FLUBENDIAMIDE (242)

First draft prepared by Prof. Eloisa Dutra Caldas University of Brasilia Brasilia, BRAZIL

EXPLANATION

Flubendiamide belongs to a chemical family of benzenedicarboxamides or phthalic acid diamides with insecticidal activity through the activation of the ryanodine-sensitive intracellular calcium release channels, leading to the cessation of feeding immediately after ingestion of the compound. The compound was evaluated as a new compound by the 2010 JMPR for both residues and toxicological aspects. Information considered in this evaluation include metabolism of flubendiamide in farm animals and plants, methods of analysis, GAP information, supervised residue trials on pome fruit, stone fruits, cherries, grapes, broccoli, cabbage, tomato, peppers, sweet corn, cucumber, melon, watermelon, lettuce, green beans and peas, celery, corn, rice, tree nuts, soya bean, cotton and animal feed, processing and animal feeding studies.

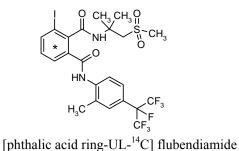
IDENTITY

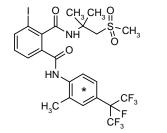
ISO Common name	Flubendiamide
Chemical name	
IUPAC:	3-iodo-N'-(2-mesyl-1,1-dimethylethyl)-N-{4-[1,2,2,2-tetrafluoro-1- trifluoromethyl)ethyl] -o-tolyl} phthalamide
CAS:	N ² -[1,1-dimethyl-2-(methylsulfonyl)ethyl]-3-iodo-N ¹ -[2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]-1,2-benzenedicarboxamide
CAS number:	272451-65-7
Synonyms:	
Structural formula:	NH O NH O HN

HN H₃C CF₃

Molecular formula: Molecular weight: $C_{23}H_{22}F_7IN_2O_4S$

PHYSICAL AND CHEMICAL PROPERTIES


Pure active ingredient (purity > 98%)


Property	Results	Reference
Appearance	white crystalline powder	van der Baan-Treur, 2004a, b
Odour		
Melting point	217.5–220.7 °C	Bates, 2002 a
Relative density	4	
Vapour pressure Knudsen Effusion	$< 10^{-4}$ Pa (at 200 °C)	Bates, 2002 c
technique	2E 00 B 3/ 1 20 0C	0.1 1. 2004
Volatility (Henry's law constant) Spectra for active substance	2E-09 Pa m ³ /mol, 20 °C UV/VIS: Neutral: 204.4 nm (ε=39066)	Schneider, 2004 Motoba, 2003 a
Spectra for active substance	Acidic: 203.0 nm (ϵ =49500) Basic: 218.0 nm (ϵ =49500) Basic: 218.0 nm (ϵ =24967) No absorption for wavelengths > 290 nm IR: Absorbance corresponding to vibrations of C-H, N-H, aromatic C=C, C=O, and S=O. NMR : Coupling of protons was confirmed by H-H COSY spectrum, two amide protons observed at 8.428 and 9.782 ppm were assigned to alkyl amide proton and toluamide proton, respectively, according to NOESY MS : Molecular peak observed at m/z = 682, major fragment ion peaks at m/z= 663, 649, 531, 513, 487, 462, 444, 418, 408, 360, 274, 256, 206, 156, 103, 75, 69 and 55	191000a, 2003 a
Solubility	Water (pH 4–10): $29.90 \pm 2.87 \mu g/L$ at 20.0 °C and pH 5.98. Determined by column-elution method at two different flow rates. Solubility is obviously not pH-dependent in the range of 4–10 as it is indicated by the n-octanol/water partition coefficient	Motoba, 2003 c
	Organic solvents, at 19.8 °C (g/L) p-xylene: 0.488 n-heptane: 0.000835 methanol: 26.0 1,2-dichloroethane: 8.12 acetone: 102 ethyl acetate: 29.4	Bates, 2002d
Partition coefficient	average pH = $5.91 - \text{Log Po/w} = 4.20 \pm 0.01$ at 24.9	Motoba 2002 a;
n-octanol/water Shake Flask Method	$ \begin{array}{c} \pm 0.1 \ ^{\circ}\text{C}; \\ pH 4: \text{Log Po/w} = 4.13 \pm 0.02 \\ pH 7: \text{Log Po/w} = 4.14 \pm 0.04 \\ pH 9: \text{Log Po/w} = 4.11 \pm 0.04 \end{array} $	Motoba 2003 d
Hydrolysis	at pH 4, 7 and 9; sterile/dark conditions, at 25 °C: slightly hydrolysed	Yamashita, 2003
Photolysis	in sterile water (pH 6, 25 °C) Photolytic half-life 5.5 days (mean) DT ₅₀ at natural sunlight days (Tokyo, 35 °N latitude): 32.5 days (mean). Major degradates: NNI-des-iodo (A-1), NNI-3-OH (A-2) and NNI-3-OH-hydroxyperfluoro-propyl (A-10). Thereafter several degradates more polar than A-10 were generated. No unidentified degradate accounting $\geq 10\%$ of applied radioactivity was found even after 168 hours irradiation.	Motoba, 2002 b
Quantum yield	$\Phi = 0.002408$	Hellpointner, 2004

Property	Results	Reference
Dissociation constant	Not to be expected to dissociate within a pH range of 4 to 10	Bogdoll, 2005
Photochemical oxidative degradation	Reactions with OH radicals in the air: half-life of 8.78 hours, corresponding to a chemical lifetime of 12.7 hours. Based on these values no long-range transport and no accumulation in air are expected for flubendiamide	Hellpointner, 2003

METABOLISM AND ENVIRONMENTAL FATE

The metabolism of flubendiamide in plants and animals was investigated using [phthalic acid ring- $UL^{14}C$] flubendiamide and [aniline ring- $UL^{14}C$] flubendiamide. Residues of flubendiamide in succeeding crops were also investigated using these two labels. A list of the main metabolites and degradate compounds found in the studies are shown in Table 1.

[aniline ring-UL-¹⁴C] flubendiamide

Figure 1 ¹⁴C labelled positions (*) of flubendiamide used in the metabolism studies

Table 1 Metabolites	and	degradate	compounds	found	in	the	metabolism	studies	conducted	with
flubendiamide										

Common name	Chemical Structure	Found in
flubendiamide-des-iodo	NH O HN HN H ₃ C CF ₃ CF ₃	apples (fruits, leaves), cabbage (leaves), corn (forage, fodder), rice (leaves, stems, hulls), tomato (fruits, leaves), rotational crops
flubendiamide-iodophthalimide		goat, laying hen, rat, apples (leaves)
flubendiamide-3-OH		apples (leaves), cabbage (leaves), rice (leaves, stems), tomato (fruits, leaves)
flubendiamide-des-anilino		apples (leaves), tomato (fruits, leaves), rotational crops

Common name	Chemical Structure	Found in
flubendiamide-carboxy		Goat, laying hen
flubendiamide -carboxy-glucuronide	CF_3 O O-glucuronide HN S CF_3 HN CF_3	Goat, laying hen
flubendiamide -phthalimide	$ \begin{array}{c} $	goat
flubendiamide -iodo-alkyl-phthalimide		goat, laying hen, rotational crops
flubendiamide-benzylalcohol		goat, laying hen, rat, apples (leaves), cabbage (leaves), rice (leaves, stems) tomato (fruits, leaves) rotational crops
flubendiamide -benzaldehyde	OH CF3 O NH O CH3 O HN CF3 CF3 O CF3 O CF3	Rat, cabbage (leaves), rice (leaves, stems), tomato (fruits, leaves)
flubendiamide -benzylalcohol-glucuronide	glucuronide- O	goat
flubendiamide -formyl	CF ₃ CF ₃	goat

Common name	Chemical Structure	Found in
flubendiamide -benzoic acid	HOOC HN HOOC CF ₃ CF ₃	goat, rat, apples (leaves), cabbage (leaves), rice (leaves, stems), tomato (fruits, leaves), rotational crops
flubendiamide -hydroxy	HN HN CF ₃ CF ₃	Goat, laying hen, rat
flubendiamide -carboxy-benzylalcohol	HN HO CF ₃ CF ₃	laying hen
flubendiamide -hydroxy-benzylalcohol	HN HO CF ₃ CF ₃	laying hen
flubendiamide -desiodo-alkyl-phthalimide		rotational crops

Animal metabolism

The metabolism of flubendiamide was investigated in laying hen and lactating goat using both radiolabels.

Rats

Studies conducted in rats were submitted and evaluated by the WHO panel of the 2010 JMPR and reported in the toxicological evaluations

Poultry

The nature of residues in eggs and foodstuff originating from poultry dosed orally with flubendiamide by gavage was investigated in two studies using similar experimental designs. In one study, 6 laying hens received 14 daily oral doses of [phthalic acid ring-UL-¹⁴C]flubendiamide at 1.0 mg/kg b.w./day (16.95 ppm in the diet) (Koester et al., 2005a; MEF-04/159). In the second study, 6 laying hens received 14 daily oral doses of [aniline ring-UL-¹⁴C] flubendiamide at 0.71 mg/kg b.w./day (8.86 ppm in the diet) (Koester and Justus, 2004; MEF-04/055).

Eggs and faecal-urine excreta were collected once daily. The treated hens were sacrificed 24 hours after the last dose and liver, bile bladder, kidneys, leg and breast muscle, skin without

subcutaneous fat, subcutaneous fat and eggs were sampled. Samples of eggs, excreta and organs/tissues from individual animals were pooled before extraction. The total radioactive residues (TRR) of each pool were determined by combustion/LSC (solid samples) or direct LSC. An aliquot was extracted four times with a mixture of acetonitrile/water or twice with pure acetonitrile followed by acetonitrile/water (eggs). The combined extracts were purified by solid phase extraction (SPE) using a C18 cartridge. The eluates were analysed by reversed phase column HPLC (radioisotope, UV and MS detectors) or and two-dimensional TLC. Solid samples were combusted prior to radioactivity determination and the formed ${}^{14}CO_2$ absorbed in an alkaline trapping solvent.

About 91% of the administered cumulative dose of [phthalic acid ring -UL-¹⁴C]flubendiamide was recovered from organs, tissues, eggs, and combined faecal-urine excreta. The majority of the radioactivity (61.9%) was detected in the excreta until sacrifice, 24.4% in organs and tissues and 5.1% in eggs.

Table 2 shows the levels of parent compound and metabolites found in eggs, muscle, fat and liver. The residue concentration in eggs ranged from 0.135 mg/kg eq. within the first 4 days to 2.7 mg/kg eq. at the end of the dosing period. Flubendiamide was the main residue component in eggs and tissues; flubendiamide-benzylalcohol was detected as a minor metabolite, amounting up to 8.8% of the TRR in liver. Two metabolites, flubendiamide-iodophthalimide and flubendiamide-iodo-alkylphthalimide present in traces were tentatively identified (Table 2). Yolks had 12.14 mg/kg eq.; skin without subcutaneous fat 6.48 mg/kg eq. and kidney 2.41 mg/kg eq. Leg muscle had about three times higher residues than breast muscle (1.47 and 0.59 mg/kg eq., respectively).

	5		u		0		-			0 0	<i>,</i>	
	Egg po day 1-4		Egg po day 5-9		Egg po day 10-		Muscle	b	Fat		Liver	
Compound	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.
flubendiamide	92.2	0.135	92.7	1.098	92.1	2.69	95.0	1.00	97.9	17.69	81.9	3.30
flubendiamide -benzyl- alcohol	5.4	0.008	3.8	0.045	4.5	0.131	4.3	0.046	1.9	0.338	8.8	0.356
flubendiamide- iodophthalimide ^a					traces	traces	traces	traces	traces	traces	traces	traces
flubendiamide-iodo- alkyl-phthalimide ^a					traces	traces						
Sum identified	97.6	0.143	96.5	1.14	96.6	2.83	99.3	1.05	99.8	18.03	90.7	3.66
Solids	2.1	0.003	2.5	0.030	3.2	0.092	0.5	0.005	0.0	0.004	6.7	0.269
Not analysed/losses	0.1	0.000	1.0	0.012	0.2	0.007	0.2	0.002	0.2	0.034	2.6	0.107
Total balance	100.0	0.147	100.0	1.18	100.0	2.92	100.0	1.06	100.0	18.07	100.0	4.04

Table 2 Distribution of residues in eggs, muscle, fat and liver of laying hens following oral administration of 14 daily doses of [phthalic acid ring -UL-¹⁴C]flubendiamide at 1 mg/kg b.w

^a tentatively identified;

^b mean of leg and breast muscle residues

About 98% of the orally administered cumulative dose of [aniline ring-UL-¹⁴C]flubendiamide was recovered from organs and tissues, eggs and combined faecal-urine excreta of treated hens (Koester and Justus, 2004). The majority of the radioactivity (66.2% of the total administered dose) was detected in the excreta until sacrifice. The excretion rate was high and excretion started soon after the first administration. The absorbed fraction from the intestinal tract was estimated to be at least 32% of the total administered dose, with 24% found in organs and tissues and 7.7% in eggs.

Table 3 shows the levels of parent compound and metabolites found in eggs, muscle, fat and liver. The highest residue concentration in eggs (2.4 mg/kg equ.) was found at the end of the experiment. One day after the first administration, residues in eggs amounted 0.058 mg/kg equ. A continuous increase of the radioactivity level was determined over the whole test period starting after a lag-phase of 2 days. The parent compound was the main residue component, accounting for 82 - 97% of the TRR in eggs and tissues. Flubendiamide-benzylalcohol was detected as a minor metabolite amounting up to 5.8% of the TRR in eggs (days 1–4) or 5.5% of the TRR in liver. A trace metabolite, flubendiamide-iodo-phthalimide was detected only in fat amounting to 1.6% of the TRR (Table 3).

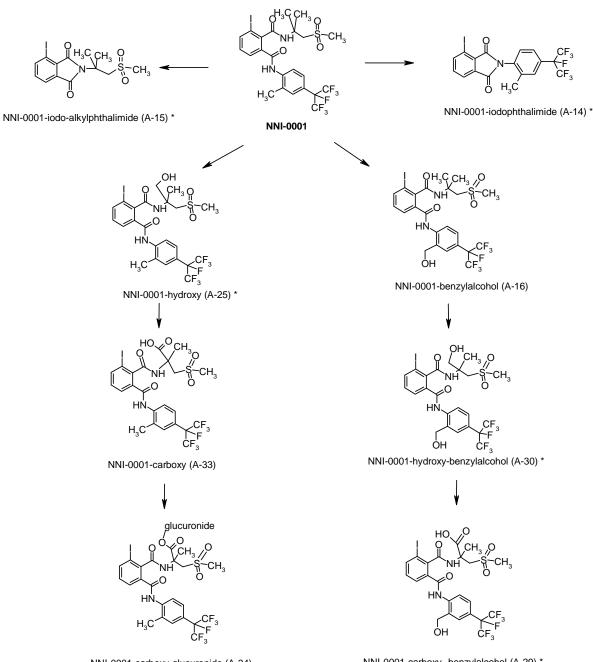
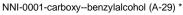

Eggs dissected from the ovary and oviduct had 9.30 mg/kg eq., skin without subcutaneous fat had 3.60 mg/kg eq, and kidney 1.81 mg/kg eq. Residues in leg muscle were higher than in breast muscle (1.02 and 0.38 mg/kg equ., respectively).

Table 3 Distribution of residues in eggs, muscle, fat and liver of laying hens following oral administration of 14 daily doses of [aniline ring-UL-¹⁴C] flubendiamide at 0.71 mg/kg bw


	Egg day 1-4		Egg day 5-9		Egg day 10-	14	Muscle	a	Fat		Liver	
Compound	% TRR	mg/kg eq.	TDD	mg/kg eq.	TDD	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	TTD D	mg/kg eq.
flubendiamide	92.0	0.306	93.5	1.41	92.0	2.36	95.1	0.669	96.9	11.8	82.2	2.49
flubendiamide- benzylalcohol	5.8	0.019	2.5	0.037	2.8	0.071	3.9	0.028	1.0	0.124	5.5	0.167
flubendiamide- iodophthalimide									1.6	0.20		
flubendiamide -aniline	n.d.	n.d.	n.d.	n.d.	< 0.2	< 0.005	< 0.3	< 0.002	< 0.2	< 0.024	< 0.2	< 0.007
Sum identified	97.8	0.326	95.9	1.44	94.7	2.43	99.0	0.697	99.6	12.17	87.7	2.66
Solids	1.7	0.006	3.0	0.045	3.4	0.088	0.5	0.004	0.0	0.002	9.3	0.283
not analysed/losses	0.5	0.002	1.1	0.016	1.8	0.047	0.5	0.004	0.4	0.052	3.0	0.091
Total balance	100.0	0.333	100.0	1.505	100.0	2.56	100.0	0.704	100.0	12.22	100.0	3.036

^a mean of leg and breast muscle residues

The metabolism of flubendiamide in laying hens is shown in Figure 2. The major pathway was the oxidation of the methyl groups to form a primary alcohol (hydroxylation), further oxidation of the aliphatic alcohol to a carboxylic acid group followed by conjugation with glucuronic acid. The glucuronic acid conjugate of the carboxylic group was exclusively found in the excreta and in the bile. A minor reaction was the cleavage of the respective amide bond of flubendiamide and the cyclisation to flubendiamide-iodo-alkylphthalimide.

NNI-0001-carboxy-glucuronide (A-34)

* tentativaly identified as trace metabolite (only partly resolved chromatographic peaks)

Figure 2 Metabolic pathway of flubendiamide (NNI-0001) in the laying hen

Goat

Two studies were conducted to investigate the nature of residues in milk and foodstuffs from lactating goat dosed with labelled flubendiamide given by gavage. In the first study, one goat received 4 daily oral doses of [phthalic acid ring-UL-¹⁴C]flubendiamide at a mean rate of 4.83 mg/kg b.w./day (176 ppm in the diet) (Koester *et al.*, 2005b; MEF-04/173). In the second study, one goat received 4

oral doses of [aniline ring UL-¹⁴C] flubendiamide at a rate of 5 mg/kg b.w./day (370 ppm in the diet) (Weber *et al.*, 2005; MEF-03/173). The studies used similar experimental protocols.

The goat was milked in the morning immediately prior to each dose, 8, 24, 32, 48, 56, 72, and 77 hours (at sacrifice) after the first dose. Urine and faeces fractions were collected in intervals of 24 hours after the first, second, and third dose and at sacrifice. An aliquot of each milk and urine fraction was taken and processed for LSC and the remaining samples stored at about -18 °C for metabolite analysis. Each faeces fraction was freeze-dried, homogenised, an aliquot subjected to combustion/LSC and the remainder stored at room temperature for the metabolite analysis.

Following sacrifice, liver, bile bladder, kidneys, muscle (round, flank, loin) and fat (perirenal, omental, subcutaneous) were sampled. The organs or tissue samples were minced in half-frozen state, a sample was freeze-dried, and three sub-samples prepared for tissue combustion/LSC. Portions of each organ or tissue sample were stored at about -18 °C for metabolite analysis. A pool of milk samples was extracted with acetonitrile, partitioned against n-heptane and again partitioned against acetonitrile. All resulting water/acetonitrile and acetonitrile extracts were combined, concentrated, and submitted to C18 SPE (phthalic acid ring-UL study) or styrene divinylbenzene polymer (aniline ring UL study). Organs, tissue and faeces samples were extracted with acetonitrile/water; fat was additionally extracted with n-heptane and the extracts submitted to C18 SPE. Solid samples were combusted prior to radioactivity determination and the formed $^{14}CO_2$ absorbed in an alkaline trapping solvent. Milk, muscle, fat, liver, and kidney extracts were submitted to hydrolysis under alkaline conditions. Structure elucidation was performed by HPLC (UV and radioisotope detectors), one-dimensional and two-dimensional TLC, HPLC/MS, GC/MS and/or NMR.

Until sacrifice (77 hours after the first dose), 53.7% of the administered radioactivity was recovered, mostly in the feces (44.2%). Tissues accounted for 8.7% of the dose and milk for 0.5%. Table 4 shows the distribution of residues in milk and edible tissues of a goat dosed with [phthalic acid ring-UL-¹⁴C]flubendiamide. The highest residue levels at sacrifice were observed in fat (perirenal fat: 11.05 mg/kg eq., omental fat: 10.14 mg equ./kg, subcutaneous fat: 8.44 mg/kg eq.) and liver. The parent compound was the predominant component of the residue, accounting for 78.3–90.6% of TRR. Flubendiamide-iodophthalimide was detected at the highest level in milk and in fat. Liver contained all investigated metabolites, at levels < 5% of TRR.

Table 4 Distribution of residues in milk and tissues of a lactating goat following 4 daily doses of [phthalic acid ring -UL-¹⁴C]flubendiamide at a mean dose rate of 4.83 mg/kg b.w (176 ppm in the diet)

	Milk		Muscle		Fat		Liver		Kidney	
Compound/comment	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.
Flubendiamide	78.3	0.547	86.9	0.721	89.2	8.793	79.9	8.103	90.6	2.207
Flubendiamide- iodophthalimide	11.4	0.080	6.5	0.054	10.6	1.045	2.4	0.242	1.6	0.039
Flubendiamide -phthalimide	2.6	0.018	1.3	0.011			1.5	0.154		
Flubendiamide -hydroxy	1.1	0.008	2.7	0.022			3.1	0.316	3.7	0.089
Flubendiamide -formyl	1.2	0.008	1.6	0.013			2.7	0.276	2.3	0.056
Flubendiamide -carboxy							3.8	0.390		
Flubendiamide -benzylalcohol							2.1	0.209		
Flubendiamide -iodo- alkylphthalimide							0.5	0.053		
Sum identified	94.5	0.660	99.1	0.822	99.8	9.838	96.1	9.743	98.2	2.392
Solids	4.6	0.032	0.5	0.004	0.1	0.005	2.1	0.216	0.7	0.018
not analysed/losses	0.8	0.006	0.5	0.004	0.1	0.015	0.7	0.073	1.0	0.025
Total balance	100.0	0.698	100.0	0.829	100.0	9.857	100.0	10.138	100.0	2.435

About 25% of the totally administered dose of [aniline ring UL 14 C]flubendiamide, was excreted until sacrifice, 96% in the faeces. Milk accounted for 0.4% and tissues for 15% of the totally administered dose. Table 5 shows the distribution of residues in milk and edible tissues of a goat dosed with [aniline ring-UL- 14 C]flubendiamide. The parent compound was the main residue

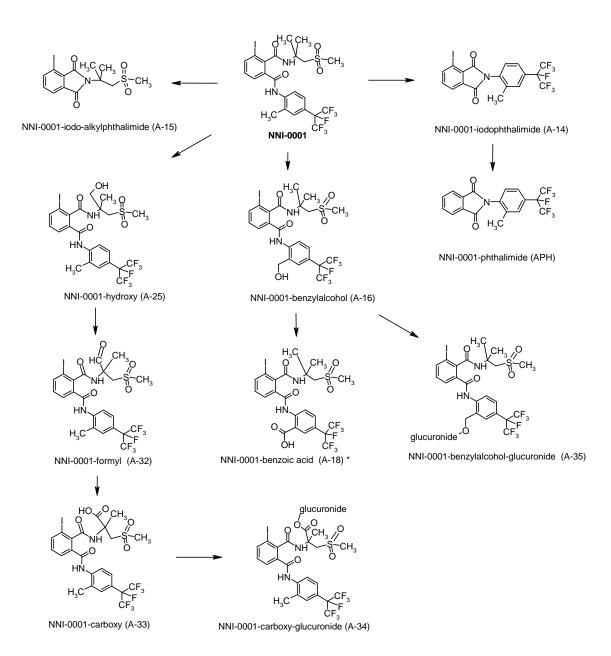

component. At sacrifice, the highest radioactivity level was measured in fat (omental fat: 21.8 mg/kg eq., perirenal fat: 20.5 mg/kg eq., subcutaneous fat: 16.6 mg/kg eq.). Residues in muscle were: 2.2 mg/kg eq. in flank muscle, 2.0 mg/kg eq. in loin muscle and 1.4 mg/kg eq. in round muscle. The major metabolite, flubendiamide-iodophthalimide accounted for approx. 17% of the TRR in milk, 8.4% in muscle and 24% in fat. Minor identified metabolites accounted for less than 6%TRR each.

Table 5 Distribution of residues in milk and tissues of a lactating goat following 4 daily doses of [aniline ring -UL-¹⁴C]flubendiamide at a mean dose rate of 4.9 mg/kg b.w (370 ppm in the diet)

	Milk		Muscle		Fat		Liver		Kidney	
Report name/comment	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.	% TRR	mg/kg eq.
Flubendiamide	72.4	1.040	83.8	1.278	74.7	15.602	74.9	9.850	92.6	4.093
Flubendiamide- iodophthalimide	17.0	0.244	8.4	0.129	24.0	5.008	2.4	0.313		
Flubendiamide-phthalimide	1.1	0.016					1.6	0.210		
Flubendiamide -hydroxy	1.5	0.022	2.9	0.044			5.1	0.668	4.1	0.182
Flubendiamide -formyl	0.6	0.009					2.8	0.369		
Flubendiamide -carboxy							5.3	0.691		
Flubendiamide-benzylalcohol	0.9	0.012	1.0	0.015			2.4	0.322		
Flubendiamide -aniline	< 0.5	< 0.007	< 0.2	< 0.004	< 0.3	< 0.053	< 0.3	< 0.040	< 0.5	< 0.022
Sum identified	93.5	1.343	96.1	1.466	98.7	20.611	94.5	12.422	96.7	4.275
Solids	0.3	0.004	0.6	0.009	0.1	0.013	3.3	0.440	1.4	0.063
not analysed/losses	6.2	0.088	3.3	0.050	1.2	0.260	2.2	0.290	1.8	0.081
Total balance	100.0	1.436	100.0	1.52	100.0	20.88	100.0	13.15	100.0	4.419

The intestinal absorption of [phthalic acid/aniline ring-UL-¹⁴C]flubendiamide was estimated to be approximately 20/30% of the cumulative dose as derived from the amount of radioactivity detected in milk (0.53/0.4% of the total administered dose), urine (0.25/0.5% of the total administered dose), edible organs and tissues of the body at sacrifice (8.7/15% of the total administered dose), and the portion of metabolites in the faeces. The equivalent concentration in the plasma at 24 hours after dosing was about three times higher compared with the radioactivity level of the milk, indicating a slow absorption process from the intestinal tract and slow distribution into organs and tissues.

The metabolism of flubendiamide in goats is shown in Figure 3. It can be characterised by the oxidation of the methyl groups to a primary alcohol (hydroxylation) and further oxidation of the aliphatic alcohol group to a carboxylic acid which was partly conjugated with glucuronic acid. The glucuronic acid conjugate was exclusively found in bile and excreta. The cleavage of the amide bonds of flubendiamide followed by cyclisation to different flubendiamide-imides was a significant metabolic site. Deiodination was a minor pathway

* tentativaly identified as trace metabolite (only partly resolved chromatographic peaks)

Figure 3 Proposed metabolic pathway of flubendiamide (NNI-0001) in the lactating goat

Plants

The metabolism of flubendiamide after spray applications was investigated in five different crops – head cabbage, tomato, apple, corn and rice.

Cabbage

In the metabolism study conducted in <u>cabbage</u> (Motoba, 2002a), the test substances [phthalic acid ring-UL-¹⁴C]-flubendiamide and [aniline ring-UL-¹⁴C]-flubendiamide were dissolved in acetonitrile and applied to immature cabbage at an application rate of 300 μ g/plant (5 mL/plant). For each label, 5

plants were treated. The treated plants were placed in a greenhouse at an average temperature of 20.6 °C and at an average humidity of 56.2%. The test systems were placed in the area under the quartz ceiling of a glasshouse to make the light irradiation conditions similar to field conditions. Samples were collected 3 weeks and 6 weeks after application (maturity). Two whole plants were sampled for each label at each sampling date. The edible parts (heads) and the non-edible parts (loose outer leaves, stems and roots) were collected separately. The outer leaves were rinsed (surface washed) with acetonitrile, the rinsed leaves, the head and the stems homogenized and extracted three times with acetonitrile/water. Solid residues were separated by centrifugation and further extracted with acetonitrile-0.1*N* HCl *aq*. Roots were cut and directly subjected to radioanalysis by combustion. Extracts and solid residues were subjected to LSC. The metabolites were analysed by TLC followed by radioluminography and HPLC.

The distribution of total radioactive residues (TRR) in cabbage head and loose outer leaves is shown in Table 6. All the applied radioactivity (AR) was recovered in the two experiments. Cabbage heads contained < 0.1% AR.

Table 6 Total radioactive residues (TRR) in edible and non-edible parts of cabbage after foliar application with [phthalic acid ring-UL- 14 C]- and [aniline ring-UL- 14 C]flubendiamide

	Immature plants, 3 w	veeks PHI	Mature plants, 6 weeks	s PHI							
	head	loose outer leaves	head	loose outer leaves							
[phthalic acid ring-UL- ¹⁴ C]-label, mg/kg eq. (% of AR).											
ACN rinsate	0.0001 (< 0.01%)	0.459 (77.8%)	< 0.0001 (< 0.01%)	0.480 (80.8%)							
ACN /water extract (4/1)	0.0002 (0.01%)	0.088 (15.3%)	0.0001 (0.04%)	0.075 (13.3%)							
ACN/0.1N HCl extract (4/1)	n.c.	0.012 (2.1%)	n.c.	0.012 (2.1%)							
non-extracted residue	0.0004 (0.03%)	0.033 (5.8%)	0.0001 (0.02%)	0.027 (4.7%)							
AR	0.0006 (0.05%)	0.593 (101%)	0.0004 (0.06%)	0.594 (101%)							
[aniline ring-UL- ¹⁴ C]-label, mg/	kg eq. (% of AR).										
ACN rinsate	0.0001 (0.01%)	0.566 (86.6%)	< 0.0001 (< 0.01%)	0.493 (87.9%)							
ACN/water extract (4/1)	0.0001 (0.01%)	0.088 (13.8%)	0.0001 (0.01%)	0.070 (12.4%)							
ACN/0.1N HCl extract (4/1)	n.c	0.015 (2.3%)	n.c.	0.012 (2.2%)							
non-extracted residue	0.0008 (0.06%)	0.032 (5.4%)	n.d.	0.030 (5.3%)							
AR	0.0010 (0.07%)	0.701 (108%)	0.0001 (0.01%)	0.605 (108%)							

n.c. = extraction was not conducted; n.d. = no radioactivity detected

Table 7 shows the characterisation of the residues extracted from the leaves. Due to the low residue levels, cabbage head extracts were not further analysed. Flubendiamide was the main compound detected in immature and mature plants treated with both radiolabels (> 90% of the applied radioactivity, AR). Flubendiamide-des-iodo and flubendiamide-3-OH were the main metabolites found in the leaf extracts, reaching up to 1.7% AR. Unidentified and non-extracted residues accounted for < 0.05 mg/kg eq. (< 10% AR).

Table 7 Parent compound and metabolites of [phthalic acid ring-UL-¹⁴C]- and [aniline ring-UL-¹⁴C]flubendiamide in cabbage leaves after foliar application

	Immature plant	s, 3 weeks PHI	Mature plants	, 6 weeks PHI
	mg/kg eq.	% AR	mg/kg	% AR
[phthalic acid ring-UL- ¹⁴ C]-label				
Flubendiamide	0.5345	91.0	0.5380	91.2 ⁾
Flubendiamide -des-iodo	0.0076	1.3	0.0089	1.5
Flubendiamide -3-OH	0.0044	0.7	0.0075	1.3
Flubendiamide -benzylalcohol	0.0019	0.3	0.0032	0.6
Flubendiamide -benzoic acid	0.0006	0.1	0.0018	0.3
unidentified in extracts ^{a)}	0.0104	1.8	0.0096	1.3
non-extracted residue	0.0331	5.8	0.0271	4.7
Total	0.5926	101	0.5940	101
[aniline ring-UL- ¹⁴ C]label				
Flubendiamide	0.6364	97.7	0.5408	92.3
Flubendiamide -des-iodo	0.0092	1.4	0.0093	1.7
Flubendiamide -3-OH	0.0068	1.0	0.0091	1.6

	Immature plants, 3 w	veeks PHI	Mature plants, 6 weeks PHI		
	mg/kg eq.	% AR	mg/kg	% AR	
Flubendiamide -benzylalcohol	0.0027	0.4	0.0045	0.8	
Flubendiamide -benzoic acid	0.0014	0.2	0.0028	0.5	
unidentified in extracts ^{b)}	0.0124	1.9	0.0091	1.6	
non-extracted residue	0.0324	5.4	0.0298	5.3	
Total	0.7013	108	0.6053	108	

 a each component ≤ 0.004 mg/kg ($\leq 0.4\%)$ for the phthalic acid label

^b each component ≤ 0.004 mg/kg ($\leq 0.6\%$) for the aniline label

Tomato

Immature fruits and leaves of cherry tomato plants were either treated with [phthalic acid ring-UL-¹⁴C] or [aniline ring-UL-¹⁴C]-labelled flubendiamide dissolved in acetonitrile (Motoba, 2002b). Eight plants were treated, 4 with each label. On each plant, two or three selected branches of fruits (5 fruits per branch) and of leaves were treated. Application was done with an auto-pipette directly onto the leaves or fruits. The application rates were 125 μ g/branch of fruits (25 μ g/fruit) and 800 μ g/branch of leaves. Treated plants were placed under the quartz ceiling of a glasshouse at an average temperature of 27.2 °C and average humidity of 52.1%. Samples were collected at day 0, and 1, 2 and 4 weeks after application. At each sampling date, samples from two plants were taken per radiolabel, two branches per plant, one of treated fruits and one of leaves. In addition, 4 weeks after application whole plants were sampled and separated into different parts (untreated fruits, untreated leaves, stem, root) in order to investigate the translocation of the test substance into untreated plant parts. For this purpose, the plants from day 0 were used, from which either the treated leaves or treated fruits had been dissected immediately after application.

The surface of treated fruits and treated leaves was rinsed with acetonitrile and the rinsed fruit and leaves extracted with acetonitrile/water. The resultant solid residue of fruits was further extracted with acetonitrile-0.1N HCl aq. and acetonitrile-1N HCl aq. All samples were subjected to LSC and the metabolites analysed by TLC followed by radioluminography and HPLC.

The distribution of TRR is shown for fruits and leaves in Table 8 at all sampling dates and for both radiolabels. The ACN rinsates contained most of the radioactive residues; in fruits, the radioactivity decreased from 98.8% TRR at day 0 to 64.2% TRR four weeks later. Analysis of untreated plant parts four weeks after treatment showed less than 0.5% of the AR.

Table 8 Total radioactive residues (TRR) in fruits and leaves of tomato plants after application of [phthalic acid ring-UL-¹⁴C] and [aniline ring-UL-¹⁴C]flubendiamide onto immature fruits and leaves

	day 0		1 week		2 weeks		4 weeks	
	fruits	leaves	fruits	leaves	fruits	leaves	fruits	leaves
[phthalic acid ring-UI	L- ¹⁴ C]-label, <i>m</i> g	g/kg eq. (% o	f TRR)					
ACN rinsate	3.226	43.84	2.364	37.88	1.591	27.22	1.287	15.60
	(98.8%)	(106%)	(81.1%)	(99.2%)	(78.4%)	(96.5%)	(64.2%)	(84.8%)
ACN/water extract	0.009	0.248	0.032	0.633	0.011	0.564	0.0315	0.878
(4/1)	(0.3%)	(0.6%)	(1.1%)	(1.7%)	(0.6%)	(2.0%)	(1.5%)	(4.9%)
ACN/0.1N HCl	n.d.	n.c.	0.0001	n.c.	0.0002	n.c.	0.0016	n.c.
extract (4/1)	n.d.	n.c.	(< 0.1%)	n.c.	(< 0.1%)	n.c.	(< 0.1%)	n.c.
ACN/1N HCl	0.0006	n.c.	n.d.	n.c.	n.d.	n.c.	0.0001	n.c.
extract (4/1)	(< 0.1%)	n.c.	n.d.	n.c.	n.d.	n.c.	(< 0.1%)	n.c.
non-extracted	n.d.	0.0093	n.d.	0.0278	n.d.	0.0129	0.0006	0.0491
residue	n.d.	(< 0.1%)	n.d.	(< 0.1%)	n.d.	(< 0.1%)	(< 0.1%)	(0.3%)
Total radioactive	3.236	44.10	2.39	38.54	1.602	27.80	1.321	16.53
residues	(99.1%)	(106%)	(82.1%)	(101%)	(78.9%)	(98.5%)	(65.9%)	(89.9%)
[aniline ring-UL- ¹⁴ C]	-label, mg/kg ed	. (% of TRR))					
ACN rinsate	3.363	45.05	2.141	36.98	1.422	26.66	1.449	14.60
	(98.9%)	(99.2%)	(83.0%)	(99.4%)	(77.6%)	(97.7%)	(66.9%)	(91.6%)
ACN/water extract	0.012	0.3192	0.0257	0.5571	0.0171	0.3513	0.0340	0.280
(4/1)	(0.4)	(0.7%)	(1.0%)	(1.5%)	(1.0%)	(1.3%)	(1.6%)	(1.8%)
ACN/0.1N HCl	n.d.	n.c.	0.0006	n.c.	n.d.	n.c.	0.0019	n.c.

	day 0		1 week		2 weeks	2 weeks		
	fruits	leaves	fruits	leaves	fruits	leaves	fruits	leaves
extract (4/1)	n.d.	n.c.	(< 0.1%)	n.c.	n.d.	n.c.	(< 0.1%)	n.c.
ACN/1N HCl	0.0002	n.c.	n.d.	n.c.	n.d.	n.c.	0.0003	n.c.
extract (4/1)	(< 0.1%)	n.c.	n.d.	n.c.	n.d.	n.c.	(< 0.1%)	n.c.
non-extracted	n.d.	0.0083	n.d.	0.0145	0.0129	0.0133	0.0006	0.0199
residue	n.d.	(< 0.1%)	n.d.	(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	(0.1%)
Total radioactive	3.375	45.38	2.167	37.55	1.452	27.02	1.486	14.89
residues	(99.3%)	(99.9%)	(84.1%)	(101%)	(78.5%)	(99.1%)	(68.7%)	(93.5%)

n.c. = extraction was not conducted n.d. = no radioactivity detected

Table 9 shows the characterisation of the residues extracted from the tomato fruit. Unchanged parent compound was the main component detected in fruits and amounted to 1.27 and 1.43 mg/kg eq. after four weeks for the phthalic acid and aniline label, respectively. This corresponded to 63.4% and 66.3% of the applied radioactivity. Only small amounts of metabolites (each less than 0.01 mg/kg) were detected in fruits for both labels.

Table 9 Parent compound and metabolites of [phthalic acid ring-UL-¹⁴C] and [aniline ring-UL-¹⁴C]flubendiamide in tomato fruits

	fruits, day	0	fruits, 1 w	eek	fruits, 2 w	eeks	fruits, 4 w	eeks
	mg/kg	% AR						
[phthalic acid ring-UL-14C]-lab	el							
Flubendiamide	3.218	98.6	2.371	81.3	1.584	78.0	1.271	63.4
Flubendiamide -des-iodo	0.002	< 0.1	0.004	0.1	0.003	0.2	0.007	0.3
Flubendiamide -3-OH	0.001	< 0.1	0.002	< 0.1	0.002	0.1	0.003	0.2
Flubendiamide -des-anilino	n.d.	n.d.	n.d.	n.d.	0.001	< 0.1	0.001	< 0.1
Flubendiamide-benzylalcohol	n.d.	n.d.	0.0013	< 0.1	0.002	0.1	0.005	0.3
Flubendiamide -benzoic acid	n.d.	n.d.	0.001	< 0.1	0.002	< 0.1	0.003	0.2
unidentified extracted	0.015	0.5	0.002	0.6	0.009	0.4	0.031	1.5
non-extracted residue	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.001	< 0.1
Total	3.236	99.1	2.395	82.1	1.602	78.9	1.321	65.9
[aniline ring-UL- ¹⁴ C]-label								
Flubendiamide	3.359	98.8	2.147	81.3	1.420	77.4	1.435	66.3
Flubendiamide -des-iodo	n.d.	n.d.	0.002	< 0.1	0.003	0.2	0.005	0.2
Flubendiamide -3-OH	0.001	< 0.1	0.002	< 0.1	0.002	0.1	0.003	0.1
Flubendiamide-benzylalcohol	n.d.	n.d.	0.001	< 0.1	0.002	0.1	0.005	0.2
Flubendiamide -benzoic acid	n.d.	n.d.	0.002	< 0.1	0.002	0.1	0.004	0.2
unidentified extracted	0.015	0.4	0.014	0.6	0.010	0.5	0.034	1.6
non-extracted residue	n.d.	n.d.	n.d.	n.d.	0.013	< 0.1	0.001	< 0.1
Total	3.3750	99.3	2.164	84.1	1.452	78.5	1.486	68.7

Flubendiamide was also the main component found in leaves (Table 10). Only small amounts of metabolites (each less than 0.1 mg/kg) were detected in leaves for both labels. The sum of unidentified metabolites for both labels amounted to up to 0.034 mg/kg eq. (1.6% AR) in fruit and 1.19 mg/kg eq. (6.5% AR) in leaves. The maximum for a single unidentified compound amounted to less than 0.01 mg/kg (less than 10%) in fruits and leaves for both labels.

Table 10 Parent compound and metabolites of [phthalic acid ring-UL-¹⁴C] and [aniline ring-UL-¹⁴C]flubendiamide in tomato leaves after application onto immature fruits and leaves

	leaves, day	y 0	leaves, 1 v	veek	leaves, 2 weeks		leaves, 4 v	veeks
	mg/kg	% AR	mg/kg	% AR	mg/kg	% AR	mg/kg	% AR
[phthalic acid ring-UL-14C]-label								
Flubendiamide	43.69	105	37.49	98.1	26.72	94.7	15.03	81.7
Flubendiamide -des-iodo	0.016	< 0.1	0.069	0.2	0.095	0.3	0.087	0.5
Flubendiamide -3-OH	0.002	< 0.1	0.039	0.1	0.060	0.2	0.039	0.2
Flubendiamide -des-anilino	n.d.	n.d.	0.008	< 0.1	0.022	< 0.1	0.017	< 0.1
Flubendiamide -benzylalcohol	n.d.	n.d.	0.004	0.1	0.066	0.2	0.066	0.4
Flubendiamide -benzoic acid	n.d.	n.d.	0.036	< 0.1	0.053	0.2	0.055	0.3
unidentified extractables	0.365	0.9	0.833	2.2	0.768	2.7	1.189	6.5

	leaves, day	y 0	leaves, 1 v	veek	leaves, 2 v	veeks	leaves, 4 v	veeks
	mg/kg	% AR						
non-extracted residue	0.009	< 0.1	0.028	< 0.1	0.013	< 0.1	0.049	0.3
Total	44.10	106	38.54	101	27.80	98.5	16.53	89.9
[aniline ring-UL- ¹⁴ C]-label								
Flubendiamide	44.99	99.1	36.61	98.4	26.27	96.3	14.18	89.1
Flubendiamide -des-iodo	n.d.	n.d.	0.045	0.1	0.064	0.2	0.054	0.3
Flubendiamide -3-OH	n.d.	n.d.	0.032	0.1	0.050	0.2	0.030	0.2
Flubendiamide -benzylalcohol	n.d.	n.d.	0.040	0.1	0.041	0.2	0.048	0.3
Flubendiamide -benzoic acid	n.d.	n.d.	0.050	0.1	0.059	0.2	0.053	0.3
unidentified extractables	0.380	0.8	0.754	2.0	0.524	2.0	0.506	3.2
non-extractaed residue	0.008	< 0.1	0.014	< 0.1	0.013	< 0.1	0.020	0.1
Total	45.38	99.9	37.55	101	27.02	99.1	14.89	93.5

Apples

The metabolism of flubendiamide in <u>apples</u> was investigated by Baker et al (2002). [Phthalic acid ring-UL-¹⁴C]flubendiamide and [aniline ring-UL-¹⁴C] flubendiamide were applied as an EC formulation (2.5% a.i.) to two apple trees (one for each label) by spray application at a rate corresponding to 0.11 kg ai/ha. Samples of apples and leaves were collected at 0, 7, 14, 28 and 56 days after treatment. Apple samples were rinsed in acetonitrile and first and second rinses were stored separately in freezers. Samples of rinsed apples and unrinsed leaves were subjected to combustion. A portion of processed (homogenised with dry ice) rinsed apples were extracted with acetonitrile, centrifuged and the pellet combusted. Homogenised leaves were analysed by HPLC and in some cases additionally by one- or two-dimensional TLC.

TRRs in apples were below 0.05 mg/kg at each harvest date and in each label, mostly present in the apple rinses (Table 11). The TRR in apple extracts were between 38 to 44%TRR 28 to 56 days after treatment. Residues in pellet were at 0.001-0.002 mg/kg eq.

Table 11 Total radioactive residues (TRR) in <u>apples</u> after spray application with [phthalic acid ring- $UL^{-14}C$]- and [aniline ring- $UL^{-14}C$]-flubendiamide

DAT	TRR	Apple rinse	s	Apple extr	acts	pellet		Recovery	
days	mg/kg	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
		eq.		eq.		eq.		eq.	
[phthalic ac	id ring-UL- ¹⁴	C]-label							
0	0.016	0.013	81.25	0.003	16.88	0.001	6.25	0.017	104.4
7	0.017	0.012	70.59	0.005	31.76	0.002	11.76	0.019	114.1
14	0.018	0.012	66.67	0.005	27.78	0.002	11.11	0.019	105.6
28	0.018	0.010	55.56	0.007	38.89	0.002	11.11	0.019	105.6
56	0.011	0.004	36.36	0.004	40.18.	0.002	18.18	0.010	94.7
[aniline ring	g-UL- ¹⁴ C]-lab	el							
0	0.043	0.030	69.77	0.009	19.91	0.001	2.33	0.040	92.0
7	0.024	0.014	58.33	0.007	28.38	0.002	8.33	0.023	95.0
14	0.021	0.013	61.90	0.005	23.57	0.001	4.76	0.019	90.2
28	0.017	0.008	47.06	0.006	35.88	0.002	11.76	0.016	94.7
56	0.010	0.004	40.00	0.004	43.70	0.002	20.00	0.010	103.7

TRR in apple leaves are summarised in Table 12. Residues at day 0 were 4.5 mg/kg, dropping to 1.4–1.6 mg/kg at day 56, mostly recovered in the ACN leaf extracts. Residues in the pellet increased during the experiment to about 10%TRR.

DAT	TRR	Leaf extr	acts ACN	Leaf extr	acts, ACN/HCl	pellet		Recover	ry
days	mg/kg	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
[phthalic acid i	ring-UL ⁻¹⁴ C]-	label							
0	4.508	4.291	95.19	0.697	15.46	0.051	1.131	5.039	111.8
7	4.206	3.423	81.38	1.196	28.44	0.217	5.159	4.836	115
14	2.970	2.503	84.28	0.518	17.44	0.192	6.465	3.213	108.2
28	2.839	2.323	81.82	0.542	19.09	0.299	10.53	3.164	111.4
56	1.443	0.991	68.68	0.226	15.66	0.163	11.30	1.380	95.6
[aniline ring-U	L- ¹⁴ C]-label								
0	4.452	4.146	93.13	0.824	18.51	0.068	1.527	5.038	113.2
7	4.279	3.502	81.84	0.906	21.17	0.163	3.809	4.571	106.8
14	4.801	3.481	72.51	0.901	18.77	0.186	3.874	4.568	95.2
28	3.425	2.841	82.95	0.567	16.55	0.295	8.613	3.703	108.1
56	1.643	1.288	78.39	0.289	17.59	0.171	10.41	1.748	106.4

Table 12 Total radioactive residues (TRR) in <u>leaves</u> after spray application with [phthalic acid ring- $UL^{-14}C$]- and [aniline ring- $UL^{-14}C$]-flubendiamide

Parent compound and metabolites identified by HPLC apples extract is shown in Table 13. Flubendiamide was the major compound detected in both label experiments; flubendiamide-des-iodo was detected at ≤ 0.002 mg/kg.

Table 13 Parent compound and metabolites of [phthalic acid ring-UL- 14 C] and [aniline ring-UL- 14 C]flubendiamide in <u>apples</u> after spray application

	apples, d	ay 0	apples, d	ay 7	apples, d	ay 14	apples, d	ay 28	apples, d	ay 56
Metabolites	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%
		TRR		TRR		TRR		TRR		TRR
[phthalic acid ring-UL-1	⁴ C]-label									
Flubendiamide	0.015	93.8	0.016	94.1	0.014	77.8	0.013	72.2	0.006	54.5
Flubendiamide-des-	n.d.	n.d.	< 0.001	< 5.9	< 0.001	< 5.6	0.001	5.6	< 0.002	< 18.2
iodo										
Peak at 22.25 min	< 0.001	< 6.3	< 0.001	< 5.9	< 0.001	< 5.6	< 0.001	< 5.6	< 0.001	< 9.1
Other unidentified	< 0.001	< 6.3	< 0.001	< 5.9	< 0.001	< 5.6	< 0.002	<11.1	< 0.002	<18.2
non-extracted residue	0.001	6.3	0.002	11.8	0.002	11.1	0.002	11.1	0.002	18.2
TRR	0.016		0.017		0.018		0.018		0.011	
[aniline ring-UL-14C]-la	bel									
Flubendiamide	0.035	81.4	0.018	75.0	0.014	66.7	0.009	52.9	0.005	50.0
Flubendiamide-des-	< 0.002	<4.7	< 0.001	< 4.2	< 0.002	< 9.5	0.002	11.8	< 0.001	<10.0
iodo										
Peak at 22.25 min	< 0.002	<4.7	< 0.001	<4.2	< 0.001	< 4.8	< 0.001	< 5.9	< 0.001	<10.0
Other unidentified	< 0.001	<2.3	< 0.001	<4.2	< 0.001	< 4.8	< 0.002	< 11.8	< 0.001	<10.0
non-extracted residue	0.001	2.3	0.001	4.2	0.001	4.8	0.002	11.8	0.002	20.0
TRR	0.043		0.024		0.021		0.017		0.010	

Flubendiamide was the predominant analyte detected in leaves, accouting for over 50% TRR at day 56 (Table 14). Flubendiamide-des-iodo was the major metabolites detected in leaf extracts (0.167–0.205 mg/kg). Several other unidentified metabolites were also detected; a maximum residue of 0.094 mg/kg was associated with a polar region. Other unidentified metabolites observed in leaves were < 0.05 mg/kg.

Table 14 Parent compound and metabolites of [phthalic acid ring-UL-¹⁴C]- and [aniline ring-UL-¹⁴C]flubendiamide in apple leaves after spray application

	leaves, day 0		leaves, day 7		leaves, day 14		leaves, day 28		leaves, day 56	
Metabolites ^{a)}	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%
		TRR		TRR		TRR		TRR		TRR
[phthalic acid ring-UL-1	⁴ C]-label									
Flubendiamide	4.763	105.7	4.191	99.6	2.358	79.4	2.087	73.5	0.763	52.9
Flubendiamide-des-	0.035	0.8	0.167	4.0	0.093	3.1	0.135	4.8	0.104	7.2
iodo										
Flubendiamide -3-OH	n.d.	n.d.	0.022	0.5	0.113	3.8	0.072	2.5	0.010	0.7

	leaves, d	ay 0	leaves, d	ay 7	leaves, d	ay 14	leaves, d	ay 28	leaves, d	ay 56
Metabolites ^{a)}	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%
		TRR		TRR		TRR		TRR		TRR
Flub-des-anilino	n.d.	n.d.	n.d.	n.d.	0.075	2.5	0.011	0.4	n.d.	n.d.
Flub-iodo-phthalimide	0.011	0.2	0.008	0.2	0.005	0.2	n.d.	n.d.	n.d.	n.d.
Flub-benzyl alcohol	0.004	0.1	0.039	0.9	0.047	1.6	0.035	1.2	0.031	2.1
Flub-benzoic acid	0.017	0.4	n.d.	n.d.	0.045	1.5	0.038	1.3	0.050	3.5
Flub-3-iodo-phthalic	n.d.	n.d.	n.d.	n.d.	0.046	1.5	0.176	6.2	0.030	2.1
acid										
Peak at 5.25 min	n.d.	n.d.	n.d.	n.d.	0.004	0.1	0.049	1.7	0.021	1.5
Peak at 19.25 min	0.031	0.7	0.026	0.6	0.027	0.9	n.d.	n.d.	0.030	2.1
Peak at 22.25 min	0.082	1.8	0.021	0.5	0.016	0.5	0.032	1.1	0.023	1.6
Other unidentified	0.044	1.0	0.153	3.6	0.261	8.8	0.222	7.8	0.188	13.0
non-extracted residue	0.051	1.13	0.217	5.16	0.192	6.47	0.299	10.53	0.163	11.30
TRR	4.51		4.21		2.97		2.84		1.44	
[aniline ring-UL-14C]-la	bel									
Flubendiamide	4.611	103.6	4.024	94.0	3.695	77.0	2.650	77.4	1.026	62.4
Flubendiamide-des-	0.069	1.5	0.205	4.8	0.181	3.8	0.182	5.3	0.114	6.9
iodo										
Flubendiamide -3-OH	n.d.	n.d.	n.d.	n.d.	0.109	2.3	0.097	2.8	0.072	4.4
Flub-iodo-phthalimide	0.103	2.3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Flub-benzyl alcohol	0.013	0.3	0.019	0.4	0.055	1.1	0.052	1.5	0.043	2.6
Flub-benzoic acid	0.013	0.3	0.016	0.4	0.066	1.4	0.086	2.5	0.054	3.3
Peak at 5.25 min	n.d.	n.d.	n.d.	n.d.	0.080	1.7	0.033	1.0	0.094	5.7
Peak at 19.25 min	0.024	0.5	0.007	0.2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Peak at 22.25 min	n.d.	n.d.	0.015	0.4	0.056	1.2	0.041	1.2	0.018	1.1
Other unidentified	0.139	3.1	0.121	2.8	0.141	2.9	0.271	7.9	0.153	9.3
non-extracted residue	0.068	1.53	0.163	3.81	0.186	3.87	0.295	8.61	0.171	10.41
TRR	4.45		4.28		4.80		3.42		1.64	

^a in sum of rinses (ACN) and extracts (ACN/0.1 N HCl)

^b no individual metabolite > 0.1 mg/kg;

n.d. - not detected.

Sweet Corn

The metabolism of flubendiamide in sweet <u>corn</u> was investigated by Krolski and Nguyen (2005). [phthalic acid ring-UL-¹⁴C]flubendiamide and [aniline ring-UL-¹⁴C] flubendiamide were applied 4 times, at a 7-day interval, at 0.16 kg ai/ha. Forage (that includes husks) and sweet corn samples were collected one day after the fourth treatment. Corn grain and fodder (cobs plus stalk plus husk) were collected at 22 days PHI. Grain and fodder were processed with dry ice, portions taken for radioassay and the remainders stored freezen for analysis. An aliquot of pulverized forage was blended with ACN/water, centrifuged and the remaining dried solids extracted with acetonitrile heated at reflux. The suspension was filtered and extracted with methanol heated at reflux. The filtered solids were removed, the remaining solids from the refluxing methanol extraction were suspended in 2N NaOH and heated at reflux. Other samples (sweet corn, fodder and grain) were also extracted in several steps. Extracts and solid residues after combustion were subjected to LSC. The main extracts (ACN/water) were analysed by HPLC/MS. The total radioactive residue (TRR) of all samples was determined by combustion of aliquots.

TRR of forage and fodder was within the range of 0.288 to 0.6 mg/kg eq., mostly found in the acetonitrile/water extracts (Table 15). TRR derived by combustion of sweet corn and corn grain samples were 0.01 and 0.016 mg/kg eq., from the phtalic acid ring label, respectively, and 0.001 and 0.003 mg/kg eq. in the aniline ring label, respectively. ACN/water extracts of sweet corn and corn grain of the phthalic acid labelrepresented 37 and 15% TRR, respectively; methanol under reflux and alkaline conditions extracted about 20 and 13% TRR of sweet corn and grain, respectively. Due to the low TRRs, the sweet corn and corn grain samples of the aniline label were not further analysed.

	forage		sweet corn		fodder		corn grain	l
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
[phthalic acid ring-UL-14	⁴ C]-label							
Hexane	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	< 0.001	3
ACN/H2O	0.275	95	0.004	37	0.415	87	0.002	15
ACN reflux	0.003	1	n.g.	n.g.	0.018	4	n.g.	n.g.
MeOH reflux	0.002	1	0.002	20	0.009	2	0.002	13
1N HCl, RT	n.g.	n.g.	< 0.001	2	n.g.	n.g.	n.g.	n.g.
1N HCl, reflux	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.001	4
2N NaOH, RT	n.g.	n.g.	0.003	33	0.027	6	n.g.	n.g.
2N NaOH, reflux	0.006	2	n.g.	n.g.	n.g.	n.g.	< 0.001	<1
6N NaOH, reflux	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.009	53
6N HCl, reflux	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.002	14
non-extracted residue	0.001	0.4	0.001	8	0.008	2	-	-
TRR	0.288	100	0.010	100	0.476	100	0.016	100
[aniline ring-UL-14C]-lal	bel							
Hexane	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
ACN/H2O	0.570	95	n.g.	n.g.	0.369	94	n.g.	n.g.
ACN reflux	n.g.	n.g.	n.g.	n.g.	0.01	3	n.g.	n.g.
MeOH reflux	n.g.	n.g.	n.g.	n.g.	< 0.01	2	n.g.	n.g.
1N HCl, RT	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
1N HCl, reflux	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
2N NaOH, RT	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
2N NaOH, reflux	n.g.	n.g.	n.g.	n.g.	< 0.01	1	n.g.	n.g.
6N NaOH, reflux	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
6N HCl, reflux	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
non-extracted residue	0.029	5	n.g.	n.g.	< 0.01	<1	n.g.	n.g.
TRR	0.599	100	0.001	100	0.394	100	0.003	100

Table 15 Total radioactive residues (TRR) and results of extraction in corn after spray application with [phthalic acid ring-UL-¹⁴C] and [aniline ring-UL-¹⁴C]flubendiamide

ng = fraction not generated.

The distribution of total radioactive residues in corn forage and fodder is shown in Table 16. TRR levels were between 0.3 to 0.6 mg/kg eq., with over 75% TRR as parent compound. Flubendiamide-des-iodo was detected at levels from 0.03 to 0.05 mg/kg eq. No unidentified residues represented > 1% of the TRR in any matrix.

