### **BIXAFEN (262)**

## First draft was prepared by Mr Christian Sieke, the Federal Institute for Risk Assessment, Berlin,, Germany

## **EXPLANATION**

Bixafen (ISO common name) is a pyrazole-carboxamide fungicide used to control diseases on rape plants and cereals. Bixafen inhibits fungal respiration by binding to mitochondrial respiratory complex II. It was considered for the first time by the 2013 JMPR for toxicology and residues.

## **IDENTITY**

| ISO common name    | Bixafen                                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------|
| Chemical name      |                                                                                                            |
| IUPAC              | N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide             |
| CA                 | 1H-pyrazole-4-carboxamide,<br>(difluoromethyl)-1-methyl-N-(3',4'-dichloro-5-fluoro[1,1'-biphenyl]-2-yl)-3- |
| CIPAC No.          | 819                                                                                                        |
| CAS No.            | 581809-46-3                                                                                                |
| Structural formula | $F \rightarrow F \qquad O \qquad F \qquad$  |
| Molecular formula  | $C_{18}H_{12}Cl_2F_3N_3O$                                                                                  |
| Molecular mass     | 414.21 g/mol                                                                                               |

# Specifications

Specifications for bixafen are not yet developed by FAO.

## PHYSICAL AND CHEMICAL PROPERTIES

| Property      | Results                                                                                                                                                                                 | Method<br>(test material)                | Reference                                                                     |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|
| Melting point | The melting point of pure bixafen (purity 98.9%) at<br>atmospheric pressure is 146.6 °C<br>The melting point of bixafen technical (purity<br>95.8%) at atmospheric pressure is 142.9 °C | EC A.1,<br>OECD 102<br>batch 1 + batch 2 | Smeykal, H<br>2007,<br>BIXAFEN_001<br>&<br>Smeykal, H<br>2007,<br>BIXAFEN_002 |

| Property                                              | Results                                                                                                                                                                                               | Method<br>(test material)                                                                             | Reference                                                                     |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Boiling point<br>& temperature<br>of<br>decomposition | No boiling before decomposition at approx. 250 observed                                                                                                                                               | °C EC A.2,<br>OECD 103<br>+ OECD 113<br>batch 1 + batch 2                                             | Smeykal, H<br>2007,<br>BIXAFEN_001<br>&<br>Smeykal, H<br>2007,<br>BIXAFEN_002 |
| Relative<br>density                                   | Bixafen, pure (purity 98.9%): $D_4^{20} = 1.43$<br>Bixafen, technical (purity 95.8%): $D_4^{20} = 1.51$                                                                                               | EC A.3,<br>OECD 109<br>batch 1 + batch 2                                                              | Bogdoll, B and<br>Strunk, B 2007,<br>BIXAFEN_003                              |
| Vapour<br>pressure                                    | Extrapolated:<br>$4.6 \times 10^{-8}$ Pa at 20 °C<br>$1.1 \times 10^{-7}$ Pa at 25 °C<br>$5.9 \times 10^{-6}$ Pa at 50 °C                                                                             | EC A.4,<br>OECD 104<br>batch 3 (purity<br>98.8%)                                                      | Smeykal, H<br>2006,<br>BIXAFEN_004                                            |
| Henry's Law<br>Coefficient                            | Henry's law constant at 20 °C (calculated): $3.89 \times 10^{-5}$ Pa m <sup>3</sup> mol <sup>-1</sup>                                                                                                 | Calculation                                                                                           | Bogdoll, B and<br>Lemke, G 2007,<br>BIXAFEN_005                               |
| Physical state,<br>colour                             | Active substance, pure: no noticeable odour<br>Active substance as manufactured: no noticeable<br>odour                                                                                               | OPPTS 830.6302<br>OPPTS 830.6303<br>batch 1 (purity<br>98.9%) + batch 2<br>(purity 95.8%)             | Bogdoll, B and<br>Strunk, B 2007,<br>BIXAFEN_006                              |
| Odour                                                 | Active substance, pure: white powder                                                                                                                                                                  |                                                                                                       |                                                                               |
|                                                       | Active substance as manufactured: light brown powder                                                                                                                                                  |                                                                                                       |                                                                               |
| Solubility in<br>water including<br>effect of pH      | 0.49 mg/L at 20 °C<br>Investigation on different pH is not necessary,<br>because bixafen has no acidic or basic properties<br>the range of pH 1 to pH 12.                                             | EC A.6,<br>OECD 105<br>in batch 4 (purity<br>99.2%)                                                   | Jungheim, R,<br>2005,<br>BIXAFEN_007<br>& Bogdoll, B<br>2008,<br>BIXAFEN_008  |
| Solubility in<br>organic<br>solvents                  | [g/L at 20 °C]n-heptane0.056dichloromethane102methanol32toluene16acetone> 250                                                                                                                         | CIPAC MT 157<br>based on EC A.6,<br>OECD 105<br>batch 1 (purity<br>98.9%) + batch 3<br>(purity 98.8%) | Bogdoll, B and<br>Eyrich, U,<br>2007,<br>BIXAFEN_009                          |
|                                                       | ethylacetate82dimethylsulfoxide> 25                                                                                                                                                                   |                                                                                                       |                                                                               |
| Dissociation constant                                 | No dissociation constant of bixafen was found in<br>the pH range of pH 1–pH 12. This result is in line<br>with the chemical structure of bixafen which doe<br>not contain an acidic or a basic group. | <sup>e</sup> batch 3 (purity                                                                          | Bogdoll, B and<br>Wiche, A 2007,<br>BIXAFEN_010                               |
| Partition<br>coefficient<br>n-octanol /<br>water      | Determination of the partition coefficient of Bixafen in 1-octanol / water (HPLC column 40 $^{\circ}$ P <sub>ow</sub> 2046                                                                            | EC A.8,<br>C) OECD 117<br>(HPLC-method)                                                               | Bogdoll, B and<br>Lemke, G 2005,<br>BIXAFEN_011                               |

| Property                  | Results                                                                                                                                                                                                                                               | Method<br>(test material)                                      | Reference                                           |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
|                           | log P <sub>ow</sub> 3.3                                                                                                                                                                                                                               | batch 3 (purity<br>98.8%)                                      |                                                     |
| Hydrolysis rate           | Pyrazole-[ <sup>14</sup> C] Bixafen had shown no hydrolytic breakdown at pH 4, 7 and 9 over 5 days (120 hours) at 50 °C.                                                                                                                              | EPA 161-1,<br>OECD 111,<br>EC C.7<br>batch 5 (purity<br>99.2%) | Oddy, AM<br>2005,<br>BIXAFEN_012                    |
| Photochemical degradation | In sterile aqueous buffer solution at 25 °C under<br>artificial sunlight exposure ( $\lambda > 290$ nm) the<br>calculated experimental half-life was 82 days of<br>intensive continuous irradiation (791 W/m2 in the<br>wavelength range 300–800 nm). | EPA 161-2<br>batch 6                                           | Muehmel, T<br>and Fliege, R<br>2006,<br>BIXAFEN_013 |

### Hydrolysis of bixafen

A hydrolysis study was carried out by Oddy, AM (2005, BIXAFEN\_012). Pyrazole-<sup>14</sup>C-bixafen at concentrations of 0.25 mg/L was investigated in aqueous buffer solutions at three pH values at 50 °C for up to 120 h.

Duplicate samples were analysed after 2.4, 48 and 120 hours by HPLC-LSC and TLC for confirmation purposes.

A summary of the results is presented in the following table:

Table 1 Summary of radioactive residues in sterile buffer solutions fortified with  $[^{14}C]$  pyrazole labelled bixafen at a concentration of 0.25 mg/L

| Time<br>(hours) | pH 4               |                                          | pH 7               |                                            | рН 9               |                                            |
|-----------------|--------------------|------------------------------------------|--------------------|--------------------------------------------|--------------------|--------------------------------------------|
|                 | % TRR<br>recovered | % recovered as<br>bixafen in mg<br>eq/kg | % TRR<br>recovered | TRR recovered<br>as bixafen in<br>mg eq/kg | % TRR<br>recovered | TRR recovered<br>as bixafen in<br>mg eq/kg |
| 0               | 97<br>101          | 100<br>100                               | 101.49             | 100<br>100                                 | 103<br>103         | 100<br>100                                 |
| 2.4             | 96                 | 100                                      | 97                 | 100                                        | 93                 | 100                                        |
|                 | 93                 | 100                                      | 96                 | 100                                        | 96                 | 100                                        |
| 48              | 100                | 100                                      | 99                 | 100                                        | 99                 | 100                                        |
|                 | 95                 | 100                                      | 90                 | 100                                        | 101                | 100                                        |
| 120             | 97                 | 100                                      | 99                 | 100                                        | 95                 | 100                                        |
|                 | 94                 | 100                                      | 93                 | 100                                        | 92                 | 100                                        |

The hydrolysis of bixafen under processing conditions is described under fate of residues in storage and processing.

# **Formulations**

Bixafen is registered as the following EC formulations:

Table 2 Formulations registered containing bixafen as active ingredient

| Formulation | Content of active ingredients |
|-------------|-------------------------------|
| EC 125      | 125 g/L bixafen               |
| EC 190      | 40 g/L bixafen                |
|             | 50 g/L fluoxastrobin          |
|             | 100 g/L prothioconazole       |

| Formulation | Content of active ingredients                                     |
|-------------|-------------------------------------------------------------------|
| EC 216      | 50 g/L bixafen<br>166 g/L tebuconazole                            |
| EC 225      | 75 g/L bixafen<br>150 g/L prothioconazole                         |
| EC 235      | 75 g/L bixafen<br>160 g/L prothioconazole                         |
| EC 260      | 60 g/L bixafen<br>200 g/L prothioconazole                         |
| EC 275      | 75 g/L bixafen<br>100 g/L prothioconazole<br>100 g/L tebuconazole |
| EC 275      | 75 g/L bixafen<br>110 g/L prothioconazole<br>90 g/L tebuconazole  |
| EC 285      | 75 g/L bixafen<br>110 g/L prothioconazole<br>100 g/L tebuconazole |
| EC 400      | 50 g/L bixafen<br>250 g/L spiroxamine<br>100 g/L prothioconazole  |

# METABOLISM AND ENVIRONMENTAL FATE

Metabolism studies were conducted using  $[^{14}C-5$ -pyrazole]-bixafen (pyrazole-label) and  $[^{14}C-dichlorophenyl-UL]$ -bixafen (dichlorophenyl-label). The position of the label for both substances is presented in the following figures:

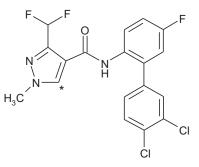



Figure 1 [pyrazole-5-<sup>14</sup>C]-bixafen

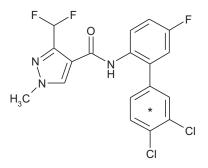



Figure 2 [dichlorophenyl-UL-<sup>14</sup>C] bixafen

Chemical names, structures and code names of metabolites and degradation products of bixafen are shown in Table 3.

| Code Names                                        | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Structure                                                                                    | Where found  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|
| bixafen (parent<br>substance)<br>BYF 00587 ("ai") | $\begin{array}{l} \mbox{N-(3',4'-dichloro-5-}\\ \mbox{fluorobiphenyl-2-yl)-3-}\\ \mbox{(difluoromethyl)-1-methyl-}\\ \mbox{1H-pyrazole-4-}\\ \mbox{carboxamide (IUPAC)}\\ \mbox{1H-Pyrazole-4-}\\ \mbox{carboxamide, N-(3',4'-}\\ \mbox{dichloro-5-fluoro[1,1'-}\\ \mbox{biphenyl]-2-yl)-3-}\\ \mbox{(difluoromethyl)-1-methyl-}\\ \mbox{(CAS)}\\ \mbox{[CAS No.: 581809-46-3]}\\ \mbox{C}_{18}\ \mbox{H}_{12}\ \mbox{Cl}_2\ \mbox{F}_3\ \mbox{No.}\\ \mbox{581809-46-3]}\\ \mbox{C}_{18}\ \mbox{H}_{12}\ \mbox{Cl}_2\ \mbox{F}_3\ \mbox{No.}\\ \mbox{414.2 g/mol}\\ \mbox{mol} \end{array}$ |                                                                                              | All matrices |
| M01<br>BYF 00587-N-<br>hydroxy                    | N-(3',4'-dichloro-5-<br>fluorobiphenyl-2-yl)-3-<br>(difluoromethyl)-N-<br>hydroxy-1-methyl-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>18</sub> H <sub>12</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>430.2 g/mol                                                                                                                                                                                                                                                                                                                                           | H <sub>3</sub> C OH CI                                                                       | Rat          |
| M02<br>BYF 00587-N-O-<br>glucuronide              | tbd1-O-((3',4'-dichloro-5-<br>fluorobiphenyl-2-yl){[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-beta-<br>L-glucopyranuronic acid<br>(IUPAC)<br>C <sub>24</sub> H <sub>20</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>8</sub><br>606.3 g/mol                                                                                                                                                                                                                                                                                                       | HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO.,<br>HO., | Rat          |
| M03<br>BYF 00587-3-<br>hydroxyphenyl              | N-(3',4'-dichloro-5-fluoro-<br>3-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>18</sub> H <sub>12</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>430.2 g/mol                                                                                                                                                                                                                                                                                                                                              | H <sub>3</sub> C <sup>F</sup> HO F<br>H <sub>1</sub> C <sup>I</sup> CI                       | Rat          |

| Code Names                                                                                              | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                                                            | Structure                                                                                                                                                               | Where found                     |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| M04<br>BYF 00587-3-<br>hydroxyphenyl-<br>glucuronide                                                    | 3',4'-dichloro-2-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-5-<br>fluorobiphenyl-3-yl beta-<br>L-glucopyranosiduronic<br>acid (IUPAC)<br>C <sub>24</sub> H <sub>20</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>8</sub><br>606.3 g/mol | HO, OH<br>O O F F<br>H <sub>3</sub> C CI                                                                                                                                | Rat                             |
| M05<br>BYF 00587-4-<br>hydroxyphenyl                                                                    | N-(3',4'-dichloro-5-fluoro-<br>4-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>18</sub> H <sub>12</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>430.2 g/mol                                      |                                                                                                                                                                         | Rat                             |
| M06<br>BYF 00587-4-<br>hydroxyphenyl-<br>glucuronide                                                    | 3',4'-dichloro-2-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-5-<br>fluorobiphenyl-4-yl beta-<br>L-glucopyranosiduronic<br>acid (IUPAC)<br>C <sub>24</sub> H <sub>20</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>8</sub><br>606.3 g/mol | F<br>H <sub>3</sub> C<br>O<br>H<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                  | Rat                             |
| M07<br>BYF 00587-6-<br>hydroxyphenyl<br>(&BYF 00587-5-<br>hydroxyphenyl<br>due to F/OH<br>substitution) | N-(3',4'-dichloro-5-fluoro-<br>6-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>18</sub> H <sub>12</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>430.2 g/mol                                      | F<br>N<br>H <sub>3</sub> C<br>F<br>O<br>H<br>Cl                                                                                                                         | Rat (postulated<br>intermediate |
| M08<br>BYF 00587-6-<br>hydroxyphenyl-<br>glucuronide                                                    | 3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-3-<br>fluorobiphenyl-2-yl beta-<br>L-glucopyranosiduronic<br>acid (IUPAC)<br>C <sub>24</sub> H <sub>20</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>8</sub><br>606.3 g/mol | H <sub>3</sub> C <sup>F</sup><br>H <sub>3</sub> C <sup>F</sup><br>H <sub>3</sub> C <sup>F</sup><br>H <sub>1</sub> C <sup>F</sup><br>H <sub>1</sub> C <sup>F</sup><br>Cl | Rat                             |

| Code Names                                                        | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                                                                     | Structure                                 | Where found                               |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| M09<br>BYF 00587-4-<br>fluoro-5-<br>hydroxyphenyl                 | N-(3',4'-dichloro-4-fluoro-<br>5-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>18</sub> H <sub>12</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>430.2 g/mol                                               |                                           | Rat                                       |
| M10<br>BYF 00587-4-<br>fluoro-5-<br>hydroxyphenyl-<br>glucuronide | 3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-4-<br>fluorobiphenyl-3-yl beta-<br>L-glucopyranosiduronic<br>acid (IUPAC)<br>C <sub>24</sub> H2 <sub>0</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>8</sub><br>606.3 g/mol          | F<br>H <sub>3</sub> C<br>H                | Rat                                       |
| M11<br>BYF 00587-6-<br>fluoro-5-<br>hydroxyphenyl                 | $\begin{array}{l} \text{N-(3',4'-dichloro-6-fluoro-5-hydroxybiphenyl-2-yl)-}\\ 3-(difluoromethyl)-1-\\ \text{methyl-1H-pyrazole-4-}\\ \text{carboxamide (IUPAC)}\\ \text{C}_{18} \text{ H}_{12} \text{ Cl}_2 \text{ F}_3 \text{ N}_3 \text{ O}_2\\ \text{430.2 g/mol} \end{array}$            | F<br>F<br>O<br>H<br>C<br>C<br>C<br>C<br>C | Rat                                       |
| M12<br>BYF 00587-5-<br>hydroxyphenyl                              | N-(3',4'-dichloro-5-<br>hydroxybiphenyl-2-yl)-3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>18</sub> H <sub>13</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>2</sub><br>412.2 g/mol                                                        | H <sub>3</sub> C <sup>'</sup> Cl          | Rat                                       |
| M13<br>BYF 00587-5-<br>hydroxyphenyl-6-<br>glutathionyl           | gamma-glutamyl-S-[3',4'-<br>dichloro-6-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-3-<br>hydroxybiphenyl-2-<br>yl]cysteinylglycine<br>(IUPAC)<br>C <sub>28</sub> H <sub>28</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>6</sub> O <sub>8</sub> S<br>717.5 g/mol | H <sub>3</sub> C OOH                      | Goat, hen<br>(postulated<br>intermediate) |

| Code Names                                                              | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                                                                       | Structure                                                                                                                                                               | Where found    |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| M14<br>BYF 00587-5-<br>hydroxyphenyl-6-<br>cysteinyl                    | S-[3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-3-<br>hydroxybiphenyl-2-<br>yl]cysteine (IUPAC)<br>C <sub>21</sub> H <sub>18</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>4</sub> O <sub>4</sub> S<br>531.4 g/mol                                 | F<br>F<br>O<br>N<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                  | Goat, hen, rat |
| M15<br>BYF 00587-5-<br>hydroxyphenyl-6-<br>thiol-acetaldehyde           | N-{3',4'-dichloro-5-<br>hydroxy-6-[(2-<br>oxoethyl)thio]biphenyl-2-<br>yl}-3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>20</sub> H <sub>15</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>3</sub> S<br>486.3 g/mol                               | H <sub>3</sub> C <sup>N</sup><br>H <sub>1</sub> C <sup>N</sup><br>H <sub>1</sub> C <sup>N</sup><br>H <sub>1</sub> C <sup>N</sup><br>H <sub>1</sub> C <sup>N</sup><br>Cl | Rat            |
| M16<br>BYF 00587-5-<br>hydroxyphenyl-6-<br>(methylsulfinyl)             | N-[3',4'-dichloro-5-<br>hydroxy-6-<br>(methylsulfinyl)biphenyl-<br>2-yl]-3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>19</sub> H1 <sub>5</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>3</sub> S<br>474.3 g/mol                                 | F<br>F<br>O<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                       | Rat            |
| M17<br>BYF 00587-5-<br>hydroxyphenyl-6-<br>(methylthio)                 | N-[3',4'-dichloro-5-<br>hydroxy-6-<br>(methylthio)biphenyl-2-<br>yl]-3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>19</sub> H <sub>15</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>2</sub> S<br>458.3 g/mol                                     | F<br>N<br>N<br>CH <sub>3</sub><br>Cl                                                                                                                                    | Rat            |
| M18<br>BYF 00587-5-<br>hydroxyphenyl-6-<br>(methylthio)-<br>glucuronide | 3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1-methyl-<br>1H-pyrazol-4-<br>yl]carbonyl}amino)-2-<br>(methylthio)biphenyl-3-yl<br>beta-L-<br>glucopyranosiduronic acid<br>(IUPAC)<br>C <sub>25</sub> H <sub>23</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>8</sub> S<br>634.4 g/mol | F F O OH O                                                                                                                             | Hen            |

| Code Names                                                                     | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                                        | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Where found                                                          |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| M19<br>BYF 00587-<br>hydroxy                                                   | not possible—position of<br>hydroxy group not<br>specified<br>C <sub>18</sub> H1 <sub>2</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>430.2 g/mol                                                                                        | H <sub>3</sub> C HO F<br>H <sub>3</sub> C Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rotational<br>crops<br>(postulated<br>intermediate)                  |
| M20<br>BYF 00587-<br>hydroxy-<br>glycoside-sulfate                             | not possible—position of<br>hydroxy group not<br>specified<br>C <sub>24</sub> H <sub>22</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>10</sub> S<br>672.4 g/mol                                                                                     | $O = S = O$ $HO_{A,A} O$ $HO_{$ | Rotational<br>crops (Swiss<br>chard)                                 |
| M21<br>Bixafen-<br>desmethyl<br>BYF 00587-<br>desmethyl                        | N-(3',4'-dichloro-5-<br>fluorobiphenyl-2-yl)-3-<br>(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>17</sub> H <sub>10</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O<br>400.2 g/mol                                                   | F<br>N<br>N<br>H<br>H<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Goat, hen, rat,<br>rotational<br>crops, soya<br>bean, wheat,<br>soil |
| M22<br>BYF 00587-<br>desmethyl-N-O-<br>glucuronide                             | 1-O-((3',4'-dichloro-5-<br>fluorobiphenyl-2-yl) {[3-<br>(difluoromethyl)-1H-<br>pyrazol-4-<br>yl]carbonyl} amino)-beta-<br>L-glucopyranuronic acid<br>(IUPAC)<br>C <sub>23</sub> H <sub>18</sub> Cl <sub>2</sub> F3 N <sub>3</sub> O <sub>8</sub><br>592.3 g/mol | F<br>F<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rat                                                                  |
| M23<br>BYF 00587-<br>desmethyl-N-<br>glucuronide<br>(isomer 1 and<br>isomer 2) | structure not specified<br>C <sub>23</sub> H <sub>18</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>576.3 g/mol                                                                                                                           | $\begin{bmatrix} F \\ N \\ H \\ H \\ Cl \\ Cl \end{bmatrix}$ glucuronide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Goat, rat                                                            |

| Code Names                                                         | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                              | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Where found |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| M24<br>BYF 00587-<br>desmethyl-<br>glycoside                       | structure not specified<br>C <sub>23</sub> H2 <sub>0</sub> Cl2 F <sub>3</sub> N <sub>3</sub> O <sub>6</sub><br>562.3 g/mol             | F<br>N<br>N<br>H<br>H<br>Cl<br>Cl<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hen         |
| M25<br>BYF 00587-<br>desmethyl-<br>hydroxy-glycoside               | structure not specified<br>C <sub>23</sub> H2 <sub>0</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>578.3 g/mol | F<br>N<br>N<br>H<br>H<br>Cl<br>Cl<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hen         |
| M26<br>BYF 00587-<br>desmethyl-<br>hydroxy-pentoside               | structure not specified<br>C <sub>22</sub> H <sub>18</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>6</sub><br>548.3 g/mol | $\begin{bmatrix} F & F & F \\ N & H & F \\ H & F & OH \\ F &$ | Hen         |
| M27<br>BYF 00587-<br>desmethyl-<br>hydroxypyrazole                 | structure not specified<br>C <sub>17</sub> H <sub>10</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>416.2 g/mol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hen, rat    |
| M28<br>BYF 00587-<br>desmethyl-<br>hydroxypyrazole-<br>glucuronide | structure not specified<br>C <sub>23</sub> H <sub>18</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>8</sub><br>592.3 g/mol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rat         |

| Code Names                                                                                | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                                                                                           | Structure                                 | Where found |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|
| M29<br>BYF 00587-<br>desmethyl-3-<br>hydroxyphenyl                                        | $\begin{array}{l} \mbox{N-(3',4'-dichloro-5-fluoro-3-hydroxybiphenyl-2-yl)-3-(difluoromethyl)-1H-pyrazole-4-carboxamide (IUPAC) \\ \mbox{C}_{17}\ \mbox{H}_{10}\ \mbox{Cl}_2\ \mbox{F}_3\ \mbox{N}_3\ \mbox{O}_2 \\ \mbox{416.2 g/mol} \end{array}$                                                                 |                                           | Rat         |
| M30<br>BYF 00587-<br>desmethyl-4-<br>fluoro-5-<br>hydroxyphenyl                           | N-(3',4'-dichloro-4-fluoro-<br>5-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>17</sub> H <sub>10</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>416.2 g/mol                                                                               |                                           | Rat         |
| M31<br>BYF 00587-<br>desmethyl-6-<br>fluoro-5-<br>hydroxyphenyl                           | N-(3',4'-dichloro-6-fluoro-<br>5-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>17</sub> H1 <sub>0</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>416.2 g/mol                                                                               | F<br>F<br>H<br>H<br>C<br>C<br>C<br>C<br>C | Rat         |
| M32<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl                                        | N-(3',4'-dichloro-5-<br>hydroxybiphenyl-2-yl)-3-<br>(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>17</sub> H <sub>11</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>2</sub><br>398.2 g/mol                                                                                        |                                           | Rat         |
| M33<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-6-<br>(glutathionyl-<br>glutamic acid) | N-(1,3-dicarboxypropyl)-<br>alpha-glutaminyl-S-[3',4'-<br>dichloro-6-({[3-<br>(difluoromethyl)-1H-<br>pyrazol-4-<br>yl]carbonyl}amino)-3-<br>hydroxybiphenyl-2-<br>yl]cysteinylglycine<br>(IUPAC)<br>C <sub>32</sub> H <sub>33</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>7</sub> O <sub>11</sub> S<br>832.6 g/mol | F + F + O + O + O + O + O + O + O + O +   | Rat         |

| Code Names                                                                         | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                              | Structure                                                                                                            | Where found |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|
| M34<br>BYF 00587-<br>desmethyl-<br>hydroxy-5-<br>hydroxyphenyl-6-<br>glutathionyl  | structure not specified<br>C <sub>27</sub> H <sub>26</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>6</sub> O <sub>9</sub> S<br>719.5 g/mol                                                                                                               | $ \begin{bmatrix} F \\ N \\ N \\ H \\ H \\ H \\ H \\ Cl \\ H_2N \\ COOH \end{bmatrix} +16 $                          | Rat         |
| M35<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-6-<br>glutathionyl              | C <sub>27</sub> H2 <sub>6</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>6</sub> O <sub>8</sub> S<br>703.5 g/mol                                                                                                                                          | F<br>F<br>N<br>N<br>H<br>H<br>H<br>H<br>COOH<br>H<br>H<br>COOH<br>H<br>H<br>COOH<br>H<br>H<br>COOH<br>H<br>H<br>COOH | Rat         |
| M36<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-6-<br>cysteinyl-<br>glucuronide | structure not specified<br>C <sub>26</sub> H2 <sub>4</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>4</sub> O <sub>10</sub> S<br>693.5 g/mol                                                                                                              | F F O OH O glucuronide                                                                                               | Rat         |
| M37<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-6-<br>cysteinyl                 | S-[3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1H-<br>pyrazol-4-<br>yl]carbonyl}amino)-3-<br>hydroxybiphenyl-2-<br>yl]cysteine (IUPAC)<br>C <sub>20</sub> H <sub>16</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>4</sub> O <sub>4</sub> S<br>517.3 g/mol | F<br>F<br>N<br>N<br>H<br>H<br>Cl<br>Cl                                                                               | Hen, rat    |
| M38<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-6-<br>(methylsulfinyl)          | N-[3',4'-dichloro-5-<br>hydroxy-6-<br>(methylsulfinyl)biphenyl-<br>2-yl]-3-(difluoromethyl)-<br>1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>18</sub> H <sub>13</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>3</sub> S<br>460.3 g/mol | F<br>N<br>N<br>H<br>H<br>CI<br>CI                                                                                    | Rat         |

| Code Names                                                                        | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                                                                                                                         | Structure                                                    | Where found                                |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| M39<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-6-<br>(methylthio)             | N-[3',4'-dichloro-5-<br>hydroxy-6-<br>(methylthio)biphenyl-2-<br>yl]-3-(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>18</sub> H <sub>13</sub> Cl <sub>2</sub> F <sub>2</sub> N <sub>3</sub> O <sub>2</sub> S<br>444.3 g/mol | F<br>N<br>N<br>H<br>H<br>CI<br>CI                            | Rat                                        |
| M40<br>BYF 00587-<br>desmethyl-5-<br>hydroxyphenyl-<br>deschloro-<br>(methylthio) | structure not specified<br>C <sub>18</sub> H <sub>14</sub> Cl F <sub>2</sub> N <sub>3</sub> O <sub>2</sub> S<br>409.8 g/mol                                                                                                                       | F<br>H<br>H<br>H<br>R2<br>R1, R2 = -Cl, -SCH3  or -SCH3, -Cl | Rat                                        |
| M41<br>BYF 00587-<br>desmethyl-6'-<br>hydroxy                                     | N-(4',5'-dichloro-5-fluoro-<br>2'-hydroxybiphenyl-2-yl)-<br>3-(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>17</sub> H <sub>10</sub> Cl <sub>2</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub><br>416.2 g/mol            | F F O F F O C I C I                                          | Rat                                        |
| M42<br>BYF 00587-<br>pyrazole-4-<br>carboxylic acid<br>AE 1954999                 | 3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxylic acid (IUPAC)<br>C <sub>6</sub> H <sub>6</sub> F <sub>2</sub> N <sub>2</sub> O <sub>2</sub><br>176.1 g/mol                                                                            | F<br>N<br>O<br>H <sub>3</sub> C                              | Goat, rat,<br>rotational<br>crops, soil    |
| M43<br>BYF 00587-<br>pyrazole-4-<br>carboxamide                                   | 3-(difluoromethyl)-1-<br>methyl-1H-pyrazole-4-<br>carboxamide (IUPAC)<br>C <sub>6</sub> H <sub>7</sub> F <sub>2</sub> N <sub>3</sub> O<br>175.1 g/mol                                                                                             | F<br>N<br>N<br>H <sub>3</sub> C                              | Rat, rotational<br>crops                   |
| M44<br>BYF 00587-<br>desmethyl-<br>pyrazole-4-<br>carboxylic acid<br>(tautomer 1) | 3-(difluoromethyl)-1H-<br>pyrazole-4-carboxylic acid<br>(IUPAC)<br>C <sub>5</sub> H <sub>4</sub> F <sub>2</sub> N <sub>2</sub> O <sub>2</sub><br>162.1 g/mol                                                                                      | F<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H          | Rotational<br>crops,<br>soya bean,<br>soil |
| M45<br>BYF 00587-<br>desmethyl-<br>pyrazole-4-<br>carboxylic acid<br>(tautomer 2) | 5-(difluoromethyl)-1H-<br>pyrazole-4-carboxylic acid<br>(IUPAC)<br>C <sub>5</sub> H <sub>4</sub> F <sub>2</sub> N <sub>2</sub> O <sub>2</sub><br>162.1 g/mol                                                                                      | $F \rightarrow F \rightarrow OH$<br>proposal for tautomer 2  | Rotational<br>crops,<br>soya bean,         |

| Code Names                                                    | Chemical Abstracts Name<br>(IUPAC Name), molecular<br>formula, molar mass                                                                   | Structure                           | Where found                       |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|
| M46<br>BYF 00587-<br>desmethyl-<br>pyrazole-4-<br>carboxamide | 3-(difluoromethyl)-1H-<br>pyrazole-4-carboxamide<br>(IUPAC)<br>C <sub>5</sub> H <sub>5</sub> F <sub>2</sub> N <sub>3</sub> O<br>161.1 g/mol | F<br>N<br>N<br>H<br>NH <sub>2</sub> | Rat                               |
| M47<br>BYF 00587-<br>pyrazolone-4-<br>carboxylic acid         | 3-hydroxy-1H-pyrazole-4-<br>carboxylic acid (IUPAC)<br>C <sub>4</sub> H <sub>4</sub> N <sub>2</sub> O <sub>3</sub><br>128.1 g/mol           | HN NH OH                            | Rotational<br>crops, soya<br>bean |

### Animal metabolism

The Meeting received metabolism studies on laboratory animals, poultry and lactating goats using the pyrazole- and the dichlorophenyl-label of bixafen.

