75		
Hull		1.8				8.55a
Kernel		0.2				0.95a
Rolled oats		0.2				0.95a
Sorghum	13			4.8		
Bran		5.0	65		5.0	24
Flour		0.34			0.32	1.5
Germ		0.02			< 0.03	0.14
Grain dust		4.9			4.8	23
Grits		0.47			0.46	2.2
Starch		0.01			< 0.03	0.14
Wheat	9.5			1.05		
Whole meal		0.46			0.46	0.48
Flour		0.105			0.105	0.11
Bran		1.7	16		1.7b	1.8
Whole meal bread		0.36			0.36	0.38
Cottonseed	28			5.2		
Kernels		0.07	1		0.07	0.36
Hulls		0.33	1 1		0.33	1.7
Meal		0.11	1 1		0.11	0.57
Crude oil		< 0.1			< 0.1	0.52
Refined oil		< 0.1	1 1		< 0.1	0.52
Bleached oil		< 0.1	1 1		< 0.1	0.52
Rape	12		· ·	0.93		
Seedcake		2.5	1			2.3a
Crude oil		< 0.1	1			
Refined oil		< 0.1	1 1			
Sugarcane	0.97			0.27		
Raw sugar		0.8			0.8	0.216
Refined sugar		< 0.24			< 0.24	0.065
Molasses		8.25	8.29		8.65	2.3
Bagasse		0.275			0.275	0.074

Table 130. Calculated processing factors.

a = processing factors for total residues were not available, however residue data suggests AMPA is either present at less than 10% of the glyphosate residue level or not detected at levels above the limit of quantitation. In these cases the glyphosate processing factors and total residue processing factors would not be significantly different

b where residues of AMPA were measured they were <LOQ. The Meeting decided to use the larger database of glyphosate processing factors to estimate the median processing factor for total residues

Farm animal dietary burden

The Meeting estimated the farm animal dietary burden of glyphosate residues using the diets in Appendix IX of the *FAO Manual* (FAO 2002).

The calculation from the MRLs provides the feed levels suitable for animal commodity MRL estimation, while the calculation from feed STMRs is suitable for estimation of animal commodity

STMRs. DM is dry matter. The percent dry matter (DM) is taken as 100% where MRLs and STMRs are already expressed on a dry weight.

Commodity Highest				HR/STMR Diet content (%)					Residu	Residue contribution, mg/kg			
-	residue/	Group			Beef	Dairy	Swine	Poultry		Dairy		Poultry	
	STMR	-			cattle	cows		-	cattle	cows		-	
Alfalfa forage	154	AL	35	440									
Alfalfa hay	344	AL	89	383									
Barley grain	20	GC	88	22.73	15	15	80	75	3.41	3.41	18.18	17.05	
Barley straw	162	AS	89	182									
Maize grain	3	GC	88	3.41									
Maize aspirated grain fractions	0.19	CF	85	0.22									
Maize milled by- products (meal)	0.13	CF	85	0.15									
Maize fodder (stover)	43	AS	83	51.8									
Maize forage	4.7	AF	40	11.7									
Cotton seed	28	SO	88	33.38	25	25			8.35	8.35			
Cotton gin by- products	37	AM	90	41.11									
Cotton seed meal	0.57	AM	89	0.64									
Cotton seed hulls	1.7	AM	90	1.89									
Grass forage	615	AS		615	60	60			369	369			
Grass hay	262	AS	88	298									
Oats grain	14	GC	89	15.73									
Oats straw	64	AS	90	71.11									
Pea seed	2.1	VD	90	2.33									
Pea hay	320	AL	88	363.64									
Sorghum grain	13	GC	86	15.12									
Sorghum fodder	33	AS	88	37.50									
(stover)													
Sorghum aspirated grain fraction	.23	CF	85	27									
Soya bean grain	20	VD	89	22.5			20	20			4.5	4.5	
Soya bean meal	4.45	AL	92	4.84									
Soya bean hulls	20.5	AL	90	22.78				5				1.14	
Sugar cane molasses	2.3	DM	75	3.07									
Wheat grain	9.5	GC	89	10.67									
Wheat straw	202	AS	88	230									
Wheat milled by-	1.8	CF	88	2.05									
products (bran)													
TOTAL					100	100	100	100	381	381	22.7	22.7	

Table 131. Calculation of the dietary burden for maximum residue estimation

Table 132. Calculation of the dietary burden for STMR estimation

Commodity	STMR/ STMR- P			STMR/ STMR- P		ntent (%)			Residue	e contribu	tion, mg	/kg
	residue	Group	% DM	÷DM	Beef cattle	Dairy cows	Swine	Poultry	Beef cattle	Dairy cows	Swine	Poultry
Alfalfa forage	75	AL	35	214.29								
Alfalfa hay	190	AL	89	213.5								
Barley grain	7.65	GC	88	8.69	20	20	80	75	1.74	1.74	6.95	6.52
Barley straw	48	AS	89	53.9								
Maize grain	0.12	GC	88	0.14								
Maize aspirated grain fractions	0.19	CF	85	0.22								
Maize milled by- products (meal)	0.14	CF	85	0.16								

Commodity	STMR/ STMR- P			STMR/ STMR- P	Diet co	ntent (%)			Residue	e contribu	ition, mg	/kg
	residue	Group	% DM	÷DМ	Beef cattle	Dairy cows	Swine	Poultry	Beef cattle	Dairy cows	Swine	Poultry
Maize fodder (stover)	24	AS	83	28.92								
Maize forage	1.2	AF	40	3.0								
Cotton seed	5.2	SO	88	5.91								
Cotton gin by- products	37	AM	90	41.11								
Cotton seed meal	0.57	AM	89	0.64								
Cotton seed hulls	1.7	AM	90	1.89								
Grass forage	431	AS		431	60	60			258.6	258.6		
Grass hay	190	AS	88	215.9								
Oats grain	4.15	GC	89	4.66								
Oats straw	27	AS	90	30								
Pea seed	0.5	VD	90	0.56								
Pea hay	102	AL	88	115.91								
Sorghum grain	4.8	GC	86	5.58								
Sorghum fodder (stover)	19	AS	88	21.59								
Sorghum aspirated grain fraction	23	CF	85	27	20	20			5.41	5.41		
Soya bean grain	5.0	VD	89	5.62				5				0.28
Soya bean meal	4.45	AL	92	4.84								
Soya bean hulls	20.5	AL	90	22.78			20	20			4.56	4.56
Sugar cane molasses	2.3	DM	75	3.07								
Wheat grain	1.05	GC	89	1.18								
Wheat straw	48	AS	88	54.55								
Wheat milled by-	1.8	CF	88	2.05								
products (bran)												
TOTAL					100	100	100	100	266	266	11.5	11.4

The glyphosate dietary burdens for animal commodity MRL and STMR estimation (residue levels in animal feeds expressed on dry weight, figures in brackets are for STMRs) are: beef and dairy cattle 381 (266) ppm, swine 23 (11.5) ppm and poultry 23 (11.4) ppm.