Table 16 Parent compound and metabolites of [phthalic acid ring-UL- 14 C] and [aniline ring-UL- 14 C]flubendiamide in corn after spray application

	forage		fodder	
	mg/kg	% TRR	mg/kg	% TRR
[phthalic acid ring-UL-14C	2]-label			
Flubendiamide	0.212	77	0.324	78
Flub-des-iodo	0.050	18	0.036	9
total	0.262	95	0.360	87
[aniline ring-UL- ¹⁴ C]-labe	2			
Flubendiamide	0.513	90	0.308	84
Flub-des-iodo	0.029	5	0.037	10
total	0.542	95	0.345	94

Rice

The metabolism of flubendiamide in <u>rice</u> was investigated by Motoba (2004). Application of [phthalic acid ring-UL-¹⁴C]flubendiamide was done just before ear emergence 76 days after seeding and 63 days before the final sampling at maturity. The application suspensions (49.6 \pm 0.5 µg eq./mL) were sprayed to the test plants and after drying of the droplets on the plant surface, the plants were transferred to the greenhouse. The average temperature and humidity were 27.6°C and 66.4%, respectively. Light intensity was not monitored. Four pots of rice plants were sampled. The first plant

sample (one pot) was taken at time zero, and the second four weeks after application (sampling of immature plants). For the last sample (9 weeks, mature rice plants) two pots were used. Immediately after the treatment, when the droplets had dried, leaves with stems were sampled. Four weeks after treatment, rice plants were sampled separately in parts (leaves with stems, ear and root). Nine weeks after application the samples of one pot were immediately rinsed and extracted, and samples from the other pot were dried for a week in the glasshouse simulating the normal horticultural procedure before they were rinsed and extracted.

The surface of leaves, stems, immature and mature ears were rinsed with acetonitrile; the rinsed plant samples were extracted with ACN/water and further with ACN/0.1N HCl and ACN/1N HCl. Roots were subjected to combustion radioanalysis. Dried mature ears were separated into rough (unhulled) rice and ear stems, and the ear stems were combined with the stems. The surface of unhulled grain was rinsed with acetonitrile and then separated into hulls and grain by forceps. The obtained hulls and grain were extracted with ACN/water. Extracts containing enough radioactivity for further analysis (> 0.01 mg/kg eq.) were subjected to TLC analysis followed by radioluminography. Identification of metabolites was confirmed by HPLC and LC-MS.

The distribution of radioactivity in the fractions and the total radioactive residues are shown in Table 17. Significant radioactive residues were only found in leaves and stems. The TRRs in stems and leaves decreased significantly from 2.1 mg/kg eq. at time zero to around one third of the initial value at sampling of immature plants (four weeks after application). At the last sampling, the TRR increased compared to immature samples. The TRRs in grain and hulls were low. The radioactive residues in stems and leaves were almost completely extracted by surface rinse and the extraction procedure.

		Radioactive residu	ue, mg/kg eq. (% o	of TRR)	
		Seed		Stems and	
Sampling, PHI	Fractions	Grain	Hull	leaves	Root
0	Rinsate	N.S.	N.S.	2.036 (95.9)	
	ACN/water extract	N.S.	N.S.	0.088 (4.1)	N.S.
	Post extraction solids	N.S.	N.S.	- (-)	N.S.
	Total radioactive residue	N.S.	N.S.	2.123 (100)	N.S.
4 weeks	Rinsate	0.002 (42.0)		0.512 (82.1)	N.D.
	ACN/water extract	0.002 (44.4)		0.094 (15.2)	N.D.
	ACN/0.1 N HCl extracts	- (-)		0.012 (1.9)	N.D.
	ACN/1 N HCl extracts	- (-)		0.002 (0.3)	N.D.
	Post extraction solids	0.001 (13.6)		0.003 (0.5)	< 0.001 (100.0)
	Total radioactive residue	0.005 (100.0)		0.623 (100.0)	< 0.001 (100.0)
9 weeks	Rinsate	0.004 (18.2)		1.026 (72.8)	N.D.
(fresh samples)	ACN/water extract	N.D.		0.319 (22.7)	N.D.
	ACN /0.1 N HCl extracts	N.D.		0.046 (3.3)	N.D.
	ACN /1 N HCl extracts	N.D.		0.006 (0.4)	N.D.
	Post extraction solids	0.019 (81.8)		0.011 (0.8)	0.001 (100.0)
	Total radioactive residue	0.023 (100.0)		1.408 (100.0)	0.001 (100.0)
9 weeks	Rinsate	N.D.	0.015 (33.3)	2.103 (69.2)	N.D.
after drying	ACN/water extract	< 0.001 (19.3)	0.036 (62.3)	0.625 (20.6)	N.D.
	ACN /0.1 N HCl extracts	N.D.	N.D.	0.161 (5.3)	N.D.
	ACN /1 N HCl extracts	N.D.	N.D.	0.093 (3.0)	N.D.
	Post extraction solids	0.001 (80.7)	0.002 (4.4)	0.057 (1.9)	0.008 (100.0)
	Total radioactive residue	0.001 (100.0)	0.052 (100.0)	3.038 (100.0)	0.008 (100.0)

Table 17 Total radioactive residues (TRR) in rice plants after foliar application with [phthalic acid ring-UL-¹⁴C]flubendimide

N.S. = No sample was available.

- = Not detected.

N.D. = Not determined.

The metabolites identified in rice samples are summarised in Table 18. Flubendiamide was the predominant constituent of the residue in all matrices and for all sampling times. Flubendiamide-

des-iodo accounted for 4.1% TRR in leaves and stems and fubendiamide-3-OH was identified as a minor constituent. Two metabolites formed by oxidation were also identified in leaves and stems: flubendiamide-benzylalcohol and flubendiamide-benzoic acid.

T-1.1. 10 D	1 1 4 - 1 1:4	F., 1, 41, -11, 14	$\frac{140}{140}$	1011
Table 18 Parent compound	i and metabolities of	innthalic acid	nng-UL- C	influbendiamide in rice

	Concentrations as	s mg/kg eq. (% of T	TRR)			
	O day PHI	4 weeks PHI	9 weeks PHI	9 weeks PHI, after drying		
Metabolites	Stem and leaves	Stem and leaves (immature)	Stem and leaves (mature)	Stem and leaves (straw, dried)	Hulls	
Flubendiamide	2.12 (100.0)	0.596 (95.7)	1.34 (95.4)	2.82 (92.9)	0.046 (88.8)	
Flubendiamide -des-iodo	-	0.019 (3.1)	0.041 (2.9)	0.126 (4.1)	0.002 (4.0)	
Flubendiamide -3-OH	-	0.002 (0.3)	0.007 (0.5)	0.014 (0.5)	-	
Flubendiamide -benzyl alcohol	-	0.001 (0.1)	0.004 (0.3)	0.014 (0.5)	-	
Flubendiamide -benzoic acid	-	-	0.001 (0.1)	0.004 (0.1)	-	
Others unknowns ^{a)}	-	0.002 (0.3)	-	-	0.002 (3.4)	
Post extraction solid (PES)	-	0.003 (0.5)	0.011 (0.8)	0.057 (1.9)	0.002 (3.8)	
Total (TRR)	2.12 (100.0)	0.623 (100.0)	1.41 (100.0)	3.04 (100.0)	0.052 (100.0)	

^a Other unknowns included extractable fractions that were not further analysed, or residues in aqueous phases obtained by partitioning prior to TLC analysis

- = Not detected.

From the results of the metabolism studies, it was concluded that the metabolism of flubendiamide after foliar application on plants involved mostly two different routes, shown in Figure 4. The first route was the des-iodination of the parent compound to yield flubendiamide-des-iodo followed by hydroxylation to flubendiamide-3-OH. Another route involved the stepwise oxidation of the methyl group at the aniline ring leading to flubendiamide-benzylalcohol and flubendiamide-benzoic acid. While oxidation of the methyl group is most likely due to enzymatic processes, the des-iodination and the consequent hydroxylation of the phthalic acid ring are known from both, photolytic and biotic degradation processes.

In tomato, the label-specific metabolite flubendiamide-des-anilino (A-13) was also observed indicating that a small amount of the parent compound was cleaved (Figure 5). In apple fruits, a third route was also observed, involving the elimination of the amino-ethyl-sulfonyl substituent leading to flubendiamide-iodo-phthalimide. The label-specific metabolite flubendiamide-3-iodo-phthalic acid was also observed indicating that the parent compound was cleaved in or on leaves of apple trees (Figure 5). In corn, the only metabolic reaction observed was the reductive deiodination to yield flubendiamide-des-iodo. Additionally, small amounts of bound residues were observed.

Environmental Fate

The supported uses of flubendiamide concern foliar application only. Based onthe 'FAO Manual on Submission and Evaluation of Pesticide Residue Data for the Estimation of Maximum Residue Levels in Food and Feed', 2009, no studies on the fate and behavior in soil arerequired for this type of use. Any metabolite from a field dissipation study that may have an impact on plant residues is covered by the rotational crop study.

Hydrolysis

Flubendiamide comprised more than 95% of the residue at 25 ± 1 °C in pH 4.0, 5.0, 7.0 and 9.0 buffer solutions over a 30-day study period; and more than 95% of the residue at 50.0 ± 0.1 °C in pH 4.0, 7.0 and 9.0 buffer solutions over a 5-day study period (A.Yamashita, 2003). Therefore flubendiamide is hydrolytically stable from pH 4.0 to 9.0.

Photolysis

Flubendiamide was irradiated in distilled water, natural water, and distilled water containing 1% acetone with artificial light for up to 168 hours. An average half-life of 5.5 days was determined in

distilled water and distilled water with acetone, while a half-life of 4.3 days was reported in natural waters. The results of the environmental fate studies indicate that degradation of flubendiamide is more likely to occur by photolysis than hydrolysis.

Residues in succeeding crops

The metabolism of flubendiamide after spray application onto bare soil was investigated in three different crops – spring wheat, Swiss chard, and turnips (Reiner, 2004). [Phthalic acid ring-UL- 14 C]flubendiamide was applied uniformly to the soil of a planting container (area 1 m²) by spray application (day 0). The application rate corresponded to 0.437 kg ai/ha and was based on the projected annual field rate of 0.420 kg ai/ha. Crops of the first, second and third rotation were sown at day 29, day 135 and day 274, respectively. Plants of the first rotation were grown under natural temperature and light conditions and for the second and third rotation, in the greenhouse. One row of wheat plants was cut shortly above the soil surface to sample the forage and one row was cut shortly above the soil surface at the soft dough stage to sample hay. Grain and straw were harvested at maturity. The seeds were collected by hand yielding the grain sample and the remaining ears and chaff were combined with the straw sample. Swiss chard of each rotation were sampled at maturity. Leaves and roots were separated.

Samples were homogenised with liquid nitrogen, an aliquot extracted with ACN/water and the radioactivity determined by LSC. The undissolved residue was dried at room temperature yielding solids 1. Aliquots were combusted and the radioactivity measured by LSC. For further analysis, the combined ACN/water extracts were concentrated and the radioactivity partitioned with dichloromethane. The total radioactive residues (TRR) in rotational crops, expressed as mg/kg parent compound equivalents, are shown in Table 19. The maximum TRR (0.070 mg/kg) was observed in wheat straw of the first rotation, which decreased in the second rotation and the third rotation.

Table 19 Total radioactive residues (TRRs) in rotational crops grown in soil treated with [phthalic acid ring-UL-¹⁴C]-flubenidamide. Values are expressed as mg/kg parent compound equivalents

	wheat	heat			Swiss Turnips		
	forage	hay	straw	grain	chard	leaves	roots
first rotation	0.013	0.045	0.070	0.003	0.022	0.011	0.006
second rotation	0.008	0.032	0.063	0.002	0.019	0.005	0.002
third rotation	0.016	0.022	0.050	0.003	0.015	0.006	0.002

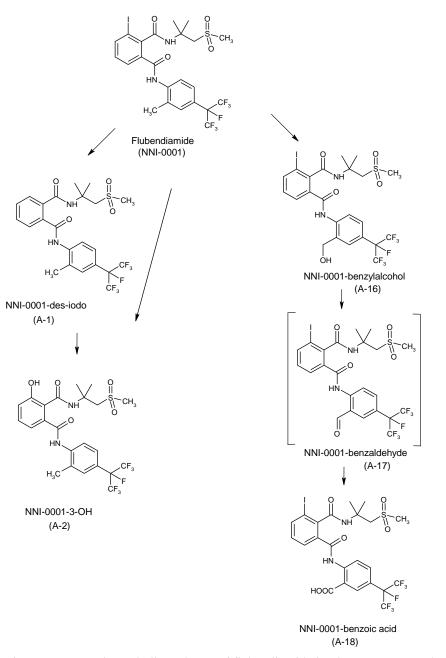


Figure 4 Proposed metabolic pathway of flubendiamide in plants [] = postulated intermediate

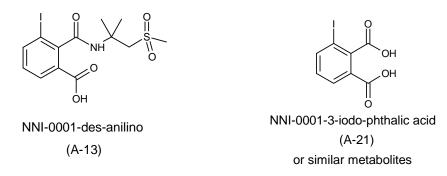


Figure 5 Metabolites found in tomato (A13) and apple (A-21) treated with flubendiamide (NNI-0001)

About 80–90% of the TRR was extracted from the majority of samples using acetonitrile/water. In grain, only a relatively small portion of the TRR was extracted using acetonitrile/water, with the solids 1 (undissolved residue following conventional extraction) of the first rotation accounting for 69.3% TRR. After enzymatic treatment with diastase, 16.2% TRR (< 0.001 mg/kg) remained undissolved in solids.

Tables 20 to 26 show the components of all plant samples treated with [phthalic acid ring-UL-¹⁴C] flubendiamide. Unchanged parent compound was the main component of all plant samples and accounted for 22-77% of the TRR, except for grain. In grain, only 4% (< 0.001 mg/kg) of the TRR (0.003 mg/kg) was due to unchanged flubendiamide in the first rotation. The amount of flubendiamide decreased to 2.2% in the second rotation and 0.5% in the third rotation. The main portion of the TRR in grain was due to very polar radioactivity found in aqueous phases following conventional and enzymatic extraction. It was concluded, that approximately 62% of the TRR in grain of the first rotation consisted of natural compounds, formed after mineralisation of flubendiamide residues to ¹⁴CO₂ in soil. This was supported by comparison of the TRRs of grain of all three rotations (0.003 mg/kg, 0.002 mg/kg, 0.003 mg/kg, respectively), by the constant decrease of flubendiamide, by the constant decrease of metabolites flubendiamide-des-iodo and flubendiamide, and by the relative amount of radioactivity in organic/aqueous phases.

A major metabolite in confined rotational crops was flubendiamide-des-iodo, accounting for up to 8.0% of the TRR in Swiss chard of the second rotation. The highest absolute amount of flubendiamide-des-iodo-alkylphthalimide was 0.010 mg/kg in straw of the second rotation corresponding to 16.0% of the TRR. Further identified metabolites were metabolite flubendiamide-benzyl alcohol, flubendiamide-benzoic acid, flubendiamide-iodo-alkylphthalimide) and flubendiamide-des-anilino), each of them < 0.01 mg/kg in all crops of all rotations.

Table 20 Amount of parent compound and metabolites in wheat forage grown in soil treated with [phthalic acid ring-UL-¹⁴C] flubendiamide

			second rotation		third rotation	
code (report name)	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	65.3	0.008	77.4	0.006	67.2	0.011
flubendiamide -des-iodo	1.9	< 0.001	2.8	< 0.001	4.3	0.001
flubendiamide -benzyl alcohol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -benzoic acid	1.4	< 0.001	0.4	< 0.001	0.7	< 0.001
flubendiamide -iodo-alkylphthalimide	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-anilino	n.d.	n.d.	n.a.	n.a.	n.d.	n.d.
flubendiamide -des-iodo-alkylphthalimide	2.3	< 0.001	6.8	0.001	3.4	0.001
metabolites in the dichloromethane phase	8.1	0.001	2.1	< 0.001	3.4	0.001
metabolites in the aqueous phase	11.3	0.001	3.6	< 0.001	16.4	0.003

	first rotation se		second rotation		third rotation	
code (report name)	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
total extracted	90.2	0.012	93.1	0.007	95.4	0.015
solids 1	9.8	0.001	6.9	0.001	4.6	0.001

n.a. = not analysed; n.d. = not detected

Table 21 Amount of parent compound and metabolites in wheat hay grown in soil treated with [phthalic acid ring-UL-¹⁴C] flubendiamide

	first rotation s		second rotation	on	third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	59.6	0.027	64.0	0.020	53.9	0.012
flubendiamide -des-iodo	2.3	0.001	2.5	0.001	2.9	0.001
flubendiamide -benzyl alcohol	0.4	< 0.001	n.d.	n.d.	0.5	< 0.001
flubendiamide -benzoic acid	0.9	< 0.001	0.6	< 0.001	1.0	< 0.001
flubendiamide -iodo-alkylphthalimide	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-anilino	1.3	0.001	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-iodo-alkylphthalimide	8.4	0.004	14.9	0.005	7.1	0.002
metabolites in the dichloromethane phase	5.8	0.003	3.1	0.001	4.3	0.001
metabolites in the aqueous phase	11.6	0.005	6.8	0.002	13.4	0.003
total extracted	90.4	0.041	91.9	0.029	83.2	0.018
solids 1	9.6	0.004	8.1	0.003	16.8	0.004

n.d. = not detected;

Table 22 Amount of parent compound and metabolites in wheat straw grown in soil treated with [phthalic acid ring-UL- 14 C] flubendiamide

	first rotation	first rotation		second rotation		n
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	38.9	0.027	60.5	0.038	55.1	0.027
flubendiamide -des-iodo	2.6	0.002	2.2	0.001	3.3	0.002
flubendiamide -benzyl alcohol	0.5	< 0.001	0.5	< 0.001	1.2	0.001
flubendiamide -benzoic acid	0.8	0.001	0.6	< 0.001	0.8	< 0.001
flubendiamide -iodo-alkylphthalimide	0.8	0.001	0.3	< 0.001	n.d.	n.d.
flubendiamide -des-anilino	7.0	0.005	0.7	< 0.001	n.d.	n.d.
flubendiamide -des-iodo-alkylphthalimide	5.9	0.004	16.0	0.010	9.6	0.005
metabolites in the dichloromethane phase	4.7	0.003	3.7	0.002	5.1	0.003
metabolites in the aqueous phase	23.1	0.016	6.6	0.004	9.9	0.005
total extracted	84.3	0.059	91.1	0.058	85.0	0.042
solids 1	15.7	0.011	8.9	0.006	15.0	0.007

Table 23 Amount of parent compound and metabolites in wheat grain grown in soil treated with [phthalic acid ring-UL-¹⁴C] flubendiamide

	first rotation se		second rot	second rotation		ion
code (report name)	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
Flubendiamide	4.0	< 0.001	2.2	< 0.001	0.5	< 0.001
flubendiamide -des-iodo	0.5	< 0.001	0.5	< 0.001	0.2	< 0.001
flubendiamide -benzyl alcohol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -benzoic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -iodo-alkylphthalimide	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-anilino	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
flubendiamide -des-iodo-alkylphthalimide	3.0	< 0.001	2.6	< 0.001	0.6	< 0.001

	first rotation		second rotation		third rotation	
code (report name)	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
metabolites in the dichloromethane phase	11.5	< 0.001	3.9	< 0.001	5.4	< 0.001
metabolites in the aqueous phase	11.7	< 0.001	11.0	< 0.001	6.7	< 0.001
in the ethyl acetate phase (only first rotation)	2.4	< 0.001	-	-	-	-
in the aqueous phase 2 (only first rotation)	50.7	0.001	-	-	-	-
total extracted	83.8	0.003	20.3	< 0.001	13.4	< 0.001
solids 1 (following conventional extraction)	(69.3)	(0.002)	79.7	0.001	86.6	0.003
solids 2 (following diastase treatment)	16.2	< 0.001	-	-	-	-

n.a. = not analysed; n.d. = not detected

- = phase not available / experiment not conducted

Table 24 Amount of parent compound and metabolites in Swiss chard grown in soil treated with [phthalic acid ring-UL-¹⁴C] flubendiamide

	first rotati	on	second r	second rotation		ation
Compound	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
flubendiamide	69.1	0.015	73.2	0.014	53.8	0.008
flubendiamide -des-iodo	2.2	< 0.001	8.0	0.002	5.4	0.001
flubendiamide -benzyl alcohol	0.8	< 0.001	0.5	< 0.001	n.d.	n.d.
flubendiamide -benzoic acid	0.4	< 0.001	0.5	< 0.001	0.3	< 0.001
flubendiamide -iodo-alkylphthalimide	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-anilino	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-iodo-alkylphthalimide	2.0	< 0.001	5.4	0.001	12.7	0.002
metabolites in the dichloromethane phase	4.0	0.001	2.4	< 0.001	1.9	< 0.001
metabolites in the aqueous phase	13.8	0.003	7.5	0.001	22.1	0.003
total extracted	92.2	0.020	97.4	0.019	96.1	0.014
solids 1	7.8	0.002	2.6	< 0.001	3.9	0.001

n.d. = not detected

Table 25 Amount of parent compound and metabolites in turnip leaves grown in soil treated with [phthalic acid ring-UL-¹⁴C] flubendiamide

	first rotation		second rotation		third rotation	
Compound	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
flubendiamide	68.1	0.008	64.2	0.003	22.4	0.001
flubendiamide -des-iodo	2.8	< 0.001	3.2	< 0.001	2.0	< 0.001
flubendiamide -benzyl alcohol	1.1	< 0.001	n.d.	n.d.	n.d.	n.d.
flubendiamide -benzoic acid	0.6	< 0.001	0.3	< 0.001	n.d.	n.d.
flubendiamide -iodo-alkylphthalimide	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-anilino	n.d.	n.d.	n.a.	n.a.	n.a.	n.a.
flubendiamide -des-iodo-alkylphthalimide	6.4	0.001	16.2	0.001	20.7	0.001
metabolites in the dichloromethane phase	1.5	< 0.001	1.9	< 0.001	23.6	0.001
metabolites in the aqueous phase	8.2	0.001	7.3	< 0.001	23.7	0.001
sum characterised	9.7	0.001	9.2	< 0.001	47.3	0.003
total extracted	88.7	0.010	93.0	0.005	92.4	0.006
solids 1	11.3	0.001	7.0	< 0.001	7.6	< 0.001

n.a. = not analysed; n.d. = not detected

	first rotation	l	second rotation		third rotation	
Compound	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
Flubendiamide	69.0	0.004	55.0	0.001	32.6	0.001
flubendiamide des-iodo	0.8	< 0.001	2.1	< 0.001	1.5	< 0.001
flubendiamide -benzyl alcohol	0.7	< 0.001	n.d.	n.d.	n.d.	n.d.
flubendiamide -benzoic acid	0.3	< 0.001	0.6	< 0.001	n.d.	n.d.
flubendiamide -iodo-alkylphthalimide	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
flubendiamide -des-anilino	n.d.	n.d.	n.a.	n.a.	n.a.	n.a.
flubendiamide -des-iodo-alkylphthalimide	1.2	< 0.001	2.8	< 0.001	3.4	< 0.001
metabolites in the dichloromethane phase	0.6	< 0.001	0.2	< 0.001	13.0	< 0.001
metabolites in the aqueous phase	14.1	0.001	29.9	0.001	37.6	0.001
total extracted	86.7	0.005	90.6	0.002	88.1	0.002
solids 1	13.3	0.001	9.4	< 0.001	11.9	< 0.001

Table 26 Amount of parent compound and metabolites in turnip roots grown in soil treated with [phthalic acid ring-UL-¹⁴C] flubendiamide

n.a. = not analysed; n.d. = not detected

The same experiment was repeated using [aniline ring-UL-¹⁴C]flubendiamide at the application rate corresponding to 0.442 kg ai/ha (Reiner, 2004). Crops of the first, second and third rotation were sown at day 29, day 135 and day 274, respectively. Plants of the first rotation were grown under natural temperature and light conditions, and for the second and third rotation, in the greenhouse. Sampling and sample analysis were performed as previously described for the phthalic acid label experiment.

The TRRs were relatively low for all crops and all rotations. The maximum TRR (0.137 mg/kg) was observed in wheat straw of the first rotation, decreasing in the second rotation (0.068 mg/kg) and in the third rotation (0.039 mg/kg). Similarly, the TRRs in wheat hay decreased from 0.045 mg/kg (first rotation) to 0.034 mg/kg (second rotation) and 0.021 mg/kg (third rotation). The TRRs in forage and Swiss chard were on a very low level ranging from 0.009 mg/kg to 0.019 mg/kg for all rotations. The lowest residues were present in grain, turnip leaves and turnip roots amounting to ≤ 0.006 mg/kg for all rotations.

The major amount of radioactivity (ca. 80–90% of the TRR) was extracted for the majority of samples using ACN/water. The solids 1 of grain of the first rotation, accounted for 62.0% TRR. After enzymatic treatment, 14.2% TRR (<0.001 mg/kg) remained undissolved. Unchanged parent compound was the main component of all plant samples and accounted for 44–88% TRR, except for grain. In grain, only 8% TRR (<0.001 mg/kg) was due to flubendiamide in the first rotation and was not detectable in grain of the third rotation. The main portion of the TRR in grain was due to very polar radioactivity found in aqueous phases following conventional and enzymatic extraction. It was concluded, that approximately 74% of the TRR in grain of the first rotation consisted of natural compounds, formed after mineralisation of flubendiamide residues to $^{14}CO_2$ in soil.

Tables 27 to 33 show the components of all plant samples treated with [aniline ring-UL-¹⁴C] flubendiamide. The main metabolite in confined rotational crops was flubendiamide-des-iodo, accounting for 10.8% TRR in Swiss chard of the second rotation. Flubendiamide-benzyl alcohol and - benzoic acid were detected in some of the plant samples up to 1.4% TRR, each accounting for 0.001 mg/kg as a maximum. Special investigations conducted for straw proved that flubendiamide-aniline was not present as a metabolite.

	first rotation	first rotation		second rotation		n
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	72.7	0.008	88.0	0.009	59.4	0.008
Flubendiamide -des-iodo	1.4	< 0.001	3.0	< 0.001	4.3	0.001
Flubendiamide-benzyl alcohol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Flubendiamide -benzoic acid	1.0	< 0.001	0.5	< 0.001	0.7	< 0.001
metabolites in the dichloromethane phase	14.2	0.002	c.i.	c.i.	1.0	< 0.001
metabolites in the aqueous phase	3.8	< 0.001	3.5	< 0.001	30.1	0.004
total extracted	93.0	0.010	95.0	0.010	95.4	0.012
solids 1	7.0	0.001	5.0	0.001	4.6	0.001

Table 27 Amount of parent compound and metabolites in wheat forage grown in soil treated with [aniline ring-UL-¹⁴C]flubendiamide

c.i. = complete identification was achieved;

n.d. = not detected

Table 28 Amount of parent compound and metabolites in wheat hay grown in soil treated with [aniline ring-UL-¹⁴C] flubendiamide

	first rotation	first rotation		second rotation		third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg	
Flubendiamide	78.4	0.035	85.5	0.029	44.4	0.009	
Flubendiamide -des-iodo	2.4	0.001	2.9	0.001	2.7	0.001	
Flubendiamide-benzyl alcohol	0.4	< 0.001	n.d.	n.d.	0.4	< 0.001	
Flubendiamide -benzoic acid	1.4	0.001	0.7	< 0.001	0.8	< 0.001	
metabolites in the dichloromethane phase	0.8	< 0.001	c.i.	c.i.	3.4	0.001	
metabolites in the aqueous phase	7.0	0.003	5.2	0.002	27.6	0.006	
total extracted	90.4	0.040	94.4	0.032	79.4	0.016	
solids 1	9.6	0.004	5.6	0.002	20.6	0.004	

Table 29 Amount of parent compound and metabolites in wheat straw grown in soil treated with [aniline ring-UL-¹⁴C]flubendiamide

	first rotation		second rotation		third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	72.3	0.099	79.9	0.054	46.7	0.018
Flubendiamide -des-iodo	2.4	0.003	2.7	0.002	3.0	0.001
Flubendiamide-benzyl alcohol	0.6	0.001	0.9	0.001	0.9	< 0.001
Flubendiamide -benzoic acid	1.1	0.001	0.9	0.001	1.2	< 0.001
metabolites in the dichloromethane phase	0.8	0.001	2.3	0.002	6.9	0.003
metabolites in the aqueous phase	9.5	0.013	4.3	0.003	19.9	0.008
total extracted	86.6	0.119	91.0	0.062	78.6	0.031
solids 1	13.4	0.018	9.0	0.006	21.4	0.008

Table 30 Amount of parent compound and metabolites in wheat grain grown in soil treated with [aniline ring-UL- 14 C] flubendiamide

	first rotation s		second rotation		third rotation	
Compounds	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	8.0	< 0.001	2.8	< 0.001	n.d.	n.d.
Flubendiamide -des-iodo	0.2	< 0.001	n.d.	n.d.	n.d.	n.d.
Flubendiamide-benzyl alcohol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Flubendiamide -benzoic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

	first rotation		second rotation		third rotation	
Compounds	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
metabolites in the dichloromethane phase	1.0	< 0.001	6.0	< 0.001	3.3	< 0.001
metabolites in the aqueous phase	28.8	0.001	2.7	< 0.001	3.0	< 0.001
in the ethyl acetate phase (only first rotation)	3.0	< 0.001	-	-	-	-
in the aqueous phase 2 (only first rotation)	44.8	0.001	-	-	-	-
solids 1 (following conventional extraction)	(62.0)	(0.001)	88.5	0.002	93.7	0.004
total extracted	85.8	0.002	11.5	< 0.001	6.3	< 0.001
solids 2 (following diastase treatment)	14.2	< 0.001	-	-	-	-

n.d. = not detected

- = phase not available / experiment not conducted

Table 31 Parent compound and metabolites in Swiss chard grown in soil treated with [aniline ring-UL-¹⁴C]flubendiamide

	first rotation		second rotation		third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	62.5	0.008	77.4	0.007	67.6	0.013
Flubendiamide -des-iodo	2.1	< 0.001	10.8	0.001	6.2	0.001
Flubendiamide-benzyl alcohol	0.6	< 0.001	n.d.	n.d.	n.d.	n.d.
Flubendiamide -benzoic acid	0.3	< 0.001	n.d.	n.d.	0.3	< 0.001
metabolites in the dichloromethane phase	6.3	0.001	c.i.	c.i.	c.i.	c.i.
metabolites in the aqueous phase	20.1	0.003	8.8	0.001	22.9	0.004
total extracted	92.0	0.012	96.9	0.009	97.1	0.018
solids 1	8.0	0.001	3.1	< 0.001	2.9	0.001

c.i. = complete identification was achieved

Table 32 Parent compound and metabolites in turnip leaves grown in soil treated with [aniline ring-UL-¹⁴C]flubendiamide

	first rotation s		second rotation		third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	64.0	0.002	60.1	0.001	53.5	0.003
Flubendiamide -des-iodo	2.6	< 0.001	6.5	< 0.001	7.6	< 0.001
Flubendiamide-benzyl alcohol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Flubendiamide -benzoic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
metabolites in the dichloromethane phase	5.3	< 0.001	c.i.	c.i.	4.9	< 0.001
metabolites in the aqueous phase	16.2	0.001	22.3	< 0.001	25.9	0.002
total extracted	88.1	0.003	88.9	0.002	91.9	0.005
solids 1	11.9	< 0.001	11.1	< 0.001	8.1	< 0.001

c.i. = complete identification was achieved; n.d. = not detected

Table 33 Parent compound and metabolites in turnip roots grown in soil treated with [aniline ring-UL- 14 C] flubendiamide

	first rotation s		second rotation		third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
Flubendiamide	66.2	0.001	61.8	0.001	62.1	0.002
Flubendiamide -des-iodo	0.5	< 0.001	2.3	< 0.001	n.d.	n.d.
Flubendiamide-benzyl alcohol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Flubendiamide -benzoic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
metabolites in the dichloromethane phase	10.0	< 0.001	c.i.	c.i.	12.6	< 0.001

	first rotation		second rotation		third rotation	
Compound	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg
metabolites in the aqueous phase	10.6	< 0.001	23.1	< 0.001	14.3	< 0.001
total extracted	87.2	0.002	87.3	0.001	89.0	0.002
solids 1	12.8	< 0.001	12.7	< 0.001	11.0	< 0.001

The main metabolic reaction of flubendiamide in confined rotational crops was the reduction of the parent compound by elimination of the iodine-substituent. Another important metabolic reaction was the elimination of the N-aryl-moiety. Hydroxylation of the parent compound was also observed, however, only a small amount of metabolite flubendiamide-benzyl alcohol was generally detected. A significant amount was further oxidised to the carboxylic acid, probably in soil. Metabolite flubendiamide-benzoic acid was found in relatively high amounts. The proposed metabolic pathway of flubendiamide is shown in Figure 6.

METHODS OF RESIDUE ANALYSIS

Plant material

The use of the GC multi residue method DFG S19 (Specht et al. 1995) and FDA Multi-Residue Method Test guidelines in PAM (Third Edition, January 1994) was not applicable for the analysis of flubendiamide due to the thermolability of flubendiamide, giving recoveries below 70%.

The analytical method 00816/M001 developed for the determination of <u>flubendiamide and</u> <u>flubendiamide-des-iodo residues</u> in/on plant material by Billian (2004) is the recommended monitoring method for flubendiamide residues. In this method, flubendiamide and the des-iodo metabolite are extracted from the sample material using two successive microwave extractions, the first with acetonitrile/0.01%HCl and the second with acetonitrile/0.01%HCl/water. After evaporation, the extract is cleaned-up using diatomaceous earth columns, the residues eluted with cyclohexane/ethyl acetate, and dissolved in acetonitrile/water for quantification by LC-MS/MS. For the determination of flubendiamide in/on oil of plant origin, the samples are dissolved in hexane, extracted with acetonitrile and partionated with hexane before LC-MS/MS. Two MRM transitions for quantitation and confirmation were monitored for each analyte (flubendiamide: m/z 681 \rightarrow 254 and m/z 681 \rightarrow 274; flubendiamide-des-iodo: m/z 555 \rightarrow 254 and m/z 555 \rightarrow 274). As matrix effects were observed, matrix-matched standards were used for quantification of residues. Validation data is shown on Table 34. The limit of quantification (LOQ) for both analytes is 0.01 mg/kg for all sample materials. The limit of detection (LOD) was estimated to be at least 0.001 mg/kg.

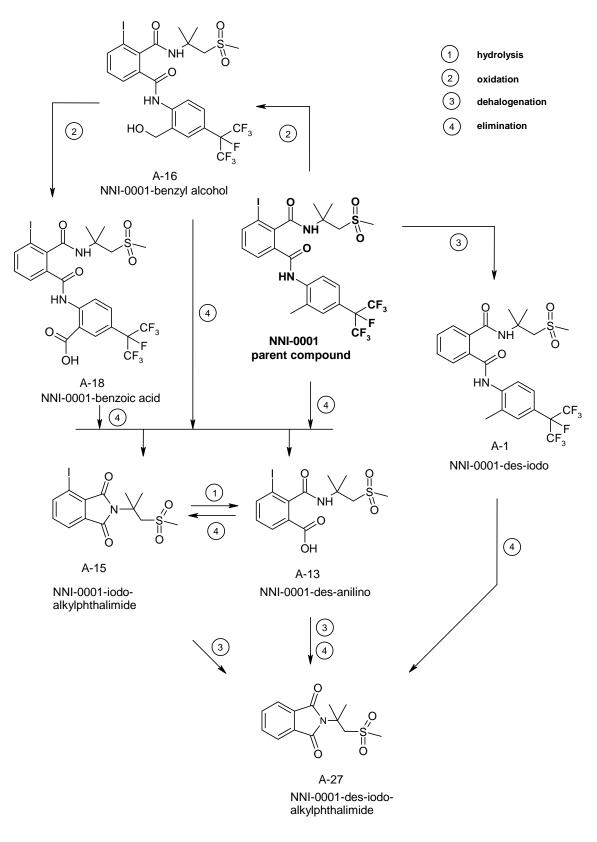


Figure 6 Proposed metabolic pathway of flubendiamide in confined rotational crops

A	C-1 strate	Fortification		Recovery		
Analyte	Substrate	level (mg/kg)	п	Individual values (%)	Mean (%)	RSD (%)
Flubendiamide		0.01	5	96, 99, 95, 81, 84	91	8.8
	Citrus (fruit)	0.10	5	91, 91, 89, 86, 87	89	2.6
		overall	10	-	90	6.3
	Head cabbage	0.01	5	88, 80, 87, 90, 89	87	4.6
	(head)	0.10	5	90, 89, 91, 95, 93	92	2.6
	(fiead)	overall	10	-	89	4.5
		0.01	5	95, 94, 93, 87, 84	91	5.3
	Oil (olive, cotton)	0.10	5	98, 95, 97, 92, 86	94	5.1
		overall	10	-	92	5.2
		0.01	3	93, 93, 98	95	3.1
	Bean (with pod)	0.10	3	96, 96, 105	99	5.3
		overall	6	-	97	4.6
		0.01	5	103, 90, 89, 86, 89	91	7.3
	Tomato	0.10	5	96, 93, 96, 96, 93	95	1.7
		overall	10	-	93	5.3
		0.01	6	80, 92, 93, 99, 82, 77	87	10.0
	Wheat (grain)*	0.10	6	70, 87, 78, 89, 92, 71	81	11.7
		overall	12	-	84	11.0
Flubendiamide-		0.01	5	94, 95, 95, 85, 90	92	4.7
des-iodo	Citrus (fruit)	0.10	5	95, 95, 94, 88, 91	93	3.3
		overall	10	-	92	3.9
	Head cabbage	0.01	5	92, 89, 94, 94, 95	93	2.6
	(head)	0.10	5	93, 94, 94, 96, 93	94	1.3
	(nead)	overall	10	-	93	2.0
		0.01	5	97, 94, 96, 86, 86	92	5.9
	Oil (olive, cotton)	0.10	5	98, 95, 97, 91, 85	93	5.7
		overall	10	-	93	5.5
		0.01	3	95, 93, 97	95	2.1
	Bean (with pod)	0.10	3	98, 99, 100	99	1.0
		overall	6	-	97	2.7
		0.01	5	106, 89, 88, 86, 86	91	9.0
	Tomato	0.10	5	98, 95, 95, 97, 93	96	2.0
		overall	10	-	94	6.5
		0.01	7	74, 81,82, 84,83,81,75	80	4.9
	Wheat (grain)	0.10	7	66, 82, 78, 72, 81, 85, 70	76	9.3
		overall	14	-	78	7.4

Table 34 Validation data for flubendiamide and flubendiamide-des-iodo in plant material using the method 00816/M001

* One recovery sample at each fortification level was excluded.

An independent laboratory validation (ILV) of the method 00816/M001 was conducted by Class (2005). The results are summarised in Table 35.

Table 35 ILV data	for flubendiamide	and flubendiamide	e-des-iodo in	plants using 1	nethod 00816/M001

Analyte	Substrate	Fortification level (mg/kg)	Number of replicates	Mean recovery (%)	RSD (%)
Flubendiamide *	Tomato	0.01 0.10 overall	5 5 10	98 104 101	9 3 7
	Wheat grain	0.01 0.10 overall	5 5 10	82 80 81	2 4 3
	Head cabbage	0.01 0.10 overall	5 5 10	81 83 82	9 6 7
	Cotton seed oil	0.01 0.10 overall	5 5 10	101 101 101	2 2 2

Analyte	Substrate	Fortification level (mg/kg)	Number of replicates	Mean recovery (%)	RSD (%)
Flubendiamide-des- iodo**	Tomato	0.01 0.10 overall	5 5 10	86 87 87	9 2 6
	Wheat grain	0.01 0.10 overall	5 5 10	91 81 86	2 5 7
	Head cabbage	0.01 0.10 overall	5 5 10	83 79 81	6 9 8
	Cotton seed oil	0.01 0.10 overall	5 5 10	99 101 100	5 3 4

* Only product Ions Q3 Mass (amu) of 274 m/z is presented;

** Only product Ions Q3 Mass (amu) of 148 m/z is presented

Method 00816/M002 is a modification of the method 00816/M001, and used internal -d6-labelled standards for quantification (Billian, 2007). LOQ for flubendiamide and flubendiamide-des-iodo is 0.01 mg/kg for all substrates. The Limit of Detection (LOD) was estimated to be at least 0.001 mg/kg. Two MRM transitions for quantitation and confirmation were monitored for each analyte (flubendiamide: m/z 681 \rightarrow 254 and m/z 681 \rightarrow 274; flubendiamide-des-iodo: m/z 555 \rightarrow 254 and m/z 555 \rightarrow 274). The validation results are summarised in Table 36.

Table 36 Validation data for flubendiamide and flubendiamide-des-iodo in plant materials using the method 00816/M002

Analyte		Fortification	Number of	Recovery	Recovery			
	Substrate	level (mg/kg)	replicates	Individual values (%)	Mean (%)	RSD (%)		
flubendiamide Quantitation $m/z \ 681 \rightarrow 254$	Citrus (fruit)	0.01 0.10 overall	5 5 10	85, 80, 90, 86, 84 87, 87, 81, 85, 87 -	85 85 85	4.2 3.1 3.5		
	Head cabbage (head)	0.01 0.10 overall	3 3 6	84, 83, 79 87, 87, 85 -	82 86 84	3.2 1.3 3.6		
	Cotton (oil)	0.01 0.10 overall	5 5 10	98, 97, 96, 95, 94 101, 100, 98, 92, 97 -	96 98 97	1.6 3.6 2.8		
	Bean (with pod)	0.01 0.10 overall	3 3 6	89, 72, 74 77, 73, 84	78 78 78	11.9 7.1 8.8		
	Tomato	0.01 0.10 overall	5 5 10	78, 91, 88, 96, 89 85, 90, 88, 89, 89 -	88 88 88	7.5 2.2 5.2		
	Wheat (grain)	0.01 0.10 overall	5 5 10	80, 83, 82, 74, 85 86, 81, 82, 81, 79 -	81 82 81	5.2 3.2 4.1		
flubendiamide - des-iodo <i>Quantitation</i>	Citrus (fruit)	0.01 0.10 overall	5 5 10	88, 92, 91, 87, 89 87, 89, 86, 89, 87	89 88 89	2.3 1.7 2.6		
~ m/z 555→254	Head cabbage (head)	0.01 0.10 overall	3 3 6	85, 87, 89 93, 89, 91 -	87 91 89	2.3 2.2 3.2		
	Cotton (oil)	0.01 0.10 overall	5 5 10	101, 103, 101, 102, 97 99, 100, 99, 99, 100 -	101 99 100	2.3 0.6 1.7		
	Bean (with pod)	0.01 0.10 overall	3 3 6	86, 84, 78 89, 84, 90 -	83 88 85	5.0 3.7 5.1		
	Tomato	0.01 0.10 overall	5 5 10	79, 92, 92, 92, 91 84, 89, 92, 88, 90 -	89 89 89	6.4 3.3 4.8		

Analyte	Substrate	Fortification	Number of	Number of Recovery		
	Substrate	level (mg/kg)	replicates	Individual values (%)	Mean (%)	RSD (%)
		0.01	5	84, 81, 85, 77, 86	83	4.4
	Wheat (grain)	0.10	5	83, 76, 79, 85, 72	79	6.6
		overall	10	-	81	5.8

An independent laboratory validation (ILV) of the method 00816/M002 was conducted by Rotzoll (2007). The results are summarised in Table 37.

Table 37 ILV data for	flubendiamide an	nd flubendiamide	e -des-iodo u	using the method	1 00816/M002

		Fortification		Recovery		
Analyte	Substrate	level (mg/kg)	п	Individual values (%)	Mean (%)	RSD (%)
Flubendiamide	-	0.01	5	96, 99, 98, 101, 95	98	2.4
Ouantitation	Wheat (Grain)	0.10	5	92, 87, 94, 95, 95	93	3.7
\tilde{m}/z 681 \rightarrow 254	· · · · ·	overall	10	-	95	4.1
	0'1 1 D	0.01	5	100, 99, 101, 94, 101	99	2.9
	Oilseed Rape	0.10	5	1.01, 101, 97, 101, 98	100	1.9
	(Seeds)	overall	10	-	99	2.4
	Orongo (Erwit)	0.01	5	87, 89, 89, 89, 91	89	1.6
	Orange (Fruit)	0.10	5	98, 96, 91, 95, 95	95	2.6
		overall	10	-	92	4.0
	Tomato (Fruit)	0.01	5	91, 93, 93, 92, 94	93	1.2
	Tomato (Fruit)	0.10	5	100, 100, 100, 102, 103	101	1.4
		overall	10	-	97	4.7
		0.01	5	90, 90, 90, 93, 93	91	1.8
	Bean (Seeds)	0.10	5	93, 94, 96, 98, 100	96	3.0
		overall	10	-	94	3.6
Flubendiamide		0.01	5	98, 99, 96, 100, 94	97	2.5
Confirmation	Wheat (Grain)	0.10	5	95, 89, 94, 97 96	94	3.3
<i>m/z</i> 681→274		overall	10	-	96	3.2
	Oilseed Rape	0.01	5	99, 99, 98, 96, 98	98	1.2
	(Seeds)	0.10	5	101, 100, 99, 102, 98	100	1.6
	. ,	overall	10	-	99	1.7
	Orange (Fruit)	0.01	5	86, 87 87 89, 88	87	1.3
	5 ()	0.10	5	97 94, 90, 96, 93	94 91	2.9
		overall	10	-	91	4.4
	Tomato (Fruit)	0.01 0.10	5 5	93, 92, 93, 93, 93 100, 99, 99, 101, 104	93 101	0.4 2.1
		overall	10	100, 99, 99, 101, 104	97	2.1 4.4
		0.01	5	91, 89, 93, 94, 90	97 91	2.3
	Bean (Seeds)	0.10	5	91, 92, 93, 96, 98	91 94	3.1
	Dean (Seeds)	overall	10	-	93	3.0
flubendiamide -des-		0.01	5	82, 87, 89, 88, 88	87	3.2
iodo	Wheat (Grain)	0.10	5	89, 84, 85, 88, 89	87	2.6
Quantitation	() neue (Gruni)	overall	10	-	87	2.8
$m/z 555 \rightarrow 254$		0.01	5	99, 101, 101, 98, 100	100	1.3
	Oilseed Rape	0.10	5	102, 103, 101, 102, 101	102	0.8
	(Seeds)	overall	10	-	101	1.5
		0.01	5	86, 91, 89, 90, 89	89	2.1
	Orange (Fruit)	0.10	5	99, 95, 92, 96, 94	95	2.7
		overall	10	-	92	4.2
	Tomato (Fruit)	0.01	5	95, 96, 93, 94, 95	95	1.2
	Tomato (Fiult)	0.10	5	101, 100, 100, 102, 104	101	1.7
		overall	10	-	98	3.9
		0.01	5	95, 90, 98, 94, 93	94	3.1
	Bean (Seeds)	0.10	5	95, 100, 98, 102, 103	100	3.2
		overall	10	-	97	4.2
flubendiamide -des-		0.01	5	83, 88, 89, 88, 87	87	2.6
iodo	Wheat (Grain)	0.10	5	88, 84, 84, 87, 91	87	3.3
Confirmation		overall	10	-	87	2.9
<i>m/z</i> 555→274	Oilseed Rape	0.01	5	97, 101, 102, 98, 100	100	2.1
	(Seeds)	0.10	5	101, 101, 99, 100, 99	100	1.0
	()	overall	10	-	100	1.5

Analyte	Substrate	Fortification		Recovery			
Analyte	Substrate		n	Individual values (%)	Mean (%)	RSD (%)	
	Orange (Fruit)	0.01	5	90, 94, 89, 91, 89	91	2.3	
	Orange (Fruit)	0.10	5	97, 95, 93, 96, 94	95	1.7	
		overall	10	-	93	3.1	
	Tomato (Fruit)	0.01	5	95, 96, 95, 92, 95	95	1.6	
	Tomato (Pruit)	0.10	5	99, 101, 100, 102, 103	101	1.6	
		overall	10	-	98	3.8	
		0.01	5	95, 87, 97, 96, 97	94	4.5	
	Bean (Seeds)	0.10	5	95, 100, 98, 103, 100	94	4.5	
		overall	10		97	4.4	

Method 00816/M003 (Ballesteros and Gateaud, 2005) is a modification of method 00816/M002 and does not include clean up step. Flubendiamide and the des-iodo metabolite are extracted from plant matrices with microwave, filtered, the extract diluted and residues are quantified by LC/MS/MS. LOQ for flubendiamide is 0.01 mg/kg for all substrates and LOD was estimated to be at least 0.001 mg/kg for all substrates. The quantification was done by an external standardisation in solvent using d6- flubendiamide and d6- flubendiamide -des-iodo. Validation results are shown on Table 38.

Table 38 Validation data for flubendiamide and flubendiamide -des-iodo in plant material using the method 00816/M003

	T1		Recovery (%)					
Substrate	Level (mg/kg)	Ν	flubendiamide			flubendiamide -des-iodo		
	(mg/kg)		Individual	Mean	RSD	Individual	Mean	RSD
	0.01	5	102 99 105 100 111	103	4.7	103 109 97 88 97	99	7.9
Tomato	0.10	5	101 101 106 103 101	102	2.1	104 109 101 101 101	103	3.4
	overall	10	-	103	3.5	-	101	6.1
Grana	0.01	5	90 103 95 92 93	95	5.3	93 91 89 93 95	92	2.5
Grape (bunch)	0.10	5	100 93 102 99 103	99	3.9	104 103 98 101 97	101	3.0
(buildi)	overall	10	-	97	5.1	-	96	5.3

Method ATM-0012 (Radunz, 2008) is another modification of method 00816/M002, where the use of microwave for extraction was replaced by a shaker. A comparison in extraction efficiency between microwave and shaker was evaluated from radiovalidation of method 00816/M002 with corn samples (forage and fodder) (Renier, 2006) and the metabolism study following spray application of [phthalic acid ring-UL-¹⁴C]flubendiamide onto corn plants, when a blender was used in the extraction procedure (Krolski and Nguyen, 2005). Before extraction, corn samples were firstly processed with dry ice until finely pulverized. The extraction efficiency of the residues in both cases is presented in Table 39. The results are obtained with corn samples from the metabolism study stored during 20 months (619 days) at -18 °C or below.

Table 39 Extraction efficiency of the residue method 00816/M002 using corn samples (forage and fodder) from the metabolism study

	metabolism study		method 008	16/M002
	(blending)	(blending))
	% TRR	mg/kg ^a	% TRR	mg/kg ^{a,c}
corn forage				
total radioactive residue (TRR)	100	0.288 ^b	100	0.379
flubendiamide	91	0.262 ^e	82.7	0.314
flubendiamide-des-iodo	4	0.012 ^e	1.8	0.007
sum of flubendiamide + des-iodo	95	0.274 ^e	84.5	0.320
extraction efficiency	100%		89% ^f	
corn fodder				
total radioactive residue (TRR)	100	0.476 ^c	100	0.457
flubendiamide	77	0.367 ^e	65.5	0.297
flubendiamide-des-iodo	8	0.038 ^e	5.5	0.025

	metabolism study 1		method 00816/M002	
	(blending)		(microwave)	
	% TRR mg/kg a		% TRR	mg/kg ^{a,c}
sum of flubendiamide + des-iodo	85	85 0.405 ^e		0.322
extraction efficiency	100%		83% ^e	

^a mg/kg expressed as parent compound equivalents;

^b determined by combustion; ^c mean results from two parallel extractions;

^e considering the relative amount of the TRR of the extraction efficiency sample and of the metabolism study

The LOQ of flubendiamide and flubendiamide des-iodo for method ATM-0012 in all tested crops was set at 0.02 mg/kg for each component and 0.045 mg/kg expressed as total flubendiamide parent equivalent. The results of the validation are shown in Table 40.

Table 40 Validation data for flubendiamide and flubendiamide-des-iodo (A-1) in plant material using the method ATM-0012

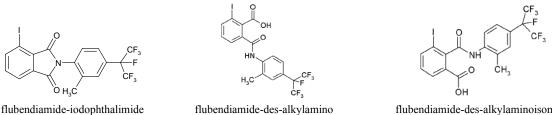
Substrate	Analyte	Level (mg/kg)	Number of replicates	Recovery (%)			
				Individual values	Mean	RSD	Report No Doc No
Green bean (Pods)	flubendiamide	0.02 0.10	2 2	95–100 95–101	98 98	2 3	BCS-0212.01 M-306208-01-1
	des-iodo	0.02 0.10	2 2	93–96 93–99	94 96	1 3	
Green bean (Pods)	flubendiamide	0.02 0.10	2 2	104–106 101–104	105 103	1 1	BCS-0186.01 M-306326-01-1
	des-iodo	0.02 0.10	2 2	87–99 103–104	93 104	6 0	
Green bean (Stubble)	flubendiamide	0.02 0.10	2 2	102–106 101–105	104 104	2 2	
	des-iodo	0.02 0.10	2 2	89–100 90–101	94 95	5 6	
Green pea (Pods)	flubendiamide	0.02 0.10	2 2	88–99 90–93	93 92	5 1	BCS-0185.01
	des-iodo	0.02 0.10	2	87–90 88–89	89 88	2	M-306322-01-1
Green pea (Stubble)	flubendiamide	0.02 0.10	2 2	88–99 83–99	93 91	4 7	
	des-iodo	0.02 0.10	2 2	89–92 80–89	90 84	2 5	
Head lettuce (head)	flubendiamide	0.02 0.10	2 2	92–103 99–102	99 101	5	BCS-0187.01 M-306189-01-1
	des-iodo	0.02 0.10	2 2	92–94 95–96	93 95	1	
	flubendiamide	0.02 0.10	2 2	87–94 95–99	90 97	3 2	BCS-0188.01 M-306195-01-1
	des-iodo	0.02 0.10	2 2 2	88–91 93–96	90 94	2	
Leafy lettuce (leaves)	flubendiamide	0.02 0.10	2 2 2	92–98 98–102	94 100	2 2	BCS-0189.01 M-306206-01-1
	des-iodo	0.02 0.10	2 2 2	88–94 92–97	91 95	2 2	
	flubendiamide	0.02 0.10	2 2 2	102–105 99–101	103 100	1	BCS-0189.01 M-306206-01-1
	des-iodo	0.02 0.10	2 2 2	91–95 89–94	92 91	2 2	
Head cabbage (head)	flubendiamide	0.02 0.10	2 2 2	82–98 89–98	90 93	7 4	BCS-0082.01
	des-iodo	0.02 0.10	2 2 2	85–97 94–99	91 96	6 2	M-306221-01-1
	flubendiamide	0.02 0.10	2 2 2	81–95 92–94	89 93	7	BCS-0117.01
	des-iodo	0.02	2	96-103	100	3	M-306243-01-1

Substrate	Analyte	Level (mg/kg)	Number of replicates	Recovery (%)			D
				Individual values	Mean	RSD	Report No Doc No
		0.10	2	105-107	107	1	
Brussels sprouts (buttons)	flubendiamide	0.02	2	101-114	107	5	
		0.10	2	102-105	104	1	BCS-0081.01
	des-iodo	0.02	2	92-99	96	3	M-306217-01-1
		0.10	2	97–99	98	1	
Broccoli (flower heads)	flubendiamide	0.02	2	84–95	89	5	
		0.10	2	90-95	93	3	BCS-0083.01
	des-iodo	0.02	2	83-94	90	5	M-306227-01-1
		0.10	2	90-98	94	4	
	flubendiamide	0.02	2	94-113	103	11	
		0.10	2	92-93	93	0	BCS-0118.01
	des-iodo	0.02	2	98-114	106	9	M-306246-01-1
		0.10	2	95-103	100	3	
	a. 1	0.02	2	98-103	100	2	
	flubendiamide	0.10	2	95–97	96	1	BCS-0086.01
	des-iodo	0.02	2	88-93	91	3	M-306237-01-1
Sweet Corn (cobs)		0.10	2	94–97	95	1	
	flubendiamide	0.02	2	95-105	101	4	
		0.10	2	92-99	95	3	BCS-0118.01 M-306246-01-1
	des-iodo	0.02	2	105-109	107	2	
		0.10	2	105-108	107	1	
Tomato	flubendiamide	0.02	2	88-92	90	2	BCS-0084.01 M-306271-01-1
		0.10	2	88-91	89	2	
	des-iodo	0.02	2	87-88	88	1	
		0.10	2	86–90	87	2	
	0 1 1 1	0.02	2	79-81	79	1	BCS-0108.01 M-306282-01-1
	flubendiamide	0.10	2	84-86	85	1	
	des-iodo	0.02	2	106-110	108	2	
		0.10	2	119-121	120	1	
	flubendiamide	0.02	2	91-95	93	2	BCS-0120.01 M-306306-01-1
		0.10	2	78–79	78	1	
	des-iodo	0.02	2	87-102	96	7	
		0.10	2	78-80	78	1	
Pepper	flubendiamide	0.02	2	87-100	93	8	BCS-0085.01 M-306277-01-1
		0.10	2	93–97	95	2	
	des-iodo	0.02	2	94-104	99	6	
		0.10	2	94–99	97	2	
	flubendiamide	0.02	2	90–94	92	2	BCS-0109.01 M-306287-01-1
		0.10	2	94–97	96	2	
	des-iodo	0.02	2	90-95	92	3	
		0.10	2	97–98	97	1	
	flubendiamide	0.02	2	95-103	99	4	BCS-0121.01 M-306312-01-1
		0.10	2	83-94	89	7	
	des-iodo	0.02	2	97-100	98	1	
		0.10	2	81–95	88	9	

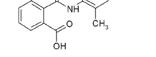
A HPLC/UV analytical method was developed for analysing flubendiamide and the des-iodo and 3-OH metabolites in tea samples (Motoba, 2002; M-358559-01-1). The samples were homogenized with ACN/0.1N HCl, extract with n-Hexane/EtOAc and the extracted submitted to a sequential clean up step using graphite carbon, C18 and NH2 cartridge columns. To analyse the flubendiamide-3-OH metabolite, the eluate was dissolved in ACN/water (2/3) and analysed by HPLC/UV at 260 nm using a C18 column. To analyse flubendiamide and the des-iodo metabolite, an addition clean-up step using silica gel cartridge column was included before HPLC/UV. Table 41 shows recovery data of flubendiamide and its metabolites for tea and other crops at 0.1 mg/kg fortification level

Substrate	A v sloves	Recovery		
Substrate	Analyte	Mean (%)	RSD (%)	
Cabbage	Flubendiamide	97	3.2	
	Des-iodo	96	3.2	
	3-OH	92	4.8	
Apple	Flubendiamide	98	1.6	
	Des-iodo	93	1.2	
	3-OH	87	3.5	
Tea	Flubendiamide	107	1.9	
	Des-iodo	94	3.8	
	3-OH	90	3.8	
Rice	Flubendiamide	88	8.1	
	Des-iodo	93	8.4	
	3-OH	94	6.6	

Table 41 Flubendiamide and its metabolites in plant material using the Japanese method at 0.1 mg/kg (n = 3)


The method was validated for flubendiamide on tea during the residue supervised trial study at levels of 0.01 mg/kg (LOQ), as well as 0.2, 20 and 30 mg/kg (Table 42).