The metabolism of bixafen in livestock animals was limited, showing unchanged parent bixafen as main residue in all matrices except liver. Besides the unchanged parent substance the metabolite M21 (bixafen-desmethyl) was found as major residue in all tissues, and represented the main residue in liver following exhaustive extraction involving hydrolysis. The sum of parent and M21 represented more than 50% of the total residue in all samples of animal origin, often more than 80% TRR. The only other major metabolites present at > 10% of the TRR were the two isomers of M23 in goat livers and kidneys.

The most important metabolic reaction was the demethylation of the pyrazole ring resulting in bixafen-desmethyl. Further biochemical reactions included substitution of the fluorine atom by a hydroxy group and an adjacent glutathione conjugation, an unspecified hydroxylation of an aromatic ring and conjugation with various sugar molecules, and hydroxylation of the pyrazole ring.

In general the metabolic pathway of bixafen was comparable between ruminants and hens. All metabolites identified in goats were also found in rats. The metabolites M26, M25 and M18 found in eggs and poultry liver were not directly identified in the rat.

#### Laboratory animals

#### Rats

In <u>rats</u> given (dichlorophenyl-U-<sup>14</sup>C)-labelled bixafen orally by gavage, absorption was rapid and accounted for at least 83% of the total administered radioactivity after a single low dose (2 mg/kg bw). The maximum plasma concentrations of radioactivity were reached approximately 2–4 and 8 hours after administration of the low and high doses (2 and 50 mg/kg bw), respectively. Radioactivity was widely distributed throughout the body. Elimination of the radioactivity was mainly via faeces ( $\geq$  91%), whereas elimination via urine accounted for 1–3% of the administered dose. In bile duct-cannulated rats, extensive biliary excretion (up to 83%) was demonstrated. Elimination of the radioactivity from the body was rapid, with a half-life in plasma of 8–9 hours and a mean residence time of 13–19 hours (for the low dose). Residues in tissues at 72 hours after a single oral dose as well as after repeated oral dosing accounted for 0.1–3% of the administered radioactivity, with liver and kidneys containing the highest concentrations of residues.

Metabolism of bixafen in rats was extensive, and more than 30 metabolites were identified. The main metabolic routes included demethylation, hydroxylation of the parent and bixafendesmethyl, and conjugation with glucuronic acid or glutathione. A minor metabolic reaction was the cleavage of the amide bridge of bixafen.

#### Lactating goats

The kinetic behaviour and the metabolism of [pyrazole-5-<sup>14</sup>C]-bixafen was investigated in the lactating goat by Spiegel, K and Koester, J (2007, BIXAFEN\_014). One goat (41 kg bw) was dosed orally five times in 24 h intervals with 2.0 mg radiolabelled bixafen per kg body weight per day (equivalent to 34.7 ppm in the diet). The goat was sacrificed about 24 hours after the last dose. Milk, plasma, urine and faeces were collected during the whole dosing period. After sacrifice liver, kidney, muscle and fat were sampled.

Analysis of the total radioactive residues (TRR) was carried out using combustion and liquid scintillation counting (LSC).

M<u>ilk</u> pools, <u>muscle</u> and <u>kidney</u> were extracted with acetonitrile/water mixtures. The resulting extracts were degreased by a clean-up step using a  $C_{18}$ -SPE cartridge. Milk sugar was removed in a second clean-up step using an XAD-4 cartridge.

Liver was extracted analogously to muscle and kidney but the solids after conventional extraction were additionally subjected to four exhaustive extraction steps at increased temperature with microwave assistance. In the third and fourth step formic acid and hydrochloric acid, respectively were added to the acetonitrile/water mixtures. These extracts were also degreased by a clean-up step using a C18-SPE cartridge in the same way as the conventional extracts.

An aliquot of the <u>fat</u> composite was extracted subsequently with hexane and acetonitrile. The hexane phases were partitioned with acetonitrile and vice versa. The acetonitrile phases were combined, concentrated and analysed.

The radioactivity in all extracts was determined by LSC. Aliquots were concentrated and analysed by radio-HPLC and UV detection (254 nm) using a reversed phase column and an acidic acetonitrile/water gradient. The identification of metabolites was conducted either by comparison with reference substances and/or confirmation by LC-MS/MS.

At the end of the dosing period most of the administered radioactivity was excreted via the urine (5.42% AR) and the faeces (82.088% AR).

The total radioactive residues (TRR) found were highest in liver with 1.178 mg eq/kg, followed by fat (perirenal: 0.318 mg eq/kg, omental: 0.544 mg eq/kg), kidney (0.203 mg eq/kg) and muscle (round muscle: 0.057 mg eq/kg, loin muscle: 0.063 mg eq/kg). In milk the TRR increased from 0.003 mg eq/kg directly after the first administration up to a plateau of 0.153 mg eq/kg after three days. The TRR levels found are summarized in Table 5. The radioactivity in milk and plasma are presented in Tables 5 and 6.

| Matrix                                   | % of total dose administered | TRR [mg eq/kg] |
|------------------------------------------|------------------------------|----------------|
| Liver                                    | 0.278                        | 1.18           |
| Kidney                                   | 0.007                        | 0.203          |
| Round muscle                             | _                            | 0.057          |
| Loin muscle                              | _                            | 0.063          |
| Total body muscle <sup>a</sup>           | 0.17                         | 0.057          |
| Perirenal fat                            | _                            | 0.318          |
| Omental fat                              | _                            | 0.544          |
| Total body fat <sup>a</sup>              | 0.55                         | 0.466          |
| Total in organs and tissues              | 1.01                         | -              |
| Milk, 0–120 h                            | 0.28                         | 0.092          |
| Urine, 0–120 h                           | 5.42                         | 2.38           |
| Faeces, 0–120 h                          | 82.08                        | 13.5           |
| Total excreted in milk, urine and faeces | 87.78                        | -              |
| Total Recovery                           | 88.78                        |                |

Table 4 TRR in goats milk and tissues after administration of pyrazole-<sup>14</sup>C-bixafen at 2.0 mg/kg bw and day (34.7 ppm in the diet)

<sup>a</sup>% of total dose assuming 30% of the body weight for total body muscle and 12% for total body fat

| Time after first   | administration no. | TRR               | TRR             |
|--------------------|--------------------|-------------------|-----------------|
| administration [h] |                    | [mg eq/kg] plasma | [mg eq/kg] milk |
| 0.5                | 1                  | 0.003             | _               |
| 2                  |                    | 0.039             | _               |
| 4                  |                    | 0.066             | -               |
| 6                  |                    | 0.081             | -               |
| 8                  |                    | 0.081             | 0.109           |
| 24                 | 2                  | 0.065             | 0.054           |
| 32                 |                    | 0.144             | 0.219           |
| 48                 | 3                  | 0.044             | 0.041           |
| 56                 |                    | 0.153             | 0.205           |
| 72                 | 4                  | 0.066             | 0.055           |
| 80                 |                    | 0.144             | 0.197           |
| 96                 | 5                  | 0.042             | 0.039           |
| 104                |                    | 0.108             | 0.143           |
| 120                |                    | 0.041             | 0.040           |

Table 5 Time course of total radioactive residues in milk and plasma after administration of pyrazole- $^{14}$ C-bixafen at 2.0 mg/kg bw and day (34.7 ppm in the diet)

Samples of tissues and milk were further analysed for the composition of the radioactivity. Extraction rates using acetonitrile/water were generally > 90%, except for liver, which required additional exhaustive extraction including hydrolysis. Parent bixafen was the major residue in milk (73.8% TRR, 0.127 mg eq/kg), muscle (55.8% TRR, 0.032 mg eq/kg), fat (88.5% TRR, 0.413 mg eq/kg) and kidney (44.1% TRR, 0.089 mg eq/kg). In liver bixafen was more strongly degraded being present at levels of 17.6% of the TRR (0.207 mg eq/kg).

Besides the parent compound M21 (bixafen-desmethyl) was a major metabolite in all matrices investigated: 17.6% TRR in milk (0.03 mg eq/kg), 43.2% TRR in muscle (0.025 mg eq/kg), 10.6% TRR in fat (0.05 mg eq/kg) and 37.9% TRR in kidney (0.077 mg eq/kg). In liver, the conventional and exhaustive extraction released a total of 33.6% of the TRR (0.397 mg eq/kg) as bixafen-desmethyl.

The only other major metabolite found was M23 in milk, liver and kidney. The sum of both isomers reached levels of 13.8% of the TRR in liver (isomer 1: 8.6% TRR, 0.102 mg eq/kg; isomer 2: 5.2% TRR, 0.062 mg eq/kg) and of 14.5% of the TRR in kidney (isomer 1: 4.3% TRR, 0.009 mg eq/kg; isomer 2: 10.2% TRR, 0.021 mg eq/kg). In milk M23 was present in lower amounts (isomer 2 only: 1.4% TRR, 0.002 mg/kg)

In the following table the extraction rates and the metabolites identified are summarised.

Table 6 Characterisation and identification of compounds in milk and tissues of the lactating goats after administration of pyrazole-<sup>14</sup>C-bixafen at 2.0 mg/kg bw and day (34.7 ppm in the diet)

|                               | Milk     |             | Muscle   |             | Fat      |             | Liver    |             | Kidney   |             |
|-------------------------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|
| Compound / Fraction           | %<br>TRR | mg<br>eq/kg |
| TRR [mg/kg]                   |          | 0.172       |          | 0.057       |          | 0.466       |          | 1.178       |          | 0.203       |
| Conventional extraction       |          |             |          |             |          |             |          |             |          |             |
| Bixafen                       | 73.8     | 0.127       | 55.8     | 0.032       | 88.5     | 0.413       | 17.6     | 0.207       | 44.1     | 0.089       |
| M14                           | _        | -           | _        | _           | -        | _           | 2.2      | 0.026       | -        | _           |
| M23                           | _        | -           | _        | _           | -        | _           | 8.6      | 0.102       | 4.3      | 0.009       |
| M23                           | 1.4      | 0.002       | -        | -           | -        | -           | 5.2      | 0.062       | 10.2     | 0.021       |
| M21 (bixafen-<br>desmethyl)   | 17.6     | 0.030       | 43.2     | 0.025       | 10.6     | 0.050       | 21.0     | 0.248       | 37.9     | 0.077       |
| Subtotal identified           | 92.9     | 0.159       | 99.0     | 0.057       | 99.1     | 0.462       | 54.7     | 0.644       | 96.5     | 0.196       |
| Exhaustive extraction         |          |             |          |             |          |             |          |             |          |             |
| M42                           | n.a.     | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 7.8      | 0.091       | n.a.     | n.a.        |
| M21 (BYF 00587-<br>desmethyl) | n.a.     | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 12.6     | 0.149       | n.a.     | n.a.        |

|                                                  | Milk     |             | Muscle   |             | Fat      |             | Liver    |             | Kidney   |             |
|--------------------------------------------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|
| Compound / Fraction                              | %<br>TRR | mg<br>eq/kg |
| Subtotal identified                              | n.a.     | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 20.4     | 0.240       | n.a.     | n.a.        |
| Total identified                                 | 92.9     | 0.159       | 99.0     | 0.057       | 99.1     | 0.462       | 75.0     | 0.884       | 96.5     | 0.196       |
| Total characterised by HPLC,<br>but unidentified | -        | -           | -        | -           | -        | -           | 23.5     | 0.277       | -        | -           |
| Fractions not analysed                           | 6.8      | 0.012       | -        | -           | -        | -           | 1.1      | 0.013       | _        | -           |
| Total extracted                                  | 99.7     | 0.064       | 99.0     | 0.057       | 99.1     | 0.462       | 99.6     | 1.174       | 96.5     | 0.196       |
| Not extracted                                    | 0.3      | 0.001       | 1.0      | 0.001       | 0.9      | 0.004       | 0.4      | 0.005       | 3.5      | 0.007       |
| Accountability                                   | 100.0    | 0.172       | 100.0    | 0.057       | 100.0    | 0.466       | 100.0    | 1.178       | 100.0    | 0.203       |

n.a. = Not analysed

In a second study by Spiegel, K and Koester, J (2007, BIXAFEN\_015) the metabolism of [dichlorophenyl-UL-<sup>14</sup>C]-bixafen was investigated in one lactating goat. The goat (39 kg bw) was dosed orally five times in 24 h intervals with 2.0 mg radiolabelled BYF 00587 per kg body weight per day. This amount corresponded to 46.08 ppm in the diet. The goat was sacrificed about 24 hours after the last dose.

Analysis of the total radioactive residues and the extraction of samples collected was conducted as described in the metabolism in goats study using [pyrazole-5-<sup>14</sup>C]-bixafen by Spiegel, K and Koester, J (2007, BIXAFEN\_014).

From the total dose administered approximated 1.75% of the AR was excreted via the urine and 71.88% via the faces. The total radioactive residues (TRR) found were highest in liver with 0.737 mg eq/kg, followed by fat (0.611 mg eq/kg), kidney (0.143 mg eq/kg) and muscle (0.047 mg eq/kg). In milk the TRR increased from 0.03 mg eq/kg after the first administration up to a plateau of 0.126 mg eq/kg after four days. The TRR levels found are summarized in Table 7. The radioactivity in milk and plasma are presented in Tables 8 and 9.

Table 7 TRR in goats milk and tissues after administration of dichlorophenyl-<sup>14</sup>C-bixafen at 2.0 mg/kg bw and day (46.08 ppm in the diet)

| Matrix                                   | % of total dose administered | TRR [mg eq/kg] |
|------------------------------------------|------------------------------|----------------|
| Liver                                    | 0.166                        | 0.737          |
| Kidney                                   | 0.004                        | 0.143          |
| Round muscle                             | 0.13                         | 0.047          |
| Fat (composite sample perirenal and      | 0.70                         | 0.611          |
| omental)                                 |                              |                |
| Total in organs and tissues              | 1.0                          | -              |
| Milk, 0–120 h                            | 0.09                         | 0.039          |
| Urine, 0–120 h                           | 1.75                         | 0.717          |
| Faeces, 0–120 h                          | 71.88                        | 17.631         |
| Total excreted in milk, urine and faeces | 73.72                        | -              |
| Total Recovery                           | 74.73                        | -              |

Table 8 Time course of total radioactive residues in milk and plasma after administration of dichlorophenyl-<sup>14</sup>C-bixafen at 2.0 mg/kg bw and day (46.08 ppm in the diet)

| Time after first   | administration no. | TRR               | TRR             |
|--------------------|--------------------|-------------------|-----------------|
| administration [h] |                    | [mg eq/kg] plasma | [mg eq/kg] milk |
| 0.25               | 1                  | 0.001             | _               |
| 0.5                |                    | 0.004             | _               |
| 1                  |                    | 0.015             | —               |
| 2                  |                    | 0.045             | _               |
| 3                  |                    | 0.052             | _               |
| 4                  |                    | 0.042             | _               |
| 6                  |                    | 0.028             | _               |
| 8                  |                    | 0.022             | 0.030           |

| Time after first   | administration no. | TRR               | TRR             |
|--------------------|--------------------|-------------------|-----------------|
| administration [h] |                    | [mg eq/kg] plasma | [mg eq/kg] milk |
| 24                 | 2                  | 0.008             | 0.009           |
| 32                 |                    | 0.030             | 0.043           |
| 48                 | 3                  | 0.008             | 0.009           |
| 56                 |                    | 0.032             | 0.056           |
| 72                 | 4                  | 0.023             | 0.029           |
| 80                 |                    | 0.065             | 0.126           |
| 96                 | 5                  | 0.037             | 0.050           |
| 104                |                    | 0.048             | 0.071           |
| 120                |                    | 0.029             | 0.037           |

Samples of tissues and milk were further analysed for the composition of the radioactivity. Extraction rates using acetonitrile/water were generally > 90%, except for liver, which required additional exhaustive extraction including hydrolysis. Parent bixafen was the major residue in milk (77.2% TRR, 0.05 mg eq/kg), muscle (65.6% TRR, 0.031 mg eq/kg), fat (89.4% TRR, 0.547 mg eq/kg) and kidney (46.3% TRR, 0.066 mg eq/kg). In liver bixafen was more strongly degraded being present at levels of 22.8% of the TRR (0.168 mg eq/kg) in the conventional extract plus 3.7% of the TRR (0.027 mg eq/kg) in the exhaustive extract for a total of 26.5% of the TRR (0.195 mg eq/kg).

Besides the parent compound M21 (bixafen-desmethyl) was a major metabolite in all matrices investigated: 15.6% TRR in milk (0.001 mg eq/kg), 34.4% TRR in muscle (0.016 mg eq/kg), 10.4% TRR in fat (0.064 mg eq/kg) and 36.5% TRR in kidney (0.052 mg eq/kg). In liver, the conventional and exhaustive extraction released a total of 38.7% of the TRR (0.286 mg eq/kg) as bixafen-desmethyl.

The only other metabolite found was M23 in milk, liver and kidney. The sum of both isomers reached levels of 2.3% of the TRR in milk (isomer 1: 0.8% TRR, < 0.001 mg eq/kg; isomer 2: 1.5% TRR, 0.001 mg eq/kg), 18.9% of the TRR in liver (isomer 1: 13.1% TRR, 0.097 mg eq/kg; isomer 2: 5.8% TRR, 0.043 mg eq/kg) and of 9.3% of the TRR in kidney (isomer 1: 2.8% TRR, 0.004 mg eq/kg; isomer 2: 6.5% TRR, 0.009 mg eq/kg).

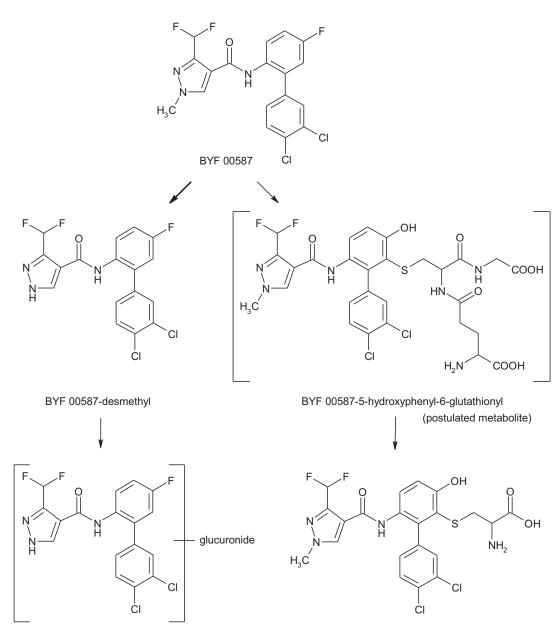

In the following table the extraction rates and the metabolites identified are summarised:

Table 9 Characterisation and identification of compounds in milk and tissues of the lactating goats after administration of dichlorophenyl-<sup>14</sup>C-bixafen at 2.0 mg/kg bw and day (46.08 ppm in the diet)

|                                                    | Milk     |          | Muscl     | e           | Fat      |             | Liver    |             | Kidney   | r           |
|----------------------------------------------------|----------|----------|-----------|-------------|----------|-------------|----------|-------------|----------|-------------|
| Compound / Fraction                                | %<br>TRR | mg eq/kg | %<br>TRR  | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg |
| TRR [mg/kg]                                        | 100      | 0.064    | 100       | 0.047       | 100      | 0.611       | 100      | 0.737       | 100      | 0.143       |
| Conventional extraction                            |          |          |           |             |          |             |          |             |          |             |
| Bixafen                                            | 77.2     | 0.050    | 65.6      | 0.031       | 89.4     | 0.547       | 22.8     | 0.168       | 46.3     | 0.066       |
| M23                                                | 0.8      | < 0.001  | -         | -           | -        | -           | 13.1     | 0.097       | 2.8      | 0.004       |
| M23                                                | 1.5      | 0.001    | -         | -           | -        | -           | 5.8      | 0.043       | 6.5      | 0.009       |
| M21 (bixafen-<br>desmethyl)                        | 15.6     | 0.010    | 34.4      | 0.016       | 10.4     | 0.064       | 18.7     | 0.138       | 36.5     | 0.052       |
| Subtotal identified                                | 95.1     | 0.061    | 100.<br>0 | 0.047       | 99.8     | 0.610       | 60.4     | 0.445       | 92.0     | 0.132       |
| Exhaustive extraction                              |          |          |           |             |          |             |          |             |          |             |
| Bixafen                                            | n.a.     | n.a.     | n.a.      | n.a.        | n.a.     | n.a.        | 3.7      | 0.027       | n.a.     | n.a.        |
| M21 (bixafen-<br>desmethyl)                        | n.a.     | n.a.     | n.a.      | n.a.        | n.a.     | n.a.        | 20.0     | 0.148       | n.a.     | n.a.        |
| Subtotal identified                                | n.a.     | n.a.     | n.a.      | n.a.        | n.a.     | n.a.        | 23.8     | 0.175       | n.a.     | n.a.        |
| Total identified                                   | 95.1     | 0.061    | 100.<br>0 | 0.047       | 99.8     | 0.610       | 84.2     | 0.620       | 92.0     | 0.132       |
| Total characterised by HPLC without identification | 2.4      | 0.002    | -         | -           | -        | -           | 5.4      | 0.040       | 5.4      | 0.008       |
| Fractions not analysed                             | 2.2      | 0.001    | -         | -           | -        | -           | 1.6      | 0.012       | -        | -           |

|                     | Milk     | Milk     |           | Muscle Fat  |           | Fat         |          | Liver       |          |             |
|---------------------|----------|----------|-----------|-------------|-----------|-------------|----------|-------------|----------|-------------|
| Compound / Fraction | %<br>TRR | mg eq/kg | %<br>TRR  | mg<br>eq/kg | %<br>TRR  | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg |
| Total extracted     | 99.7     | 0.064    | 100.<br>0 | 0.047       | 99.8      | 0.610       | 91.2     | 0.672       | 97.4     | 0.139       |
| Not extracted       | 0.3      | < 0.001  | -         | -           | 0.2       | 0.001       | 8.8      | 0.065       | 2.6      | 0.004       |
| Accountability      | 100.0    | 0.064    | 100.<br>0 | 0.047       | 100.<br>0 | 0.611       | 100.0    | 0.737       | 100.0    | 0.143       |

n.a. = Not analysed



BYF 00587-desmethyl-N-glucuronide (2 isomers)

BYF 00587-5-hydroxyphenyl-6-cysteinyl

Figure 3 Proposed metabolic pathway of bixafen in lactating goats

### Laying hens

The metabolism of [<u>pyrazole-5-<sup>14</sup>C]-bixafen</u> was investigated in <u>laying hens</u> by Koester, J (2007, BIXAFEN\_016). Six hens were orally dosed 14 times in intervals of 24 h with 2.04 mg radiolabelled bixafen per kg body weight per day (corresponding to 25.75 ppm in the diet). The animals were sacrificed about 24 hours after the last dose. The total radioactivity was measured daily in the excreta and in eggs, and at sacrifice in the dissected tissues muscle, liver, fat and skin.

Analysis of the total radioactive residues (TRR) was carried out using combustion and liquid scintillation counting (LSC).

For metabolism investigations, composite samples of muscle (leg and breast), liver, subcutaneous fat and eggs (day 1 to 6 and day 7 to 14) of all animals were used. Aliquots of egg pools, muscle, liver and excreta were extracted with acetonitrile/water mixtures. The solids obtained by conventional extraction of liver were further extracted at increased temperature (approx.  $\pm 120$  °C) under microwave conditions. The fat sample was extracted with acetonitrile/n-hexane mixtures and partitioned into an acetonitrile and n-hexane phase. The acetonitrile extract was concentrated and analysed.

All samples were analysed by radio-HPLC using a reversed phase column and an acidic acetonitrile/water gradient. The identity of the major components was confirmed by LC-MS/MS in the egg. The identification of parent compound and metabolites in other matrices of the laying hen was achieved by co-chromatography of original extracts with isolated metabolites or radiolabelled reference items or by comparison of known metabolic profiles.

After the dosing period a total of 88.33% of the applied radioactivity was excreted. The total radioactive residues (TRR) found were highest in eggs with up to 1.019 mg eq/kg after 13 days of dosing. A plateau of the total radioactivity in eggs was observed after approximately one week. In tissues liver contained the highest TRR (0.641 mg eq/kg), followed by fat (0.227 mg eq/kg), kidney (0.193 mg eq/kg) and muscle (0.032 mg eq/kg). The TRR levels found are summarized in Table . The time course of radioactivity in eggs is presented in Table and Table .

| Matrix                        | % of total dose administered | TRR        |
|-------------------------------|------------------------------|------------|
|                               | (cumulative value)           | [mg eq/kg] |
| Liver                         | 0.05                         | 0.641      |
| Kidney                        | < 0.01                       | 0.193      |
| Eggs from ovary/oviduct       | 0.16                         | 1.464      |
| Total body muscle             | 0.05                         | 0.032      |
| Total body skin               | 0.01                         | 0.072      |
| Total body fat (subcutaneous) | 0.10                         | 0.227      |
| Total of organs/tissues       | 0.37                         | _          |
| Eggs, day 1–14                | 1.15                         | 0.776      |
| Excreta, day 1–14             | 88.33                        | 12.989     |
| Total Recovery                | 89.95                        | -          |

Table 10 TRR in laying hen eggs and tissues after administration of pyrazole- $^{14}$ C-bixafen at 2.04 mg/kg bw and day (25.75 ppm in the diet)

Table 11 Time course of total radioactive residues in excreta after administration of pyrazole-<sup>14</sup>Cbixafen at 2.04 mg/kg bw and day (25.75 ppm in the diet) to laying hens (mean of six animals)

| Time after first<br>administration [h] |    |                      | Cumulative excretion<br>[% of total dose] |
|----------------------------------------|----|----------------------|-------------------------------------------|
| 0                                      | 1  | no excreta collected | -                                         |
| 1                                      | 2  | 5.65                 | 12.391                                    |
| 2                                      | 3  | 12.04                | 14.030                                    |
| 3                                      | 4  | 18.54                | 13.397                                    |
| 4                                      | 5  | 24.92                | 13.637                                    |
| 5                                      | 6  | 31.41                | 17.885                                    |
| 6                                      | 7  | 38.34                | 17.040                                    |
| 7                                      | 8  | 45.40                | 16.462                                    |
| 8                                      | 9  | 50.96                | 10.314                                    |
| 9                                      | 10 | 57.09                | 11.834                                    |
| 10                                     | 11 | 63.46                | 12.627                                    |
| 11                                     | 12 | 70.03                | 12.382                                    |
| 12                                     | 13 | 76.30                | 12.268                                    |
| 13                                     | 14 | 82.53                | 11.617                                    |
| 14                                     | -  | 88.33                | 10.202                                    |
| Mean                                   |    |                      | 12.989                                    |

| -                  |                    |                       |             |
|--------------------|--------------------|-----------------------|-------------|
| Time after first   | administration no. | Cumulative secretion  | TRR in eggs |
| administration [h] |                    | [% of the total dose] | [mg eq/kg]  |
| 0                  | 1                  | no egg collected      | -           |
| 1                  | 2                  | 0.02                  | 0.205       |
| 2                  | 3                  | 0.05                  | 0.359       |
| 3                  | 4                  | 0.12                  | 0.546       |
| 4                  | 5                  | 0.19                  | 0.701       |
| 5                  | 6                  | 0.27                  | 0.842       |
| 6                  | 7                  | 0.36                  | 0.906       |
| 7                  | 8                  | 0.44                  | 0.875       |
| 8                  | 9                  | 0.54                  | 0.790       |
| 9                  | 10                 | 0.62                  | 0.872       |
| 10                 | 11                 | 0.74                  | 0.997       |
| 11                 | 12                 | 0.84                  | 0.908       |
| 12                 | 13                 | 0.96                  | 0.955       |
| 13                 | 14                 | 1.05                  | 1.019       |
| 14                 | -                  | 1.15                  | 0.857       |
| Mean               |                    |                       | 0.776       |

Table 12 Time course of total radioactive residues in eggs after administration of pyrazole-<sup>14</sup>Cbixafen at 2.04 mg/kg bw and day (25.75 ppm in the diet, mean of six animals)

Samples of tissues and eggs were further analysed for the composition of the radioactivity. Extraction rates using acetonitrile/water were generally > 90%, except for liver, which required additional exhaustive extraction including hydrolysis.