Farm animal feeding studies

The Meeting received information on the residue levels arising in animal tissues and milk when dairy cows were fed rations containing a 9:1 mixture of glyphosate and AMPA at total combined daily dietary levels of 40, 100 and 400 ppm. No residues were detected in milk from animals receiving the highest feed level. Tissue residues in single animals slaughtered after 28 days of feeding treated rations were < 0.05 mg/kg at all feed levels in fat and muscle for both glyphosate and AMPA. Glyphosate residues in liver were 0.06, 0.07 and 0.21 mg/kg for the 40, 100 and 400 ppm feed levels respectively (total residues 0.06, 0.07 and 0.47 mg/kg). In kidney, glyphosate residues were 0.32, 0.82 and 3.3 mg/kg for the three feed levels (total residues 0.42, 1.2 and 4.5 mg/kg). By 28 days after feeding treated rations ceased, residues in tissues were < 0.05 mg/kg in all tissues and milk.

The Meeting also received information on the residue levels arising in tissues when pigs were fed a ration with glyphosate and AMPA in a 9:1 ratio for 28 days at 40, 120 and 400 ppm in the diet. No residues above LOQ were detected in fat at any feed level. Maximum residues in tissue samples were for animals fed at 400 ppm and were liver 0.72 (total residue 1.4) mg/kg, kidney 9.1 (11) mg/kg, muscle 0.06 (0.06) mg/kg and fat < 0.05 (< 0.05) mg/kg. At the 40 ppm feed level, maximum residues were liver 0.06 (total residue 0.06) mg/kg, kidney 0.32 (0.42) mg/kg, muscle < 0.05 (< 0.05) mg/kg and fat < 0.05 (< 0.05) mg/kg. Residues in tissues were < 0.05 mg/kg for all feed levels at 28 days after access to treated feed was stopped.

A residue study on laying hens fed a diet incorporating glyphosate and AMPA in a 9:1 ratio at 40, 120 and 400 ppm for periods of up to 28 days was made available to the Meeting. At the highest feeding levels, maximum glyphosate residues in eggs were 0.12 (total residues 0.16) mg/kg, no residues were detected in eggs at the lowest feeding level. Maximum residues in tissues at the highest feeding level were < 0.05 mg/kg for fat and muscle and 0.61 (total residue 1.1) mg/kg for liver and 4.3 (4.8) mg/kg for kidney. At the lowest feed level of 40 ppm maximum residues in tissues were < 0.05 mg/kg for fat and muscle and 0.06) mg/kg for liver and 0.35 (0.35) mg/kg for kidney.

Animal commodity maximum residue levels

The dietary burdens used for maximum residue and STMR estimation for beef and dairy cattle at 381 and 266 ppm are close to the maximum feed level of 400 ppm and this feed level was used to estimate residue levels in milk and cattle tissues. Maximum residues of glyphosate expected in tissues are: fat < 0.05 mg/kg, muscle < 0.05 mg/kg, liver 0.20 mg/kg, kidney 3.1 mg/kg and the mean residue for milk < 0.05 mg/kg. The STMR dietary burden for beef and dairy cattle is 266 ppm. The Meeting estimated STMR values for total residues from the mean total residues obtained at the 400 ppm feeding level. The estimated STMRs were: meat < 0.05 mg/kg, fat < 0.05 mg/kg, kidney 2.9 mg/kg, liver 0.29 mg/kg and milks < 0.05 mg/kg.

Dietary burden (mg/kg) ¹ Feeding level [ppm] ²		Residues ³ (mg/kg)									
		Milk	Fat		Muscle		Liver		Kidney		
recuiling level	[ppm]	Mean	HR	Mean	HR	Mean	HR	Mean	HR	Mean	
MRL beef	(381)		(< 0.05)		(< 0.05)		(0.20)		(3.1)		
	[400]		< 0.05		< 0.05		0.21		3.3		
MRL dairy	(381)	(< 0.05)									
	[400]	< 0.05									
STMR beef	(266)			(< 0.05)		(< 0.05)		(0.29)		(2.9)	
	[400]			< 0.05		< 0.05		0.43		4.3	
STMR dairy	(266)	(< 0.05)									
2	[400]	< 0.05									

Table 133. Estimated and actual residue levels in milk and cattle tissues.

¹ Values in parentheses are the estimated residues at the dietary burdens

² Values in square brackets are the actual feeding levels in the transfer study

³ Residue values in parentheses in italics are obtained from the dietary burden, feeding levels in the transfer study and the residues found in the transfer study. Mean is mean animal tissue (or milk) residue in the relevant feeding group. The residues for HR calculations are glyphosate residues while those for STMR calculations are total residues (glyphosate + $1.5 \times AMPA$).

The maximum dietary burden for pigs is 23 ppm. The levels of residues in tissues other than kidney all expected to be < 0.05 mg/kg for both glyphosate and AMPA when fed at this level. Residues in kidney at the 40 ppm feed level were a maximum of 0.6 mg/kg (total residues 0.72 mg/kg, mean total residues 0.43 mg/kg). Residues of glyphosate in kidney of animals fed at 23 ppm in the diet are estimated to be 0.345 mg/kg. Mean total residues in kidney of animals fed at 11.5 ppm in the diet are estimated to be 0.12 mg/kg. The STMR values for pig meat and pig edible offal as estimated to be 0 and 0.12 mg/kg.

The Meeting estimated a maximum residue level of 0.5 mg/kg for pig edible offal. The Meeting also estimated maximum residue levels for meat (from mammals other than marine mammals) of 0.05 (*) mg/kg; edible offal mammalian [except pigs] of 5 mg/kg and milks 0.05 (*) mg/kg. The recommendations replace the previous recommendations of 0.1 (*) mg/kg for cattle meat, 2 mg/kg for cattle edible offal, 0.1 (*) mg/kg for cattle milk, 0.1 (*) mg/kg for pig meat and 1 mg/kg for pig, edible offal.