Spike level (mg/kg)	Sample size (n)	Recoveries (%)				Mean (%)	RSD (%)		
0.01 18		96	92	88	97	95	91		
	96	92	88	106	100	97	95	5.8	
		93	87	86	102	101	96		1
0.2	3	88	87	87				87	0.7
20	3	96	96	95				96	0.6
30 12	82	78	76	92	84	83	07	7(
	12	96	94	90	94	90	90	87	7.6


Table 42 Summary of recovery data for flubendiamide in/on tea

Animal matrices

Method 00912 was developed for the determination of flubendiamide and the metabolite flubendiamide-iodophthalimide in muscle, liver, kidney, milk, fat and egg (Billian, 2005). The residues are extracted with acetonitrile/water and flubendiamide-iodophthalimide is completely converted to flubendiamide-des-alkylamino and its isomer under mild alkaline conditions.

flubendiamide-des-alkylamino

flubendiamide-des-alkylaminoisomer

The residues of flubendiamide, flubendiamide-des-alkylamino and its isomer are cleaned-up using diatomaceous earth columns, and analysed by LC-MS/MS. The method uses matrix-matched standards for calibration or analysis using internal standards of flubendiamide-d₆, A-12-d₆, and A-37 d_6 with external standards of the analytes for calibration. In both cases, two ion transitions are monitored for each analyte. Residues of A-12/A-37 are converted to flubendiamide-iodophthalimide equivalents using a molecular weight conversion factor. LOQ for flubendiamide and its metabolite

was 0.01 mg/kg. Expressed as parent equivalents (flubendiamide equivalents), the LOQ for flubendiamide-iodophthalimide in animal tissues was 0.013 mg/kg. LOD was estimated to be at least 0.0025 mg/kg for both compounds in all matrices. Two MRM transitions for quantitation and confirmation were monitored for each analyte. The validation data are shown on Table 43.

Table 43 Validation data for flubendiamide and flubendiamide-iodophthalimide in animal matrices
using the method 00912 by Internal Standard Procedure

	6.1.4.4	Fortification		Recovery Rates (%)			
Analyte	Substrate	level (mg/kg)	п	Individual values	Mean	RSD	
Flubendiamide		0.01	5	77, 73, 79, 85, 85	80	6.5	
Quantitation	Muscle	0.10	5	90, 77, 83, 85, 86	84	5.7	
$\widetilde{m/z}$ 681 \rightarrow 254		overall	10	-	82	6.4	
		0.01	5	84, 79, 94, 89, 92	88	7.0	
	Liver	0.10	5	95, 91, 89, 100, 102	95	5.9	
		overall	10	-	91	7.5	
		0.01	5	75, 76, 84, 71, 77	77	6.2	
	Kidney	0.10	5	81, 80, 81, 81, 79	80	1.1	
		overall	10	-	79	4.8	
		0.01	5	81, 81, 85, 83, 81	82	2.2	
	Fat	0.10	5	84, 94, 89, 99, 94	92	6.2	
		overall	10	-	87	7.5	
	N 611	0.01	5	79, 69, 83, 86, 76	79	8.5	
	Milk	0.10	5	91, 83, 87, 90, 85	87	3.7	
		overall	10	-	83	8.0	
	D 1/	0.01	5	93, 98, 89, 91, 98	94	4.4	
	Poultry egg	0.10	5	90, 83, 80, 93, 83	86	6.4	
Flubendiamide		overall	10	-	90 88	6.9	
Confirmation	Muscle	0.01 0.10	5 5	79, 81, 75, 105, 102 96, 86, 91, 89, 90	88 90	15.8 4.0	
$m/z 681 \rightarrow 274$	Muscle	overall	5 10	96, 86, 91, 89, 90	90 89	4.0	
$m/2 \ 001 \rightarrow 2/4$		0.01	5	87, 95, 118, 126, 89	103	17.3	
	Liver	0.10	5	95, 92, 95, 104, 99	103 97	4.8	
	Liver	overall	10	-	100	12.7	
		0.01	5	73, 80, 82, 71, 78	77	6.1	
	Kidney	0.10	5	83, 81, 81, 86, 85	83	2.7	
		overall	10	-	80	6.0	
	Fat	0.01	5	73, 83, 86, 79, 86	81	6.8	
		0.10	5	86, 92, 89, 100, 94	92	5.8	
		overall	10	-	87	8.8	
	Milk	0.01	5	80, 64, 92, 76, 90	81	14.1	
		0.10	5	87, 83, 84, 94, 89	88	5.0	
		overall	10	-	84	10.6	
		0.01	5	77, 79, 92, 91, 79	84	8.7	
	Poultry egg	0.10	5	85, 98, 87, 96, 87	91	6.6	
		overall	10	-	87	8.3	
flubendiamide-		0.01**	5	87, 77, 78, 83, 76	80	5.8	
iodophthalimide *	Muscle	0.10***	5	88, 81, 85, 87, 85	85	3.1	
Quantitation		overall	10	-	83	5.4	
$m/z 548 \rightarrow 504$. .	0.01**	5	86, 85, 87, 89, 86	87	1.8	
	Liver	0.10***	5	96, 95, 97, 95, 95	96 01	0.9 5.4	
		overall	10	-	91		
	Vidnar	0.01** 0.10***	5 5	84, 80, 86, 83, 79	82	3.5	
	Kidney	overall	5 10	83, 87, 85, 88, 84	85 84	2.4 3.4	
		0.01**	3	79, 82, 85, 89, 80	83	4.9	
	Fat	0.10***	3	79, 82, 83, 89, 80 81, 86, 84, 88, 82	83 84	3.4	
	1	overall	6	-	84	4.0	
		0.01**	5	82, 78, 78, 83, 83	81	3.4	
	Milk	0.10***	5	89, 87, 88, 89, 89	88	0.9	
		overall	10	-	85	5.2	
		0.01**	6	81, 86, 89, 84, 77	83	5.5	
	Poultry egg	0.10***	6	89, 87, 90, 89, 84	88	2.7	
		overall	12	-	86	4.9	

Analyte	C1 strate	Fortification		Recovery Rates (%)	Recovery Rates (%)		
	Substrate	level (mg/kg)	n	Individual values	Mean	RSD	
flubendiamide-		0.01**	5	83, 76, 85, 83, 88	83	5.3	
iodophthalimide *	Muscle	0.10***	5	90, 83, 84, 85, 83	85	3.4	
Confirmation		overall	10	-	84	4.4	
$m/z 548 \rightarrow 127$		0.01**	5	80, 85, 82, 87, 80	83	3.8	
	Liver	0.10***	5	95, 96, 98, 95, 96	96	1.3	
		overall	10	-	89	8.2	
		0.01**	5	78, 84, 91, 85, 89	85	5.9	
	Kidney	0.10***	5	77, 84, 88, 84, 82	83	4.8	
		overall	10	-	84	5.3	
		0.01**	5	75, 87, 79, 77, 82	80	5.9	
	Fat	0.10***	5	80, 83, 88, 84, 87	84	3.8	
		overall	10	-	82	5.4	
		0.01**	5	83, 79, 80, 85, 90	84	5.1	
	Milk	0.10***	5	91, 86, 86, 87, 87	87	2.2	
		overall	10	-	86	4.3	
		0.01**	5	80, 91, 81, 87, 92	86	6.4	
	Poultry egg	0.10***	5	85, 82, 87, 86, 81	84	3.1	
		overall	10	-	85	4.9	

* Fortified as flubendiamide-iodophthalimide, determined as A-12 and A-37, calculated flubendiamide-iodophthalimide (sum of A-12 + A-14).

** Expressed as parent equivalents (flubendiamide equivalents): 0.013 mg/kg.

*** Expressed as parent equivalents: 0.13 mg/kg.

For enforcement purposes using quantification via external standard procedure, the high recovery values and the higher RSDs for determination of flubendiamide in/on liver should be considered during quantification of residues of flubendiamide in liver. The detailed results are shown in Table 44.

Table 44 Validation data for flubendiamide and flubendiamide-iodophthalimide in animal matrices using the method 00912 by External Standard Procedure

	G-th streets	Fortification		Recovery Rates (%)		
Analytes	Substrate	level (mg/kg)	n	Individual values	Mean	RSD
Flubendiamide		0.01	5	90, 84, 83, 86, 80	85	4.4
Quantitation	Muscle	0.10	5	101, 84, 83, 87, 87	88	8.2
<i>m/z 681→254</i>		overall	10	-	87	6.7
		0.01	5	95, 80, 104, 107, 103	98	11.1
	Liver ^a	0.10	10	125, 123, 123, 117, 133	110	14.9
	LIVCI			90, 98, 99, 98, 89		
		overall	15	-	106	14.6
		0.01	5	74, 77, 80, 69, 76	75	5.4
	Kidney	0.10	5	103, 93, 85, 77, 79	87	12.3
		overall	10	-	81	12.3
		0.01	5	80, 83, 92, 87, 87	86	5.3
	Fat	0.10	5	95, 93, 89, 95, 98	94	3.5
		overall	10	-	90	6.4
		0.01	5	79, 63, 79, 79, 71	74	9.6
	Milk	0.10	5	91, 68, 69, 71, 62	72	15.3
		overall	10	-	73	12.1
		0.01	5	87, 88, 86, 88, 94	89	3.5
	Poultry egg	0.10	5	74, 68, 69, 76, 100	77	16.9
		overall	10	-	83	12.9
Flubendiamide		0.01	5	81, 80, 69, 92, 83	81	10.1
Confirmation	Muscle	0.10	5	109, 94, 91, 92, 93	96	7.8
$m/z \ 681 \rightarrow 274$		overall	10	-	88	12.2
		0.01	4 ^b	78, 77, 103, 80	85	14.7
	Liver ^a	0.10	10	131, 129, 138, 127, 135		
	LIVEI			89, 96, 99, 111, 87	114	17.5
		overall	14	-	106	21.3

		Fortification		Recovery Rates (%)			
Analytes	Substrate	level (mg/kg)	n	Individual values	Mean	RSD	
		0.01	5	73, 83, 80, 70, 79	77	6.9	
	Kidney	0.10	5	101, 89, 82, 79, 81	87	10.4	
	5	overall	10	-	82	10.5	
		0.01	5	70, 83, 89, 80, 88	82	9.3	
	Fat	0.10	5	98, 91, 89, 97, 98	95	4.5	
		overall	10	-	88	10.0	
		0.01	4 **	79, 88, 70, 83	80	9.5	
	Milk	0.10	5	93, 72, 72, 80, 70	77	12.3	
		overall	9	-	79	10.6	
		0.01	5	81, 79, 100, 99, 86	89	11.2	
	Poultry egg	0.10	5	71, 82, 77, 80, 108	84	17.1	
	10414 9 088	overall	10	-	86	13.8	
flubendiamide-		0.01	5	106, 94, 93, 96, 91	96	6.1	
iodophthalimide	Muscle	0.10	5	100, 86, 91, 93, 89	92	5.7	
Quantitation	Widsele	overall	10	-	94	6.1	
$m/z 548 \rightarrow 504$		0.01*	5	92, 81, 87, 90, 88	88	4.7	
11/2 540 7 504		0.10**	10	117, 111, 107, 93, 113	103	7.8	
	Liver	0.10	10	97, 99, 97, 100, 100	105	7.0	
		overall	15	-	98	10.5	
		0.01	5	90, 83, 89, 85, 87	87	3.3	
	Kidney	0.10	5	97, 102, 96, 96, 90	96	4.4	
	Kluncy	overall	10	-	92	6.6	
		0.01	5	87, 92, 96, 95, 90	92	4.0	
	Fat	0.01	5	90, 92, 89, 97, 87	92 91	4.0	
	Tat	overall	10	90, 92, 89, 97, 87	91 92	3.9	
		0.01	5	93, 84, 90, 93, 92	92	4.2	
	Milk	0.01	5	119, 93, 93, 106, 96	90 101	4.2	
	IVIIIK	overall	10	119, 95, 95, 100, 90	96	10.2	
		0.01	5	81, 85, 86, 82, 79	83	3.5	
	Doultry agg	0.01	5	81, 85, 86, 82, 79 80, 80, 81, 80, 100	83 84	3.3 10.5	
	Poultry egg	overall	10	80, 80, 81, 80, 100	84 83	7.5	
flubendiamide-		Overall		-	85		
iodophthalimide		0.01	5	92, 84, 93, 88, 98	91	5.8	
Confirmation	Muscle	0.10	5	101, 89, 90, 90, 88	92	5.8	
$m/z 548 \rightarrow 127$		overall	10	-	91	5.5	
$m/2 J = 0 \rightarrow 127$		0.01	5	92, 87, 87, 94, 86	89	4.0	
		0.10	10	118, 114, 110, 95, 116	105	4.0 8.1	
	Liver	0.10	10	97, 101, 98, 100, 104	105	0.1	
		overall	15	-	100	10.6	
		0.01	5	82, 86, 90, 86, 96	88	6.0	
	Kidney	0.01	5	92, 100, 100, 94, 89	88 95	0.0 5.2	
	Klulley	overall	10	92, 100, 100, 94, 89	93 92	5.2 6.6	
				-			
	Fot	0.01 0.10	5 5	78, 91, 86, 78, 89 88, 87, 92, 92, 91	84 90	7.2 2.6	
	Fat	overall	5 10	00, 07, 92, 92, 91	90 87	2.6 6.0	
			5				
	Melle	0.01		105, 99, 105, 108, 116	107	5.8	
	Milk	0.10	5	122, 91, 90, 103, 94	100	13.3	
		overall	10	-	103	10.1	
	D 1	0.01	5	77, 86, 75, 81, 90	82	7.6	
	Poultry egg	0.10	5	81, 80, 83, 81, 100	85	9.9	
		overall	10	-	83	8.6	

An independent laboratory validation (ILV) of the method 00 912 was conducted by Anspach (2005). The results are shown in Tables 45 and 46.

Table 45 ILV data for method 00912 for flubendiamide and flubendiamide-iodophthalimide in animal
matrices using the Internal Standard Procedure

	Number of replicates	Recovery (%)	RSD (%)
itation: $m/z \ 681 \rightarrow 254$		• • • •	
0.01	5	94	5.1
0.10	5	97	2.5
overall	10	96	4.1
0.02	5	104	3.8
0.20	5	102	3.1
overall	10	103	3.4
0.01	5	107	3.4
0.10	5	98	2.7
overall	10	102	5.4
itation: $m/z 681 \rightarrow 274$	-		
0.01	5	93	5.6
0.10	5	96	3.8
overall	10	95	4.7
0.02	5	103	6.2
0.20	5	103	3.3
overall	10	103	4.7
0.01	5	107	3.1
0.10	5	94	3.2
overall	10	101	7.0
hthalimide quantitation: $m/z 548 \rightarrow 1$	504	-	
0.01	5	99	5.4
0.10	5	91	0.9
overall	10	95	5.6
0.02	5	86	3.8
0.20	5	80	3.8
overall	10	83	5.2
0.01	5	97	4.2
0.10	5	88	4.0
overall	10	92	6.5
hthalimide quantitation: $m/z 548 \rightarrow$	127		
0.01		96	2.6
0.10	5	91	0.9
overall	10	93	3.3
	5		4.1
0.20			3.2
	10		3.8
			5.0
	5		4.3
			5.8
	tation: $m/z \ 681 \rightarrow 254$ 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall tation: $m/z \ 681 \rightarrow 274$ 0.01 0.10 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.01 0.10 overall 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.02 0.20 overall 0.01 0.10 overall 0.02 0.20 overall 0.01 0.10 overall 0.02 0.20 overall 0.02 0.20 overall 0.01 0.10 overall 0.02 0.01 0.10 overall 0.02 0.01 0.10 overall 0.02 0.01 0.10 overall 0.02 0.01 0.10 0.02	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	itation: $m/2 \ 681 \rightarrow 254$ 94 0.01 5 97 overall 10 96 0.02 5 104 0.20 5 102 overall 10 103 0.01 5 98 overall 10 103 0.01 5 98 overall 10 102 overall 10 102 overall 10 102 overall 10 102 itation: $m/2 \ 681 \rightarrow 274$ 98 0.01 5 93 overall 10 95 0.02 5 103 overall 10 95 0.02 5 103 overall 10 101 hthalimide quantitation: $m/2 \ 548 \rightarrow 504$ 94 overall 10 101 overall 10 95 0.02 5 86 0.20 5 86 0.20 5 97 <td< td=""></td<>

Table 46 ILV data for method 00912 for flubendiamide and flubendiamide-iodophthalimide in animal matrices using the External Standard Procedure

Substrate	Fortification level (mg/kg)	Number of replicates	Recovery (%)	RSD (%)
flubendiamide quar	ntitation: $m/z \ 681 \rightarrow 254$			
Muscle	0.01	5	90	2.9
	0.10	5	90	6.1
	overall	10	90	4.6
Fat	0.02	5	94	5.0
	0.20	5	92	3.6
	overall	10	93	4.3
Egg	0.01	5	80	7.0
	0.10	5	92	3.8
	overall	10	86	8.8
flubendiamide quar	ntitation: $m/z 681 \rightarrow 274$	_		
Muscle	0.01	5	87	7.2
	0.10	5	93	4.0
	overall	10	90	6.4

Substrate	Fortification level (mg/kg)	Number of replicates	Recovery (%)	RSD (%)
	0.02	5	88	5.7
Fat	0.20	5 5	91	2.9
	overall	10	89	4.4
	0.01	5	81	4.4
Egg	0.10	5	89	1.2
	overall	10	85	6.1
flubendiamide-iodo	phthalimide quantitation: $m/z 548 \rightarrow$	504		
	0.01	5	97	4.3
Muscle	0.10	5	96	7.1
	overall	10	97	5.6
	0.02	5	89	4.4
Fat	0.20	5	87	4.6
	overall	10	88	4.4
	0.01	5	90	11
Egg	0.10	5	86	6.3
	overall	10	88	8.9
flubendiamide-iodo	phthalimide quantitation: $m/z 548 \rightarrow$	127		
	0.01	5	95	3.5
Muscle	0.10	5	96	7.1
	overall	10	96	5.3
	0.02	5	89	4.9
Fat	0.20	5	88	4.9
	overall	10	88	4.7
	0.01	5	87	9.9
Egg	0.10	5	87	5.4
	overall	10	87	7.6

Stability of pesticide residues in stored analytical samples

Studies were conducted to evaluate the stability of flubendiamide and its des-iodo metabolite in various crops stored under frozen conditions up to 18 months (Billian, 2005a,b,c). Individual aliquots of the homogenised sample materials (5 g per aliquot) were fortified with the compounds at 0.10 mg/kg which corresponds to the 10 x LOQ of the residue analytical method (0.010 mg/kg). Tables 47 summarise the amount of flubendiamide and its metabolite remaining in the stored samples after the various storage intervals, as well as the procedural recoveries from samples freshly fortified at the respective sampling points.

Table 47 Stability of flubendiamide and its des-iodo metabolite in various crops fortified at 0.1 mg/kg and stored frozen for up to 18 months

	Store on interrul	Flubendiamide		Flubendiamide-des-iodo		
Crop	Storage interval, months	% remaining ^a	Procedural recovery, %	% remaining	Procedural recovery, %	
	0	87*	—	90*	—	
	1	92	99	96	92	
Tomato	3	90	92	76	96	
Tomato	6	90	88	90	98	
	12	85	89	86	96	
	18	90	91	83	95	
	0	85*	—	82*	—	
	1	92	94	97	88	
Citrus	3	93	94	78	91	
Cluus	6	88	93	95	97	
	12	86	88	85	93	
	18	80	86	77	89	
	0	75*	_	83*	—	
Head	1	84	81	89	90	
cabbage	3	88	88	78	92	
(head)	6	78	84	86	90	
(nead)	12	80	79	81	88	
	18	90	91	84	94	

	Stano an internal	Flubendiamide		Flubendiamide-des-ioc	lo
Crop	Storage interval, months	% remaining ^a	Procedural recovery, %	% remaining	Procedural recovery, %
	0	83*	_	89*	_
	1	92	92	87	93
Bean	3	85	89	79	96
(with pod)	6	76	87	90	91
	12	71	84	79	88
	18	81	89	86	95
	0	78*	_	75*	—
	1	80	86	61	72
Wheat	3	73	81	57	69
(grain)	6	85	94	65	68
	12	74	83	65	77
	18	76	77	73	79
	0	87*	—	84*	—
	1	81	87	89	92
Olive oil	3	83	84	79	92
Onve on	6	81	84	89	99
	12	78	79	81	93
	18	98	104	81	80
	0	87*	98	75*	96
Grape	1	85	101	87	92
(must)	3	93	118	92	97
(must)	6	91	94	83	92
	12	94	97	89	99

^a The results are the mean from three replicate samples

* The results are the mean from five replicate samples

An additional freezer storage stability study was conducted performed in the US by Murphy (2006). Samples of various crops were spiked separately at levels of 0.15 mg/kg with flubendiamide and its des-iodo metabolite and stored under deep freezer storage for period of 1 year (368 days). Samples were analysed using the method 00816/M002 with modifications. Table 48 summarises the results.

Table 48 Stability of flubendiamide and its des-iodo metabolite various crops fortified at 0.15 mg/kg and stored frozen for up to one year

	Flubendiamide			Flubendiamide des-iodo				
Sample material	Storage interval, (days)	Sample % remaining number		Storage interval, (days)	Sample number	% remaining		
Cotton seed	0 28 89 181 273 369	3 2 2 2 2 2 2	114 107 105 114 100 96	0 28 89 181 273 369	3 2 2 2 2 2 2	97 100 94 109 116 102		
Cotton gin trash	0 28 89 181 272 368	3 2 2 2 2 2 2 2	112 109 116 107 111 108	0 28 89 181 272 368	3 2 2 2 2 2 2	114 104 108 115 119 104		
Cotton meal	0 28 89 181 273 368	3 2 2 2 2 2 2 2	114 112 111 109 106 107	0 28 89 181 273 368	3 2 2 2 2 2 2	108 108 106 112 109 104		

	Flubendiamide			Flubendiamide des-iodo				
Sample material	Storage interval, (days)	Sample number	% remaining	Storage interval, (days)	Sample number	% remaining		
Wheat forage	0	3	88	0	3	93		
_	28	2	93	28	2	91		
	89	2	88	89	2	92		
	183	2	93	183	2	95		
	274	2	88	274	2	89		
	369	2	104	369	2	97		
Wheat straw	0	3	116	0	3	108		
	28	2	115	28	2	114		
	89	2	114	89	2	118		
	181	2	107	181	2	107		
	273	2	110	273	2	111		
	369	2	105	369	2	107		
Wheat flour	0	3	90	0	3	96		
	28	2	95	28	2	94		
	89	2	92	89	2	89		
	181	2	100	181	2	107		
	273	2	91	273	2	100		
	369	2	101	369	2	96		
Wheat germ	0	3	111	0	3	108		
C C	28	2	106	28	2	99		
	89	2	91	89	2	93		
	181	2	102	181	2	91		
	272	2	113	272	2	113		
	368	2	95	368	2	100		
Potato tuber	0	3	89	0	3	91		
	28	2	89	28	2	89		
	89	2	83	89	2	91		
	183	2	80	183	2	82		
	274	2	101	274	2 2	106		
	369	2	94	369	2	93		
Tomato paste	0	3	96	0	3	95		
-	28	2	98	28	2	89		
	89	2	84	89	2	97		
	183	3	87	183	3	86		
	274	2	98	274	2	89		
	369	2	98	369	2	94		

USE PATTERN

Flubendiamide is used as SC (soluble concentrate) or WG (water dispersible granule) formulation in many countries as ground or aerial application. The use patterns for ground application that are relevant for this evaluation are summarised in Table 49.

Table 49 Use patterns of flubendiamide used as foliar appication

			Application				
		P 1.1		Water rate			RTI
Crop	Country	Formulation	Rate (kg/ha)	(L/ha)	No.	PHI (days)	(days)
Brassica sp.	Australia	SC / 480	0.024-	0.0036-	3	3	
		WG / 240	0.048	0.0048 kg			
				ai/hL			
Brassica sp.	United States		0.034	93.5	2	1	3
0 6 11	II. 1. 1.0	00/400	0.105	02.5	4	20	
Corn, field	United States	SC / 480	0.105	93.5	4	28	
Cotton	United States	SC / 480	0.105	93.5	3	28	
Cucurbits	Australia	WG / 240	0.048-0.072		3	1	
Cucurbit vegetables	United States	WG / 240	0.033-0.05	93.5	3	1	7

			Application				
				Water rate			RTI
Crop	Country	Formulation	Rate (kg/ha)	(L/ha)	No.	PHI (days)	(days)
Leafy vegetables	Australia	WG / 240	0.036-0.048		3	1	
Leafy vegetables, except brassica	United States	WG / 240	0.033-0.050	93.5	3	1	3
Lettuce	Australia	SC / 480	0.036-0.048		3	1	
Legume vegetables	Australia	WG / 240	0.048-0.072		3	1	
Legume vegetables, except soya beans – succulent and dry beans and peas	United States	SC 480	0.10	93.5	2	1 (succulent) 14 (dry) 3 (forage, hay, vines)	5
Fruiting vegetables	Australia	WG 240	0.048-0.072		3	1	
Fruiting vegetables, except cucurbis	United States	WG / 240	0.033-0.050	93.5	3	1	3
Grape	United States	SC / 480	0.140	93.5	3	7	5
Pepper	Australia	SC / 480	0.072		3	1	
Pepper	Greece	WG / 240*	0.096	0.006 kg ai/hL	2	1	
Pepper	Netherlands	WG 240		0.006 kg ai/hL	2	1	
Pome fruit	United States	SC / 480	0.14 -0.175	93.5	3	14	7
Rice	Bangladesh	WG / 240	0.048	500	2	-	
Rice	India	SC / 480	0.024	375-500	3	40	
Stone fruit	United States	SC / 480	0.140	93.5	3	7	7
Soya bean	United States		0.10	93.5	2	1 (green seed) 14 (dry seed) 3 (forage and hay	5
Sweet corn	Australia	SC / 480	0.036 -0.072	0.036 - 0.072 kg ai/hL	2	1	
Sweet corn	United States	SC / 480	0.105	93.5	4	1	
Tomato	Australia	SC / 480	0.072		3	1	
Tomato	Greece	WG / 240*	0.120	0.006 kg ai/hL	2	3	
Tomato	Netherlands	WG 240*		0.006 kg ai/hL	2	1	
Tree nut	United States	SC / 480	0.140	93.5	3	14	7
Tea	Japan	WG / 200	0.400	2000-4000	1	7	

* Greenhouse application

RESIDUES RESULTING FROM SUPERVISED TRIALS

Six hundred fourty seven supervised residue trials conducted with flubendiamide in Australia, European Countries, USA, Japan, Thailand and India using foliar application of EC or WG formulation were submitted, as summarised below.

Crop	Countries	Table
Apple, pear	Belgium, Germany, italy, Canada and USA	50
Cherry	Canada, UA	51
Peach	Canada, USA, France, Greece, Italy, Portugal, Spain	52
Plum	USA, France, Italy, Spain	53

1	3	1	1

Сгор	Countries	Table
Table grape	USA	54
Broccoli/cauliflour	France, Germany, Italy, Spain, UK, USA	55
Cabbage	Australia, France, Germany, Italy, Spain, UK, USA	56
Brussels sprout	Australia, France, Germany, Italy, Spain, UK, USA	57
Cucumber/summershquash (field)	USA	58
Cucumber (glasshouse)	France, GermanyGreece, Italy, Portugal, Spain	59
Melon/watermelon (field)	USA	60
Melon (glasshouse)	France, Italy, Portugal, Spain	61
Pepper (field)	Australia, USA	62
Pepper (glasshouse)	France, Germany, Italy, Netherlands,	63
Tomato (field)	Australia, USA	64
Tomato (glasshouse)	France, Germany, Italy, Netherlands, Portugal, Spain,	65
Sweet corn	USA	66
Lettuce	Australia	67
Spinach	USA	68
Green bean/pea	Australia, USA	69
Soya bean	USA	70
Dry bean/pea	USA	71
Celery	USA	72
Field corn	Canada, USA	73
Rice	Thailand, India	74
Tree nuts	USA	75
Cotton	USA	76
Tea	Japan	77
Animal feed from soya bean	USA	78
Animal feed from legumes	USA	79
Animal feed from corn	Canada, USA	80
Animal feed from rice	Thailand, India	81
Almond hulls	USA	82
Cotton gintrash	USA	83

Results from the supervised trials are shown in Tables 50 to 83. Residues of flubendiamide and its des-iodo methabolite were determined by LC/MS/MS method in most cases, with a LOQ of 0.01 mg/kg. Unless stated otherwise, in all trials, untreated control plots gave residues < LOQ.

Residues of flubendiamide within 25% GAP are underlined and were considered for estimation maximum residue level, HR and STMR. When residues in samples harvested at a latter stage were higher than what was found at the critical PHI, they will be selected for the estimations.

Pome fruits

Flubendiamide is registered in USA in pome fruits with a GAP of 3×0.14 –0.175 kg ai/ha (minimum of 93.4 L water/ha) and 14 days PHI. A total of 50 residue trials were conducted with apples and pears in Canada, Europe and USA in 2004. The results are shown in Table 50.

Table 50 Results	of residue	trials	conducted	with	flubendiamide	in	apple	and	pears	in	Europe	and
USA in 2004												

		Application					Residues (mg/kg) ^a			
Country				kg			Flubendia-	F-des-	Report No.	
Region	Crop Variety	F	No	ai/ha	L/ha	PHI	mide	iodo	Trial No.	
Apple										
Belgium	Jonagold	SC	3	0.18	1500	0*	0.14	< 0.01	RA-2301/04	
Brabant	C					0	0.27	< 0.01	R 2004 0317 8	
						7	0.17	< 0.01		
						14	0.17	< 0.01		
						21	0.17	< 0.01		
Belgium	Jonagold	SC	3	0.18	1500	0*	0.17	< 0.01	RA-2301/04	
Brabant						0	0.29	< 0.01	R 2004 0970 2	
						7	0.15	< 0.01		
						14	0.21	< 0.01		
						21	0.21	< 0.01		
Belgium	Jonagold	WG	3	0.18	1500	0*	0.11	< 0.01	RA-2325/04	
Brabant						0	0.26	< 0.01	R 2004 0986 9	
						7	0.12	< 0.01		
						14	0.18	< 0.01		
						21	0.11	< 0.01		
Canada	MacIntosh	SC	3	0.166-	578-	14	<u>0.23</u>	< 0.01	RCAMY009	
Ontario				0.182	664				AM176-04H-	
									A	
Canada	MacIntosh	SC	3	0.172-	2665-	14	<u>0.20</u>	< 0.01	RCAMY009	
Ontario				0.173	2922				AM176-04H-	
									В	
France	Golden	SC	3	0.144-	1200-	0*	0.12	< 0.01	RA-2302/04	
Rhone-Alpes				0.147	1225	0	0.23	< 0.01	R 2004 0318 6	
						7	0.29	< 0.01		
						14	0.23	< 0.01		
						21	0.19	< 0.01		
Germany	Goldparmäne	SC	3	0.12	1000	0	0.34	< 0.01	RA-2301/04	
Nordrhein-						14	0.18	< 0.01	R 2004 0982 6	
Westfalen		~~~								
Germany	Rubinette	SC	3	0.12-	1000	0	0.26	< 0.01	RA-2301/04	
Nordrhein-				0.132		15	0.21	< 0.01	R 2004 0983 4	
Westfalen	0.11 "	IVC	2	0.10	1000	0*	0.12	.0.01	D.4. 00005/04	
Germany	Goldparmäne	WG	3	0.12	1000	0*	0.13	< 0.01	RA-2325/04	
Nordrhein-						0 7	0.20	< 0.01 < 0.01	R 2004 0987 7	
Westfalen						-	0.14			
						14 20	0.10	< 0.01		
Italy	Jonathan	SC	3	0.150	1250	0	0.10	< 0.01	RA-2302/04	
Italy Emilia Romagna	Jonathan	sc	3	0.150	1250	-	0.16	< 0.01		
Emilia-Romagna	Caldan	80	2	0.19	1500	14	0.17	< 0.01	R 2004 0976	
Spain Cataluña	Golden	SC	3	0.18	1500	0 14	0.41 0.27	< 0.01	RA-2302/04 R 2004 0978 8	
USA	Red delicious	SC	3	0.17-	542-	14	0.27	< 0.01	RCAMY009	
	Red deficious	SC	3	0.17-0.18		11	0.47	< 0.01		
Pennsylvania				0.18	559				AM172-04H-	
USA	Dad daliaiar-	SC	3	0.174	2343-	11	0.36	< 0.01	A	
USA Pennsylvania	Red delicious	SC	3	0.174- 0.175	2343-2347	11	0.30	< 0.01	RCAMY009 AM172-04H-	
remisyivama				0.175	2347				АМ172-04н- В	
	1			1	1				D	

		Appl	ication				Residues (m	g/kg) ^a	$(g)^a$	
Country				kg		1	Flubendia-	F-des-	Report No.	
Region	Crop Variety	F	No	ai/ha	L/ha	PHI	mide	iodo	Trial No.	
USA	Idareds	SC	3	0.177-	555-	14	0.17	< 0.01	RCAMY009	
New York				0.179	560				AM173-04H-	
									А	
USA	Idared	SC	3	0.171-	1841-	14	0.19	< 0.01	RCAMY009	
New York				0.173	1862				AM173-04H-	
									В	
USA	Idareds	SC	3	0.175-	658-	14	0.23	< 0.01	RCAMY009	
New York		~ -	-	0.177	706		<u></u>		AM174-04H-	
									A	
USA	Idareds	SC	3	0.177-	2329-	14	0.22	< 0.01	RCAMY009	
New York	Tuur vus	50	5	0.180	2365		0.22	0.01	AM174-04H-	
new ronk				0.100	2505				B	
USA	Empire	SC	3	0.174-	367-	14	0.17	< 0.01	RCAMY009	
Georgia	Empire	50	5	0.175	394	17	0.17	\$ 0.01	AM175-04H-	
Georgia				0.175	571				A	
USA	Empire	SC	3	0.171-	2261-	14	0.18	< 0.01	RCAMY009	
Georgia	Linpite	50	5	0.171	2535	17	0.10	< 0.01	AM175-04H-	
Ocorgia				0.177	2333				В	
USA	Red delicious	SC	3	0.175-	542-	14	0.48	< 0.01	RCAMY009	
Michigan	Red delicious	sc	3	0.173-	542- 545	14	0.40	< 0.01	AM177-04H-	
whengan				0.177	545				AM177-0411-	
USA	Red delicious	SC	3	0.175-	2607-	14	0.33	< 0.01	RCAMY009	
	Red delicious	sc	3			14	0.33	< 0.01	AM177-04H-	
Michigan				0.177	2633					
TIC A	D 1 1 1	80	2	0.175	540	1.4	0.16	< 0.01	B RCAMY009	
USA	Red delicious	SC	3	0.175	549-	14	0.16	< 0.01		
Colorado					569				AM178-04H-	
110.4	D 111		2	0.175	2270	1.4	0.20	.0.01	A	
USA	Red delicious	SC	3	0.175-	2378-	14	<u>0.30</u>	< 0.01	RCAMY009	
Colorado				0.176	2429				AM178-04H-	
	G G 11		2	0.170	400	1.4	0.10	.0.01	B	
USA, California	Summerfield	SC	3	0.170-	480-	14	0.18	< 0.01	RCAMY009	
				0.174	485				AM179-04H-	
	a		-	0.150	2002		0.1.5	0.01	A	
USA	Summerfield	SC	3	0.172-	3002-	14	0.15	< 0.01	RCAMY009	
California				0.177	3013				AM179-04H-	
			-						В	
USA	Braeburn	SC	3	0.175	464-	0	0.26	< 0.01	RCAMY009	
Washington					466	7	0.25	< 0.01	AM180-04D-	
						14	0.23	< 0.01	Α	
						21	0.22	< 0.01		
						28	0.25	< 0.01		
USA	Braeburn	SC	3	0.174	2806-	14	<u>0.41</u>	< 0.01	RCAMY009	
Washington					2812				AM180-04D-	
									В	
USA	Law Rome	SC	3	0.172-	467-	14	<u>0.27</u>	< 0.01	RCAMY009	
Idaho				0.176	471				AM181-04H-	
									А	
USA	Law Rome	SC	3	0.169-	2315-	14	0.25	< 0.01	RCAMY009	
Idaho				0.178	2362				AM181-04H-	
									В	
			3	0.181-	397-	14	0.19	< 0.01	RCAMY009	
USA	Jonagold	SC	5					1	AM182-04H-	
USA Oregon	Jonagold	SC	5	0.186	639				1101102 0411	
	-								А	
	Jonagold Jonagold	SC SC	3	0.186	639 2318-	14	0.21	< 0.01		
Oregon	-			0.186		14	0.21	< 0.01	А	
Oregon USA	-			0.186	2318-	14	0.21	< 0.01	A RCAMY009	
Oregon USA Oregon	Jonagold	SC	3	0.186 0.173- 0.179	2318- 2626				A RCAMY009 AM182-04H- B	
Oregon USA Oregon USA	-			0.186	2318- 2626 494-	14	0.21 0.06	< 0.01	A RCAMY009 AM182-04H- B RCAMY009	
Oregon USA Oregon	Jonagold	SC	3	0.186 0.173- 0.179	2318- 2626				A RCAMY009 AM182-04H- B RCAMY009 AM183-04H-	
Oregon USA Oregon USA Oregon	Jonagold Jonagold	SC SC	3	0.186 0.173- 0.179 0.176	2318- 2626 494- 594	14	0.06	< 0.01	A RCAMY009 AM182-04H- B RCAMY009 AM183-04H- A	
Oregon USA Oregon USA	Jonagold	SC	3	0.186 0.173- 0.179	2318- 2626 494-				A RCAMY009 AM182-04H- B RCAMY009 AM183-04H-	

		Application					Residues (mg/kg) ^a			
Country				kg			Flubendia-	F-des-	Report No.	
Region	Crop Variety	F	No	ai/ha	L/ha	PHI	mide	iodo	Trial No.	
Pear	1 1 ž						•		•	
France	Passe crassane	SC	3	0.156	1300	0*	0.09	< 0.01	RA-2302/04	
Rhone-Alpes			-			0	0.23	< 0.01	R 2004 0975 3	
· · · ·						7	0.16	< 0.01		
						14	0.13	< 0.01		
						22	0.13	< 0.01		
Germany	Pear	SC	3	0.12	1000	0	0.30	< 0.01	RA-2301/04	
Westfalen	Alexander Lucas		-			14	0.12	< 0.01	R 2004 0984 2	
Germany	Pear	SC	3	0.12-	1000-	0	0.26	< 0.01	RA-2301/04	
Westfalen	Alexander Lucas			0.126	1050	15	0.21	< 0.01	R 2004 0985 0	
Italy, Emilia-	Pear	SC	3	0.15	1250	0	0.33	< 0.01	RA-2302/04	
Romagna	William					14	0.16	< 0.01	R 2004 0979 6	
Spain	Pear	SC	3	0.18	1500	13	0.34	< 0.01	RA-2302/04	
Cataluña	Conference								R 2004 0981 8	
USA	Pear	SC	3	0.176-	548-	14	0.23	< 0.01	RCAMY009	
Pennsylvania	Bartlett			0.178	551				AM184-04H-	
,									А	
USA	Pear	SC	3	0.175-	2726-	14	0.20	< 0.01	RCAMY009	
Pennsylvania	Bartlett			0.178	2763				AM184-04H-	
,									В	
USA	Pear	SC	3	0.175-	529-	13	0.06	< 0.01	RCAMY009	
California	Asian			0.177	572				AM185-04H-	
									А	
USA	Pear	SC	3	0.172-	2345-	13	0.09	< 0.01 (RCAMY009	
Califor-nia	Asian			0.176	2397			ĺ.	AM185-04H-	
									В	
USA	Pear	SC	3	0.174-	467-	0	0.45	< 0.01	RCAMY009	
California	Bartlett			0.176	509	7	0.32	< 0.01	AM186-04D-	
						14	0.30	< 0.01	Α	
						21	0.35	< 0.01		
						28	0.19	< 0.01		
USA	Pear	SC	3	0.174-	1921-	14	0.37	< 0.01	RCAMY009	
Califor-nia	Bartlett			0.177	1991				AM186-04D-	
									В	
USA	Pear	SC	3	0.171-	395-	14	0.36	< 0.01	RCAMY009	
Oregon	Cascade			0.180	2290				AM187-04H-	
									Α	
USA	Pear	SC	3	0.173-	623-	14	0.32	< 0.01	RCAMY009	
Oregon	Cascade			0.176	2629				AM187-04H-	
									В	
USA	Pear	SC	3	0.175-	462-	14	0.29	< 0.01	RCAMY009	
Idaho	Bartlett			0.179	471				AM188-04H-	
							_		A	
USA	Pear	SC	3	0.171-	2278-	14	<u>0.33</u>	< 0.01	RCAMY009	
Idaho	Bartlett			0.174	2315	14			AM188-04H-	
	_								В	
USA	Pear	SC	3	0.174-	463-	14	0.37	< 0.01	RCAMY009	
Washington	Concord			0.175	464				AM189-04H-	
		L					4		А	
USA	Pear	SC	3	0.175	2314-	14	<u>0.59</u>	< 0.01	RCAMY009	
Washington	Concord				2380	14			AM189-04H-	
									В	

^a Residues from trials conducted in Canada and USA are the highest of two samples

Cherries

Flubendiamide is registered in USA in stone fruits with a GAP of 3×0.14 kg ai/ha (minimum of 93.4 L water/ha) and 7 days PHI. Sixteen supervised trials were conducted in cherries in Canada and USA in 2004 and 2007. The results are shown on Table 51.

		Appl	ication			Residues (m	g/kg) ^a		
Country,						Flubendia-	F-des-	Report No.	
State	Variety	No	kg ai/ha	L/ha	PHI	mide	iodo	Trial No., year	
Canada	sour	3	0.138-	564-	7	0.89	< 0.01	RCAMY011	
Ontario	Montmorency		0.140	592				AM193-04H-C, 2004	
Canada	sour	3	0.141-	2211-	7	0.99	< 0.01	RCAMY011	
Ontraio	Montmorency		0.143	2289				AM193-04H-D, 2004	
USA	Sweet	3	0.140-	608-	7	0.53	< 0.01	RCAMY011	
California	Brooks		0.143	623				AM194-04H-C, 2004	
USA	Sweet	3	0.134-	2228-	7	0.63	< 0.01	RCAMY011	
California	Brooks		0.142	2377	7			AM194-04H-D, 2004	
USA	sweet	3	0.139-	448-	7	0.11	< 0.01	RAAML003	
California	Bing		0.141	545				AM058-07HC, 2007	
USA	sweet	3	0.137-	1993-	7	0.19	< 0.01	RAAML003	
California	Bing		0.141	2082				AM058-07HD, 2007	
USA	Sour	3	0.141-	473-	0	0.81	< 0.01	RCAMY011	
Pennsylvania	Montmorency		0.142	475	3	0.95	< 0.01	AM191-04D-C, 2004	
					7	<u>1.0</u>	< 0.01		
					10	0.73	< 0.01		
					12	0.81	< 0.01		
							< 0.01		
USA	sour	3	0.139-	2321-	7	1.0	< 0.01	RCAMY011	
Pennsylvania	Montmorency		0.142	2372				AM191-04D-D, 2004	
USA	sour	3	0.140-	559-	7	0.58	< 0.01	RCAMY011	
Michigan	Montmorency		0.141	573				AM192-04H-C, 2004	
USA	sour	3	0.140-	1952-	7	<u>0.60</u>	< 0.01	RCAMY011	
Michigan	Montmorency		0.141	2034				AM192-04H-D, 2004	
USA	sweet	3	0.137-	449-	7	0.16	< 0.01	RCAMY011	
Oregon	Sweet Hearts		0.142	467				AM195-04H-C, 2004	
USA	sweet	3	0.138-	2530-	7	<u>0.25</u>	< 0.01	RCAMY011	
Oregon	Sweet Hearts		0.145	2563				AM195-04H-D, 2004	
USA	sweet	3	0.140-	589-	7	0.20	< 0.01	RCAMY011	
Oregon	Bing		0.141	619				AM196-04H-C, 2004	
USA	sweet	3	0.140-	2090-	7	<u>0.57</u>	< 0.01	RCAMY011	
Oregon	Bing		0.141	2121				AM196-04H-D, 2004	
USA	sweet	3	0.140-	519-	7	0.45	< 0.01	RAAML003	
Oregon	Montmorency		0.141	513				AM057-07HC, 2007	
USA	sweet	3	0.139-	2313-	7	<u>0.48</u>	< 0.01	RAAML003	
Oregon	Montmorency		0.142	2354				AM057-07HD, 2007	

Table 51 Results of residue trials conducted with flubendiamide SC480 in/on cherry, fruit depited

^{a.} Residues are the highest of two samples

Peaches and nectarines

Flubendiamide is registered in USA in stone fruits with a GAP of 3×0.14 kg ai/ha (minimum of 93.4 L water/ha) and 7 days PHI. A total of 57 residue trials were conducted with flubendiamide with peaches and nectarines in North America and Europe in 2003/2004. The results are shown on Table 52.

Table 52: Results of residue trials conducted with flubendiamide SC480 in/on peach and nectarines

		App	olication				Residues (n	ng/kg) ^a	Report No.
Country,	Variety	No	kg		Portion	PHI	Flubendia-	F-des-	Trial No., year
State			ai/ha	L/ha			mide	iodo	
Canada	Peach,	3	0.138-	490-	fruit,	7	0.20	< 0.01	RCAMY011
Ontario	Canadian		0.141	537	depitted				AM201-04H-C, 2004
	Harmony				-				
Canada	Peach,	3	0.139-	2155-	fruit,	7	0.15	< 0.01	RCAMY011
Ontario	Canadian		0.142	2319	depitted				AM201-04H-D, 2004
	Harmony				_				

		Apr	olication					(mg/kg) ^a	Report No.	
Country,	Variety	No	1		Portion	PHI	Flubendia		Trial No., year	
State	5		ai/ha	L/ha			mide	iodo		
France	Peach	3	0.132-	1100-	fruit	0*	0.11	< 0.01	RA-2303/04	
Cote D'azur	Spring White		0.138	1150		0	0.17	< 0.01	R 2004 0321 6, 2004	
						7	0.12	< 0.01		
						14	0.10	< 0.01		
r.	N. (.		0.125	1105	C 1	21	0.10	< 0.01	D.A. 2202/04	
France Provence-	Nectarine Big Top	3	0.135- 0.138	1125- 1150	fruit	0* 0	0.12 0.27	< 0.01 < 0.01	RA-2303/04 R 2004 0993 , 2004	
Cote D'azur	ыд төр		0.138	1150		7	0.27	< 0.01	K 2004 0993 , 2004	
Cole D'azui						14	0.13	< 0.01		
						21	0.15	< 0.01		
Greece	Peach	3	0.132	1100	fruit	0*	0.28	< 0.01	RA-2063/03	
Tripotamus	Hall					0	0.32	< 0.01	R 2003 0194 4, 2003	
						7	0.22	< 0.01		
						14	0.16	< 0.01		
x . 1	D 1		0.4.50	1050	0.1	21	0.11	< 0.01	D. 4. 00.00/0.4	
Italy	Peach	3	0.150	1250	fruit	0	0.38	< 0.01	RA-2303/04	
Emilia - Romagna	Red Haven					7 14	0.12 0.09	< 0.01 < 0.01	R 2004 0995 8, 2004	
Portugal	Peach	3	0.120	1000	fruit	0	0.09	< 0.01	RA-2303/04	
Lamorosa	Vistariche	5	0.120	1000	mult	7	0.24 0.20	< 0.01	R 2004 0998 2, 2004	
Lamorosa	v istariene					, 14	0.15	< 0.01	R 2004 0770 2, 2004	
Portugal	Peach	3	0.120	1000	fruit	0*	0.19	< 0.01	RA-2063/03	
Alenquer	Spring crest	_				0	0.33	< 0.01	R 2003 0771 3, 2003	
1	1 0					7	0.22	< 0.01	,	
						14	0.12	< 0.01		
						21	0.09	< 0.01		
Spain	Peach	3	0.144-	1250	fruit	0*	0.24	< 0.01	RA-2063/03	
La Fortesa	Royal Glory		0.150			0	0.37	< 0.01	R 2003 0770 5, 2003	
						6	0.25	< 0.01		
						15 21	0.14 0.12	< 0.01 < 0.01		
Spain	Nectarine	3	0.168	1400	fruit	0	0.12	< 0.01	RA-2303/04	
Cataluña	Diptop	5	0.100	1400	mun	8	0.24	< 0.01	R 2004 0996 6. 2004	
Cuturunu	Diptop					15	0.22	< 0.01	11 200 1 0000 0. 200 1	
Spain	Peach	3	0.150	1250	fruit	0	0.25	< 0.01	RA-2303/04	
Cataluña	Ruby Rich					8	0.21	< 0.01	R 2004 0997 4, 2004	
						13	0.17	< 0.01		
USA	Peach	3	0.138-	409-	fruit,	0	0.36	< 0.01	RCAMY011	
California	OHenry		0.140	447	depitted	3	0.20	< 0.01	AM203-04D-C, 2004	
						7	0.18	< 0.01		
						10	0.14	< 0.01 < 0.01		
						14	0.15	< 0.01		
USA	Peach	3	0.139-	1976-	fruit,	7	0.35	< 0.01	RCAMY011	
California	OHenry		0.142	2022	depitted				AM203-04D-D, 2004	
USA	Peach	3	0.139-	607-	fruit,	7	0.28	< 0.01	RCAMY011	
California	Ryans Sun		0.142	609	depitted				AM204-04H-C, 2004	
USA	Peach	3	0.138-	2331-	fruit,	7	0.39	< 0.01	RCAMY011	
California	Ryans Sun		0.140	2342	depitted	L			AM204-04H-D, 2004	
USA	Peach	3	0.140-	467-	fruit,	7	0.26	< 0.01	RCAMY011	
California	Starn		0.141	470	depitted				AM205-04H-C, 2004	
USA	Peach	3	0.138-	1936-	fruit,	7	0.40	< 0.01	RCAMY011	
California	Starn		0.140	1958	depitted				AM205-04H-D, 2004	
USA	Peach	3	0.140	395-	fruit,	7	0.20	< 0.01	RCAMY011	
Georgia	Hawthorne	1		408	depitted		-		AM199-04H-C, 2004	
USA	Peach	3	0.140-	2006-	fruit,	7	0.20	< 0.01	RCAMY011	
Georgia	Hawthorne		0.140	2000-	depitted	´	<u></u>		AM199-04H-D, 2004	
USA	Peach	3	0.140-	470-	fruit,	7	0.16	< 0.01	RCAMY011	
Georgia	Dixieland	5	0.140-	496	depitted	<i>'</i>	0.10	5.01	AM200-04H-C, 2004	
USA	Peach	3	0.144	2907-	fruit,	7	0.30	< 0.01	RCAMY011	
Georgia	Dixieland	2	0.139-	3182	depitted	· /	0.50	. 0.01	AM200-04H-D, 2004	
Scorgia	Divicialia		0.141	5102	acplied	I	L		¹ 111200-0 1 11-D, 2004	

		App	lication				Residues (n	ng/kg) ^a	Report No.
Country,	Variety	No	kg		Portion	PHI	Flubendia-	F-des-	Trial No., year
State			ai/ha	L/ha			mide	iodo	
USA	Peach	3	0.141-	508-	fruit,	7	0.20	< 0.01	RCAMY011
Pennsylvania	Glen Glo		0.142	594	depitted			< 0.01	AM197-04H-C, 2004
USA	Peach	3	0.140-	3007-	fruit,	7	0.24	< 0.01	RCAMY011
Pennsylvania	Glen Glo		0.142	3035	depitted				AM197-04H-D, 2004
USA	Peach	3	0.139-	532-	fruit,	7	0.22	< 0.01	RCAMY011
Texas	Texas Royal		0.140	552	depitted				AM202-04H-C, 2004
USA	Peach	3	0.140-	2773-	fruit,	7	0.32	< 0.01	RCAMY011
Texas	Texas Royal		0.142	2851	depitted	7			AM202-04H-D, 2004
USA	Peach	3	0.141-	593-	fruit,	7	0.23	< 0.01	RCAMY011
Virginia	Encore		0.142	752	depitted			< 0.01	AM198-04HA-C,
									2004
USA	Peach	3	0.140	2704-	fruit,	7	0.20	< 0.01	RCAMY011
Virginia	Encore			2708	depitted				AM198-04HA-D,
									2004

^a. Residues from trials conducted in Canada and USA are the higher of two samples

Plums

Flubendiamide is registered in USA in stone fruits with a GAP of 3×0.14 kg ai/ha (minimum of 93.4 L water/ha) and 7 days PHI. A total of 15 residue trials were conducted in Europe and USA with plums in 2004. The results are shown in Table 53.

Country, State Variety No kg ai/ha L/ha Portion PHI Flubendia- mide F-des- iodo Trial No. France Midi-Pyrenees Bave 3 0.180 1500 fruit 0* 0.03 < 0.01 RA-2304/04 Midi-Pyrenees Bave 3 0.180 1500 fruit 0* 0.03 < 0.01 RA-2304/04 Italy Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01 RA-2304/04 Emilia - Romagna Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01 RA-2304/04 Spain Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01 RA-2304/04 Valenciana 3 0.108 900 fruit 0* 0.03 < 0.01 R2004 0403 Valenciana 3 0.108 900 fruit 0* 0.03 < 0.01 R2004 0894 Valenciana	
State ai/ha L/ha mide iodo France Midi-Pyrenees Bave 3 0.180 1500 fruit 0* 0.03 < 0.01	
Midi-Pyrenees International and the second sec	
Italy Emilia - Romagna Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01 RA-2304/04 Spain Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01	
Italy Emilia - Romagna Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01 RA-2304/04 Spain Comunidad Valenciana Black Gold 3 0.180 1500 fruit 0* 0.02 < 0.01	1
Italy Emilia - Romagna Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01 RA-2304/04 Spain Comunidad Valenciana Black Gold 3 0.180 1500 fruit 0* 0.02 < 0.01	
Italy Emilia - Romagna Golden Pluma 3 0.180 1500 fruit 0* 0.02 < 0.01 RA-2304/04 Spain Comunidad Valenciana Black Gold 3 0.180 1500 fruit 0* 0.02 < 0.01	
Emilia - Romagna Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01 R 2004 0403 Spain Comunidad Valenciana Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01	
Romagna Romagna 7 0.05 < 0.01 Spain Comunidad Valenciana Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01	
Spain Comunidad Valenciana Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01 RA-2304/04 Valenciana 3 0.108 900 fruit 0* 0.03 < 0.01	4
Spain Comunidad Valenciana Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01 RA-2304/04 Valenciana Black Gold 3 0.108 900 fruit 0* 0.03 < 0.01	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Valenciana 7 0.07 < 0.01 Valenciana 7 0.06 < 0.01	
14 0.06 < 0.01 20 0.03 < 0.01	3
USA Autumn Beauty 3 0.140 493- fruit, 0 0.03 < 0.01 RCAMY01	
USA Autumn Beauty 3 0.140 493- fruit, 0 0.03 < 0.01 RCAMY01	
California 499 depitted 3 0.04 < 0.01 AM207-04)-С
7 0.02 < 0.01	
10 0.02 < 0.01	
14 0.01 < 0.01	
USA Autumn Beauty 3 0.138 2765- fruit, 7 0.03 <0.01 RCAMY01	1
California 2808 depitted AM207-04)-D
USA Angelinas 3 0.138- 522- fruit, 7 0.03 < 0.01 RCAMY01	1
California 0.144 614 depitted AM208-04	IA-
USA Angelinas 3 0.139- 2444- fruit, 7 0.05 < 0.01 RCAMY01	1
California 0.143 2699 depitted AM208-04	
USA Autumn Beauty 3 0.139- 553- fruit, 7 0.04 < 0.01 RCAMY01	1
California 0.141 568 depitted AM209-04	

		App	lication				Residues (m	ıg/kg)a	Report No.
Country,	Variety	No	kg		Portion	PHI	Flubendia-	F-des-	Trial No.
State			ai/ha	L/ha			mide	iodo	
USA	Autumn Beauty	3	0.141	2425-	fruit,	7	0.14	< 0.01	RCAMY011
California				2502	depitted	7			AM209-04H-D
USA	Howard Sun	3	0.137-	494-	fruit,	7	0.02	< 0.01	RCAMY011
California			0.140	498	depitted				AM210-04H-C
USA	Howard Sun	3	0.141-	2828-	fruit,	7	0.01	< 0.01	RCAMY011
California			0.142	2862	depitted				AM210-04H-D
USA	Stanley	3	0.139	522-	fruit,	7	0.44	< 0.01	RCAMY011
Michigan	-			611	depitted				AM206-04H-C
USA	Stanley	3	0.139-	2700-	fruit,	7	0.50	< 0.01	RCAMY011
Michigan	-		0.140	3062	depitted				AM206-04H-D
USA	Italian	3	0.138-	477-	fruit,	7	0.09	< 0.01	RCAMY011
Oregon			0.143	509	depitted				AM211-04H-C
USA	Italian	3	0.139-	2067-	fruit,	7	0.07	< 0.01	RCAMY011
Oregon			0.142	2143	depitted				AM211-04H-D

^{a.} Residues from trials conducted in USA and * are the highest of two samples

Grape

Flubendiamide is registered in USA in grape with a GAP of 3×0.14 kg ai/ha (minimum of 93.4 L water/ha) and 7 days PHI. Twelve trials were conducted in USA with flubendiamide in grape in 2004. The results are shown in Table 54.

Table 54 Results of residue trials conducted with flubendiamide SC480 in/on grape in USA in 2004 (Report No. RCAMY016)

		Applic	cation			Residues (mg/kg) ^a		Trial No.
State	Variety	No	kg ai/ha	L/ha	PHI	Flubendiamide	F-des-iodo	
California	Thompson	3	0.14	505-509	0	0.20	< 0.01	AM242-04D
	Seedless				3	0.18	< 0.01	
					7	<u>0.19</u>	< 0.01	
					10	0.15	< 0.01	
					14	0.20	< 0.01	
California	Centurion	3	0.14	511-514	7	<u>0.40</u>	< 0.01	AM243-04H
California	Crimson	3	0.14	550-571	7	<u>0.47</u>	< 0.01	AM244-04H
California	Thompson	3	0.14	529-548	7	0.19	< 0.01	AM245-04H
	Seedless							
California	Chardonnay	3	0.14	510-547	7	0.81	< 0.01	AM246-04H
California	Merlot	3	0.14	609-610	7	0.43	< 0.01	AM247-04H
California	Thompson	3	0.14	481-490	7	0.12	< 0.01	AM248-04H
	Seedless							
California	Thompson	3	0.14	488-506	7	0.69	< 0.01	AM249-04H
	Seedless							
Idaho	Concord	3	0.14	558-567	7	0.12	< 0.01	AM250-04H
New York	Vidal Blanc	3	0.14	567-572	7	0.68	< 0.01	AM241-04H
Pennsylvania	Concord	3	0.14	618-621	7	0.22	< 0.01	AM240-04H
Washington	Chardonay	3	0.14	562-565	7	0.67	< 0.01	AM251-04H

^a. Residues are the highest of two samples

Broccoli and cauliflower

Flubendiamide is registered in brassica vegetables in Australia at a maximum rate of 3×0.048 kg ai/ha (0.0048 kg ai/hL) and 3 days PHI. GAP in USA for brassica is 2×0.034 kg ai/ha and 1 day PHI.

Twenty seven trials were conducted with flubendiamie in broccoli and nine in cauliflower in Australia, Europe and USA from 2004 to 2006. The results are shown on Table 55.