Parent bixafen was the major residue in <u>eggs</u> found at levels of 68.6% of the TRR after 1–6 days (0.416 mg eq/kg) and 55.4% of the TRR after 7–14 days (0.498 mg eq/kg). Besides the parent compound M21 (bixafen-desmethyl) was a major metabolite being present at levels of 26% TRR after 1–6 days (0.157 mg eq/kg) and 35.4% TRR (0.318 mg eq/kg) after 7–14 days. M24 and M26 were also detected in eggs (7–14 days only) with 0.6% TRR (0.006 mg eq/kg) and 1.0% TRR (0.009 mg eq/kg), respectively.

<u>Fat</u> mainly contained unchanged parent as major residue (79.6% TRR, 0.181 mg eq/kg). M21 (bixafen-desmethyl) was the only other metabolite with 19.9% TRR (0.045 mg eq/kg).

In <u>muscle</u> M21 (bixafen-desmethyl) gave the highest residue (35.4%) of the TRR, 0.011 mg eq/kg). The unchanged parent substance was the only other substance identified at levels of 23.4% of the TRR (0.008 mg eq/kg).

In <u>liver</u> a total of 42.3% of the TRR were identified as bixafen-desmethyl (conventional extract: 24.1% TRR, 0.155 mg eq/kg; exhaustive extract: 18.2% TRR, 0.116 mg eq/kg). The unchanged parent was present mainly in conjugated form cleaved by hydrolysis, resulting in a total of 0.14 mg eq/kg or 21.9% of the TRR (conventional extraction: 4.5% TRR, 0.029 mg eq/kg; exhaustive extraction: 17.4% TRR as conjugate, 0.111 mg eq/kg). Besides parent bixafen and M21 liver contained several minor metabolites all being present at levels below 10% of the TRR. M14 and M18 represented 2.3% TRR (0.015 mg eq/kg) and 1.5% TRR (0.01 mg eq/kg), respectively. In addition hydroxylated and conjugated metabolites following bixafen-desmethyl were identified: M24 with 1.8% TRR (0.012 mg eq/kg), M25 with 1.0% TRR (0.007 mg eq/kg), M26 with 8.8% TRR (0.057 mg eq/kg), M27 with 4.6% TRR (0.029 mg eq/kg) and M37 with 2.7% TRR (0.017 mg eq/kg).

In the following table the extraction rates and the metabolites identified are summarised:

|                                                          | Eggs<br>day 1–0 | 5           | Eggs<br>day 7– | 14          | Muscle   | :           | Fat      |             | Liver    |             |
|----------------------------------------------------------|-----------------|-------------|----------------|-------------|----------|-------------|----------|-------------|----------|-------------|
| Compound / Fraction                                      | %<br>TRR        | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg |
| TRR [mg/kg]                                              | 100             | 0.606       | 100            | 0.900       | 100      | 0.032       | 100      | 0.227       | 100      | 0.641       |
| Conventional extraction                                  |                 |             |                |             |          |             |          |             |          |             |
| Bixafen                                                  | 68.6            | 0.416       | 55.4           | 0.498       | 23.4     | 0.008       | 79.6     | 0.181       | 4.5      | 0.029       |
| M14                                                      | -               | -           | -              | -           | -        | -           | -        | -           | 2.3      | 0.015       |
| M18                                                      | -               |             | -              | -           | -        | -           | -        | -           | 1.5      | 0.010       |
| M21 (bixafen-<br>desmethyl)                              | 26.0            | 0.157       | 35.4           | 0.318       | 35.4     | 0.011       | 19.9     | 0.045       | 24.1     | 0.155       |
| M24                                                      | -               | -           | 0.6            | 0.006       | -        | -           | -        | -           | 1.8      | 0.012       |
| M25                                                      | -               | -           | -              | -           | -        | -           | -        | -           | 1.0      | 0.007       |
| M26                                                      | -               | -           | 1.0            | 0.009       | -        | -           | -        | -           | 8.8      | 0.057       |
| M27                                                      | -               | -           | 0.5            | 0.005       | -        | -           | -        | -           | 4.6      | 0.029       |
| M37                                                      | -               | -           | -              | -           | -        | -           | -        | -           | 2.7      | 0.017       |
| Exhaustive extraction of solids of liver                 |                 |             |                |             |          |             |          |             |          |             |
| M21 (bixafen-<br>desmethyl)                              | n.a.            | n.a.        | n.a.           | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 18.2     | 0.116       |
| Bixafen-<br>conjugate <sup>a</sup>                       | n.a.            | n.a.        | n.a.           | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 17.4     | 0.111       |
| Total identified                                         | 94.6            | 0.573       | 92.8           | 0.835       | 58.7     | 0.019       | 99.5     | 0.226       | 87.0     | 0.557       |
| Total characterised by<br>HPLC without<br>identification | 3.4             | 0.020       | 3.2            | 0.029       | 34.9     | 0.011       | -        | -           | 4.2      | 0.027       |
| Total extracted                                          | 98.0            | 0.593       | 96.0           | 0.864       | 93.6     | 0.030       | 99.5     | 0.226       | 91.2     | 0.584       |
| Unextracted                                              | 2.0             | 0.012       | 4.0            | 0.036       | 6.4      | 0.002       | 0.5      | 0.001       | 8.8      | 0.056       |
| Accountability                                           | 100             | 0.606       | 100            | 0.900       | 100      | 0.032       | 100      | 0.227       | 100      | 0.641       |

Table 13 Characterisation and identification of compounds in eggs and tissues of the laying hens after administration of pyrazole-<sup>14</sup>C-bixafen at 2.04 mg/kg bw and day (25.75 ppm in the diet)

<sup>a</sup> Cleaved conjugate during exhaustive extraction. Type of conjugate not identified.

In a second study on laying hens conducted by Koester, J (2007, BIXAFEN\_017) [dichlorophenyl-UL-<sup>14</sup>C]-bixafen was administered to five hens orally for 14 days with 2.03 mg radiolabelled bixafen per kg body weight per day (corresponding to 32.42 ppm in the diet). The animals were sacrificed about 24 hours after the last dose. The total radioactivity was measured daily in the excreta and in eggs, and at sacrifice in the dissected tissues muscle, liver, fat and skin.

Analysis of the total radioactive residues and the extraction of samples collected was conducted as described in the metabolism in laying hens study using [pyrazole- $5^{-14}$ C]-bixafen by Koester, J (2007, BIXAFEN\_016).

At the end of the dosing period approximately 92.54% of the administered doses were excreted. The total radioactive residues (TRR) found were highest in eggs with up to 0.826 mg eq/kg

after 7 days of dosing. A plateau of the total radioactivity in eggs was observed after approximately one week. In tissues liver contained the highest TRR (0.807 mg eq/kg), followed by fat (0.365 mg eq/kg), kidney (0.331 mg eq/kg) and muscle (0.037 mg eq/kg). The TRR levels found are summarized in Table . The time course of radioactivity in eggs and excreta is presented in Table and

Table .

Table 14 TRR in laying hen eggs and tissues after administration of dichlorophenyl-<sup>14</sup>C-bixafen at 2.03 mg/kg bw and day (32.42 ppm in the diet)

| Matrix                        | % of total dose administered | TRR        |
|-------------------------------|------------------------------|------------|
|                               | (cumulative value)           | [mg eq/kg] |
| Liver                         | 0.06                         | 0.807      |
| Kidney                        | 0.01                         | 0.331      |
| Eggs from ovary/oviduct       | 0.10                         | 1.449      |
| Total body muscle             | 0.05                         | 0.037      |
| Total body skin               | 0.01                         | 0.070      |
| Total body fat (subcutaneous) | 0.03                         | 0.365      |
| Total of organs/tissues       | 0.25                         | _          |
| Eggs, day 1–14                | 0.98                         | 0.640      |
| Excreta, day 1–14             | 92.54                        | 18.605     |
| Total Recovery                | 93.77                        | -          |

Table 15 Time course of total radioactive residues in excreta after administration of dichlorophenyl-<sup>14</sup>C-bixafen at 2.03 mg/kg bw and day (32.42 ppm in the diet) to laying hens (mean of five animals)

| Time after first   | administration no. | Excretion per day [% of | Cumulative excretion |
|--------------------|--------------------|-------------------------|----------------------|
| administration [h] |                    | total dose]             | [% of total dose]    |
| 0                  | 1                  | no excreta collected    | -                    |
| 1                  | 2                  | 5.50                    | 17.272               |
| 2                  | 3                  | 12.43                   | 21.039               |
| 3                  | 4                  | 19.02                   | 16.638               |
| 4                  | 5                  | 25.59                   | 19.990               |
| 5                  | 6                  | 32.75                   | 21.211               |
| 6                  | 7                  | 38.72                   | 18.312               |
| 7                  | 8                  | 46.79                   | 20.532               |
| 8                  | 9                  | 52.57                   | 17.556               |
| 9                  | 10                 | 59.74                   | 19.665               |
| 10                 | 11                 | 66.43                   | 18.724               |
| 11                 | 12                 | 73.15                   | 20.322               |
| 12                 | 13                 | 79.37                   | 18.059               |
| 13                 | 14                 | 85.57                   | 15.919               |
| 14                 | -                  | 92.54                   | 17.338               |
| Mean               |                    |                         | 18.605               |

Table 16 Time course of total radioactive residues in eggs after administration of dichlorophenyl-<sup>14</sup>Cbixafen at 2.03 mg/kg bw and day (32.42 ppm in the diet, mean of five animals)

| Time after first<br>administration [h] | administration no. | Cumulative secretion<br>[% of the total dose] | TRR in eggs<br>[mg eq/kg] |
|----------------------------------------|--------------------|-----------------------------------------------|---------------------------|
| 0                                      | 1                  | no egg collected                              |                           |
| 1                                      | 2                  | 0.039                                         | 0.301                     |
| 2                                      | 3                  | 0.053                                         | 0.347                     |
| 3                                      | 4                  | 0.100                                         | 0.442                     |
| 4                                      | 5                  | 0.158                                         | 0.545                     |
| 5                                      | 6                  | 0.222                                         | 0.607                     |
| 6                                      | 7                  | 0.289                                         | 0.650                     |
| 7                                      | 8                  | 0.375                                         | 0.826                     |
| 8                                      | 9                  | 0.454                                         | 0.752                     |
| 9                                      | 10                 | 0.530                                         | 0.807                     |
| 10                                     | 11                 | 0.615                                         | 0.816                     |

| Time after first   | administration no. | Cumulative secretion  | TRR in eggs |
|--------------------|--------------------|-----------------------|-------------|
| administration [h] |                    | [% of the total dose] | [mg eq/kg]  |
| 11                 | 12                 | 0.683                 | 0.804       |
| 12                 | 13                 | 0.763                 | 0.759       |
| 13                 | 14                 | 0.843                 | 0.767       |
| 14                 | -                  | 0.976                 | 0.788       |
| Mean               |                    |                       | 0.640       |

Samples of tissues and eggs were further analysed for the composition of the radioactivity. Extraction rates using acetonitrile/water were generally > 90%, except for liver, which required additional exhaustive extraction including hydrolysis.

Parent bixafen was the major residue in <u>eggs</u> found at levels of 62.3% of the TRR after 1-7 days (0.327 mg eq/kg) and 51.1% of the TRR after 8–14 days (0.405 mg eq/kg). Besides the parent compound M21 (bixafen-desmethyl) was a major metabolite being present at levels of 33.2% TRR after 1–6 days (0.174 mg eq/kg) and 39.1% TRR (0.31 mg eq/kg) after 8–14 days. M24 and M26 were also detected in eggs with 0.9% TRR (0.007 mg eq/kg, 8–14 days only) and 0.9 to 1.2% TRR (0.005 to 0.009 mg eq/kg), respectively.

<u>Fat</u> mainly contained unchanged parent as major residue (80.3% TRR, 0.305 mg eq/kg). M21 (bixafen-desmethyl) was the only other metabolite with 18.6% TRR (0.071 mg eq/kg).

In <u>muscle</u> M21 (bixafen-desmethyl) gave the highest residue (50.8% of the TRR, 0.019 mg eq/kg). The unchanged parent substance was the only other substance identified at levels of 40.8% of the TRR (0.015 mg eq/kg).

In <u>liver</u> a total of 45.7% of the TRR were identified as bixafen-desmethyl (conventional extract: 25.7% TRR, 0.207 mg eq/kg; exhaustive extract: 20% TRR, 0.161 mg eq/kg). The unchanged parent was present mainly in conjugated form cleaved by hydrolysis, resulting in a total of 0.27 mg eq/kg or 31.5% of the TRR (conventional extraction: 6.7% TRR, 0.054 mg eq/kg; exhaustive extraction: 26.8% TRR as conjugate, 0.216 mg eq/kg). Besides parent bixafen and M21 liver contained several minor metabolites all being present at levels below 10% of the TRR. M14 representedM14 (bixafen-5-hydroxyphenyl-6-cysteinyl) was found with 3.5% TRR (0.029 mg eq/kg). In addition hydroxylated and conjugated metabolites following bixafen-desmethyl were identified: M24 with 3.1% TRR (0.025 mg eq/kg), M26 with 8.4% TRR (0.067 mg eq/kg) and M27 with 5.1% TRR (0.041 mg eq/kg).

In the following table the extraction rates and the metabolites identified are summarised.

Table 17 Characterisation and identification of compounds in eggs and tissues of the laying hens after administration of dichlorophenyl-<sup>14</sup>C-bixafen at 2.03 mg/kg bw and day (32.42 ppm in the diet)

| Compound / Fraction                      | Eggs<br>day 1–7 |             | Eggs<br>day 8–14 |             | Muscle   |             | Fat      |             | Liver    |             |
|------------------------------------------|-----------------|-------------|------------------|-------------|----------|-------------|----------|-------------|----------|-------------|
| Compound / Plaction                      | %<br>TRR        | mg<br>eq/kg | %<br>TRR         | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg |
| TRR [mg/kg]                              | 100             | 0.525       | 100              | 0.791       | 100      | 0.037       | 100      | 0.38        | 100      | 0.806       |
| Conventional extraction                  |                 |             |                  |             |          |             |          |             |          |             |
| Bixafen                                  | 62.3            | 0.327       | 51.1             | 0.405       | 40.8     | 0.015       | 80.3     | 0.305       | 6.7      | 0.054       |
| M14                                      | _               | -           | -                | -           | -        | _           | -        | -           | 3.5      | 0.029       |
| M21 (bixafen-<br>desmethyl)              | 33.2            | 0.174       | 39.1             | 0.310       | 50.8     | 0.019       | 18.6     | 0.071       | 25.7     | 0.207       |
| M24                                      | -               | -           | 0.9              | 0.007       | -        | -           | -        | -           | 3.1      | 0.025       |
| M26                                      | 0.9             | 0.005       | 1.2              | 0.009       | -        | -           | -        | -           | 8.4      | 0.067       |
| M27                                      | -               | -           | 0.6              | 0.005       | -        | -           | -        | -           | 5.1      | 0.041       |
| Exhaustive extraction of solids of liver |                 |             |                  |             |          |             |          |             |          |             |
| M21 (bixafen-<br>desmethyl)              | n.a.            | n.a.        | n.a.             | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 20.0     | 0.161       |
| Bixafen-<br>conjugate <sup>a</sup>       | n.a.            | n.a.        | n.a.             | n.a.        | n.a.     | n.a.        | n.a.     | n.a.        | 26.8     | 0.216       |

|                                                          | Compound / Fraction Eggs |             | Eggs<br>day 8–14 |             | Muscle   |             | Fat      |             | Liver    |             |
|----------------------------------------------------------|--------------------------|-------------|------------------|-------------|----------|-------------|----------|-------------|----------|-------------|
| Compound / Fraction                                      | %<br>TRR                 | mg<br>eq/kg | %<br>TRR         | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg | %<br>TRR | mg<br>eq/kg |
| Total identified                                         | 96.4                     | 0.506       | 92.9             | 0.736       | 91.6     | 0.034       | 98.9     | 0.376       | 99.4     | 0.801       |
| Total characterised by<br>HPLC without<br>identification | -                        | _           | 1.9              | 0.015       | _        | -           | _        | _           | _        | —           |
| Total extracted                                          | 96.4                     | 0.506       | 94.9             | 0.751       | 91.6     | 0.034       | 98.9     | 0.376       | 99.4     | 0.801       |
| Unextracted                                              | 3.6                      | 0.019       | 5.1              | 0.041       | 8.4      | 0.003       | 1.1      | 0.004       | 0.6      | 0.005       |
| Accountability                                           | 100                      | 0.525       | 100              | 0.791       | 100      | 0.037       | 100      | 0.380       | 100      | 0.806       |

<sup>a</sup> Cleaved conjugate during exhaustive extraction. Type of conjugate not identified.

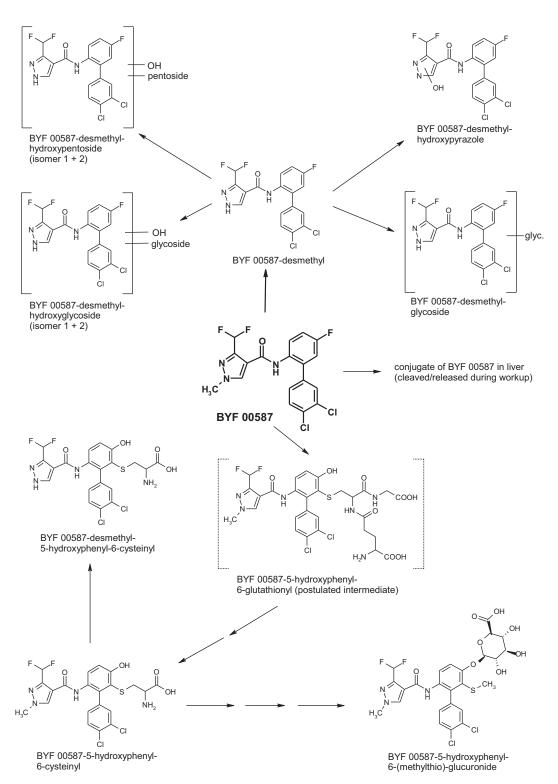



Figure 4 Proposed metabolic pathway of bixafen in laying hens

### Plant metabolism

The fate of bixafen in plants was investigated following foliar application of <sup>14</sup>C-radiolabelled active substance to <u>soya beans</u> and <u>wheat</u>. In all samples unchanged bixafen was the major residue, normally

amounting nearly 90% of the TRR or more. Except for soya bean seeds, the only other metabolite found was M21 (bixafen-desmethyl), however its levels were below 3% of the TRR in all samples.

In soya bean seeds, which were not directly affected by the spray solution, parent bixafen was still the main residue but represented only 29.5% of the TRR. In addition the tautomers M44 & M45 (BYF 00587-desmethyl-pyrazole-4-carboxylic acid, 18.8% TRR, 0.004 mg eq/kg) and M47 (pyrazolone-4-carboxylic acid, 12.1% TRR, 0.003 mg eq/kg) were identified. No M21 (bixafendesmethyl) was found in soya bean seeds.

#### Soya beans

The metabolism of bixafen was investigated (Spiegel, K 2007, BIXAFEN\_018) in <u>soya beans</u> (var. Merlin) after three spray applications with [<u>pyrazole-5-<sup>14</sup>C]-bixafen</u> formulated as an EC 125. The first application was performed when the first flowers opened (BBCH 60), the second at the end of flowering (BBCH 69) and the third when approximately 80% of the pods were ripe (BBCH 88). Each application was conducted with a nominal amount of 0.06 kg ai/ha, however a total amount of 0.188 kg ai/ha was actually applied. The plants were grown in a greenhouse.

Forage was harvested at growth stage BBCH 70–71 (5 days after the 2<sup>nd</sup> application), hay at growth stage BBCH 75 (29 days after the 2<sup>nd</sup> application), and straw and seeds at maturity (BBCH 96, 26 days after the 3<sup>rd</sup> application).

The samples were homogenised with liquid nitrogen and extracted three times with a mixture of acetonitrile/water (4/1, v/v) using an Ultra-Turrax homogeniser. After each extraction step, the extracts were separated from the solids by centrifugation. The radioactivity of each extract was determined by LS measurement. The extracts were combined, diluted or, if necessary concentrated, for HPLC analysis. The remaining solids were lyophilised, and the radioactivity was determined by combustion followed by LSC. The TRR was calculated as the sum of the radioactivity determined in the extracts and in the solids.

For seeds, a subsequent exhaustive extraction was conducted with acetonitrile/water 4/1 (v/v) and with acetonitrile/acetic acid 4/1 (v/v) with microwave assistance, both at 80 °C. The microwave extracts were concentrated to the aqueous remainder and partitioned three times with heptane. The heptane phase contained only negligible amounts of radioactivity and was discarded. The aqueous phase was concentrated and analysed by HPLC.

Parent compound and metabolites were identified by HPLC and TLC co-chromatography (by spiking) or HPLC and TLC comparison with reference compounds (peak retention times, comparison of chromatographed zones).

The TRRs found in the samples collected amounted 5.32 mg eq/kg in forage, 4.0 mg eq/kg in hay, 12.9 mg eq/kg in straw, and 0.024 mg eq/kg in the seed. In forage, hay and straw unchanged bixafen was the major residue being present at levels > 89.9% of the TRR. The only other metabolite present was M21 (bixafen-desmethyl) found at 0.5% to 2.6% of the TRR.

In the seeds parent bixafen was also identified as major residue; however, the levels of 29.7% of the TRR (0.007 mg eq/kg) were lower compared to other plant parts. Besides the parent substance the tautomers M44 & M45 (BYF 00587-desmethyl-pyrazole-4-carboxylic acid, 18.8% TRR, 0.004 mg eq/kg) and M47 (pyrazolone-4-carboxylic acid, 12.1% TRR, 0.003 mg eq/kg) were found as major metabolites. M21 (bixafen-desmethyl) was not present in soya bean seeds.

An overview of the TRR levels found in the collected samples and the composition of the residue is presented in the following table.

| Metabolite Fraction     | 2 <sup>nd</sup> applie | Forage (5 d after 2 <sup>nd</sup> application) |       | d after 2 <sup>nd</sup><br>on) | Straw (26<br>3 <sup>rd</sup> applic |       | Seeds (26 d after 3 <sup>rd</sup> application) |         |  |
|-------------------------|------------------------|------------------------------------------------|-------|--------------------------------|-------------------------------------|-------|------------------------------------------------|---------|--|
|                         | % TRR                  | mg/kg                                          | % TRR | mg/kg                          | % TRR                               | mg/kg | % TRR                                          | mg/kg   |  |
| TRR                     | 100                    | 5.32                                           | 100   | 4.00                           | 100                                 | 12.9  | 100                                            | 0.024   |  |
| Bixafen                 | 95.8                   | 5.10                                           | 91.8  | 3.67                           | 89.9                                | 11.59 | 29.7                                           | 0.007   |  |
| M44 & M45               | -                      | -                                              | -     | -                              | -                                   | -     | 18.8                                           | 0.004   |  |
| M47                     | -                      | -                                              | -     | -                              | -                                   | -     | 12.1                                           | 0.003   |  |
| M21 (bixafen-desmethyl) | 1.5                    | 0.08                                           | 2.6   | 0.10                           | 0.5                                 | 0.06  | -                                              | -       |  |
| Total identified        | 97.4                   | 5.18                                           | 94.4  | 3.78                           | 90.4                                | 11.66 | 60.6                                           | 0.014   |  |
| Total characterised     | 0.6                    | 0.03                                           | 0.7   | 0.03                           | 0.6                                 | 0.08  | 16.2                                           | 0.004   |  |
| Fractions not analysed  | -                      | -                                              | -     | -                              | -                                   | -     | 0.7                                            | < 0.001 |  |
| Total extracted         | 98.0                   | 5.21                                           | 95.1  | 3.80                           | 91.0                                | 11.74 | 77.5                                           | 0.018   |  |
| Unextracted             | 2.0                    | 0.11                                           | 4.9   | 0.20                           | 9.0                                 | 1.16  | 22.5                                           | 0.005   |  |
| Accountability          | 100.0                  | 5.32                                           | 100.0 | 4.00                           | 100.0                               | 12.90 | 100.0                                          | 0.024   |  |

Table 18 Total radioactive residues and their composition after application of [pyrazole-5-<sup>14</sup>C]bixafen to soya beans

A second study investigating the metabolism of bixafen in soya beans was conducted by Spiegel, K (2007, BIXAFEN\_019). [Dichlorophenyl-UL-<sup>14</sup>C]-bixafen was formulated as an EC 125. The first application was performed when the first flowers opened (BBCH 60), the second at the end of flowering (BBCH 69) and the third when approximately 80% of the pods were ripe (BBCH 88). Each application was conducted with a nominal amount of 0.06 kg ai/ha, however a total amount of 0.187 kg ai/ha was actually applied. The plants were grown in a greenhouse.

Forage was harvested at growth stage BBCH 70–71 (5 days after the 2<sup>nd</sup> application), hay at growth stage BBCH 75 (29 days after the 2<sup>nd</sup> application), and straw and seeds at maturity (BBCH 96, 26 days after the 3<sup>rd</sup> application).

The samples were homogenised with liquid nitrogen and extracted three times with a mixture of acetonitrile/water (4/1, v/v) using an Ultra-Turrax homogeniser. After each extraction step, the extracts were separated from the solids by centrifugation. The radioactivity of each extract was determined by LS measurement. The extracts were combined, diluted or, if necessary concentrated, for HPLC analysis. The remaining solids were lyophilised, and the radioactivity was determined by combustion followed by LSC. The TRR was calculated as the sum of the radioactivity determined in the extracts and in the solids.

Parent compound and metabolites were identified by HPLC and TLC co-chromatography (by spiking) or HPLC and TLC comparison with reference compounds (peak retention times, comparison of chromatographed zones).

The TRRs found in the samples collected amounted 3.98 mg eq/kg in forage, 2.81 mg eq/kg in hay, 9.52 mg eq/kg in straw, and 0.005 mg eq/kg in the seed. In forage, hay and straw unchanged bixafen was the major residue being present at levels > 91.8% of the TRR. The only other metabolite present was M21 (bixafen-desmethyl) found at 0.6% to 1.9% of the TRR.

In the seeds total radioactive residues were too low for identification. The described extraction methods released 53% of the TRR.

An overview of the TRR levels found in the collected samples and the composition of the residue is presented in the following table.

Table 19 Total radioactive residues and their composition after application of [dichlorophenyl-UL-<sup>14</sup>C]-bixafen to soya beans

| Metabolite Fraction     | Forage (5 d after 2 <sup>nd</sup> application) |       |       |       |       |       | Seeds (26 d after 3 <sup>rd</sup> application) |       |
|-------------------------|------------------------------------------------|-------|-------|-------|-------|-------|------------------------------------------------|-------|
|                         | % TRR                                          | mg/kg | % TRR | mg/kg | % TRR | mg/kg | % TRR                                          | mg/kg |
| TRR                     | 100                                            | 3.98  | 100   | 2.81  | 100   | 9.52  | 100                                            | 0.005 |
| Bixafen                 | 97.7                                           | 3.89  | 91.8  | 2.58  | 92.3  | 8.79  | n.a.                                           | n.a.  |
| M21 (bixafen-desmethyl) | 1.1                                            | 0.04  | 1.9   | 0.05  | 0.6   | 0.06  | n.a.                                           | n.a.  |

| Metabolite Fraction | Forage (5 d after $2^{nd}$ application) |      | Hay (29 d<br>application | d after 2 <sup>nd</sup><br>on) | Straw (26<br>3 <sup>rd</sup> applic |       | Seeds (26<br>3 <sup>rd</sup> applic |       |
|---------------------|-----------------------------------------|------|--------------------------|--------------------------------|-------------------------------------|-------|-------------------------------------|-------|
|                     | % TRR mg/kg                             |      | % TRR                    | mg/kg                          | % TRR                               | mg/kg | % TRR                               | mg/kg |
| Total identified    | 98.8                                    | 3.93 | 93.7                     | 2.63                           | 92.9                                | 8.84  | n.a.                                | n.a.  |
| Total extracted     | 98.8                                    | 3.93 | 93.7                     | 2.63                           | 92.9                                | 8.84  | 53.0                                | 0.002 |
| Unextracted         | 1.2                                     | 0.05 | 6.3                      | 0.18                           | 7.1                                 | 0.67  | 47.0                                | 0.002 |
| Accountability      | 100.0                                   | 3.98 | 100.0                    | 2.81                           | 100.0                               | 9.52  | 100.0                               | 0.005 |

n.a. = Not analysed

### Wheat

The metabolism of bixafen in <u>wheat</u> (var. Thassos) was investigated by Miebach, D and Bongartz, R (2007, BIXAFEN\_020) after two spray applications with [<u>pyrazole-5-<sup>14</sup>C]-bixafen</u> formulated as an EC 200. The first application with 0.125 kg ai/ha (actual 132 g ai/ha) was performed at the end of tillering / beginning of stem elongation (BBCH 29–31), and the second with 0.15 kg ai/ha (actual 154 g ai/ha) at the end of flowering (BBCH 69). Plants were grown in plastic containers under natural temperature and light conditions in Monheim, Germany. The glass roof of the vegetation area was open during the sunshine periods and was automatically closed during rainfall. Plants were irrigated as needed.