The maximum dietary burden for poultry is 23 ppm. The levels of glyphosate and AMPA residues in fat, muscle and eggs are all expected to be < 0.05 mg/kg when fed at this level. Residues of glyphosate in liver and kidney at the 40 ppm feed level were 0.06 mg/kg for liver and 0.35 mg/kg for kidney. Mean total residues in liver and kidney at the 40 ppm feed level were 0.055 and 0.31 mg/kg respectively. Residues of glyphosate in liver and kidney of birds fed at 23 ppm in the diet are estimated to be < 0.05 and 0.20 mg/kg. Mean total residues in liver and kidney of birds fed at 11.4 ppm are estimated to be < 0.05 and 0.088 mg/kg.

The Meeting estimated maximum residue levels for poultry meat 0.05 (*) mg/kg; poultry edible offal 0.5 and eggs 0.05 (*) mg/kg. The recommendation for poultry meat and eggs replace the previous recommendation, both 0.1 (*) mg/kg. As no residues are expected at the dietary burden for STMR estimation, the poultry meat and eggs STMRs are zero. The STMR for liver and kidney are estimated to be 0.05 and 0.088 mg/kg respectively.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue (for compliance with MRLs): glyphosate

Definition of the residue (for estimation of dietary intake): sum of glyphosate and AMPA expressed as glyphosate.

	Commodity	Recommended	l MRL (mg/kg)	STMR or STMR-P	
CCN	Name	New	Previous	(mg/kg)	
AL 1020	Alfalfa fodder	500			
AL 1021	Alfalfa forage	W			
FI 0327	Banana	0.05 (*)		0.05	
GC 0640	Barley	W	20	7.65	
AS 0640	Barley straw and fodder, dry	400			
VD 0071	Beans (dry)	2	2	0.17	
Al 0061	Bean fodder	200			
MM 0812	Cattle meat	W	0.1 (*)		
ML 0812	Cattle milk	W	0.1 (*)		
MO 0812	Cattle, Edible offal of	W	2		
GC 0080	Cereal grains [except maize and rice]	30		3.7	
SO 0691	Cotton seed	40	10	5.2	
OC 0691	Cotton seed oil, Crude	W	0.05 (*)		
OR 0691	Cotton seed oil, Edible	W	0.05 (*)		
MO 0105	Edible offal (mammalian) (except pigs)	5		2.9	
PE 0112	Eggs	0.05 (*)	0.1 (*)	0	
AS 0162	Hay or fodder (dry) of grasses	500	50		
FI 0341	Kiwifruit	W	0.1 (*)		
GC 0645	Maize	5		0.12	
AF 0645	Maize forage	W	1		
AS 0645	Maize fodder	150			
MM 0095	Meat (from mammals other than marine mammals)	0.05 (*)		0.05	
ML 0106	Milks	0.05 (*)		0	
GC 0647	Oats	W	20	4.15	
AS 0647	Oat straw and fodder, dry	100			
VD 0072	Peas (dry)	5	5	0.5	
AL 0072	Pea hay or pea fodder (dry)	500			
MM 0818	Pig meat	W	0.1 (*)	0	
MO 0818	Pig, Edible offal of	0.5	1	0.12	
PM 0110	Poultry meat	0.05 (*)	0.1 (*)	0	

Table 134. Summary of Recommendations.

	Commodity	Recommende	ed MRL (mg/kg)	STMR or STMR-P
CCN	Name	New	Previous	(mg/kg)
PO 0111	Poultry, Edible offal of	0.5		0.05 liver 0.088 kidney
SO 0495	Rape seed	20	10	0.93
GC 0649	Rice	W	0.1 (*)	
GC 0651	Sorghum	W	20	4.8
AS 0651	Sorghum straw and fodder, dry	50		
VD 0541	Soya bean (dry)	20	20	5.0
VP 0541	Soya bean (immature seed)	W	0.2	
AL 0541	Soya bean fodder	W	200	
AL 1265	Soya bean forage (green)	W	5	
AS 0081	Straw and fodder (dry) of cereal grains	W	100	
GS 0659	Sugar cane	2		0.27
DM 0659	Sugar cane molasses	10		2.0
SO 0702	Sunflower seed	7		0.395
VO 0447	Sweet corn (corn-on-the-cob)	W	0.1 (*)	
GC 0654	Wheat	W	5	1.05
CM 0654	Wheat bran, Unprocessed	20	20	1.8
CF 1211	Wheat flour	W	0.5	
AS 0654	Wheat straw and fodder, dry	300		
CF 1212	Wheat wholemeal	W	5	

* the MRL is estimated at or about the LOQ

DIETARY RISK ASSESSMENT

Short-term intake

The 2004 JMPR concluded that it was unnecessary to establish an ARfD for glyphosate. The Meeting therefore concluded that short-term dietary intake of glyphosate residues is unlikely to present a risk to consumers.

Long-term intake

The evaluation of glyphosate has resulted in recommendations for MRLs and STMRs for raw and processed commodities. Consumption data was available for 32 food commodities and were used in the dietary intake calculation.

The International Estimated Daily Intakes for the five GEMS/Food regional diets, based on estimated STMRs were in the range 0–1% of the maximum ADI of 1 mg/kg bw for the sum of glyphosate and AMPA. The Meeting concluded that the long-term intake of residues of glyphosate and AMPA from uses that have been considered by the JMPR is unlikely to present a public health concern. The results are shown in Annex 3 of the JMPR 2005 Report.

REFERENCES:

- Alferness, P.L. 1996 TOUCHDOWN®: Determination of Glyphosate (N-(phosphonomethyl)glycine) in crops by gas chromatography and mass-selective detection RR 92-042B RES2 (1996)
- Alferness, P.L. and Wiebe, L.A. 2001. Determination of glyphosate and aminomethylphosphonic acid in crops by capillary gas chromatography with mass selective detection: collaborative study JAOAC Int, 2001, (84) 823
- Anderson L and Butters C. 2000. Glyphosate/ Glyphosate-trimesium Residue levels in barley from trials carried out in Northern Europe in 1999. Zeneca Agrochemicals, Report RJ2907B. Unpublished
- Anderson L and Butters C. 2000. Glyphosate/Glyphosate-trimesium: Residue levels in wheat trials carried out in Northern Europe during 1999. Zeneca Report No. RJ2910B.Unpublished
- Anderson L, Ely LV and Alevra E. 1997. Glyphosate-trimesium: Residue levels in olives and processed fractions from trials carried out in Greece in 1996. Zeneca Agrochemicals, 1997. Zeneca Agrochemicals, Report RJ2397B. Unpublished

Anderson L, Ely LV and Volpi E. 1997. Glyphosate-trimesium: Residue levels in olives and processed fractions from trials carried out in Italy in 1996. Zeneca Agrochemicals, Report RJ2383B. Unpublished