		Applicat	ion					Residues (n	ng/kg) ^a	Report No.
Country	Crop Variety	F	No	kg	kg	L/ha	PHI	Flubendia-	F-des-	Trial No., year
Region				ai/ha	ai/hL			mide	iodo	
Broccoli										
AUS	Broccoli	240	3	0.048			0*	0.05	< 0.02	BCS-0083
Victoria	Viper	WG					0	0.44	< 0.02	VC29, 2006
							1	0.29	< 0.02	
							3	<u>0.13</u>	< 0.02	
							7	0.11	< 0.02	
AUS	Broccoli	240	3	0.072			0*	0.07	< 0.02	BCS-0083
Victoria	Viper	WG					0	0.53	< 0.02	VC29, 2006
							1	0.48	< 0.02	
							3	0.36	< 0.02	
							7	0.12	< 0.02	
AUS	Broccoli	240	3	0.108			0*	0.10	< 0.02	BCS-0083
Victoria	Viper	WG					0	0.36	< 0.02	VC29, 2006
							1	0.28	< 0.02	
							3	0.48	< 0.02	
							7	0.21	< 0.02	
AUS	Broccoli	480 SC	3	0.048			0*	0.04	< 0.02	BCS-0118
Victoria	Viper						0	0.45	< 0.02	B56, 2006
							3	0.25	< 0.02	
							7	0.05	< 0.02	
			_				14	< 0.02	< 0.02	
AUS	Broccoli	480 SC	3	0.096			0*	0.37	< 0.02	BCS-0118
Victoria	Viper						0	0.34	< 0.02	B56, 2006
							3	0.30	< 0.02	
							7	0.31	< 0.02	
			_				14	0.02	< 0.02	
AUS	Broccoli	240	3	0.096			0*	0.46	< 0.02	BCS-0118
Victoria	Viper	WG					0	0.63	< 0.02	B56, 2006
							3	0.17	< 0.02	
							7	0.24	< 0.02	
	D I	240	2	0.040			14	0.07	< 0.02	DOG 0000
AUS	Broccoli	240	3	0.048			0*	< 0.02	< 0.02	BCS-0083
Queensland	Babylon	WG					0	0.10	< 0.02	Q1, 2006
							2	0.14	< 0.02	
							3	$\frac{0.22}{0.05}$	< 0.02	
AUS	Drococ1:	240	2	0.072			7	0.05	< 0.02	DCS 0082
	Broccoli	240 WG	3	0.072				0.07 0.21	< 0.02	BCS-0083
Queensland	Babylon	WU					$ \begin{array}{c} 0\\ 2 \end{array} $	0.21 0.27	< 0.02 < 0.02	Q1, 2006
							$\frac{2}{3}$	0.27	< 0.02	
							3 7	0.20	< 0.02	
AUS	Broccoli	240	3	0.108	+	+	0*	0.09		BCS-0083
Queensland	Babylon	WG	5	0.108			0*	0.00	< 0.02	Q1, 2006
Queensianu	Dabyion	110					2	0.14 0.24	< 0.02	Q1, 2000
							$\frac{2}{3}$	0.24 0.26	< 0.02	
							3 7	0.20	< 0.02	
France	Broccoli	480 SC	3	0.048	0.016		0*	< 0.01	< 0.02	RA-2317/04
Haute-	Monaco	400 50	5	0.046	0.010		0*	< 0.01 0.17	< 0.01	R 2004 0950 8,
Normandie	monaco						3	0.17	< 0.01	R 2004 0930 8, 2004
i tormanule							3 7	0.09	< 0.01	2007
							14	0.00	< 0.01	
	D I	480 SC	3	0.048	0.008		0*	0.02	< 0.01	RA-2317/04
Germany	Broccoll		1.2	0.040	0.000	1	U .	0.04	< 0.01	
Germany Langenfeld	Broccoli Marathon	400 SC	_				0	0.16	< 0.01	R 2004 0040 A
Langenfeld	Marathon	400 50					03	0.16	< 0.01	R 2004 0949 4, 2004
		400 50					0 3 7	0.16 0.15 0.08	< 0.01 < 0.01 < 0.01	R 2004 0949 4, 2004

Table 55 Results of residue trials conducted with flubendiamide in/on broccoli and cauliflower

		Applicat	ion					Residues (n	ng/kg) ^a	Report No.
Country	Crop Variety	F	No	kg	kg	L/ha	PHI	Flubendia-	F-des-	Trial No., year
Region	1 5			ai/ha	ai/hL			mide	iodo	_
Italy	Broccoli	480 SC	3	0.048	0.01		0*	0.04	< 0.01	RA-2318/04
Melfi (PZ)	Maraton						0	0.21	< 0.01	R 2004 0408 5,
(Puglia)							3	0.13	< 0.01	2004
							7	0.15	< 0.01	
							14	0.10	< 0.01	
Spain	Broccoli	480 SC	3	0.048	0.005		0*	0.03	< 0.01	RA-2318/04
Cataluña	Marathon						0	0.15	< 0.01	R 2004 0953 2
							2	0.13	< 0.01	2004
							7	0.07	< 0.01	
а :	D I	24 11/0	2	0.040	0.005		14	0.03	< 0.01	DA 0207/04
Spain Courá	Broccoli	24 WG	3	0.048	0.005		v	0.03 0.14	< 0.01	RA-2327/04
Gavá (Cataluão)	Marathon						0		< 0.01	R 2004 0968 0 2004
(Cataluña)							2 7	0.14 0.05	< 0.01 < 0.01	2004
							14	0.03	< 0.01	
USA	Broccoli	24 WG	3	0.33-		106-	1	0.02	< 0.01	RCAMY001
Oklahoma	Green Comet	24 WU	5	0.33		108	1	0.23	< 0.01	AM067-04H,
Oklanollia	Green Connet			0.54		100				2004
USA	Broccoli	24 WG	3	0.033-	1	173-	0	0.14	< 0.01	RCAMY001
California	Green Comet	2	Ĩ	0.035-		175	1	0.14	< 0.01	AM068-04D
cumonnu				0.05 .		1,0	3	0.12	< 0.01	2004
							7	0.12	< 0.01	
							10	0.07	< 0.01	
USA	Broccoli	24 WG	3	0.034		142	1	0.16	< 0.01	RCAMY001
California	Greenbelt									AM069-04H,
										2004
United	Broccoli	480 SC	3	0.048	0.016		0*	< 0.01	< 0.01	RA-2317/04
Kingdom	Marathon						0	0.38	< 0.01	R 2004 0407 7
Norfolk							3	0.21	< 0.01	2004
							7	0.02	< 0.01	
G 113							14	< 0.01	< 0.01	
Cauliflower	0.1.0	100.00	2	0.040	0.01		0*	< 0.01	< 0.01	DA 0210/04
France	Cauliflower	480 SC	3	0.048	0.01		0*	< 0.01	< 0.01	RA-2318/04
Midi-	Flamenco						0	0.02	< 0.01	R 2004 0956 7,
Pyrenees							3 7	< 0.01	< 0.01	2004
							14	< 0.01 < 0.01	< 0.01 < 0.01	
Germany	Cauliflower	480 SC	3	0.048	0.006		0*	0.01	< 0.01	RA-2317/04
Rhineland-	Freedom	400 50	5	0.040	0.000		0	< 0.01	< 0.01	R 2004 0951 6,
Palatinate	Treedom						3	< 0.01	< 0.01	2004
2 diatinate	1						7	< 0.01	< 0.01	
	1						14	< 0.01	< 0.01	
Germany	Cauliflower	480 SC	3	0.048	0.008	1	0*	< 0.01	< 0.01	RA-2317/04
Langenfeld	Freedom		-				Ő	0.05	< 0.01	R 2004 0952 4,
(Weitz)							3	0.02	< 0.01	2004
. ,	1						7	< 0.01	< 0.01	
							13	< 0.01	< 0.01	
Italy	Cauliflower	480 SC	3	0.048	0.006		0*	< 0.01	< 0.01	RA-2318/04
Lazio	Balboa						0	0.03	< 0.01	R 2004 0954 0,
	1						3	< 0.01	< 0.01	2004
	1						7	< 0.01	< 0.01	
		L			<u> </u>		14	< 0.01	< 0.01	
Italy	Cauliflower	24 WG	3	0.048	0.006		0*	< 0.01	< 0.01	RA-2327/04
Lazio	Balboa						0	< 0.01	< 0.01	R 2004 0969 9,
	1						3	< 0.01	< 0.01	2004
	1						7	< 0.01	< 0.01	
Saain	Caulifier	400.00	14	0.045	0.000	-	14	< 0.01	< 0.01	DA 2219/04
Spain	Cauliflower	480 SC	4*	0.045-	0.008		0*	< 0.01	< 0.01	RA-2318/04
Gava (Cataluña)	Casper			0.048			0 3	< 0.01 < 0.01	< 0.01 < 0.01	R 2004 0955 9 2004
(Catalulla)	1						3 7	< 0.01	< 0.01	2004
	1						14	< 0.01	< 0.01	
		L	I	<u> </u>	<u> </u>	I	14	< 0.01	< 0.01	

		Applicat	ion					Residues (m	g/kg) ^a	Report No.
Country	Crop Variety	F	No	kg	kg	L/ha	PHI	Flubendia-	F-des-	Trial No., year
Region				ai/ha	ai/hL			mide	iodo	
USA	Cauliflower	24 WG	3	0.033-		130-	1	< 0.01	< 0.01	RCAMY001
California	Symphony			0.034		132			< 0.01	АМ070-04Н,
										2004
USA	Cauliflower	24 WG	3	0.033-		188-	1	0.02	< 0.01	RCAMY001
California	Chieftan			0.035		194				AM071-04H,
										2004
USA	Cauliflower	24 WG	3	0.034-		169-	1	0.03	< 0.01	RCAMY001
Oregon	Snowball			0.036		175				AM072-04H,
_										2004

^a. Residues from trials conducted in USA and are the highest of two samples

Cabbage

Flubendiamide is registered in brassica vegetables in Australia at a maximum rate of 3×0.048 kg ai/ha (0.0048 kg ai/hL) and 3 days PHI. GAP in USA for brassica is 2×0.034 kg ai/ha and 1 day PHI. A total of 35 residue trials were conducted with flubendiamide in/on cabbage in Australia, Europe and USA from 2004 to 2007. The results are shown on Table 56.

		Aplicati	on					Residues (m	g/kg) ^a	
					kg					
Country	Crop			kg	ai/hL			Flubendia-	F-des-	Report No.
Region	Variety	F	No	ai/ha	(L/ha)	Portion	PHI	mide	iodo	Trial No.
AUS	Sombrero	240	3	0.048		head	0*	0.09	< 0.02	BCS-0082
Tasmania		WG					0	0.13	< 0.02	C81
							3	<u>0.19</u>	< 0.02	2007
							7	0.04	< 0.02	
							14	< 0.02	< 0.02	
AUS	Sombrero	240	3	0.072		head	0*	0.08	< 0.02	BCS-0082
Tasmania		WG					0	0.22	< 0.02	C81
							3	0.20	< 0.02	2007
							7	< 0.02	< 0.02	
							14	0.05	< 0.02	
AUS	Sombrero	240	3	0.108		head	0*	0.17	< 0.02	BCS-0082
Tasmania		WG					0	0.19	< 0.02	C81
							3	0.24	< 0.02	2007
							7	< 0.02	< 0.02	
	<u> </u>	A 10		0.040	-		14	0.07	< 0.02	D 00 0000
AUS South	Grand slam	240	3	0.048		head	0*	0.02	< 0.02	BCS-0082
Australia		WG					0	0.38	< 0.02	C82
							3 7	0.04 0.04	< 0.02	2007
							/ 14	0.04 0.20	< 0.02 < 0.02	
AUS South	Grand slam	240	3	0.072		head	0*		< 0.02	DCG 0092
AUS South Australia	Grand slam	240 WG	3	0.072		nead	~	0.10 0.72	< 0.02	BCS-0082 C82
Australia		wG					0 3	0.72	< 0.02	2007
							3 7	0.38	< 0.02	2007
							14	0.13	< 0.02	
AUS South	Grand slam	240	3	0.108		head	0*	0.20	< 0.02	BCS-0082
Australia	Granu Sidili	WG	5	0.100		neau	0	1.1	< 0.02	C82
1 usuana						1	3	0.11	< 0.02	2007
			1			1	7	0.11	< 0.02 < 0.02	2007
			1			1	14	0.18	< 0.02	
AUS	Drum Head	240	3	0.048	1	head	0*	0.15	< 0.02	BCS-0082
Queensland	Drummedu	WG	5	0.040		neuu	0	0.37	< 0.02	C83
~ uconstanta						1	3	0.30	< 0.02	2007
						1	7	0.43	< 0.02	
						1	14	0.23	< 0.02	

		Aplicatio	n					Residues (m	g/kg) ^a	
Country Region	Crop Variety	F	No	kg ai/ha	kg ai/hL (L/ha)	Portion	PHI	Flubendia- mide	F-des- iodo	Report No. Trial No.
AUS	Drum Head	240	3	0.072	(L/IId)	head	0*	0.33	< 0.02	BCS-0082
Queensland		WG	-				0	1.0	< 0.02	C83
							3	0.29	< 0.02	2007
							7	0.11	< 0.02	
AUS	Drum Head	240	3	0.108		head	14 0*	0.03 0.62	< 0.02 < 0.02	BCS-0082
Queensland	Diummeau	WG	3	0.108		lieau	0	1.7	< 0.02	C83
Queensiana		ii G					3	0.13	< 0.02	2007
							7	0.30	< 0.02	
			-				14	0.32	< 0.02	
AUS	Drum Head	480 SC	3	0.048		head	0*	0.05	< 0.02	BCS-0117
Victoria							0 3	0.27 0.27	< 0.02 < 0.02	C136 2006
							7	$\frac{0.27}{0.09}$	< 0.02	2000
							14	0.04	< 0.02	
AUS	Drum Head	480 SC	3	0.096		head	0*	0.40	< 0.02	BCS-0117
Victoria							0	0.48	< 0.02	C136
							3 7	0.29 0.13	< 0.02 < 0.02	2006
							14	0.13	< 0.02	
AUS	Drum Head	240WG	3	0.096		head	0*	0.09	< 0.02	BCS-0117
Victoria			-				0	0.43	< 0.02	C136
							3	0.61	< 0.02	2006
							7	0.24	< 0.02	
AUS	Drum Head	480 SC	3	0.048		haad	14 0*	0.35	< 0.02	BCS-0117
AUS Queensland	Drum Head	480 SC	3	0.048		head	0*	0.40	< 0.02 < 0.02	C137
Queensiana							3	0.76	< 0.02	2006
							7	0.92	< 0.02	
							14	0.18	< 0.02	
AUS	Drum Head	480 SC	3	0.096		head	0*	1.6	< 0.02	BCS-0117
Queensland							0 3	0.94 1.3	< 0.02 < 0.02	C137 2006
							7	1.5	< 0.02	2000
							14	01.3	< 0.02	
AUS	Drum Head	240WG	3	0.096		head	0*	0.56	< 0.02	BCS-0117
Queensland							0	0.44	< 0.02	C137
							3 7	1.8 1.6	< 0.02 < 0.02	2006
							/ 14	0.34	< 0.02	
AUS	Drum Head	480 SC	3	0.048		head	0*	0.80	< 0.02	BCS-0117
Queensland							0	4.6	0.03	C138
							3	<u>2.7</u>	< 0.02	2006
							7	0.97	< 0.02	
AUS	Drum Head	480 SC	3	0.096		head	14 0*	0.26	< 0.02 < 0.02	BCS-0117
Queensland	Druin nead	400 SC	5	0.090		neau	0**	7.7	0.02	C138
Queensiana							3	4.1	< 0.02	2006
							7	2.0	< 0.02	
						<u> </u>	14	0.14	< 0.02	
AUS	Drum Head	240WG	3	0.096	0.083	head	0*	0.35	< 0.02	BCS-0117
Queensland							0 3	4.7 1.1	0.03 < 0.02	C138 2006
							3 7	< 0.02	< 0.02	2000
							14	0.08	< 0.02	
France	Cabbage,	480 SC	3	0.048	(400)	head	0*	< 0.01	< 0.01	RA-2314/04
Alsace	white						0	< 0.01	< 0.01	R 2004 0405 0
	Iglesias						3	0.01	< 0.01	2004
							7 14	< 0.01 < 0.01	< 0.01 < 0.01	
		1		1	1	1	14	< 0.01	< 0.01	

		Aplicatio					Residues (m	g/kg) ^a		
Country Region	Crop Variety	F	No	kg ai/ha	kg ai/hL (L/ha)	Portion	PHI	Flubendia- mide	F-des- iodo	Report No. Trial No.
France Rhone- Alpes	Cabbage, white shelton	480 SC	3	0.048	(500)	head	0* 0 2 8 14	< 0.01 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2315/04 R 2004 0904 4 2004
Germany Nordrhein- Westfalen	Cabbage, red Autoro	480 SC	3	0.048	(400)	head	0* 0 2 6 15	0.02 0.04 0.03 0.02 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2314/04 R 2004 0957 5 2004
Germany Leichlingen	Cabbage, white Marcello	480 SC	3	0.048	(600)	head	0* 0 3 7 14	$\begin{array}{c} 0.01 \\ 0.08 \\ 0.03 \\ < 0.01 \\ < 0.01 \\ \end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2314/04 R 2004 0958 3 2004
Germany Leichlingen	Cabbage, white Marcello	480 SC	3	0.144	(600)	head	7	0.02	>0.01	RA-2314/04 R 2004 1043 3 2004
Italy Abruzzo	Cabbage, white Head start F1	480 SC	3	0.048	(800)	head	0* 0 3 7 14	< 0.01 0.03 < 0.01 0.02 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2315/04 R 2004 0406 9 2004
Italy ILazio	Cabbage, red Primero	480 SC	3	0.048	(600)	head	0* 0 3 7 14	< 0.01 0.04 0.02 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2315/04 R 2004 0903 6 2004
Spain Andalusia	Cabbage, red Redsky F1	480 SC	3	0.048	(400)	head	0* 0 3 7 14	0.07 0.10 0.08 0.05 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2315/04 R 2004 0905 2 2005
Spain Cataluña	Cabbage, red Sombrero	480 SC	3	0.048	(700)	head	0* 0 3 7 14	< 0.01 0.01 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2315/04 R 2004 0906 0 2005
UK Lincolnshire	Cabbage, red Rococo	480 SC	3	0.048	(600)	head	0* 0 3 6 14	0.03 0.06 0.04 0.05 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2314/04 R 2004 0959 1 2004
UK Lincolnshire	Cabbage, white Impulse	480 SC	3	0.048	(600)	head, inner	0* 0 3 6 14 1	< 0.01 0.02 0.01 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2314/04 R 2004 0960 5 2004
USA California	Cabbage Gazelle	24 WG	3	0.033- 0.034	(170- 173)	head head, inner	1	0.25 0.01	< 0.01 < 0.01	RCAMY001 AM078-04H 2004
USA Florida	Cabbage Bravo	24 WG	3	0.033- 0.034	(102- 135)	head head, inner	1	0.39 0.02	< 0.01 < 0.01	RCAMY001 AM075-04H 2004
USA New York	Blue thunder	24 WG	3	0.035	(159- 161)	head	1	0.18		RCAMY001 AM073-04H
USA Georgia	Cabbage Bravo	24 WG	3	0.034	170- 174	head head, inner	1	0.25 0.01	< 0.01 < 0.01	RCAMY001 AM074-04H 2004

		Aplicatio	m					Residues (m	g/kg) ^a	
Country Region	Crop Variety	F	No	kg ai/ha	kg ai/hL (L/ha)	Portion	PHI	Flubendia- mide	F-des- iodo	Report No. Trial No.
USA Kansas	Cabbage Flat Head Dutch	24 WG	3	0.033- 0.035	(132- 138)	head	0 1 3 7 10	0.22 0.30 0.03 0.02 0.03	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RCAMY001 AM076-04D 2004
USA Texas	Cabbage Blue Thunder	24 WG	3	0.034	(176- 188)	head head, inner	1	0.12 < 0.01	< 0.01 < 0.01	RCAMY001 AM077-04H 2004

^a. Residues from trials conducted in USA are the highest of two samples

Brussels sprouts

Flubendiamide is registered in brassica vegetables in Australia at a maximum rate of 3×0.048 kg ai/ha (0.0048 kg ai/hL) and 3 days PHI. GAP in USA for brassica is 2×0.034 kg ai/ha and 1 day PHI. Seventeen trials were conduced with flubendiamide in Brussels sprouts in Australia and Europe in 2004 and 2006. The results are shown on Table 57.

		Aplic	ation					Residues (m	g/kg)	
Country				kg	kg			Flubendia-	F-des-	Report No.
Region	Variety	F	No	ai/ha	ai/hL	L/ha	PHI	mide	iodo	Trial No.
AUS Victoria	Oliver	240	3	0.048			0*	< 0.02	< 0.02	BCS-0081
		WG					0	0.27	< 0.02	VC30
							1	1.1	< 0.02	2006
							3	0.18	< 0.02	
							7	0.23	< 0.02	
AUS Victoria	Oliver	240	3	0.072			0*	0.06	< 0.02	BCS-0081
		WG					0	0.09	< 0.02	VC30
							1	0.87	< 0.02	2006
							3	1.1	< 0.02	
							7	0.62	< 0.02	
AUS Victoria	Oliver	240	3	0.106			0*	0.27	< 0.02	BCS-0081
		WG					0	0.56	< 0.02	VC30
							1	1.3	< 0.02	2006
							3	1.1	< 0.02	
							7	0.96	< 0.02	
AUS Victoria	Oliver	240	3		0.0048		0*	0.09	< 0.02	BCS-0081
		WG					0	1.1	< 0.02	VC30
							1	1.2	< 0.02	2006
							3	<u>1.1</u>	< 0.02	
							7	0.82	< 0.02	
AUS Victoria	Oliver	240	3		0.0072		0*	0.07	< 0.02	BCS-0081
		WG					0	0.17	< 0.02	VC30
							1	1.4	< 0.02	2006
							3	1.4	< 0.02	
							7	0.78	< 0.02	
AUS Victoria	Oliver	240	3		0.0108		0*	0.88	< 0.02	BCS-0081
		WG					0	1.1	< 0.02	VC30
							1	1.5	< 0.02	2006
							3	1.5	< 0.02	
							7	1.0	< 0.02	
AUS South	Oliver	240	3	0.048			0*	0.07	< 0.02	BCS-0081
Australia		WG	1				0	0.12	< 0.02	SA24
			1				1	0.08	< 0.02	2006
			1				3	0.05	< 0.02	
							7	<u>0.08</u>	< 0.02	

		Aplic	ation					Residues (m	g/kg)	
Country				kg	kg			Flubendia-	F-des-	Report No.
Region	Variety	F	No	ai/ha	ai/hL	L/ha	PHI	mide	iodo	Trial No.
AUS South	Oliver	240	3	0.072			0*	0.10	< 0.02	BCS-0081
Australia		WG					0	0.10	< 0.02	SA24
							1	0.12	< 0.02	2006
							3	0.09	< 0.02	
							7	0.11	< 0.02	
AUS South	Oliver	240	3	0.106			0*	0.13	< 0.02	BCS-0081
Australia		WG					0	0.22	< 0.02	SA24
							1	0.11	< 0.02	2006
							3	0.23	< 0.02	
							7	0.15	< 0.02	
AUS South	Oliver	240	3		0.0048		0*	0.14	< 0.02	BCS-0081
Australia		WG					0	0.49	< 0.02	SA24
							1	0.87	< 0.02	2006
							3	0.50	< 0.02	
							7	0.41	< 0.02	
AUS South	Oliver	240	3		0.0072		0*	0.38	< 0.02	BCS-0081
Australia		WG	-				0	0.70	< 0.02	SA24
							1	1.1	< 0.02	2006
							3	1.1	< 0.02	
							7	0.66	< 0.02	
AUS South	Oliver	240	3		0.0108		0*	1.2	< 0.02	BCS-0081
Australia		WG	-				0	1.8	< 0.02	SA24
							1	1.6	< 0.02	2006
							3	0.81	< 0.02	
							7	1.6	< 0.02	
France	Brussels	480	3	0.048		400	0*	0.01	< 0.01	RA-2316/04
Fontaine	sprouts	SC					0	0.02	< 0.01	R 2004 0948 6
l'etalon	Maximum						3	0.01	< 0.01	2004
(Picardie)							7	0.01	< 0.01	
EUN							14	< 0.01	< 0.01	
France	Romulus	480	3	0.048		300	0*	0.02	< 0.01	RA-2316/04
Haute-		SC					0	0.06	< 0.01	R 2004 0945 1
Normandie							3	0.05	< 0.01	2004
							7	0.06	< 0.01	
							14	0.04	< 0.01	
Germany	Brussels	480	3	0.048		500	0*	0.03	< 0.01	RA-2316/04
(Nordrhein-	sprouts	SC					0	0.04	< 0.01	R 2004 0404 2
Westfalen	Igor F1						4	0.04	< 0.01	2004
							7	0.03	< 0.01	
							14	0.04	< 0.01	
Germany	Genius	480	3	0.048		600	0*	0.05	< 0.01	RA-2316/04
Nordrhein-		SC					0	0.05	< 0.01	R 2004 0944 3
Westfalen			1				3	0.04	< 0.01	2004
							7	0.10	< 0.01	
							14	0.07	< 0.01	
Germany	Maximus	480	3	0.048		300	0*	0.02	< 0.01	RA-2316/04
Niedersachsen		SC					0	0.03	< 0.01	R 2004 0947 8
							3	0.02	< 0.01	2004
							7	0.01	< 0.01	
							14	< 0.01	< 0.01	

Cucumber and summer squash

Flubendiamide is registered in USA for cucurbit vegetables at 3×0.05 kg ai/ha and 1 day PHI. Eleven residue field trials were conducted with flubendiamide in/on cucumber and summer squash in the USA (Table 58) and fifteen greenhouse trials were conducted in cucumber in Europe (Table 59).

		App	lication		Residues (mg/k	g) ^a	Trial No.
State	Variety	No	kg ai/ha	PHI	Flubendiamide	F-des-iodo	
Cucumber							
Georgia	Thunder	5	0.05	1	0.01	< 0.01	AM223-04H
N. Carolina	Poinsett 76	5	0.05	1	0.03	< 0.01	AM224-04H
Florida	Marketmore 76	5	0.05-0.06	1	<u>< 0.01</u>	< 0.01	AM225-04H
Kansas		5	0.05-0.06	0	0.03	< 0.01	AM226-04D
				1	0.03	< 0.01	
				3	0.03	< 0.01	
				7	0.01	< 0.01	
				12	0.01	< 0.01	
Illinois	SMR58	5	0.05-0.06	1	<u>< 0.01</u>	< 0.01	AM227-04H
Oklahoma	Straight 8	5	0.05	1	0.01	< 0.01	AM228-04H
Squash, sumn	ıer						
New York	Zucchini Select	5	0.05	1	<u>0.02</u>	< 0.01	AM235-04H
Georgia	Destiny III	5	0.05	0	0.02	< 0.01	AM236-04D
				1	<u>0.01</u>	< 0.01	
				3	0.01	< 0.01	
				7	< 0.01	< 0.01	
				10	< 0.01	< 0.01	
Florida	Early Straightneck	5	0.05-0.06	1	<u>< 0.01</u>	< 0.01	AM237-04H
Nebraska	Zucchini Elite	5	0.05	1	0.01	< 0.01	AM238-04H
California	Green Eclipse	5	0.05	1	0.04	< 0.01	AM239-04H

Table 58 Results of residue field trials conducted with flubendiamide 24 WG in/on cucumber and summer squash in USA in 2004 (RCAMY015)

^{a.} highest of two samples

Table 59 Results of residue trials conducted with flubendiamide WG in/on greenhouse grown cucumber in Europe

	Aplic	ation			Residues (mg/kg)	a	
Country Year	No	kg ai/ha	kg ai/hL (L/ha)	PHI	Flubendiamide	F-des-iodo	Report No. Trial No.
France 2005	3	0.1-0.12	(1275-1500)	0 1	0.07 0.07	< 0.01 < 0.01	RA-2514/05 R 2005 0268/0 M-277599-01-1
France 2006	2	0.12	0.008 (1500)	0* 0 1 2 7	0.02 0.07 0.08 0.07 0.03	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2635/06 R 2006 0675/3 M-285521-01-1
Germany 2009	2	0.091	0.006 (1500)	0* 0 1	0.02 0.07 0.07	< 0.01 < 0.01 < 0.01	08-2018 08-2018-06 M-349890-01-1
Germany 2006	2	0.072- 0.090	0.008 (900-1125)	0* 0 1	0.01 0.13 0.07	< 0.01 < 0.01 < 0.01	RA-2635/06 R 2006 0676/1 M-285521-01-1
Germany 2005	3	0.07-0.11	(900-1350)	0 1 3 8	0.05 0.04 0.03 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	RA-2514/05 R 2005 0267/2 M-277599-01-1
Germany 2006	2	0.12	0.008 (1500)	0* 0 1	0.02 0.05 0.06	< 0.01 < 0.01 < 0.01	RA-2635/06 R 2006 0648/6 M-285521-01-1
Greece 2009	2	0.09	0.006 (1500)	0* 0 1	< 0.01 0.05 0.04	< 0.01 < 0.01 < 0.01	08-2018 08-2018-05 M-349890-01-1
Italy 2009	2	0.09	0.006 (1500)	0* 0 1	< 0.01 0.06 0.05	< 0.01 < 0.01 < 0.01	08-2018 08-2018-03 M-349890-01-1

	Aplic	cation			Residues (mg/kg)	a	
Country Year	No	kg ai/ha	kg ai/hL (L/ha)	PHI	Flubendiamide	F-des-iodo	Report No. Trial No.
Italy 2005	3	0.90- 0.120	(1125-1500)	0 1	0.07 0.07	< 0.01 < 0.01	RA-2514/05 R 2005 0213/3 M-277599-01-1
Italy 2006	2	0.120	0.008 (1500)	0* 0 1 3 7	0.01 0.04 0.04 0.03 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2635/06 R 2006 0647/8 M-285521-01-1
Portugal 2009	2	0.091- 0.098	0.006 (1500-1611)	0* 0 1	0.04 0.09 0.08	< 0.01 < 0.01 < 0.01	08-2018 08-2018-04 M-349890-01-1
Spain 2005	3	0.06-0.11	0.008 (750-1350)	0 1 2 7	0.05 0.04 0.02 0.01	< 0.01 < 0.01 < 0.01 < 0.01	RA-2514/05 R 2005 0211/7 M-277599-01-1
Spain 2006	2	0.11-0.12	0.008 (1410-1500)	0* 0 1 3 7	< 0.01 0.02 0.03 0.02 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2635/06 R 2006 0674/5 M-285521-01-1
Spain 2009	2	0.09	0.006 (1500)	0* 0 1	< 0.01 0.05 0.02	< 0.01 < 0.01 < 0.01	08-2018 08-2018-01 M-349890-01-1
Spain 2009	2	0.091- 0.096	0.006 (1500-1578)	0* 0 1	0.04 0.05 0.02	< 0.01 < 0.01 < 0.01	08-2018 08-2018-02 M-349890-01-1

* before the last application

Melons and watermelon

Flubendiamide is registered in USA for cucurbit vegetables at 3×0.05 kg ai/ha and 1 day PHI. Six residue field trials were conducted with flubendiamide in/on muskmelon in United States (Table 60) and 11 greenhouse trials were conducted in melon and watermelon in Europe (61).

Table 60 Residue field trials conducted with flubendiamide WG in/on muskmelon in USA in 2004 (RCAMY015)

	Crop	Appli	Application		Residues (mg/kg	$(s)^a$	Trial No.
State	Variety	No	kg ai/ha	PHI	flubendiamide	F-des iodo	
California	Archer F1	5	0.05	1	0.07	< 0.01	AM232-04H
California	Canary yellow	5	0.05	1	<u>0.02</u>	< 0.01	AM233-04H
California	Hales best Jumbo	5	0.05	1	0.05	< 0.01	AM234-04H
Florida	Hales Best Jumbo	5	0.05-0.06	1	<u>0.04</u>	< 0.01	AM229-04H
Nebraska	French orange	5	0.05	0	0.02	< 0.01	AM230-04D
				1	<u>0.02</u>	< 0.01	
				3	0.01	< 0.01	
				7	0.01	< 0.01	
				10	0.01	< 0.01	
Texas	Imperial 45	5	0.05	1	<u>0.09</u>	< 0.01	AM231-04H

^a. highest of two samples

Table 61 Results of residue trials conduct	ed with flubendiamide	e WG in/on melon and	watermelon in
greenhouse in Europe			

		App	ication				Residues (mg/k	g) ^a	
Country	Crop	No	kg	kg	PHI	Portion	flubendiamide	F-des iodo	Report No.
Year			ai/ha	ai/hL					Trial No.
France	Melon	3	0.060	0.006	0	fruit	< 0.01	< 0.01	RA-2515/05
2005					3	fruit	0.03	< 0.01	R 2005 0221/4
					3	peel	0.03	< 0.01	M-277602-02-1
					3	pulp	0.04	< 0.01	
Italy	Melon	2	0.060	0.006	0*	fruit	< 0.01	< 0.01	RA-2634/06
2006					0	fruit	0.01	< 0.01	R 2006 0645/1
					1	fruit	< 0.01	< 0.01	M-285548-01-1
					3 5	fruit fruit	< 0.01 0.01	< 0.01 < 0.01	
					3	peel	0.01	< 0.01	
					3	pulp	< 0.01	< 0.01	
Italy	Watermelon	2	0.060	0.006	0*	fruit	< 0.01	< 0.01	RA-2634/06
2006	w atermeton	2	0.000	0.000	0	fruit	0.02	< 0.01	R 2006 0673/7
2000					1	fruit	0.02	< 0.01	M-285548-01-1
					3	fruit	0.02	< 0.01	111 2000 10 01 1
					7	fruit	0.02	< 0.01	
					3	peel	0.04	< 0.01	
					3	pulp	< 0.01	< 0.01	
Italy	Melon	2	0.060	0.006	0*	fruit	0.02	< 0.01	RA-2634/06
2006					0	fruit	0.04	< 0.01	R 2006 0670/2
					1	fruit	0.04	< 0.01	M-285548-01-1
					3	fruit	0.04	< 0.01	
					7	fruit	0.03	< 0.01	
					3	peel	0.08	< 0.01	
					3	pulp	< 0.01	< 0.01	
Portugal	Melon	2	0.060	0.006	0*	fruit	< 0.01	< 0.01	RA-2634/06
2006					0	fruit	0.01	< 0.01	R 2006 0671/0
					1 3	fruit fruit	< 0.01 < 0.01	< 0.01 < 0.01	M-285548-01-1
					5 7	fruit	0.01	< 0.01	
					3	peel	0.01	< 0.01	
					3	pulp	< 0.01	< 0.01	
Portugal	Melon	3	0.060	0.006	0	fruit	0.04	< 0.01	RA-2515/05
2005	ivición	5	0.000	0.000	1	fruit	0.02	< 0.01	R 2005 0220/6
2000					4	fruit	0.03	< 0.01	M-277602-02-1
					7	fruit	0.03	< 0.01	
					4	peel	0.12	< 0.01	
					4	pulp	< 0.01	< 0.01	
Spain	Watermelon	3	0.060	0.006	0	fruit	< 0.01	< 0.01	RA-2515/05
2005					1	fruit	< 0.01	< 0.01	R 2005 0218/4
					3	fruit	< 0.01	< 0.01	M-277602-02-1
					8	fruit	< 0.01	< 0.01	
					3	peel	0.01	< 0.01	
~ .			0.050	0.007	3	pulp	< 0.01	< 0.01	
Spain	Watermelon	3	0.060	0.006	0	fruit	0.01	< 0.01	RA-2515/05
2005		1			3	fruit	0.01	< 0.01	R 2005 0219/2
				1	3 3	peel	0.03 < 0.01	< 0.01 < 0.01	M-277602-02-1
Spain	Melon	2	0.060	0.006	0*	pulp fruit	< 0.01	< 0.01	RA-2634/06
Spain 2006	MEIOII	2	0.000	0.000	0*	fruit	< 0.01	< 0.01	R 2006 0644/3
2000				1	1	fruit	< 0.01	< 0.01	M-285548-01-1
				1	3	fruit	< 0.01	< 0.01	11-205540-01-1
				1	7	fruit	< 0.01	< 0.01	
				1	3	peel	< 0.01	< 0.01	
				1	3	pulp	< 0.01	< 0.01	

		Appli	cation				Residues (mg/k	g) ^a	
Country Year	Crop	No	kg ai/ha	kg ai/hL	PHI	Portion	flubendiamide	F-des iodo	Report No. Trial No.
Spain 2006	Melon	2	0.060	0.006	0* 0 1 3 7 3 3	fruit fruit fruit fruit fruit peel pulp	< 0.01 0.03 0.02 0.02 0.02 0.05 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2634/06 R 2006 0863/2 M-285548-01-1
Spain 2006	Watermelon	2	0.060	0.006	0* 0 1 3 7 3 3	fruit fruit fruit fruit fruit peel pulp	< 0.01 0.01 0.02 0.01 0.01 0.02 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RA-2634/06 R 2006 0672/9 M-285548-01-1

* prior to the last application

Peppers

Flubendiamide is registered in Australia in peppers at a maximum rate of 0.072 kg ai/ha (0.0072 kg ai/hL, in USA to be used in fruiting vegetables (except cucurbits) at a maximum rate of 3×0.05 kg ai/ha and in Greece and the Netherlands in greenhouse in pepper at 2×0.006 kg ai/hL (0.096 kg ai/ha) and 1 day PHI. Thirty five residue field trials were conducted in Australia and the USA with flubendiamide in/on peppers (Table 62) and fourteen greenhouse trials were conducted in Europe (Table 63).

Table 62 Results of residue field trials conducted with flubendiamide in pepper

		Aplic	ation				Residues (mg/	kg) ^a	Report No.
Country Region	Variety	F	No	kg ai/ha	kg ai/hL	PHI	Flubendia-		Trial No.
			-		(L/ha)		mide	F-des-iodo	
AUS	Capsicum	240	3	0.081		0*	0.08	< 0.02	BCS-0085
Queensland	Warlock	WG				0	0.12	< 0.02	Q1
						1	0.04	< 0.02	2007
						3	<u>0.06</u>	< 0.02	
						7	0.02	< 0.02	
AUS	Capsicum	240	3	0.049		0*	0.04	< 0.02	BCS-0085
Queensland	Warlock	WG				0	0.10	< 0.02	Q1
						1	0.06	< 0.02	2007
						3	< 0.02	< 0.02	
						7	0.05	< 0.02	
AUS	Capsicum	240	3	0.12		0*	0.10	< 0.02	BCS-0085
Queensland	Warlock	WG				0	0.37	< 0.02	Q1
						1	0.37	< 0.02	2007
						3	0.04	< 0.02	
						7	0.04	< 0.02	
AUS	Capsicum	240	3	0.072		0*	< 0.02	< 0.02	BCS-0085
Queensland	Aries	WG				0	0.03	< 0.02	Q2
						1	0.04	< 0.02	2007
						4	0.03	< 0.02	
						7	< 0.02	< 0.02	
AUS	Capsicum	240	3	0.040		0*	< 0.02	< 0.02	BCS-0085
Queensland	Aries	WG				0	0.02	< 0.02	Q2
						1	0.03	< 0.02	2007
						4	0.02	< 0.02	
						7	< 0.02	< 0.02	

		Aplic	ation				Residues (mg	/kg) ^a	Report No.
Country	Variety	F	No	kg	kg	PHI			Trial No.
Region	-			ai/ha	ai/hL		Flubendia-		
					(L/ha)		mide	F-des-iodo	
AUS	Capsicum	240	3	0.11		0*	0.03	< 0.02	BCS-0085
Queensland	Aries	WG				0	0.04	< 0.02	Q2
						1	0.15	< 0.02	2007
						4 7	0.05 0.09	< 0.02 < 0.02	
AUS	Capsicum	240	3	0.048		0*	< 0.09	< 0.02	BCS-0109
Queensland	El Charro	WG	5	0.040		0	< 0.02	< 0.02	C109
Queensiand	Li Charlo					3	0.50	< 0.02	2007
						7	< 0.02	< 0.02	
						14	0.03	< 0.02	
AUS	Capsicum	240	3	0.072		0*	0.03	< 0.02	BCS-0109
Queensland	El Charro	WG				0	0.05	< 0.02	C109
						3	0.05	< 0.02	2007
						7	0.04	< 0.02	
						14	<u>0.06</u>	< 0.02	
AUS	Capsicum	240	3	0.11		0*	0.11	< 0.02	BCS-0109
Queensland	El Charro	WG				0	0.04	< 0.02	C109
			1			3 7	0.10 0.07	< 0.02 < 0.02	2007
						14	0.07	< 0.02	
AUS	Capsicum	480	3	0.048		0*	0.03	< 0.02	BCS-0121
Queensland	Hercules	SC	5	0.040		0	0.02	< 0.02	C192
Queensiana	licicules	50				1	0.04	< 0.02	2007
						3	0.03	< 0.02	
						7	0.07	< 0.02	
						14	0.22	< 0.02	
AUS	Capsicum	480	3		0.005	0*	0.02	< 0.02	BCS-0121
Queensland	Hercules	SC				0	0.06	< 0.02	C192
						1	0.03	< 0.02	2007
						3	0.04	< 0.02	
						7	0.70	< 0.02	
ALIC	<u> </u>	400	2	+	0.000	14	0.17	< 0.02	DCG 0101
AUS	Capsicum	480	3		0.009	0*	0.12	< 0.02	BCS-0121
Queensland	Hercules	SC				0 1	0.08 0.11	< 0.02 < 0.02	C192 2007
						3	0.02	< 0.02	2007
						7	<u>0.16</u>	< 0.02	
						14	0.07	< 0.02	
AUS	Capsicum	480	3		0.014	0*	0.07	< 0.02	BCS-0121
Queensland	Hercules	SC				0	0.09	< 0.02	C192
-						1	0.11	< 0.02	2007
						3	0.12	< 0.02	
						7	0.24	< 0.02	
				-	0.000	14	0.04	< 0.02	
AUS	Capsicum	24	3		0.009	0*	0.05	< 0.02	BCS-0121
Queensland	Hercules	WG	1			0	0.05	< 0.02	C192
			1			13	0.06	< 0.02 < 0.02	2007
						3 7	$\frac{0.09}{0.05}$	< 0.02	
						14	0.03	< 0.02	
AUS	Capsicum	480	3	0.048	1	0*	< 0.02	< 0.02	BCS-0121
Queensland	Hercules	SC	۲ آ			0	0.19	< 0.02	C193
			1			1	0.08	< 0.02	2007
			1			3	0.07	< 0.02	
						7	0.14	< 0.02	
						14	0.12	< 0.02	
AUS	Capsicum	480	3		0.005	0*	< 0.02	< 0.02	BCS-0121
Queensland	Hercules	SC				0	0.10	< 0.02	C193
			1			1	0.05	< 0.02	2007
			1			3	0.09	< 0.02	
			1			7 14	0.09 0.08	< 0.02	
	1		1	1	1	14	0.00	< 0.02	

		Aplic	ation				Residues (mg	/kg) ^a	Report No.	
Country Region	Variety	F	No	kg ai/ha	kg ai/hL (L/ha)	PHI	Flubendia- mide	F-des-iodo	Trial No.	
AUS Queensland	Capsicum Ingot	480 SC	3		0.009	0* 0 1 3 7	0.03 0.08 0.12 <u>0.21</u> 0.12	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	BCS-0121 C193 2007	
AUS Queensland	Capsicum Hercules	480 SC	3		0.014	14 0* 0 1 3 7 14	0.19 0.08 0.44 0.23 0.17 0.12 0.14	$< 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02$	BCS-0121 C193 2007	
AUS Queensland	Capsicum Hercules	24 WG	3		0.009	14 0* 0 1 3 7 14	0.14 0.07 0.16 0.18 0.27 <u>0.37</u> 0.16	$ \begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array} $	BCS-0121 C193 2007	
AUS Queensland	Capsicum Tycoon	480 SC	3	0.048		14 0* 0 1 3 7 14	< 0.02 0.02 < 0.02 < 0.02 < 0.02 < 0.02	$ \begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array} $	BCS-0121 C194 2007	
AUS Queensland	Capsicum Tycoon	480 SC	3		0.005	14 0* 0 1 3 7 14	0.03 0.06 0.03 0.04 0.04 0.05 0.03	$ \begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array} $	BCS-0121 C194 2007	
AUS Queensland	Capsicum Tycoon	480 SC	3		0.010	14 0* 0 1 3 7 14	0.03 0.04 0.05 0.05 0.09 0.03 0.02	$ \begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array} $	BCS-0121 C194 2007	
AUS Queensland	Capsicum Tycoon	480 SC	3		0.014	14 0* 0 1 3 7 14	0.09 0.15 0.09 0.12 0.12 0.06	$ \begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array} $	BCS-0121 C194 2007	
AUS Queensland	Capsicum Tycoon	24 WG	3		0.01	14 0* 0 1 3 7 14	0.00 0.04 0.06 0.05 0.07 0.05 0.04	$ \begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array} $	BCS-0121 C194 2007	
USA Georgia	Pepper, sweet Capestrano	24 WG	5	0.050		0 1 3 7 10	0.05 0.04 0.04 0.04 0.04 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RCAMY006 AM138-04D 2004	
USA Florida	Pepper, sweet Olympus	24 WG	5	0.05	(125- 136)	1	0.04	< 0.01	RCAMY006 AM139-04H 2004	
USA Nebraska	Pepper, sweet Big Bertha	24 WG	5	0.05	(133)	1	0.05	< 0.01	RCAMY006 AM140-04H 2004	
USA Oklahoma	Pepper, sweet Jupiter	24 WG	5	0.05	(103- 133)	1	0.010	< 0.01	RCAMY006 AM141-04H 2004	

		Aplica	ation				Residues (mg/k	g) ^a	Report No.
Country Region	Variety	F	No	kg ai/ha	kg ai/hL (L/ha)	PHI	Flubendia- mide	F-des-iodo	Trial No.
USA California	Pepper, sweet Affinity	24 WG	5	0.05	(168- 175)	1	0.09	< 0.01	RCAMY006 AM142-04H 2004
USA California	Pepper, sweet Baron	24 WG	5	0.05	(142)	1	0.12	< 0.01	RCAMY006 AM143-04H 2004
USA North Carolina	Pepper, sweet Capistrano	24 WG	5	0.05	(147)	1	< 0.01	< 0.01	RAAML002 AM059-07HA 2007
USA California	Pepper, sweet Crusader	24 WG	5	0.05	(138- 149)	1	< 0.01	< 0.01	RAAML002 AM060-07HA 2007
USA North Carolina	Pepper, cayenne-	24 WG	5	0.05	(142- 14)	1	0.02	< 0.01	RCAMY006 AM144-04H 2004
USA Florida	Pepper, cayenne-	24 WG	5	0.05	(139- 131)	1 1	0.10	< 0.01	RCAMY006 AM145-04H 2004
USA California	Pepper, cayenne-	24 WG	5	0.05	(174)	1	0.14	< 0.01	RCAMY006 AM146-04H 2004

^a. Residues from trials conducted in USA are the highest of two samples

T_{11} (2 D 1/ C 1/ / 1	1 4 1 4 0 1 1	1 • /	· 1 · E
Table 63 Results of residue trials cor	nducted with flubendiami	de in/on pepper	in greenhouse in Europe
fuole of feedule of feedule thus eet		de mi on pepper	m greennouse in Europe

	Aplication	on				Residues (mg/kg	$)^{a}$	
Country				kg ai/hL	1			Report No.
Region	F	No	kg ai/ha	(L/ha)	PHI	Flubendia-mide	F-des-iodo	Trial No.
	SC 480	3	0.05	0.006	0*	0.11	< 0.01	RA-2070/03
France				(900)	0	0.17	< 0.01	R 2003 0831/0
2003					0**	0.11	< 0.01	M-248645-01-1
					1	0.11	< 0.01	
					3	0.06	< 0.01	
					5	0.07	< 0.01	
	SC 480	3	0.05-	0.006	0	0.11	< 0.01	RA-2311/04
France			0.06	(750-1000)	0**	0.16	< 0.01	R 2003 0902/8
2004					1	0.08	< 0.01	M-252025-01-1
					3	0.06	< 0.01	
	SC 480	3	0.04	0.006	0*	0.07	< 0.01	RA-2070/03
Germany				(700)	0	0.13	< 0.01	R 2003 0198/7
2003					0**	0.16	< 0.01	M-248645-01-1
					1	0.13	< 0.01	
					3	0.11	< 0.01	
					5	0.11	< 0.01	
	SC 480	3	0.04-	0.006	0	0.18	< 0.01	RA-2311/04
Germany 2004			0.05	(525-600)	0**	0.14	< 0.01	R 2003 0314/3
					1	0.10	< 0.01	M-252025-01-1
					3	0.10	< 0.01	
	SC 480	3	0.06	0.006	0*	0.10	< 0.01	RA-2070/03
Italy				(1000)	0	0.16	< 0.01	R 2003 0833/7
2003					0**	0.09	< 0.01	M-248645-01-1
					1	0.13	< 0.01	
					3	0.09	< 0.01	
					5	0.08	< 0.01	
	SC 480	3	0.11-	0.006	0	0.10	< 0.01	RA-2311/04
Netherlands			0.12	(1800-1900)	0**	0.08	< 0.01	R 2003 0899/4
2004					1	0.08	< 0.01	M-252025-01-1
					3	0.07	< 0.01	

	Aplicati	on				Residues (mg/kg) ^a		
Country				kg ai/hL				Report No.	
Region	F	No	kg ai/ha	(L/ha)	PHI	Flubendia-mide	F-des-iodo	Trial No.	
	SC 480	3	0.09-	0.006	0*	0.03	< 0.01 < 0.01	RA-2070/03	
Netherlands			0.10	(1500-1700)	0	0.05	< 0.01	R 2003 0832/9	
2003					0**	0.04	< 0.01	M-248645-01-1	
					1	0.04	< 0.01		
					3	0.04	< 0.01		
					5	0.04			
	WG 24	2	0.12	0.008	0*	0.03	< 0.01	RA-2656/06	
Netherlands				(1500)	0	0.11	< 0.01	R 2006 0891/8	
2006					1	0.06	< 0.01	M-285884-01-1	
					3	0.05	< 0.01		
					7	0.05	< 0.01		
	WG 24	2	0.12	0.008	0*	0.03	< 0.01	RA-2656/06	
Netherlands				(1500)	0	0.08	< 0.01	R 2006 0892/6	
2006					1	<u>0.07</u>	< 0.01	M-285884-01-1	
					3	0.04	< 0.01		
					7	0.05	< 0.01		
Portugal	SC 480	3	0.06-	0.008	0*	0.09	< 0.01	RA-2070/03	
2003			0.08	(750-975)	0	0.14	< 0.01	R 2003 0835/3	
					0**	0.15	< 0.01	M-248645-01-1	
					1	<u>0.11</u>	< 0.01		
					3	0.09	< 0.01		
					5	0.06	< 0.01		
	WG 24	2	0.60	0.008	0*	0.02	< 0.01	RA-2656/06	
Portugal				(750)	0	0.07	< 0.01	R 2006 0893/4	
2006					1	0.03	< 0.01	M-285884-01-1	
					3	<u>0.05</u>	< 0.01		
					7	0.03	< 0.01		
	SC 480	3	0.07	0.006	0*	0.15	< 0.01	RA-2070/03	
Spain				(1150-1250)	0	0.16	< 0.01	R 2003 0834/5	
2003					0**	0.12	< 0.01	M-248645-01-1	
					1	<u>0.10</u>	< 0.01		
					3	0.09	< 0.01		
					5	0.09	< 0.01		
	SC 480	3	0.08-	0.006	0	0.09	< 0.01	RA-2311/04	
Spain			0.10	(1300-1600)	1	<u>0.09</u>	< 0.01	R 2003 0900/1	
2004					3	0.05	< 0.01	M-252025-01-1	
	WG 24	2	0.120	0.008	0*	0.06	< 0.01	RA-2656/06	
Spain				(1500)	0	0.12	< 0.01	R 2006 0889/6	
2006					1	0.09	< 0.01	M-285884-01-1	
					3	<u>0.11</u>	< 0.01		
					7	0.05	< 0.01		

* Before the last application;

** sampling on day 0.5 after last treatment;

Tomatoes

Flubendiamide is registered in Australia for use in tomatoes at a maximum rate of 0.072 kg ai/ha (0.0072 kg ai/hL, and in the USA for use in fruiting vegetables (except cucurbits) at a maximum rate of 3×0.05 kg ai/ha and in Greece and the Netherlands in greenhouse grown tomatoes at 2×0.006 kg ai/hL (0.096 kg ai/ha) and 3 and 1 day PHI, respectively. Fourty two field trials were conducted with flubendiamide in tomatoes in Australia and USA (Table 64) and fifteen greenhouse trials were conducted in Europe (Table 65).