Forage was harvested at growth stage BBCH 38 (9 days after 1<sup>st</sup> application), hay at growth stage BBCH 77 (9 days after 2<sup>nd</sup> application), and straw and grain at maturity (BBCH 89, 50 days after 2<sup>nd</sup> application).

The homogenised samples were extracted three times with a mixture of acetonitrile/water (4/1, v/v) and once with acetonitrile using an Ultra-Turrax homogeniser. The extracts were separated from the solids by suction through a filter. The <sup>14</sup>C-radioactivity of liquid samples was determined by liquid scintillation counting (LSC). The remaining solids were air dried. Solid samples were combusted and the released <sup>14</sup>CO<sub>2</sub> was absorbed in an alkaline scintillation cocktail and radio-assayed by LSC. The TRR of each RAC was determined by summation of the radioactivity in the combined extracts and in the solids.

The corresponding extracts of wheat RAC were combined and concentrated to a volume suitable for HPLC chromatography. Parent compound and metabolites were quantified by HPLC. The TRRs and the quantified amounts of compounds were expressed as mg bixafen-equivalents per kg sample material.

Parent compound in the extracts of straw and grain was identified by LC-MS-spectroscopy. Metabolites in straw and grain were identified by HPLC co-chromatography with radiolabelled reference compounds. Parent compound and metabolites in forage and hay were assigned by comparison of the metabolite patterns obtained for straw and grain.

The TRRs found in the samples collected amounted 1.67 mg eq/kg in forage, 6.57 mg eq/kg in hay, 24.27 mg eq/kg in straw, and 0.162 mg eq/kg in grain. In all samples unchanged bixafen was the major residue being present at levels > 89.5% of the TRR. The only other metabolite present was M21 (bixafen-desmethyl) found at 0.8% to 2.4% of the TRR.

In the samples one further analyte (BYF 00587-4'-deschloro) was identified, which was also found at levels of 1% to 1.3% of the active ingredient in the spray solution, suggesting impurities of the tank-mix used.

An overview of the TRR levels found in the collected samples and the composition of the residue is presented in the following table.

| Compound                                 | Forage (9<br>applicatio |             | Hay (9 d a applicatio |             | Straw (50<br>applicatio | d after 2 <sup>nd</sup><br>n) | Grain (50 d after $2^{nd}$ application) |          |  |
|------------------------------------------|-------------------------|-------------|-----------------------|-------------|-------------------------|-------------------------------|-----------------------------------------|----------|--|
|                                          | % TRR                   | mg<br>eq/kg | % TRR                 | mg<br>eq/kg | % TRR                   | mg eq/kg                      | % TRR                                   | mg eq/kg |  |
| TRR                                      | 100                     | 1.67        | 100                   | 6.57        | 100                     | 24.27                         | 100                                     | 0.162    |  |
| Bixafen                                  | 92.9                    | 1.55        | 91.9                  | 6.04        | 92.6                    | 22.47                         | 89.5                                    | 0.145    |  |
| M21 (bixafen-desmethyl)                  | 0.8                     | 0.01        | 2.3                   | 0.15        | 1.8                     | 0.43                          | 2.4                                     | 0.004    |  |
| Total identified                         | 93.7                    | 1.57        | 94.2                  | 6.19        | 94.4                    | 22.90                         | 91.8                                    | 0.148    |  |
| Total characterised <sup>a</sup>         | 1.6                     | 0.03        | n.d.                  | n.d.        | n.d.                    | n.d.                          | n.d.                                    | n.d.     |  |
| BYF 00587-4'-deschloro <sup>b</sup>      | 3.5                     | 0.06        | 2.2                   | 0.14        | 1.4                     | 0.35                          | 2.0                                     | 0.003    |  |
| Total extractable<br>(combined extracts) | 98.7                    | 1.65        | 96.4                  | 6.33        | 95.8                    | 23.25                         | 93.8                                    | 0.152    |  |
| Unextracted                              | 1.3                     | 0.02        | 3.6                   | 0.24        | 4.2                     | 1.02                          | 6.2                                     | 0.010    |  |

Table 20 Total radioactive residues and their composition after application of [pyrazole- $5^{-14}$ C]-bixafen to wheat

<sup>a</sup> Extracted and characterised by chromatographic behaviour

<sup>b</sup> Impurity in spraying solution

An additional plant metabolism study on wheat (var. Thassos) using [dichlorophenyl-UL- $^{14}C$ ]-bixafen was conducted by Miebach, D and Bongartz, R (2007, BIXAFEN\_021). The active ingredient was formulated as an EC 200. The first application with 0.125 kg ai/ha (actual 128 g ai/ha) was performed at the end of tillering / beginning of stem elongation (BBCH 29–31), and the second with 0.15 kg ai/ha (actual 158 g ai/ha) at the end of flowering (BBCH 69). Plants were grown in plastic containers under natural temperature and light conditions in Monheim, Germany. The glass roof of the vegetation area was open during the sunshine periods and was automatically closed during rainfall. Plants were irrigated as needed.

Forage was harvested at growth stage BBCH 38 (9 days after  $1^{st}$  application), hay at growth stage BBCH 77 (9 days after  $2^{nd}$  application), and straw and grain at maturity (BBCH 89, 50 days after  $2^{nd}$  application).

All samples were analysed according to the procedures described for the wheat metabolism study conducted with [pyrazole- $5^{-14}$ C]-bixafen by Miebach, D and Bongartz, R (2007, BIXAFEN\_020).

The TRRs found in the samples collected amounted 1.57 mg eq/kg in forage, 7.64 mg eq/kg in hay, 22.85 mg eq/kg in straw, and 0.229 mg eq/kg in grain. In all samples unchanged bixafen was the major residue being present at levels > 91.7% of the TRR. The only other metabolite present was M21 (bixafen-desmethyl) found at 0.8% to 2.1% of the TRR.

In the samples one further analyte (BYF 00587-4'-deschloro) was identified, which was also found at levels of 1% to 1.3% of the active ingredient in the spray solution, suggesting impurities of the tank-mix used.

An overview of the TRR levels found in the collected samples and the composition of the residue is presented in the following table.

Table 21 Total radioactive residues and their composition after application of [dichlorophenyl-UL-<sup>14</sup>C]-bixafen to wheat

| Compound                | Forage (9 d after 1 <sup>st</sup> application) |       |       |       |          |       |       | Straw (50 d after 2 <sup>nd</sup> application) |  | d after 2 <sup>nd</sup><br>1) |
|-------------------------|------------------------------------------------|-------|-------|-------|----------|-------|-------|------------------------------------------------|--|-------------------------------|
|                         | % TRR                                          | mg    | % TRR | mg    | % TRR mg |       | % TRR | mg                                             |  |                               |
|                         |                                                | eq/kg |       | eq/kg |          | eq/kg |       | eq/kg                                          |  |                               |
| TRR                     | 100                                            | 1.57  | 100   | 7.64  | 100      | 22.85 | 100   | 0.229                                          |  |                               |
| Bixafen                 | 97.1                                           | 1.53  | 91.7  | 7.01  | 93.2     | 21.29 | 92.9  | 0.213                                          |  |                               |
| M21 (bixafen-desmethyl) | 0.8                                            | 0.01  | 2.1   | 0.16  | 1.7      | 0.39  | 2.1   | 0.005                                          |  |                               |
| Total identified        | 97.9                                           | 1.54  | 93.8  | 7.17  | 94.9     | 21.68 | 95.0  | 0.218                                          |  |                               |

| Compound                                 | Forage (9 d after 1 <sup>st</sup> application) |             |       | Hay (9 d after 2 <sup>nd</sup> Straw (50<br>application) application |       |             | Grain (50<br>application |             |
|------------------------------------------|------------------------------------------------|-------------|-------|----------------------------------------------------------------------|-------|-------------|--------------------------|-------------|
|                                          | % TRR                                          | mg<br>eq/kg | % TRR | mg<br>eq/kg                                                          | % TRR | mg<br>eq/kg | % TRR                    | mg<br>eq/kg |
| BYF 00587-4'-deschloro <sup>a</sup>      | 1.1                                            | 0.02        | 1.7   | 0.13                                                                 | 1.2   | 0.27        | 2.0                      | 0.005       |
| Total extractable<br>(combined extracts) | 99.0                                           | 1.56        | 95.5  | 7.30                                                                 | 96.1  | 21.95       | 97.0                     | 0.222       |
| Unextracted                              | 1.0                                            | 0.02        | 4.5   | 0.34                                                                 | 3.9   | 0.90        | 3.0                      | 0.007       |

<sup>a</sup> Impurity in spraying solution

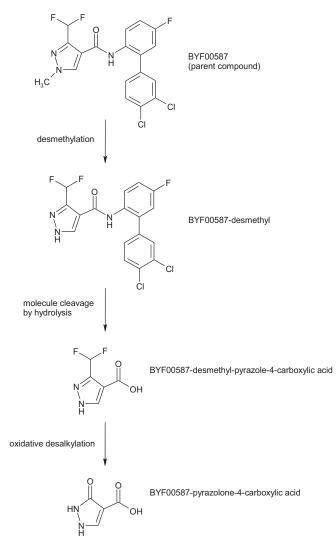



Figure 5 Proposed metabolic pathway of bixafen in plants

# Environmental fate in soil

For the investigation of the environmental fate of bixafen the Meeting received studies on photolysis on soil, the aerobic soil metabolism, the behaviour in confined and field rotational crops and shortand long-term field dissipation studies.

Soil photolysis of bixafen was not observed. In the soil bixafen is highly persistent, showing about 80–90% of the applied dose remaining after 120 days observed in aerobic soil metabolism

studies. The only metabolites found in minor proportions were M44 (BYF 00587-desmethyl-pyrazole-4-carboxylic acid) and M21 (Bixafen-desmethyl), the tautomers M44 & M45 later in soil of below mentioned confined rotational crop studies.

In confined rotational crop studies conducted at rates equivalent to 0.785 and 0.847 kg ai/ha bixafen and M21 (bixafen-desmethyl) were the major residue. After application of the [pyrazole-5-<sup>14</sup>C]-labelled active substance, the labelled cleavage products M43 (BYF 00587-pyrazole-4-carboxamide), M44 (BYF 00587-desmethyl-pyrazole-4-carboxylic acid (tautomer 1)) and M45 (BYF 00587-desmethyl-pyrazole-4-carboxylic acid (tautomer 2)) were also identified as major metabolites.

In field rotational crop studies conducted on four locations in Europe, residues of bixafen and M21 were mostly below the LOQs of 0.01 mg/kg, except for two single detects in wheat straw (0.03 mg/kg total residue) and lettuce of pre-mature growth stage (0.06 mg/kg total residue).

Field dissipation studies confirmed the slow degradation of bixafen in the soil observed in aerobic metabolism studies. Over 5 years of annual treatment the bixafen peak concentrations in soil under field conditions still represented approximately 32–47% of the total dose applied within these years. Most of the residue was present as unchanged parent substance.

### Photolysis on soil

The photodegradation of  $[^{14}C]$  bixafen (pyrazole and dichlorophenyl labels) on the soil surface was investigated under artificial sunlight (Muehmel, T and Fliege, R 2007, BIXAFEN\_022). The two labels of the test item were individually applied to a 3 mm thick layer of soils (see Table ) on glass dishes at a rate equivalent to 0.25 kg ai/ha. The 8 days of irradiation corresponded to about 30 days of midsummer sunlight at Phoenix, Arizona (USA).

The soil moisture was maintained at 75% field capacity at a temperature of 20 °C. Irradiated and dark control samples were taken at a range of intervals during the 8 days irradiation/incubation periods.

|                                      | Dichlorophenyl label test | Pyrazole label test     |
|--------------------------------------|---------------------------|-------------------------|
| Soil ID                              | 'Laacher Hof AXXa'        | 'Laacher Hof Wurmwiese' |
| Texture Class (USDA)                 | Sandy Loam                | Sandy Loam              |
| Sand [ 50 µm–2 mm ]                  | 73%                       | 53%                     |
| Silt [2 μm–50 μm]                    | 20%                       | 28%                     |
| Clay [< 2 μm]                        | 7%                        | 19%                     |
| pH in 0.01 M CaCl <sub>2</sub> (1:1) | 6.2                       | 5.6                     |
| pH in 1 N KCl (1:1)                  | 6.2                       | 5.2                     |
| pH in Water (1:1)                    | 6.6                       | 5.9                     |
| pH in Water (Saturated Paste)        | 6.7                       | 6.0                     |
| Organic Matter [%OM]                 | 4.0%                      | 2.4%                    |
| Organic Carbon [%OC]                 | 2.3%                      | 1.4%                    |
| Soil Microbial Biomass               | day 0, untreated:         | day 0, untreated:       |
| Son Microbial Biomass                | 785 mg C/kg soil          | 550 mg C/kg soil        |
| Cation Exchange                      | 11.4 meg/100 g            | 10.3 meg/100 g          |
| Capacity [CEC]                       | 11.4 meq/100 g            | 10.5 meq/100 g          |
| Water Holding Capacity               | 20.6 g/100 g              | 20.1 g/100 g            |
| at 0.33 bar [1/3 bar WHC]            | 20.0 g/ 100 g             | 20.1 g/ 100 g           |
| Maximum Water Holding                | 55.7 g/100 g              | 59.1 g/100 g            |
| Capacity [MWHC]                      | 55.7 g/100 g              | 57.1 g/100 g            |

Table 22 Soil characteristics used in soil photolysis experiments

In irradiated samples no degradation of bixafen was observed. A summary of the metabolic spectrum of irradiated and dark samples is presented in the following tables.

|                                  | Amour    | nt (% of a | applied ra | dioactivi | ty) at day | s after tre | eatment |       |       |
|----------------------------------|----------|------------|------------|-----------|------------|-------------|---------|-------|-------|
|                                  | irradiat | ted sampl  | les        | dark sa   | samples    |             |         |       |       |
|                                  | 0        | 1          | 2          | 1         | 4          | 8           |         |       |       |
| Bixafen                          | 98.9     | 95.9       | 96.8       | 97.5      | 97.8       | 98.6        |         |       |       |
| Unidentified radioactivity (sum) | 1.9      | 2.7        | 2.8        | 3.0       | 4.4        | 4.3         | 1.8     | 1.5   | 1.6   |
| Greatest single peak             | 0.6      | 0.9        | 0.9        | 1.1       | 1.4        | 1.4         | 0.6     | 0.7   | 0.6   |
| Total extracted residue          | > 99     | 99         | 99         | 98        | 98         | 96          | > 99    | 99    | 99    |
| <sup>14</sup> CO <sub>2</sub>    | n.m.     | n.m.       | n.m.       | n.m.      | n.m.       | 0.4         | n.m.    | n.m.  | 0.1   |
| Volatile organic radioactivity   | n.m.     | n.m.       | n.m.       | n.m.      | n.m.       | < 0.1       | n.m.    | n.m.  | 0.1   |
| Unextracted residue              | 0.1      | 1.2        | 1.3        | 1.7       | 2.0        | 3.3         | 0.6     | 1.0   | 1.5   |
| Total recovery                   | 100.9    | 99.8       | 100.9      | 99.3      | 100.9      | 99.9        | 99.6    | 100.3 | 101.5 |

# Table 23 Photodegradation of [dichlorophenyl-<sup>14</sup>C]-labelled bixafen on soil

n.m. = Not measured

# Table 24 Photodegradation of [pyrazole<sup>-14</sup>C]-labelled bixafen on soil

|                              | Amoun     | t (% of ap       | plied rad | lioactivity) a | at days aft | er treatm | ent           |       |  |  |
|------------------------------|-----------|------------------|-----------|----------------|-------------|-----------|---------------|-------|--|--|
|                              | AXXa (    | AXXa (air dried) |           |                |             |           | riese (moist) |       |  |  |
|                              | irradiate | ed               |           | dark           | irradiat    | ed        |               | dark  |  |  |
|                              | 0         | 4                | 8         | 8              | 0           | 4         | 8             | 8     |  |  |
| Bixafen                      | 99.2      | 94.6             | 89.9      | 98.5           | 98.7        | 94.5      | 92.2          | 96.7  |  |  |
| Unidentified radioact. (sum) | 1.7       | 3.5              | 6.7       | 1.7            | 1.8         | 2.7       | 4.4           | 1.5   |  |  |
| Greatest single peak         | 0.7       | 1.1              | 1.6       | 0.7            | 0.8         | 0.9       | 1.2           | 0.6   |  |  |
| Total extracted residue      | 101       | 99.6             | 99.5      | 100.7          | 100.6       | 99.3      | 99.8          | 100.3 |  |  |
| Unextracted residue          | 0.1       | 0.1 1.5 2.9      |           |                | 0.1         | 2.1       | 3.2           | 2.1   |  |  |
| Total recovery               | 100.0     | 99.6             | 99.5      | 100.7          | 100.6       | 99.3      | 99.8          | 100.3 |  |  |

<sup>14</sup>CO<sub>2</sub> and volatile organic radioactivity not measured

#### Soil metabolism

#### Aerobic soil metabolism

The aerobic soil metabolism of bixafen was investigated in several <u>soil</u> types using [pyrazole]- and [dichlorophenyl]-<sup>14</sup>C-bixafen.

In the study conducted by Sneikus, J and Koehn, D (2005, BIXAFEN\_023) soil samples were extracted several times by shaking at ambient temperature and microwave extraction with acetonitrile/water (80/20, v/v), and the bixafen residues were analysed by TLC. HPLC was used as confirmation method. The identity of the test item was confirmed by co-chromatography using non-labelled reference item. Identification of transformation products was performed by LC/MS/MS.

Table 25 Distribution of radioactive residues after incubation of 0.7 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Laacherhof AXXa" (sandy loam, 55% MWHC, 1.3% OC, pH 6.6)

|                                | Residu | es (% of | applied r | adioactiv | ity) at dag | ys after ti | reatment |       |       |       |
|--------------------------------|--------|----------|-----------|-----------|-------------|-------------|----------|-------|-------|-------|
|                                | 0      | 1        | 3         | 7         | 14          | 21          | 38       | 62    | 90    | 120   |
| Bixafen                        | 94.8   | 96.2     | 93.6      | 93.4      | 95.2        | 92.4        | 93.0     | 91.2  | 90.8  | 89.8  |
| M44 & M45                      | n.d.   | n.d.     | n.d.      | n.d.      | 0.2         | 0.3         | 0.5      | 0.3   | 0.4   | 0.4   |
| Unidentified radioactivity     | < 0.1  | 0.5      | 0.6       | 0.5       | 0.6         | 0.3         | 0.3      | 0.2   | 0.3   | 0.2   |
| Total extracted                | 94.8   | 96.7     | 94.2      | 93.9      | 96.0        | 93.0        | 93.9     | 91.7  | 91.5  | 90.3  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.   | 0.1      | 0.1       | 0.1       | 0.1         | 0.2         | 0.3      | 0.4   | 0.5   | 0.7   |
| Volatile organic radioactivity | n.a.   | < 0.1    | < 0.1     | < 0.1     | < 0.1       | < 0.1       | < 0.1    | < 0.1 | < 0.1 | < 0.1 |
| Unextracted residue            | 5.2    | 5.7      | 6.9       | 6.7       | 6.9         | 6.5         | 8.3      | 7.7   | 8.7   | 8.9   |
| Total recovery                 | 100.0  | 102.5    | 101.2     | 100.7     | 103.0       | 99.6        | 102.4    | 99.8  | 100.8 | 99.9  |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 26 Distribution of radioactive residues after incubation of 0.7 mg/kg [dichlorophenyl]-<sup>14</sup>C-bixafen in soil "Laacherhof AXXa" (sandy loam, 55% MWHC, 1.3% OC, pH 6.6)

|                                | Residu | es (% of a | applied ra | adioactivi | ty) at day | ys after tr | eatment |       |       |       |
|--------------------------------|--------|------------|------------|------------|------------|-------------|---------|-------|-------|-------|
|                                | 0      | 1          | 3          | 7          | 14         | 21          | 38      | 62    | 90    | 120   |
| Bixafen                        | 95.7   | 95.2       | 94.2       | 94.4       | 92.7       | 92.3        | 91.9    | 93.7  | 90.8  | 91.6  |
| Unidentified radioactivity     | < 0.1  | 0.3        | 0.3        | 0.3        | 0.3        | 0.2         | 0.3     | 0.2   | 0.4   | 0.2   |
| Total extracted                | 95.7   | 95.6       | 94.6       | 94.8       | 93.0       | 92.5        | 92.2    | 93.9  | 91.3  | 91.9  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.   | < 0.1      | < 0.1      | < 0.1      | < 0.1      | 0.1         | 0.1     | 0.1   | 0.1   | 0.2   |
| Volatile organic radioactivity | n.a.   | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1       | < 0.1   | < 0.1 | < 0.1 | < 0.1 |
| Unextracted residue            | 4.3    | 5.2        | 6.0        | 6.3        | 6.2        | 5.3         | 7.6     | 7.1   | 8.2   | 9.0   |
| Total recovery                 | 100.0  | 100.8      | 100.6      | 101.1      | 99.2       | 97.9        | 99.9    | 101.1 | 99.6  | 101.1 |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 27 Distribution of radioactive residues after incubation of 0.7 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Laacherhof AIIIa" (silt loam, 55% MWHC, 1.1% OC, pH 6.9)

|                                | Residues (% of applied radioactivity) at days after treatment |       |       |       |       |       |       |       |       |       |  |
|--------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                                | 0                                                             | 1     | 3     | 7     | 14    | 21    | 38    | 62    | 90    | 120   |  |
| Bixafen                        | 94.3                                                          | 95.1  | 94.2  | 92.9  | 88.5  | 90.0  | 89.3  | 88.9  | 87.2  | 86.6  |  |
| M44 & M45                      | n.d.                                                          | n.d.  | n.d.  | n.d.  | 0.6   | 0.9   | 0.8   | 1.5   | 2.1   | 2.9   |  |
| Unidentified radioactivity     | < 0.1                                                         | 0.7   | 0.5   | 0.8   | 0.5   | 0.3   | 0.3   | 0.2   | 0.4   | 0.2   |  |
| Total extracted                | 94.3                                                          | 95.8  | 94.7  | 93.7  | 89.6  | 91.2  | 90.5  | 90.7  | 89.7  | 89.7  |  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.                                                          | 0.1   | 0.1   | 0.1   | 0.2   | 0.2   | 0.1   | 0.4   | 0.6   | 0.8   |  |
| Volatile organic radioactivity | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |  |
| Unextracted residue            | 5.7                                                           | 4.7   | 5.5   | 6.2   | 5.6   | 7.1   | 7.5   | 7.5   | 8.9   | 10.4  |  |
| Total recovery                 | 100.0                                                         | 100.5 | 100.3 | 100.0 | 95.4  | 98.5  | 98.0  | 98.6  | 99.3  | 101.0 |  |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 28 Distribution of radioactive residues after incubation of 0.7 mg/kg [dichlorophenyl]-<sup>14</sup>C-bixafen in soil "Laacherhof AIIIa" (silt loam, 55% MWHC, 1.1% OC, pH 6.9)

|                                | Residues (% of applied radioactivity) at days after treatment |       |       |       |       |       |       |       |       |       |  |
|--------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                                | 0                                                             | 1     | 3     | 7     | 14    | 21    | 38    | 62    | 90    | 120   |  |
| Bixafen                        | 94.2                                                          | 95.8  | 94.4  | 93.9  | 92.4  | 92.6  | 89.8  | 90.8  | 88.7  | 86.4  |  |
| Unidentified radioactivity     | < 0.1                                                         | 0.2   | 0.3   | 0.9   | 0.5   | 0.2   | 0.6   | 0.3   | 0.7   | 0.6   |  |
| Total extracted                | 94.2                                                          | 96.0  | 94.7  | 94.7  | 92.9  | 92.9  | 90.4  | 91.1  | 89.4  | 87.0  |  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | 0.1   | 0.1   | 0.2   | 0.2   | 0.3   | 0.4   |  |
| Volatile organic radioactivity | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |  |
| Unextracted residue            | 5.8                                                           | 4.4   | 5.9   | 6.0   | 6.2   | 7.5   | 9.0   | 8.2   | 9.9   | 12.0  |  |
| Total recovery                 | 100.0                                                         | 100.5 | 100.6 | 100.7 | 99.2  | 100.4 | 99.6  | 99.4  | 99.6  | 99.5  |  |

MWHC = Maximum water holding capacity

OC = organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 29 Distribution of radioactive residues after incubation of 0.7 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Laacherhof Wurmwiese" (loam, 55% MWHC, 2.07% OC, pH 6.0)

|                                | Residues (% of applied radioactivity) at days after treatment |       |       |       |       |       |       |       |       |       |  |
|--------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                                | 0                                                             | 1     | 3     | 7     | 14    | 21    | 38    | 62    | 90    | 120   |  |
| Bixafen                        | 89.2                                                          | 92.9  | 91.1  | 92.1  | 89.8  | 92.6  | 90.3  | 90.3  | 88.0  | 86.8  |  |
| M44 & M45                      | n.d.                                                          | n.d.  | n.d.  | < 0.1 | 0.2   | 0.1   | 0.3   | 0.3   | 0.4   | 0.4   |  |
| Unidentified radioactivity     | 4.6                                                           | 0.5   | 0.4   | 0.4   | 0.3   | 0.3   | 0.6   | 0.3   | 1.4   | 0.6   |  |
| Total extracted                | 93.8                                                          | 93.4  | 91.5  | 92.5  | 90.3  | 93.0  | 91.3  | 90.9  | 89.8  | 87.8  |  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.                                                          | < 0.1 | 0.1   | 0.1   | 0.3   | 0.5   | 0.7   | 1.1   | 1.3   | 1.5   |  |
| Volatile organic radioactivity | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |  |
| Unextracted residue            | 6.2                                                           | 5.3   | 6.5   | 6.2   | 5.3   | 6.6   | 7.9   | 7.0   | 7.6   | 7.7   |  |
| Total recovery                 | 100.0                                                         | 98.7  | 98.1  | 98.8  | 95.9  | 100.1 | 99.9  | 99.1  | 98.7  | 97.0  |  |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 30 Distribution of radioactive residues after incubation of 0.7 mg/kg [dichlorophenyl]-<sup>14</sup>C-bixafen in soil "Laacherhof Wurmwiese" (loam, 55% MWHC, 2.07% OC, pH 6.0)

|                                | Residues (% of applied radioactivity) at days after treatment |       |       |       |       |       |       |       |       |       |  |
|--------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                                | 0                                                             | 1     | 3     | 7     | 14    | 21    | 38    | 62    | 90    | 120   |  |
| Bixafen                        | 94.4                                                          | 93.0  | 90.7  | 92.9  | 90.5  | 90.3  | 89.7  | 87.2  | 88.1  | 87.3  |  |
| Unidentified radioactivity     | 0.4                                                           | 0.2   | 0.2   | 0.3   | 0.2   | 0.3   | 0.5   | 0.3   | 0.9   | 0.6   |  |
| Total extracted                | 94.8                                                          | 93.2  | 90.9  | 93.3  | 90.8  | 90.6  | 90.2  | 87.5  | 89.0  | 88.0  |  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | 0.1   | 0.1   | 0.1   | 0.1   | 0.2   | < 0.1 |  |
| Volatile organic radioactivity | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |  |
| Unextracted residue            | 5.2                                                           | 5.0   | 5.2   | 6.2   | 6.1   | 6.8   | 7.2   | 7.0   | 8.9   | 9.0   |  |
| Total recovery                 | 100.0                                                         | 98.1  | 96.1  | 99.5  | 96.9  | 97.5  | 97.5  | 94.6  | 98.0  | 96.9  |  |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

|                                | Residues (% of applied radioactivity) at days after treatment |       |       |       |       |       |       |       |       |       |  |  |
|--------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                                | 0                                                             | 1     | 3     | 7     | 14    | 21    | 38    | 62    | 90    | 120   |  |  |
| Bixafen                        | 91.2                                                          | 96.4  | 93.3  | 94.2  | 92.2  | 91.1  | 92.3  | 89.8  | 89.3  | 89.1  |  |  |
| M44 & M45                      | n.d.                                                          | n.d.  | n.d.  | < 0.1 | 0.2   | 0.2   | 0.2   | 0.5   | 0.6   | 0.6   |  |  |
| Unidentified radioactivity     | 2.1                                                           | 0.4   | 0.7   | 0.5   | 0.3   | 0.2   | 0.3   | 0.3   | 0.9   | 0.5   |  |  |
| Total extracted                | 93.3                                                          | 96.8  | 94.0  | 94.7  | 92.7  | 91.5  | 92.9  | 90.6  | 90.8  | 90.2  |  |  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.                                                          | < 0.1 | 0.1   | 0.1   | 0.2   | 0.3   | 0.5   | 0.8   | 1.1   | 1.6   |  |  |
| Volatile organic radioactivity | n.a.                                                          | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |  |  |
| Unextracted residue            | 6.7                                                           | 5.6   | 7.1   | 6.9   | 6.7   | 7.0   | 7.6   | 7.7   | 7.9   | 7.5   |  |  |
| Total recovery                 | 100.0                                                         | 102.4 | 101.1 | 101.7 | 99.6  | 98.8  | 101.0 | 99.1  | 99.8  | 99.3  |  |  |

Table 31 Distribution of radioactive residues after incubation of 0.7 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Hoefchen am Hohenseh" (silt loam, 55% MWHC, 2.62% OC, pH 6.7)

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

|                                | Residu | es (% of a | applied ra | adioactivi | ty) at day | vs after tre | eatment |       |       |       |
|--------------------------------|--------|------------|------------|------------|------------|--------------|---------|-------|-------|-------|
|                                | 0      | 1          | 3          | 7          | 14         | 21           | 38      | 62    | 90    | 120   |
| Bixafen                        | 94.5   | 93.6       | 91.0       | 92.1       | 91.1       | 89.9         | 90.7    | 88.5  | 90.8  | 88.7  |
| Unidentified radioactivity     | 0.3    | 0.2        | 0.1        | 0.4        | 0.2        | 0.1          | 0.2     | 0.2   | 0.6   | 0.2   |
| Total extracted                | 94.7   | 93.8       | 91.1       | 92.5       | 91.3       | 90.0         | 90.9    | 88.7  | 91.3  | 89.0  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.   | < 0.1      | < 0.1      | < 0.1      | 0.1        | 0.1          | 0.1     | 0.1   | 0.2   | 0.3   |
| Volatile organic radioactivity | n.a.   | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1        | < 0.1   | < 0.1 | < 0.1 | < 0.1 |
| Unextracted residue            | 5.3    | 5.2        | 6.1        | 6.2        | 6.9        | 6.9          | 7.2     | 7.1   | 8.5   | 9.0   |
| Total recovery                 | 100.0  | 99.1       | 97.2       | 98.7       | 98.3       | 97.0         | 98.2    | 96.0  | 100.1 | 98.3  |

Table 32 Distribution of radioactive residues after incubation of 0.7 mg/kg [dichlorophenyl]-<sup>14</sup>C-bixafen in soil "Hoefchen am Hohenseh" (silt loam, 55% MWHC, 2.62% OC, pH 6.7)

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

In addition to the study presented, De Souza, TJT (2011, BIXAFEN\_024) investigated the aerobic degradation of [pyrazole]-<sup>14</sup>C-bixafen in four Brazilian soils. Microbial viable soil samples were collected freshly from the field and treated with a rate of 0.4909 mg ai/kg soil.