Baszis SR. 1980. Glyphosate residues in cotton following topical treatment with Roundup herbicide. Monsanto Company, Report MSL 1283. Unpublished

- Baszis S, Dubelman S, Lottman CM, Taylor AL and Quintin RF. 1979. Glyphosate residues in tea leaves following postemergent directed treatment with Roundup herbicide. Monsanto Company, Report MSL 0980. Unpublished
- Baszis S, Dubelman S, Quintin RF, Wilson GR, Taylor AL and Steinmetz JR. 1981. Glyphosate residues in brewed and instant tea following postemergent directed treatment in tea plantations with Roundup herbicide. Monsanto Company, Report MSL 01582. Unpublished
- Beasley RK. 1978. Glyphosate residues in sugarcane and related mill fractions following sugarcane ripener treatment. Monsanto Company, Report MSL 0264. Unpublished
- Belvaux X. 2002. Residues of glyphosate and AMPA in kiwi following two treatments with MON52276 Field trials in Italy, 2001. Monsanto Company, Report MLL 31678. Unpublished
- Bleeke M. 1997. Nature of Glyphosate Residues in Cotton Plants (Genotype Line #1445) Tolerant to Roundup Herbicide. Monsanto Company, Report MSL 14113. Unpublished.
- Bleeke M. S. 2003. Magnitude of Glyphosate Residues in Roundup Ready® Flex Cotton Raw Agricultural Commodities Following Topical Applications of a Glyphosate-Based Formulation. Monsanto Company, Report MSL 17635. Unpublished
- Bleeke M. S. and McCann MC. 1996. Magnitude of Glyphosate Residues in Glyphosate-Tolerant Sugar Beet Raw Agricultural Commodities. Monsanto Company, Report MSL 14542. Unpublished
- Bodden, R. M. 1988 Metabolism study of synthetic ¹³C/¹⁴C-labeled Glyphosate and Aminomethylphosphonic acid in Lactating goats. Part 1. Monsanto report MSL7586 Unpublished
- Bodden, R. M. 1988a Metabolism study of synthetic ¹³C/¹⁴C-labeled Glyphosate and Aminomethylphosphonic acid in Laying hens. Part 1. Monsanto report MSL7591 Unpublished
- Bowler D. 1996. [P-Methylene-¹⁴C] Glyphosate acid: Aqueous hydrolysis at pH 5,7 and 9 and 25 °C (WRC-003). Zeneca Agrochemicals, Report RR 96-002B. Unpublished.
- Costa Prado, A. 2002. Report on a study of the residues from glyphosate and its metabolite AMPA in banana fruit. CEPPA Report 5385. Monsanto Company. Unpublished
- Cowell JE. 1976. Glyphosate residues in nuts following post-directed treatments with Roundup herbicide. Monsanto Company, Report FR 442. Unpublished
- Cowell JE. 1976a. Glyphosate residues in coffee following post-directed treatments with Roundup herbicide. Monsanto Company, Report FR 434. Unpublished
- Cowell, JE, Kunstman JL and Nord PJ. 1986. Validation of an analytical residue method for analysis of glyphosate and metabolite: and interlaboratory study. J. Ag. Food Chem. (34), 955
- Culkin JS. 1999. Magnitude of Glyphosate residues in Roundup Ready corn raw agricultural commodities following drop nozzle application of Roundup ultra herbicide. Monsanto Company, Report MSL 15334. Unpublished
- Davies D J 1996 Glyphosate acid: Excretion and Tissue Retention of a Single Oral Dose (10 mg/kg) in the Rat Following Repeat Dosing, Central Toxicology Laboratory, Zeneca report no. CTL/P/4944 Unpublished
- Ely, S.V. 2001. Residue analytical method for the analysis of N-(phosphonomethyl) glycine (PMG) and aminomethylphosphonic acid (AMPA) in crops.
- Esser T. 1996. [P-Methylene-¹⁴C] Glyphosate acid: Photodegradation in a buffered aqueous solution at pH 5 and 7 by natural sunlight. Zeneca Agrochemicals, Report RR96-028B. Unpublished.
- Feng, P. and Patanella, J. E. 1988a. Metabolism of ¹⁴C/¹³C-Labeled Glyphosate and Aminomethylphosphonic Acid in Laying Hens. Part II., Monsanto Report MSL7420 Unpublished
- Feng, P. and Patanella, J. E. 1988. Metabolism study of synthetic ¹³C/¹⁴C-labeled
- Glyphosate and Aminomethylphosphonic acid in
- Lactating goats, part II., Monsanto Report MSL7458 Unpublished
- Galicia, H. and Flückiger, H., 1993. Degradation of ¹⁴C-glyphosate in Three Soils Incubated Under Aerobic Conditions. RCC Umweltchemie AG, Switzerland, Project 271618. Cheminova Agro A/S report (CHA Doc. No. 157-GLY) Unpublished
- Galicia, H. and Morgenroth, U., 1993. ¹⁴C-glyphosate Degradation and Metabolism in Soil Incubated Under Aerobic Conditions. RCC Umweltchemie AG, Switzerland, Project 246486. Cheminova Agro A/S report (CHA Doc. No. 151-GLY) Unpublished
- Goure WF. 1993. Glyphosate Residues in Alfalfa Hay Following Preharvest Treatment with Roundup Herbicide in Canada During the 1992 Growing Season. Monsanto Company, Report MSL 12617. Unpublished
- Goure WF and Steinmetz JR. 1994. Magnitude of Glyphosate Residues in Soybean Raw Agricultural Commodities (Year 1992). Monsanto Company, Report MSL 13462. Unpublished
- Goure WF and Steinmetz JR. 1994. Magnitude of Glyphosate Residues in Soybean Raw Agricultural Commodities (Year 1993). Monsanto Company, Report MSL 13464. Unpublished
- Goure WF and Steinmetz JR. 1994. Magnitude of Glyphosate Residues in Soybean Processed Fractions (Year 1992). Monsanto Company, Report MSL 13463. Unpublished
- Goure WF, Bleeke M, Nadeau R, George C and Lee T. 1994. Nature of Glyphosate Residues in Soybeans Tolerant to Roundup Herbicide. Monsanto Company, Report MSL 13520. Unpublished.
- Gustin C. 1999. Glyphosate and AMPA residues in wheat and barley treated pre-harvest with Roundup herbicide and MON 14420. 1998 Field trials in Belgium and France. Monsanto Company, Report MLL 30815. Unpublished
- Gustin C. 1999a. Glyphosate and AMPA residues in Oilseed Rape Treated Pre-harvest with Roundup Herbicide and MON 14420. 1998 Field trials in Belgium and France. Monsanto Company, Report MLL 30817. Unpublished