		Aplic	ation					Residues (mg	/kg) ^a	Report No.
Country	Variety	F	No	kg ai/ha	kg	L/ha	PHI	Flubendia-	F-des-	Trial No.
Region				0	ai/hL			mide	iodo	
AUS	Heinz 599	24	3	0.048			0*	0.15	< 0.02	BCS-0084
Rochester		WG	2	0.0.0			0	0.18	< 0.02	VC31
Victoria							1	0.12	< 0.02	2007
Victoria							3	0.12	< 0.02	2007
							8	0.06	< 0.02	
AUS	Heinz 599	24	3	0.072			0*	0.00	< 0.02	BCS-0084
Rochester	Helliz 399	WG	3	0.072			0	0.12	< 0.02	VC31
Victoria		wG								
victoria							1	0.24	< 0.02	2007
							3	0.35	< 0.02	
		-	-	0.107			8	0.28	< 0.02	D.00.0004
AUS	Heinz 599	24	3	0.106			0*	0.18	< 0.02	BCS-0084
Rochester		WG					0	0.23	< 0.02	VC31
Victoria							1	0.19	< 0.02	2007
							3	0.55	< 0.02	
							8	0.66	< 0.02	
AUS	Heinz 599	24	3		0.0048		0*	0.10	< 0.02	BCS-0084
Rochester		WG	1				0	0.33	< 0.02	VC31
Victoria			1				1	0.28	< 0.02	2007
			1				3	0.18	< 0.02	
			1				8	0.19	< 0.02	
AUS	Heinz 599	24	3		0.0072		0*	0.27	< 0.02	BCS-0084
Rochester		WG			5.0072		0	0.22	< 0.02	VC31
Victoria							1	0.22	< 0.02	2007
Victoria							3	0.35	< 0.02	2007
							8	0.28	< 0.02	
AUS	Heinz 599	24	3		0.0108		0*	0.23	< 0.02	BCS-0084
	Heinz 599		3		0.0108		-			
Rochester		WG					0	1.7	< 0.02	VC31
Victoria							1	0.97	< 0.02	2007
							3	0.60	< 0.02	
							8	0.55	< 0.02	
AUS	840	24	3	0.048			0*	0.04	< 0.02	BCS-0108
Flagstone		WG					0	0.08	< 0.02	C108
Creek,							1	0.08	< 0.02	2007
Queens-land							3	0.02	< 0.02	
							7	0.03	< 0.02	
AUS	840	24	3	0.072			0*	0.03	< 0.02	BCS-0108
Flagstone		WG					0	0.03	< 0.02	C108
Creek,							1	0.03	< 0.02	2007
Queens-land							3	0.04	< 0.02	
							7	0.03	< 0.02	
AUS	840	24	3	0.108	1	1	0*	0.07	< 0.02	BCS-0108
Flagstone		WG		0.100			0	0.05	< 0.02	C108
Creek,			1				1	0.03	< 0.02	2007
Queens-land	1	1	1	1			3	0.04	< 0.02	2007
Queens-lanu						1	1.7		~ 0.02	1
							7		< 0.02	
ALIC	840	24	2		0.0049		7	0.04	< 0.02	DCS 0109
AUS	840	24 WG	3		0.0048		7 0*	0.04 0.05	< 0.02	BCS-0108
Flagstone	840	24 WG	3		0.0048		7 0* 0	0.04 0.05 0.04	< 0.02 < 0.02	C108
Flagstone Creek,	840		3		0.0048		7 0* 1	0.04 0.05 0.04 < 0.02	< 0.02 < 0.02 < 0.02	
Flagstone	840		3		0.0048		7 0* 0 1 3	0.04 0.05 0.04 < 0.02 0.03	< 0.02 < 0.02 < 0.02 < 0.02	C108
Flagstone Creek, Queens-land		WG					7 0* 0 1 3 7	0.04 0.05 0.04 < 0.02 0.03 0.03	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	C108 2007
Flagstone Creek, Queens-land AUS	840	WG 24	3		0.0048		7 0* 0 1 3 7 0*	0.04 0.05 0.04 < 0.02 0.03 0.03 0.04	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	C108 2007 BCS-0108
Flagstone Creek, Queens-land AUS Flagstone		WG					7 0* 0 1 3 7 0* 0	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \end{array}$	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	C108 2007 BCS-0108 C108
Flagstone Creek, Queens-land AUS Flagstone Creek,		WG 24					7 0* 0 1 3 7 0* 0 1	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.07 \\ \end{array}$	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	C108 2007 BCS-0108
Flagstone Creek, Queens-land AUS Flagstone		WG 24					7 0* 0 1 3 7 0* 0	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \end{array}$	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	C108 2007 BCS-0108 C108
Flagstone Creek, Queens-land AUS Flagstone Creek,		WG 24					7 0* 0 1 3 7 0* 0 1	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.07 \\ \end{array}$	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	C108 2007 BCS-0108 C108
Flagstone Creek, Queens-land AUS Flagstone Creek, Queens-land	840	WG 24 WG	3		0.0072		7 0* 0 1 3 7 0* 0 1 3	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.07 \\ 0.04 \\ \hline 0.03 \\ \end{array}$	<pre>< 0.02 < 0.02</pre>	C108 2007 BCS-0108 C108 2007
Flagstone Creek, Queens-land AUS Flagstone Creek, Queens-land AUS		WG 24 WG 24					7 0* 0 1 3 7 0* 0 1 3 7 0*	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.07 \\ 0.04 \\ 0.03 \\ \hline 0.09 \\ \end{array}$	<pre>< 0.02 < 0.02</pre>	C108 2007 BCS-0108 C108 2007 BCS-0108
Flagstone Creek, Queens-land AUS Flagstone Creek, Queens-land AUS Flagstone	840	WG 24 WG	3		0.0072		7 0* 0 1 3 7 0* 0 0 1 3 7 0* 0 0* 0	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.07 \\ \hline 0.04 \\ 0.03 \\ \hline 0.09 \\ 0.13 \end{array}$	$\begin{array}{r} < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array}$	C108 2007 BCS-0108 C108 2007 BCS-0108 C108
Flagstone Creek, Queens-land AUS Flagstone Creek,	840	WG 24 WG 24	3		0.0072		7 0* 0 1 3 7 0* 0 1 3 7 0*	$\begin{array}{c} 0.04 \\ \hline 0.05 \\ 0.04 \\ < 0.02 \\ 0.03 \\ \hline 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.04 \\ 0.03 \\ \hline 0.07 \\ 0.04 \\ 0.03 \\ \hline 0.09 \\ \end{array}$	<pre>< 0.02 < 0.02</pre>	C108 2007 BCS-0108 C108 2007 BCS-0108

Table 64 Results of residue trials conducted with flubendiamide SC480 in/on tomato

		Aplic	ation					Residues (m	g/kg) ^a	Report No.
Country	Variety	F	No	kg ai/ha	kg	L/ha	PHI	Flubendia-	F-des-	Trial No.
Region					ai/hL			mide	iodo	
AUS	Comanche	480	3	0.096			0*	0.10	< 0.02	BCS-0120
Bowen		SC					0	0.07	< 0.02	C188
Queens-land							1	0.03	< 0.02	2007
							3	0.18	< 0.02	
							7	0.04	< 0.02	
		10.0					14	0.06	< 0.02	
AUS	Comanche	480	3		0.0048		0*	0.04	< 0.02	BCS-0120
Bowen		SC					0	< 0.02	< 0.02	C188
Queens-land							1	< 0.02	< 0.02	2007
							3	0.05	< 0.02	
							7 14	0.11 0.06	< 0.02 < 0.02	
AUS	Comanche	480	3		0.096		0*	0.00	< 0.02	BCS-0120
Bowen	Comanche	SC	5		0.090		0	0.12	< 0.02	C188
Queens-land		50					1	0.05	< 0.02	2007
Queens iunu							3	0.11	< 0.02	2007
							7	0.10	< 0.02	
							14	0.15	< 0.02	
AUS	Comanche	480	3		0.014		0*	0.12	< 0.02	BCS-0120
Bowen	Comanono	SC			0.011		0	0.12	< 0.02	C188
Queens-land							1	0.05	< 0.02	2007
X							3	0.10	< 0.02	
							7	0.05	< 0.02	
							14	0.17	< 0.02	
AUS	Comanche	240	3		0.096		0*	0.04	< 0.02	BCS-0120
Bowen		WG					0	0.03	< 0.02	C188
Queens-land							1	0.09	< 0.02	2007
							3	0.06	< 0.02	
							7	0.08	< 0.02	
							14	0.16	< 0.02	
AUS	Pinnacle	480	3	0.096			0*	0.17	< 0.02	BCS-0120
Bowen		SC					0	0.21	< 0.02	C189
Queens-land							1	0.19	< 0.02	2007
							3	0.10	< 0.02	
							7	0.23	< 0.02	
							14	0.27	< 0.02	
AUS	Pinnacle	480	3		0.0048		0*	0.03	< 0.02	BCS-0120
Bowen		SC					0	0.08	< 0.02	C189
Queens-land							1	0.06	< 0.02	2007
							3	0.07	< 0.02	
							7 14	0.04 0.10	< 0.02	
ALIC	Dinne -1-	490	2		0.0007		14 0*	0.20	< 0.02	DCS 0120
AUS	Pinnacle	480 SC	3		0.0096		-	0.10	< 0.02 < 0.02	BCS-0120 C189
Bowen		sc					0	0.14 0.07	< 0.02	2007
Queens-land							1 3	0.07	< 0.02	2007
							3 7	0.13	< 0.02	
							/ 14	0.07	< 0.02	
AUS	Pinnacle	480	3	+	0.014	<u> </u>	0*	0.17	< 0.02	BCS-0120
Bowen	1 milacie	480 SC	5		0.014		0	0.12	< 0.02	C189
Queens-land		50					1	0.10	< 0.02	2007
Zucons land							3	0.19	< 0.02	2007
							7	0.10	< 0.02	
							, 14	0.15	< 0.02	
AUS	Pinnacle	240	3		0.0096		0*	0.09	< 0.02	BCS-0120
Bowen		WG	Ĩ				0	0.07	< 0.02	C189
Queens-land							1	0.08	< 0.02	2007
							3	0.11	< 0.02	
							7	0.05	< 0.02	

		Aplic	ation					Residues (m	g/kg) ^a	Report No.
Country	Variety	F	No	kg ai/ha	kg	L/ha	PHI	Flubendia-	F-des-	Trial No.
Region	-				ai/hL			mide	iodo	
AUS	Guardian	480	3	0.096			0*	< 0.02	< 0.02	BCS-0120
Bowen		SC					0	0.02	< 0.02	C191
Queens-land							1	0.03	< 0.02	2007
							3	< 0.02	< 0.02	
							7	< 0.02	< 0.02	
	a r	100			0.0040	-	14	< 0.02	< 0.02	D.C.C. 0100
AUS	Guardian	480	3		0.0048		0*	0.02	< 0.02	BCS-0120
Bowen Queens-land		SC					0 1	0.03 < 0.02	< 0.02 < 0.02	C191 2007
Queens-land							3	< 0.02	< 0.02	2007
							7	< 0.02	< 0.02	
							14	0.03	< 0.02	
AUS	Guardian	480	3		0.0096		0*	0.16	< 0.02	BCS-0120
Bowen	o un unun	SC	2		0.0070		Ő	0.05	< 0.02	C191
Queens-land							1	0.03	< 0.02	2007
							3	0.05	< 0.02	
							7	0.04	< 0.02	
							14	0.02	< 0.02	
AUS	Guardian	480	3		0.014		0*	0.23	< 0.02	BCS-0120
Bowen		SC					0	0.06	< 0.02	C191
Queensland							1	0.08	< 0.02	2007
							3	0.04	< 0.02	
							7	0.05	< 0.02	
1110	C II	2.10	2		0.0007		14	0.04	< 0.02	DCC 0100
AUS	Guardian	240	3		0.0096		0*	0.02	< 0.02	BCS-0120
Bowen		WG					0 1	0.04 < 0.02	< 0.02	C191 2007
Queensland							3	< 0.02 0.02	< 0.02 < 0.02	2007
							7	0.02	< 0.02	
							14	< 0.02	< 0.02	
Aus		240	3		0.0048		0*	0.05	< 0.02	BCS-0120
Carpendale		WG	5		0.0010		0	0.88	< 0.02	Q1
Queensland							1	0.15	< 0.02	2007
							3	0.12	< 0.02	
							7	0.13	< 0.02	
Aus		240	3		0.0072		0*	0.39	< 0.02	BCS-0120
Carpendale		WG					0	0.32	< 0.02	Q1
Queensland							1	0.21	< 0.02	2007
							3	0.52	< 0.02	
							7	<u>0.63</u>	< 0.02	
Aus		240	3		0.0108		0*	0.85	< 0.02	BCS-0120
Carpendale		WG					0	0.86	< 0.02	Q1
Queensland							1	0.28	< 0.02	2007
							3 7	0.83 1.4	< 0.02 < 0.02	
USA	Celebrity	24G	5	0.05			1	0.09	< 0.02	RCAMY006
USA Pensilvania	Celebrity	24 U	5	0.05			1	0.09	~ 0.01	AM126-04H
i chisti vallia										2004
USA	Homestead	24G	5	0.05		1	1	0.05	< 0.01	RCAMY006
Georgia	Tomestead	2-10	5	0.05			1	0.05	. 0.01	AM127-04H
8										2004
USA	FL 47	24G	5	0.05			1	0.04	< 0.01	RCAMY006
Florida		_								AM128-04H
										2004
USA	FL 47	24G	5	0.05			1	0.04	< 0.01	RCAMY006
Florida										AM129-04H
										2004
USA	Rutgers	24	5	0.05		127-	0	0.04	< 0.01	RCAMY006
Kansas		WG				146	1	0.03	< 0.01	AM130-04D
							3	0.03	< 0.01	2004
							7	0.02	< 0.01	
							10	0.02	< 0.01	

		Aplication					Residues (mg/kg) ^a		Report No.	
Country	Variety	F	No	kg ai/ha	kg	L/ha	PHI	Flubendia-	F-des-	Trial No.
Region					ai/hL			mide	iodo	
USA	Peto Hypeel	24	5	0.05		170-	1	0.18	< 0.01	RCAMY006
California	303	WG				174				AM131-04H
										2004
USA		24	5	0.05		139-	1	0.14	< 0.01	RCAMY006
Glenn,	H9557	WG				141				AM132-04H
California										2004
USA		24	5	0.05		140-	1	0.09	< 0.01	RCAMY006
Maxwell,	H9888	WG				141				AM133-04H
California										2004
USA		24	5	0.05		172-	1	0.08	< 0.01	RCAMY006
Porterville,	Early Girl	WG				182				AM134-04H
California										2004
USA		24	5	0.05		130-	1	0.07	< 0.01	RCAMY006
Visalia,	Qualit-21	WG				135				AM135-04H
California										2004
USA		24	5	0.05		115-	1	0.07	< 0.01	RCAMY006
Fresno,	Roma	WG				119				AM136-04H
California										2004
USA		24	5	0.05		137-	1	0.01	< 0.01	RCAMY006
Paso Robles,	Roma	WG				146				AM137-04H
California										2004

* Before the last application; a. Residues from trials conducted in USA are the highest of two samples

Table 65 Results of residue trials	conducted with flubendiamide	in/on tomato in greenhouse in E	urope

Country	Aplication					Residues (mg/kg		
Region year	F	No	kg ai/ha	kg ai/hL (L/ha)	PHI	Flubendia-mide	F-des-iodo	Report No. Trial No
	SC	3	0.12	0.008	0*	0.14	< 0.01	RA-2312/04
France	480			(1500)	0	0.12	< 0.01	R 2004 0937/0
2004				· · ·	1	0.13	< 0.01	M-255741-01-1
					3	0.07	< 0.01	
Germany	SC	3	0.12	0.008	0*	0.05	< 0.01	RA-2071/03
2003	480			(1500)	0	0.13	< 0.01	R 2003 0199/5
					0**	0.04	< 0.01	M-246583-01-1
					1	0.02	< 0.01	
					3	0.02	< 0.01	
					5	0.03	< 0.01	
Germany	WG)	3	0.12	0.012	0	0.06	< 0.01 < 0.01	RA-2517/05
2005				(1000)	1	0.04	< 0.01	R2005 0224/9
					3	0.03		M-276592-01-1
	SC	2	0.12	0.006	0*	0.03	< 0.01	08-2213
Germany	480			(2000)	0	0.10	< 0.01	08-2213-04
2008					1	0.09	< 0.01	M-344411-01-1
					3	0.08	< 0.01	
					7	0.06	< 0.01	
Italy	SC	3	0.11	0.0077	0*	0.11	< 0.01	RA-2071/03
2003	480			(1425)	0	0.14	< 0.01	R 2003 0199/5
					0**	0.11	< 0.01	M-246583-01-1
					1	0.11	< 0.01	
					3	0.11	< 0.01	
					5	0.12	< 0.01	
Italy	SC	3	0.12	0.0075	0*	0.06	< 0.01	RA-2312/04
2004	480			(1600)	0	0.07	< 0.01	R2004 0936/2
					1	0.07	< 0.01	M-255741-01-1
					3	0.04	< 0.01	
	WG	3	0.12	0.08	0	0.06	< 0.01	RA-2517/05
Italy	24			(1500)	1	0.12	< 0.01	R2005 0269/9
2005					3	0.09	< 0.01	M-276592-01-1

Country	Aplic	ation				Residues (mg/kg) ^a	
Region				kg ai/hL				Report No.
year	F	No	kg ai/ha	(L/ha)	PHI	Flubendia-mide	F-des-iodo	Trial No
	SC	3	0.12	0.075	0*	0.06	< 0.01	RA-2312/04
Italy	480	-		(1600)	0	0.07	< 0.01	R 2004 0936/2
2004				()	1	0.07	< 0.01	M-255741-01-1
					3	0.04	< 0.01	
	WG	3	0.12	0.075	0*	0.08	< 0.01	RA-2326/04
Italy*	24	-		(1600)	0	0.06	< 0.01	R2004 0966/4
2004				()	1	0.07	< 0.01	M-255744-01-1
					3	0.11	< 0.01	
Netherlands	SC	3	0.12	0.006	0*	0.04	< 0.01	RA-2071/03
2003	480	-		(2000)	0	0.06	< 0.01	R 2003 0836/1
				(0**	0.03	< 0.01	M-246583-01-1
					1	0.04	< 0.01	
						0.02	< 0.01	
					3 5	0.02	< 0.01	
Netherlands	SC	3	0.12	0.008	0*	0.05	< 0.01	RA-2071/03
2003	480	_		(1500)	0	0.08	< 0.01	R 2003 0838/8
				` ´	0**	0.05	< 0.01	M-246583-01-1
					1	0.05	< 0.01	
					3	0.06	< 0.01	
					5	0.05	< 0.01	
	SC	3	0.12	0.006	0	0.07	< 0.01	RA-2312/04
Netherlands	480			(2000)	0^{a}	0.09	< 0.01	R 2004 0313/5
2004					1	0.06	< 0.01	M-255741-01-1
					3	0.06	< 0.01	
Portugal	SC	3	0.12	0.007	0*	0.07	< 0.01	RA-2071/03
2003	480			(1600-	0	0.11	< 0.01	R 2003 0842/6
				1800)	0^d	0.10	< 0.01	M-246583-01-1
				-	1	0.10	< 0.01	
					3	0.11	< 0.01	
					5	0.10	< 0.01	
Portugal	SC	2	0.12	0.006	0*	0.09	< 0.01	08-2213
2008	480			(2000)	0	0.07	< 0.01	08-2213-03
					1	0.13	< 0.01	M-344411-01-1
					3	<u>0.10</u>	< 0.01	
					7	0.06	< 0.01	
	SC	3	0.102	0.006	0*	0.07	< 0.01	RA-2312/04
Spain	480			(1700)	0	0.10	< 0.01	R2004 0935/4
2004					1	0.09	< 0.01	M-255741-01-1
					2	0.10	< 0.01	
	WG	3	0.12	0.006	0*	0.08	< 0.01	RA-2326/04
Spain*	24			(1700)	0	0.09	< 0.01	R2004 0967/2
2004					1	0.08	< 0.01	M-255744-01-1
					2	0.09	< 0.01	
	SC	2	0.12	0.006	0*	0.03	< 0.01	08-2213
Spain	480			(2000)	0	0.06	< 0.01	08-2213-01
2008					1	0.05	< 0.01	M-344411-01-1
					3	0.04	< 0.01	
		-	0.15	0.001	6	0.06	< 0.01	0.0.0010
a .	SC	2	0.12	0.006	0*	0.03	< 0.01	08-2213
Spain	480			(2000)	0	0.05	< 0.01	08-2213-02
2008					1	0.04	< 0.01	M-344411-01-1
					3	0.06	< 0.01	
					7	0.05	< 0.01	

* Before the last application; ** sampling on day 0.5 after last treatment.

Sweet corn

Flubendiamide is registered in USA in sweet corn at a maximum rate of 4×0.10 kg ai/ha and 1 day PHI. Eleven residue trials were conducted with sweet corn in USA in 2004/2005, with samples of corn-on-the-cob analysed. The results are on Table 66.

1339

		Appli	ication			Residues (mg/kg	$)^{a}$	
Country	Crop	No	kg ai/ha	L/ha	PHI	flubendiamide	F-des iodo	
Year				water				Trial No.
New York	Garst 8948RR	4	0.11	155-158	1	<u>< 0.01</u>	< 0.01	AM100-04H-B
Virginia	Silver Queen	4	0.10-0.11	130-134	1	<u>< 0.01</u>	< 0.01	AM101-04H
Georgia	RR31N26	4	0.10-0.11	141-148	1	<u>< 0.01</u>	< 0.01	AM102-04H-B
Florida	Incredible				0	< 0.01	< 0.01	
					1	< 0.01	< 0.01	
					3	< 0.01	< 0.01	
					7	<u>0.01</u>	< 0.01	
					10	0.01	< 0.01	
Kansas	Garst 8451RR	4	0.10-0.11	125-146	2	< 0.01	< 0.01	AM104-04D-B
Illinois	Garst 8550 Bt	4	0.11	130-134	1	< <u>0.01</u>	< 0.01	AM105-04H-B
Nebraska	NK67T4	4	0.10	131-133	1	< <u>0.01</u>	< 0.01	AM106-04D-B
Minnesota	GH0937	4	0.11	106-117	1	< <u>0.01</u>	< 0.01	AM107-04H-B
California	Silver Queen	4	0.10-0.11	134-106	1	< <u>0.01</u>	< 0.01	AM122-04HA
Oregon	Pronto	4	0.10-0.11	0.13-0.14	1	< <u>0.01</u>	< 0.01	AM123-04H
Oregon	Super Sweet Jubilee	4	0.10-0.11	78-81	1	< <u>0.01</u>	< 0.01	AM124-04H

Table 66 Results of residue trials conducted with flubendiamide SC480 in/on sweet corn (corn-on-thecob) in USA (RCAMY004)

Lettuce

Flubendiamide is registered in Australia for leafy vegetables, including leafy and head lettuce, at a maximum rate of 3×0.048 kg ai/ha and 1 day PHI. Thirthy six residue field trials were conducted with flubendiamide in/on head and leafy lettuce in Australia in 2006 (Table 67).

Table 67 Results of residue trials conducted with flubendiamide SC in/on head and leafy lettuce in Australia

		Appli	cation			Residues (mg/kg	g)	Trial No.
Region	Variety	No	kg ai/ha	L/ha	PHI	flubendiamide	F-des iodo	
				water				
Head lettuce								
West Victoria	Lulu	3	0.046	903	0*	0.08	< 0.02	BCS-0187
					0	1.1	< 0.02	B71 **
					1	0.32	< 0.02	2006
					3	0.16	< 0.02	
					7	< 0.02	< 0.02	
					10	< 0.02	< 0.02	
			0.066	903	0*	0.11	< 0.02	
					0	4.0	< 0.02	
					1	1.6	< 0.02	
					3	0.24	< 0.02	
					7	< 0.02	< 0.02	
					10	< 0.02	< 0.02	
			0.091	903	0*	0.07	< 0.02	
					0	3.0	< 0.02	
					1	0.77	< 0.02	
					3	0.12	< 0.02	
					7	< 0.02	< 0.02	
					10	< 0.02	< 0.02	
Queensland	Patagonia	3	0.048-	353	0*	0.14	< 0.02	BCS-0187
			0.052		0	0.48	< 0.02	B72
					1	0.86	< 0.02	2006
					3	0.68	< 0.02	
					7	<u>0.97</u>	< 0.02	
					10	0.49	< 0.02	

		Appl	ication			Residues (mg/k	g)	Trial No.
Region	Variety	No	kg ai/ha	L/ha	PHI	flubendiamide	F-des iodo	
_			-	water				
			0.072-	353	0*	0.25	< 0.02	
			0.079		0	2.0	< 0.02	
					1	2.6	< 0.02	
					3 7	0.64 0.82	< 0.02	
					10	0.82	< 0.02 < 0.02	
			0.096-	353	0*	1.4	< 0.02	
			0.105	555	0	1.4	< 0.02	
			0.105		1	1.5	< 0.02	
					3	2.2	< 0.02	
					7	3.9	< 0.02	
					10	1.6	< 0.02	
Victoria	Ice	3	0.049-	500	0*	1.0	< 0.02	BCS-0187
			0.051		0	2.2	< 0.02	B73
					1	$\frac{2.2}{1.5}$	< 0.02	2006
					3 7	1.5 0.26	< 0.02 < 0.02	
					10	0.26	< 0.02	
			0.071-	500	0*	1.3	< 0.02	
			0.071-	500	0	2.2	< 0.02	
			0.07		1	3.1	< 0.02	
					3	2.0	< 0.02	
					7	0.78	< 0.02	
					10	0.25	< 0.02	
			0.094-	500	0*	1.5	< 0.02	
			0.097		0	5.4	< 0.02	
					1	4.7	< 0.02	
					3 7	3.6 1.0	< 0.02 < 0.02	
					10	0.19	< 0.02	
West Victoria	Lulu	3	0.046	903	0*	< 0.02	< 0.02	BCS-0188
West Victoria	Luiu	5	0.010	205	0 0	0.44	< 0.02	B99 **
					1	0.11	< 0.02	2006
					3	0.16	< 0.02	
					7	< 0.02	< 0.02	
					10	0.05	< 0.02	
			0.068	903	0*	0.03	< 0.02	
					0	0.44	< 0.02	
					1	0.17	< 0.02 < 0.02	
					3 7	0.85 0.65	< 0.02	
					10	0.03	< 0.02	
			0.091	903	0*	0.11	< 0.02	
					0	0.20	< 0.02	
					1	0.18	< 0.02	
					3	0.06	< 0.02	
					7	0.04	< 0.02	
0 1 1		-	0.011	210	10	0.13	< 0.02	DOG A100
Queensland	Desert Sun	3	0.046	318	0*	0.08	< 0.02	BCS-0188
					0 1	0.72 <u>0.78</u>	< 0.02 < 0.02	B100 2006
					1 3	<u>0.78</u> 0.59	< 0.02	2000
					10	0.28	< 0.02	
			0.068	318	0*	0.08	< 0.02	
					0	2.1	< 0.02	
					1	0.73	< 0.02	
					3	0.84	< 0.02	
					10	0.32	< 0.02	
			0.091	318	0*	0.46	< 0.02	
					0	1.1	< 0.02	
					1	1.0	< 0.02	
					3	0.54	< 0.02	
					10	0.32	< 0.02	

		App	ication			Residues (mg/k	g)	Trial No.
Region	Variety	No	kg ai/ha	L/ha	PHI	flubendiamide	F-des iodo	
_			_	water				
Victoria	Marksman	3	0.048	467	0*	0.28	< 0.02	BCS-0188
					0	1.8	< 0.02	B101
					1	<u>1.0</u>	< 0.02	2006
					3	1.0	< 0.02	
					7	0.42	< 0.02	
			0.07	167	10	0.12	< 0.02	
			0.07-	467	0*	0.60	< 0.02	
			0.074		0	1.8 1.9	< 0.02 < 0.02	
					1 3	1.9	< 0.02	
					7	0.50	< 0.02	
					10	0.33	< 0.02	
			0.095-	467	0*	0.71	< 0.02	
			0.099		0	4.3	< 0.02	
					1	1.1	< 0.02	
					3	1.7	< 0.02	
					7	0.31	< 0.02	
					10	0.12	< 0.02	
Leaf lettuce								
Victoria	Kos	3	0.045	903	0*	0.42	< 0.02	BCS-0182
1	1				0	1.4	< 0.02	B68
					1	1.8	< 0.02	2006
					3	1.6	< 0.02	
					8	0.74	< 0.02	
		_	0.077	0.02	10	0.70	< 0.02	
			0.066	903	0*	0.74	< 0.02	
					0 1	4.0 2.8	< 0.02 < 0.02	
					3	2.0	< 0.02	
					8	1.3	< 0.02	
					10	0.82	< 0.02	
			0.091	903	0*	0.66	< 0.02	
					0	4.5	< 0.02	
					1	4.6	< 0.02	
					3	2.7	< 0.02	
					8	0.86	< 0.02	
					10	1.0	< 0.02	
Queensland	Cos	3	0.053	353	0*	1.0	< 0.02	BCS-0182
					0	4.4	< 0.02	B69
	1				1	1.2	< 0.02	2006
	1				3	$\frac{1.6}{1.0}$	< 0.02	
				1	7	1.0	< 0.02	
			0.072	252	10	0.53	< 0.02	
l			0.072- 0.079	353	0^*	2.0 5.2	< 0.02 < 0.02	
1	1		0.079		1	1.5	< 0.02	
	1				3	2.5	< 0.02	
	1				7	1.0	< 0.02	
	1				10	1.5	< 0.02	
	1		0.096-	353	0*	3.0	< 0.02	
	1		0.099	_	0	5.5	< 0.02	
	1				1	2.3	< 0.02	
	1				3	3.5	< 0.02	
				1	7	3.3	< 0.02	
			_		10	1.3	< 0.02	
Victoria	Regal	3	0.047-	500	0*	0.60	< 0.02	BCS-0182
	1		0.049		0	3.2	< 0.02	B70 ***
	1				1	2.7	< 0.02	2006
l	1				3	1.3	< 0.02	
				1	7	0.40	< 0.02	
					10	0.12	< 0.02	

		App	lication			Residues (mg/k	(g)	Trial No.
Region	Variety	No	kg ai/ha	L/ha	PHI	flubendiamide	F-des iodo	
				water				
			0.071-	500	0*	0.99	< 0.02	
			0.073		0	5.2	< 0.02	
					1	4.4 2.0	< 0.02	
					3 7	2.0 0.54	< 0.02 < 0.02	
					10	0.15	< 0.02	
			0.094-	500	0*	2.4	< 0.02	
			0.099	500	0	7.1	< 0.02	
					1	6.9	< 0.02	
					3	2.5	< 0.02	
					7	1.0	< 0.02	
					10	0.34	< 0.02	
Victoria	coral	3	0.046	903	0*	0.40	< 0.02	BCS-0189
					0	4.0	< 0.02	B102
					1 3	$\frac{4.0}{1.6}$	< 0.02 < 0.02	2006
					5 7	0.63	< 0.02	
					9	0.03	< 0.02	
			0.066	903	0*	0.71	< 0.02	
					0	5.2	< 0.02	
					1	6.9	< 0.02	
					3	3.5	< 0.02	
					7	1.2	< 0.02	
					9	0.32	< 0.02	
			0.091	903	0*	0.78	< 0.02	
					0	11.2	< 0.02	
					1	8.6 13.4	< 0.02 < 0.02	
					3 7	0.86	< 0.02	
					9	0.42	< 0.02	
Queensland	Shrek	3	0.048	318	0*	0.22	< 0.02	BCS-0189
		_			0	0.72	< 0.02	B103
					1	1.6	< 0.02	2006
					3	1.2	< 0.02	
					10	0.24	< 0.02	
		3	0.072	318	0*	0.42	< 0.02	
					0	1.3	< 0.02	
					1 3	1.5 1.3	< 0.02 < 0.02	
					10	0.56	< 0.02	
		3	0.096-	318	0*	0.56	< 0.02	
			0.113		0	1.4	< 0.02	
			-		1	2.4	< 0.02	
			1		3	2.2	< 0.02	
					10	0.16	< 0.02	
Victoria	Regal	3	0.047-	467	0*	0.46	< 0.02	BCS-0189
			0.051		0	1.5	< 0.02	B104
					1	$\frac{0.95}{0.43}$	< 0.02 < 0.02	2006
			1		3 7	0.43 0.42	< 0.02	
			1		10	0.42	< 0.02	
			0.070-	467	0*	0.52	< 0.02	
			0.075		0	2.0	< 0.02	
			-		1	2.3	< 0.02	
					3	0.69	< 0.02	
					7	0.26	< 0.02	
					10	0.48	< 0.02	
			0.094-	467	0*	0.69	< 0.02	
			0.097		0	2.2	< 0.02	
			1		1	2.7 0.79	< 0.02 < 0.02	
			1		3 7	0.79	< 0.02	
			1		10	0.44	< 0.02	
	1		1	1	- •	1		I

*** Residues of flubendiamide detected in untreated plots at 0.03 mg/kg

Spinach

Flubendiamide is registered in USA for leafy vegetables at 3 x 0.05 kg ai/ha and 1 day PHI. Five trials were conducted in USA in spinach (Table 68).

Table 68 Results of residue trials conducted with 5 applications of flubendiamide WG in/on spinach in USA in 2004 (RCAMY008)

		Application			Residues (mg/kg)	a	
Country Year	Variety	kg ai/ha	L/ha water	PHI Davs	flubendiamide	F-des iodo	Trial No.
1 cai				Days			
New York	Melody	0.050	160-162	1	3.7	< 0.01	AM166-04D
Texas	Samich	0.050	141-145	1	6.7	< 0.01	AM168-04H
Idaho	Unipack 151	0.050	176-181	1	3.3	< 0.01	AM169-04H
California	Dolphin	0.050	145-151	1	3.1	< 0.01	AM170-04H
California	Shasta	0.050	140-143	1	5.9	< 0.01	AM165-04H

^a highest residue of two samples

Green beans and peas

Flubendiamide is registered in Australia in legume vegetables at a maximum rate of 3×0.072 kg ai/ha and USA at 2×0.1 kg ai/ha. In both countries, PHI is 1 day. Fourty four residue field trials were conducted in grean bean and pea in Australia and the USA (Table 69).

Table 69 Results of residue trials conducted with flubendiamide SC in/on green bean and pea

		Appli	cation				Residues (mg/k	$(a)^a$	
Country	Crop		kg	L/ha				F-des	Report No.
Year	-	No	ai/ha	water	Portion	PHI	flubendiamide	iodo	Trial No. year
Australia	Green Bean,	3	0.046-	372	pod	0*	0.04	< 0.02	BCS-0186
Queensland	Field		0.051		-	0	0.16	< 0.02	B84 2006
	Excali-bur					1	0.11	< 0.02	
						3	0.10	< 0.02	
						7	0.15	< 0.02	
						10	0.18	< 0.02	
			0.072-	372	pod	0*	0.04	< 0.02	
			0.074			0	0.24	< 0.02	
						1	0.18	< 0.02	
						3	0.16	< 0.02	
						7	0.22	< 0.02	
						10	0.21	< 0.02	
			0.096-	372	pod	0*	0.05	< 0.02	
			0.102			0	0.28	< 0.02	
						1	0.25	< 0.02	
						3	0.24	< 0.02	
						7	0.26	< 0.02	
						10	0.30	< 0.02	
					stuble	0	14	0.07	
						1	14	0.07	
						3	15	0.08	
						7	15	0.09	
						10	9.9	0.06	
Australia	Green Bean,	3	0.049-	387-	pod	0*	0.04	< 0.02	BCS-0186
Bulla,	Field		0.053	414		0	0.12	< 0.02	B85 2006
Queens-	Jade					1	0.08	< 0.02	
land						3	0.06	< 0.02	
						6	0.06	< 0.02	
						10	0.08	< 0.02	

		Appl	ication				Residues (mg/k	(g) ^a	
Country	Crop		kg	L/ha				F-des	Report No.
Year		No	ai/ha	water	Portion	PHI	flubendiamide	iodo	Trial No. year
			0.077-	387-	pod	0*	0.09	< 0.02	
			0.082	414		0	0.20	< 0.02	
						1	$\frac{0.20}{0.16}$	< 0.02	
						3 6	0.16	< 0.02 < 0.02	
						10	0.13	< 0.02	
			0.100	387-	pod	0*	0.10	< 0.02	-
			0.100	414	pou	0	0.30	< 0.02	
						1	0.30	< 0.02	
						3	0.19	< 0.02	
						6	0.22	< 0.02	
						10	0.81	< 0.02	
Australia	Green Bean,	3	0.044-	761-	pod	0*	0.06	< 0.02	BCS-0186
Bulla,	Field Excali-bur		0.050	789		0	0.17 0.10	< 0.02	B87 2007
Queens- land	Excall-bur					1 3	0.10	< 0.02 < 0.02	2007
lanu						8	0.18	< 0.02	
						10	0.10	< 0.02	
			0.068-	761-	pod	0*	0.08	< 0.02	
			0.072	789	1	0	0.16	< 0.02	
						1	0.20	< 0.02	
						3	0.20	< 0.02	
						8	0.14	< 0.02	
		_				10	0.14	< 0.02	
			0.090-	761-	Pod	0*	0.08	< 0.02	
			0.10	789		0	0.26	< 0.02	
						1 3	0.26 0.21	< 0.02 < 0.02	
						8	0.12	< 0.02	
						10	0.12	< 0.02	
					stuble	0	11	0.05	
						1	12	0.05	
						3	11	0.08	
						8	8.6	0.05	
						10	8.7	0.05	
Australia	Green Bean,	3	0.047-	423	pod	0*	0.05	< 0.02	BCS-0212
Kindred,	Field		0.048			0	0.07	< 0.02	C234 2007
Tasmania	Classic					1 3	0.07 0.07	< 0.02 < 0.02	
						3 7	0.07	< 0.02	
						10	0.04	< 0.02	
			0.070-	436	pod	0*	0.09	< 0.02	1
			0.071		·	0	0.09	< 0.02	
						1	0.08	< 0.02	
						3	0.11	< 0.02	
						7	0.11	< 0.02	
			0.004	420	mad	10	0.08	< 0.02	
			0.094- 0.096	429	pod	0* 0	0.11 0.17	< 0.02 < 0.02	
			0.090			1	0.17	< 0.02	
						3	0.12	< 0.02	
						7	0.13	< 0.02	
						10	0.13	< 0.02	
Australia	Green Pea,	3	0.047	248 -	pod	0*	0.18	< 0.02	BCS-0185
Forth,	Field			254		0	0.33	< 0.02	C199 2007
Tasmania	Resal					1	0.37	< 0.02	
						3	0.27	< 0.02	
						7	0.23	< 0.02	
				L	l	10	0.21	< 0.02	

		Application				Residues (mg/k	(g) ^a		
Country	Crop		kg	L/ha				F-des	Report No.
Year		No	ai/ha	water	Portion	PHI	flubendiamide		Trial No. year
					stubble	0*	1.2	< 0.02	
						0	2.8 3.2	< 0.02	
						1 3	3.2 2.9	< 0.02 < 0.02	
						7	3.3	< 0.02	
						10	2.9	< 0.02	
			0.071	248 -	pod	0*	0.30	< 0.02	
				254	1	0	0.73	< 0.02	
						1	0.45	< 0.02	
						3	0.42	< 0.02	
						7	0.40	< 0.02	
						10	0.26	< 0.02	-
					stubble	0*	3.2	< 0.02	
						0	3.4	< 0.02	
						1	3.7	< 0.02	
						3 7	5.9 3.6	< 0.02 < 0.02	
						10	6.5	0.02	
			0.095	248 -	pod	0*	0.23	< 0.02	
			0.070	254	pou	0	0.73	< 0.02	
						1	0.55	< 0.02	
						3	0.47	< 0.02	
						7	0.51	< 0.02	
						10	0.43	< 0.02	
					stubble	0*	3.5	< 0.02	
						0	6.2	0.02	
						1	7.4	0.02	
						3	6.7	< 0.02	
						7 10	7.1 6.1	0.02 < 0.02	
Australia	Green Pea,	3	0.047	390-	pod	0*	< 0.02	< 0.02	BCS-0185
Longford,	Field	5	0.047	398	pou	0	0.31	< 0.02	C200 2007
Tasmania	Resal			570		1	0.26	< 0.02	0200 2007
						3	0.18	< 0.02	
						7	0.10	< 0.02	
						9	0.07	< 0.02	
					stubble	0*	0.73	< 0.02	
						0	1.8	< 0.02	
						1	1.8	< 0.02	
						3	1.5 2.2	< 0.02	
						7 9	2.2	< 0.02 < 0.02	
			0.071	390-	pod	9 0*	0.14	< 0.02	-
			0.071	398	pou	0	0.14	< 0.02	
				270		1	0.39	< 0.02	
						3	0.31	< 0.02	
						7	0.15	< 0.02	
						9	0.10	< 0.02	
					stubble	0*	1.2	< 0.02	
						0	3.3	< 0.02	
						1	2.6	< 0.02	
						3 7	2.9 2.6	< 0.02 < 0.02	
						9	2.0	< 0.02	
			0.095	390-	pod	0*	0.06	< 0.02	-
			0.075	398	Pou	0	0.44	< 0.02	
				-		1	0.40	< 0.02	
						3	0.22	< 0.02	
						7	0.17	< 0.02	
	1			1		9	0.08	< 0.02	

		Appl	ication				Residues (mg/k	(g) ^a	
Country	Crop	NT-	kg ai/ha	L/ha	Donting	ыл	flub on diamid	F-des	Report No.
Year		No	ai/ha	water	Portion stubble	PHI 0*	flubendiamide	iodo < 0.02	Trial No. year
					stubble	0.0	3.0	< 0.02	
						1	3.6	< 0.02	
						3	2.6	< 0.02	
						7	2.4	< 0.02	
	~ ~					9	2.3	< 0.02	
Australia	Green Pea, Field	3	0.036	253-	pod	0* 0	0.14 0.44	< 0.02 < 0.02	BCS-0185 C201 2007
Victoria	Princess			343		1	0.44	< 0.02	C201 2007
	1 1110035					4	0.25	< 0.02	
						6	0.18	< 0.02	
						9	0.13	< 0.02	
					stubble	0*	2.2	< 0.02	
						0	4.6	< 0.02	
						1 4	4.6 3.1	< 0.02 < 0.02	
						6	3.7	0.02	
						9	2.0	< 0.02	
			0.054-	253-	pod	0*	0.14	< 0.02	
			0.071	343		0	0.41	< 0.02	
						1	0.38	< 0.02	
						4 6	0.24 0.22	< 0.02 < 0.02	
						9	0.19	< 0.02	
					stubble	0*	2.7	< 0.02	
					5140010	0	4.9	< 0.02	
						1	4.3	< 0.02	
						4	3.9	0.02	
						6	3.1	0.03	
			0.071-	253-	pod	9 0*	4.1 0.15	< 0.02 < 0.02	-
			0.071-	343	pou	0	0.62	< 0.02	
			0.070	5.5		1	0.43	< 0.02	
						4	0.32	< 0.02	
						6	0.31	< 0.02	
					. 111	9	0.33	< 0.02	-
					stubble	0* 0	3.1 6.9	< 0.02 0.02	
						1	6.0	0.02	
						4	7.6	0.02	
			1			6	5.9	0.04	
		-				9	5.0	0.03	
Australia	Green Pea,	3	0.048	311-	pod	0*	0.12	< 0.02	BCS-0185
Western	Field Massey		1	317		0 1	0.41 0.29	< 0.02 < 0.02	C202 2007
	1v1a550y					2	0.29	< 0.02	
						7	0.22	< 0.02	
						9	0.40	< 0.02	
			1		stubble	0*	0.77	< 0.02	
						0	3.6	< 0.02	
						1 2	2.8 2.1	< 0.02 < 0.02	
			1			7	1.9	< 0.02	
			1			9	3.8	0.03	
			0.073	311-	pod	0*	0.28	< 0.02	1
				317		0	0.70	< 0.02	
						1	0.41	< 0.02	
						2	0.51	< 0.02	
						7 9	0.57 <u>0.90</u>	< 0.02 < 0.02	
			1	I	L	7	0.70	< 0.02	

		Appli	cation				Residues (mg/k	$(g)^a$	
Country	Crop		kg	L/ha			Ttostaatos (iiig) i	F-des	Report No.
Year	P	No	ai/ha	water	Portion	PHI	flubendiamide		Trial No. year
					stubble	0*	2.0	< 0.02	
						0	5.2	0.02	
						1	5.8	0.02	
						2	5.2	< 0.02	
						7	4.5	0.02	
						9	7.4	0.04	
			0.097	311-	pod	0*	0.27	< 0.02	
				317	-	0	0.70	< 0.02	
						1	0.60	< 0.02	
						2	0.63	< 0.02	
						7	0.44	< 0.02	
						9	1.1	< 0.02	
					stubble	0*	4.2	< 0.02	
						0	7.7	0.02	
						1	6.4	0.03	
						2	6.2	0.02	
						7	6.1	0.03	
110.4	D		0.4.5	10.1		9	9.2	0.05	
USA	Bean, Kidney	2	0.110-	184	pod	1	0.09	< 0.01	RAAMP014
Pensilvania	Savannah		0.111		_	3	0.06	< 0.01	AM022-07HA 2007
USA	Bean, Kidney	2	0.104-	91-	pod	1	0.16	< 0.01	RAAMP014
Georgia	Contender		0.105	111		3	0.17	< 0.01	AM023-07HA 2007
USA	Bean, Kidney	2	0.104	176	pod	1	<u>0.09</u>	< 0.01	RAAMP014
Florida	Provider				_	3	0.08	< 0.01	AM024-07HB 2007
USA	Bean, Kidney	2	0.104-	129	pod	0	0.12	< 0.01	RAAMP014
Kansas	Bush		0.105			1	0.14	< 0.01	AM025-07DA 2007
	Contender					3	0.12	< 0.01	
						7	0.06	< 0.01	
LIC A	D 111	2	0.106	120	1	10	0.04	< 0.01	D 4 4 1 (D014
USA N Delecte	Bean, kidney	2	0.106-	138	pod	1	$\frac{0.03}{0.02}$	< 0.01	RAAMP014
N Dakota	Blue Lake 274	2	0.108	00		4	0.02	< 0.01	AM026-07HA 2007
USA Idaho	Bean, kidney	2	0.109-0.110	98	pod	1	$\frac{0.07}{0.04}$	< 0.01 < 0.01	RAAMP014
Idano	Blue Lake Bush		0.110			3	0.04	< 0.01	AM027-07HA 2007
USA	Pea	2	0.105-	138-	nad	1	0.14	< 0.01	RAAMP014
IA	Sugar Sprint	2	0.105-	138-	pod	3	$\frac{0.14}{0.14}$	< 0.01	AM028-07HA 2007
USA	Pea	2	0.100	143	pod	1	0.14	< 0.01	RAAMP014
NE	Oregon	2	0.104	150	pou	3	0.13	< 0.01	AM029-07HA 2007
USA	Pea, Oregon	2	0.106-	186-	pod	1	0.13	< 0.01	RAAMP014
Idaho	sugar pod II	2	0.100-	180-	pou	3	$\frac{0.21}{0.15}$	< 0.01	AM030-07HA 2007
USA	Bean, Lima	2	0.108	136-	bean, w/o	0	< 0.01	< 0.01	RAAMP015
Georgia	Fordhook 242	2	0.105-	163		1	< 0.01 < 0.01	< 0.01	AM031-07DA 2008
Georgia	FOIGHOOK 242		0.100	105	pods	13	$\frac{< 0.01}{< 0.01}$	< 0.01	AW031-07DA 2008
						7	< 0.01	< 0.01	
						10	< 0.01	< 0.01	
USA	Bean, Lima	2	0.107-	125	bean, w/o	10	0.02	< 0.01	RAAMP015
Virginia	Thoro-green	-	0.107-	123	pods	3	0.02	< 0.01	AM032-07HA 2007
USA	Bean, Lima	2	0.108	132-	bean, w/o	1	< 0.01	< 0.01	RAAMP015
Georgia	Jackson	-	0.104-	132-	pods	3	$\frac{< 0.01}{< 0.01}$	< 0.01	AM033-07HA 2007
Georgia	wonder		0.105	159	pous	5	- 0.01	× 0.01	1141033-0711A 2007
USA	Bean, Lima	2	0.107-	145-	bean, w/o	1	0.01	< 0.01	RAAMP015
N. Dakota	Henderson	-	0.107-	145-	pods	3	$\frac{0.01}{< 0.01}$	< 0.01	AM034-07HA 2007
	Bush		0.110	1.57	Pous		. 0.01	0.01	1.1103 1 0/1111 200/
USA	Bean, Lima	2	0.104-	140-	bean, w/o	1	< 0.01	< 0.01	RAAMP015
California	Lee	-	0.104-	140-	pods	3	$\frac{< 0.01}{< 0.01}$	< 0.01	AM035-07HA 2007
USA	Bean, Lima	2	0.103	96-98	bean, w/o	1	< 0.01	< 0.01	RAAMP015
Idaho	Henderson	2	0.103-0.104	20-20	pods	3	$\frac{< 0.01}{< 0.01}$	< 0.01	AM036-07HA 2007
Iduito	Bush		0.104		Pous	5	.0.01	. 0.01	111050 07111 2007
USA	Pea, garden	2	0.108-	180-	peas w/o	1	< 0.01	< 0.01	RAAMP015
Pensilvania	Wando	-	0.103-	180-	pods	3	$\frac{< 0.01}{< 0.01}$	< 0.01	AM037-07HA 2007
- ensireania		I	0.107	102	1000	-	0.01	5.01	- 1100, 0/111 200/

		Appli	cation				Residues (mg/k	(g) ^a	
Country	Crop		kg	L/ha				F-des	Report No.
Year		No	ai/ha	water	Portion	PHI	flubendiamide	iodo	Trial No. year
USA	Pea, garden	2	0.104-	128-	peas w/o	0	0.02	< 0.01	RAAMP015
Iowa	Laxton's		0.108	148	pods	1	0.02	< 0.01	AM038-07DA 2007
	Progress #9					3	0.03	< 0.01	
						7	< 0.01	< 0.01	
						10	0.02	< 0.01	
USA	Pea, garden	2	0.105-	134-	peas w/o	1	< 0.01	< 0.01	RAAMP015
Kansas	Little Marvel		0.106	135	pods	3	< 0.01	< 0.01	AM039-07HA 2007
USA	Pea, garden	2	0.104	140	peas w/o	1	<u>< 0.01</u>	< 0.01	RAAMP015
N. Dakota	Little Marvel				pods	3	< 0.01	< 0.01	AM040-07HA 2007
USA	Pea, garden	2	0.106-	170-	peas w/o	1	0.01	< 0.01	RAAMP015
Idaho	Pendelton		0.109	174	pods	3	< 0.01	< 0.01	AM041-07HA 2007
USA	Pea, garden	2	0.105-	138-	peas w/o	1	< 0.01	< 0.01	RAAMP015
Oregon	Sugar Snap		0.106	150	pods	3	< 0.01	< 0.01	AM042-07HA 2007

^a. residues from USA are the highest of two samples; * prior to last treatment; ** residue in control;

Soya bean

Flubendiamide is registered in USA in soya beans at a GAP of 2×0.10 kg ai/ha, with 1 day PHI for green seed and 3 days PHI for dry seed. Twenty trials were conducted in soya bean seed in USA (Table 70).

Table 70 Results of residue trials conducted with flubendiamide SC480 in/on soya bean in USA in 2007 (RAAMP004)

		Appl	ication				Residues (mg/kg)	a	
	Variety		kg	L/ha					
State		No	ai/ha	water	Portion	PHI	flubendiamide	F-des iodo	Trial No.
Georgia	S76-L9	2	0.10	168	seed,	1	0.04	< 0.01	AM001-07HA
					green	3	0.04	< 0.01	
					seed	14	0.01	< 0.01	
						21	<u>0.06</u>	< 0.01	
North	Pioneer	2	0.10	153	seed,	1	0.04	< 0.01	AM002-07HA
Carolina	95M50				green	3	0.03	< 0.01	
					seed	14	0.01	< 0.01	
						21	0.01	< 0.01	
Arkansas	AG4403RR	2	0.11	148	seed,	1	0.18	< 0.01	AM003-07HA
					green	3	0.21	< 0.01	
					seed	14	0.25	< 0.01	
						21	0.15	< 0.01	
Louisiana	Dyna-gro	2	0.11	124	seed,	1	0.03	< 0.01	AM004-07HA
	33B52				green	3	0.01	< 0.01	
					seed	14	0.01	< 0.01	
						21	0.01	< 0.01	
Arkansas	SG 4680	2	0.10-	188	seed,	1	0.40	< 0.01	AM005-07HA
	RR		0.11		green	3	0.20	< 0.01	
					seed	15	0.02	< 0.01	
						21	0.02	< 0.01	
Illinois	5N382RR	2	0.10-	158-	seed,	0	0.07	< 0.01	AM006-07DA
			0.11	180	green	1	0.04	< 0.01	
					-	3	0.02	< 0.01	
						5	0.02	< 0.01	
						7	0.01	< 0.01	
					seed	10	0.05	< 0.01	
						14	0.05	< 0.01	
						21	0.06	< 0.01	
						28	<u>0.14</u>	< 0.01	
						35	0.04	< 0.01	

		Appl	ication				Residues (mg/kg	$(z)^{a}$	
a	Variety		kg	L/ha			a. 1		
State	D.	No	ai/ha	water	Portion	PHI	flubendiamide	F-des iodo	Trial No.
Iowa	Pioneer 93B82	2	0.10- 0.11	121	seed,	0 1	0.19 0.15	< 0.01 < 0.01	AM007-07DA
	95082		0.11		green	3	0.13	< 0.01	
						5	0.07	< 0.01	
						7	0.07	< 0.01	
					seed	10	0.03	< 0.01	
						14	<u>0.07</u>	< 0.01	
						21	0.02	< 0.01	
						28 35	0.01 < 0.01	< 0.01	
Missouri	Hutcheson	2	0.104	133	seed,	1	<u>0.29</u>	< 0.01 < 0.01	AM008-07HA
wiissouri	Trutelleson	2	0.104	155	green	3	$\frac{0.29}{0.16}$	< 0.01	Alv1008-0/11A
					seed	14	0.02	< 0.01	
					seed	21	0.02	< 0.01	
Ohio	Shur Grow	2	0.11	164	seed,	1	0.01	< 0.01	AM009-07HA
	354 RR				green	3	<u>0.04</u>	< 0.01	
					seed	14	0.03	< 0.01	
						22	< 0.01	< 0.01	
Iowa	93M11	2	0.11	177-	seed,	1	<u>0.02</u>	< 0.01	AM010-07HA
				179	green	3	0.02	< 0.01	
					seed	15	0.01	< 0.01	
N (1	0 1	2	0.105	0.40	1	22	0.07	< 0.01	
North Dakota	Croplan	2	0.105	940	seed,	1 3	$\frac{0.05}{0.04}$	< 0.01 < 0.01	AM011-07HA
Dakota					green seed	14	<u>0.02</u>	< 0.01	
					secu	24	0.01	< 0.01	
North	4238491	2	0.10-	142-	seed,	1	0.09	< 0.01	AM012-07HA
Dakota		-	0.11	149	green	3	0.09	< 0.01	
					seed	15	< 0.01	< 0.01	
						21	0.01	< 0.01	
Iowa	Asgrow	2	0.10-	156-	seed,	1	0.20	< 0.01	AM013-07HA
	3802		0.11	163	green	3	0.18	< 0.01	
					seed	14	0.09	< 0.01	
						21	0.11	< 0.01	
Nebraska	NKS32G5	2	0.11	143-	seed,	1	$\frac{0.07}{0.04}$	< 0.01	AM014-07HA
				146	green	3	0.04	< 0.01 < 0.01	
					seed	13	$\frac{0.03}{0.03}$	< 0.01	
Kansas	NK S39-	2	0.11	140	seed,	1	0.07	< 0.01	AM015-07HA
Tunibus	K6	1	0.11	110	green	3	0.02	< 0.01	1111010 071111
					seed	14	0.03	< 0.01	
						20	0.04	< 0.01	
Minnesota	Pioneer	2	0.10-	161-	seed,	1	0.07	< 0.01	AM016-07HA
	91M70		0.11	166	green	3	<u>0.08</u>	< 0.01	
					seed	14	<u>0.03</u>	< 0.01	
x 1.		-	0.10	110	<u> </u>	21	0.03	< 0.01	
Indiana	Pioneer	2	0.10-	119-	seed,	1	0.10	< 0.01	AM017-07HA
	92m91		0.11	133	green	3	0.12	< 0.01	
					seed	14 21	0.27 <u>0.30</u>	< 0.01 < 0.01	
Nebraska	NC+	2	0.10	185	seed,	1	0.20	< 0.01	AM018-07HA
	3A61RR	<u>ا</u>	5.15	100	green	3	0.16	< 0.01	
		1		1	seed	14	0.03	< 0.01	
						21	0.01	< 0.01	
Ohio	Crows	2	0.11	144-	seed,	1	0.09	< 0.01	AM019-07HA
	3817R			150	green	3	0.10	< 0.01	
					seed	15	0.03	< 0.01	
N <i>C</i> ¹		-	0.11	1	<u> </u>	19	0.02	< 0.01	
Minnesota	DynaGro	2	0.10	140	seed,	1	$\frac{0.03}{0.02}$	< 0.01	AM020-07HA
	33T06	1		1	green	3	0.03	< 0.01	_
					seed	14	$\frac{0.01}{0.01}$	< 0.01	
		1		1		20	0.01	< 0.01	

^a. highest residue of two samples

Dry peas

Flubendiamide is registered in USA for dry beans and peas at 2×0.1 kg ai/ha and 14 days PHI. Fourteen residue field trials were conducted with flubendiamide in dry bean in the country (Table 71).

Table 71 Results of residue trials conducted with flubendiamide SC480 in/on dry pea and cowpea in
USA 2007 (RAAMP016)

		Applic	cation			Residues (mg/kg) ^a	
Country	Crop			L/ha				
Year	variety	No	kg ai/ha	water	PHI	flubendiamide	F-des iodo	Trial No.
Kansas	Cowpea	2	0.107	140	7	0.02	< 0.01	AM043-
	Pinkeye Purplehull				14	< 0.01/0.02*	< 0.01/0.01**	07DA
					21	< 0.01	< 0.01	
					28	0.01	< 0.01	
					35	< 0.01	< 0.01	
Michigan	Cowpea	2	0.10-	140-143	14	< 0.01/0.02**	< 0.01/0.01**	AM044-
-	Vista Navy		0.11		21	0.01	< 0.01	07HA
Iowa	Cowpea, Clifornia	2	0.10	161-167	15	0.04/0.02**	< 0.01/0.01**	AM045-
	Blackeye				22	0.03	< 0.01	07HA
Ilinois	Cowpea	2	0.11	164	14	<u>0.20</u> /0.02**	< 0.01/0.01**	AM046-
	California Blackeye				21	0.02	< 0.01	07HA
N Dakota	Cowpea	2	0.11	180	14	0.04	< 0.01	AM047-
	Naviagator				21	0.02	< 0.01	07HA
Kansas	Cowpea, Pinto Field	2	0.10	165-170	13	<u>0.06</u> /0.01**	< 0.01	AM048-
	Bean				20	0.03	< 0.01	07HA
Idaho	Cowpea	2	0.10-	173	14	<u>0.01</u> /0.01**	< 0.01/0.01**	AM049-
	Othello Pinto		0.11		21	0.01	< 0.01	07HA
California	Cowpea	2	0.105	142	14	0.01/0.02**	< 0.01/0.01**	AM050-
	Canario 707				21	0.02	< 0.01	07HA
Idaho	Cowpea	2	0.10-	155	14	<u>0.04</u> /0.02**	< 0.01/0.01**	AM051-
	Small Reds 63		0.11		21	0.02	< 0.01	07HA
Washington	Pea	2	0.105-	178	7	0.04	< 0.01	AM052-
	Tonic		0.106		14	0.04/0.02**	< 0.01	07DA
					21	0.05	< 0.01/0.01**	
					28	0.03	< 0.01	
					35	<u>0.08</u>	< 0.01	
Oregon	Pea, Green Arrow	2	0.106	0.0635-	14	0.10/0.02**	0.03/0.01**	AM053-
				0.0639	21	<u>0.18</u>	0.03	07HA
Oregon	Pea	2	0.10-	170	14	0.07/0.02**	0.03/0.01**	AM054-
	Ariel		0.11		21	<u>0.11</u>	0.03	07HA
Idaho	Pea	2	0.105-	170	14	<u>0.59</u> /0.02**	< 0.01/0.01**	AM055-
	Pendelton		0.107		21	0.04	< 0.01	07HA
Idaho	Pea, Austrian Winter	2	0.105	184	14	0.12/0.01**	0.03/0.02**	AM056-
	Peas				21	<u>0.18</u>	0.03	07HA

* ^a highest residue of two samples; ** residue in control.

Celery

Flubendiamide is registered in USA in leafy vegetables at a maximum rate of 3×0.05 kg ai/ha and 1 day PHI Five trials were conducted in USA in celery (Table 72).

Table 72 Results of residue trials conducted with 5 applications of flubendiamide WG in/on celery in USA in 2004 (RCAMY008)

		Application			Residues (mg/kg)	1	
Country Year	Variety	kg ai/ha	L/ha water	PHI	flubendiamide	F-des iodo	Trial No.

		Application				Residues (mg/kg)	a	
Country	Variety	kg ai/ha	L/ha		PHI	flubendiamide	F-des iodo	Trial No.
Year			water					
Nebraska	unknown	0.050-0.051	131-135	Stalk*	0	2.5	< 0.01	AM161-04D
					1	1.2	< 0.01	
					3	0.65	< 0.01	
					7	0.91	< 0.01	
					10	0.95	< 0.01	
Florida	M9	0.049-0.051	94-104	stalk*	1	0.81	< 0.01	AM160-04H
California	Sonora	0.050-0.052	187-191	stalk*	1	2.3	< 0.01	AM162-04H
California	Challenger	0.050-0.051	177-184	stalk*	1	2.1	< 0.01	AM163-04H
California	Conquistador	0.049-0.051	148-155	stalk*	1	1.3	< 0.01	AM164-04H
California	Big C	0.050-0.051	136-138	stalk*	1	2.6	< 0.01	AM165-04H

* untrimmed leaf stalks; ^a highest residue of two samples

Corn

Flubendiamide is registered in USA in field corn at a maximum rate of 4×0.10 kg ai/ha and 28 day PHI. Twenty trials were conducted in Canada and USA (Table 73).

Table 73 Results of residue trials conducted with 4 applications of flubendiamide SC480 in/on field corn kernel in 2004 (RCAMY004)

		Application			Residues (mg/	kg) ^a	
Country, Region	Crop	kg ai/ha	L/ha water	PHI	Flubendia-	F-des	Trial No.
	-	0			mide	iodo	
Canadá, Ontario	P39M79	0.10	87-98	32	< <u>0.01</u>	< 0.01	AM108-04H-A
Canadá, Ontario	38P04	0.10	89-102	34	< <u>0.01</u>	< 0.01	AM109-04H
Canada, Ontario	Pioneer 39T70	0.10	84-98	34	< <u>0.01</u>	< 0.01	AM110-04H
USA, New York	Garst 8948RR	0.10	155-158	28	< <u>0.01</u>	< 0.01	AM100-04H-A
USA, Georgia	Pioneer RR 31N26	0.10	141-148	28	< <u>0.01</u>	< 0.01	AM102-04H-A
USA	Garst 8451RR	0.10	125-146	7	< 0.01	< 0.01	AM104-04D-A
Kansas				14	< 0.01	< 0.01	
				21	< 0.01	< 0.01	
				27	< <u>0.01</u>	< 0.01	
				35	< 0.01	< 0.01	
USA	NK 67T4	0.10	131-133	7	< 0.01	< 0.01	AM106-04D-A
Nebraska				14	< 0.01	< 0.01	
				20	< 0.01	< 0.01	
				27	< <u>0.01</u>	< 0.01	
				34	< 0.01	< 0.01	
USA, Illinois	Garst 8550 Bt	0.10	130-134	28	< <u>0.01</u>	< 0.01	AM105-04H-A
USA, Minnesota	NK N27-M3	0.10	106-117	35	<u>0.01</u>	< 0.01	AM107-04H-A
USA, Iowa	33P34	0.11	148-202	28	< <u>0.01</u>	< 0.01	AM111-04H
USA, N. Dakota	2789RRY (Sabre)	0.10	163-171	27	< <u>0.01</u>	< 0.01	AM112-04H
USA, N. Dakota	0083098 (Dekalb)	0.10	157-171	27	< <u>0.01</u>	< 0.01	AM113-04H
USA, Ohio	AgriGold 6395	0.10	138-140	27	< <u>0.01</u>	< 0.01	AM114-04H
USA, Illinois	Buurus 569	0.10	91-102	28	< <u>0.01</u>	< 0.01	AM115-04H
USA, Illinois	NK N50-P5	0.10	128-134	48	< 0.01	< 0.01	AM116-04H
USA, N. Dakota	LR9781RR (Legend)	0.10	165-170	27	< <u>0.01</u>	< 0.01	AM117-04H
USA, Iowa	GH H9247BT	0.10	127-158	27	< <u>0.01</u>	< 0.01	AM118-04H
USA, Minnesota	Cropland 212RR/BT	0.10	185-211	26	< <u>0.01</u>	< 0.01	AM119-04H
USA, Missouri	LG 2540	0.10	158-174	28	0.01	< 0.01	AM120-04H
USA, Texas	EXP 804 RR/YGRW	0.10	94-110	27	< <u>0.01</u>	< 0.01	AM121-04H

^a mean of two samples

Rice

Flubendiamide is registered in India in rice at 3×0.024 kg ai/ha (375 to 500 L/ha) and 40 days PHI. Twelve trials were conducted in rice in Thailand and India (Table 74).