The soils were extracted with methanol/water. The quantification was performed by high pressure liquid chromatography (HPLC) with radioactivity detector. Unextracted residues were determined by combustion. The liberated <sup>14</sup>CO<sub>2</sub> was absorbed in an appropriate scintillation cocktail and measured by LS counting.

Table 33 Distribution of radioactive residues after incubation of 0.49 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Argissolo" (clay, 50% MWHC, 3.0% OC, pH 5.9)

|                                | Residues ( | % of applied | radioactivity | ) at days after | r treatment |        |        |
|--------------------------------|------------|--------------|---------------|-----------------|-------------|--------|--------|
|                                | 0          | 7            | 14            | 28              | 64          | 92     | 120    |
| Bixafen                        | 99.1       | 94.0         | 100.2         | 93.1            | 90.3        | 83.2   | 81.1   |
| M44 & M45                      | n.d.       | n.d.         | n.d.          | 2.8             | 3.1         | 0.53   | 0.86   |
| Total extracted                | 99.1       | 98.3         | 100.2         | 95.9            | 93.4        | 84.2   | 83.5   |
| <sup>14</sup> CO <sub>2</sub>  | n.a.       | 0.2          | 0.6           | 1.3             | 4.4         | 6.3    | 8.2    |
| Volatile organic radioactivity | n.a.       | < 0.13       | < 0.13        | < 0.13          | < 0.13      | < 0.13 | < 0.13 |
| Unextracted residue            | 1.6        | 3.4          | 4.4           | 6.0             | 8.1         | 8.0    | 9.2    |
| Total recovery                 | 100.7      | 101.9        | 105.2         | 103.2           | 105.9       | 98.5   | 100.9  |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

| Table 34 Distribution of radioactive residues after incubation of 0.49 mg/kg [pyrazole]- <sup>14</sup> C-bixafen in |
|---------------------------------------------------------------------------------------------------------------------|
| soil "Latossolo" (clay, 50% MWHC, 1.4% OC, pH 4.9)                                                                  |

|                                | Residues (                        | % of applied | radioactivity) | at days after | treatment |      |      |  |  |  |
|--------------------------------|-----------------------------------|--------------|----------------|---------------|-----------|------|------|--|--|--|
|                                | 0                                 | 7            | 14             | 28            | 64        | 92   | 120  |  |  |  |
| Bixafen                        | 101.7 95.1 97.9 91.4 92.0 92.7 84 |              |                |               |           |      |      |  |  |  |
| M44 & M45                      | n.d.                              | n.d.         | 0.76           | 3.06          | 1.07      | 0.61 | 2.39 |  |  |  |
| Total extracted                | 102.2                             | 97.2         | 98.3           | 93.0          | 92.6      | 96.4 | 90.0 |  |  |  |
| <sup>14</sup> CO <sub>2</sub>  | n.a.                              | < 0.13       | 0.4            | 1.0           | 3.4       | 3.9  | 4.7  |  |  |  |
| Volatile organic radioactivity | n.a.                              | < 0.13       | < 0.13         | < 0.13        | 0.1       | 0.2  | 0.2  |  |  |  |

|                     | Residues (% | 6 of applied | radioactivity) | at days after | treatment |       |       |
|---------------------|-------------|--------------|----------------|---------------|-----------|-------|-------|
|                     | 0           | 7            | 14             | 28            | 64        | 92    | 120   |
| Unextracted residue | 0.9         | 2.0          | 3.6            | 6.0           | 6.6       | 3.3   | 5.4   |
| Total recovery      | 103.0       | 99.2         | 102.3          | 100.0         | 102.7     | 103.8 | 100.2 |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 35 Distribution of radioactive residues after incubation of 0.49 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Neossolo" (clay, 50% MWHC, 0.5% OC, pH 5.6)

|                                                           | Residues ( | % of applied | radioactivity | ) at days afte | r treatment |        |        |
|-----------------------------------------------------------|------------|--------------|---------------|----------------|-------------|--------|--------|
|                                                           | 0          | 7            | 14            | 28             | 64          | 92     | 120    |
| Bixafen                                                   | 107.7      | 108.4        | 103.5         | 101.9          | 96.1        | 92.9   | 92.0   |
| M44 (BYF 00587-desmethyl-<br>pyrazole-4-carboxylic acid ) | n.d.       | n.d.         | n.d.          | n.d.           | 1.16        | 2.84   | 1.25   |
| Total extracted                                           | 107.7      | 109.3        | 103.4         | 101.9          | 97.2        | 95.7   | 95.1   |
| <sup>14</sup> CO <sub>2</sub>                             | n.a.       | < 0.13       | < 0.13        | 0.3            | 1.6         | 1.9    | 2.5    |
| Volatile organic radioactivity                            | n.a.       | < 0.13       | < 0.13        | < 0.13         | < 0.13      | < 0.13 | < 0.13 |
| Unextracted residue                                       | < 0.13     | 0.4          | 0.7           | 1.0            | 2.1         | 2.0    | 3.0    |
| Total recovery                                            | 107.7      | 109.8        | 104.2         | 103.2          | 100.9       | 99.6   | 100.6  |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

Table 36 Distribution of radioactive residues after incubation of 0.49 mg/kg [pyrazole]-<sup>14</sup>C-bixafen in soil "Gleissolo" (clay, 50% MWHC, 5.5% OC, pH 4.4)

|                                | Residues ( | % of applied | radioactivity | ) at days after | r treatment |        |        |
|--------------------------------|------------|--------------|---------------|-----------------|-------------|--------|--------|
|                                | 0          | 7            | 14            | 28              | 64          | 92     | 120    |
| Bixafen                        | 97.9       | 86.6         | 89.2          | 88.9            | 82.8        | 84.0   | 84.0   |
| M44 & M45                      | n.d.       | n.d.         | n.d.          | n.d.            | n.d.        | 0.43   | 0.42   |
| Total extracted                | 97.9       | 92.0         | 89.3          | 88.9            | 82.8        | 84.7   | 85.1   |
| <sup>14</sup> CO <sub>2</sub>  | n.a.       | < 0.13       | < 0.13        | 0.2             | 1.0         | 1.2    | 1.3    |
| Volatile organic radioactivity | n.a.       | < 0.13       | < 0.13        | < 0.13          | < 0.13      | < 0.13 | < 0.13 |
| Unextracted residue            | 3.1        | 5.4          | 5.6           | 8.6             | 8.6         | 10.8   | 10.5   |
| Total recovery                 | 101.1      | 97.4         | 95.0          | 97.6            | 92.4        | 96.7   | 96.9   |

MWHC = Maximum water holding capacity

OC = Organic carbon

n.a. = Not analysed

n.d. = Not detected

A third study investigating the aerobic soil metabolism of bixafen was presented by Menke, U (2008, BIXAFEN\_025). In this study soils (0–15 cm depth) obtained from a confined rotational crop metabolism study involving application of [pyrazole]- and [dichlorophenyl]-<sup>14</sup>C-bixafen at target rates of 0.75 kg ai/ha.

Aliquots of acetonitrile/water extracts were analysed and radioactivity quantified by HPLC ( $_{14}$ C-radio- and UV-detector). The limit of quantification (LOQ) was 0.4% TRR. TLC was used as a method to confirm formation of metabolites. Unextracted residues were determined by combustion followed by LSC and were not characterised further.

|                         | Residues (% | Residues (% of applied radioactivity) at days after treatment |      |      |  |  |  |  |  |  |  |
|-------------------------|-------------|---------------------------------------------------------------|------|------|--|--|--|--|--|--|--|
|                         | 30          | 138                                                           | 285  | 418  |  |  |  |  |  |  |  |
| Bixafen                 | 85.3        | 83.5                                                          | 77.1 | 73.6 |  |  |  |  |  |  |  |
| M21 (bixafen-desmethyl) | 0.5         | 1.2                                                           | 2.2  | 1.9  |  |  |  |  |  |  |  |
| Unidentified            | 2.3         | 1.5                                                           | 1.0  | 0.6  |  |  |  |  |  |  |  |
| Total extracted         | 88.1        | 86.2                                                          | 80.3 | 76.1 |  |  |  |  |  |  |  |
| Unextracted residue     | 4.9         | 7.4                                                           | 9.8  | 15.6 |  |  |  |  |  |  |  |
| Total recovery          | 93.0        | 93.7                                                          | 90.0 | 91.7 |  |  |  |  |  |  |  |

Table 37 Distribution of radioactive residues in soil from rotational crop metabolism studies after application of 0.75 kg ai/ha [pyrazole-<sup>14</sup>C]-bixafen (sandy loam, 38.4% MWHC, 1.36% OC, pH 7.3)

MWHC = Maximum water holding capacity

OC = Organic carbon

Table 38 Distribution of radioactive residues in soil from rotational crop metabolism studies after application of 0.75 kg ai/ha [dichlorophenyl-<sup>14</sup>C]-bixafen (sandy loam, 38.4% MWHC, 1.36% OC, pH 7.3)

|                         | Residues (% c | of applied radioactivity | y) at days after treatme | nt    |
|-------------------------|---------------|--------------------------|--------------------------|-------|
|                         | 30            | 138                      | 285                      | 418   |
| Bixafen                 | 104.9         | 90.7                     | 80.5                     | 84.4  |
| M21 (bixafen-desmethyl) | 0.6           | 1.1                      | 1.6                      | 2.7   |
| Unidentified            | 2.3           | 1.0                      | 0.2                      | 0.4   |
| Total extracted         | 107.7         | 92.8                     | 83.0                     | 81.7  |
| Unextracted residue     | 5.3           | 8.3                      | 10.4                     | 16.7  |
| Total recovery          | 113.0         | 101.1                    | 93.4                     | 104.1 |

MWHC = Maximum water holding capacity

OC = Organic carbon

#### Confined rotational crop studies

The metabolism of [pyrazole-5-<sup>14</sup>C]-bixafen was investigated by Weber, E, Spiegel, K and Koehn, D (2007, BIXAFEN\_029) in the rotational crops wheat, Swiss chard and turnips from three consecutive rotations. The active ingredient was applied uniformly to the soil of a planting container by spray application (day 0) at a rate of 0.785 kg ai/ha. Crops of the first, second and third rotation were sown at day 30, day 138 and day 285. Immature samples investigated were wheat forage and hay. Wheat straw and grain, Swiss chard, turnip leaves and roots were harvested at maturity. Residues in soil were reported in the aerobic metabolism section by Menke, U (2008, BIXAFEN\_025).

The samples were extracted with acetonitrile/water (4/1, v/v) subjected to a clean-up step using a C<sub>18</sub>-SPE cartridge (conventional extraction). For the exhaustive extraction (only conducted for hay and straw), the solids were extracted in a first step with acetonitrile/water (4/1, v/v) and in a second step with acetonitrile/acetic acid (4/1, v/v), both with microwave assistance at increased temperature (80 °C). Each microwave extract was purified using a C<sub>18</sub>-SPE cartridge. The purified fractions were combined, evaporated and the aqueous remainder was partitioned with dichloromethane.

The total radioactivity was determined by LSC (LOQ: 0.01 mg eq/kg, LOD: 0.001–0.009 mg eq/kg based on background noise level). The extracts were analysed by HPLC. Major metabolites were identified by HPLC and TLC co-chromatography using authentic reference compounds. The conventional extract of Swiss chard of the first rotation showed nearly all metabolites of the other RACs and was used to isolate the polar metabolites which were identified by HPLC-MS/MS. The metabolites in all other samples were assigned by comparison of the HPLC profiles.

In the following table the TRR found in plant samples are summarized.

|                                   | TRR (mg e | 'RR (mg eq/kg) |       |        |        |       |       |  |  |  |  |  |  |
|-----------------------------------|-----------|----------------|-------|--------|--------|-------|-------|--|--|--|--|--|--|
|                                   | wheat     |                |       | Swiss  | turnip |       |       |  |  |  |  |  |  |
|                                   | forage    | Hay            | straw | chard  | leaves | roots |       |  |  |  |  |  |  |
| first rotation<br>(PBI 30 days)   | 0.045     | 0.288          | 0.434 | < 0.01 | 0.064  | 0.077 | 0.047 |  |  |  |  |  |  |
| second rotation<br>(PBI 138 days) | 0.058     | 0.176          | 0.337 | < 0.01 | 0.059  | 0.027 | 0.012 |  |  |  |  |  |  |
| third rotation<br>(PBI 285 days   | 0.025     | 0.153          | 0.217 | n.e.   | 0.040  | 0.021 | 0.015 |  |  |  |  |  |  |

Table 39 Total radioactive residues in confined rotational crops (three rotations) after application of [pyrazole-5-<sup>14</sup>C]-bixafen onto soil at a rate of 0.785 kg ai/ha

n.e. = Not extracted

The identification of the radioactive residues revealed the parent substance and seven other metabolites, most of them cleavage products characteristic for the radiolabelled side of the parent molecule. In Table –42 the extracted and identified radioactivity is presented. In wheat grain the TRR was too low for an identification of the residue.

Table 40 Identification and characterisation of radioactive residues in rotational crops  $(1^{st} \text{ rotation}, 30 \text{ d})$  following one soil application of [pyrazole-5-<sup>14</sup>C]-bixafen at a total field rate of 0.785 kg ai/ha

| Metabolite<br>Fraction                              | Wheat<br>(DAT | forage<br>71) | Wheat<br>(DAT | 2           | Wheat<br>(DAT | grain <sup>a</sup><br>138) | Wheat<br>(DAT |             | Swiss<br>(DAT |             | Turnip<br>(DAT | leaves<br>104) | Turnip<br>(DAT |             |
|-----------------------------------------------------|---------------|---------------|---------------|-------------|---------------|----------------------------|---------------|-------------|---------------|-------------|----------------|----------------|----------------|-------------|
|                                                     | %<br>TRR      | mg<br>eq/kg   | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg                | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg    | %<br>TRR       | mg<br>eq/kg |
| TRR                                                 | 100           | 0.045         | 100           | 0.288       | 100           | 0.008                      | 100           | 0.434       | 100           | 0.064       | 100            | 0.077          | 100            | 0.047       |
| Bixafen                                             | 18.5          | 0.008         | 32.3          | 0.093       |               |                            | 22.9          | 0.100       | 25.5          | 0.016       | 36.7           | 0.028          | 59.2           | 0.028       |
| M20                                                 | _             | _             | _             | _           |               |                            | _             | -           | 14.6          | 0.009       | _              | _              | _              | -           |
| M21                                                 | 31.2          | 0.014         | 32.0          | 0.092       |               |                            | 43.6          | 0.189       | -             | -           | 6.2            | 0.005          | 13.9           | 0.007       |
| M42                                                 | 19.8          | 0.009         | -             | -           |               |                            | 2.4           | 0.011       | 1.9           | 0.001       | 8.5            | 0.007          | 4.3            | 0.002       |
| M43                                                 | 11.0          | 0.005         | 7.7           | 0.022       |               |                            | 4.7           | 0.020       | 13.8          | 0.009       | 11.5           | 0.009          | 3.1            | 0.001       |
| M44                                                 | _             | -             | -             | -           |               |                            | 0.3           | 0.001       | 15.2          | 0.010       | 5.3            | 0.004          | -              | -           |
| M45                                                 | 6.8           | 0.003         | -             | -           |               |                            | 3.6           | 0.016       | 22.9          | 0.015       | 3.4            | 0.003          | 3.1            | 0.001       |
| M47                                                 | 5.9           | 0.003         | -             | -           |               |                            | -             | -           | 4.0           | 0.003       | 5.5            | 0.004          | 4.3            | 0.002       |
| Total<br>identified                                 | 93.2          | 0.042         | 72.0          | 0.207       |               |                            | 77.6          | 0.337       | 97.8          | 0.062       | 77.1           | 0.059          | 87.8           | 0.041       |
| Total<br>characterised<br>without<br>identification | _             | _             | 12.5          | 0.036       |               |                            | 7.2           | 0.031       | _             | _           | 20.4           | 0.016          | 10.9           | 0.005       |
| Fractions not analysed                              | _             | -             | 5.5           | 0.016       | 45.6          | 0.004                      | 10.3          | 0.045       | -             | -           | -              | -              | -              | -           |
| Total<br>extracted                                  | 93.2          | 0.042         | 90.1          | 0.259       | 45.6          | 0.004                      | 95.1          | 0.413       | 97.8          | 0.062       | 97.5           | 0.075          | 98.7           | 0.047       |
| Total<br>unextracted                                | 6.8           | 0.003         | 10.0          | 0.029       | 54.4          | 0.004                      | 4.9           | 0.022       | 2.2           | 0.001       | 2.5            | 0.002          | 1.3            | 0.001       |

DAT = Days after treatment

<sup>a</sup> The TRR found in wheat grain was too low for further analysis

| Metabolite<br>Fraction                              | Wheat<br>(DAT | t forage<br>187) | Whea<br>(DAT | 2           | Wheat<br>(DAT | t grain <sup>a</sup><br>285) | Whea<br>(DAT | t straw<br>285) | Swiss<br>(DAT |             | Turnij<br>(DAT | p leaves<br>212) | Turnij<br>(DAT |          |
|-----------------------------------------------------|---------------|------------------|--------------|-------------|---------------|------------------------------|--------------|-----------------|---------------|-------------|----------------|------------------|----------------|----------|
|                                                     | %<br>TRR      | mg<br>eq/kg      | %<br>TRR     | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg                  | %<br>TRR     | mg<br>eq/kg     | %<br>TRR      | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg      | %<br>TRR       | mg eq/kg |
| TRR                                                 | 100           | 0.058            | 100          | 0.176       | 100           | 0.007                        | 100          | 0.337           | 100           | 0.059       | 100            | 0.027            | 100            | 0.012    |
| Bixafen                                             | 18.1          | 0.011            | 11.7         | 0.021       |               |                              | 13.9         | 0.047           | 36.7          | 0.022       | 21.8           | 0.006            | 68.8           | 0.008    |
| M20                                                 | -             | -                | _            | -           |               |                              | -            | -               | 19.8          | 0.012       | _              | -                | _              | -        |
| M21                                                 | 51.0          | 0.030            | 48.7         | 0.086       |               |                              | 62.3         | 0.210           | 3.4           | 0.002       | 6.1            | 0.002            | 19.3           | 0.002    |
| M42                                                 | 2.9           | 0.002            | 7.2          | 0.013       |               |                              | -            | -               | -             | -           | 3.5            | 0.001            | 4.3            | 0.001    |
| M43                                                 | 3.2           | 0.002            | 14.0         | 0.025       |               |                              | 3.5          | 0.012           | 7.1           | 0.004       | 5.6            | 0.002            | _              | -        |
| M44                                                 | -             | -                | _            | _           |               |                              | 2.0          | 0.007           | 19.2          | 0.011       | 36.9           | 0.010            | _              | -        |
| M45                                                 | -             | -                | _            | _           |               |                              | 1.8          | 0.006           | 7.6           | 0.005       | 12.3           | 0.003            | _              | -        |
| M47                                                 | 3.1           | 0.002            | -            | -           |               |                              | -            | -               | 2.6           | 0.002       | 4.8            | 0.001            | 3.0            | < 0.001  |
| Total<br>identified                                 | 78.4          | 0.046            | 81.7         | 0.144       |               |                              | 83.5         | 0.281           | 96.3          | 0.057       | 91.1           | 0.025            | 95.5           | 0.011    |
| Total<br>characterised<br>without<br>identification | 10.3          | 0.006            | 5.0          | 0.009       |               |                              | 1.2          | 0.004           | _             | _           | 4.6            | 0.001            | _              | _        |
| Fractions not analysed                              | _             | _                | 8.4          | 0.015       | 22.2          | 0.001                        | 7.9          | 0.026           | _             | _           | _              | _                | _              | _        |
| Total<br>extracted                                  | 88.7          | 0.052            | 95.1         | 0.167       | 22.2          | 0.001                        | 92.5         | 0.311           | 96.3          | 0.057       | 95.7           | 0.026            | 95.5           | 0.011    |
| Total<br>unextracted                                | 11.3          | 0.007            | 5.0          | 0.009       | 77.8          | 0.005                        | 7.5          | 0.025           | 3.7           | 0.002       | 4.3            | 0.001            | 4.5            | 0.001    |

Table 41 Identification and characterisation of radioactive residues in rotational crops ( $2^{nd}$  rotation, 138 d) following one soil application of [pyrazole-5-<sup>14</sup>C]-bixafen at a total field rate of 0.785 kg ai/ha

DAT = days after treatment

<sup>a</sup> The TRR found in wheat grain was too low for further analysis

| Table 42 Identification and characterisation of radioactive residues in rotational crops (3 <sup>rd</sup> rotation,    |
|------------------------------------------------------------------------------------------------------------------------|
| 285 d) following one soil application of [pyrazole-5- <sup>14</sup> C]-bixafen at a total field rate of 0.785 kg ai/ha |

| 36.1.1         | 1171   | C     | 11.71  | 1     | <b>TT</b> 71 |       | a i     | 1 1   | m ·    | 1     |        |       |
|----------------|--------|-------|--------|-------|--------------|-------|---------|-------|--------|-------|--------|-------|
| Metabolite     | Wheat  | U     | Wheat  | 5     | Wheat        |       | Swiss o |       | Turnip |       | Turnip |       |
| Fraction       | (DAT 3 | 330)  | (DAT 3 | 380)  | (DAT 4       | 118)  | (DAT 3  | 348)  | (DAT 3 | 357)  | (DAT 3 | 357)  |
|                | %      | mg    | %      | mg    | %            | mg    | %       | mg    | %      | mg    | %      | mg    |
|                | TRR    | eq/kg | TRR    | eq/kg | TRR          | eq/kg | TRR     | eq/kg | TRR    | eq/kg | TRR    | eq/kg |
| TRR            | 100    | 0.025 | 100    | 0.153 | 100          | 0.217 | 100     | 0.040 | 100    | 0.021 | 100    | 0.015 |
| Bixafen        | 11.3   | 0.003 | 18.8   | 0.029 | 16.6         | 0.036 | 34.9    | 0.014 | 28.0   | 0.006 | 62.9   | 0.009 |
| M20            | -      | -     | -      | -     | -            | -     | 18.4    | 0.007 | -      | -     | -      | -     |
| M21            | 45.8   | 0.011 | 50.4   | 0.077 | 53.5         | 0.116 | 2.5     | 0.001 | 7.6    | 0.002 | 26.8   | 0.004 |
| M42            | -      | -     | 4.1    | 0.006 | -            | -     | -       | -     | 6.7    | 0.001 | 4.0    | 0.001 |
| M43            | 15.0   | 0.004 | 14.0   | 0.021 | 4.9          | 0.011 | 9.9     | 0.004 | 14.1   | 0.003 | -      | -     |
| M44            | -      | -     | -      | -     | -            | -     | 14.8    | 0.006 | -      | -     | -      | -     |
| M45            | -      | -     | -      | -     | -            | -     | 4.9     | 0.002 | 16.1   | 0.003 | -      | -     |
| M47            | -      | -     | -      | -     | -            | -     | -       | -     | 4.9    | 0.001 | 3.9    | 0.001 |
| Total          | 72.0   | 0.018 | 87.3   | 0.133 | 74.9         | 0.162 | 85.4    | 0.034 | 77.3   | 0.016 | 97.6   | 0.014 |
| identified     |        |       |        |       |              |       |         |       |        |       |        |       |
| Total          | 16.9   | 0.004 | -      | -     | 13.9         | 0.030 | 9.0     | 0.004 | 19.0   | 0.004 | -      | -     |
| characterised  |        |       |        |       |              |       |         |       |        |       |        |       |
| without        |        |       |        |       |              |       |         |       |        |       |        |       |
| identification |        |       |        |       |              |       |         |       |        |       |        |       |
| Fractions not  | -      | _     | 7.0    | 0.011 | 7.0          | 0.015 | -       | -     | —      | -     | -      | -     |
| analysed       |        |       |        |       |              |       |         |       |        |       |        |       |

| Metabolite<br>Fraction | Wheat<br>(DAT 3 | 0           | Wheat (DAT 3 | 2           | Wheat straw<br>(DAT 418) |             | Swiss chard<br>(DAT 348) |             | Turnip leaves<br>(DAT 357) |             | Turnip<br>(DAT 3 |             |
|------------------------|-----------------|-------------|--------------|-------------|--------------------------|-------------|--------------------------|-------------|----------------------------|-------------|------------------|-------------|
|                        | %<br>TRR        | mg<br>eq/kg | %<br>TRR     | mg<br>eq/kg | %<br>TRR                 | mg<br>eq/kg | %<br>TRR                 | mg<br>eq/kg | %<br>TRR                   | mg<br>eq/kg | %<br>TRR         | mg<br>eq/kg |
| Total<br>extracted     | 88.9            | 0.022       | 94.3         | 0.144       | 95.8                     | 0.208       | 94.4                     | 0.038       | 96.3                       | 0.020       | 97.6             | 0.014       |
| Total<br>unextracted   | 11.1            | 0.003       | 5.7          | 0.009       | 4.2                      | 0.009       | 5.6                      | 0.002       | 3.7                        | 0.001       | 2.4              | < 0.001     |

DAT = Days after treatment

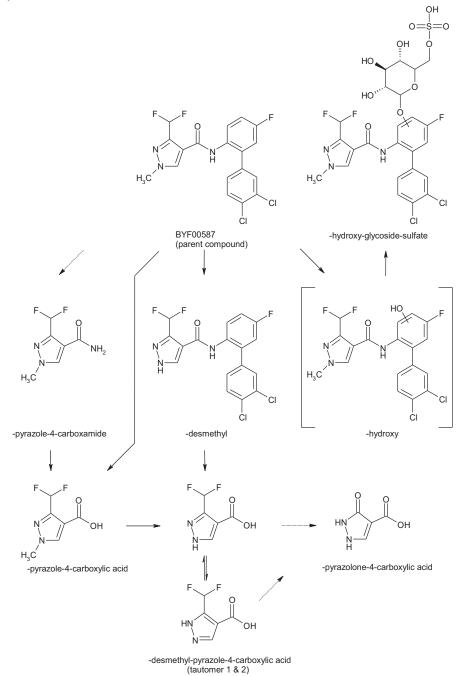



Figure 6 Proposed metabolic pathway of bixafen in rotational crops following application of [pyrazole- $5^{-14}$ C]-bixafen

For [dichlorophenyl-UL-<sup>14</sup>C]-bixafen the metabolism was investigated in the rotational crops wheat, Swiss chard and turnips from three consecutive rotations by Kuhnke, G, Weber, E., and Koehn, D (2007, BIXAFEN\_028). The active ingredient was applied uniformly to the soil of a planting container by spray application (day 0) at a rate of 847 g ai/ha. Crops of the first, second and third rotation were sown at day 30, day 138 and day 285. Immature samples investigated were wheat forage and hay. Wheat straw and grain, Swiss chard, turnip leaves and roots were harvested at maturity. No residues in soil were reported.

The samples were extracted with acetonitrile/water (4/1, v/v) subjected to a clean-up step using a  $C_{18}$ -SPE cartridge (conventional extraction). For the exhaustive extraction (only conducted for hay and straw), the solids were extracted in a first step with acetonitrile/water (4/1, v/v) and in a second step with acetonitrile/acetic acid (4/1, v/v), both with microwave assistance at increased temperature (80 °C). Each microwave extract was purified using a  $C_{18}$ -SPE cartridge. The purified fractions were combined, evaporated and the aqueous remainder was partitioned with dichloromethane.

The total radioactivity was determined by LSC (LOQ: 0.01 mg eq/kg, LOD: 0.001–0.009 mg eq/kg based on background noise level). The extracts were analysed by HPLC. Major metabolites were identified by HPLC and TLC co-chromatography using authentic reference compounds.

In the following table the TRR found in plant samples are summarized:

Table 43 Total radioactive residues in confined rotational crops (three rotations) after application of [dichlorophenyl-UL- $^{14}$ C]-bixafen at a total field rate of 0.847 kg ai/ha

|                                   | TRR (mg e | eq/kg)             |       |       |       |        |       |  |  |  |  |  |  |
|-----------------------------------|-----------|--------------------|-------|-------|-------|--------|-------|--|--|--|--|--|--|
|                                   | wheat     | vheat Swiss turnip |       |       |       |        |       |  |  |  |  |  |  |
|                                   | forage    | Hay                | straw | grain | chard | leaves | roots |  |  |  |  |  |  |
| first rotation<br>(PBI 30 days)   | 0.020     | 0.195              | 0.492 | 0.001 | 0.033 | 0.025  | 0.033 |  |  |  |  |  |  |
| second rotation<br>(PBI 138 days) | 0.035     | 0.193              | 0.269 | 0.002 | 0.041 | 0.013  | 0.012 |  |  |  |  |  |  |
| third rotation<br>(PBI 285 days)  | 0.013     | 0.129              | 0.241 | n.a.  | 0.027 | 0.007  | 0.011 |  |  |  |  |  |  |

n.a. = Not analysed

The identification of the radioactive residues revealed the parent substance, M20 (BYF 00587-hydroxy-glycoside-sulfate) and M21 (bixafen-desmethyl) as major metabolites. Further degradation or breakdown products were not identified. In Table –46 the extracted and identified radioactivity is presented. In wheat grain the TRR was too low for an identification of the residue.