Gustin C. 2000. Glyphosate and AMPA residues in oil seed rape treated pre-harvest with Roundup (MON 2139) and MON 78294. 1999 Field trials in Belgium and France. Monsanto Company, Report MLL 31336. Unpublished

Hampton M. 2002. Glyphosate: Residue levels in oats (grain and straw) from trials conducted with Touchdown IQ and Touchdown XP in Canada during 2001. Syngenta, Report CER 01307/01. Unpublished

Hampton M. 2002. Glyphosate: Residues in canola (seed) from trials conducted with Touchdown IQ and Touchdown XP in Canada during 2001. Syngenta, Report CER 1403/01. Unpublished

- Hontis AM. 1991. Glyphosate and AMPA residues in wheat and barley following application of MON 52276, MON 44068 and Roundup herbicide, one week before crop harvest. French trials 1991. Monsanto Company, Report MLL 30281. Unpublished
- Hontis AM. 1992. Residues of glyphosate /AMPA in olives and olive oil following use of Sting SE Spanish field trials 1990/1992. Monsanto Company, Report MLL 30297. Unpublished
- Hontis AM. 1993. Residues of glyphosate and AMPA in olives and olive oil, following a soil treatment with MON 65040 herbicide. Italian field trials 1993. Monsanto Company, Report MLL 30319. Unpublished
- Hontis AM. 1993a. Residues of Glyphosate/AMPA in Winter Oilseed Rape Following Application of Mon 52276, Mon 44068 and Roundup Herbicide Two Weeks Before Harvest. UK Field Trials 1992. Monsanto Company, Report MLL 30321. Unpublished
- Hontis AM. 1996. Residues of glyphosate and AMPA in field beans (Vicia Faba) treated pre-harvest with MON 52276 herbicide. U.K. and Belgian field trials, 1995. Monsanto Company, Report MLL 30463. Unpublished
- Hontis AM. 1996a. Residues of glyphosate and AMPA in peas treated pre-harvest with MON 52776 herbicide. U.K. and Belgian field trials, 1995. Monsanto Company, Report MLL 30464. Unpublished
- Hontis AM. 1996b. Residues of glyphosate and AMPA in olives and olive oil, following a soil treatment with Roundup herbicide. Spanish field trials 1995. Monsanto Company, Report MLL 30469. Unpublished
- Horner LR. 1989. Glyphosate Residues in Canadian Field Peas and Lentils Following Preharvest Applications of Roundup Herbicide. Monsanto Company, Report MSL 9398. Unpublished
- Hubbard, NS, 1993. Determination of glyphosate in pasture grasses, stability report: analytical phase final report. Huntington Life Sciences Report No. 91212. Cheminova A/S, Report 456 GLY. Unpublished.
- Hubbard NS. 1993a. Determination of glyphosate in soybean raw agricultural commodities (RAC), stability report: analytical phase final report Huntington Life Sciences Report No. 91210. Cheminova A/S, Report 455 GLY. Unpublished.
- Jones RN and Alevra, E. 1996. Glyphosate-trimesium: Residue levels in olives from trials carried out in Greece in 1995. Zeneca Agrochemicals, Report RJ2217B. Unpublished
- Jones RN and Volpi E. 1995. Glyphosate-trimesium: Residue levels in olives from trials carried out in Italy in 1995. Zeneca Agrochemicals, Report RJ2218B. Unpublished
- Kadenczki L and Suszter G. 2001. Combined decline and magnitude of residues of glyphosate in sunflower seed grown in Hungary following applications of Roundup - Season 2000. Monsanto Company, Report 00 MON AA 05 04. Unpublished
- Kunda US and Bleeke MS. 2005. Magnitude of Glyphosate Residues in Roundup Ready Corn Processed Commodities Following Topical Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 16757. Unpublished.
- Kunstman JL. 1983. Glyphosate residues in soybeans and soybean fractions following recirculating sprayer and preharvest topical treatments with Roundup herbicide. Monsanto Company, Report MSL 3259. Unpublished
- Kurtzweil ML and Kunda US. 2002. Magnitude of Glyphosate Residues in dried shelled beans following preharvest application of Roundup UltraMAX Herbicide. Monsanto Company, Report MSL 17194. Unpublished
- Kwiatowski A. 2002. Glyphosate: Residue levels in Kiwi from trials conducted in Italy during 2001. Syngenta, Report 01JH133. Unpublished
- Kwiatowski A. 2002a. Glyphosate: Residue levels in Kiwi from trials conducted in Italy during 2001. Syngenta, Report 01JH034. Unpublished
- Kwiatowski A. 2002b. Glyphosate: Residue levels in Kiwi from trials conducted in Italy during 2001. Syngenta, Report 01JH131. Unpublished
- Kwiatowski A. 2002c. Glyphosate: Residue levels in Kiwi from trials conducted in Italy during 2001. Syngenta, Report 01JH132. Unpublished
- Lantos J. 2002d. Residue study with glyphosate and AMPA metabolite in sunflower by GC/MS. Monsanto Company, Report 99 GLY 01. Unpublished
- Leak S. 1992. Final Report on Project AS/1901/CN: Report on the Field Phase of a Study to generate Crop Samples for Residue Analysis following the application of CHE 3607 on Dried Peas. Cheminova A/S, Report GLY 141. Unpublished
- Leak S. 1993. Final Report on Projekt AS/1900/CN: Report on the Field Phase of a Programme to generate Crop Samples for Residue Analysis following the Application of CHE 3607 on Winter Field Beans. Cheminova A/S, Report GLY 140. Unpublished
- Leak S. 1993a. Final Report on Project AS/1909/CN: Report on the Field Phase of a Study to generate Crop Samples for Residue Analysis to monitor the Dissipation of Glyphosate following the Application of CHE 3607 on Dried Peas. Cheminova A/S, Report GLY 143. Unpublished
- Leak S. 1993b. Final Report on Project AS/1902/CN: Report on the Field Phase of a Study to Generate Crop Samples for Residue Analysis Following the Application of CHE 3607 on Linseed. Cheminova A/S, Report GLY 134. Unpublished

Leak S. 1994. Final Report on Project AS/2219/CN: Programme to generate Crop Samples for Residue Analysis to Monitor the Dissipation of Glyphosate following Application of Glyfos for Pre-Harvest Desiccation of Winter Field Beans. Cheminova A/S, Report GLY 262. Unpublished

Leak S. 1994a. Final Report on Project AS/2206/CN: Programme to generate Crop Samples for Residue Analysis Following Application of Glyfos with and without Frigate for Pre-Harvest Desiccation of Winter Oats. Cheminova A/S, Report GLY 282. Unpublished

Leak S. 1994b. Final Report on Project AS/2216/CN: Programme to Generate Crop Samples for Residue Analysis to Monitor the Dissipation of Glyphosate following Application of Glyfos With and without Frigate for Pre-Harvest Desiccation of Winter Oats. Cheminova A/S, Report GLY 261. Unpublished

Leak S. 1994c. Final Report on Project AS/2211/CN: Programme to Generate Crop Samples for Residue Analysis Following Application of Glyfos for Pre-Harvest Desiccation of Linseed. Cheminova A/S, Report GLY 267. Unpublished

Malik JM. 1975. CP 67573, residue and metabolism - part XXIV, the metabolism of CP 67573 in coffee trees. Monsanto Company, Report FR 344. Unpublished.