		Application				Residues (mg	g/kg) ^a	
Country	Crop	kg ai/ha	L/ha	Portion	PHI	Flubendia-	F-des iodo	
Year			water			mide		Trial No.
Thailand,	Suphan Buri 1	0.025	250-265	Grain ^a	30	< 0.01	< 0.01	TH07W008R
Parthunthani		0.05-0.06	246-292	Brown	30	< 0.01	< 0.01	
				Polished	30	< 0.01	< 0.01	
Thailand	Suphan Buri 1	0.02	230-256	Grain ^a	27	0.04	< 0.01	TH07W009R
Thailand	RD29	0.026	246-270	Grain ^a	28	0.11	< 0.01	TH07W010R
Thailand	Phitsanulok 2	0.021-0.027	240-268	Grain ^a	28	< 0.01	< 0.01	TH07W011R
Thailand	Pathum Thani .1	0.024-0.025	235-278	Grain ^a	28	0.04	< 0.01	TH07W012R
Thailand	Chai Nat 1	0.024-0.027	238-254	Grain ^a	13	0.30	< 0.01	TH07W013R
Thailand	Pathum Thani 1	0.024-0.026	240-256	Grain ^a	28	0.03	< 0.01	TH07W014R
Thailand	Pathum Thani 80	0.024-0.026	246-264	Grain ^a	28	0.05	< 0.01	TH07W015R
Thailand	Pathum Thani	0.020-0.024	240-290	Grain ^a	28	0.02	< 0.01	TH07W016R
Thailand	Suphan buri	0.023-0.029	226-290	Grain ^a	28	< 0.01	< 0.01	TH07W017R
India, Mandya	Jaya	0.025		Grain	28	0.20	< 0.01	G5077, F1
India, Shimoga	Jyothi	0.025		Grain	28	0.06	< 0.01	G5077, F2

Table 74 Results of residue trials conducted with 3 applications of flubendiamide WDG in/on rice in Asia in 2008 (20074104/AS1-FPRI)

^a highest residue of two samples

Tree nuts

Flubendiamide is registered in USA in tree nuts at 3×0.14 kg ai/ha and 14 days PHI Twenty trials were conducted in almonds and pecan nut in USA (Table 75).

Table 75 Results of residue trials conducted with flubendiamide SC in/on tree nut in USA in 2004. Residues in nut without shell (RCAMY014)

		Appli	cation			Residues (mg/k	(g) ^a	
Country Year	Crop	No	kg ai/ha	L/ha water	PHI	flubendiamide	F-des iodo	Trial No.
California	Almond, Non-Pareil	3	0.14	598-617	14	<u>< 0.01</u>	< 0.01	AM214-04H-C
California	Almond	3	0.14	411-415	0	0.07	< 0.01	AM213-04D-C
	Wood Colony,				7	0.05	< 0.01	
	Butte				14	0.03	< 0.01	
					21	<u>0.04</u>	< 0.01	
					28	0.04	< 0.01	
California	Almond, Mission	3	0.14	570-614	14	<u>< 0.01</u>	< 0.01	AM215-04H-C
California	Almond, Carmel	3	0.14	524-568	14	<u>0.01</u>	< 0.01	AM216-04H-C
California	Almond, Price	3	0.14	488-494	14	0.02	< 0.01	AM217-04H-C
California	Almond, Wood Colony	3	0.140	2340	14	<u>0.05</u>	< 0.01	AM213-04D-D
California	Almond, Non-Pareil	3	0.14	2143-2149	14	< 0.01	< 0.01	AM214-04H-D
California	Almond, Mission	3	0.14	2530-2641	14	< 0.01	< 0.01	AM215-04H-D
California	Almond, Carmel	3	0.14	2217-2414	14	0.02	< 0.01	AM216-04H-D
California	Almond, Price	3	0.14	2774-2834	14	0.02	< 0.01	AM217-04H-D
Georgia	Pecan nut, Stewart	3	0.14	545-564	13	<u>< 0.01</u>	< 0.01	AM218-04H-C
Georgia	Pecan nut, Sumner	3	0.14	457-466	13	<u>< 0.01</u>	< 0.01	AM219-04H-C
Texas	Pecan nut, Stuart	3	0.14	422-452	14	< 0.01	< 0.01	AM221-04H-C
Oklahoma	Pecan nut, Natives	3	0.14	532-572	12	0.03	< 0.01	AM222-04H-C
Louisiana	Pecan nut, Oconee	3	0.14	377-600	0	0.02	< 0.01	AM220-04D-C
					7	0.01	< 0.01	
					14	<u>0.01</u>	< 0.01	
					21	0.01	< 0.01	
					28	< 0.01	< 0.01	
Georgia	Pecan nut, Stewart	3	0.14	0.007	13	<u>< 0.01</u>	< 0.01	AM218-04H-D
Georgia	Pecan nut, Sumner	3	0.14	0.006-0.007	13	< 0.01	< 0.01	AM219-04H- D

1353

	Application					Residues (mg/k		
Country Year	Crop	No	kg ai/ha	L/ha water	PHI	flubendiamide	F-des iodo	Trial No.
Louisiana	Pecan nut, Oconee	3	0.14	0.005-0.007	14	0.01	< 0.01	AM220-04D- D
Texas	Pecan nut, Stuart	3	0.14	0.007	14	<u>< 0.01</u>	< 0.01	AM221-04H- D
Oklahoma	Pecan nut, Natives	3	0.14	0.007	12	0.02	< 0.01	AM222-04H- D

^a highest residues of two samples

Cotton

Flubendiamide is registered in USA in cotton at 3×0.10 kg ai/ha and 28 days PHI. Twelve trials were conducted with flubendiamide in/on cotton seed in the country (Table 76).

Table 76 Results of residue trials conducted with 3 applications of flubendiamida SC480 in/on cotton seed in USA 2004/2005 (RCAMY002)

		Application			Residues (mg/kg) ^a	l	
State	Variety	kg ai/ha	L/ha water	PHI	flubendiamide	F-des iodo	Trial No.
Georgia	RR Delta Pine	0.104-0.105	97-101	26	<u>0.19</u>	< 0.01	AM087-04HA
Mississippi	FM 960 BR	0.105-0.107	153-173	0	0.45	< 0.01	AM088-04D
				10	0.41	< 0.01	
				22	0.21	< 0.01	
				26	<u>0.18</u>	< 0.01	
				35	0.13	< 0.01	
Arkansas	PM 1218 BG RR	0.105	94	28	0.11	< 0.01	AM089-04HA
Arkansas	ST4793R	0.10-0.11	139	28	0.03	< 0.01	AM090-04H
Texas	FiberMax 989 LL	0.10-0.11	129-140	26	0.37	< 0.01	AM091-04H
Texas	Fibermax 958	0.10-0.11	174-177	27	1.0	< 0.01	AM092-04HA
Oklahoma	PM 2280	0.10	112-117	28	0.12	< 0.01	AM093-04HA
Texas	FM 989 BR	0.10-0.11	134-144	28	< 0.01	< 0.01	AM094-04H
Oklahoma	Paymaster 2280	0.11	133-135	27	0.02	< 0.01	AM095-04H
California	Sierra RR	0.10	166-173	28	0.25	< 0.01	AM096-04H
California	Acala Riata	0.10	170-173	28	0.12	< 0.01	AM097-04H
California	Acala Maxxa	0.10-0.11	135-137	28	0.28	< 0.01	AM098-04H

^a. highest residues of two samples

Теа

Flubendiamide is registered in Japan in tea at 1×0.40 kg ai/ha and 7 days PHI. Six trials were conducted with flubendiamide in/on tea in Japan (Table 77).

Table 77 Results of residue trials conducted with flubendiamide in/on green tea in Japan in 2008 (08R001)

		Application				Residues (mg/kg)
Region	Variety	No	kg ai/ha	kg ai/hL	PHI	flubendiamide
Saitama	Fukumidori	1	0.4	10	7	<u>24</u>
					14	12
					21	3.8
Kagoshima	Okumidori	1	0.4	10	7	<u>22</u>
					14	8.6
					21	1.3
Kyoto	Yabukita	1	0.4	10	7	<u>17</u>
J Mie	Yabukita	1	0.4	10	7	<u>28</u>
Kouchi	Yabukita	1	0.4	10	7	<u>29</u>
J Miyazaki	Fuushun	1	0.4	10	7	<u>11</u>

Animal feed

In the supervised trials conducted in dry pea, corn, rice, cotton, soya bean and almonds crops parts of the plants used as animal feed were also sampled. Residues of flumendiamide in these samples are shown on Tables 78 to 83.

Table 78 Results of residue trials conducted with	flubendiamide SC480 in/on soya bean in USA in
2007 (RAAMP004	

		Applica	tion				Residues (mg/kg	$)^{a}$	
State	Variety	No	kg	kg	Portion	PHI	flubendiamide	Flubendiamide	
	-		ai/ha	ai/hL				des iodo	Trial No.
Georgia	S76-L9	2	0.105-	150	forage	3	10	0.04	AM001-07HA
e			0.106		Ũ	7	8.9	0.05	
					hay	3	<u>26</u>	0.09	
						7	22	0.09	
North	Pioneer	2	0.104-	157-	forage	3	<u>11</u>	0.07	AM002-07HA
Carolina	95M50		0.108	164		7	11	0.06	
					hay	3	25	0.17	
						7	<u>24</u>	0.14	
Arkansas	AG4403RR	2	0.105-	133	forage	3	<u>9.1</u>	0.04	AM003-07HA
			0.106			7	7.2	0.03	
					hay	3	25	0.08	
	-	-				7	<u>30</u>	0.12	
Louisiana	Dyna-gro	2	0.106	148	forage	3	$\frac{4.3}{2.2}$	0.04	AM004-07HA
	33B52					7	2.9	0.04	_
					hay	3	$\frac{14}{2}$	0.14	
	99.4699	-	0.105	107	6	7	8.1	0.11	
Arkansas	SG 4680	2	0.105	187	forage	3	$\frac{8.0}{62}$	0.05	AM005-07HA
	RR				1	7	6.2	0.06	_
					hay	3 7	$\frac{35}{30}$	0.27 0.27	
Illinois	5N382RR	2	0.104-	170-	forage	0	15	0.05	AM006-07DA
minois	JINJOZKK	2	0.104-	170-	lolage	3	<u>11</u>	0.05	AM000-07DA
			0.105	170		7	8.7	0.06	
						10	5.4	0.02	
						14	4.0	0.03	
					hay	0	32	0.12	
						3	22	0.12	
						7	15	0.10	
						10	15	0.08	
						14	14	0.10	
Iowa	Pioneer	2	0.105-	158-	forage	0	14	0.04	RAAMP004
	93B82		0.106	180		3	<u>10</u>	0.06	AM007-07DA
						7	7.4	0.05	2007
						10	3.4	0.03	
						14	8.9	0.03	_
					hay	0	80	0.23	
						3	$\frac{39}{25}$	0.21	
						7 10	13	0.26 0.11	
						10	13 6.7	0.07	
Missouri	Hutcheson	2	0.107	133	forage	3	2.8	< 0.01	AM008-07HA
111550011	Tuteneson	1	0.107	1.55	lorage	7	<u>6.7</u>	0.03	1111000-0711A
					hay	3	17	0.05	-
					ing	7	<u>17</u> 9.8	0.04	
Ohio	Shur Grow	2	0.105-	163	forage	3	4.6	0.05	AM009-07HA
-	354 RR		0.106			7	<u>6.0</u>	0.04	
					hay	3	8.6	0.10	1
					,	7	<u>12</u>	0.13	
Iowa	93M11	2	0.102-	168-	forage	3	6.1	0.03	AM010-07HA
			0.107	178	L	7	4.4	0.04	
					hay	3	25	0.16	7
						7	16	0.14	

		Applica	tion				Residues (mg/kg) ^a	
State	Variety	No	kg ai/ha	kg ai/hL	Portion	PHI	flubendiamide	Flubendiamide des iodo	Trial No.
North Dakota	Croplan	2	0.106	141	forage	5 7	$\frac{7.1}{3.7}$	0.03 0.01	AM011-07HA
Dakota					hay	5 7	$\frac{13}{8.8}$	0.06 0.05	-
North Dakota	4238491	2	0.106- 0.108	144	forage	3 7	<u>7.2</u> 4.5	0.03	RAAMP004 AM012-07HA
Dakota			0.108		hay	7 3 7	$\frac{32}{20}$	0.03 0.21 0.14	AMOI2-0/IIA
Iowa	Asgrow	2	0.104	162-	forage	7 3 7	$\frac{13}{5.9}$	0.06	RAAMP004
	3802			178	hay	3	<u>33</u>	0.05	AM013-07HA
Nebraska	NKS32G5	2	0.105	126	forage	7 3	26 <u>9.9</u>	0.26	RAAMP004
					hay	7 3	7.2 <u>41</u>	0.02 0.23	AM014-07HA
Kansas	NK S39-K6	2	0.104-	143-	forage	7 3	<u>19</u> <u>7.6</u>	0.07 0.03	RAAMP004
			0.107	146	hay	7 3 9	6.5 <u>29</u> 24	0.02 0.18 0.09	AM015-07HA
Minnesota	Pioneer 91M70	2	0.105- 0.107	143- 146	forage	9 3 7	<u>6.8</u> 2.9	0.05 0.01	RAAMP004 AM016-07HA
	9111170		0.107	140	hay	3 7	$\frac{15}{10}$	0.08 0.04	AMOIO-0/IIA
Indiana	Pioneer 92m91	2	0.104	146- 153	forage	3 7	<u>15</u> 7.3	0.04 0.02	RAAMP004 AM017-07HA
	9211191			155	hay	3 7	$\frac{34}{18}$	0.10 0.06	AMOT/-0/IIA
Nebraska	NC+ 3A61RR	2	0.104- 0.105	113	forage	3 7	$\frac{7.9}{5.0}$	0.06 0.03	RAAMP004 AM018-07HA
	<i>onona</i>		0.100		hay	3 7	<u>41</u> 11	0.41 0.16	
Ohio	Crows 3817R	2	0.106- 0.107	151	forage	3 7	<u>7.7</u> 6.3	0.04 0.02	RAAMP004 AM019-07HA
					hay	3 7	<u>29</u> 25	0.14 0.12	
Minnesota	DynaGro 33T06	2	0.105- 0.106	144- 150	forage	3 7	$\frac{10}{4.1}$	0.06 0.05	RAAMP004 AM020-07HA
					hay	3 7	$\frac{23}{21}$	0.20 0.22	

^a. highest residue of two samples

Table 79 Results of residue trials conducted with flubendiamide SC480 in/on dry pea in USA in 2007
(RAAMP016)

		Appli	cation				Residues (mg/k	g) ^a	
Region	Crop	No	kg ai/ha	L/ha water	Portion	PHI	flubendiamide	F-des iodo	Trial No.
Gardner	Cowpea Pinkeye Purplehull	2	0.11	139	forage	0 3 7 10 14	11 <u>6.6</u> <u>4.1</u> 1.7 0.80	0.04 0.04 0.03 0.01 < 0.01	AM043-07DA
			0.10- 0.11	140- 143	hay	0 3 7 9 14	25 <u>25</u> /0.02** 14 15 14	0.05 0.09/0.01** 0.11 0.07 0.15	
Saginaw	Cowpea Vista	2	0.10- 0.11	161- 167	forage	3 7	11/0.01** <u>14</u>	0.03 0.04	RAAMP016 AM044-07HA

		Appli	cation				Residues (mg/k	g) ^a	
Region	Crop	No	kg ai/ha	L/ha water	Portion	PHI	flubendiamide	F-des iodo	Trial No.
	Navy		0.10- 0.11	169	hay	3 6	13/0.02** 26	0.03/0.01** 0.05	
Bagley	Cowpea California Blackeye	2	0.10	170- 174 170-	forage hay	4 7 3	3.4 <u>4.2</u> 24/21**	0.02 0.02 0.05/0.10**	RAAMP016 AM045-07HA
			0.11	179	nuy	7	12	0.04	
Carlyle	Cowpea California	2	0.11	121- 130	forage	3 7	<u>5.5</u> /0.01** 3.9	0.02/0.01** 0.02	RAAMP016 AM046-07HA
	Blackeye		0.10- 0.11	150- 166	hay	3 7	10/0.02** 16	0.04/0.01** 0.07	
Eldridge	Cowpea California	2	0.10- 0.11	133	forage	3 7	$\frac{3.9}{3.4}$	0.01 0.01	RAAMP016 AM047-07HA
	Blackeye			115- 137	hay	3 7	7.3/0.01** <u>8.3</u>	0.02 0.03	
Rupert	Cowpea Small	2	0.10- 0.11	153- 157	forage	3 7	$\frac{9.0}{2.6}$	0.04 0.02	RAAMP016 AM051-07HA
	Reds 63		0.11	98	hay	3 7	<u>15</u> /0.02** 9.0	0.06/0.01** 0.04	
Ephrata	Pea Tonic	2	0.10- 0.11	179	vines	0 3 7 10 14	3.4 <u>2.4</u> /0.01** 1.4 0.91 0.78	0.01 0.01/0.01** 0.01 < 0.01 0.02	RAAMP016 AM052-07DA
					hay	0 3 7 10 14	$\begin{array}{c} 6.2 \\ \underline{4.0/0.02^{**}} \\ \underline{4.2} \\ 2.4 \\ 2.8 \end{array}$	0.02 0.03/0.01** 0.02 0.02 0.02 0.02	
Parkdale	Pea Green Arrow	2	0.106	167	vines hay	3 7 3	3.4/0.01** <u>3.6</u> 8.0/0.02**	0.02/0.01** 0.02 0.04/0.01**	RAAMP016 AM053-07HA
Madras	Pea Ariel	2	0.10- 0.11	169	vines	7 3 7	$\frac{\underline{12}}{\underline{3.1/0.01}^{**}}$	0.07 0.02/0.01** 0.02	RAAMP016 AM054-07HA
					hay	3 7	7.6/0.01** <u>9.1</u>	0.04/0.01** 0.06	
Jerome	Pea Pendelton	2	0.10- 0.11	167- 173	vines hay	3 7 3	2.4/0.01** 1.5 9.9/0.01**	0.01/0.01** 0.01 0.04/0.01**	RAAMP016 AM055-07HA
Payette	Pea	2	0.10	183-	vines	7 3	9.2 <u>5.5/</u> 0.01**	0.05 0.02/0.02**	RAAMP016
	Austrian Winter			185	hay	7 3 7	5.0 19/0.01** 20	0.02 0.06/0.01** 0.07	AM056-07HA

^a. highest residue of two samples, ** residue in control

Table 80 Results of residue trials conducted with flubendiamide SC480 in/on corn (field and sweet) in 2004/2005 (RCAMY004)

		Applic	Application				Residues (mg/k	g) ^a	
Country	Crop	No	kg	L/ha	Portion	PHI	flubendiamide	F-des	
Year			ai/ha	water				iodo	Trial No.
Canada	Corn	4	0.10-	87-98	forage	1	<u>3.7</u>	0.02	AM108-04H-A
Ontario	P39M79		0.11		fodder	32	<u>5.9</u>	0.02	
Canada	Corn	4	0.10-	89-102	forage	1	<u>3.9</u>	0.02	AM109-04H
Ontario	38P04		0.11		fodder	34	<u>9.6</u>	0.03	
Canada	Corn	4	0.10-	84-97	forage	1	<u>5.0</u>	0.02	AM110-04H
Ontario	Pioneer39T70		0.11		fodder	34	4.3	0.02	
Canada	Corn, sweet	4	0.10-	87-95	forage	1	3.5	0.01	AM108-04H-B
Ontario	P39M79		0.11						

		Applic	ation				Residues (mg/k	$(g)^a$	
Country	Crop	No	kg	L/ha	Portion	PHI	flubendiamide	F-des	
Year	crop	1.0	ai/ha	water	1 0101011		indo ontainindo	iodo	Trial No.
USA	Corn	4	0.11	155-	forage	1	1.0	< 0.01	AM100-04H-A
New York	Garst 8948RR	-		162	fodder	28	2.9	0.01	
USA	Corn, Pioneer	4	0.10	149	forage	1	5.6	0.02	AM102-04H
Georgia	RR 31N26	-			fodder	28	9.7	0.04	
USA	Corn	4	0.10	138-	forage	0	3.3	0.01	AM104-04D-A
Stilwell,	Garst 8451RR			144		1	3.8	0.01	
Kansas						2	3.8	0.01	
						7	3.4	0.02	
						10	2.6	0.01	
					fodder	7	6.1	0.02	
						14	3.8	0.02	
						21	3.5	0.02	
						27	<u>5.3</u>	0.02	
110.4	0	4	0.10	125	C	35	2.6	0.01	
USA Samina Calif	Corn	4	0.10-	135-	forage	0	2.4	0.01	AM106-04D-A
Springfield, Nebraska	NK 67T4		0.11	138		1	3.1	0.02	
Nebraska						3 7	$\frac{3.4}{2.4}$	0.02 0.02	
						10	2.4	0.02	
					fodder	7	6.0	0.01	-
					loudel	14	4.8	0.02	
						20	4.8	0.02	
						20	4.2	0.02	
						34	7.4	0.02	
USA	Corn	4	0.10-	143-	forage	1	4.2	0.02	AM105-04H-A
Illinois	Garst 8550 Bt		0.11	150	fodder	28	3.4	0.02	
USA	Corn	4	0.11	106-	forage	1	1.7	< 0.01	AM107-04H-A
Minnesota	NK N27-M3		0.11	118	fodder	35	4.4	0.02	
USA	Corn	4	0.11	148-	forage	1	3.8	0.02	AM111-04H
Iowa	33P34	-	0.11	202	fodder	28	8.0	0.02	
USA	Corn, 789RRY	4	0.10-	163-	forage	1	3.7	< 0.01	AM112-04H
Dakota	(Sabre)	-	0.11	171	fodder	27	3.8	0.02	
USA	Corn, 0083098	4	0.10-	157-	forage	1	3.6	0.01	AM113-04H
Dakota	(Dekalb)		0.11	171	fodder	27	5.0	0.02	
USA	Corn	4	0.10	138-	forage	1	5.3	0.02	AM114-04H
Ohio	AgriGold 6395		0.10	140	fodder	27	14	0.05	
USA	Corn	4	0.10-	91-102	forage	1	1.8	< 0.01	AM115-04H
Illinois	Buurus 569		0.11	<i></i>	fodder	28	5.9	0.04	
USA	Corn	4	0.10-	128-	forage	1	4.8	0.02	AM116-04H
Illinois	NK N50-P5		0.10	134	fodder	48	6.3	0.02	
USA	CornLR9781RR	4	0.10-	165-	forage	1	3.6	0.01	AM117-04H
N. Dakota	(Legend)	.	0.11	170	fodder	27	7.3	0.01	
USA	Corn	4	0.10	158-	forage	1	1.8	< 0.02	AM118-04H
Iowa	GH H9247BT			130	fodder	27	2.7	0.02	
USA	Corn Cropland	4	0.10-	185-	forage	1	4.6	0.02	AM119-04H
Minnesota	212RR/BT		0.10	211	fodder	26	10	0.02	
	Corn	4	0.10-	158-	forage	0	8.4	0.02	AM120-04H
	LG 2540	.	0.10-	174	fodder	28	12	0.02	
USA	Corn EXP 804	4	0.10-	84-110	forage	1	3.6	0.00	AM121-04H
Texas	RR/YGRW	.	0.10	0.110	fodder	27	4.3	0.02	
USA	Corn, sweet	4	0.11	155-	forage	1	2.0	< 0.01	AM100-04H-B
New York	Garst 8948RR	.	V.1.1	158		1	<u></u>	0.01	Line of the D
USA	Corn, sweet	4	0.10-	130-	forage	1	6.7	0.02	AM101-04H
Virginia	Silver Queen	1	0.10-	130-	fodder	28	9.3	0.02	111101-0411
	Sirver Queen		0.11	1.51	iouuci	20	<u>).</u>	0.04	
USA	Sweet Pioneer	4	0.10-	141-	forage	1	3.8	0.01	AM102-04H-B
Georgia	RR31N26		0.10-	141-	iorage	1	<u>3.0</u>	0.01	1 101102-0411-D
Georgia	11120	L	0.11	170	l		1	1	

		Applic	ation				Residues (mg/k	(g) ^a	
Country	Crop	No	kg	L/ha	Portion	PHI	flubendiamide	F-des	
Year	-		ai/ha	water				iodo	Trial No.
USA	Corn, sweet	4	0.10-	124-	forage	0	5.1	0.02	AM103-04DA
Florida	Incredible		0.11	129		1	4.4	0.02	
						3	5.8	0.02	
						7	<u>5.6</u>	0.02	
						10	5.1	0.03	
					fodder	7	7.27	0.04	
						12	4.8	0.02	
						19	2.8	0.01	
						27	$\frac{2.1}{1.7}$	0.01	
	<u> </u>		0.10	105	0	33	1.7	0.01	
USA	Corn, sweet	4	0.10-	125-	forage	2	2.4	0.01	AM104-04D-B
Kansas	Garst 8451RR		0.11	146	-				
USA	Corn, sweet	4	0.11	130-	forage	1	<u>3.9</u>	0.01	AM105-04H-B
Illinois	Garst 8550 Bt	_		134					
USA	Corn, sweet	4	0.10	131-	forage	1	<u>2.5</u>	0.02	AM106-04D-B
Nebraska	NK67T4			133					
USA	Corn, sweet	4	0.11	106-	forage	1	<u>2.2</u>	< 0.01	AM107-04H-B
Minnesota	GH0937			117					
USA	Corn, sweet	4	0.10-	134-	forage	1	<u>4.6</u>	0.02	AM122-04HA
California	Silver Queen		0.11	106	fodder	28	<u>9.8</u>	0.06	
USA	Corn, sweet	4	0.10-	0.13-	forage	1	<u>3.9</u>	0.01	AM123-04H
Oregon	Pronto		0.11	0.14	fodder	55	17	0.05	
USA	Corn, sweet	4	0.10-	78-81	forage	1	<u>5.5</u>	0.02	AM124-04H
Oregon	Super Sweet Jubilee		0.11		fodder	69	14	0.04	

^a highest residue of two samples

Table 81 Results of residue trials conducted with flubendiamide WDG 20 in/on rice in Asia in 2008
(20074104/AS1-FPRI)

	Appl	ication				Residues (mg/kg)) ^a	
Country Year	No	kg ai/ha	L/ha water		PHI	flubendiamide	Flubendiamide des iodo	Trial No.
Thailand	3	0.025-	250-265	Plant	0	0.62	< 0.01	TH07W008R
Pathumthani		0.026		Panicle	0	2.3	0.02	
		0.049-	246-292	Hulls	30	0.19	< 0.01	
		0.058		Bran	30	0.03	< 0.01	
Thailand	3	0.023-	230-256	Plant	0	0.86	< 0.01	TH07W009R
Prachinburi		0.026		Panicle	0	0.99	< 0.01	
Thailand	3	0.025-	246-270	Plant	0	0.82	< 0.01	TH07W010R
Phitsanulok		0.027		Panicle	0	1.6	< 0.01	
Thailand	3	0.021-	240-268	Plant	0	0.52	< 0.01	TH07W011R 2
Chachoengsao		0.027		Panicle	0	1.2	< 0.01	
Thailand	3	0.024-	235-278	Plant	0	1.3	< 0.01	TH07W012R
Lopburi		0.025		Panicle	0	1.6	< 0.01	
Thailand	3	0.024-	238-254	Plant	0	1.0	0.02	TH07W013R
Ratchaburi		0.027		Panicle	0	1.7	0.02	
Thailand	3	0.024-	240-256	Plant	0	0.79	< 0.01	TH07W014R
Chainat		0.026		Panicle	0	0.95	< 0.01	
Thailand	3	0.024-	246-264	Plant	0	0.82	< 0.01	TH07W015R
Chainat		0.026		Panicle	0	0.90	< 0.01	
Thailand	3	0.024-	240-290	Plant	0	1.4	< 0.01	TH07W016R
Suphanburi		0.026		Panicle	0	2.6	0.02	
Thailand	3	0.023-	226-290	Plant	0	1.4	< 0.01	TH07W017R
Suphanburi		0.029		Panicle	0	3.0	0.02	
India, Mandya	3	0.025		Shoot	0	0.62	< 0.01	G5077, F1

	Application					Residues (mg/kg) ^a		
Country	No	kg	L/ha		PHI	flubendiamide	Flubendiamide	
Year		ai/ha	water				des iodo	Trial No.
India, Shimoga	3	0.025		Shoot	0	1.2	0.03	G5077, F2

^a. highest residue of two samples

Table 82 Results of residue trials conducted with 3 applications of flubendiamide SC480 in/on almond hull from tree nut in USA (California) in 2004 (RCAMY014)

	Applicati	on			Residues (mg/kg	g) ^a	
Variety	No	kg ai/ha	L/ha water	PHI	flubendiamide	F-des iodo	Trial No.
Non-Pareil	3	0.14	598-617	14	<u>3.3</u>	< 0.01	AM214-04H-C
Wood Colony, Butte	3	0.14	411-415	0	5.3	0.02	AM213-04D-C
				7	5.5	0.02	
				14	<u>5.2</u> 3.9	0.02	
				21	3.9	0.02	
				28	4.2	0.02	
Mission	3	0.14	570-614	14	<u>0.98</u>	< 0.01	AM215-04H-C
Carmel	3	0.14	534-568	14	<u>1.4</u>	< 0.01	AM216-04H-C
Price	3	0.14	488-494	14	<u>2.4</u>	0.01	AM217-04H-C
Wood Colony	3	0.140	2340	14	<u>4.7</u>	0.03	AM213-04D-D
Non-Pareil	3	0.14	2143-2149	14	<u>2.1</u>	< 0.01	AM214-04H-D
Mission	3	0.14	2530-2641	14	<u>1.4</u>	< 0.01	AM215-04H-D
Carmel	3	0.14	2217-2414	14	2.5	0.01	AM216-04H-D
Price	3	0.14	2774-2834	14	2.9	0.01	AM217-04H-D

^a. highest residue of two samples

Table 83 Residues in cotton gintrash from trials conducted with flubendiamide SC in USA in 2004/2005 (RCAMY002)

	Appl	ication			Residues (mg/kg	Residues (mg/kg) ^a		
State	Variety	No	kg ai/ha	L/ha water	PHI	flubendiamide	F-des iodo	Trial No.
Georgia	RR Delta Pine	3	0.10	97-101	26	<u>25</u>	0.12	AM087-4HA
Mississippi	FM 960 BR	3	0.10	153-173	0 10 26 35	26 21 <u>6.8</u> 3.2	0.08 0.09 0.04 0.03	AM088-04D
Texas	FiberMax 989	3	0.10	129-140	26	<u>3.5</u>	0.05	AM091-04H
Texas	Fibermax 958	3	0.10	174-177	27	<u>8.1</u>	0.03	AM092-4HA
Oklahoma	PM 2280	3	0.10	112-117	28	<u>2.3</u>	< 0.01	AM093-4HA
California	Sierra RR	3	0.10	160-173	28	<u>25</u>	0.11	AM096-04H

^a highest residue of two samples

FATE OF RESIDUES IN PROCESSING

Effects on the nature of residues

A hydrolysis study under conditions representative for core processing procedures was conducted (Justus and Brueckner, 2005; MEF 04/411). [Phthalic-acid ring-UL-¹⁴C]flubendiamide (0.2 mg ai/L water containing 1% acetonitrile) was incubated in buffered drinking water at three representative sets of conditions: pasteurization at 90 °C at pH 4 for 20 min; baking, brewing, boiling at 100 °C at pH 5 for 60 min; sterilization (autoclave) at 120 °C at pH 6 for 20 min. Two samples of each test solution were closed with a septum and crimp top and placed in a water bath (at 90 °C and 100 °C) or in an autoclave (120 °C). At zero time and at test termination, samples were analysed by HPLC and TLC. The content of radioactivity was determined by liquid scintillation counting (LSC). HPLC/MS was

used for confirmation of the identy of the test compound. Radioactivity balances were in a range of 99.8 to 101.0% of applied radioactivity. In all three processing scenarios, no degradates were observed in any of the samples, and flubendiamide was the only compound in all HPLC profiles.

Processing studies

Processing studies were conducted on apple, peach, plum, grape, tomato, cucurbits, flowering and head brassica, lettuce, cotton, soya bean, corn and rice. In all studies, residues of flubendiamide and its metabolite flubendiamide-des-iodo were determined by HPLC-MS/MS.

Apple

Two trials were conducted in Germany in apple treated three times with flubendiamide at 0.120 to 0.132 kg ai/ha and PHI of 14 days (Ballesteros *et al.*, 2005; RA-3301/04). In each trial, the apple sample was analysed and two separate portions were submitted to the processing procedure. The washing simulated houselhold processing whereas the apple sauce processing simulated the industrial practice at a laboratory scale. A processing study was conducted in USA with apples treated at 3 x 0.88 kg ai/ha, sample collected at 14 days PHI and processed using procedures which simulated commercial processing practices (Helfrich and Mackie, 2005; RCAMY010). Residues of flubendiamide and the processing factor (PF) in the processed commodities obtained in Germany and USA are shown on Table 84. The des-iodo metabolite was not detected in any sample analysed.

Table 84 Results of a processing trial conducted with flubendiamide in/on apple in Germany and the USA

	Germany, 098 Fruit = 0.18 n		Germany, 09 Fruit = 0.21 r		USA Fruit = 0.78	USA Fruit = 0.78 mg/kg	
Processed commodity	Residues, mg/kg	PF	Residues, mg/kg	PF	Residues, mg/kg	PF	best estimate
fruit, washed A/B	0.15/0.20	0.83/1.1	0.18/0.17	0.9/0.8	0.93	1.2	0.97
peeled fruit	-	-	-	-	< 0.01	< 0.01	< 0.01
dried fruit	-	-	-	-	0.40	0.51	0.51
juice	-	-	-	-	0.05	0.06	0.06
sauce A/B	0.08/0.09	0.4/0.5	0.08/0.07	0.4/0.3	0.021	0.02	0.36
pomace, wet A/B	1.8/1.7	10/9.4	1.9/1.2	9.0/5.7	2.8	3.6	7.5
raw stewed fruit A/B	0.11/0.12	0.6/0.7	0.11/0.11	0.5/0.5	-	-	0.6

Peach

Two peach processing trials were conducted in Spain and Portugal with flubendiamide 480 SC in 2004. The product was applied three times with an application rate of 0.12–0.15 kg/ha and peach sampled at 7 days PHI (Ballesteros *et al.*, 2005; RA-2303/04). The processing of washed fruit, depitted fruit and peeled fruit simulated household practice and of peach preserve simulated the industrial practice at a laboratory scale. The des-iodo metabolite was not detected in any sample analysed. Residues of flubendiamide and the processing factor (PF) in the processed commodities are shown on Table 85.

Table 85 Results of residue tria	l conducted with flu	bendiamide SC480 i	in/on peach in Europe
----------------------------------	----------------------	--------------------	-----------------------

Processed commodity	Spain, R 2004 0997 4		Portugal, R 2004 09	Portugal, R 2004 0998 2		
	Residues, mg/kg	PF	Residues, mg/kg	PF	PF, mean or best estimate	
fruit	0.21	-	0.20	-	-	
whole fruit, washed	0.10	0.48	0.16	0.76	0.6	
peel	0.84	4	1.2	5.7	4.9	
fruit, peeled	< 0.01	< 0.05	0.02	0.09	0.07	
fruit, depitted	0.17	0.81	0.13	0.62	0.72	
preserve	0.02	0.09	0.02	0.09	0.9	

Plum

A plum processing trial was conducted inUSA with flubendiamide 480 SC applied three times at a target rate of 0.702 kg ai/ha, five times the total maximum proposed label (Helfrich & Mackie, 2006; RCAMY012). The plums were harvested at PHI of 7 days and processed using procedures which simulated commercial processing practices. The des-iodo metabolite was not detected in any sample analysed. Residues of flubendiamide in plum, washed plum and prunes were 0.09, 0.05 and 0.10 mg/kg, respectively. Processing factors for washed plum and prunes were 0.55 and 0.9.

Grapes

Seven processing trials were performed with flubendiamide SC480 on grape in Europe in 2003/2004. The processing procedures simulated the industrial practice at a laboratory scale. In 4 trials conducted on <u>wine grape</u> (RA-3066/03, RA-3067/03, RA-3308-04) and one on the product was applied at 4×0.1 kg ai/ha and samples harvested at 14 days PHI. In two <u>table grape</u> trials (RA-3068/03) at the same rate, samples were harveste at 7 days PHI. No residues of flubendiamide-des-iodo were found in grapes from any trial, but it was detected in grape pomace and pomace dried (0.02 and 0.03 mg/kg) and in raisin waste (0.13 and 0.15 mg/kg). The results of all trials are shown in Table 86.

RA-3066 Germany Processed 0216/921	у	1		RA-330 France	RA-3308/04		RA-3068/03 Portugal 223/1 A/B		RA-3068/03 Greece 779/9 A/B		Y017	PF, mean or best	
commodity	mg/kg	PF	mg/kg	PF	mg/kg	PF	mg/kg	PF	mg/kg	PF	mg/kg	PF	estimate
grape	0.75 0.90	-	0.06 0.18	-	0.18	-	0.40	-	0.08	-	1.9	-	-
washed	-	-	-	-	-	-	-	-	-	-	0.86	0.45	0.45
Juice	0.04 0.03	0.05 .04	< 0.01 < 0.01	0.2 0.06	< 0.01	0.06	-	-	-	-	0.15	0.07	0.13
jelly	-	-	-	-	-	-	-	-	-	-	0.08	0.04	0.04
raisin	-	-	-	-	-	-	0.83 0.51	2.1 1.3	0.23 0.14	2.9 1.8	0.57	0.3	1.7
wine at bottling	0.09 0.04	0.1 0.04	0.02 0.03	0.3 0.2	0.01	0.06	-	-	-	-	-	-	0.19
Pomace	1.8 1.9	2.4 2.1	-	-	1.0	5.6	-	-	-	-	-	-	3.4
pomace, wet	-	-	0.17 0.61	2.8 3.4	0.44	2.4	-	-	-	-	-	-	2.9
pomace, dry	-	-	0.33 1.2	5.5 6.7	0.99	5.5	-	-	-	-	-	-	5.9
raisin waste	-	-	-	-	-	-	13 15	33 38	0.66 0.62	8 8	-	-	2.2
Must	0.14 0.20	0.2 0.2	0.01 0.03	0.2 0.2	0.03	0.2	-	-	-	-	-	-	0.2

Table 86 Processing trial	conducted with	flubendiamide	SC480 in/on	grane in Euro	ne and USA
Table of Theessing that	conducted with	muutannuu		grape in Luio	pe and Obr

Tomato

In two trials conducted in Europe in 2003, flubendiamide was sprayed three times at 0.060 kg ai/ha to tomato plants and samples were harvested 14 days PHI. In each trial, the apple sample was analysed and two separate portions were submitted to the processing procedure. Washed and peeled tomatoes were prepared using household practices. Treated tomatoes were washed and processed into raw juice, juice, preserve, puree, paste and raw simulating industrial processing procedures. A tomato processing trial was conducted in USA in 2004 at exaggerated rate 5×0.263 kg ai/ha and samples harvested at 1 day PHI (Fischer, 2005). Processing was performed using procedures which simulated commercial processing practices. Flubendiamide des-iodo was not detected in any sample analysed. Residues of flubendiamide and the respective processing factors in processed commodities in the all trials are shown on Table 87.

Processed commodity	Greece / R 2003 tomato = 0.03 r		Portugal / R 20 tomato = 0.04		USA/RCAN tomato = 0.	PF, mean or	
-	,		Residues,	esidues,			best
	mg/kg	PF	mg/kg	PF	mg/kg	PF	estimate
Washed A/B	< 0.01/< 0.01	< 0.33/< 0.33	0.05/0.03	1.2/0.75	0.09	0.44	0.61
Juice A/B	< 0.01/< 0.01	< 0.33/< 0.33	0.02/0.02	0.5/0.5	0.07	0.78	0.49
Peeled A/B	< 0.01/< 0.01	< 0.33/< 0.33	< 0.01/< 0.01	< 0.25/< 0.25			0.29
Preserve/canned A/B	< 0.01/< 0.01	< 0.33/< 0.33	0.01/0.01	0.25/0.25	< 0.01	< 0.05	0.24
Pomace wet A/B	0.06/0.06	2/2	0.18/0.16	4.5/4			3.13
Paste A/B	0.13/0.09	4.3/3	0.27/0.13	6.8/3.2	0.5	2.5	4
Puree A/B	0.05/0.04	1.7/1.3	0.11/0.08	2.8/2	0.21	1.1	1.8
Cooked	-	-	-	-	0.12	0.61	0.61
Dried	-	-	-	-	1.0	5.1	5.1

Table 87 Results from processing study on tomato in Europe and USA

Cucurbit

Samples of cucumber, muskmelon, and summer squash treated 5×0.05 kg ai/ha and collected at PHI 1 day (RCAMY015) were washed, peeled and or cooked. Residues of flubendiamide in the raw commodity were 0.02 and 0.06 mg/kg in cucumber and muskmelon, but were not detected in summer squash (< 0.01 mg/kg). No residues were detected in peeled and washed cucumber, peeled muskmelon and washed and cooked summer squash.

Cabbage and brocolli

Two head cabbage processing trials were conducted in Europe with flubendiamide 480 SC applied used three times at 0.048 kg (R 2004 0959/1) or once at 0.144 kg ai/ha (R 2004 1043/3) (Wolters and Billian, 2005; RA 3314/04). The processing of wash and cook frozen head simulated household practice. In one trials conducted in USA (3 treatments, 35 g ai/ha, PHI 1 day) in/on broccoli, cauliflower and on head cabbage, samples were processed according to normal household preparation and/or cooking procedures (Fischer, 2005; RCAMY001).The results of all trials are shown in Table 88.

Portion analysed	R 2004 0959/1UK		R 2004 1043/3 0	Germany	RCAMY00	I USA	
	Residues,		Residues,		Residues,		PF, mean or
	mg/kg	PF	mg/kg	PF	mg/kg	PF	best estimate
Cabbage head	0.05		0.02	-	0.22	-	
head, washed A/B	0.01/0.01	0.2/0.2	< 0.01/< 0.01	< 0.5/< 0.5	-	-	0.35
head, cooked A/B	0.01/< 0.01	0.2/< 0.2	< 0.01/< 0.01	< 0.5/0.5	< 0.01	0.04	-
Broccoli					0.10	-	
Washed					0.09	0.9	0.9
Cooked					0.07	0.7	0.7

Table 88 Results of processing trials with flubendiamide in cabbage and broccoli

Lettuce

Dacus and Harbin (2005; RCAMY008) evaluated the effect of removing the wrapper leaves and washing household procedures on the residues of flubendiamide on treated head lettuce (3×0.05 kg ai/ha). Flubendiamide-des-iodo was not detected in any samples analysed in the study. The results are shown in Table 89.

Table 89 Effect of	nrocessing on	flubendiamid	e residues or	head lettuce
Table 67 Effect of	processing on	inuochulannu	c residues of	

Commodity	Residues, mg/kg	PF	Mean PF
Head lettuce	0.11, 0.69, 0.37, 0.66, 0.67, 0.97	-	
Head lettuce, without	< 0.01, 0.02, 0.01, 0.10, 0.10, 0.01	< 0.09, 0.03, 0.03, 0.15, 0.15, 0.01	0.08
wrapper leaves			
Head lettuce	1.5	-	

Commodity	Residues, mg/kg	PF	Mean PF
Head lettuce , washed	0.52	0.35	0.35

Soya bean

Soya bean was treated with flubendiamide 480 SC in USA at 2×0.52 kg ai/ha, and seed samples harvested at 12 days PHI were processed using procedures that simulated commercial processing practices (Dallstream and Krolski, 2008; RAAMP010). The soya bean seed samples and processed commodities were analysed flubendiamide and its metabolite (Table 90).

T 11 00	D 1.	0		. 1	• /	1
Table 90	Results	ot.	processing	study	1n/0n	sova hean
10010 70	Results	01	processing	Study	III/ UII	soyu beun

	Flubendiamide		Des-iodo		
Portion analysed	Residues*, mg/kg	PF	Residues*, mg/kg	PF	
seed	0.26	-	0.01		
aspirated grain fractions	93	358	0.46	46	
meal	0.03	0.12	< 0.01	<1	
hulls	0.70	2.7	< 0.01	<1	
refined oil	0.01	0.04	< 0.01	<1	
Defatted flour	0.02	0.08	< 0.01	<1	
soymilk	< 0.01	< 0.04	< 0.01	<1	

* each result is the average of triplicate samples from one bach of processed sample

Corn

A processing study was conducted with field corn treated at 4×0.526 kg ai/ha and samples were harvested 28 days after the last application (Lenz, 2005; RCAMY005)). The field corn grain was sub-sampled, aspirated grain fractions were generated, and the corn divided for further processing into wet and dry milled commodities. Wet milled commodities included starch and refined oil. Dry milled commodities included grits, meal, flour, and refined oil. The soya bean seed samples and processed commodities were analysed flubendiamide and its metabolite (Table 91). Flubendiamide des-iodo was only detected in aspired grain fractions (0.1 mg/kg).

Table 91 Results of flubendiamide in field corn processed commodities

Portion analysed	Residues, mg/kg	PF
kernel	0.15	-
starch	< 0.01	0.07
meal	0.14	0.93
flour	0.31	2.1
oil, refined	0.07	0.45
grits	0.04	0.24
oil, dry milled	0.02	0.12
aspirated grain fractions	48	318

Rice

A rice processing trial was conducted in Thailand with flubendiamide WDG 20 applied three times at 0.050 kg ai/ha and harvested 30 days after the last application (Balluff, 2008. 20074104). The day after harvest, samples of rice grain were dried before processing, grain humidity decreased from 28 to 14%. The samples were passed through a cleaning machine to separate out dirt and other seeds, leaving husked rice (rice with husks). In the next step the rice was passed through the dehusking machine to separate the husks from the grains resulting in huskes and brown rice (bran). In the last step the brown rice was treated with a polishing machine to obtain <u>polished rice</u> and <u>bran</u>. Residues of flubendiamide were 0.04 mg/kg in husked rice, < 0.01 mg/kg in brown and polished rice, 0.19 mg/kg in hulls and 0.03 mg/kg in bran. No residues of the des-iodo metabolite were found in the samples.

1364

Cotton

In one study conducted in Greece (two trials), flubendiamide was applied four times at 0.072 kg ai/ha and seed samples harvested at 21 days PHI. Processed commodities were prepared simulating commertial practices (Billian and Wolters, 2005; RA3077/03). Residues of flubendiamide des-iodo were detected in samples of crude oil, at levels of 0.02 mg/kg. In one trial conducted in the USA, with an exaggerated rate of 0.525 kg ai/ha, residues of flubendiamide at 25 days PHI were 0.40 mg/kg in cotton seed, 0.03 mg/kg in hulls and < 0.01 mg/kg in meal and oil (Murphy, 2006; RCAMY003). The results of both studies are shown in Table 92.

	RA-3077/03 R 2003 0205/3 Seed = 0.15 mg/kg		RA-3077/03 R 2003 0855/8 Seed = 0.03 mg	2003 0855/8		RCAMY003 Seed = 0.40 mg/kg	
Commodity	Residues, mg/kg	PF	Residues, mg/kg	PF	Residues, mg/kg	PF	Mean PF
extracted meal A/B crude oil A/B oil refined A/B	0.03/0.03 0.93/0.93 0.11/0.16	0.2/0.2 6.2/6.2 0.73/1.1	0.01/0.01 0.19/0.17 0.03/0.02	0.33/0.33 6.3/5.7 1/0.67	< 0.01 - < 0.01	< 0.025 - < 0.025	0.22 6.1 0.70

Table 92 Results of flubendiamide from processing studies on cotton

Residies in animal commodities

Poultry

Seventy-two laying hens (*Gallus gallus domesticus*; 12 hens/dosing and control group) were fed *ad libitum* for 28 consecutive days with feed containing flubendiamide at target dose rates of 0.02, 0.10, or 0.50 mg/kg (Billian and Eberhardt, 2005; MR-031/05). Eggs were collected daily during the dosing period and analysed for flubendiamide and flubendiamide-iodophthalimide. On day 29 after the first dose, the hens were sacrificed and liver, fat, muscle, and overlaying skin, together with any associated fat, were collected for analysis. Additionally, two groups of laying hens (12 hens/group) were fed at 0.5 mg/kg feed for 28 consecutive days in order to investigate the depuration of flubendiamide and its metabolite in eggs and tissues thereafter. Eggs were collected from both dosing groups on days 28–35 after the first dosing, and from the remaining hens additionally on days 36–42 after the first dose. On Day 36 and 43, respectively, the hens were sacrificed and liver, fat, muscle, and skin were collected for analysis.

Tissue and egg samples were analysed by HPLC-MS/MS according to method 00912 (LOQ of 0.01 mg/kg and LOD of 0.003 mg/kg). In order to express residues of flubendiamideiodophthalimide as parent equivalents, the conversion factor of 1.285 was used (= ratio of molecular weights of 682.4 g/mol and 531.2 g/mol). All tissue and egg samples were analysed within 30 days of collection; freezer storage stability studies on poultry tissue and egg matrices were not conducted.

Table 93 shows the concentration of flubendiamide and its metabolites in eggs. Flubendiamide was detected in eggs at the second dosing level from day 13 (0.01 mg/kg) and at the highest level dose reached 0.06 mg/kg. No residues of flubendiamide iodo-phthalimide were detected in any egg sample at any dose. The depuration study has shown that flubendiamide was not present in egg samples 14 days after the last dose.

	0.02 mg/kg	0.02 mg/kg		0.1 mg/kg		
		Iodo-		Iodo-		Iodo-
Day	Flubendiamide	phthalimide	Flubendiamide	phthalimide	Flubendiamide	phthalimide
0	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
1	< 0.003	< 0.003	< 0.003	< 0.003	0.02	< 0.003
5	< 0.003	< 0.003	< 0.003	< 0.003	0.04	< 0.003
7	< 0.003	< 0.003	< 0.003	< 0.003	0.05	< 0.003
9	< 0.003	< 0.003	< 0.003	< 0.003	0.06	< 0.003
13	< 0.003	< 0.003	0.01	< 0.003	0.05	< 0.003

Table 93 Flubendiamide and its iodophthalimide metabolite (as parent) residues (mg/kg) in eggs

	0.02 mg/kg		0.1 mg/kg		0.5 mg/kg	
Day	Flubendiamide	Iodo- phthalimide	Flubendiamide	Iodo- phthalimide	Flubendiamide	Iodo- phthalimide
14	< 0.003	< 0.003	0.01	< 0.003	0.06	< 0.003
19	< 0.003	< 0.003	0.01	< 0.003	0.05	< 0.003
21	< 0.003	< 0.003	0.01	< 0.003	0.06	< 0.003
23	< 0.003	< 0.003	0.01	< 0.003	0.06	< 0.003
26	< 0.003	< 0.003	0.01	< 0.003	0.06	< 0.003
27	< 0.003	< 0.003	0.01	< 0.003	0.06	< 0.003
28	< 0.003	< 0.003	0.01	< 0.003	0.02	< 0.003
Depuration	n study					-
22	-	-	-	-	0.05	< 0.003
25	-	-	-	-	0.05	< 0.003
27	-	-	-	-	0.05	< 0.003
28	-	-	-	-	0.06	< 0.003
29	-	-	-	-	0.06	< 0.003
30	-	-	-	-	0.04	< 0.003
35	-	-	-	-	0.03	< 0.003
36	-	-	-	-	0.02	< 0.003
40	-	-	-	-	< 0.01	< 0.003
42	-	-	-	-	< 0.003	< 0.003

*Each value reported corresponds to the mean residue level from twelve animals.

The highest flubendiamide residues in tissues were observed for fat samples, showing evidence of a dose response (Table 94). Flubendiamide iodo-phthalimide was found only at the highest dose level in fat (0.02 mg/kg).

Table 94 Flubendiamide and its iodophthalimide metabolite (as parent) residues (mg/kg) in poultry tissues

	0.02 mg/kg		0.1 mg/kg		0.5 mg/kg	
Matrice		Iodo-		Iodo-		Iodo-
Maurce	Flubendiamide	phthalimide	Flubendiamide	phthalimide	Flubendiamide	phthalimide
Fat	0.01 (3)	< 0.003 (3)	0.07 (2), 0.06	< 0.01 (3)	0.27, 0.29, 0.25	0.02 (3)
Liver	< 0.003 (3)	< 0.003 (3)	0.02 (2), 0.01	< 0.003 (3)	0.07 (2), 0.06	< 0.003 (3)
Muscle	< 0.003 (3)	< 0.003 (3)	< 0.003 (3)	< 0.003 (3)	< 0.01, 0.01 (2)	< 0.003 (3)
Skin	< 0.01 (3)	< 0.003 (3)	0.03, 0.02 (2)	< 0.003 (3)	0.11 (3)	< 0.01 (3)

Tissue results of the depuration study at a 0.5 mg/kg feed level are shown in Table 95. Residues of flubendiamide decreased in fat from 0.27 mg/kg at the end of the dosing period to 0.04 mg/kg 7 days after the last dose to 0.01 mg/kg after 14 days (only one fat sample).

Table 95 Residue in tissues during the depuration phase of poultry treated at 0.5 mg/kg

	7 days after last dose		14 days after last dos	14 days after last dose		
Matrice	Flubendiamide	Iodo-phthalimide	Flubendiamide	Iodo-phthalimide		
Fat	0.05, 0.04, 0.03	0.02, 0.01 (2)	< 0.01 (2), 0.01	< 0.01 (3)		
Liver	< 0.01, 0.01 (2)	< 0.003 (3)	< 0.003 (3)	< 0.003 (3)		
Muscle	< 0.003 (3)	< 0.003 (3)	< 0.003 (3)	< 0.003 (3)		
Skin	0.02 (2), 0.01 (3)	< 0.01 (3)	< 0.003 (3)	< 0.01, < 0.003 (2)		

Cattle

Thirteen lactating Holstein dairy cows (Bos taurus; three cows/treatment group and one control cow) were dosed orally, via capsule, for 29 consecutive days with flubendiamide at 2.5, 7.5, 30 or 50 mg/kg feed/day (Billian *et al.*, 2005). Milk was collected twice daily during the dosing period. Additionally, a portion of the 25-day milk sample from the highest dose group was separated into milk fat and skim milk (whey), and each was analysed. On day 29 after the first application, the animals were sacrificed and liver, kidney, composite muscle, subcutaneous fat, omental fat, and perirenal fat were collected

for analysis. Additionally, two lactating Holstein dairy cows were fed at 50 mg/kg for 29 consecutive days in order to investigate the depuration of residues in milk and tissues. Milk was collected from the first animal from day 29 to 35 after the first application, and from the second animal from day 29 to 49 after the first application. On day 36 and 50 after the first application, the animals were sacrificed and liver, kidney, composite muscle, subcutaneous fat, omental fat, and perirenal fat were collected for analysis. Tissue and milk samples were analysed for residue by HPLC-MS/MS according to method 00912. The tissue and milk samples in this study were analysed within 21 days of collection and freezer storage stability were not conducted.

Residues of flubendiamide and its iodophthalimide metabolite in milk are reported in Table 96. For the low and medium dose levels, residues in milk remained very low throughout the dosing period (up to 0.03 mg/kg). At higher dose levels (30 and 50 mg/kg), residues in milk reached a plateau level observed after 7-8 days of dosing). Milk originating from 26 days at the highest dose group separated into skim milk and milk fat. Flubendiamide residues were 0.02 mg/kg in milk whey and 1.5 mg/kg in milk fat. The iodophthalimide metabolite was only detected in milk fat, at 0.23 mg/kg.

	2.5 mg/kg		7.5 mg/kg		30 mg/kg		50 mg/kg	
D	Flubendia-	Iodo-	Flubendia-	Iodo-	Flubendia-	Iodo-	Flubendia-	Iodo-
Day	mide	phthalimide	mide	phthalimide	mide	phthalimide	mide	phthalimide
0	< 0.01	< 0.01	< 0.003	< 0.01	< 0.01	< 0.01	0.02	< 0.01
1	< 0.01	< 0.01	0.02	< 0.01	0.03	< 0.01	0.03	< 0.01
2-3	< 0.01	< 0.01	0.01	< 0.01	0.03	< 0.01	-	-
7-8	< 0.01	< 0.01	0.03	< 0.01	0.08	< 0.01	0.11	< 0.01
9-10	< 0.01	< 0.01	0.02	< 0.01	0.08	< 0.01	0.10	0.01
14	< 0.01	< 0.01	0.03	< 0.01	0.09	< 0.01	0.08	0.01
16-	0.01	< 0.01	0.02	< 0.01	0.09	< 0.01	0.11	0.01
17								
21	< 0.01	< 0.01	0.03	< 0.01	0.10	< 0.01	0.11	0.01
23-	0.01	< 0.01	0.03	< 0.01	0.08	< 0.01	0.11	0.01
24								
28	0.01	< 0.01	0.02	< 0.01	0.08	< 0.01	0.11	0.01
Depura	ation study							
21	-	-	-	-	-	-	0.14 ^b	0.01 ^b
23	-	-	-	-	-	-	0.14 ^b	0.01 ^b
28	-	-	-	-	-	-	0.16 ^b	0.01 ^b
29	-	-	-	-	-	-	0.15 ^b	0.01 ^b
31	-	-	-	-	-	-	0.10 ^b	< 0.01 ^b
32	-	-	-	-	-	-	0.10 ^b	< 0.01 ^b
33	-	-	-	-	-	-	0.09 ^b	< 0.01 ^b
34	-	-	-	-	-	-	0.06 ^b	< 0.01 ^b
35	-	-	-	-	-	-	0.06 ^b	< 0.01 ^b
36	-	-	-	-	-	-	0.08 °	< 0.01 °
40	-	-	-	-	-	-	0.06 °	< 0.01 °
41	-	-	-	-	-	-	0.05 °	< 0.01 °
42	-	-	-	-	-	-	0.04 ^c	< 0.01 °
46	-	-	-	-	-	-	0.02 °	< 0.01 °
47	-	-	-	-	-	-	0.01 ^c	< 0.01 °
49	-	-	-	-	-	-	0.02 °	< 0.01 ^c

Table 96 Summary of flubendiamide and its iodophthalimide metabolite residues in milka

^{a.} mean of three values;

^{b.} mean of two values;

c. single value

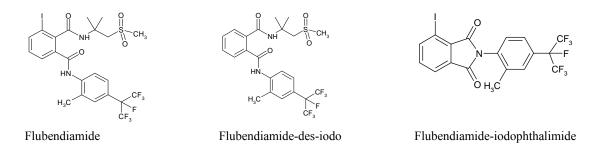
The individual residue levels in animal tissue are summarised in Table 97. Residues of flubendiamide were observed in tissues of all animals in all dose groups, with the highest levels in fat. Flubendiamide iodophthalimide was detected at the lower dose level only in fat.