Table 44 Identification and characterisation of radioactive residues in rotational crops (1st rotation, 30 d) following one soil application of [dichlorophenyl-UL-14C]-bixafen at a total field rate of 0.847 kg ai/ha

| Metabolite<br>Fraction                              | Wheat<br>(DAT | forage<br>70) | Wheat<br>(DAT) | 2           | Wheat<br>(DAT | 0           | Wheat<br>(DAT |             | Swiss<br>(DAT |             | Turnip<br>(DAT | leaves 103) | Turnip<br>(DAT |             |
|-----------------------------------------------------|---------------|---------------|----------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|----------------|-------------|----------------|-------------|
|                                                     | %<br>TRR      | mg<br>eq/kg   | %<br>TRR       | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg |
| TRR                                                 | 100           | 0.020         | 100            | 0.195       | 100           | 0.001       | 100           | 0.492       | 100           | 0.033       | 100            | 0.025       | 100            | 0.033       |
| Bixafen                                             | 27.0          | 0.006         | 43.0           | 0.084       |               |             | 36.9          | 0.181       | 70.5          | 0.023       | 62.7           | 0.016       | 77.8           | 0.026       |
| M20                                                 | -             | -             | -              | -           |               |             | -             | -           | 27.6          | 0.009       | -              | -           | -              | -           |
| M21                                                 | 61.7          | 0.013         | 45.4           | 0.089       |               |             | 57.2          | 0.281       | -             | -           | 20.4           | 0.005       | 20.3           | 0.007       |
| Total identified                                    | 88.7          | 0.018         | 88.4           | 0.172       |               |             | 94.1          | 0.462       | 70.5          | 0.032       | 83.1           | 0.021       | 98.2           | 0.033       |
| Total<br>characterised<br>without<br>identification | -             | -             | -              | _           |               |             | _             | -           | _             | -           | 12.6           | 0.003       | -              | -           |
| Fractions not                                       | —             | -             | 4.4            | 0.009       | 39.5          | < 0.001     | 1.3           | 0.006       | -             | -           | -              | -           | —              | -           |

| Metabolite<br>Fraction | Wheat<br>(DAT | forage<br>70) | Wheat<br>(DAT) | 2           | Wheat<br>(DAT |             | Wheat<br>(DAT |             | Swiss<br>(DAT |             | Turnip<br>(DAT | leaves 103) | Turnip<br>(DAT |             |
|------------------------|---------------|---------------|----------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|----------------|-------------|----------------|-------------|
|                        | %<br>TRR      | mg<br>eq/kg   | %<br>TRR       | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg |
| analysed               |               |               |                |             |               |             |               |             |               |             |                |             |                |             |
| Total<br>extracted     | 88.7          | 0.018         | 92.8           | 0.181       | 39.5          | < 0.001     | 95.3          | 0.469       | 98.1          | 0.032       | 95.7           | 0.024       | 98.2           | 0.033       |
| Total<br>unextracted   | 11.3          | 0.002         | 7.2            | 0.014       | 60.5          | 0.001       | 4.7           | 0.023       | 1.9           | 0.001       | 4.3            | 0.001       | 1.8            | 0.001       |

DAT = Days after treatment

<sup>a</sup> The TRR found in wheat grain was too low for further analysis

Table 45 Identification and characterisation of radioactive residues in rotational crops  $(2^{nd} \text{ rotation}, 138 \text{ d})$  following one soil application of [dichlorophenyl-UL-<sup>14</sup>C]-bixafen at a total field rate of 0.847 kg ai/ha

| Metabolite<br>Fraction                              | Wheat<br>(DAT | t forage<br>186) | Wheat<br>(DAT | 2           | Wheat<br>(DAT | t grain <sup>a</sup><br>284) | Whea<br>(DAT | t straw<br>284) | Swiss<br>(DAT |             | Turnij<br>(DAT |             | Turnip ro<br>(DAT 21 |             |
|-----------------------------------------------------|---------------|------------------|---------------|-------------|---------------|------------------------------|--------------|-----------------|---------------|-------------|----------------|-------------|----------------------|-------------|
|                                                     | %<br>TRR      | mg<br>eq/kg      | %<br>TRR      | mg<br>eq/kg | %<br>TRR      | mg eq/kg                     | %<br>TRR     | mg<br>eq/kg     | %<br>TRR      | mg<br>eq/kg | %<br>TRR       | mg<br>eq/kg | % TRR                | mg<br>eq/kg |
| TRR                                                 | 100           | 0.035            | 100           | 0.193       | 100           | 0.002                        | 100          | 0.269           | 100           | 0.041       | 100            | 0.013       | 100                  | 0.012       |
| Bixafen                                             | 20.7          | 0.007            | 37.8          | 0.073       |               |                              | 13.8         | 0.037           | 51.7          | 0.021       | 41.9           | 0.005       | 74.9                 | 0.009       |
| M20                                                 | -             | -                | -             | -           |               |                              | -            | -               | 38.3          | 0.016       | -              | -           | -                    | —           |
| M21                                                 | 61.9          | 0.022            | 55.3          | 0.107       |               |                              | 72.1         | 0.194           | 5.0           | 0.002       | 14.6           | 0.002       | 21.2                 | 0.003       |
| Total identified                                    | 82.7          | 0.029            | 93.1          | 0.180       |               |                              | 85.9         | 0.231           | 95.0          | 0.039       | 56.5           | 0.007       | 96.1                 | 0.012       |
| Total<br>characterised<br>without<br>identification | -             | -                | 1.9           | 0.004       |               |                              | 5.8          | 0.016           | _             | -           | 33.6           | 0.004       | -                    | _           |
| Fractions not analysed                              | _             | -                | 1.9           | 0.004       | 10.7          | < 0.001                      | 5.8          | 0.016           | _             | _           | _              | -           | _                    | _           |
| Total<br>extracted                                  | 82.7          | 0.029            | 95.1          | 0.184       | 10.7          | < 0.001                      | 91.7         | 0.247           | 95.0          | 0.039       | 90.0           | 0.012       | 96.1                 | 0.012       |
| Total<br>unextracted                                | 17.3          | 0.006            | 4.9           | 0.010       | 89.3          | 0.001                        | 8.4          | 0.023           | 5.0           | 0.002       | 10.0           | 0.001       | 3.9                  | < 0.001     |

DAT = Days after treatment

<sup>a</sup> The TRR found in wheat grain was too low for further analysis

| Table 46 Identification and characterisation of radioactive residues in rotational crops (3 <sup>rd</sup> rotation, |
|---------------------------------------------------------------------------------------------------------------------|
| 285 d) following one soil application of [dichlorophenyl-UL- <sup>14</sup> C]-bixafen at a total field rate of      |
| 0.847 kg ai/ha                                                                                                      |

| Metabolite<br>Fraction | Wheat f<br>(DAT 3 | 0     | Wheat I<br>(DAT 3 | 2     | Wheat s<br>(DAT 4 |       | Swiss cl<br>(DAT 3 |       | Turnip l<br>(DAT 3 |         | Turnip I<br>(DAT 3 |         |
|------------------------|-------------------|-------|-------------------|-------|-------------------|-------|--------------------|-------|--------------------|---------|--------------------|---------|
|                        | % TRR             | mg    | % TRR             | mg    | % TRR             | mg    | % TRR              | mg    | % TRR              | mg      | % TRR              | mg      |
|                        |                   | eq/kg |                   | eq/kg |                   | eq/kg |                    | eq/kg |                    | eq/kg   |                    | eq/kg   |
| TRR                    | 100               | 0.013 | 100               | 0.129 | 100               | 0.241 | 100                | 0.027 | 100                | 0.007   | 100                | 0.011   |
| Bixafen                | 17.2              | 0.002 | 32.8              | 0.042 | 22.0              | 0.053 | 56.4               | 0.015 | 59.3               | 0.004   | 72.7               | 0.008   |
| M20                    | -                 | -     | -                 | -     | -                 | -     | 24.7               | 0.007 | -                  | _       | -                  | -       |
| M21                    | 65.9              | 0.009 | 58.2              | 0.075 | 72.8              | 0.175 | 3.1                | 0.001 | 18.1               | 0.001   | 24.2               | 0.003   |
| Total identified       | 83.1              | 0.011 | 90.9              | 0.117 | 94.8              | 0.228 | 84.3               | 0.022 | 77.3               | 0.006   | 96.9               | 0.011   |
| Total                  | -                 | -     | 2.5               | 0.003 | 1.5               | 0.004 | 10.7               | 0.003 | 17.1               | 0.001   | -                  | -       |
| characterised          |                   |       |                   |       |                   |       |                    |       |                    |         |                    |         |
| without                |                   |       |                   |       |                   |       |                    |       |                    |         |                    |         |
| identification         |                   |       |                   |       |                   |       |                    |       |                    |         |                    |         |
| Fractions not          | -                 | -     | 2.5               | 0.003 | 1.5               | 0.004 | -                  | -     | -                  | -       | -                  | -       |
| analysed               |                   |       |                   |       |                   |       |                    |       |                    |         |                    |         |
| Total extracted        | 83.1              | 0.011 | 93.5              | 0.121 | 96.3              | 0.232 | 95.0               | 0.025 | 94.4               | 0.007   | 96.9               | 0.011   |
| Total                  | 16.9              | 0.002 | 6.5               | 0.009 | 3.7               | 0.009 | 5.0                | 0.001 | 5.6                | < 0.001 | 3.1                | < 0.001 |

| Metabolite  | Wheat f |       |        | Wheat s | traw   | Swiss cl | nard    | Turnip l | eaves  | Turnip 1 | roots  |       |
|-------------|---------|-------|--------|---------|--------|----------|---------|----------|--------|----------|--------|-------|
| Fraction    | (DAT 3  | 29)   | (DAT 3 | 79)     | (DAT 4 | 17)      | (DAT 3- | 47)      | (DAT 3 | 56)      | (DAT 3 | 56)   |
|             | % TRR   | mg    | % TRR  | mg      | % TRR  | mg       | % TRR   | mg       | % TRR  | mg       | % TRR  | mg    |
|             |         | eq/kg |        | eq/kg   |        | eq/kg    |         | eq/kg    |        | eq/kg    |        | eq/kg |
| unextracted |         |       |        |         |        |          |         |          |        |          |        |       |

DAT = Days after treatment

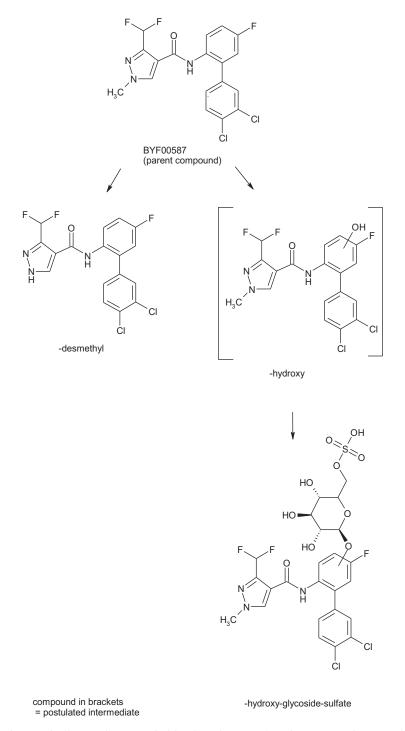



Figure 7 Proposed metabolic pathway of bixafen in rotational crops after application of [dichlorophenyl-UL- $^{14}$ C]-bixafen

## Field crop rotation studies

Four rotational crop studies (limited field studies) were carried out on bixafen during the 2006 and 2007 season. Two studies were performed in Germany and one study each in northern France and Spain.

For investigation of the residue levels that may arise in succeeding crops after a short plant back interval simulating crop failure (30 days), the bixafen was applied once as a spray application at a rate of 0.281 kg ai/ha to bare soil. For longer rotations split spray applications to barley as primary crops were carried out. At all locations, the first spray application on barley was performed at a rate of 0.156 kg ai/ha at growth stage of BBCH 47 ("flag leaf sheath opening"). The second application was carried out at a rate of 0.125 kg ai/ha at growth stage BBCH 69 ("end of flowering"). The grain was harvested normally and the straw was left on the field and ploughed. Until plating/sowing of succeeding crops, no other crop was cultivated.

In all plots turnips/carrots, lettuce and wheat were planted as succeeding crops with plant back intervals of 30, 60-180 and 270-365 days.

In the following table an overview of the studies, involved plots and cultivated crops is presented.

| Study Report, Location, Reference                   | Succeeding crop, plant  | back interval         |                     |
|-----------------------------------------------------|-------------------------|-----------------------|---------------------|
| Rotation 1: 0.281 kg ai/ha to bare soil             |                         |                       |                     |
| RA-2143/06, Northern France, Fresnoy les Roye,      | Turnip, 30 days         | Lettuce, 30 days      | Wheat, 30 days      |
| Schoening, R and Erler, S (2008,                    | 17 5                    |                       | , ,                 |
| BIXAFEN 031)                                        |                         |                       |                     |
| RA-2145/06, Spain, Llorona,                         | Carrot, 32 days         | Lettuce, 32 days      | Wheat, 32 days      |
| Schoening, R and Erler, S (2008,                    |                         |                       |                     |
| BIXAFEN 033)                                        |                         |                       |                     |
| RA-2144/06, Germany, Monheim,                       | Turnip, 30 days         | Lettuce, 27 days      | Wheat, 28 days      |
| Schoening, R and Erler, S (2008,                    |                         |                       |                     |
| BIXAFEN 032)                                        |                         |                       |                     |
| RA-2139/06, Germany, Burscheid,                     | Turnip, 30 days         | Lettuce, 27 days      | Wheat, 30 days      |
| Schoening, R and Erler, S (2008,                    |                         |                       | -                   |
| BIXAFEN 030)                                        |                         |                       |                     |
| Rotation 2: primary crop: barley; 0.156 kg ai/ha at | BBCH 47 plus 0.125 kg a | ii/ha at BBCH 69 (RA- | 2145/06 at BBCH 71) |
| RA-2143/06, Northern France, Fresnoy les Roye,      | Turnip/carrot, 60 days  | Lettuce, 60 days      | Wheat, 120 days     |
| Schoening, R and Erler, S (2008,                    |                         |                       |                     |
| BIXAFEN_031)                                        |                         |                       |                     |
| RA-2145/06, Spain, Llorona,                         | Turnip/carrot, 70 days  | Lettuce, 70 days      | Wheat, 184 days     |
| Schoening, R and Erler, S (2008,                    |                         |                       |                     |
| BIXAFEN_033)                                        |                         |                       |                     |
| RA-2144/06, Germany, Monheim,                       | Turnip/carrot, 60 days  | Lettuce, 60 days      | Wheat, 136 days     |
| Schoening, R and Erler, S (2008,                    |                         |                       |                     |
| BIXAFEN_032)                                        |                         |                       |                     |
| RA-2139/06, Germany, Burscheid,                     | Turnip/carrot, 61 days  | Lettuce, 61 days      | Wheat, 140 days     |
| Schoening, R and Erler, S (2008,                    |                         |                       |                     |
| BIXAFEN_030)                                        |                         |                       |                     |
| Rotation 3: primary crop: barley; 0.156 kg ai/ha at |                         | i/ha at BBCH 69 (RA-  | 2145/06 at BBCH 71) |
| RA-2143/06, Northern France, Fresnoy les Roye,      | Turnip/carrot, 331      | Lettuce, 298 days     | Wheat, 298 days     |
| Schoening, R and Erler, S (2008,                    | days                    |                       |                     |
| BIXAFEN_031)                                        |                         |                       |                     |
| RA-2145/06, Spain, Llorona,                         | Turnip/carrot, 302      | Lettuce, 302 days     | Wheat, 278 days     |
| Schoening, R and Erler, S (2008,                    | days                    |                       |                     |
| BIXAFEN_033)                                        |                         |                       |                     |
| RA-2144/06, Germany, Monheim,                       | not sampled—            | Lettuce, 331 days     | Wheat, 304 days     |
| Schoening, R and Erler, S (2008,                    | damaged by animals      |                       |                     |
| BIXAFEN_032)                                        |                         |                       |                     |
| RA-2139/06, Germany, Burscheid,                     | Turnip/carrot, 314      | Lettuce, 328 days     | Wheat, 300 days     |
| Schoening, R and Erler, S (2008,                    | days                    |                       |                     |
| BIXAFEN_030)                                        |                         |                       |                     |

Table 47 Overview of field crop rotation studies for bixafen

Sampling was done as follows: Samples of lettuce, turnip body and leaf (northern Europe) or carrot root and leaf (southern Europe) were taken 14 days prior to harvest date and at commercial harvest following all plant back-intervals. Wheat green material was sampled at growth stage BBCH 29/30, while samples of grain and straw were collected at full maturity of the crop (BBCH 89) from all rotations.

Samples of plant material were analysed for bixafen and M21 (bixafen-desmethyl) using method no. 01012 (see analytical methods).

In nearly all samples collected not residues of bixafen or its metabolite M21 (bixafendesmethyl) above the LOQ of 0.01 mg/kg for each analyte were found. The only exceptions were residues 0.05 mg/kg for bixafen in lettuce (early growth stage, BBCH 46) grown in Burscheid, Germany (1<sup>st</sup> rotation, sampled 60 days after treatment) and of 0.02 mg/kg for M21 in wheat straw grown Llorona, Spain (1<sup>st</sup> rotation, sampled 262 days after treatment). In the following table a summary of all residue data is presented:

| Rotation        | Crop, variety                              | Treatment                                        | Portion analysed         | DALT<br>(d)              | Bixafen<br>(mg/kg)                   | M21<br>(mg/kg)                       | Total<br>(mg/kg)                               |
|-----------------|--------------------------------------------|--------------------------------------------------|--------------------------|--------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|
| RA-2143/0       | 6, Northern France, Fresnoy les            | Roye, Schoening,                                 | R and Erler, S           | (2008, BIX               | AFEN_031)                            |                                      |                                                |
| 1 <sup>st</sup> | Turnip,<br>BI.6I Collet Violet             | 1 ×<br>0.281 kg ai/ha                            | leaf                     | 78<br>93                 | < 0.01<br>< 0.01                     | < 0.01<br>< 0.01                     | < 0.02<br>< 0.02                               |
|                 |                                            |                                                  | body                     | 78<br>93                 | < 0.01<br>< 0.01                     | < 0.01<br>< 0.01                     | < 0.02<br>< 0.02                               |
|                 | Lettuce,<br>Beurre-Hardy                   |                                                  | head                     | 61<br>75                 | < 0.01<br>< 0.01                     | < 0.01<br>< 0.01                     | < 0.02<br>< 0.02                               |
|                 | Winter wheat,<br>Perfector                 |                                                  | forage<br>straw<br>grain | 204<br>336<br>336        | < 0.01<br>< 0.01<br>< 0.01           | <0.01<br><0.01<br><0.01              | <0.02<br><0.02<br><0.02                        |
| 2 <sup>nd</sup> | Turnip,<br>Collet Violett                  | 1 ×<br>0.156 kg ai/ha +<br>1 ×                   | leaf                     | 111<br>125<br>111        | <0.01<br><0.01<br><0.01              | <0.01<br><0.01<br><0.01              | <0.02<br><0.02<br><0.02<br><0.02               |
|                 | Lettuce,                                   | 0.125 kg ai/ha                                   | body<br>head             | 111<br>125<br>90         | < 0.01<br>< 0.01<br>< 0.01           | < 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02                     |
|                 | Beurre Hardy, Butterhead<br>variety        |                                                  | neau                     | 90<br>104                | < 0.01                               | < 0.01                               | < 0.02                                         |
|                 | Winter wheat,<br>Isengrain                 |                                                  | forage<br>straw<br>grain | 293<br>419<br>419        | < 0.01<br>< 0.01<br>< 0.01           | < 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02                     |
| 3 <sup>rd</sup> | Turnip,<br>Collet Violett                  | 1 ×<br>0.156 kg ai/ha +<br>1 ×<br>0.125 kg ai/ha | leaf<br>body             | 406<br>421<br>406<br>421 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 |
|                 | Lettuce,<br>Madras, Loose leaf             | 0.125 kg u/nu                                    | head                     | 344<br>358               | < 0.01<br>< 0.01                     | < 0.01<br>< 0.01                     | < 0.02<br>< 0.02                               |
|                 | Spring wheat,<br>Lona                      |                                                  | grain<br>straw           | 453<br>453               | < 0.01<br>< 0.01                     | < 0.01<br>< 0.01                     | < 0.02<br>< 0.02                               |
| RA-2145/0       | 6, Spain, Llorona, Schoening, F            | and Erler, S (2008) $1 \times$                   | -                        |                          | < 0.01                               | < 0.01                               | < 0.02                                         |
| 1               | Carrot,<br>Touchon                         | 0.281 kg ai/ha                                   | leaf<br>body             | 179<br>193<br>179<br>193 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 |
|                 | Lettuce,<br>Batavia,<br>Butterhead variety |                                                  | head                     | 70<br>83                 | < 0.01<br>< 0.01                     | < 0.01<br>< 0.01                     | < 0.02<br>< 0.02                               |
|                 | Winter wheat                               |                                                  | forage<br>straw<br>grain | 155<br>262<br>262        | < 0.01<br>< 0.01<br>< 0.01           | < 0.01<br>0.02<br>< 0.01             | <0.02<br>0.03<br><0.02                         |
| 2 <sup>nd</sup> | Carrot                                     | 1 ×<br>0.156 kg ai/ha +<br>1 ×                   | leaf<br>body             | 173<br>187<br>173        | < 0.01<br>< 0.01<br>< 0.01           | < 0.01<br>< 0.01<br>< 0.01           | <0.02<br><0.02<br><0.02                        |
|                 |                                            | 0.125 kg ai/ha                                   | J                        | 187                      | < 0.01                               | < 0.01                               | < 0.02                                         |

| Rotation        | Crop, variety             | Treatment                | Portion     | DALT       | Bixafen          | M21              | Total            |
|-----------------|---------------------------|--------------------------|-------------|------------|------------------|------------------|------------------|
| Rotation        | Crop, variety             | Treatment                | analysed    | (d)        | (mg/kg)          | (mg/kg)          | (mg/kg)          |
|                 |                           |                          | anarysed    | (u)        | (IIIg/Kg)        | (iiig/kg)        | (ing/kg)         |
|                 | Lettuce                   |                          | head        | 97         | < 0.01           | < 0.01           | < 0.02           |
|                 | Lettuce                   |                          | neau        | 110        | < 0.01           | < 0.01           | < 0.02           |
|                 | Winter wheat              |                          | forage      | 307        | < 0.01           | < 0.01           | < 0.02           |
|                 | Whiter Wheat              |                          | straw       | 394        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          | grain       | 394        | < 0.01           | < 0.01           | < 0.02           |
| 3 <sup>rd</sup> | Carrot                    | 1 ×                      | leaf        | 421        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 0.156 kg ai/ha +         |             | 435        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 1 ×                      | body        | 421        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 0.125 kg ai/ha           |             | 435        | < 0.01           | < 0.01           | < 0.02           |
|                 | Lettuce                   |                          | head        | 358        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          |             | 371        | < 0.01           | < 0.01           | < 0.02           |
|                 | Winter wheat              |                          | forage      | 371        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          | straw       | 442        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          | grain       | 442        | < 0.01           | < 0.01           | < 0.02           |
|                 | 6, Germany, Monheim, Sc   |                          | 1           |            | -                | -                |                  |
| 1 <sup>st</sup> | Turnip,                   | 1 ×                      | leaf        | 86         | < 0.01           | < 0.01           | < 0.02           |
|                 | Rondo                     | 0.281 kg ai/ha           |             | 100        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          | body        | 86         | < 0.01           | < 0.01           | < 0.02           |
|                 | T. U                      |                          | 1 .         | 100        | < 0.01           | < 0.01           | < 0.02           |
|                 | Lettuce                   |                          | head        | 59         | < 0.01           | < 0.01           | < 0.02           |
|                 | TT7' / *                  |                          | 6           | 73         | < 0.01           | < 0.01           | < 0.02           |
|                 | Winter wheat,             |                          | forage      | 216        | < 0.01           | < 0.01           | < 0.02           |
|                 | Skater                    |                          | straw       | 304        | < 0.01           | < 0.01           | < 0.02           |
| 2 <sup>nd</sup> |                           | 1                        | grain       | 304        | < 0.01           | < 0.01           | < 0.02           |
| 214             | Turnip,                   | 1 ×                      | leaf        | 122        | < 0.01           | < 0.01           | < 0.02           |
|                 | Rondo                     | 0.156 kg ai/ha +<br>1 ×  | body        | 136<br>122 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.02<br>< 0.02 |
|                 |                           | 0.125 kg ai/ha           | body        | 122        | < 0.01           | < 0.01           | < 0.02           |
|                 | Lettuce,                  | 0.125 Kg al/lia          | head        | 94         | < 0.01           | < 0.01           | < 0.02           |
|                 | Gisela                    |                          | neau        | 108        | < 0.01           | < 0.01           | < 0.02           |
|                 | Winter wheat,             |                          | forage      | 324        | < 0.01           | < 0.01           | < 0.02           |
|                 | Skater                    |                          | straw       | 412        | < 0.01           | < 0.01           | < 0.02           |
|                 | Shuter                    |                          | grain       | 412        | < 0.01           | < 0.01           | < 0.02           |
| 3 <sup>rd</sup> | Lettuce,                  | 1 ×                      | head        | 354        | < 0.01           | < 0.01           | < 0.02           |
| 5               | Gisela                    | 0.156 kg ai/ha +         | neuu        | 368        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 1 ×                      |             |            |                  |                  |                  |
|                 |                           | 0.125 kg ai/ha           |             |            |                  |                  |                  |
|                 | Spring wheat,             | Ŭ                        | forage      | 368        | < 0.01           | < 0.01           | < 0.02           |
|                 | Thasos                    |                          | straw       | 448        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          | grain       | 448        | < 0.01           | < 0.01           | < 0.02           |
|                 | 6, Germany, Burscheid, Sc | choening, R and Erler, S | (2008, BIXA | FEN_030)   |                  |                  |                  |
| 1 <sup>st</sup> | Turnip,                   | $1 \times$               | leaf        | 90         | < 0.01           | < 0.01           | < 0.02           |
|                 | Rondo                     | 0.281 kg ai/ha           |             | 104        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          | body        | 90         | < 0.01           | < 0.01           | < 0.02           |
|                 |                           |                          |             | 104        | < 0.01           | < 0.01           | < 0.02           |
|                 | Lettuce                   |                          | head        | 60         | 0.05             | < 0.01           | 0.06             |
|                 |                           |                          |             | 74         | < 0.01           | < 0.01           | < 0.02           |
|                 | Winter wheat,             |                          | forage      | 190        | < 0.01           | < 0.01           | < 0.02           |
|                 | Tommy                     |                          | straw       | 314        | < 0.01           | < 0.01           | < 0.02           |
| 2 <sup>nd</sup> | T                         | 1                        | grain       | 314        | < 0.01           | < 0.01           | < 0.02           |
| 2               | Turnip,<br>Dondo          | $1 \times$               | leaf        | 151        | < 0.01           | < 0.01           | < 0.02           |
|                 | Rondo                     | 0.156 kg ai/ha +         | had         | 135        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 1 ×<br>0.125 kg ai/ha    | body        | 121<br>135 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.02<br>< 0.02 |
|                 | Lettuce,                  | 0.123 Kg al/lla          | head        | 97         | < 0.01           | < 0.01           | < 0.02           |
|                 | Gisela                    |                          | neau        | 97         | < 0.01           | < 0.01           | < 0.02           |
|                 | Winter wheat,             |                          | forage      | 302        | < 0.01           | < 0.01           | < 0.02           |
|                 | Tommy                     |                          | straw       | 426        | < 0.01           | < 0.01           | < 0.02           |
|                 | 1 Onniny                  |                          | grain       | 420        | < 0.01           | < 0.01           | < 0.02           |
| 3 <sup>rd</sup> | Turnip,                   | 1 ×                      | leaf        | 420        | < 0.01           | < 0.01           | < 0.02           |
| 0               | Mairuebe                  | 0.156 kg ai/ha +         | 1001        | 435        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 1 ×                      | body        | 421        | < 0.01           | < 0.01           | < 0.02           |
|                 |                           | 1                        | oouy        | 141        | · 0.01           | 10.01            | 10.02            |

| Rotation | Crop, variety | Treatment      | Portion<br>analysed | DALT<br>(d) | Bixafen<br>(mg/kg) | M21<br>(mg/kg) | Total<br>(mg/kg) |
|----------|---------------|----------------|---------------------|-------------|--------------------|----------------|------------------|
|          |               | 0.125 kg ai/ha |                     | 435         | < 0.01             | < 0.01         | < 0.02           |
|          | Lettuce,      |                | head                | 359         | < 0.01             | < 0.01         | < 0.02           |
|          | Gisela        |                |                     | 373         | < 0.01             | < 0.01         | < 0.02           |
|          | Winter wheat, |                | forage              | 350         | < 0.01             | < 0.01         | < 0.02           |
|          | Tommy         |                | straw               | 446         | < 0.01             | < 0.01         | < 0.02           |
|          |               |                | grain               | 446         | < 0.01             | < 0.01         | < 0.02           |

### Field dissipation studies

The dissipation of bixafen in soil was investigated at six sites under European field conditions (Heinemann, O, 2007, BIXAFEN\_026). The active ingredient was applied at nominal rates of 0.125 kg ai/ha as a 450 SC formulation onto the ground in Burscheid (Germany), Little Shelford (Great Britain), Esloev (Sweden), Vatteville (Northern France), Vilobi d'Onyar (Spain) and Albaro (Italy).