Manning MJ. 1991. Glyphosate Residues in Almond, Pecan, and Walnut Raw Agricultural Commodities Following Preharvest Application of Roundup Herbicide. Monsanto Company, Report MSL 11022. Unpublished

Manning, M.J. and Mueth, M.G. 1991a. Storage stability study of glyphosate and AMPA residues in swine tissues, dairy cow tissues and milk, laying hen tissues and eggs, Report MSL-7515, Monsanto Company, Unpublished.

Manning, M.J. and Wilson, G.R., 1987. Residue Determination of Glyphosate and AMPA in Dairy Cow Tissues and Milk Following a 28 Day Feeding Study, Monsanto report (MSL-6729) Unpublished

Manning, M.J. and Wilson, G.R., 1987a. Residue Determination of Glyphosate and AMPA in Laying Hen Tissues and Eggs Following a 28 Day Feeding Study, Monsanto report (MSL-6676) Unpublished

Manning, M.J. and Wilson, G.R., 1987b. Residue Determination of Glyphosate and AMPA in Swine Tissues Following a 28 Day Feeding Study, Monsanto report (MSL-6627) Unpublished

McCann MC. 1998. Magnitude of Glyphosate Residues in Grain Sorghum Raw Agricultural Commodities Following Preharvest Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 14918. Unpublished

McCann MC. 1999. Magnitude of Glyphosate Residues in Corn Raw Agricultural Commodities following Preharvest Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 14917. Unpublished

Mehrsheikh A. 2000. Metabolism of Glyphosate in Roundup Ready Sugarbeet. Monsanto Company, Report MSL 16247. Unpublished.

Mestdagh P. 1981. Residual glyphosate in processed wheat grains following a preharvest application of Roundup herbicide in the United Kingdom. Monsanto Company, Report MLL 30069. Unpublished

Mestdagh P. 1982. Glyphosate residues in cereal grain and straw following preharvest treatment with Roundup herbicide in the United Kingdom - 1982 trials - part I. Monsanto Company, Report MLL 30087. Unpublished

Mestdagh P 1983. Glyphosate residues in beans following Roundup herbicide preharvest applications, UK 1980/1982 and Denmark 1982 trials. Monsanto Company, Report MLL 30109. Unpublished

- Mestdagh P. 1983a. Residue analysis for glyphosate and AMPA in flax and processed fractions following preharvest Roundup herbicide treatments, UK and Ireland 1982 trials. Monsanto Company, Report MLL 30106. Unpublished
- Mestdagh P. 1983b. Residue analysis for glyphosate and AMPA in brassica seedcrops and processed fractions following preharvest Roundup herbicide treatments, UK and Scandinavian trials 1980-1982. Monsanto Company, Report MLL 30104. Unpublished
- Mestdagh P. 1984. Glyphosate residues in peas following preharvest application with Roundup herbicide in Denmark and Belgium. Monsanto Company, Report MLL 30131. Unpublished

Mestdagh P. 1985. Glyphosate residues in rye and oat following Roundup herbicide preharvest applications, Denmark 1984 trials. Monsanto Company, Report MLL 30150. Unpublished

Morgenroth, U., 1995. Storage stability of Glyphosate and AMPA in wheat grain and straw and in rye grain and straw RCC Umweltchemie AG Report No. 303614 – Cheminova A/S, Report 325 GLY. Unpublished.

Mueth MG. 1991. Storage stability of glyphosate residues in crop commodities. Monsanto Company, Report MSL 10843. (AA019646) Unpublished

Oppenhuizen ME. 1993. Magnitude of Glyphosate Residues Following Preharvest Use in Alfalfa. Monsanto Company, Report MSL 12953. Unpublished

Oppenhuizen ME. 1993a. Magnitude of Glyphosate Residues Following Preharvest Use in Milo Raw Agricultural Commodities. Monsanto Company, Report MSL 13037. Unpublished

Oppenhuizen ME 1994. Magnitude of Glyphosate Residues in Soybean Seed Following Preharvest Application of Roundup Herbicide. Monsanto Company, Report MSL 13283. Unpublished

Oppenhuizen ME. 1994a. Magnitude of Glyphosate Residues in Milo Processed Commodities Following Preharvest Use of Roundup Herbicide. Monsanto Company, Report MSL 13038. Unpublished

Oppenhuizen ME. 1995. Magnitude of Glyphosate Residues in Corn Raw Agricultural Commodities Following Preharvest Application of Roundup Herbicide. Monsanto Company, Report MSL 13654. Unpublished

Oppenhuizen ME. 1995a. Magnitude of Glyphosate Residues in Glyphosate-Tolerant Cotton Raw Agricultural and Processed Commodities. Monsanto Company, Report MSL 13884. Unpublished

Oppenhuizen ME. 1995b. Magnitude Of Glyphosate Residues In Corn Processed Commodities Following Preharvest Application Of Roundup Herbicide. Monsanto Company, Report MSL 13655. Unpublished

Oppenhuizen ME and Schuette S. 1995d. Supplement to Report MSL 7358: Validation of an analytical method for the determination of glyphosate and AMPA in animal tissues. Monsanto Company. Unpublished.

Pijanowski P. 1988. Validation of an analytical method for the determination of glyphosate and AMPA in animal tissues. Monsanto Company, Report MSL 7358. Unpublished. Powles P 1994 (¹⁴C)-Glyphosate: Absorption, distribution, metabolism and excretion following repeated oral administration to the dairy goat. Hazleton Europe report 676/9-1011. Cheminova Report No.: 279 GLY

Powles P 1994a (¹⁴C)-Glyphosate: Distribution, metabolism and excretion following repeated oral administration to the laying hen. Hazleton Europe report 676/8-1011. Cheminova Report No.: 276 GLY

Reding MA. 1978. CP 67573 (Roundup), determination of crop residues in olives and olive oil. Monsanto Company, Report A20-II. Unpublished

Robson M. 1991. Glyphosate: Determination of solubility in organic solvents. Hazelton UK, Project No. 6759-676/5. Cheminova A/S, Report 81 GLY. Unpublished.