	2.5 mg/kg	5 mg/kg 7.5 mg/kg 30 mg/kg		30 mg/kg	50 mg/kg			
Matrica	Flubendia-	Iodo-	Flubendia-	Iodo-	Flubendia-	Iodo-	Flubendia-	Iodo-
Matrice	mide	phthalimide	mide	phthalimide	mide	phthalimide	mide	phthalimide
liver	0.03	< 0.01	0.10	< 0.01	0.52	< 0.01	0.58	< 0.01
	0.06	< 0.01	0.23	< 0.01	0.36	< 0.01	0.33	< 0.01
	0.04	< 0.01	0.11	< 0.01	0.26	< 0.01	0.47	< 0.01
kidney	0.03	< 0.01	0.10	< 0.01	0.54	0.01	0.57	0.02
	0.06	< 0.01	0.20	< 0.01	0.39	0.01	0.33	0.01
	0.05	< 0.01	0.13	< 0.01	0.28	0.01	0.42	0.01
muscle	< 0.01	< 0.01	0.02	< 0.01	0.08	< 0.01	0.12	0.01
	< 0.01	< 0.01	0.04	< 0.01	0.06	< 0.01	0.09	< 0.01
	0.01	< 0.01	0.03	< 0.01	0.06	< 0.01	0.14	0.02
fat (1)*	0.05	< 0.01	0.13	0.02	0.66	0.07	0.82	0.08
	0.08	< 0.01	0.15	0.02	0.51	0.07	0.36	0.06
	0.06	< 0.01	0.16	0.01	0.53	0.04	0.77	0.13
fat (2)*	0.06	< 0.01	0.19	0.03	0.76	0.17	1.2	0.16
	0.10	< 0.01	0.25	0.02	0.60	0.11	0.75	0.23
	0.09	< 0.01	0.16	0.02	0.61	0.12	1.2	0.19
fat (3)*	0.06	< 0.01	0.22	0.02	0.63	0.15	1.1	0.21
	0.10	0.01	0.27	0.03	0.63	0.11	0.76	0.17
	0.10	< 0.01	0.16	0.03	0.67	0.14	1.2	0.27

Table 97 Summary of flubendiamide and its iodophthalimide metabolite residues in beef tissue

* Subcutaneous Fat (1); Omental Fat (2); Perirenal Fat (3)

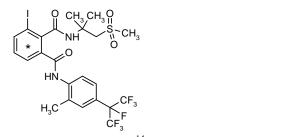
Flubendiamide and flubendiamide iodophthalimide from the depuration phase found in tissues are summarised in Table 98. During the depuration phase, residues in milk decline close to the LOQ. The results show that residue decline rapidly within one week post dosing. In the following weeks residues still declined but more slowly, especially for fat tissues.


Table 98 Residue in tissues during the depuration phase of cow treated at 50 mg/kg

	7 days after last dose		14 days after last dose		
Matrice	Flubendiamide	Iodo-phthalimide	Flubendiamide	Iodo-phthalimide	
Liver	0.15	< 0.01	0.11	< 0.01	
Muscle	0.18	0.01	0.14	< 0.01	
Skin	0.04	0.02	0.03	< 0.01	
fat (1)*	0.21	0.13	0.19	0.06	
fat (2)*	0.22	0.15	0.06	0.09	
fat (3)*	0.23	0.17	0.09	0.08	

* Subcutaneous Fat (1); Omental Fat (2); Perirenal Fat (3)

APPRAISAL


Flubendiamide is an insecticide for use in a broad number of annual and perennial crops against a wide range of lepidopteran pests. The compound is being evaluated by the 2010 JMPR as a new compound, for both residue and toxicological aspects. Data was provided on metabolism of flubendiamide in farm animals and plants, methods of analysis, GAP information, supervised residue trials on various crops, storage stability, processing and animal feeding studies. Below are the chemical structures of flubendiamide and its major metabolites in plant (des-iodo) and animals (iodophthalimide).

Metabolism in animals

The metabolism of flubendiamide in <u>rats</u> was evaluated by the WHO panel of the JMPR at the present Meeting.

The positions of the radiolabels are shown in the figures below.

[aniline ring-UL-¹⁴C] flubendiamide

Two metabolism studies were conducted on <u>laying hens</u> using similar experimental designs. In each study, radio-labelled doses were orally administered to six birds for 14 days. In one study, the hens were dosed with [phthalic acid ring-UL-¹⁴C]flubendiamide at 1.0 mg/kg bw/day (16.95 ppm in the diet) and in the second study with [aniline ring-UL-¹⁴C] flubendiamide at 0.71 mg/kg bw/day (8.86 ppm in the diet). Eggs and excreta were collected once daily and hens were sacrificed 24 hours after the last dose.

About 91 and 98% of the administered cumulative dose of [phthalic acid ring] and [aniline ring-UL-¹⁴C]flubendiamide, respectively, was recovered from organs, tissues, eggs, and excreta. The majority of the radioactivity (62–66%) was detected in the excreta, 24.4% in tissues and 5.1–7.7% in eggs. In tissues, residues concentrated in fat (18–12.2 mg/kg eq.), followed by liver (4.0–3.0 mg/kg eq.) and muscle (2.9–2.6 mg/kg eq.). Residues in eggs increased during the experiment, from 0.15–0.33 mg/kg eq. in the first 4 days to 2.9–2.6 mg/kg eq. towards the end of the dosing period. Flubendiamide accounted for 92–93% TRR in eggs, 95% TRR in muscle, 98–97% TRR in fat and 82% TRR in liver. The metabolite flubendiamide-benzyl alcohol was present in eggs and tissues, accounting for less than 10% TRR. Traces of flubendiamide-iodophtalimide was found in eggs and tissues from the [phthalic acid ring] dosing, and accounted for 1.6% TRR (0.20 mg/kg eq.) in fat from the [aniline acid ring] experiment.

In the goat metabolism studies, a single goat received daily for 4 days by gavage either [phthalic acid ring-UL-¹⁴C]flubendiamide at a mean dose rate of 4.83 mg/kg bw/day (176 ppm in the diet) or [aniline ring UL-¹⁴C] flubendiamide at a daily dose rate of 5 mg/kg bw/day (370 ppm in the diet). Each goat was milked in the morning immediately prior to each administration, 8, 24, 32, 48, 56, 72, and 77 hours (at sacrifice) after the first dose and excreta were collected in intervals of 24 hours and at sacrifice, when tissues were sampled.

Until sacrifice, 53.7% of the administered [phthalic acid ring-UL-¹⁴C]flubendiamide was recovered, mostly in the faeces (44.2%). Tissues accounted for 8.7% of the dose and milk 0.5%. The

highest residue levels were observed in fat (9.9 mg/kg eq.) and liver (10.1 mg/kg eq.), followed by kidney (2.4 mg/kg eq.), muscle (0.83 mg/kg eq.) and milk (0.70 mg/kg eq.). The parent compound accounted for 78.3–90.6% of TRR. Flubendiamide-iodophthalimide was detected in milk and tissues, the highest levels found in fat (1.0 mg/kg eq and 11% TRR) and liver (0.24 mg/kg eq. and 2.4% TRR). Liver contained six other metabolites ($\leq 5\%$ TRR) at levels ranging from 0.053 (F-iodoalkylphthalimide) to 0.39 (F-hydroxy) mg/kg eq. About 25% of the totally administered dose of [aniline ring UL ¹⁴C]flubendiamide, was excreted until sacrifice with 24% in the faeces. Milk accounted for 0.4% and tissues for 15% of the totally administered doses. The highest radioactivity was measured in fat (21 mg/kg eq.), followed by liver (13.5 mg/kg eq.), kidney (4.4 mg/kg eq.), muscle (1.5 mg/kg eq.) and milk (1.5 mg/kg eq.). The parent compound was the main residue component (72 to 93%TRR). The major metabolite, flubendiamide-iodophthalimide accounted for approx. 17% of the TRR in milk (0.24 mg/kg eq), 24% in fat (5 mg/kg eq) and 8.4% TRR in muscle (0.13 mg/kg eq). Minor identified metabolites accounted for less than 6% TRR each. The major metabolic pathway of flubendiamide in hens and goats was the oxidation of the methyl groups to form a primary alcohol (hydroxylation), further oxidation of the aliphatic alcohol to a carboxylic acid group followed by conjugation with glucuronic acid, which was exclusively found in the excreta and in the bile. A minor reaction was the cleavage of the respective amide bond of flubendiamide and the cyclisation to flubendiamide-iodophthalimide and flubendiamide-iodo-alkylphthalimide.

Metabolism in plants

All plant metabolism studies involved foliar application of flubendiamide to reflect the intended field use patterns. Additionally, the greenhouse metabolism studies for cabbages and tomatoes both made use of a quartz-ceiling greenhouse to make light irradiation conditions similar to field conditions: photolytic studies demonstrating a mean photolytic half-life of 5.5 days support this decision. A metabolism study was conducted on cabbages in a greenhouse using [phthalic acid ring-UL-14C]- and [aniline ring-UL-14C]-flubendiamide applied to immature plants at 300 µg/plant. Samples were collected 3 weeks and 6 weeks after application (maturity). Residues in cabbage heads represented < 0.1% of the applied radioactivity, AR. Flubendiamide was the main compound detected in the loose outer leaves (> 90% AR), and flubendiamide-des-iodo and flubendiamide-3-OH were the main metabolites, reaching up to 1.7% AR.

<u>Cherry tomato</u> plants were either treated in a glasshouse with [phthalic acid ring-UL-¹⁴C] or [aniline ring-UL-¹⁴C]-labelled flubendiamide at 125 μ g/branch of fruits (25 μ g/fruit) and 800 μ g/branch of leaves. Samples were collected at day 0, and 1, 2 and 4 weeks after application. Total radioactivity decreased during the experiment, from about 3.3 to 1.4 mg/eq. in fruits (99–67% TRR) and 44–45 to 16.5–14.9 mg/kg eq. in leaves (100–67% TRR). The surface rinsate contained most of the radioactive residues. Analysis of untreated plant parts four weeks after treatment showed less than 0.5% of the AR. Flubendiamide was the main component detected in fruits and amounted to 1.27 and 1.43 mg/kg eq. after four weeks for the phthalic acid and aniline label, respectively (63.4 and 66.3% AR). Flubendiamide-des-iodo accounted for up to 0.3% TAR (up to 0.007 mg/kg eq.) and flubendiamide-3-hydroxy for up to 0.2% AR. Flubendiamide was also the main component found in leaves (over 80% TAR after 4 weeks).

The metabolism of flubendiamide in <u>apples</u> was studied by applying [phthalic acid ring-UL-¹⁴C]- and [aniline ring-UL-¹⁴C] flubendiamide as an EC formulation to two apple trees (one for each label) at 0.11 kg ai/ha. Samples of apples and leaves were collected at 0, 7, 14, 28, and 56 days after treatment. About 100% of TRR was recovered from the fruits, with residues below 0.05 mg/kg at each harvest date for each label, mostly present in the apple rinses (over 60% TRR at 14 days PHI). Residues in fruit pellets were < 0.005 mg/kg eq. Residues in leaves dropped from 4.5 to about 1.5 mg/kg eq. at day 56, mostly recovered in the ACN leaf extracts. Residues in the leaf pellets increased during the experiment to about 10% TRR. Flubendiamide was the major compound detected in both label experiments, accounting for about 70% TRR at 14 days PHI in fruit (0.014 mg/kg eq.) and 78% TRR in leaves. Flubendiamide-des-iodo was at ≤ 0.002 mg/kg in fruit in all sampling times. In leaves, the levels were below 0.5 mg/kg (< 5% TRR).

The metabolism of flubendiamide in <u>sweet corn</u> was investigated using [phthalic acid ring-UL-¹⁴C] and [aniline ring-UL-¹⁴C] flubendiamide applied four times at 0.16 kg ai/ha. Forage (includes husks) and sweet corn samples were collected one day after the fourth treatment. TRR of forage and fodder was within the range of 0.29 to 0.60 mg/kg eq., with over 85% TRR found in the acetonitrile/water extracts. TRR derived by combustion of sweet corn and corn grain samples from phthalic acid ring label experiments were 0.01 and 0.02 mg/kg eq., respectively, and < 0.005 mg/kg eq. in samples from the aniline ring label experiment. ACN/water extracts of sweet corn and corn grain of the phthalic acid label represented 37 and 15% TRR, respectively; methanol under reflux and alkaline conditions extracted an additional 20 and 13% TRR. Over 75% TRR found in forage and fodder was flubendiamide (0.21 to 0.51 mg/kg eq.). Flubendiamide-des-iodo was detected at levels from 0.03 to 0.05 mg/kg eq, representing up to 18% TRR (forage).

The metabolism of flubendiamide in <u>rice</u> was investigated by applying a [phthalic acid ring-UL-¹⁴C]flubendiamide suspension (49.6 \pm 0.5 µg eq./mL) to plants just before ear emergence. After drying of the droplets on the plant surface, the plants (four pots) were transferred to the greenhouse. Samples were taken at time zero, four and nine weeks after application. The higher radioactive residues were found in leaves and stems, decreasing from 2.1 mg/kg eq. at time zero to around one third of the initial value four weeks after application (immature plant), mainly due to plant growth, and increased to 1.4 mg/kg eq., probably due to loss of moisture. The TRRs in seed after 9 weeks was 0.023 mg/kg eq., mostly recovered from the solids. Flubendiamide was the predominant constituent of the residue in stems and leaves for all sampling times (over 90%TRR). Flubendiamide-des-iodo accounted for 4.1% of TRR and fubendiamide-3-OH was identified as a minor constituent. Flubendiamide-benzylalcohol and flubendiamide-benzoic acid were also identified. Hulls from the 9 week sampling contained 0.05 mg/kg eq., 88% as parent compound and 4% as the des-iodo metabolite.

In summary, the metabolism of flubendiamide after foliar application on plants involved mostly the des-iodination of the parent compound to yield flubendiamide-des-iodo followed by hydroxylation to flubendiamide-3-OH and the stepwise oxidation of the methyl group at the aniline ring leading to flubendiamide-benzylalcohol and flubendiamide-benzoic acid. In tomatoes, the label-specific metabolite flubendiamide-des-anilino was also observed. In apple fruits, a third route was also observed, involving the elimination of the amino-ethyl-sulfonyl substituent leading to flubendiamide-iodophthalimide and the label-specific metabolite flubendiamide-3-iodo-phthalic acid. In corn, the only metabolic reaction observed was the reductive deiodination to yield flubendiamide-des-iodo. These studies indicate little evidence of residue translocation within the plant; thus, surface residues may be expected in the crop field trial studies.

Environmental fate

The supported uses of flubendiamide concern foliar application only. Based on the 2009 FAO Manual, no studies on the fates and behaviour in soil are required for this type of use. Any metabolite from a field dissipation study that may have an impact on plant residues is covered by the rotational crop study.

Hydrolysis

Flubendiamide comprised more than 95% of the residue at 25 ± 1 °C in pH 4.0, 5.0, 7.0 and 9.0 buffer solutions over a 30 day study period; and more than 95% of the residue at 50.0 ± 0.1 °C in pH 4.0, 7.0 and 9.0 buffer solutions over a 5 day study period. Therefore, flubendiamide is considered hydrolytically stable from pH 4.0 to 9.0.

Photolysis

Flubendiamide was irradiated in distilled water, natural water, and distilled water containing 1% acetone with artificial light for up to 168 hours. An average half-life of 5.5 days was determined in distilled water and distilled water with acetone, while a half-life of 4.3 days was reported in natural

waters. The results of the environmental fate studies indicate that degradation of flubendiamide is more likely to occur by photolysis than hydrolysis.

Residues on succeeding crops

The metabolism of flubendiamide after spray application onto bare soil was investigated in spring wheat, Swiss chard and turnips. [Phthalic acid ring-UL-¹⁴C]flubendiamide and [aniline ring-UL-¹⁴C]flubendiamide were applied by spray application (day 0) at a rate of 0.44 kg ai/ha, based on the projected annual field rate of 0.42 kg ai/ha. Crops of the first, second and third rotation were sown at day 29, day 135 and day 274, respectively. Plants of the first rotation were grown under natural temperature and light conditions and for the second and third rotation, in the greenhouse.

The maximum TRR (0.07 mg/kg) in plants treated with [phthalic acid ring-UL-¹⁴C]flubendiamide was observed in wheat straw of the first rotation, which decreased to 0.05 mg/kg eq. in the third rotation. During this period, residues in forage increased from 0.013 to 0.016 mg/kg and remained practically constant in grain (0.003 mg/kg eq.). Residues in Swiss chard decreased from 0.022 to 0.015 mg/kg eq. In turnip leaves and roots, residues in the first rotation were 0.011 and 0.006 mg/kg, respectively, remaining practically constant at the second and third rotation (0.005–0.006 mg/kg eq. and 0.002 mg/kg eq., respectively). The maximum TRR (0.137 mg/kg) in plants treated with [aniline ring-UL-¹⁴C]flubendiamide was observed in wheat straw of the first rotation, decreasing to 0.068 and 0.039 mg/kg in the second and third rotation. Similarly, the TRRs in wheat hay decreased from 0.045 mg/kg (first rotation) to 0.021 mg/kg (third rotation). The TRRs in forage and Swiss chard ranged from 0.009 mg/kg to 0.019 mg/kg for all rotations. The lowest residues were present in grain, turnip leaves and turnip roots amounting to ≤ 0.006 mg/kg for all rotations.

About 80–90% of the TRR was extracted from the majority of samples using acetonitrile/water in both experiments. Wheat grain of the first rotation accounted for 62 to 70% TRR, which decreased to about 14% TRR after enzymatic treatment (< 0.001 mg/kg). Unchanged parent compound was the main component of all plant samples and accounted for 22–88% of the TRR, except for grain. In grain, only 4% to 8% (< 0.001 mg/kg) of the TRR (0.003 mg/kg) was due to flubendiamide in the first rotation, decreasing to 2.2 and 0.5% TRR in the second and third rotations. The main portion of the TRR in grain was due to very polar radioactivity found in aqueous phases following conventional and enzymatic extraction. A major metabolite in confined rotational crops in the phthalic acid ring experiment was flubendiamide-des-iodo, accounting for up to 10.8% of the TRR in Swiss chard of the second rotation. The highest absolute amount of flubendiamide-des-iodo-alkylphthalimide was 0.01 mg/kg in straw of the second rotation, corresponding to 16.0% of the TRR. In the aniline ring experiment, flubendiamide-benzyl alcohol and benzoic acid were detected in some of the plant samples up to 1.4% TRR, each accounting for 0.001 mg/kg as a maximum.

The main metabolic reaction of flubendiamide in confined rotational crops was the reduction of the parent compound by elimination of the iodine-substituent. Other metabolic reaction include the elimination of the N-aryl-moiety, hydroxylation of the parent compound to form flubendiamide-benzyl alcohol which was further oxidised to the carboxylic acid, probably in soil.

In summary, total residues in the rotated crops of wheat grain, turnip leaves and roots were < 0.01 mg/kg. The rotated crop matrix with the highest level of flubendiamide was wheat straw, which contained a maximum level of 0.10 mg/kg flubendiamide in the reported studies. The highest reported level of flubendiamide in any human food item in the rotational crop studies was Swiss chard, where a maximum level of 0.015 mg/kg flubendiamide was found.

Methods of analysis

The analytical method developed for the determination of flubendiamide and flubendiamide-des-iodo residues in/on <u>plant material</u> (00816/M001), involves two successive microwave extractions, the first with acetonitrile/0.01% HCl and the second with acetonitrile/0.01% HCl/water. Following column clean-up the residues are eluted with cyclohexane/ethyl acetate, and dissolved in acetonitrile/water for quantification by LC-MS/MS. Oil of plant origin samples are dissolved in hexane, extracted with acetonitrile and partitioned with hexane before LC-MS/MS. Two MRM transitions for quantitation

and confirmation were monitored for each analyte (flubendiamide: m/z $681 \rightarrow 254$ and m/z $681 \rightarrow 274$; flubendiamide-des-iodo: m/z $555 \rightarrow 254$ and m/z $555 \rightarrow 274$). The method was validated for a variety of crops, including tomatoes, grains, beans, cabbages and cotton and submitted also to independent laboratory validation. The limit of quantification (LOQ) for both analytes is 0.01 mg/kg for all sample materials.

The extraction efficiency of microwave and shaker procedures was evaluated using data from radiovalidation of method 00816/M002 with corn (microwave) and the metabolism study with [phthalic acid ring-UL-¹⁴C]flubendiamide onto corn plants (blender). The microwave and the blender procedures extracted 100 and 86% TRR, respectively. The method that used the shaker extraction was validated for a LOQ of 0.02 mg/kg for flubendiamide and its des-iodo metabolite.

A HPLC/UV method (C18 column/ 260 nm) was developed to analyse flubendiamide and the des-iodo and 3-OH metabolites in tea samples. The samples were homogenized with ACN/0.1N HCl, extract with n-Hexane/EtOAc and cleaned up with graphite carbon, C18 and NH2 SPE. To analyse flubendiamide and the des-iodo metabolite, an addition clean-up step using silica SPE was included before HPLC/UV. The method was validated for flubendiamide at a LOQ of 0.01 mg/kg.

Method 00912 was developed for the determination of flubendiamide and the metabolite flubendiamide-iodophthalimide in <u>animal commodities</u> (muscle, liver, kidney, milk, fat and egg). The residues are extracted with acetonitrile/water and flubendiamide-iodophthalimide is completely converted to flubendiamide-des-alkylamino and its isomer under mild alkaline conditions. The residues are subjected to column clean-up and analysed by LC-MS/MS. The method uses matrix-matched standards for calibration or internal deuterated standards for calibration. LOQ for flubendiamide and its metabolite was 0.01 mg/kg and for flubendiamide-iodophthalimide was 0.013 mg/kg, expressed as parent equivalents compound. The transition for quantification was m/z $681 \rightarrow 254$ for flubendiamide and m/z $548 \rightarrow 504$ for the flubendiamide-des-alkylamino. Another transition for confirmation was monitored for each analyte.

Due to thermolability of flubendiamide, GC-based multiresidue methods are not recommended. HPLC-based multiresidue methods may be applicable, but no information addressing this approach were submitted.

Stability of residues in analytical samples

Flubendiamide and its des-iodo metabolite residues were shown to be stable in samples of tomatoes, oranges, beans, grapes, olive oil, must grapes and cabbages fortified at 0.10 mg/kg and stored under frozen conditions up to 18 months. Another study conducted with cotton seed and processed commodities, wheat and processed commodities, wheat forage and straw, potatoes and tomato paste fortified at 0.15 mg/kg, the compounds showed stability over one year periods.

No stability studies were conducted with flubendiamide in animal commodities, but information from the animal feeding studies showed that the samples were analysed less than a month after collection.

Definition of the residue

Metabolism studies conducted with flubendiamide in laying hens showed that the highest residues are found in fat and liver. TRR in fat (17.7 mg/kg eq) were higher than in muscle (1 mg/kg eq). The parent compound is the main residues found in edible commodities, accounting for 80 to 95% TRR. The main metabolite detected, flubendiamide-benzylalcohol, accounted for less than 10% TRR, mainly found in liver.

Goat metabolism studies also showed the highest residues in fat and liver. The ratio of flubendiamide residues in muscle vs fat was 1:12. The parent compound accounted for over 70% TRR and the main metabolite, flubendiamide-iodophthalimide, accounted for up to 24% TRR in fat and up to 17% TRR in milk, but less than 10% TRR in other tissues.

Plant metabolism studies conducted on plants have shown that flubendiamide accounted for over 90% of the residues. The main metabolite, flubendiamide-des-iodo, accounts for less than 10%

TRR. Succeeding crop studies have shown that, with the exception of flubendiamide-des-iodoalkylphthalimide present in straw of the second rotation (0.01 mg/kg eq., 16.0% TRR), no other metabolite exceeded 11% TRR.

Proposed definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant commodities: *flubendiamide*

As the flubendiamide-iodophthalimide metabolite was found in human foods (fat and milk), the Meeting determined that it was appropriate to include this metabolite in the dietary risk assessment.

Definition of the residue (for compliance with the MRL) for animal commodities: *flubendiamide*.

Definition of the residue (for estimation of dietary intake) for animal commodities: *flubendiamide and flubendiamide-iodophthalimide*.

Results of the poultry and bovine feeding studies were consistent with the metabolism studies in showing significantly higher residue levels in fat than muscle. Flubendiamide has a Log K_{ow} of 4.2. Based on this information, the Meeting concluded that flubendiamide is fat soluble.

The residue is fat-soluble.

Residues of supervised trials on crops

With the data gathering methods that were used, residues of both flubendiamide and flubendiamidedes-iodo were analysed in all supervised trials, except tea trials. Flubendiamide des-iodo, was detected only in animal feed commodities and in some processed commodities.

Greece and the Netherlands submitted GAP for tomato and pepper uses. This was the only GAP submitted by any European countries for flubendiamide. Therefore, except for tomatoes and peppers, no European residue data were directly used for maximum residue level estimations.

In the USA, trials were conducted side-by-side applying the pesticide in concentrated and high volume spray in pome fruits and stone fruits. Generally the high volume application gave rise to higher residues. These trials were not considered independent and the higher residues were used for estimation of residue levels.

Pome fruits

Residue trials were conducted on <u>apples</u> and <u>pears</u> in Europe, Canada and the USA. Flubendiamide is registered in the USA in pome fruits with a GAP of 3×0.14 –0.175 kg ai/ha (minimum of 93.4 L water/ha) and 14 days PHI.

In 12 trials conducted in the USA and Canada in <u>apples</u> at GAP rate, using diluted (1800 to 3000 L/ha) or concentrated sprays (360 to 700 L/ha), residues of flubendiamide within 14 days PHI were 0.13, 0.18 (2), 0.19, 0.21, 0.23 (2), 0.27, 0.30, 0.41, 0.47, and 0.48 mg/kg.

In six trials conducted in the USA in <u>pears</u> at GAP rate, also using diluted and concentrated sprays, residues of flubendiamide at 14 days PHI were 0.09, 0.23, 0.33, 0.36, 0.37, and 0.59 mg/kg.

Residues of flubendiamide in 18 trials conducted on <u>apples</u> and <u>pears</u> in the USA and Canada according to GAP for pome fruit in the USA belong to the same population and can be combined as follow: 0.09, 0.13, 0.18 (2), 0.19, 0.21, <u>0.23 (3)</u>, <u>0.27</u>, 0.30, 0.33, 0.36, 0.37, 0.41, 0.47, 0.48, and 0.59 mg/kg.

Based on the USA and Canada trials conducted on apples and pears according to USA GAP for pome fruit, the Meeting estimated a maximum residue level of 0.8 mg/kg, a STMR of 0.25 mg/kg, and a HR of 0.59 mg/kg for flubendiamide in pome fruits.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.8 mg/kg.

Stone Fruits

Cherries

Flubendiamide is registered in the USA in <u>stone fruits</u> with a GAP of 3×0.14 kg ai/ha (minimum of 93.4 L water/ha) and 7 days PHI.

Eight trials were conducted in the USA and Canada in <u>cherries</u> according to US GAP. Residues of flubendiamide at 7 days PHI were 0.19, 0.25, 0.48, 0.57, 0.60, 0.63, 0.99 and 1.0 mg/kg.

Peaches and Nectarines

Nine trials were conducted in the USA and Canada in <u>peaches</u> according to US GAP. Residues of flubendiamide at 7 days PHI were 0.20 (2), 0.23, 0.24, 0.30, 0.32, 0.35, 0.39 and 0.40 mg/kg.

Plums

Six trials were conducted according to GAP in the USA in <u>plums</u>. Residues of flubendiamide found in plums at a 7 day PHI were: 0.02, 0.03, 0.05, 0.09, 0.14, and 0.50 mg/kg.

The Meeting recommended a group maximum residue level for stone fruit, based on the cherry data. The Meeting estimated a maximum residue level of 2 mg/kg, a STMR of 0.585 mg/kg and a HR of 1.0 mg/kg for flubendiamide in stone fruit.

Grapes

Twelve trials were conducted on <u>grapes</u> in the USA at GAP (3×0.14 kg ai/ha and 7 days PHI). Residues were 0.12 (2), 0.19 (2), 0.22, 0.40, 0.43, 0.47, 0.67, 0.68, 0.69 and 0.81 mg/kg.

The Meeting estimated a maximum residue level of 2 mg/kg, a STMR of 0.415 mg/kg and a HR of 0.81 mg/kg for flubendiamide in grapes. The maximum residue level estimate derived from use of the NAFTA statistical calculator was 1.8 mg/kg.

Brassica vegetables

Broccoli

Flubendiamide is registered in <u>Brassica vegetables</u> in Australia at a maximum rate of 3×0.048 kg ai/ha (0.0048 kg ai/hL) and 3 days PHI. Nine residue trials were conducted in Australia in 2006 with <u>broccoli</u>; three trials conducted at GAP gave residues of flubendiamide of 0.13, 0.22 and 0.25 mg/kg.

Three trials were conducted on broccoli in the USA at 3×0.034 kg ai/ha, giving residues at a 1 day PHI and a 3 day retreatment interval (RTI) of 0.12, 0.16, and 0.23 mg/kg. GAP in the USA for Brassicas is 2×0.034 kg ai/ha. A broccoli residue decline study in California revealed negligible decline over a 7 day period, making it likely that the additional treatment would result in residues > 25% higher than would be expected from two treatments as allowed by GAP. Therefore, the broccoli trials in the USA were not considered further for MRL setting purposes.

Cauliflower

Three trials were conducted in the USA at 3×0.034 kg ai/ha, with residues at 1 day PHI of < 0.01, 0.02 and 0.03 mg/kg.

Cabbages

Eighteen trials were conducted on <u>cabbages</u> in Australia in 2006/2007. In six trials conducted according to GAP for Brassicas, residues of flubendiamide at 3 days PHI were 0.19, 0.20, 0.27, 0.43, 0.92 and 2.7 mg/kg. Twelve trials conducted at higher rates (0.072 to 0.1 kg ai/ha) gave residues within the same range.

Six trials were conducted on cabbages in the USA at 3×0.034 kg ai/ha, 1 day PHI, and 3 day RTI. Available residue decline data did not allow the Meeting to conclude that the initial treatment would not contribute significantly to the residue level at harvest. Therefore, the cabbage trials in the USA were not considered further for MRL setting purposes.

Brussels sprouts

Twelve trials were conducted on <u>Brussels sprouts</u> in Australia in 2006. In four trials conducted according to GAP residues of flubendiamide at 3 days PHI were 0.08, 0.23, 0.50 and 1.1 mg/kg. In eight trials conducted at higher rate gave residues at 3 days PHI ranging from 0.09 to 1.5 mg/kg.

The Meeting decided it was appropriate to recommend a group MRL for Brassica vegetables. Based on the cabbage data from Australia, the Meeting estimated a maximum residue level of 4 mg/kg, a STMR of 0.365 mg/kg and a HR of 2.7 mg/kg for flubendiamide in Brassica vegetables.

Fruiting vegetables, Cucurbits

Flubendiamide is registered in the USA for <u>cucurbit vegetables</u> at 3×0.05 kg ai/ha, 7 day RTI, and 1 day PHI. A total of seventeen field trials were conducted with cucumbers (six), summer squash (five) and melons (six) using five spray applications rather than three as specified by GAP. Residue levels in all cucurbit vegetables were so low that it is unlikely that residues from the first two spray treatments had any significant affect on the residue levels that would have been measured after three spray treatments. Accordingly, the Meeting decided to accept these trials for the purpose of MRL estimation.

Cucumber residues were as follows: < 0.01 (2), 0.01 (2), and 0.03 (2) mg/kg. Summer squash residues were as follows: < 0.01, 0.01 (2), 0.02, and 0.04 mg/kg. Melon residues were as follows: 0.02 (2), 0.04, 0.05, 0.07, and 0.09 mg/kg.

Noting the similarity in residue levels among cucumbers, summer squash, and melons, the Meeting recommended a group maximum residue level for cucurbit vegetables based on the melon data. The Meeting estimated a maximum residue level of 0.2 mg/kg, a STMR of 0.045 mg/kg and a HR of 0.09 mg/kg for flubendiamide in cucurbit vegetables.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.18 mg/kg.

Fruiting vegetables, other than Cucurbits

Peppers

Flubendiamide is registered in Australia in <u>tomatoes</u> and <u>peppers</u> at a maximum rate of 0.072 kg ai/ha (0.0072 kg ai/hL). Twenty four field trials were conducted on <u>peppers</u> in Australia in 2007. In seven trials conducted according to GAP, residues at a 1 day PHI were: 0.04, 0.06 (2), <u>0.09</u>, 0.16, 0.21 and 0.37 mg/kg.

Flubendiamide is registered in the USA for use in fruiting vegetables (except cucurbits) at a maximum rate of 3×0.05 kg ai/ha. Eleven trials conducted on peppers in the USA at 5×0.05 kg ai/ha (1 day PHI and a 3 day retreatment interval) gave residues ranging from < 0.01 to 0.14 mg/kg. As these trials were not in accord with GAP, they were not considered further.

Flubendiamide is registered to be used in Greece and the Netherlands for use in greenhouses on <u>peppers</u> at 2×0.006 kg ai/hL (0.096 kg ai/ha) with 1 day PHI. Fourteen glasshouse trials were conducted on <u>peppers</u> in France, Germany, Italy and the Netherlands using two or three spray treatments. Only four of these trials were according to GAP, giving residues as follows: 0.05, 0.06, 0.07, and 0.11 mg/kg.

The trials conducted on peppers in Australia and Europe according to GAP gave different residue populations. The Australian data gave the higher residues and were used as the basis for the estimations.

The Meeting estimated a maximum residue level of 0.7 mg/kg, a STMR of 0.09 mg/kg and a HR of 0.37 mg/kg for flubendiamide in peppers.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.7 mg/kg.

Chili pepper, Dry

Using the default dehydration factor of 10 to extrapolate from peppers to <u>dried chilli peppers</u>, the Meeting estimated a maximum residue level of 7 mg/kg and a STMR of 0.9 mg/kg for flubendiamide in dry chilli peppers.

Tomatoes

Field trials were conducted in Australia on <u>tomatoes</u>. In five trials conducted according to Australian GAP, residues at a 1 day PHI were: 0.04, 0.07, 0.35 (2) and 0.63 mg/kg. The trials conducted at higher and lower rates gave residues within the same range.

In eight field trials conducted on <u>tomatoes</u> in the USA in 2004 using five spray applications instead of three as specified by USA GAP (1 day PHI and 3 day RTI), residues ranged from 0.01 to 0.16 mg/kg. These trials were not considered further for MRL estimates because they do not reflect USA GAP and show residue levels lower than those conducted in Australia.

Flubendiamide is registered to be used in Greece in greenhouses in <u>tomatoes</u> at 2×0.006 kg ai/hL (0.12 kg ai/ha) with a 3 day PHI. In the Netherlands, GAP rate is the same, but the PHI is 1 day. Trials were conducted for greenhouse <u>tomatoes</u> in France, Germany, Italy, the Netherlands, Portugal and Spain using the GAP application rate. However, the trials conducted with three applications are not in accord with GAP, and should not be directly used for MRL-estimating purposes.

Five trials conducted in Germany, Spain and Portugal evaluated against Netherlands GAP gave residues at 1 day PHI of 0.06 (2), 0.09, 0.10, 0.11 (2) and 0.12 mg/kg.

The trials from Australia resulted in higher residues than those conducted in Europe and are appropriate for use in MRL estimations.

The Meeting estimated a maximum residue level of 2 mg/kg, a STMR of 0.35 mg/kg and a HR of 0.63 mg/kg for flubendiamide in tomatoes.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 2.9 mg/kg.

Sweet corn

Flubendiamide is registered in the USA in <u>sweet corn</u> at a maximum rate of 4×0.10 kg ai/ha with a 1 day PHI. In 11 trials conducted according to GAP, residues in corn-on-the-cob were < 0.01 (10) and 0.01 mg/kg.

The Meeting estimated a maximum residue level of 0.02 mg/kg, a STMR and a HR of 0.01 mg/kg for flubendiamide in sweet corn (corn-on-the-cob).

Leafy vegetables

Lettuce, Head

Flubendiamide is registered in Australia for leafy vegetables, including <u>leaf and head lettuce</u>, at a maximum rate of 3×0.048 kg ai/ha and a 1 day PHI.

In six Australian trials conducted on 2006 according to GAP, residues of flubendiamide at 1 day PHI were 0.16, 0.32, <u>0.78, 0.97</u>, 1.0 and 2.2 mg/kg. The Meeting estimated a maximum residue level of 5 mg/kg, a STMR of 0.875 mg/kg and a HR of 2.2 mg/kg for flubendiamide in head lettuce.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 5.8 mg/kg.

Lettuce, Leaf

In six Australian <u>leaf lettuce</u> trials conducted in 2006 according to GAP, residues of flubendiamide at a 1 day PHI were 0.95, <u>1.6 (2)</u>, <u>1.8</u>, 2.7 and 4.0 mg/kg.

The Meeting estimated a maximum residue level of 7 mg/kg, a STMR of 1.7 mg/kg and a HR of 4 mg/kg for flubendiamide in leaf lettuce.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 6.0 mg/kg.

Spinach

Five trials were conducted in the USA using 5×0.05 kg ai/ha (GAP for leafy vegetables allow up to three applications, with a 3 day RTI). Residues at 1 day PHI ranged from 3.1 to 6.7 mg/kg.

As no residue trials were conducted according to GAP, and no residue decline data were available to indicate the rate of residue dissipation, the Meeting could not estimate a maximum residue level for flubendiamide in spinach.

Legume vegetables

Beans with pods

Flubendiamide is registered in Australia in <u>legume vegetables</u> at a maximum rate of 3×0.072 kg ai/ha and 1 day PHI. Residues at 1 day PHI in four trials conducted on 2006/2007 according to GAP were 0.11, 0.20 (2) and 0.22 mg/kg in green beans.

Trials were conducted with <u>beans</u> and <u>peas</u> in the USA according to the legume vegetable GAP (2×0.1 kg ai/ha). Residues at 1 day PHI in six USA trials were 0.03, 0.07, 0.09 (2), 0.14, and 0.17 mg/kg in beans with pods.

Peas with pods

Residues at 1 day PHI in five trials conducted in Australia according to GAP were 0.38, 0.39, $\underline{0.43}$, 0.45, and 0.90 mg/kg in peas with pods.

Residues at 1 day PHI in three trials conducted in the USA according to GAP were 0.14, 0.22, and 0.21 mg/kg in peas with pods.

Succulent shelled beans and peas

Soya bean (immature seeds)

Twenty trials were conducted on <u>soya beans</u> in the USA according to GAP of 2×0.10 kg ai/ha. Residues in green seeds at 1 day PHI were 0.02, 0.03 (2), 0.04 (4), 0.05, 0.07, <u>0.08</u> (2), 0.09, 0.10, 0.12, 0.20 (2), 0.21, 0.22, 0.29 and 0.40 mg/kg;

Beans and peas, shelled

Twelve trials were conducted in the USA according to the USA legume vegetable GAP on <u>shelled</u> <u>beans</u> (six trials) and <u>shelled peas</u> (six trials). Residues in shelled beans were < 0.01 (4), 0.01 and 0.03 mg/kg and in shelled peas < 0.01 (4), 0.01 and 0.03 mg/kg. Residues in shelled beans and peas can be combined as < 0.01 (8), 0.01 (2) and 0.03 (2) mg/kg.

The Meeting decided it was appropriate to make a commodity group recommendation for legume vegetables. The results from the peas with pods trials from Australia were used to make the

estimations. The Meeting estimated a maximum residue level of 2 mg/kg, and a STMR of 0.43 mg/kg, and a HR of 0.90 mg/kg for flubendiamide in legume vegetables.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 1.2 mg/kg.

Pulses

Soya beans, dry

In dry soya bean seeds, residues at 14 days PHI were < 0.01, 0.01 (4), 0.02 (2), 0.03 (5), 0.04, 0.06, 0.07 (2), 0.09, 0.14, 0.25 and 0.30 mg/kg.

Dry peas and cowpeas

Fourteen trials were conducted with <u>cowpeas</u> and <u>dry peas</u> in the USA according to GAP of 2×0.1 kg ai/ha and 14 days PHI. Residues in cowpeas were < 0.01, 0.01 (2), 0.02, 0.04 (3), 0.06 and 0.20 mg/kg. Residues in dry peas were 0.08, 0.11, 0.18 (2) and 0.59 mg/kg.

Based on the data set for dry peas, the Meeting recommended establishing a group MRL for pulses. The Meeting estimated a maximum residue level of 1 mg/kg and a STMR of 0.18 mg/kg for flubendiamide in pulses.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 1.0 mg/kg.

Celery

Flubendiamide is registered in the USA in leafy vegetables at a maximum rate of 3×0.05 kg ai/ha and 1 day PHI. In six US trials conducted using five applications at the GAP rate with a 3 day RTI, residues at a 1 day PHI in celery stalks were: 0.81, 1.2, <u>1.3</u>, <u>2.1</u>, 2.3, and 2.6 mg/kg.

Although the number of spray applications (five) exceeded that specified by GAP (three), a residue decline study shows substantial reductions in residue levels over three days, the RTI for use in celery. The Meeting concluded that the first two sprays are unlikely to contribute more than 20% to the residue levels at harvest. Consequently, the celery results may be used to estimate maximum residue levels. The Meeting estimated a maximum residue level of 5 mg/kg a STMR of 1.7 mg/kg, and a HR of 2.6 mg/kg for flubendiamide in celery.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 4.6 mg/kg.

Corn (maize)

Flubendiamide is registered in the USA in <u>field corn</u> at a maximum rate of 4×0.10 kg ai/ha and 28 day PHI. Nineteen trials were conducted in Canada and the USA according to this GAP giving residues within 28 days PHI of < 0.01 (17) and 0.01 (2) mg/kg. The Meeting estimated a maximum residue level of 0.02 mg/kg and a STMR of 0.01 mg/kg for flubendiamide in <u>maize grain</u>.

Rice

Flubendiamide is registered in India in <u>rice</u> with a GAP of 3×0.024 kg ai/ha with a PHI of 40 days. Ten trials were conducted in Thailand and two in India using the GAP rate, but at a PHI of 30 days or less. Nine trials from Thailand conducted with PHIs of 27–30 days gave residues from < 0.01 to 0.11 mg/kg. Two trials conducted in India with 28 day PHIs gave residues of 0.06 and 0.20 mg/kg. One Thai trial with a 13 day PHI gave residues of 0.30 mg/kg.

As no residue trials were conducted according to GAP, the Meeting could not estimate a maximum residue level for flubendiamide in rice.

Tree nuts

Flubendiamide is registered in the USA in <u>tree nuts</u> at 3×0.14 kg ai/ha and 14 days PHI. Twenty trials were conducted in the country in almonds and pecans according to GAP. Residues in <u>almonds</u> were < 0.01 (4), <u>0.01</u>, <u>0.02</u> (3), 0.04 and 0.05 mg/kg. Residues in <u>pecans</u> were < 0.01 (6), 0.01 (2), 0.02, and 0.03 mg/kg.

Based on the almond data, the Meeting estimated a maximum residue level of 0.1 mg/kg, a STMR of 0.015 mg/kg and a HR of 0.05 mg/kg for flubendiamide in tree nuts.

Cotton

Flubendiamide is registered in the USA in <u>cotton</u> with a GAP of 3×0.10 kg ai/ha with a PHI of 28 days. Residue levels found from 12 trials conducted according to GAP, were: < 0.01, 0.02, 0.03, 0.11, 0.12 (2), 0.18, 0.19, 0.25, 0.28, 0.37 and 1.0 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg and a STMR of 0.15 mg/kg for flubendiamide in cotton seed.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 0.91 mg/kg.

Теа

Flubendiamide is registered in Japan in <u>dry tea</u> at 1×0.40 kg ai/ha and 7 days PHI. Six trials were conducted in the country according to GAP, giving residues at 7 days PHI of 11, 17, <u>22, 24</u>, 28 and 29 mg/kg.

The Meeting estimated a maximum residue level of 50 mg/kg, a STMR of 23 mg/kg and a HR of 29 mg/kg for flubendiamide in tea.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 49 mg/kg.

Animal feeds

The individual residue values that are reported in this section have not been adjusted for dry matter content. However, maximum residue levels were corrected for dry matter content as listed in the OECD feed tables.

Soya bean forage and hay

Twenty trials were conducted on <u>soya bean forage and hay</u> in the USA according to the GAP of that country $(2 \times 0.10 \text{ kg ai/ha})$. Residues in forage at a 3 day PHI were: 4.3, 6.0, 6.1, 6.7, 6.8, 7.1, 7.2, 7.6, 7.7, <u>7.9, 8.0</u>, 9.1, 9.9, 10 (3), 11 (2), 13 and 15 mg/kg.

The Meeting estimated a STMR of 7.95 mg/kg and a highest residue of 15 mg/kg for flubendiamide in soya bean forage (green).

In hay, residues at 3 days PHI were 12, 13, 14, 15, 17, 22, 23, 24, 25, <u>26, 29</u> (2), 30, 32, 33, 34, 35, 39 and 41 (2) mg/kg.

The Meeting estimated an MRL of 60 mg/kg, a STMR of 27.5 mg/kg and a highest residue of 41 mg/kg for flubendiamide in soya bean fodder.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 62 mg/kg.

Cowpea and pea forage and hay

Twenty two trials were conducted on <u>forage and hay from cowpeas</u> and <u>vines and hay from peas</u> in the USA according to GAP.

Residues at 3 days PHI from six trials in cowpea forage were: 3.9, 4.2, <u>5.5, 6.6</u>, 9.0 and 14 mg/kg.

The Meeting estimated a STMR of 6.05 mg/kg and a highest residue of 14 mg/kg for flubendiamide in cowpea forage.

Residues in pea vines at 3 days PHI from five trials were: 2.4 (2), 3.1, 3.6 and 5.5 mg/kg. The Meeting estimated a STMR of 3.1 mg/kg and a highest residue of 5.5 mg/kg for flubendiamide in pea vines.

Residues from six trials in cowpea hay at 3 days PHI were: 8.3, 15, 16, 25 and 26 mg/kg. Residues from five trials in pea hay at 3 days PHI were: 4.2, 9.1, 9.9, 12 and 20 mg/kg.

The Meeting decided that residues from trials conducted on cowpeas and pea hay belonged to the same population and could be combined for mutual support as: 4.2, 8.3, 9.1, 9.9, <u>12, 15</u>, 16, 20, 25 and 26 mg/kg

The Meeting therefore, estimated an MRL of 40 mg/kg, a STMR of 13.5 mg/kg and a highest residue of 26 for flubendiamide in pea fodder.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 47 mg/kg.

Maize forage

In 31 trials conducted on field corn in Canada and the USA according to US GAP, residues in <u>maize</u> forage at 1 day PHI were 1.0, 1.7, 1.8 (2), 2.0, 2.2, 2.5, 3.4, 3.5, 3.6 (3), 3.7 (2), 3.8 (3), 3.9 (3), 4.2, 4.6 (2), 4.8, 5.0, 5.3, 5.5, 5.6 (2), 6.7 and 8.4, mg/kg. The Meeting estimated a STMR of 3.8 mg/kg and a highest residue of 8.4 mg/kg for flubendiamide in maize forage.

Almond hulls

In ten trials conducted on <u>almonds</u> in the USA according to GAP, residues in <u>almond hulls</u> at 14 days PHI were 0.98, 1.4, 1.4, 2.1, <u>2.4, 2.5</u>, 2.9, 3.3, 4.7 and 5.2 mg/kg.

The Meeting estimated a maximum residue level of 10 mg/kg, and a STMR of 2.45 mg/kg for flubendiamide in almond hulls.

The maximum residue level estimate derived from use of the NAFTA statistical calculator was 8.3 mg/kg]

Cotton gin trash

In six trials conducted in the USA according to GAP, residues in <u>cotton gin trash</u> at a 28 day PHI were 2.3, 3.5, <u>6.8, 8.1</u> and 25 (2) mg/kg.

The Meeting estimated a STMR of 7.45 mg/kg for flubendiamide in cotton gin trash.

Processing studies

Effects on the nature of residues

[Phthalic-acid ring-UL-¹⁴C]flubendiamide (0.2 mg ai/L water containing 1% acetonitrile) was incubated in buffered drinking water at three representative sets of conditions: pasteurization at 90 °C/20 min at pH 4; baking, brewing, boiling at 100 °C/60 min at pH 5; sterilization (autoclave) at 120 °C/20 min at pH 6. Radioactivity was determined by LSC and HPLC/MS for confirmation of the identity of the test compound. Radioactivity balances were in a range of 99.8 to 101.0% of applied radioactivity. In all three processing scenarios, no degradates were observed in any of the samples, and flubendiamide was the only compound in all HPLC profiles.

Fate of residues in processing

Processing studies were conducted on apples, peaches, plums, grapes, tomatoes, cucurbits (cucumbers, melons and summer squash), cabbages, broccoli, lettuce, cotton, soya bean, corn and rice. In all studies, residues of flubendiamide and its metabolite flubendiamide-des-iodo were determined by HPLC-MS/MS. Processing factors are only shown for flubendiamide.

A summary of processing factors (PF) calculated based on the data provided is shown on Table 99. Based on the estimations made on the crops, a STMR-P was estimated by multiplying the STMR of the raw commodity for the PF. As no recommendations were made for rice, no further estimations were made for processing commodities of this crop. Maximum residue levels (MRLs) were only estimated for commodities with a Codex code and of importance to international trading.

Commodity	STMR, mg/kg	HR, mg/kg	PF, mean or best estimate	STMR-P, mg/kg
Pome fruit	0.25	0.59		
Dried fruit			0.51	0.13
Apple juice	0.505	1.0	0.06	0.015
Plum Prunes	0.585	1.0	0.9	0.53
Grape	0.415	0.81	0.9	0.55
Grape juice			0.13	0.054
Wine			0.19	0.079
Raisin			1.7	0.70
Grape pomace, dry			5.9	2.45
Brassica vegetables	0.365	2.7		
Tomato	0.35	0.63		
Tomato peeled			0.3	0.105
Tomato juice			0.49	0.17
Tomato preserve/canned			0.29	0.10
Tomato paste			4	1.4
Lettuce	0.875	2.2		
Soya bean	0.08	0.40		
Refined oil			< 0.04	0.001
Aspirated grain fraction			358	28.6
Soya bean meal			0.12	0.01
Soya bean hulls			2.7	0.22
Corn (maize)	0.01	0.01		
Corn flour			2.1	0.021
Corn meal			0.93	0.009
Corn oil, refined			0.45	0.0045
Corn aspirated grain fractions			318	3.18
Cotton	0.15	1.0		
Cotton oil crude			6.1	0.92
Cotton meal			0.22	0.08

Table 99 Summary of processing factors and estimations for processing commodities

Residues in the dried commodity were lower than in fresh grapes: as a consequence the meeting decided a maximum residue level need not be recommended.

The Meeting decided to estimate a maximum residue level of 0.05 mg/kg for corn flour based on a mean residue of 0.01 mg/kg for maize and a processing factor of $2.1 (0.01 \times 2.1 = 0.021 \text{ mg/kg})$.

Residues in animal commodities

Farm animal dietary burden

The Meeting estimated the dietary burden of flubendiamide in farm animals on the basis of the diets listed in Appendix IV of the 2009 Manual on the Submission and Evaluation of Pesticide Residues Data and the STMR or highest residue levels estimated at the present Meeting. Dietary burden calculations are provided in Annex 5.

		US/CAN	EU	Australia	Japan
Beef cattle	max	4.9	32.1	47.9 ^a	0.039
	mean	3.1	14.7	29.9 ^b	0.039
Dairy cattle	max	25.0	32.6	47.3°	10.5
	mean	13.7	15.0	25.0 ^d	4.78
Poultry broiler	max	0.07	0.09	0.19	0.008
	mean	0.07	0.09	0.19	0.008
Poultry layer	max	0.07	9.6 ^e	0.19	0.009
	mean	0.07	5.3 ^f	0.19	0.009

Table 100 Animal dietary burden for flubendiamide, ppm of dry matter diet

^a Highest maximum beef or dairy cattle dietary burden suitable for maximum residue level estimates for mammalian meat

^b Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat.

° Highest maximum dairy cattle dietary burden suitable for MRL estimates for mammalian milk

^d Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

^e Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs.

^f Highest mean poultry dietary burden suitable for STMR estimates for poultry meat and eggs.

The flubendiamide burdens for animal commodity MRL estimation (residue levels in animal feeds expressed on dry weight) reached a maximum of 47.3 ppm for cattle and of 9.6 ppm for poultry. The flubendiamide dietary burdens for animal commodity STMR estimation (residue levels in animal feeds expressed on dry weight) reached a maximum of 29.9 ppm for cattle and of 5.3 ppm for poultry.

Animal feeding studies

Laying hens were fed for 28 consecutive days with feed containing flubendiamide at 0.02, 0.10, or 0.50 ppm. Eggs were collected daily. Additionally, two groups of laying hens were fed at 0.5 ppm feed for 28 consecutive days in order to investigate the depuration of flubendiamide and its metabolite in eggs and tissues (up to 14 days after the last dose). Samples were analysed by HPLC-MS/MS for flubendiamide and flubendiamide-iodophthalimide. Flubendiamide was detected in eggs at the second dosing level from day 13 (0.01 mg/kg) and it reached 0.06 mg/kg at the highest dose. No residues of flubendiamide residues in tissues were observed in fat, showing evidence of a dose response (0.01, 0.07 and 0.25 mg/kg in the first, second and third dose, respectively). Flubendiamide-iodophthalimide was found only at the highest dose level in fat (0.02 mg/kg). Flubendiamide was not present in egg samples 14 days after the last dose and decreased in fat from 0.27 mg/kg at the end of the dosing period to 0.04 mg/kg 7 days after the last dose to 0.01 mg/kg after 14 days (only one fat sample).

Lactating cows were dosed orally for 29 consecutive days with flubendiamide at 2.5, 7.5, 30 or 50 mg/kg feed/day (nominal dosing rates). Milk was collected twice daily during the dosing period, and a portion of the 25 day sample from the highest dose group was separated into milk fat and skim milk whey. Additionally, two cows were fed at 50 mg/kg for 29 consecutive days in order to investigate the depuration of residues in milk (up to 21 days after the last dose) and tissues (at 7 and

21 days after the last dose). Tissue and milk samples were analysed for residues by HPLC-MS/MS for flubendiamide and flubendiamide-iodophthalimide. For the low and medium dose levels, residues of flubendiamide in milk remained very low throughout the dosing periods at the low and medium dose levels (up to 0.03 mg/kg). At higher dose levels (30 and 50 mg/kg), residues in milk reached a plateau level after 7–8 days of dosing (approximately 0.11 mg/kg). Flubendiamide residues were 0.02 mg/kg in milk whey and 1.5 mg/kg in "milk fat (cream)", with an apparent processing factor for milk to milk fat of 13.6. However, no information on the lipid content of the milk fat (cream) sample was provided. The iodophthalimide metabolite was only detected in milk fat (0.23 mg/kg). Residues of flubendiamide were observed in tissues of all animals in all dose groups, with the lowest levels in muscle (0.01 to 0.12 mg/kg), followed by liver and kidney (0.04 to 0.46 mg/kg) and fat (from 0.06 to 0.65 mg/kg in subcutaneous fat, 0.08 to 1.0 mg/kg in omental and perirenal fat). Flubendiamide was detected in fat at a mean level up to 0.17 mg/kg. During the depuration phase, residues in milk decline from 0.16 mg/kg in the last dosing day to 0.02 mg/kg after 19 to 21 days. Residues in tissues declined to 31 to 46% of the last dosing day level in the first week of depuration and from 23 to 32% after 14 days.

Animal commodity maximum residue levels

Poultry

The dietary burdens for the estimation of maximum residue levels and STMR values for flubendiamide in <u>poultry</u> commodities are 9.6 and 5.3 ppm, respectively. Because the poultry dietary burden exceeds the highest dosing level in the poultry feeding study by more than 30%, no attempt was made to estimate maximum residue levels, STMR or HR values for poultry tissues and eggs.

Dosing levels in the bovine feeding study are adequate for the purposes of estimating residue levels in mammals, and the relevant data are summarised in Table 101.

Dietary burden (mg/kg)		Flubendiam	Flubendiamide and flubendiamide-iodophthalimide residues, mg/kg				
Feeding level [ppm]		Milk	Milk fat	Muscle	Liver	Kidney	Fat
MRL cattle beef,	(47.9)			(0.13)	(0.56)	(0.57)	(1.2)
highest residue	[38]			[0.09]	[0.53]	[0.55]	[0.93]
	[60]			[0.16]	[0.59]	[0.59]	[1.47]
MRL milk, highest	(47.3)	(0.16)	(4.0)				
residue	[69]	[0.17]	$[4.25]^{a}$				
STMR cattle beef and	(29.9)			(0.06)	(0.31)	(0.32)	(0.62)
dairy, mean residue	[38]			[0.07]	[0.39]	[0.41]	[0.79]
STMR milk, mean	(25.0)	(0.066)	(1.6)				
residue	[38]	[0.10]	$[2.50]^{a}$				

Table 101 Estimations of residues in mammalian commodities

^a Although a residue concentration factor was provided for "milk fat (cream)", no lipid content was provided for this sample. Assuming that whole milk is 4% milk fat, and assuming all flubendiamide and flubendiamide-iodophthalimide residues partition into the fat, a milk fat residue was estimated by applying the maximum concentration factor for milk to milk fat of $25 \times$.

The data from the cattle feeding studies were used to support the estimation of maximum residue levels for flubendiamide in mammalian meat, edible offal, and milk.

The Meeting estimated STMR values of 0.06 mg/kg for mammalian muscle and 0.62 mg/kg for mammalian fat, and a maximum residue level of 2 mg/kg for mammalian meat. The HRs were 0.13 mg/kg and 1.2 mg/kg for muscle and fat, respectively.

The Meeting estimated an STMR value of 0.32 mg/kg and a maximum residue level of 1 mg/kg for mammalian edible offal, based on liver and kidney data. The HR was 0.57 mg/kg.

The Meeting estimated an STMR value of 0.066 mg/kg and a maximum residue level of 0.2 mg/kg for flubendiamide in milks.

The Meeting estimated an STMR value of 1.6 mg/kg and a HR of 4.0 mg/kg for milk fat. The Meeting estimated a maximum residue level of 5 mg/kg for milk fat.

RECOMMENDATIONS

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for animal and plant commodities: *flubendiamide*

The residue is fat soluble.