Soil samples were taken at day 0 to approximately 730 days post application at a maximum depth of 50 cm. The samples were extracted in a microwave extractor using acetonitrile/water (4/1, v/v). Identification and quantitation of the analytes was achieved by high performance liquid chromatography using MS/MS detection in the Multiple Reaction Monitoring mode. The limit of quantitation (LOQ) of the method was 5.0  $\mu$ g/kg for bixafen and bixafen-desmethyl. The limit of detection (LOD) of the method was 1.5  $\mu$ g/kg for both analytes.

In the soil only the first 0-10 cm contained significant residues above the LOQ. Other layers are not summarized. The soil characteristics investigated are summarized in Table .

| Soil                    |                        | Burscheid,<br>Germany | Little<br>Shelford,<br>Great<br>Britain | Esloev,<br>Sweden | Vatteville,<br>Northern<br>France | Vilobi<br>d'Onyar,<br>Spain | Albaro, Italy |
|-------------------------|------------------------|-----------------------|-----------------------------------------|-------------------|-----------------------------------|-----------------------------|---------------|
| Soil type (USDA)        | Dim                    | silt loam             | sandy loam                              | silt loam         | silt loam                         | loam                        | silt loam     |
| Clay (< 0.002 mm)       | [%]                    | 22.9                  | 15.6                                    | 27.4              | 16.5                              | 14.8                        | 20.7          |
| Silt (0.002-0.050 mm)   | [%]                    | 70.5                  | 20.8                                    | 50.2              | 66.0                              | 37.8                        | 53.5          |
| Sand (0.050-2.00 mm)    | [%]                    | 6.6                   | 63.6                                    | 22.4              | 17.5                              | 47.4                        | 25.8          |
| CEC                     | [meq/100 g]            | 12.9                  | 16.1                                    | 29.9              | 12.5                              | 7.4                         | 20.0          |
| Chalk                   | [% CaCO <sub>3</sub> ] | < 0.1                 | 10.8                                    | 3.0               | < 0.1                             | < 0.1                       | 12.9          |
| Organic carbon          | [% Carbon]             | 1.01                  | 1.21                                    | 3.48              | 0.80                              | 0.68                        | 1.14          |
| pH (CaCl <sub>2</sub> ) |                        | 6.3                   | 7.4                                     | 7.4               | 6.7                               | 6.1                         | 7.5           |
| рН (H <sub>2</sub> O)   |                        | 6.9                   | 8.0                                     | 8.1               | 7.3                               | 6.7                         | 8.3           |
| Wk max                  | [g/100 g]              | 45.6                  | 43.2                                    | 52.5              | 43.3                              | 36.2                        | 48.8          |
| Wk pF 2                 | [Vol%]                 | 45.5                  | 30.5                                    | 43.5              | 42.1                              | 26.3                        | 41.3          |

Table 48 Soil characteristics (0-30 cm depth) used for bixafen soil dissipation studies

For M21 (bixafen-desmethyl) no residues above the LOQ were found in the samples investigated. In the following tables the bixafen residue found in soil and the percent remaining are summarized.

Table 49 Residues of bixafen found in different soils treated with nominal rates of 0.125 kg ai/ha after 0-740 days

| Burscheid     | l,    | Little She    | lford, | Esloev,       |       | Vatteville    | e, North. | Vilobi d'     | Onyar, | Albaro,       |       |
|---------------|-------|---------------|--------|---------------|-------|---------------|-----------|---------------|--------|---------------|-------|
| Germany       |       | Great Brit    | tain   | Sweden        |       | France        |           | Spain         |        | Italy         |       |
| DAT<br>[days] | µg/kg | DAT<br>[days] | µg/kg  | DAT<br>[days] | µg/kg | DAT<br>[days] | µg/kg     | DAT<br>[days] | µg/kg  | DAT<br>[days] | µg/kg |
| 0             | 97.4  | 0             | 107.8  | 0             | 132   | 0             | 89.9      | 0             | 85.1   | 0             | 92.3  |

| Burschei<br>Germany | /     | Little Sh<br>Great Br |       | Esloev,<br>Sweden |       | Vattevill<br>France | e, North. | Vilobi d<br>Spain | 'Onyar, | Albaro,<br>Italy |       |
|---------------------|-------|-----------------------|-------|-------------------|-------|---------------------|-----------|-------------------|---------|------------------|-------|
| DAT<br>[days]       | µg/kg | DAT<br>[days]         | µg/kg | DAT<br>[days]     | µg/kg | DAT<br>[days]       | µg/kg     | DAT<br>[days]     | µg/kg   | DAT<br>[days]    | µg/kg |
| 12                  | 83.1  | 13                    | 71.3  | 14                | 79.6  | 14                  | 60.2      | 13                | 56.7    | 14               | 53.8  |
| 25                  | 85.1  | 27                    | 72.6  | 28                | 94.0  | 28                  | 58.7      | 27                | 64.0    | 27               | 44.4  |
| 56                  | 52.4  | 55                    | 59.2  | 56                | 67.5  | 56                  | 45.6      | 55                | 65.8    | 57               | 23.4  |
| 104                 | 45.8  | 102                   | 65.8  | 100               | 63.0  | 107                 | 56.7      | 100               | 36.0    | 100              | 48.6  |
| 151                 | 47.6  | 146                   | 53.5  | 150               | 66.3  | 153                 | 46.7      | 154               | 24.8    | 150              | 22.3  |
| 201                 | 54.9  | 211                   | 49.5  | 209               | 60.7  | 210                 | 43.6      | 223               | 21.1    | 209              | 32.6  |
| 266                 | 40.4  | 270                   | 44.7  | 276               | 66.5  | 267                 | 50.4      | 273               | 34.7    | 272              | 42.5  |
| 363                 | 51.6  | 365                   | 52.2  | 365               | 65.6  | 364                 | 36.8      | 377               | 26.5    | 366              | 19.9  |
| 481                 | 47.2  | 481                   | 40.7  | 480               | 60.3  | 484                 | 35.2      | 504               | 24.8    | 479              | 12.4  |
| 592                 | 49.5  | 613                   | 34.8  | 578               | 57.1  | 607                 | 36.7      | 603               | 26.6    | 601              | 18.3  |
| 726                 | 46.1  | 740                   | 31.0  | 724               | 52.1  | 734                 | 37.2      | 729               | 18.3    | 730              | 15.9  |

| Table 50 Percent bixafen remaining in different soils treated with nominal rates of 0.125 kg ai/ha after |
|----------------------------------------------------------------------------------------------------------|
| 0–740 days                                                                                               |

| Burschei<br>Germany | ,     | Little Sh<br>Great Br | ,     | Esloev,<br>Sweden |       | Vattevill<br>France | e, North. | Vilobi d'<br>Spain | Onyar, | Albaro,<br>Italy |       |
|---------------------|-------|-----------------------|-------|-------------------|-------|---------------------|-----------|--------------------|--------|------------------|-------|
| DAT<br>[days]       | µg/kg | DAT<br>[days]         | µg/kg | DAT<br>[days]     | µg/kg | DAT<br>[days]       | µg/kg     | DAT<br>[days]      | µg/kg  | DAT<br>[days]    | µg/kg |
| 0                   | 100.0 | 0                     | 100.0 | 0                 | 100.0 | 0                   | 100.0     | 0                  | 100.0  | 0                | 100.0 |
| 12                  | 85.3  | 13                    | 66.1  | 14                | 60.3  | 14                  | 67.0      | 13                 | 66.6   | 14               | 58.3  |
| 25                  | 87.4  | 27                    | 67.3  | 28                | 71.2  | 28                  | 65.3      | 27                 | 75.2   | 27               | 48.1  |
| 56                  | 53.8  | 55                    | 54.9  | 56                | 51.1  | 56                  | 50.7      | 55                 | 77.3   | 57               | 25.4  |
| 104                 | 47.0  | 102                   | 61.0  | 100               | 47.7  | 107                 | 63.1      | 100                | 42.3   | 100              | 52.7  |
| 151                 | 48.9  | 146                   | 49.6  | 150               | 50.2  | 153                 | 51.9      | 154                | 29.1   | 150              | 24.2  |
| 201                 | 56.4  | 211                   | 45.9  | 209               | 46.0  | 210                 | 48.5      | 223                | 24.8   | 209              | 35.3  |
| 266                 | 41.5  | 270                   | 41.5  | 276               | 50.4  | 267                 | 56.1      | 273                | 40.8   | 272              | 46.0  |
| 363                 | 53.0  | 365                   | 48.4  | 365               | 49.7  | 364                 | 40.9      | 377                | 31.1   | 366              | 21.6  |
| 481                 | 48.5  | 481                   | 37.8  | 480               | 45.7  | 484                 | 39.2      | 504                | 29.1   | 479              | 13.4  |
| 592                 | 50.8  | 613                   | 32.3  | 578               | 43.3  | 607                 | 40.8      | 603                | 31.3   | 601              | 19.8  |
| 726                 | 47.3  | 740                   | 28.8  | 724               | 39.5  | 734                 | 41.4      | 729                | 21.5   | 730              | 17.2  |

## Long-term soil accumulation

The possibility of the accumulation of bixafen and M21 (bixafen-desmethyl) in soil under European field conditions was investigated after annual applications of bixafen on bare soil plots at two sites in Monheim am Rhein (Germany) and Tarascon (France) by Heinemann, O and Weuthen, M (2013, BIXAFEN\_027). The sites were located in the Monheim, Germany and Les Cayades, Southern France. Each plot received annual treatments to bare soil equivalent to 0.138 kg ai/ha. During the year grass was sown on these plots and incorporated before the next application.

Table 51 Soil properties for the long-term soil dissipation study with bixafen

|                         |                        | Depth (cm) |            |             |           |
|-------------------------|------------------------|------------|------------|-------------|-----------|
|                         |                        | Monheim    |            | Les Cayades |           |
| Soil property           | Units                  | 0-30       | 30–50      | 0-30        | 30–50     |
| Soil type (USDA)        |                        | sandy loam | sandy loam | silt loam   | silt loam |
| lay (< 0.002 mm)        | [%]                    | 10.5       | 8.5        | 19.5        | 27.1      |
| Silt (0.002–0.050 mm)   | [%]                    | 18.2       | 21.3       | 62.8        | 53.9      |
| Sand (0.050-2.00 mm)    | [%]                    | 71.3       | 70.2       | 17.7        | 19.0      |
| CEC                     | [meq/100 g]            | 7.1        | 3.8        | 12.1        | 12.8      |
| Chalk                   | [% CaCO <sub>3</sub> ] | < 0.1      | < 0.1      | 40.6        | 38.6      |
| Organic carbon          | [% Carbon]             | 1.28       | 0.43       | 0.74        | 0.89      |
| pH (CaCl <sub>2</sub> ) |                        | 6.3        | 6.6        | 7.5         | 7.7       |

|                       |           | Depth (cm) |       |             |       |
|-----------------------|-----------|------------|-------|-------------|-------|
|                       |           | Monheim    |       | Les Cayades | 8     |
| Soil property         | Units     | 0-30       | 30-50 | 0-30        | 30-50 |
| pH (H <sub>2</sub> O) |           | 6.9        | 7.3   | 8.4         | 8.7   |
| Max water capacity    | [g/100 g] | 39.7       | 33.8  | 40.3        | 42.7  |
| pF 2                  | [Vol%]    | 26.9       | 23.5  | 36.4        | 35.9  |

Since 2005 soil samples were collected and analysed for residues of bixafen and M21. Soil samples were extracted with acetonitrile/water (4/1, v/v). Identification and quantitation of the analytes was done by high performance liquid chromatography using MS/MS detection in the Multiple Reaction Monitoring mode. The limit of quantitation (LOQ) of the method was 5.0  $\mu$ g/kg, the limit of detection (LOD) was 1.5  $\mu$ g/kg for both analytes.

Following the 1<sup>st</sup> application in spring 2005, the experiments were either terminated when a plateau concentration was reached (France in autumn 2010), or due to technical reasons (Germany in autumn 2012).

Following eight consecutive annual treatments in Germany, the total soil residue of Bixafen was degraded to 47% (based on a nominal concentration of 734  $\mu$ g/kg resulting from eight applications of 137.7 g/ha each and the highest peak concentration of 347.5  $\mu$ g/kg soil). However, a plateau in the soil concentration of bixafen was not observed.

Following six consecutive annual treatments in France, the total soil residue of Bixafen in autumn, i.e. prior to winter dormancy, was degraded to 32.5% (based on a nominal concentration of 551  $\mu$ g/kg resulting from six applications of 137.7 g/ha each and the highest peak concentration of 179.2  $\mu$ g/kg soil). A plateau was reached at the end of the study.

At both sites, the residues of M21 were low and represented less than 5% of the nominal Bixafen concentration applied until the respective sampling point in time.

In the following tables the residues of bixafen and M21 (bixafen-desmethyl) in soil over 2720 days are summarized. Although soil samples up to a depth of 100 cm were collected, residues are only presented for soil layers containing detectable residues.

|                                                                                                                             |                       |                                |         | -     | -        | -       | -       | -      |       |       |                        |        |             | -                      |         |         | 1      |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|---------|-------|----------|---------|---------|--------|-------|-------|------------------------|--------|-------------|------------------------|---------|---------|--------|
|                                                                                                                             |                       | 2720                           |         | 292   | 28.1     | 7.4     | < 5     | < 5    | < 5   | < 5   | °<br>℃                 | <<br>5 | <<br>5      |                        | 24.7    | < 5     | <<br>5 |
|                                                                                                                             |                       | 2526<br>/9 <sup>th</sup>       |         | 347.5 | 32.6     | 8.4     | < 5     | < 5    | < 5   | < 5   | v<br>S                 | < 5    | 8           |                        | 16.1    | < 5     | n.d.   |
|                                                                                                                             |                       | 2524                           |         | 261.5 | 26.9     | 7.4     | < 5     | < 5    | < 5   | < 5   | $\stackrel{\wedge}{5}$ | < 5    | < 5         |                        | 16.2    | < 5     | n.d.   |
|                                                                                                                             |                       | 2392                           |         | 273   | 34.9     | 10.3    | <<br>5  | <<br>5 | < 5   | n.d.  | n.d.                   | < 5    | < 5         |                        | 17.4    | < 5     | < 5    |
|                                                                                                                             |                       | 2176<br>/8 <sup>th</sup>       |         | 319.5 | 19.7     | 5.3     | <<br>5  | <<br>5 | < 5   | n.d.  | n.d.                   | < 5    | < 5         |                        | 14.6    | < 5     | n.d.   |
| g al/na                                                                                                                     |                       | 2161                           |         | 223.5 | 24.7     | 5.1     | < 5     | < 5    | < 5   | < 5   | ~<br>5                 | n.d.   | n.d.        |                        | 14.0    | < 5     | n.d.   |
| Х бст.                                                                                                                      |                       | 2021                           |         | 226.9 | 21.5     | 5.5     | < 5     | < 5    | < 5   | < 5   | n.a.                   | n.d.   | n.a.        |                        | 13.1    | < 5     | n.d.   |
| res or c                                                                                                                    |                       | 1804<br>/7th                   |         | 280.6 | 15.11    | < 5     | < 5     | < 5    | < 5   | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 9.5     | < 5     | n.d.   |
| 1 able 22 Residues of Dixaren and Dixaren-desmetnyl after annual application in Monneim, Germany at rates of 0.128 kg al/na |                       | 1797                           |         | 240.6 | 18.35    | < 5     | < 5     | < 5    | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 10.2    | < 5     | n.d.   |
| <b>Jerman</b>                                                                                                               |                       | 1665                           |         | 177.2 | 9.7      | < 5     | < 5     | < 5    | < 5   | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 9.0     | < 5     | n.d.   |
| leim, C                                                                                                                     |                       | $\frac{1460}{6^{\mathrm{th}}}$ |         | 239.8 | 12.27    | < 5     | < 5     | < 5    | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 7.6     | < 5     | n.d.   |
| Inom I                                                                                                                      |                       | 1460                           |         | 159.3 | 16.81    | < 5     | < 5     | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 7.5     | < 5     | n.d.   |
| auion II                                                                                                                    |                       | 1284                           |         | 161.2 | 8.68     | <<br>5  | <<br>5  | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 6.2     | < 5     | n.d.   |
| applic                                                                                                                      |                       | 1082<br>/4 <sup>th</sup>       |         | 212.3 | 12.97    | < 5     | < 5     | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 5.2     | < 5     | n.d.   |
| annuai                                                                                                                      |                       | 1082                           |         | 137.6 | 18.27    | < 5     | < 5     | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 5.3     | < 5     | n.d.   |
| l alter a                                                                                                                   |                       | 914                            |         | 146.1 | 7.09     | < 5     | < 5     | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | 5.2     | < 5     | n.d.   |
| leuny                                                                                                                       |                       | 711<br>/3 <sup>rd</sup>        |         | 144   | < 5      | < 5     | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | < 5     | < 5     | n.d.   |
| n-aesn                                                                                                                      |                       | 710                            |         | 90.3  | < 5      | < 5     | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | < 5     | < 5     | n.d.   |
| DIXAIE                                                                                                                      |                       | 565                            |         | 101   | <<br>5   | <<br>5  | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | < 5     | < 5     | n.d.   |
| in and                                                                                                                      |                       | 354                            |         | 115.6 | <<br>5   | n.d.    | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        |                        | < 5     | n.d.    | n.d.   |
| IXAIC                                                                                                                       | ii                    | 353<br>/2 <sup>nd</sup>        |         | 59.9  | √<br>5   | n.d.    | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        | ethyl)                 | n.d.    | n.d.    | n.d.   |
| es of d                                                                                                                     | Bixafen in µg/kg soil | 194                            |         | 51.8  | <<br>5   | n.d.    | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        | M21 (bixafen-desmethyl | n.d.    | n.d.    | n.d.   |
| esiau                                                                                                                       | fen in J              | $0/1^{\rm st}$                 | fen     | 81.5  | $\sim 5$ | n.d.    | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        | (bixaf                 | n.d.    | n.d.    | n.d.   |
| У 7C                                                                                                                        | Bixa                  | $0^{a}$                        | Bixafen | n.d.  | n.d.     | n.d.    | n.d.    | n.d.   | n.a.  | n.a.  | n.a.                   | n.a.   | n.a.        | M21                    | n.d.    | n.d.    | n.d.   |
| 1 able                                                                                                                      | Days                  | & appl. 0 <sup>a</sup>         | Layer   |       | 10 - 20  | 20 - 30 | 30 - 40 | 40–50  | 50-60 | 60-70 | 70–80                  | 80–90  | 90–100 n.a. |                        | 0 - 1 0 | 10 - 20 | 20–30  |
|                                                                                                                             | _                     | _                              | _       | _     | -        | -       | -       | -      | -     | -     | -                      | _      | _           | -                      | -       | -       | _      |

Table 52 Residues of bixafen and bixafen-desmethyl after annual application in Monheim, Germany at rates of 0.138 kg ai/ha

Bixafen

n.a. = Not analysed n.d. = Not detected (LOD: 1.5  $\mu g/kg$  soil)

248

|          |                         |            |         |      |       | •    |      | • •   |      | •    |       |      |       |       | )    |       |       |       |
|----------|-------------------------|------------|---------|------|-------|------|------|-------|------|------|-------|------|-------|-------|------|-------|-------|-------|
| Days &   | Bixafen in µg/kg soil   | ι μg/kg sc | il      |      |       |      |      |       |      |      |       |      |       |       |      |       |       |       |
| appl.    | $0^{a}$                 | $0/1^{st}$ | 215     | 334  | 335   | 570  | L69  | 869   | 913  | 1062 | 1063  | 1293 | 1426  | 1427  | 1655 | 1795  | 1797  | 2015  |
| Layer in | Bixafen                 |            |         |      |       |      |      |       |      |      |       |      |       |       |      |       |       |       |
| cm       |                         |            |         |      |       |      |      |       |      |      |       |      |       |       |      |       |       |       |
| 0 - 10   | n.d.                    | 79.5       | 27.1    | 34.5 | 120.8 | 52.3 | 54.5 | 132.3 | 93.3 | 91.2 | 140.4 | 73.6 | 106.4 | 154.6 | 91.5 | 106.7 | 179.2 | 101.4 |
| 10 - 20  | n.d.                    | n.d.       | < 5     | < 5  | < 5   | < 5  | < 5  | < 5   | < 5  | < 5  | 6.3   | < 5  | < 5   | 6.2   | < 5  | < 5   | 5.5   | 7.4   |
| 20 - 30  | n.d.                    | n.d.       | n.d.    | n.d. | n.d.  | n.d. | n.d. | < 5   | n.d. | < 5  | < 5   | < 5  | < 5   | < 5   | < 5  | < 5   | < 5   | < 5   |
| 30 - 40  | n.d.                    | n.d.       | n.d.    | n.d. | n.d.  | n.d. | n.d. | n.d.  | n.d. | n.d. | n.d.  | n.d. | < 5   | < 5   | < 5  | < 5   | n.d.  | < 5   |
| 40-50    | n.d.                    | n.d.       | n.d.    | n.d. | n.d.  | n.d. | n.d. | n.d.  | n.d. | n.d. | n.d.  | n.d. | < 5   | < 5   | < 5  | n.d.  | n.d.  | n.d.  |
| 50-60    | n.a.                    | n.a.       | n.a.    | n.a. | n.a.  | n.a. | n.a. | n.a.  | n.a. | n.a. | n.a.  | n.a. | n.a.  | < 5   | n.a. | n.a.  | n.a.  | n.a.  |
|          | M21 (bixafen-desmethyl) | afen-desm  | tethyl) |      |       |      |      |       |      |      |       |      |       |       |      |       |       |       |
| 0 - 10   | n.d.                    | n.d.       | n.d.    | n.d. | n.d.  | < 5  | < 5  | < 5   | < 5  | < 5  | < 5   | < 5  | 5.6   | < 5   | < 5  | 5.2   | < 5   | < 5   |
| 10 - 20  | n.d.                    | n.d.       | n.d.    | n.d. | n.d.  | n.d. | < 5  | < 5   | < 5  | < 5  | < 5   | < 5  | < 5   | < 5   | < 5  | < 5   | < 5   | < 5   |
|          | 1                       |            |         |      |       |      |      |       |      |      |       |      |       |       |      |       |       |       |

Table 53 Residues of bixafen and bixafen-desmethyl after annual application in Les Cayades, Southern France at rates of 0.138 kg ai/ha

Bixafen

n.a. = Not analysed n.d. = Not detected (LOD: 1.5  $\mu g/kg$  soil)

# **RESIDUE ANALYSIS**

### Analytical methods

For bixafen and M21 bixafen-desmethyl analytical method were provided following a comparable pattern. The samples (plant, animal and soil) are extracted using acetonitrile/water (4/1, v/v) or in case of fatty matrices n-hexane (saturated with acetonitrile). For some matrices the extraction is supported by using microwaves. After filtration and a clean-up with C18 SPE the residue is measured by HPLC-MS/MS with two specific mass transitions for each analyte. All methods were validated with an LOQ of 0.01 mg/kg.

The applicability of multi residue methods was investigated for the DFG S19; however, the results did not confirm sufficient applicability.

| Method                              | Matrix                                                       | Extraction                                                                                                                                                                                                                                                 | Clean-Up                | Detection, LOQ                                                                                                                                                                                                                |
|-------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method 00983                        | Plants (high acid,<br>high, starch, high oil,<br>high water) | acetonitrile/water (4/1, v/v), using microwaves                                                                                                                                                                                                            | filtration              | HPLC-MS/MS<br>Bixafen: m/z 414 $\rightarrow$ 394<br>and m/z 414 $\rightarrow$ 266<br>LOQ: 0.01 mg/kg                                                                                                                          |
| Method 01063                        | Animals (eggs, milk,<br>muscle, kidney, fat,<br>liver)       | eggs, muscle, kidney<br>and milk:<br>acetonitrile/water (4/1,<br>v/v)<br>liver: acetonitrile/water<br>(4/1, v/v), using<br>microwaves<br>fat: n-hexane<br>(saturated with<br>acetonitrile),<br>partitioning with<br>acetonile (saturated<br>with n-hexane) | filtration & C18<br>SPE | HPLC-MS/MS<br>Bixafen: m/z 414 $\rightarrow$ 394<br>and m/z 414 $\rightarrow$ 266<br>LOQ: 0.01 mg/kg<br>M21: m/z 398 $\rightarrow$ 378 and<br>m/z 398 $\rightarrow$ 358<br>LOQ: 0.01 mg/kg                                    |
| Method 00959 &<br>Method 00959/M001 | Soil                                                         | acetonitrile/water (4/1, v/v), using microwaves                                                                                                                                                                                                            | centrifugation          | HPLC-MS/MS<br>Bixafen: m/z 414 $\rightarrow$ 394<br>and m/z 414 $\rightarrow$ 266<br>LOQ: 5 µg/kg<br>M21: m/z 398 $\rightarrow$ 378 and<br>m/z 398 $\rightarrow$ 358<br>LOQ: 5 µg/kg                                          |
| Method 01012                        | Plants (high, starch,<br>high water)                         | acetonitrile/water (4/1,<br>v/v), using microwaves                                                                                                                                                                                                         | filtration              | HPLC-MS/MS with<br>isotopically-labelled ISTD<br>Bixafen: m/z 414 $\rightarrow$ 394<br>and m/z 414 $\rightarrow$ 266<br>LOQ: 0.01 mg/kg<br>M21: m/z 398 $\rightarrow$ 378 and<br>m/z 398 $\rightarrow$ 358<br>LOQ: 0.01 mg/kg |
| Method 01013                        | Plants (high acid,<br>high, starch, high oil,<br>high water) | acetonitrile/water (4/1,<br>v/v) containing<br>cysteine hydrochloride                                                                                                                                                                                      | filtration              | HPLC-MS/MS with<br>isotopically-labelled ISTD<br>Bixafen: m/z 414 $\rightarrow$ 394<br>and m/z 414 $\rightarrow$ 266<br>LOQ: 0.01 mg/kg<br>M21: m/z 398 $\rightarrow$ 378 and                                                 |

Table 54 Overview of analytical methods for bixafen

| Method       | Matrix                                                 | Extraction                                                                                                                                                                                                                                                                 | Clean-Up                | Detection, LOQ                                                                                                                                                                                                                |
|--------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                        |                                                                                                                                                                                                                                                                            |                         | m/z 398→ 358<br>LOQ: 0.01 mg/kg                                                                                                                                                                                               |
| Method 01036 | Animals (eggs, milk,<br>muscle, kidney, fat,<br>liver) | eggs, muscle, kidney<br>and milk:<br>acetonitrile/water (4/1,<br>v/v)<br>liver: acetonitrile/water<br>(4/1, v/v), using<br>microwaves<br>fat and milk cream: n-<br>hexane (saturated with<br>acetonitrile),<br>partitioning with<br>acetonile (saturated<br>with n-hexane) | filtration & C18<br>SPE | HPLC-MS/MS with<br>isotopically-labelled ISTD<br>Bixafen: m/z 414 $\rightarrow$ 394<br>and m/z 414 $\rightarrow$ 266<br>LOQ: 0.01 mg/kg<br>M21: m/z 398 $\rightarrow$ 378 and<br>m/z 398 $\rightarrow$ 358<br>LOQ: 0.01 mg/kg |

ISDT = Internal standard

#### Plant materials

For plant materials a suitable enforcement method (method 00983) was developed by Bardel, P and Schoening, R (2006, BIXAFEN\_034). The residues are extracted from 5 g of plant material with acetonitrile/water (4/1, v/v), using microwaves. After filtration and dilution, the solution was analysed by HPLC-MS/MS (m/z 414  $\rightarrow$  394 and m/z 414 $\rightarrow$  266). Residues were quantified against external bracketing matrix-matched standards.

The applicability of the method was confirmed in an independent laboratory by Ballesteros C and Portet, M (2007, BIXAFEN\_035). In both laboratories parent bixafen was analysed with a validated LOQ of 0.01 mg/kg (see Table ).

The applicability of the DFG method S 19 multi-residue method was investigated by Class, T (2006, BIXAFEN\_036). However, even though GC gave acceptable peak shapes for bixafen, it was assessed that the DFG method S 19 used in combination with GC/MS is not applicable as a multi-residue enforcement method due to a lack of sensitivity, even when the most prominent fragment ion observed was monitored, and a lack of specifity, as no other ions were observed with sufficient sensitivity to serve as confirmatory ions. Thus, it was shown that DFG method S 19 is not suitable for the determination of bixafen residues.

| Matrix                | Fortification | n | Recovery  | Recovery, | RSD  | Analyte, reference, MRM transition       |
|-----------------------|---------------|---|-----------|-----------|------|------------------------------------------|
|                       | level (mg/kg) |   | range (%) | mean (%)  | (%)  |                                          |
| Wheat grain           | 0.01          | 5 | 98-102    | 101       | 1.7  | Bixafen,                                 |
|                       | 0.1           | 5 | 87-100    | 95        | 5.2  | Bardel, P and Schoening, R               |
| Wheat, green material | 0.01          | 5 | 80-100    | 90        | 9.6  | (2006, BIXAFEN_034)                      |
|                       | 0.1           | 5 | 90-103    | 96        | 4.8  | $m/z 414 \rightarrow 394$                |
| Orange, fruit         | 0.01          | 5 | 88–98     | 93        | 4.9  |                                          |
|                       | 0.1           | 5 | 78–95     | 86        | 8.0  |                                          |
| Rape, seed            | 0.01          | 5 | 86–978    | 92        | 5.0  |                                          |
|                       | 0.1           | 5 | 92–95     | 93        | 1.2  |                                          |
| Wheat grain           | 0.01          | 5 | 94–107    | 102       | 4.9  | Bixafen,                                 |
|                       | 0.1           | 5 | 81-101    | 94        | 8.3  | Bardel, P and Schoening, R               |
| Wheat, green material | 0.01          | 5 | 81–105    | 94        | 12.1 | (2006, BIXAFEN_034)                      |
|                       | 0.1           | 5 | 88–99     | 96        | 4.8  | $m/z 414 \rightarrow 266$ (confirmation) |
| Orange, fruit         | 0.01          | 5 | 85–998    | 92        | 7.0  |                                          |
|                       | 0.1           | 5 | 77–90     | 84        | 6.9  |                                          |
| Rape, seed            | 0.01          | 5 | 91-101    | 95        | 4.9  |                                          |

Table 55 Recovery data for the determination of bixafen in plant commodities

| Matrix        | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition |
|---------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------|
|               | 0.1                            | 5 | 93–97                 | 95                    | 1.9        |                                    |
| Wheat grain   | 0.01                           | 5 | 89–98                 | 93                    | 3.6        | Bixafen,                           |
|               | 0.1                            | 5 | 98-101                | 99                    | 1.1        | Ballesteros, C and Portet, M       |
| Orange, fruit | 0.01                           | 5 | 93–97                 | 94                    | 2.3        | (2007, BIXAFEN_035)                |
|               | 0.1                            | 5 | 99–106                | 101                   | 2.8        | $m/z 414 \rightarrow 394$          |
| Rape, seed    | 0.01                           | 5 | 86–93                 | 88                    | 3.1        | Independent laboratory validation  |
|               | 0.1                            | 5 | 89                    | 89                    | 0          |                                    |

#### Animal materials

For the enforcement of bixafen and M21 (bixafen-desmethyl) in animal commodities method 01063 was developed by Billian, P and Druskus, M (2007, BIXAFEN\_037). The residues were extracted from 5 g of milk, muscle, liver, kidney and egg with acetonitrile/water (4/1, v/v) using an ultra-turax (for liver with microwave assistance).