Rocha JCB, Abakerli RB. 2002a. Study of glyphosate residues in bananas after an application of the formulation Roundup Transorb. Embrapa Report 37/2002. Monsanto Company. Unpublished

Rocha J.C.B. and Abakerli, R.B. 2002a. Study of glyphosate residues in bananas after the application of the formulation Roundup Original at the pre-harvest stage of the cultivation. Monsanto Company, Report Embrapa 53/2002. Unpublished

Rocha JCB and Abakerli RB. 2003. Study of glyphosate residues in bananas after the application of the formulation Roundup Transorb. Embrapa Report 57/2003. Monsanto Company. Unpublished

Rocha JCB and Abakerli RB. 2003a. Study of glyphosate residues in bananas after the application of the formulation Roundup Transorb. Embrapa Report 61/2003. Monsanto Company. Unpublished

Royer, A., Bricaud, N. and Menand, M., 2001. Development and validation of an analytical method for the determination of glyphosate and AMPA in plant (wheat, tomato, maize and lemon), animal (milk, egg and meat) products, soil and water (groundwater and surface water). Final Report GIRPA Study code: MON /GLYPH /2000.01

Rueppel ML and Suba LA. 1973. CP 67573, residue and metabolism - part X, the metabolism of CP 67573 in soybeans, cotton, wheat and corn. Monsanto Company, Report FR 304. Unpublished.

Schultz H. 1993. Determination of Residues of Glyphosate in Winter Field Beans (Seed and Haulm) - Treatment with CHE 3607 - UK, Season 1993. Cheminova A/S, Report GLY 305. Unpublished

Schultz H. 1994. Determination of Residues of Glyphosate in Winter Oats (Grain, Straw and Whole Plant) - Treatments with either CHE 3607 or CHE 3607/Frigate - UK, Season 1993. Cheminova A/S, Report GLY 270. Unpublished

Schultz H. 1995. Determination of Residue of Glyphosate on Winter Oats (Grain and Straw) - Treatment with either CHE 3607 or CHE 3607/Frigate - UK, Season 1993. Cheminova A/S, Report GLY 297. Unpublished

Schultz H. 1995a. Determination of Residues of Glyphosate in Linseed - Treatment with CHE 3607 - UK, season 1993. Cheminova A/S, Report GLY 296. Unpublished

Schultz H. 1997. Determination of the storage stability of Glyphosate in beans, oilseed rape and linseed. Institut Fresenius Report IF-94/13882-00. Cheminova A/S, Report 394 GLY. Unpublished.

Schultz H. 1997a. Glyphosate Residues in Barley and Wheat following Pre-harvest Application of Roundup and Glyfos in France 1996. Cheminova A/S, Report GLY 418. Unpublished

Schultz H. 1999. Glyphosate and AMPA Residues in Barley and Wheat following Pre-harvest Application of CHA 4521 and Glyfos in France 1998: Bridging Study. Cheminova A/S, Report GLY 528. Unpublished

- Schultz H, Mirbach MJ. 1994a. Determination of Residues of Glyphosate in Winter Field Beans (Seed and Haulm) -Treatment with CHE 3607 - UK, Season 1992. Cheminova A/S, Report GLY 215. Unpublished
- Schultz H, Mirbach MJ. 1994a. Determination of Residues of Glyphosate in Peas (Seed and Haulm) Treatment with CHE 3607 UK, Season 1992. Cheminova A/S, Report GLY 222. Unpublished

Schultz H and Mirbach MJ. 1994b. Determination of Residues of Glyphosate in Peas (Seed and Haulm) - Treatment with CHE 3607 - UK, Season 1992. Cheminova A/S, Report GLY 221. Unpublished

Schultz H and Mirbach MJ. 1994c. Determination of Residues of Glyphosate in Linseed - Treatment with CHE 3607 - UK, season 1992. Cheminova A/S, Report GLY 218. Unpublished

Schultz, H and Reichert, N. 1995 Compilation of glyphosate analytical methods used for analysis of samples from residue trials conducted in the UK in 1992 and 1993 (wheat, barley, oats, grass, linseed, oilseed rape, peas and beans) and in Portugal in 1993 (apples). Cheminova A/S, Report 311 GLY. Unpublished.

Steinmetz JR. 1991. Addendum to MSL-11022: Glyphosate Residues in Almond, Pecan and Walnut Raw Agricultural Commodities Following Preharvest Application of Roundup Herbicide. Monsanto Company, Report MSL 11519. Unpublished

Steinmetz JR. 1999. Magnitude of Glyphosate Residues in Bermuda Grass, Bluegrass, and Bromegrass/Fescue Raw Agricultural Commodities following Broadcast Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 14992. Unpublished

Steinmetz JR and Bleeke MS. 1999. Magnitude of Glyphosate residues in Roundup Ready Sugar Beet Processed Commodities Following Topical Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 16087. Unpublished

Sutherland ML and Banduhn MC. 1976. The metabolism of glyphosate by pasture crops. Monsanto Company, Report FR 404. Unpublished.

Takano R and Fuji T. 1991. Report on the Determination of Glyphosate and Metabolite AMPA in Tea. Monsanto Company. Unpublished

Taylor AL, Kramer RM, Beasley RK and Quintin RF. 1979 Glyphosate residues in bananas following bananacide, preplant, and post directed treatments with Roundup herbicide. Monsanto Company, Report MSL 00694. Unpublished

Reding MA. 1987. Residual glyphosate and aminomethylphosphonic acid in oilseed rape, beans and peas following application of MON 8762 - MON 8795 and Roundup herbicide, UK 1986 field trials. Monsanto Company, Report MLL 30180. Unpublished