CCN	Commodity name	Recommended maximum residue level, mg/kg	STMR (P) mg/kg	HR (P) mg/kg
AM 0660	Almond hulls	10	2.45	
VB 0040	Brassica (cole or cabbage) vegetables, Head cabbages, Flowerhead brassicas	4	0.365	2.7
VS 0624	Celery	5	1.7	2.6
SO 0691	Cotton seed	1.5	0.15	
VC 0045	Fruiting vegetables, Cucurbits	0.2	0.045	0.09
MO 0105	Edible offal (Mammalian)	1	0.32	0.57
FB 0269	Grapes	2	0.42	0.81
VP 0060	Legume vegetables	2	0.43	0.90
VL 0482	Lettuce, Head	5	0.875	2.2
VL 0483	Lettuce, leaf	7	1.7	4.0
GC 0645	Maize	0.02	0.01	
CF 1255	Maize flour	0.05	0.021	
MM 0095	Meat (from mammals other than marine	2 (fat)	0.06 muscle	0.13 muscle
	mammals) (fat)		0.62 fat	1.2 fat
ML 0106	Milks	0.1	0.066	
FM 0183	Milk fats	5	1.6	4.0
AL 0072	Pea hay or Pea fodder (dry)	40	13.5	26
VO 0051	Peppers	0.7	0.09	0.37
HS 0444	Peppers, Chili, dried	7	0.9	
FP 0009	Pome fruits	0.8	0.25	0.59
VD 0070	Pulses	1	0.18	
AL 0541	Soya bean fodder	60	27.5	41
FS 0012	Stone fruit	2	0.585	1.0
VO 0447	Sweet corn (corn-on-the-cob)	0.02	0.01	0.01
DT 1114	Tea, Green, Black (black, fermented and dried)	50	23	29
VO 0448	Tomato	2	0.35	0.63
TN 0085	Tree Nuts	0.1	0.015	0.05

DIETARY RISK ASSESSMENT

Long-term intake

The ADI for flubendiamide is 0–0.02 mg/kg bw. The International Estimated Daily Intakes (IEDI) for flubendiamide was estimated for the 13 GEMS/Food cluster diets using the STMR or STMR-P values estimated by the current Meeting. The results are shown in Annex 3 of the 2010 Report of the JMPR. The IEDI ranged from 3 to 20% of the maximum ADI. The Meeting concluded that the long-term intake of residues of flubendiamide from uses that have been considered by the JMPR is unlikely to present a public health concern.

Short-term intake

The ARfD for flubendiamide is 0.2 mg/kg bw. The International Estimated Short Term Intake (IESTI) for flubendiamide was calculated for the plant commodities for which STMRs and HRs were estimated and for which consumption data were available. The results are shown in Annex 4 of the 2010 Report of the JMPR. The IESTI ranged from 0 to 40% of the ARfD for the general population and from 0 to 60% of the ARfD for children.

The Meeting concluded that the short-term intake of residues from the uses of flubendiamide considered by the Meeting is unlikely to present a public health concern.

REFERENCES

Author(s), year	Title	Report No.
Anspach, 2005	Independent laboratory validation of the Bayer CropScience method No. 00912 for the determination of residues of NNI-0001 and its metabolite A-14 in/on muscle, fat and egg by HPLC-MS/MS. Dr. Specht & Partner, Chemische Laboratorien GmbH, Hamburg, Germany. BCS, Edition Number: M-250859-02-1; Method Report No.: BAY-0512V. GLP, unpublished	No.: 00912
Baker et al,. 2002	A metabolism study with [14C]-NNI-0001 on apples. PTRL West, Inc., Hercules, CA, USA. Nihon NohyakuCo., Ltd., Osaka, Japan, Edition Number: M-106042-01-2. GLP, unpublished	1027W-2
Ballesteros, 2005	Determination of the residues of NNI-0001 in/on plum after spraying of NNI-0001 (480 SC) in the field in Italy, Spain and Southern France. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-262530-01-1; GLP, unpublished	RA-2304/04
Ballesteros, 2006	Determination of the residues of NNI-0001 in/on tomato after spraying of NNI- 0001(24 WG) in the greenhouse in Germany and Italy. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-276592-01-1; GLP, unpublished	RA-2517/05
Ballesteros & Eberhardt, 2005	Determination of the residues of NNI-0001 in/on apple and pear after spraying of NNI-0001 (480 SC) in the field in Belgium and Germany. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-257057-01-1. GLP, unpublished	RA-2301/04
Ballesteros et al., 2005	Determination of the residues of NNI-0001 in/on tomato after spraying of NNI- 0001 (480 SC) in the Greenhouse in the Netherlands, Spain, Italy and France. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-255741-01-1. GLP, unpublished	RA-2312/04
Ballesteros et al., 2005	Determination of the Residues of NNI-0001 in/on Tomato after Spraying of NNI- 0001 (24 WG) in the Greenhouse in Italy and Spain. BCS, Edition Number: M- 255744-01-1. GLP, unpublished	RA-2326/04
Ballesteros et al., 2005	Determination of the residues of NNI-0001 in the processed fractions of apple fruit for processing (fruit, washed; washings; pomace, wet; raw stewed fruit; sauce) after spraying of NNI-0001 (480 SC) in the field in Germany. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-259039-01-1. GLP, unpublished	RA-3301/04
Ballesteros & Gateaud,. 2005	Analytical method 00816/M003 for the determination of residues of NNI-0001 and its des-iodo metabolite A-1 in/on plant material by HPLC-MS/MS using stable- labelled internal standards. Bayer CropScience S.A., Lyon, France BCS, Edition Number: M-255848-01-1. GLP, unpublished	00816/M003
Ballesteros & Helfrich,. 2005	Determination of the residues of NNI-0001 in /on apple and pear after spraying of NNI-0001 (480SC) in the field in france, italy and spain. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-256074-01-1; GLP, unpublished	RA-2302/04
Ballesteros & Helfrich, 2005	Determination of the residues of NNI-0001 in /on apple after spraying of NNI-0001 (24 WG) in the field in Belgium and Germany. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-256092-01-1. GLP, unpublished	RA-2325/04
Ballesteros et al., 2005	Determination of the residues of NNI-0001 in the processed fractions of peach fruit for processing (peel; washings; fruit, depitted; preserve; fruit, washed; fruit, peeled) after spraying of NNI-0001 (480 SC) in the field in Spain andBayer CropScience S.A., Lyon, France. BCS, Edition Number: M-257066-01-1, GLP, unpublished	RA-3303/04
Ballesteros & Neigl, 2005	Determination of the residues of NNI-0001 in/on peach and nectarine after spraying of NNI-0001 (480 SC) in the field in southern France, Italy, Spain and Portugal Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-256131-01-1. GLP, unpublished	RA-2303/04
Balluff, 2008	Determination of residues of flubendiamide after multiple applications of Phoenix WDG 20 in rice in Asia (Thailand) in 2008. Eurofins-GAB GmbH, Niefern-	20074104/AS1- FPRI

Author(s), year	Title	Report No.
	Oeschelbronn, Germany. BCS, Edition Number: M-308808-01-2. GLP,	
2002	Unpublished.	(00/50 00140
Bates, 2002a	NNI-0001: Determination of the melting/freezing temperatures (EC Directive	608/58-D2149
	92/69/EEC Method A1) and thermal stability (OECD Guideline 113). Covance Laboratories Ltd., Harrogate, North Yorkshire, United Kingdom. Nihon Nohyaku	
	Co., Ltd., Osaka, Japan, Edition Number: M-069909-01-1. GLP, unpublished.	
Bates, 2002b	NNI-0001: Determination of the relative density (EC Directive 92/69/EEC Method	608/60-D2149
,	A3). Covance Laboratories Ltd., Harrogate, North Yorkshire, United Kingdom.	
	Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069918-01-1. GLP,	
	unpublished	
Bates, 2002c	NNI-0001: Determination of the vapour pressure (EC Directive 92/69/EEC Method	608/61-D2149
	A4). Covance Laboratories Ltd., Harrogate, North Yorkshire, United Kingdom.	
	Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069929-01-1. GLP,	
Potos 2002d	unpublished NNI-0001: Determination of the organic solvent solubility. Covance Laboratories	608/70 D2140
Bates, 2002d	Ltd., Harrogate, North Yorkshire, United Kingdom. Nihon Nohyaku Co., Ltd.,	608/70-D2149
	Osaka, Japan, Edition Number: M-069934-01-1. GLP, unpublished	
Beedle, 2006	NNI-0001 480 SC - Magnitude of the residue on cotton. Bayer CropScience LP,	RCAMY002
500010, 2000	Stilwell, KS, USA. BCS, dition Number: M-268513-01-1. GLP, unpublished	10011002
Behn & Billian,	Determination of the residues of NNI-0001 in/on round cabbage and red cabbage	RA-2314/04
2005	after spraying of NNI-0001 (480 SC) in the field in Northern France, Germany and	
	United Kingdom. BCS, Edition Number: M-256488-01-1. GLP, unpublished	
Behn & Billian,.	Determination of the residues of NNI-0001 in/on Brussels sprouts after spraying of	RA-2316/04
2005	NNI-0001 (480 SC) in the field in Germany and Northern France. Edition Number:	
	M-252130-01-1. GLP, unpublished	DA 2214/04
Behn <i>et al.</i> ,	Determination of the residues of NNI-0001 in/on red cabbage head and the	RA-3314/04
2005	processed fractions () and round cabbage head and the processed fractions () after spraying of NNI-0001 (480 SC) in the field in United Kingdom and Germany	
	BCS, Edition Number: M-256489-01-1. GLP, unpublished	
Billian, 2004	Modification M001 to the analytical method 00816 for the determination of	00816/M001
2001	residues of NNI-0001 and its des-Iodo metabolite A-1 in/on plant material by	00010,111001
	HPLC-MS/MS for data collection and enforcement purposes. Edition Number: M-	
	082086-01-1. GLP, unpublished	
Billian, 2005	Analytical method 00912 for the determination of residues of NNI-0001 and its	MR-149/04
	metabolite A14 in/on muscle, liver and kidney, milk, fat and poultry egg by HPLC-	
	MS/MS. BCS, Edition Number: M-249688-01-1; Method Report No.: MR-149/04.	
D.111: 2005	GLP, unpublished	DA 20(2/0
Billian, 2005	Determination of the residues of NNI-0001 in/on peach after spraying of NNI-0001 (480 SC) in the field in Greece, Spain and Portugal. Edition Number: M-242597-	RA-2063/0
	01-1. GLP, unpublished.	
Billian, 2006	Determination of the residues of NNI-0001 in/on broccoli and cauliflower after	RA-2327/04
Dinian, 2000	spraying of NNI-0001 (24 WG) in the field in Spain and Italy. BCS, Edition	101 2527/04
	Number: M-263727-01-1. GLP, unpublished	
Billian, 2005	Storage stability of NNI-0001 and NNI-0001-des-iodo in grape (Must) for 12	MR-054/04
-	months. Edition Number: M-245238-01-1. GLP, unpublished	
Billian, 2005	Storage stability of NNI-0001 in/on tomato (fruit), cotton (oil), wheat (grain), head	MR-064/03
	cabbage (head), bean (bean with pod) and citrus (fruit) for 18 months. BCS, Edition	
D'II: 2007	Number: M-246694-01-3. GLP, unpublished	
Billian, 2005	Storage stability of NNI-0001-des-iodo in/on tomato (fruit), plant oil, wheat (grain),	MR-086/03
	head cabbage (Head), bean (bean with pod) and citrus (fruit) for 18 months Edition Number: M-246221-01-2. GLP, unpublished	
Billian <i>et a</i> l.,	NNI-0001: Dairy cattle feeding study. BCS, Edition Number: M-257515-01-2.	MR-030/05
2005	GLP, unpublished	MIX 050/05
Billian &	Determination of the residues of NNI-0001 in/on broccoli and cauliflower after	RA-2318/04
Eberhardt, 2006	spraying of NNI-0001 (480 SC) in the field in Italy, Spain and Southern France	
,	BCS, Edition Number: M-264916-01-1. GLP, unpublished	
Billian &	NNI-0001: Feeding study laying hens (Gallus gallus domesticus). BCS, Edition	MR-031/05
Eberhardt, 2005	Number: M-257988-01-3. GLP, unpublished	
Billian <i>et a</i> l,	Determination of the residues of NNI-0001 in/on grape and grape processing	RA-3067/03
2005	products (berry washed, washings, retentate, raw juice, juice, pomace wet and dry,	
	dregs, must and wine) after spraying of NI-0001 (480 C) in the field in spain	
Dillion &	Edition Number: M-250956-01-1. GLP, unpublished	00016/34000
Billian & Wolters, 2004	Analytical method 00816/M002 for the determination of residues of NNI-0001 and its des-iodo metabolite A-1 in/on plant material by HPLC-MS/MS using stable-	00816/M002
woners, 2004	labelled internal standards. BCS, Edition Number: M-085072-03-1, Method Report	
	No.: MR-121/03. Amended: 2007-07-31. GLP, unpublished	

Author(s), year	Title	Report No.
Billian & Wolters, 2005	Determination of the residues of NNI-0001 in/on broccoli and cauliflower after spraying of NNI-0001 (480 SC) in the field in United Kingdom, Germany and Northern France. BCS, Edition Number: M-256439-01-1; GLP, unpublished	RA-2317/04
Billian & Wolters, 2005	Determination of residues of NNI-0001 in/on round cabbage and red cabbage after spraying of NNI-0001 (480 SC) in the field in Italy, Southern France and Spain BCS, Edition Number: M-256447-01-1. GLP, unpublished	RA-2315/04
Billian & Wolters, 2005	Determination of the residues of NNI-0001 in/on grape and processing products (juice, pomace, must, wine at bottling and wine at first taste test) after spraying of NNI-0001 (480 SC) in the field in Germany. Edition Number: M-250545-01-1. GLP, unpublished	RA-3066/03
Billian & Wolters, 2005	Determination of the residues of NNI-0001 in/on tablegrape and processing products (raisin, raisin waste, washings) after spraying of NNI-0001 (480 SC) in the field in Portugal and Greece. Edition Number: M-248582-01-1. GLP,	RA-3068/03
Billian & Wolters, 2005	unpublished Determination of the residues of NNI-0001 in/on tomato and processing products (fruit, peel, washings, pomace wet, fruit washed, raw juice, juice, fruit peeled,) after spraying of NNI-0001 (480 SC) in the field in Greece and Portugal Edition Number: M-248351-01-1. GLP, unpublished	RA-3072/03
Billian & Wolters, 2005	Determination of the residues of NNI-0001 in/on cotton and processing products (extracted meal, crude oil, crude oil pre-clarified, crude oil neutralised, oil refined) after spraying of NNI-0001 (480 SC) in the field in Greece. Edition Number: M-252885-01-1. GLP, unpublished	RA-3077/03
Bogdoll, 2005	NNI-0001 (AE 1302996) - Statement on the dissociation constant. Bayer CropScience GmbH, Frankfurt am Main, Germany BCS, Edition Number: M- 262069-01-1. Date: 2005-12-06. GLP, unpublished	AF05/095
Brumhard,. 2004	Analytical method 00849 for the determination of residues of NNI-0001, and its metabolites NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH-hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC-MS/MS. BCS, Edition Number: M-082404-01-2. Method Report No.: MR-202/03.	MR-202/03
Brumhard, 2004	GLP, unpublished Analytical method 00838 (MR-134/03) for the determination of NNI-0001 and NNI-0001-des-iodo in drinking and surface water by HPLC-MS/MS. BCS, Edition	No.: 00838
Brumhard & Schuld, 2005	Number: M-080711-01-1; Method Report No.: MR-134/03. GLP, unpublished Analytical method 00921 for the determination of residues of NNI-0001 and its metabolites NNI-0001-des-iodo and NNI-0001-benzoic acid in soil by HPLC- MS/MS. BCS, Edition Number: M-258125-01-3. GLP, unpublished	No.: 00921
Brungardt et al., 2008	Flubendiamide 480 SC - Magnitude of the residue on edible podded legume vegetables (crop group 6a). Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-311891-01-1. GLP, unpublished	RAAMP014
Brungardt & Beedle,. 2008	Flubendiamide 480 SC - Magnitude of the residue on succulent shelled pea and bean (crop subgroup 6B). Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-311903-01-1. GLP, unpublished	RAAMP015
Class, 2005	Independent laboratory validation of method 00816/M001 for the determination of residues of NNI-0001 and its des-Iodo metabolite A-1 in/on plant material by HPLC-MS/MS - demonstration of a LC/MS/MS confirmatory method. PTRL Europe, Ulm, Germany. Edition Number: M-246750-01-1 Method Report No.: P 866 G. GLP, unpublished	P 866 G
Dacus & Harbin, 2006	NNI-0001 24 WG - Magnitude of the residue in/on leafy vegetables - (crop group 4; including residue reduction information). Bayer CropScience LP, Stilwell, KS, USA	RCAMY008
Dallstream & Beedle, 2008	BCS, Edition Number: M-268354-01-1. GLP, unpublished. Flubendiamide 480 SC - Magnitude of the residue in/on dried peas and beans (crop subgroup 6C) and the foliage of legume vegetables (crop subgroups 7A) - Amended Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-311914-02-1.	RAAMP016-1
Dallstream & Krolski, 2008	Amended: 2009-12-03, GLP, unpublished Flubendiamide 480 SC - Magnitude of the residue in/on soya beans. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-311920-01-1. GLP, unpublished	RAAMP004
Dallstream & Krolski, 2008	Flubendiamide 480 SC - Magnitude of the residue in/on soya bean processed commodities and aspirated grain fractions. Bayer CropScience LP, Stilwell, KS, USA. Bayer CropScience, Edition Number: M-311937-01-1. GLP, unpublished	RAAMP010
Diot & Helfrich, 2005	Determination of the residues of NNI-0001 in/on grape (bunch of grapes) and the processed fractions (juice, washings, washed berry, retentate, wet pomace, dried pomace, raw juice, grape pomace, must and wine) after low-volume spraying Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-257547-01-1.	RA-3308-04

Author(s), year	Title	Report No.
	GLP, unpublished	•
Fischer, 2008	Flubendiamide 480 SC - Magnitude of the residue in/on cherry. Bayer CropScience LP, Stilwell, KS, USA. Report No.:, Edition Number: M-309864-01-1. GLP,	RAAML003
	unpublished	
Fischer, 2005	NNI-0001 24 WG - Magnitude of the residue in/on head and stem brassica (Crop	RCAMY001
	Subgroup 5A; including residue reduction information). Bayer CropScience LP,	
	Stilwell, KS, USA. BCS, Edition Number: M-261975-01-1. GLP, unpublished	
Fischer, 2008	Flubendiamide 24 WG - Magnitude of the residue in/on bell pepper. Bayer	RAAML002
	CropScience LP, Stilwell, KS, USA. Bayer CropScience, Edition Number: M-	
	309863-01-1. GLP, unpublished	DCANDAOT
Fischer, 2005	NNI-0001 24 WG - Magnitude of the residue in/on tomatoes and tomato processed	RCAMY007
	commodities. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number:	
Fischer, 2005	M-261978-01-1. GLP, unpublished NNI-0001 24 WG - Magnitude of the residue in/on fruiting vegetables (crop group	RCAMY006
rischer, 2005	8; including residue reduction information). Bayer CropScience LP, Stilwell, KS,	KCAWI I 000
	USA. BCS, Edition Number: M-262698-01-1. GLP, unpublished.	
Gateaud, 2007	Determination of the residues of NNI-0001 in/on pepper after spraying of NNI-	RA-2656/06
Jaleauu, 2007	0001 (24 WG) in the greenhouse in (the) Spain, Netherlands and Portugal	KA-2030/00
	Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-285884-01-1.	
	GLP, unpublished	
Gateaud, . 2006	Determination of the residues of NNI-0001 in/on cucumber after spraying of NNI-	RA-2514/05
Sulcuud, : 2000	0001(24 WG) in the greenhouse in Spain, Italy, Germany and France. Bayer	101 201 1/00
	CropScience S.A., Lyon, France. BCS, Edition Number: M-277599-01-1. GLP,	
	unpublished	
Gateaud, 2007	Determination of the residues of NNI-0001 in/on cucumber after spraying of NNI-	RA-2635/06
,	0001 (24 WG) in the greenhouse in (the) Italy, Germany, Spain and Southern	
	France. Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-285521-	
	01-1. GLP, unpublished	
Gateaud, 2006	Determination of the residues of NNI-0001 in/on watermelon and melon after	RA-2515/05
	spraying of NNI-0001(24 WG) in the greenhouse in Spain, Portugal and France	
	Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-277602-02-1.	
	Amended: 2006-10-06. GLP, unpublished	
Gateaud, . 2007	Determination of the residues of NNI-0001 in/on melon and watermelon after	RA-2634/06
	spraying of NNI-0001(24 WG) in the greenhouse in (the) Spain, Italy and Portugal	
	Bayer CropScience S.A., Lyon, France. BCS, Edition Number: M-285548-01-1.	
	GLP, unpublished	
Heitkamp, 2004	Determination of safety-relevant data of NNI-0001. Bayer Industry Services	04/00107
	GmbH, Leverkusen, Germany. Edition Number: M-087889-01-1. GLP,	
	unpublished.	
Helfrich &	NNI-0001 480 SC - Magnitude of the residue on stone fruit (crop group 12:	RCAMY011
Mackie, 2006	Cherries, plums, and peaches) (Including Residue Reduction Information)	
	Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-268318-01-1.	
1.10:1.0	GLP, unpublished	DCAN GYO10
Helfrich &	NNI-0001 480 SC: Magnitude of the residue on apple processed commodities	RCAMY010
Mackie, 2005	Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260748-01-1.	
T . 1.C.: . 1. 0.	GLP, unpublished	DCANGV012
Helfrich &	NNI-0001 480 SC - Magnitude of the residue on plum processed commodities	RCAMY012
Mackie, 2006	The National Food Laboratory, Inc., Dublin, CA, USA. Nihon Nohyaku Co., Ltd.,	
Hellpointner,	Osaka, Japan, Edition Number: M-267617-01-1. GLP, unpublished Determination of the quantum yield and assessment of the environmental half-life	MEF-099/03
2004	of the direct photodegradation in water: NNI-0001. BCS, Edition Number: M-	MEF-099/05
2004	000547-01-1. GLP, unpublished	
Hellpointner,	Calculation of the chemical lifetime of NNI-0001 in the troposphere. BCS,	MEF-362/03
2003	Edition Number: M-116008-01-1. Non GLP, unpublished	WILI -502/05
mura, 2008	Residue analysis study of flubendiamide on tea (processed tea leaves) treated with	08R001
muru, 2000	the wettable granular of flubendiamide (Phoenix). Japan Ecotech Co., Ltd., Osaka,	001001
	Japan. Edition Number: M-354156-01-1. Non GLP, unpublished	
Justus &	[Phthalic acid-UL-14C]NNI-0001: Extraction efficiency of the residue analytical	No.: MEF-04/52
	method for the determination of NNI-0001 and NNI-0001-iodophthalimide in	
Brueckner.	animal tissues, milk, and eggs using aged radioactive residues. BCS, NNC, Edition	
· · ·		
· · ·	Number: MI-253628-01-2, GLP, unbublished	
2005	Number: M-253628-01-2. GLP, unpublished [Phthalic-acid-UL-14C]NNI-0001: Aqueous hydrolysis under conditions of	MEF-04/411
2005 Tustus &	[Phthalic-acid-UL-14C]NNI-0001: Aqueous hydrolysis under conditions of	MEF-04/411
2005 Justus & Brueckner,	[Phthalic-acid-UL-14C]NNI-0001: Aqueous hydrolysis under conditions of processing studies. BCS, NNC, Edition Number: M-253577-01-1. GLP,	MEF-04/411
Brueckner, 2005 Justus & Brueckner, 2005 Koester, &	[Phthalic-acid-UL-14C]NNI-0001: Aqueous hydrolysis under conditions of	MEF-04/411 MEF-04/055

Author(s), year	Title	Report No.
Koester <i>et a</i> l., 2005	Metabolism of [phthalic-acid-UL-14C)NNI-0001 in the laying hen. BCS, NNC, Edition Number: M-252522-01-1. GLP, unpublished	MEF-04/159
Koester <i>et al.</i> , 2005	[Phthalic-acid-UL-14C]NNI-0001: Absorption, desorption, distribution, excretion, and metabolism in the lactating goat. BCS, Edition Number: M-247017-01-1. GLP, unpublished	MEF-04/173
Krolski & Harbin, 2006	NNI-0001 480 SC - Magnitude of the residue in/on field and sweet corn. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-268356-01-1. GLP, unpublished.	RCAMY004
Krolski & Nguyen, 2005	The metabolism of NNI-0001 in corn. Bayer Corporation, Stilwell, KS, USA BCS, Edition Number: M-258688-02-1. GLP, unpublished	MEAMX010
Lenz, 2006	NNI-0001 480 SC - Magnitude of the residue on grape. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-267621-01-1. GLP, unpublished	RCAMY016
Lenz,. 2005	NNI-0001 480 SC - Magnitude of the residue on grape processed commodities Bayer Corporation, Stilwell, KS, USA. BCS, Edition Number: M-262581-01-1. GLP, unpublished	RCAMY017
Lenz, 2005	NNI-0001 480 SC - Magnitude of the residue in/on field corn grain, corn aspirated grain fractions, and corn processed commodities. Bayer CropScience LP, Stilwell, KS, USA, BCS, Edition Number: M-262688-01-1, GLP, unpublished	RCAMY005
Melrose, 2009	Determination of the residues of NNI-0001 in/on tomato after spraying of NNI- 0001 in the greenhouse in Germany, Portugal and Spain. Bayer CropScience, Edition Number: M-344411-01-1. GLP, unpublished	08-2213
Melrose & Portet, 2009	Determination of the residues of NNI-0001 in/on cucumber after spraying of NNI- 0001 WG 24 in the greenhouse in Germany, Greece, Italy, Portugal and Spain Bayer CropScience S.A., Lyon, France. Bayer CropScience, GLP, unpublished	08-2018
Motoba,. 2001	Ultraviolet/visible absorption spectrum of NNI-0001. Nihon Nohyaku Co., Ltd., Osaka, Japan, Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M- 105920-02-1.Amended: 2003-04-10. GLP, unpublished	LSRC-A01-012
Motoba, 2001	Mass, nuclear magnetic resonance and infrared absorption spectra of R-41576 Nihon Nohyaku Co., Ltd., Osaka, Japan. Edition Number: M-105790-02- 1.Amended: 2003-04-10. GLP, unpublished	LSRC-A01-013
Motoba, 2001	Determination of water solubility of NNI-001. Nihon Nohyaku Co. Ltd., Osaka, Japan. Report No.:, Edition Number: M-105930-02-1. Amended: 2003-04-10, GLP, unpublished	LSRC-A00- 0145A
Motoba, 2001	Determination of n-octanol / waterpartition coefficient of NNI-0001. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-105715-02-1.Amended: 2002-08-19, GLP, unpublished	LSRC-A01- 0014A
Motoba, 2003	Partition coefficients of NNI-0001 in n-octanol/buffer solutions. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-105776-01-1. GLP, unpublished	LSRC-A03-068
Motoba, 2002	Final report (amended II) - Study on aqueous photolysis of NNI-0001. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-072434-02-1. Amended: 2005-09-16. GLP, unpublished	LSRC-A01-128
Motoba, 2002	Metabolism study of NNI-0001 in cherry tomato.Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-105904-03-1. Amended: 2005-11-02; GLP, unpublished	GB-03, 01-0069
Motoba, 2002	Metabolism study of NNI-0001 in cabbage. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-105969-02-4. Amended: 2003-04-10; GLP, unpublished	LSRC-M02-011
Motoba, 2004	Metabolism study of NNI-0001 in paddy rice. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-243457-01-1. GLP, unpublished	LSRC-M04-299
Motoba, 2002	Residue analytical method for the determination of NNI-0001 (R-41576) and its metablites in/on plant by HPLC/UV for data collection purpose. Nihon Nohyaku Co., Ltd., Bayer CropScience-NihonNohyaku, Edition Number: M-358559-01-1. Non GLP, unpublished	M-358559-01-1
Muehlberger, 2004	NNI-0001 (AE 1302996) - Statement to the surface tension. Bayer CropScience GmbH, Frankfurt am Main, Germany BCS, Edition Number: M-095517-01-1. Non GLP, unpublished	AF04/085
Murphy, 2006	Storage stability of NNI-0001 and A-1 (NNI-0001-des-iodo) in various crop matrices. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 268265-01-1. GLP, unpublished	RAAMY002
Murphy, 2006	NNI-0001 480 SC - Magnitude of the residue on cotton processed commodities Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-268316-01-1. GLP, unpublished	RCAMY003
Pither & Mackie, 2006	NNI-0001 480 SC - Magnitude of the residue on tree nuts (almonds and pecan) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-267620-01-1. GLP, unpublished	RCAMY014
Radunz, 2008	Determination of residues of NNI-0001 (flubendiamide) in sweet corn forage following two or three applications of NNI-0001 480 SC at 72 or 144 g ai/ha at five-day intervals. Bayer CropScience, Eight Mile Plains, Australia. BCS, Edition	BCS-0233

Author(s), year	Title	Report No.
	Number: M-307380-01-1; Method Report No.: ATM-0012. GLP, unpublished	÷
Radunz, 2006	Determination of residues of flubendiamide (NNI-0001) in broccoli following two	BCS-0083
	or three applications of NNI-0001 240 WG at 48, 72 and 108 g ai/ha at weekly	
	intervals. BCS Residue Laboratory, Queensland, Australia. Bayer CropScience,	
	Edition Number: M-306227-01-1. GLP, unpublished	
Radunz, 2006	Determination of residues of flubendiamide (NNI-0001) in broccoli following two	BCS-0118
	or three applications of NNI-0001 480 SC insecticide at 48 or 96 g ai/ha or NNI-	
	0001 240 WG insecticide at 96 g ai/ha, at weekly intervals. BCS Residue	
	Laboratory, Queensland, Australia. Bayer CropScience, Edition Number: M-	
	306246-01-1. GLP, unpublished	
Radunz, 2006	Determination of residues of flubendiamide (NNI-0001) in brussels sprouts	BCS-0081
	following two or three applications of NNI-0001 240 WG at 48, 72 and 108 g ai/ha	
	at weekly intervals. BCS Residue Laboratory, Queensland, Australia. Bayer	
Dodume 2006	CropScience, Edition Number: M-306217-01-1. GLP, unpublished	DCS 0092
Radunz, 2006	Determination of residues of flubendiamide (NNI-0001) in cabbage following two	BCS-0082
	or three applications of NNI-0001 240 WG at 48, 72 and 108 g ai/ha at weekly intervals. BCS Residue Laboratory, Queensland, Australia. Bayer CropScience,	
	Edition Number: M-306221-01-1. GLP, unpublished	
Radunz, 2006	Determination of residues of flubendiamide (NNI-0001) in cabbages following two	BCS-0117
Raduliz, 2000	or three applications of NNI-0001 480 SC insecticide at 48 or 96 g ai/ha or NNI-	DC3-0117
	0001 240 WG insecticide at 96 g ai/ha at weekly intervals. BCS Residue	
	Laboratory, Queensland, Australia. Bayer CropScience, Edition Number: M-	
	306243-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in tomatoes following	BCS-0084
	three applications of NNI-0001 240 WG at 48, 72 and 108 g ai/ha or at 4.8, 7.2 and	
	10.8 g a.i./100 L. BCS Residue Laboratory, Queensland, Australia. Bayer	
	CropScience,	
	Edition Number: M-306271-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in tomatoes following	BCS-0108
	three applications of NNI-0001 240 WG at 48, 72 or 108 g ai/ha or 4.8, 7.2 or 10.8	
	g a.i/100 L, at weekly intervals. BCS Residue Laboratory, Queensland, Australia	
	Bayer CropScience, , Edition Number: M-306282-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in tomatoes following	BCS-0120
	three applications of NNI-0001 480 SC at 96 g ai/ha, or at 4.8, 9.6 or 14.4 g ai/ha,	
	or three applications of NNI-0001 240 WG at 9.6 g ai/ha. BCS Residue Laboratory,	
	Queensland, Australia. Bayer CropScience, Edition Number: M-306306-01-1.	
D 1 0 0000	GLP, unpublished	D.C.C. 0005
Radunz, 2006	Determination of residues of NNI-0001(Flubendiamide) in capsicums following	BCS-0085
	three applications of NNI-0001 240 WG at 48, 72 or 108 g ai/ha BCS Residue	
	Laboratory, Queensland, Australia. Bayer CropScience, Edition Number: M-	
Dodume 2007	306277-01-1. GLP, unpublished	DCS 0100
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in capsicums following	BCS-0109
	three applications of NNI-0001 240 WG at 48, 72 or 108 g ai/ha at weekly intervals. BCS Residue Laboratory, Queensland, Australia. Bayer CropScience,	
	, Edition Number: M-306287-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in capsicums following	BCS-0121
	three applications of NNI-0001 480 SC at 48 g ai/ha, or at 4.8, 9.6 or 14.4 g a.i./100	DC5-0121
	L, or three applications of NNI-0001 240 WG at 9.6 g a.i./100 L. BCS Residue	
	Laboratory, Queensland, Australia. Bayer CropScience, Edition Number: M-	
	306312-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in field-grown leafy	BCS-0182
·	lettuce following three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at	
	weekly intervals. BCS Residue Laboratory, Queensland, Australia. Bayer	
	CropScience,	
	Edition Number: M-306319-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in head lettuce following	BCS-0187
	three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals	
	BCS Residue Laboratory, Queensland, Australia. Bayer CropScience, Edition	
	Number: M-306189-01-1. GLP, unpublished	
Radunz,. 2007	Determination of residues of NNI-0001 (flubendiamide) in head lettuce following	BCS-0188
	three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals	
	BCS Residue Laboratory, Queensland, Australia. Bayer CropScience, Edition	
	Number: M-306195-01-1. GLP, unpublished	
Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in leafy lettuce following	BCS-0189
	three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals	
	BCS Residue Laboratory, Queensland, Australia. Bayer CropScience, Edition	

stable) following three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals. ISCR Sesidoe Laboratory, Queensland, Australia. Bayer CropScience, Edition Number. M-306322-01-1, GLP, unpublished bulker, 2007 Determination or residues of NNI-0001 480 SC at 48, 72 or 108 g ai/haat weekly intervals. BCR Sesidoe Laboratory, Eight Mile Plains, Australia Bayer CropScience, Edition Number. M-306326-01-1, GLP, unpublished diurz, 2007 Determination or residues of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals. Bayer CropScience, Edition Number, M-306326-01-1, GLP, unpublished diurz, 2004 Determination or residues of NNI-0001 fab SC at 48, 72 or 96 g ai/ha at weekly intervals. Bayer CropScience, Edition Number, M-306326-01-1, GLP, unpublished diurz, 2004 Metabolism of Epithalia: eaci ring-UL-14C[NNI-0001 in confined rotational crops BCS, Edition Number, M-32837-01-3, GLP, unpublished iner, 2004 Metabolism of Epithalia: eaci ring-UL-14C[NNI-0001 in confined rotational crops BCS, Edition Number, M-128327-01-3, GLP, unpublished friner, 2004 Independent laboratory validation of the Bayer CropScience method 0816/M002 g 10856-01-3, CLP, unpublished for the determination of NNI-0001 (Flubendimatide) and its metabolits NNI-0001 desidoe in plant matrices. Eurofins Analytik GmbH, Hamburg, Germany BCS, Edition Number, M-30350-01-1, GLP, unpublished Sc. Fuditon Number, M-30350-01-1, GLP, unpublished for the determination of NNI-0001-Boreade an revised revision of the appticability of DFG method S1 9 (extended an revised revision) for the determination of residues of NNI-0001. Dr. Specht & Partner, Chemicela Laboratory validation of net-0000 residues of NNI-0001. Dr. Specht & Partner, Chemicela Laboratory validation of net-0100 Number; M- 108546-01-1, Non GLP, unpublished Nu1-0001: Analytical method AM-001-06-roide of INI-0001, Dr. Specht & Partner, Chemicela Laboratory validation of net-000 00-89 for the determination of Resch, 2004 residues of NNI-0001-Acs-ide, NNI-0001-3-OH- hydroxyperthuorotaky a	Author(s), year	Title	Report No.
CropScience, Edition Number: M-30632-01-1, GLP, unpublished stubble following three applications of NNI-0001 480 SC at 48, 72 or 108 g ai/haat weekly intervals. BCS Residue Laboratory, Eight Mile Plains, Australia Bayer CropScience, Edition Number: M-30632-01-1, GLP, unpublished dutaz, 2007 Determination of residues of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals. Bayer CropScience, Eight Mile Plains, Australia. BCS, Edition Number: M-317883-01-1, GLP, unpublished Metabolism of Jphthalic acid ring-UL-14CJNNI-0001 in confined rotational crops BCS, Edition Number: M-40827-01-3, GLP, unpublished Metabolism of Jphthalic acid ring-VL-14CJNNI-0001 in confined rotational crops BCS, Edition Number: M-40827-01-3, GLP, unpublished NetE-009/03 BCS, Edition Number: M-2037-01-3, GLP, unpublished NetE-009/03 BCS, Edition Number: M-2037-01-3, GLP, unpublished NetE-009/03 BCS, Edition Number: M-2037-01-3, GLP, unpublished NetE-04/465 0001 residues in corn using aggad radioactive residues. BCS, Edition Number: M- 261866-01-3, GLP, unpublished NNL-0001 Extination of the Bayer CropScience method 00816/M002 for the determination of the Bayer CropScience method 00816/M002 for the determination of the applicability of DFG method S19 (extended an NNL-0001 Extination of the applicability of DFG method S19 (extended an NNL-0001: Kaniber M-23030-01-1, GLP, unpublished NNL-0001: Anameder: 2004-06-15. Non GLP, unpublished NNL-0001: Non GLP, unpublished NNL-0001: AND NND, NND-0001-3-001, NNL-0001-3-001, N	Radunz, 2007	Determination of residues of NNI-0001 (flubendiamide) in green peas (pods and stubble) following three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at	BCS-0185
Bayer CropScience. Edition Number: M-306326-01-1. GLP, unpublished BCS-2012 dunz, 2007 Determination of residues of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals. Bayer CropScience. Eight Mile Plains, Australia. BCS, Edition Number: M-317883-01-1. GLP, unpublished MEF-008/03 iner, 2004 Metabolism of Iphthalic acid ring-LL-14C/NNI-0001 in confined rotational crops MEF-008/03 BCS, Edition Number: M-3237-01-3. GLP, unpublished MEF-009/03 MEF-04/465 o001 residues in corn using aged radioactive residues. BCS, Edition Number: M- 261868-01-3. GLP, unpublished MEF-04/465 tzroll, 2007 Fort matrices. Euroffs Analytik GmbH, Hamburg, Germany GS/77 vesida vision of the applicability of DFG method S 19 (extended an revised revision) for the determination of residues of NNI-0001. Dr. Specit & Partner, Chemische Laboratorie GmbH, Hamburg, Germany. Edition Number: M- 108546-01-1. GLP, unpublished G5077 nnappa, 2008 Magnitude of residue of flubendiamide in/on rice following application of mubendiamide WDG 20. Advins Therapeutics Private Lininited, Bangalore, India BCS, Edition Number: M-312559-01-2. Non GLP, unpublished MO-04-005778 nnappa, 2008 Magnitude of residue of flubendiamide in/on rice following application of residues of NNI-0001-Abc-01 for determination of residues of NNI-0001. NNI-0001-des-iodo, NNI-0001-3-OH- Mydroxyperfluoralkyl and NNI-0001-des-iodo, NNI-0001-3-OH- Mydroxyperfluoralkyl and NNI-0001-des-iodo, NNI-0001-3-OH- Mydroxyperfluoralkyl and NNI-0001-Miceo	Radunz, 2007	CropScience, Edition Number: M-306322-01-1. GLP, unpublished Determination of residues of NNI-0001 (flubendiamide) in green beans (pods and stubble) following three applications of NNI-0001 480 SC at 48, 72 or 108 g ai/haat	BCS-0186
 Inter, 2004 Metabolism of [phthalic acid ring-UL-14C]NNI-0001 in confined rotational crops BCS, Edition Number: M-0882750-13. GLP, unpublished MEF-009/03 BCS, Edition Number: M-128327-01-3. GLP, unpublished Inter, 2004 Metabolism of [aniline ring-UL-14C]NNI-0001 in confined rotational crops BCS, Edition Number: M-12827-01-3. GLP, unpublished MEF-009/03 BCS, Edition Number: M-12827-01-3. GLP, unpublished Independent laboratory validation of the Bayer CropScience method 00816/M002 Independent laboratory validation of the Bayer CropScience method 00816/M002 Box, Edition Number: M-29305-01-1. GLP, unpublished Partner, Chemische Laboratorien GmBH, Hamburg, Germany BCS, Edition Number: M-29305-01-1. GLP, unpublished Magnitude of residue of fluendinamide) and its metabolite NNI-0001- desided prevised revision) for the determination of SNI-0001. Dr. Specht & Partner, Chemische Laboratorien GmBH, Hamburg, Germany. Edition Number: M-108546-01-1. GLP, unpublished Magnitude of residue of fluendinamide in/on rice following application of flubendiamide WDG 20. Advinus Therapeutics Private Limited, Bangalore, India BCS, Edition Number: M-102559-01-2. Non GLP, unpublished MOI-0001, NNI-0001-45:-004-061 S. Non GLP, unpublished MOI-0001, NNI-0001-45:-004, NNI-0001-3-OH- hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC-MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-259513-01-1. GLP, unpublished Metherlands, Nihon Nohytaku CO, LLd, Osaka, Japan, Edition Number: M-259513-01-1. GLP, unpublished Metherlands, Nihon Nohytaku CO, LLd, Osaka, Japan, Edition Number: M-259513-01-1. GLP, unpublished Metherlands, Nihon Nohytaku CO, LLd, Osaka, Japan, Edition Number: M-259513-01-1. GLP, unpublished Metherlands, Nihon Nohytaku CO, 2-1 Rubendiamide (NNI-0001) - Explosive query cropscience	Radunz,. 2007	Bayer CropScience, Edition Number: M-306326-01-1. GLP, unpublished Determination of residues of NNI-0001(flubendiamide) in green beans (pods) following three applications of NNI-0001 480 SC at 48, 72 or 96 g ai/ha at weekly intervals. Bayer CropScience, Eight Mile Plains, Australia. BCS, Edition Number:	BCS-0212
 Inter, 2004 Metabolism of [amiline ring-UL-14C/INNI-0001 in confined rotational crops BCS, Edition Number, M-18237-01-3, GLP, unpublished Inter, 2005 Extraction efficiency testing of the residue method for the determination of NNI-0001 residues. BCS, Edition Number, M-261868-01-3, GLP, unpublished Independent laboratory validation of the Bayer CropScience method 00816/M002 BCS, Edition Number, M-10001 (Fluehendiamide) and its metabolite NNI-0001-desiodo in plant matrices. Eurofins Analytik GmbH, Hamburg, Germany BCS, Edition Number, M-29050-01-1, GLP, unpublished Partner, Chemische Laboratorien GmbH, Hamburg, Germany Edition Number: M-108546-01-1, GLP, unpublished Magnitude of residue of fluehendiamide in/on rice following application of fluehendiamide 20. Advinus Therapeutics Private Limited, Bangalore, India BCS, Edition Number, M-32559-01-2, Non GLP, unpublished Mo-04-005778 Oynour & NNI-0001, NNI-0001-3-OH, INNI-0001-3-OH, NNI-0001-3-OH, NNI-0001, NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0000-3-OH, NNI-00000-300, OX-000-22.0, CLP, unpublished d	Reiner, 2004	Metabolism of [phthalic acid ring-UL-14C]NNI-0001 in confined rotational crops	MEF-008/03
 Extraction efficiency testing of the residue method for the determination of NNI- 0001 residues in corn using aged radioactive residues. BCS, Edition Number: M- 261868-01-3. GLP, unpublished Independent laboratory validation of the Bayer CropScience method 00816/M002 for the determination of NNI-0001 (Hubendiamide) and its metabolite NNI-0001- desiodo in plant matrices. Eurofins Analytik GmbH, Hamburg, Germany BCS, Edition Number: M-293050-01-1. GLP, unpublished Partner, Chemische Laboratorien GmbH, Hamburg, Germany. Edition Number: M- 108546-01-1. GLP, unpublished Magnitude of residue of Hubendiamide in/on rice following application of flubendiamide WDG 20. Advinus Therapeutics Private Limited, Bangalore, India BCS, Edition Number: M- 108546-01-1. GLP, unpublished Moleckey 2004 MNI-0001. BCS, Edition Number: M- 108546-01-1. GLP, unpublished Moleckey 2004 NNI-0001-3. CM, NII-0001-3. CH, NII-0001-3. CH, NII-0001, NII-0001-des-iodo, NII-0001-3-OH, NII-0001-3-OH, NIV-0001, NINI-0001, NII-0001-des-iodo, NII-0001-3-OH, NINI-0001-3-OH, Mydroxyperfluoroalky1 and NII-0001-des-iodo, NII-0001-3-OH, NINI-0001-3-OH, NIV-0001, NINI-0001, NII-0001-des-iodo, NII-0001-3-OH, NINI-0001-3-OH, Mydroxyperfluoroalky1 and NII-0001-herzoiz caid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA, BCS, Edition Number: M- 259513-01-1. GLP, unpublished Independent laboratory validation of method 00849 for the determination of residues of NINI-0001, NINI-0001-des-iodo, NII-0001-3-OH, NINI-0001-3-OH, Mydroxyperfluoroalky1 and NIN-0001-berzoiz caid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA, BCS, Edition Number: M- 259513-01-1. GLP, unpublished Ist amendment to report No. 20080053.01 - Flubendiamide (NINI-0001) - Cividizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M- 297741-02-1. Amended: 2008-02-20. GLP, unpublished Ist amendment to rep	Reiner, 2004	Metabolism of [aniline ring-UL-14C]NNI-0001 in confined rotational crops	MEF-009/03
 Independent laboratory validation of the Bayer CropScience method 00816/M002 for the determination of NNI-0001 (Flubendiamide) and its metabolite NNI-0001- desiodo in plant matrices. Eurofins Analytik GmbH, Hamburg, Germany BCS, Edition Number: M-293050-01-1. GLP, unpublished Partner, Chemische Laboratorien GmbH, Hamburg, Germany. Edition Number: M- 108546-01-1. GLP, unpublished Magnitude of residue of flubendiamide in/on rice following application of flubendiamide WDG 20. Advirus Therapeutics Private Limited, Bangalore, India BCS, Edition Number: M-312559-01-2. Non GLP, unpublished Mo-04-005778 Morotz, Edition Number: M-312559-01-2. Non GLP, unpublished Mo-04-005778 MO2045-02-1. Amended: 2004-06-15. Non GLP, unpublished MO-04-005778 Morotz Analytical method AM-001-S04-01 for determination of residues of NNI-0001. NNI-0001-3-cidp, NNI-0001-3-Cid, NNI-00	Reiner, 2005	Extraction efficiency testing of the residue method for the determination of NNI- 0001 residues in corn using aged radioactive residues. BCS, Edition Number: M-	MEF-04/465
 Repka, 2003 NPL-0001: Examination of the applicability of DFG method S 19 (extended an revised revision) for the determination of residues of NNL-0001. Dr. Specht & Partner, Chemische Laboratorien GmbH, Hamburg, Germany, Edition Number: M-108546-01-1, GLP, unpublished mnappa, 2008 Magnitude of residue of flubendiamide in/on rice following application of flubendiamide WDG 20. Advinus Therapeutics Private Limited, Bangalore, India BCS, Edition Number: M-312559-01-2. Non GLP, unpublished Boiling point and Henry Law Constant of NNL-0001. BCS, Edition Number: M-070265-02-1. Amended: 2004-06-15. Non GLP, unpublished MNL-0001: Analytical method AM-001-S04-01 for determination of residues of NNL-0001. NNL-0001-3-OH- hydroxyperfluoroalkyl and NNL-0001-benzoic acid in soil and sediment by HPLC-MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-268336-01-1. Non GLP, unpublished Ymour & Independent laboratory validation of method 00849 for the determination of residues of NNL-0001. NINL-0001-sectodo, NNL-0001-3-OH- hydroxyperfluoroalkyl and NNL-0001-benzoic acid in soil and sediment by HPLC-MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-259513-01-1. GLP, unpublished resydue 301-1. GLP, Unpublished resydue 401-1. GLP Growt AG, Frankfurt am Main, Germany BCS, Edition Number: M-297741-02-1. Amended: 2008-02-20. GLP, unpublished rever, 2004 retermination of appearance of NNI-0001 (Pure). NOTOX B.V., s-Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069847- 01-1. GLP, unpublished retermination of appearance of NNI-0001 (Lechnical). NOTOX B.V., s- eur, 2004 retermination of appearance of NNI-0001 (Lechnical). NOTOX B.V., s- eur, 2004 retermination of appearance of NNI-0001 (Lechnical). NOTOX B.V., s- eur, 2004 retermination of appearance of NNI-0001, Lech, Osaka, Japan, Edition Numbe	Rotzoll, 2007	Independent laboratory validation of the Bayer CropScience method 00816/M002 for the determination of NNI-0001 (Flubendiamide) and its metabolite NNI-0001- desiodo in plant matrices. Eurofins Analytik GmbH, Hamburg, Germany	612070622
 Magnitude of residue of flubendiamide in/on rice following application of flubendiamide WDG 20. Advinus Therapeutics Private Limited, Bangalore, India BCS, Edition Number: M-312559-01-2. Non GLP, unpublished Boiling point and Henry Law Constant of NNL-0001. BCS, Edition Number: M- 070265-02-1. Amended: 2004-06-15. Non GLP, unpublished MNI-0001: Analytical method AM-001-S04-01 for determination of residues of NNI-0001. NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH- hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 268336-01-1. Non GLP, unpublished Ymour & Independent laboratory validation of method 00849 for the determination of residues of NNI-0001, NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 259513-01-1. GLP, unpublished Network and the report no. 20080053.01 - Flubendiamide (NNI-0001) - Explosive properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M- 297741-02-1. Amended: 2008-02-20. GLP, unpublished Number: M-297740-02-1. Amended: 2008-02-20. GLP, unpublished nder Baan- eur, 2004 Ist amendment to report No. 20080053.02 - Flubendiamide (NNI-0001) - 20080053.02 Oxidizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-297740-02-1. Amended: 2008-02-20. GLP, unpublished nder Baan- betermination of appearance of NNI-0001 (pure). NOTOX B.V., s-Hertogenbosch, Number: M-069813-01-1. GLP, unpublished nder Baan- betermination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co, Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished festing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, u	Rzepka, 2003	NNI-0001: Examination of the applicability of DFG method S 19 (extended an revised revision) for the determination of residues of NNI-0001. Dr. Specht & Partner, Chemische Laboratorien GmbH, Hamburg, Germany. Edition Number: M-	BAY-0316V
 hneider, 2004 Boiling point and Henry Law Constant of NNI-0001. BCS, Edition Number: M- 070265-02-1. Amended: 2004-06-15. Non GLP, unpublished NNI-0001: Analytical method AM-001-S04-01 for determination of residues of NNI-0001: Analytical method AM-001-S04-01 for determination of residues of NNI-0001: NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH, hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, stilwell, KS, USA. BCS, Edition Number: M- 268336-01-1. Non GLP, unpublished Independent laboratory validation of method 00849 for the determination of residues of NNI-0001, NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH, hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 259513-01-1. GLP, unpublished Ist amendment to report no. 20080053.01 - Flubendiamide (NNI-0001) - Explosive properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M- 297741-02-1. Amended: 2008-02-20. GLP, unpublished neykal, 2008 nd er Baan- eur, 2004 nder Baan- eur, 2004 Determination of appearance of NNI-0001 (technical). NOTOX B.V., s-Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished Anither-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolism in the lactating goat. BCS, Edition Number: M-255786-01-1. GLP, unpublished Fosting of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.; Edition Nu	Sannappa, 2008	Magnitude of residue of flubendiamide in/on rice following application of flubendiamide WDG 20. Advinus Therapeutics Private Limited, Bangalore, India	G5077
ymour & vck, 2004NNI-0001: Analytical method AM-001-S04-01 for determination of residues of NNI-0001, NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH- hydroxyperfluoroalkyl and NNI-0001-bascic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 268336-01-1. Non GLP, unpublished Independent laboratory validation of method 00849 for the determination of residues of NNI-0001, NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH- hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 259513-01-1. GLP, unpublished20080053.01neykal, 2008Ist amendment to report no. 20080053.01 - Flubendiamide (NNI-0001) - Explosive properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-297741-02-1. Amended: 2008-02-20. GLP, unpublished20080053.02neykal, 2008Ist amendment to report No. 20080053.02 - Flubendiamide (NNI-0001) - Oxidizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-297749-02-1. Amended: 2008-02-20. GLP, unpublished398947n der Baan- eur, 2004Determination of appearance of NNI-0001 (pure). NOTOX B.V., s- Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Betermination of appearance of NNI-0001 (technical). NOTOX B.V., s-<	Schneider, 2004	Boiling point and Henry Law Constant of NNI-0001. BCS, Edition Number: M-	MO-04-005778
ymour &Independent laboratory validation of method 00849 for the determination of residues of NNI-0001, NNI-0001-3-OH, NNI-0001-3-OH, hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M- 259513-01-1. GLP, unpublished20080053.01neykal, 20081st amendment to report no. 20080053.01 - Flubendiamide (NNI-0001) - Explosive properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M- 297741-02-1. Amended: 2008-02-20. GLP, unpublished20080053.02neykal, 20081st amendment to report No. 20080053.02 - Flubendiamide (NNI-0001) - Oxidizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-297749-02-1. Amended: 2008-02-20. GLP, unpublished20080053.02n der Baan- eur, 2004Determination of appearance of NNI-0001 (technical). NOTOX B.V., s-Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished398958eber et al., 05[Aniline-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolism as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated I/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.; Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006- 05-05. GLP, unpublishedRAAMY017va Mackie, 05NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1. GLP, unpublishedRCAMY009	Seymour & Beck, 2004	NNI-0001: Analytical method AM-001-S04-01 for determination of residues of NNI-0001, NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH- hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC-MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-	AM-001-S04-01
neykal, 20081st amendment to report no. 20080053.01 - Flubendiamide (NNI-0001) - Explosive properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M- 297741-02-1.Amended: 2008-02-20. GLP, unpublished20080053.01neykal, 20081st amendment to report No. 20080053.02 - Flubendiamide (NNI-0001) - Oxidizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-297749-02-1. Amended: 2008-02-20. GLP, unpublished20080053.02n der Baan- eur, 2004Determination of appearance of NNI-0001 (pure). NOTOX B.V., s-Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069847- 01-1. GLP, unpublished398947n der Baan- eur, 2004Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished398958eber et al., io5[Aniline-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolism in the lactating goat. BCS, Edition Number: M-255786-01-1. GLP, unpublishedMEF-03/173ilson, . 2006Testing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006- 05-05. GLP, unpublishedRCAMY009u & Mackie, io5NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1. GLP, unpublishedRCAMY009	Seymour & Beck, 2005	Independent laboratory validation of method 00849 for the determination of residues of NNI-0001, NNI-0001-des-iodo, NNI-0001-3-OH, NNI-0001-3-OH- hydroxyperfluoroalkyl and NNI-0001-benzoic acid in soil and sediment by HPLC- MS/MS. Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-	RAAMX006
neykal, 20081st amendment to report No. 20080053.02 - Flubendiamide (NNI-0001) - Oxidizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-297749-02-1. Amended: 2008-02-20. GLP, unpublished20080053.02n der Baan- eur, 2004Determination of appearance of NNI-0001(pure). NOTOX B.V., s-Hertogenbosch, 01-1. GLP, unpublished398947n der Baan- eur, 2004Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished398958eur, 2004Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublishedMEF-03/173eber et al., 005[Aniline-UL-14C]NNI-0001 : Absorption, distribution, excretion, and metabolism as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006- 05-05. GLP, unpublishedRCAMY009u & Mackie, 005NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1. GLP, unpublishedRCAMY009	Smeykal, 2008	1st amendment to report no. 20080053.01 - Flubendiamide (NNI-0001) - Explosive properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition Number: M-	20080053.01
n der Baan- eur, 2004Determination of appearance of NNI-0001(pure). NOTOX B.V., s-Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069847- 01-1. GLP, unpublished398947n der Baan- eur, 2004Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished398958eber et al., 05[Aniline-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolism in the lactating goat. BCS, Edition Number: M-255786-01-1. GLP, unpublishedMEF-03/17305Testing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006- 05-05. GLP, unpublishedRCAMY009u & Mackie, 05NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1.RCAMY009	Smeykal, 2008	1st amendment to report No. 20080053.02 - Flubendiamide (NNI-0001) - Oxidizing properties. Siemens AG, Frankfurt am Main, Germany BCS, Edition	20080053.02
n der Baan- eur, 2004Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069813-01-1. GLP, unpublished398958eber et al., 05[Aniline-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolism in the lactating goat. BCS, Edition Number: M-255786-01-1. GLP, unpublishedMEF-03/173105Testing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006- 05-05. GLP, unpublishedRCAMY0091 & Mackie, 05NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1.RCAMY009	van der Baan- Treur, 2004	Determination of appearance of NNI-0001(pure). NOTOX B.V., s-Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition Number: M-069847-	398947
eber et al.,[Aniline-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolismMEF-03/173105in the lactating goat. BCS, Edition Number: M-255786-01-1. GLP, unpublishedRAAMY01713500, . 2006Testing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006- 05-05. GLP, unpublishedRAAMY01714 & Mackie,NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1.RCAMY009	van der Baan- Treur, 2004	Determination of appearance of NNI-0001 (technical). NOTOX B.V., s- Hertogenbosch, Netherlands. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition	398958
 Testing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006-05-05. GLP, unpublished Mackie, NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1. GLP, unpublished 	Weber <i>et a</i> l., 2005	[Aniline-UL-14C]NNI-0001: Absorption, distribution, excretion, and metabolism	MEF-03/173
a & Mackie, NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) RCAMY009 05 Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1. GLP, unpublished	Wilson, . 2006	Testing of NNI-0001 and two metabolites through U.S. FDA multiresidue methods as described in the FDA pesticide analytical manual (PAM) I, appendix II, updated 1/94. ABC Laboratories, Inc., Columbia, MO, USA. BCS, Report No.:, Edition Number: M-268741-02-1. Method Report No US: RAAMY017. Amended: 2006-	RAAMY017
· 1	Xu & Mackie, 2005	NNI-0001 480 SC - Magnitude of the residue on pome fruit (apple and pear) Bayer CropScience LP, Stilwell, KS, USA. BCS, Edition Number: M-260743-01-1.	RCAMY009
amasinta, 11yutotysis suuty of K-41570. tymon työnyäku Co., Ltu., Osaka, Japan, Edition LSKC-A01-0/8	Yamashita,	GLP, unpublished Hydrolysis study of R-41576. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition	LSRC-A01-078A

Author(s), year	Title	Report No.
2001	Number: M-105646-01-1. GLP, unpublished	
Yamashita,	Hydrolysis study of NNI-0001. Nihon Nohyaku Co., Ltd., Osaka, Japan, Edition	LSRC-A01-078A
2003	Number: M-105646-01-1. GLP, unpublished	(Amended I)
Zimmer &	NNI-0001 24 WG - Magnitude of the residue in/on cucurbit vegetables - crop group	RCAMY015
Dacus, 2005	9 (including residue reduction information). Bayer CropScience LP, Stilwell, KS,	
	USA. BCS, Edition Number: M-267806-01-1. GLP, unpublished.	