- Vanbellinghen C. 2000. Glyphosate and AMPA residues in wheat and barley treated pre-harvest with Roundup (MON 2139) and MON 78294. 1999 Field trials in Belgium and France. Monsanto Company, Report MLL 31337. Unpublished
- Wollerton C and Husband R. 1997. Glyphosate acid: Physical and Chemical Properties of Pure Material. Zeneca Agrochemicals, Report RJ2400B. Unpublished.
- Wollerton C and Husband R. 1997a. Glyphosate acid: Physical and Chemical Properties of Technical Material. Zeneca Agrochemicals, Report RJ2401B. Unpublished.
- Zietz E. 1993. Determination of Residues of Glyphosate in Cereals and Processing Products. Institut Fresenius Report IF-92/11567-01. Cheminova A/S Report 149 GLY. Unpublished.
- Zietz E. 1995. Determination of residues of glyphosate in products of the processing of barley to beer and whisky following treatment with Glyfos England, season 1993. Institut Fresenius Report IF-94/00451-01. Cheminova A/S Agro A/S Report 298 GLY. Unpublished
- Zietz E. 1995a. Determination of residues of Glyphosate in products of the processing of oats to rolled oats following treatment with Glyfos - England, season 1993. Institut Fresenius Report IF-94/00453-01. Cheminova A/S Report 300 GLY. Unpublished

Cross references

	Alferness and Wiebe	2001
	Cowell et al.	1986
	Ely	2001
	Oppenhuizen and Schuette	1995d
	Takano and Fuji	1991
00 MON AA 05 04	Kadenczki and Suszter	2001
01JH034	Kwiatowski	2002a
01JH131	Kwiatowski	2002b
01JH132	Kwiatowski	2002c
01JH133	Kwiatowski	2002
246486 151-GLY	Galicia and Morgenroth	1993
271618 157-GLY	Galicia and Flückiger	1993
298 GLY	Zietz	1995
303614 325 GLY	Morgenroth	1995
311 GLY	Schultz and Reichert	1995
37/2002	Rocha and Abakerli	2002
53/2002	Rocha and Abakerli	2002a
5385	Costa Prado	2002
57/2003	Rocha and Abakerli	2003
61/2003	Rocha and Abakerli	2003a
676/8-1011 276 GLY	Powles	1994a
676/9-1011 279 GLY	Powles	1994
81 GLY	Robson	1991
91210 455 GLY	Hubbard	1993a
91212 456 GLY	Hubbard	1993
99 GLY 01	Lantos	2002d
A20-II	Reding	1978
CER 01307/01	Hampton	2002
CER 1403/01	Hampton	2002a
CTL/P/4944	Davies	1996
FR 304	Rueppel and Suba	1973
FR 344	Malik	1975
FR 404	Sutherland and Banduhn	1976
FR 434	Cowell	1976a
FR 442	Cowell	1976
GLY 134	Leak	1993b
GLY 140	Leak	1993
GLY 141	Leak	1992.
GLY 143	Leak	1993a
GLY 215	Schultz and Mirbach	1994
GLY 218	Schultz and Mirbach	1994c
GLY 221	Schultz and Mirbach	1994b
GLY 222	Schultz and Mirbach	1994a
GLY 261	Leak	1994b
GLY 262	Leak	1994
GLY 267	Leak	1994c
GLY 270	Schultz	1994
GLY 282	Leak	1994a
GLY 296	Schultz	1995a
	Senaltz	1))Ju

GLY 297	Schultz	1995
GLY 305	Schultz	1993
GLY 418	Schultz	1997a
GLY 528	Schultz	1999
IF-92/11567-01 149 GLY	Zietz	1993
IF-94/00453-01 300 GLY	Zietz	1995a
IF-94/13882-00 394 GLY	Schultz	1997
MLL 30069	Mestdagh	1981
MLL 30087	Mestdagh	1982
MLL 30104	Mestdagh	1983b
MLL 30106	Mestdagh	1983a
MLL 30109	Mestdagh	1983
MLL 30131	Mestdagh	1984
MLL 30150	Mestdagh	1985
MLL 30180	Reding	1987
MLL 30281	Hontis	1991
MLL 30297	Hontis	1992
MLL 30319	Hontis	1993
MLL 30321	Hontis	1993a
MLL 30463	Hontis	1996
MLL 30464	Hontis	1996a
MLL 30469	Hontis	1996b
MLL 30815	Gustin	1999
MLL 30817 MLL 31336	Gustin	1999a 2000
MLL 31330 MLL 31337	Gustin Vanhallinghan	2000
MLL 31678	Vanbellinghen Belvaux	2000
MON/GLY/2000.01	Royer <i>et al.</i>	2002
MSL 00694	Taylor <i>et al</i> .	1979
MSL 00094 MSL 01582	Baszis <i>et al.</i>	1981
MSL 0264	Beasley	1978
MSL 0980	Baszis <i>et al.</i>	1979
MSL 10843	Mueth	1991
MSL 11022	Manning	1991
MSL 11519	Steinmetz	1991
MSL 12617	Goure	1993
MSL 1283	Baszis	1980
MSL 12953	Oppenhuizen	1993
MSL 13037	Oppenhuizen	1993a
MSL 13038	Oppenhuizen	1994a
MSL 13283	Oppenhuizen	1994
MSL 13462	Goure and Steinmetz	1994
MSL 13463	Goure and Steinmetz	1994b
MSL 13464 MSL 13520	Goure and Steinmetz	1994a
MSL 13520 MSL 13654	Goure <i>et al.</i> Oppenhuizen	1994 1995
MSL 13655	Oppenhuizen	1995 1995b
MSL 13884	Oppenhuizen	19950 1995a
MSL 19004 MSL 14113	Bleeke	1993a 1997
MSL 14542	Bleeke and McCann	1996
MSL 14917	McCann	1999
MSL 14918	McCann	1998
MSL 14992	Steinmetz	1999
MSL 15334	Culkin	1999
MSL 16087	Steinmetz and Bleeke	1999
MSL 16247	Mehrsheikh	2000
MSL 16757	Kunda and Bleeke	2005
MSL 17194	Kurtzweil and Kunda	2002
MSL 17635	Bleeke	2003
MSL 3259	Kunstman	1983
MSL 9398	Horner	1989
MSL-6627	Manning and Wilson	1987b
MSL-6676	Manning and Wilson	1987a
MSL-6729 MSL7358	Manning and Wilson Pijanowski	1987 1988
WIGE/330	i ijanowski	1700

MSL7420	Feng and Patanella	1988a
MSL7458	Feng and Patanella	1988
MSL7515	Manning and Mueth,	1991a
MSL7586	Bodden	1988
MSL7591	Bodden	1988a
RJ2217B	Jones and Alevra	1996
RJ2218B	Jones and Volpi	1995
RJ2383B	Anderson et al.	1997
RJ2397B	Anderson et al.	1997
RJ2400B	Wollerton and Husband	1997
RJ2401B	Wollerton and Husband	1997a
RJ2907B	Anderson and Butters	2000
RJ2910B	Anderson and Butters	2000
RR 92-042B RES2	Alferness	1996
RR 96-002B	Bowler	1996
RR96-028B	Esser	1996