The extraction of fat samples was performed with n-hexane (saturated with acetonitrile) in a blender. After filtration, addition of acetonitrile (saturated with n-hexane) and subsequent shaking, the acetonitrile phase was separated.

The solutions were cleaned up on a C18 cartridge, made up to volume, diluted, and subjected to reversed phase HPLC-MS/MS in positive (parent compound, M21 bixafen-desmethyl) or negative (bixafen-desmethyl) ion modes. Two MRM transitions were monitored for bixafen (m/z 414  $\rightarrow$  394 and m/z 414 $\rightarrow$  266) and M21 (bixafen-desmethyl, m/z 398  $\rightarrow$  378 and m/z 398 $\rightarrow$  358). Residues were quantified against matrix-matched standards (without using the ISTD signal for calculation of the results).

The applicability of the method was confirmed in an independent laboratory by Ballesteros, C (2007, BIXAFEN\_038). In both laboratories parent bixafen and M21 (bixafen-desmethyl) were validated with a LOQ of 0.01 mg/kg (see Table & Table ).

| Matrix              | Fortification | n | Recovery | Recovery, | RSD | Analyte, reference, MRM transition       |
|---------------------|---------------|---|----------|-----------|-----|------------------------------------------|
|                     | level (mg/kg) |   | range    | mean (%)  | (%) |                                          |
|                     |               |   | (%)      |           |     |                                          |
| Egg (without shell) | 0.01          | 5 | 80-103   | 92        | 9.4 | Bixafen,                                 |
|                     | 0.1           | 5 | 91-101   | 96        | 4.1 | Billian, P and Druskus, M                |
| Milk                | 0.01          | 5 | 85–98    | 91        | 5.9 | (2007, BIXAFEN_037)                      |
|                     | 0.1           | 5 | 86–98    | 91        | 6.4 | $m/z 414 \rightarrow 394$                |
| Muscle              | 0.01          | 5 | 90-105   | 97        | 6.1 |                                          |
|                     | 0.1           | 5 | 92-100   | 95        | 3.6 |                                          |
| Kidney              | 0.01          | 5 | 83–98    | 93        | 6.4 |                                          |
|                     | 0.1           | 5 | 95-113   | 103       | 7.4 |                                          |
| Fat                 | 0.01          | 5 | 90–99    | 95        | 3.5 |                                          |
|                     | 0.1           | 5 | 93-104   | 98        | 4.6 |                                          |
| Liver               | 0.01          | 5 | 88-100   | 95        | 4.5 |                                          |
|                     | 0.1           | 5 | 98-104   | 101       | 2.8 |                                          |
| Egg (without shell) | 0.01          | 5 | 84-104   | 93        | 8.5 | Bixafen,                                 |
|                     | 0.1           | 5 | 91-100   | 96        | 3.6 | Billian, P and Druskus, M                |
| Milk                | 0.01          | 5 | 86–99    | 92        | 5.8 | (2007, BIXAFEN 037)                      |
|                     | 0.1           | 5 | 85–99    | 91        | 7.0 | $m/z 414 \rightarrow 266$ (confirmation) |
| Muscle              | 0.01          | 5 | 90-105   | 96        | 5.8 |                                          |
|                     | 0.1           | 5 | 92-100   | 95        | 3.8 |                                          |
| Kidney              | 0.01          | 5 | 84–96    | 93        | 5.4 |                                          |
|                     | 0.1           | 5 | 94-113   | 102       | 7.6 |                                          |
| Fat                 | 0.01          | 5 | 90–96    | 93        | 2.6 |                                          |
|                     | 0.1           | 5 | 91-102   | 96        | 4.8 |                                          |
| Liver               | 0.01          | 5 | 89-100   | 96        | 4.5 |                                          |
|                     | 0.1           | 5 | 98-103   | 100       | 2.3 |                                          |

Table 56 Recovery data for the determination of bixafen in animal commodities

| Matrix              | Fortification<br>level (mg/kg) | n | Recovery<br>range<br>(%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition       |
|---------------------|--------------------------------|---|--------------------------|-----------------------|------------|------------------------------------------|
| Egg (without shell) | 0.01                           | 5 | 89–97                    | 94                    | 3.9        | Bixafen,                                 |
|                     | 0.1                            | 5 | 88–95                    | 92                    | 3.2        | Ballesteros C                            |
| Milk                | 0.01                           | 5 | 111-123                  | 115                   | 4.2        | (2007, BIXAFEN_038)                      |
|                     | 0.1                            | 5 | 106-114                  | 110                   | 3.3        | $m/z 414 \rightarrow 394$                |
| Fat                 | 0.01                           | 5 | 101-106                  | 103                   | 1.8        | Independent laboratory validation        |
|                     | 0.1                            | 5 | 93-100                   | 95                    | 3.2        |                                          |
| Liver               | 0.01                           | 5 | 80-100                   | 92                    | 8.1        |                                          |
|                     | 0.1                            | 5 | 84–116                   | 97                    | 13.6       |                                          |
| Egg (without shell) | 0.01                           | 5 | 92–97                    | 94                    | 2.4        | Bixafen,                                 |
|                     | 0.1                            | 5 | 87–94                    | 91                    | 3.2        | Ballesteros C                            |
| Milk                | 0.01                           | 5 | 106-121                  | 113                   | 5.1        | (2007, BIXAFEN_038)                      |
|                     | 0.1                            | 5 | 104-113                  | 108                   | 3.6        | $m/z 414 \rightarrow 266$ (confirmation) |
| Fat                 | 0.01                           | 5 | 100-104                  | 102                   | 2.0        | Independent laboratory validation        |
|                     | 0.1                            | 5 | 91–97                    | 93                    | 2.8        |                                          |
| Liver               | 0.01                           | 5 | 81–98                    | 93                    | 7.6        |                                          |
|                     | 0.1                            | 5 | 82-115                   | 95                    | 13.7       |                                          |

| Table 57 Recovery | v data for the | determination of M2 | 1 (bixafen-desmethy | vľ | ) in animal commodities |
|-------------------|----------------|---------------------|---------------------|----|-------------------------|
|                   |                |                     |                     |    |                         |

| Matrix              | Fortification | n | Recovery  | Recovery, | RSD  | Analyte, reference, MRM transition       |
|---------------------|---------------|---|-----------|-----------|------|------------------------------------------|
|                     | level (mg/kg) |   | range (%) | mean (%)  | (%)  |                                          |
| Egg (without shell) | 0.01          | 5 | 78–104    | 90        | 11.1 | M21 (bixafen-desmethyl),                 |
|                     | 0.1           | 5 | 90–97     | 94        | 3.2  | Billian, P and Druskus, M                |
| Milk                | 0.01          | 5 | 90-101    | 94        | 4.9  | (2007, BIXAFEN_037)                      |
|                     | 0.1           | 5 | 88-108    | 97        | 9.0  | $m/z 398 \rightarrow 378$                |
| Muscle              | 0.01          | 5 | 88–95     | 92        | 3.0  |                                          |
|                     | 0.1           | 5 | 90-102    | 95        | 4.8  |                                          |
| Kidney              | 0.01          | 5 | 76–101    | 91        | 10.8 |                                          |
| -                   | 0.1           | 5 | 74-87     | 80        | 7.3  |                                          |
| Fat                 | 0.01          | 5 | 84–92     | 89        | 3.5  |                                          |
|                     | 0.1           | 5 | 96-111    | 103       | 5.8  |                                          |
| Liver               | 0.01          | 5 | 93–99     | 96        | 2.7  |                                          |
|                     | 0.1           | 5 | 95-101    | 98        | 2.4  |                                          |
| Egg (without shell) | 0.01          | 5 | 77-102    | 89        | 10.5 | M21 (bixafen-desmethyl),                 |
|                     | 0.1           | 5 | 89–97     | 94        | 3.6  | Billian, P and Druskus, M                |
| Milk                | 0.01          | 5 | 88-100    | 92        | 5.3  | (2007, BIXAFEN 037)                      |
|                     | 0.1           | 5 | 89-108    | 98        | 8.9  | $m/z 398 \rightarrow 358$ (confirmation) |
| Muscle              | 0.01          | 5 | 88-93     | 90        | 2.4  |                                          |
|                     | 0.1           | 5 | 90-102    | 95        | 4.7  |                                          |
| Kidney              | 0.01          | 5 | 76–98     | 91        | 9.4  |                                          |
| ·                   | 0.1           | 5 | 73-87     | 80        | 7.2  |                                          |
| Fat                 | 0.01          | 5 | 83-93     | 89        | 4.4  |                                          |
|                     | 0.1           | 5 | 97-111    | 103       | 5.5  |                                          |
| Liver               | 0.01          | 5 | 91–99     | 95        | 3.2  |                                          |
|                     | 0.1           | 5 | 96-102    | 99        | 2.4  |                                          |
| Egg (without shell) | 0.01          | 5 | 89–99     | 94        | 3.9  | M21 (bixafen-desmethyl),                 |
|                     | 0.1           | 5 | 91–98     | 94        | 3.3  | Ballesteros C                            |
| Milk                | 0.01          | 5 | 95-107    | 99        | 4.8  | (2007, BIXAFEN 038)                      |
|                     | 0.1           | 5 | 105-116   | 112       | 3.9  | $m/z 398 \rightarrow 378$                |
| Fat                 | 0.01          | 5 | 92-101    | 97        | 3.4  | Independent laboratory validation        |
|                     | 0.1           | 5 | 95-103    | 99        | 3.4  |                                          |
| Liver               | 0.01          | 4 | 102-108   | 106       | 2.7  |                                          |
|                     | 0.1           | 5 | 106-114   | 112       | 2.9  |                                          |
| Egg (without shell) | 0.01          | 5 | 90-97     | 94        | 2.7  | M21 (bixafen-desmethyl),                 |
|                     | 0.1           | 5 | 91–99     | 94        | 3.3  | Ballesteros C                            |
| Milk                | 0.01          | 5 | 94-111    | 101       | 6.5  | (2007, BIXAFEN 038)                      |
|                     | 0.1           | 5 | 104-119   | 113       | 5.0  | $m/z 398 \rightarrow 358$ (confirmation) |
| Fat                 | 0.01          | 5 | 94–102    | 98        | 3.8  | Independent laboratory validation        |
|                     | 0.1           | 5 | 96-104    | 100       | 3.3  |                                          |

| Matrix | Fortification | n | Recovery  | Recovery, | RSD | Analyte, reference, MRM transition |
|--------|---------------|---|-----------|-----------|-----|------------------------------------|
|        | level (mg/kg) |   | range (%) | mean (%)  | (%) |                                    |
| Liver  | 0.01          | 4 | 104-112   | 109       | 3.1 |                                    |
|        | 0.1           | 5 | 109–116   | 113       | 2.4 |                                    |

#### Soil

For the analysis of bixafen in <u>soil</u> method 00959 was developed by Brumhard, B and Freitag, T (2006, BIXAFEN\_039). Residues of bixafen are extracted from approx. 20 g of soil in a microwave extractor with 40 mL of a mixture of acetonitrile/water (4+1, v+v). Then a subsample is centrifuged to remove fine particles of the soil.

Identification and quantitation of the test items is done by high performance liquid chromatography using MS/MS detection in the Multiple Reaction Monitoring mode (MRM). The first MRM transition of bixafen is the quantification ion with the mass 394 [m/z 414  $\rightarrow$  394] and the second MRM transition is the confirmatory ion with the mass 266 [m/z 414  $\rightarrow$  266]. The analytical method was successfully validated with a LOQ of 5 µg/kg soil.

An extension of this method for the determination of the metabolite M21 (bixafen-desmethyl) was reported by Brumhard, B and Koch, V (2008, BIXAFEN\_048). The extraction of the residue is identical to the methodology described for parent bixafen. For the HPLC-MS/MS measurement the following mass transitions are used for bixafen-desmethyl:  $m/z 398 \rightarrow 378$  and  $m/z 398 \rightarrow 358$ .

| Matrix             | Fortification | n  | Recovery  | Recovery, | RSD  | Analyte, reference, MRM transition       |
|--------------------|---------------|----|-----------|-----------|------|------------------------------------------|
|                    | level (µg/kg) |    | range (%) | mean (%)  | (%)  |                                          |
| Soil "Höfchen"     | 5             | 15 | 79–108    | 97        | 7.2  | Bixafen,                                 |
|                    | 50            | 15 | 69–101    | 82        | 11.5 | Brumhard, B and Freitag, T               |
| Soil "Laacher Hof" | 5             | 10 | 79–103    | 87        | 8.1  | (2006, BIXAFEN_039)                      |
|                    | 50            | 10 | 68–94     | 79        | 9.8  | m/z 414 → 394                            |
| Soil "Höfchen"     | 5             | 15 | 84–109    | 98        | 7.6  | Bixafen,                                 |
|                    | 50            | 15 | 69–100    | 82        | 11.5 | Brumhard, B and Freitag, T               |
| Soil "Laacher Hof" | 5             | 10 | 82-113    | 89        | 10.3 | (2006, BIXAFEN_039)                      |
|                    | 50            | 10 | 68–94     | 79        | 10.2 | $m/z 414 \rightarrow 266$ (confirmation) |

Table 58 Recovery data for analytical method 00959 measuring bixafen in soil

| Table 59 Recovery | data for | analytical | method | 00959/M001 | measuring M21 | (bixafen-desmethyl) in |
|-------------------|----------|------------|--------|------------|---------------|------------------------|
| soil              |          |            |        |            |               |                        |

| Matrix             | Fortification | n | Recovery  | Recovery, | RSD | Analyte, reference, MRM transition       |
|--------------------|---------------|---|-----------|-----------|-----|------------------------------------------|
|                    | level (µg/kg) |   | range (%) | mean (%)  | (%) |                                          |
| Soil "Höfchen"     | 5             | 5 | 89-100    | 95        | 4.3 | Bixafen,                                 |
|                    | 50            | 5 | 90–95     | 94        | 2.3 | Brumhard, B and Koch, V                  |
| Soil "Laacher Hof" | 5             | 5 | 86–97     | 91        | 4.9 | (2008, BIXAFEN_48)                       |
|                    | 50            | 5 | 91–96     | 93        | 1.9 | m/z 398 → 378                            |
| Soil "Höfchen"     | 5             | 5 | 93–98     | 95        | 2.6 | Bixafen,                                 |
|                    | 50            | 5 | 92–96     | 93        | 1.6 | Brumhard, B and Koch, V                  |
| Soil "Laacher Hof" | 5             | 5 | 94–99     | 97        | 2.4 | (2008, BIXAFEN_48)                       |
|                    | 50            | 5 | 89–94     | 92        | 2.2 | $m/z 398 \rightarrow 358$ (confirmation) |

#### Specialised methods

For the data generation in supervised field trials and processing studies method 01012 was developed by Schoening, R (2006, BIXAFEN\_040). Residues were extracted from 5 g of plant material with acetonitrile/water (4/1, v/v), using microwaves. After filtration of the extract, the stable isotopicallylabelled analytes were added as internal standards (ISTD). The solution was made up to volume, diluted and subjected to reversed phase HPLC-MS/MS in positive (bixafen, bixafen-desmethyl) or negative (bixafen-desmethyl) ion modes without further clean-up. Two MRM transitions for quantitation and confirmation were monitored for each analyte and in each matrix tested (bixafen: m/z 414 $\rightarrow$  394 and 414 $\rightarrow$  266; bixafen-desmethyl: m/z 398 $\rightarrow$  378 and 398 $\rightarrow$  358).

The extraction efficiency of method 01012 was investigated on wheat samples from the [dichlorophenyl-UL-<sup>14</sup>C]-wheat metabolism study (Sur, R and Kuhnke, G, 2007, BIXAFEN\_041) and on samples from the confined rotational crop study (Justus, K and Kuhnke, G, 2007, BIXAFEN\_042). In summary method 01012 was validated with an LOQ of 0.01 mg/kg for each analyte. Validation data and the extraction efficiencies are summarised in Table

| Matrix                | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition       |
|-----------------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------------|
| Wheat, grain          | 0.01                           | 5 | 93–97                 | 95                    | 1.4        | Bixafen,                                 |
|                       | 0.1                            | 5 | 94–95                 | 95                    | 0.3        | Schoening, R                             |
| Wheat, straw          | 0.01                           | 5 | 87–92                 | 89                    | 1.9        | (2006, BIXAFEN 040)                      |
|                       | 0.1                            | 5 | 83–90                 | 87                    | 3.3        | $m/z 414 \rightarrow 394$                |
| Wheat, green material | 0.01                           | 5 | 88–99                 | 92                    | 4.9        |                                          |
|                       | 0.1                            | 5 | 88–93                 | 90                    | 2.2        |                                          |
| Lettuce, head         | 0.01                           | 5 | 96–99                 | 98                    | 1.5        |                                          |
|                       | 0.1                            | 5 | 95–98                 | 96                    | 1.5        |                                          |
| Turnip, body          | 0.01                           | 5 | 94–96                 | 95                    | 1.3        |                                          |
|                       | 0.1                            | 5 | 94–96                 | 95                    | 0.6        |                                          |
| Wheat, grain          | 0.01                           | 5 | 96–99                 | 98                    | 1.1        | Bixafen,                                 |
|                       | 0.1                            | 5 | 95–96                 | 96                    | 0.6        | Schoening, R                             |
| Wheat, straw          | 0.01                           | 5 | 85–90                 | 88                    | 2.5        | (2006, BIXAFEN 040)                      |
|                       | 0.1                            | 5 | 84–90                 | 87                    | 2.8        | $m/z 414 \rightarrow 266$ (confirmation) |
| Wheat, green material | 0.01                           | 5 | 87–95                 | 90                    | 4.1        |                                          |
|                       | 0.1                            | 5 | 86–94                 | 90                    | 3.5        |                                          |
| Lettuce, head         | 0.01                           | 5 | 91–95                 | 93                    | 1.9        |                                          |
|                       | 0.1                            | 5 | 88-100                | 95                    | 5.7        |                                          |
| Turnip, body          | 0.01                           | 5 | 92-100                | 95                    | 3.4        |                                          |
|                       | 0.1                            | 5 | 94–99                 | 96                    | 1.8        |                                          |

Table 60 Recovery data for analytical method 01012 measuring bixafen in plant matrices

| Table 61 Recovery data for ana | alytical method 01012 measuring | g M21 (bixafen-desmethyl) in plant |
|--------------------------------|---------------------------------|------------------------------------|
| matrices                       |                                 |                                    |

| Matrix                | Fortification | n | Recovery  | Recovery, | RSD | Analyte, reference, MRM transition       |
|-----------------------|---------------|---|-----------|-----------|-----|------------------------------------------|
|                       | level (mg/kg) |   | range (%) | mean (%)  | (%) |                                          |
| Wheat, grain          | 0.01          | 5 | 93-100    | 96        | 2.9 | M21 (bixafen-desmethyl),                 |
|                       | 0.1           | 5 | 94–99     | 97        | 1.8 | Schoening, R                             |
| Wheat, straw          | 0.01          | 5 | 84–90     | 86        | 2.8 | (2006, BIXAFEN_040)                      |
|                       | 0.1           | 5 | 81-88     | 86        | 3.0 | $m/z 398 \rightarrow 378$                |
| Wheat, green material | 0.01          | 5 | 86–93     | 90        | 2.9 |                                          |
|                       | 0.1           | 5 | 88-92     | 90        | 1.8 |                                          |
| Lettuce, head         | 0.01          | 5 | 90-95     | 92        | 2.2 |                                          |
|                       | 0.1           | 5 | 94–98     | 96        | 1.3 |                                          |
| Turnip, body          | 0.01          | 5 | 92–98     | 95        | 2.5 |                                          |
|                       | 0.1           | 5 | 94–97     | 96        | 1.5 |                                          |
| Wheat, grain          | 0.01          | 5 | 92–97     | 94        | 1.9 | M21 (bixafen-desmethyl),                 |
|                       | 0.1           | 5 | 89–95     | 92        | 2.3 | Schoening, R                             |
| Wheat, straw          | 0.01          | 5 | 86–92     | 90        | 2.6 | (2006, BIXAFEN_040)                      |
|                       | 0.1           | 5 | 82-87     | 85        | 2.5 | $m/z 398 \rightarrow 358$ (confirmation) |
| Wheat, green material | 0.01          | 5 | 87–93     | 89        | 3.2 |                                          |
|                       | 0.1           | 5 | 88–93     | 90        | 1.9 |                                          |
| Lettuce, head         | 0.01          | 5 | 93–97     | 95        | 1.6 |                                          |
|                       | 0.1           | 5 | 92–95     | 94        | 1.2 |                                          |
| Turnip, body          | 0.01          | 5 | 95-103    | 98        | 3.1 |                                          |

| Matrix | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition |
|--------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------|
|        | 0.1                            | 5 | 96-100                | 97                    | 1.6        |                                    |

| Matrix                                     | Reference                         | Method              | % of TR        | R (mg/kg)            |                 |                 |                                |                    |
|--------------------------------------------|-----------------------------------|---------------------|----------------|----------------------|-----------------|-----------------|--------------------------------|--------------------|
|                                            |                                   |                     | TRR            | combined<br>extracts | unextracted     | bixafen         | M21<br>(bixafen-<br>desmethyl) | Total <sup>a</sup> |
| Wheat, forage                              | Sur, R and                        | metabolism          | 100            | 99.0 (1.56)          | 1.0 (0.02)      | 97.1            | 0.8 (0.01)                     | 97.9               |
| (from wheat                                | Kuhnke, G,                        | study               | (1.57)         |                      | / //            | (1.53)          |                                | (1.54)             |
| metabolism)                                | 2007,<br>BIXAFEN_041              | method<br>01012     | 100<br>(1.53)  | 97.7 (1.50)          | 2.3 (0.04)      | 96.1<br>(1.47)  | 0.9 (0.01)                     | 96.9<br>(1.49)     |
| Wheat, grain                               | Sur, R and                        | metabolism          | 100            | 97.0                 | 3.0 (0.007)     | 92.9            | 2.1 (0.005)                    | 95.0               |
| (from wheat                                | Kuhnke, G,                        | study               | (0.229)        | (0.222)              |                 | (0.213)         |                                | (0.218)            |
| metabolism)                                | 2007,<br>BIXAFEN_041              | method<br>01012     | 100<br>(0.174) | 95.1<br>(0.166)      | 4.9 (0.009)     | 91.7<br>(0.160) | 1.6 (0.003)                    | 93.3<br>(0.163)    |
| Wheat, straw<br>(from wheat<br>metabolism) | Sur, R and<br>Kuhnke, G,<br>2007, | metabolism<br>study | 100<br>(22.85) | 96.1<br>(21.95)      | 3.9 (0.90)      | 93.2<br>(21.29) | 1.7<br>(0.39)                  | 94.9<br>(21.68)    |
|                                            | BIXAFEN_041                       | method<br>01012     | 100<br>(32.23) | 95.3<br>(30.73)      | 4.7 (1.50)      | 92.2<br>(29.71) | 1.9 (0.62)                     | 94.1<br>(30.34)    |
| Wheat, straw<br>(from                      | Justus, K and<br>Kuhnke, G,       | metabolism<br>study | 100<br>(0.492) | 95.3<br>(0.469)      | 4.7 (0.023)     | 36.9<br>(0.181) | 57.2<br>(0.281)                | 94.1<br>(0.462)    |
| confined<br>rotation crops<br>study)       | 2007,<br>BIXAFEN_042              | method<br>01012     | 100<br>(0.536) | 68.0<br>(0.365)      | 32.0<br>(0.171) | 28.2<br>(0.151) | 39.8<br>(0.213)                | 68.0<br>(0.365)    |
| Wheat, forage<br>(from                     | Justus, K and<br>Kuhnke, G,       | metabolism<br>study | 100<br>(0.035) | 82.7<br>(0.029)      | 17.3<br>(0.006) | 20.7<br>(0.007) | 61.9<br>(0.022)                | 82.7<br>(0.029)    |
| confined<br>rotation crops<br>study)       | 2007,<br>BIXAFEN_042              | method<br>01012     | 100<br>(0.037) | 72.6<br>(0.027)      | 27.4<br>(0.010) | 19.6<br>(0.007) | 53.0<br>(0.020)                | 72.6<br>(0.027)    |

<sup>a</sup> Sum of bixafen and M21 (bixafen-desmethyl), expressed as bixafen equivalents

For <u>plant commodities</u> a second study used in supervised field trials was conducted by Brumhard, B and Stuke, S (2008, BIXAFEN\_043). Multi method 01013 was developed for the determination of residues of bixafen, prothioconazole, tebuconazole, trifloxystrobin and their metabolites bixafen-desmethyl, prothioconazole-desthio and CGA321113 in/on plant material (citrus fruit, pea green seed, wheat grain, rape seed and corn green material). All analytes are extracted from plant materials using a mixture of acetonitrile/water (4/1; v/v) containing cysteine hydrochloride by using a blender. After filtration of the extract, the stable isotopically labelled analytes were added. The solution was made up to volume, diluted and subjected to reversed phase HPLC-MS/MS without a further clean-up step.

Bixafen was detected using electrospray ionization in the positive ion mode (ESI+), while M21 (bixafen-desmethyl) was detected using electrospray ionization in the negative ion mode (ESI-). Two MRM transitions for quantitation and confirmation were monitored for each analyte and in each matrix tested (bixafen:  $m/z 414 \rightarrow 394$  and  $414 \rightarrow 266$ ; bixafen-desmethyl:  $m/z 398 \rightarrow 378$  and  $398 \rightarrow 358$ ). Residues were quantified using internal stable-labelled standards.

In the following tables the validation data for bixafen and M21 (bixafen-desmethyl) are summarised. The analytical method was successfully validated with LOQs of 0.01 mg/kg for bixafen and M21 (bixafen-desmethyl).

| Matrix                   | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition       |
|--------------------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------------|
| Citrus fruit             | 0.01                           | 5 | 95–114                | 105                   | 6.5        | Bixafen,                                 |
|                          | 0.1                            | 5 | 90–100                | 97                    | 4.4        | Brumhard, B and Stuke, S                 |
| Pea, green seed          | 0.01                           | 5 | 97–106                | 101                   | 3.5        | (2008, BIXAFEN_043)                      |
|                          | 0.1                            | 5 | 98–101                | 99                    | 1.2        | $m/z 414 \rightarrow 394$                |
| Rape, seed               | 0.01                           | 5 | 101-117               | 106                   | 6.2        |                                          |
|                          | 0.1                            | 5 | 96–103                | 100                   | 3.1        |                                          |
| Wheat, grain             | 0.01                           | 5 | 100-104               | 102                   | 1.6        |                                          |
|                          | 0.1                            | 5 | 96-102                | 99                    | 2.3        |                                          |
| Maize, green<br>material | 0.01                           | 5 | 104–114               | 109                   | 3.5        |                                          |
|                          | 0.1                            | 5 | 100-110               | 105                   | 4.0        |                                          |
| Citrus fruit             | 0.01                           | 5 | 96–113                | 106                   | 6.0        | Bixafen,                                 |
|                          | 0.1                            | 5 | 96–108                | 104                   | 4.6        | Brumhard, B and Stuke, S                 |
| Pea, green seed          | 0.01                           | 5 | 80–95                 | 85                    | 7.1        | (2008, BIXAFEN_043)                      |
|                          | 0.1                            | 5 | 90–101                | 96                    | 4.5        | $m/z 414 \rightarrow 266$ (confirmation) |
| Rape, seed               | 0.01                           | 5 | 95–104                | 101                   | 4.1        |                                          |
|                          | 0.1                            | 5 | 95-100                | 97                    | 2.2        |                                          |
| Wheat, grain             | 0.01                           | 5 | 97–108                | 103                   | 4.8        |                                          |
|                          | 0.1                            | 5 | 91–100                | 94                    | 4.5        |                                          |
| Maize, green<br>material | 0.01                           | 5 | 101–118               | 110                   | 6.4        |                                          |
|                          | 0.1                            | 5 | 102-114               | 107                   | 4.4        |                                          |

Table 64 Recovery data for analytical method 01013 measuring M21 (bixafen-desmethyl) in plant matrices

| Matrix                   | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition |
|--------------------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------|
| Citrus fruit             | 0.01                           | 5 | 98–107                | 103                   | 3.2        | M21 (bixafen-desmethyl),           |
|                          | 0.1                            | 5 | 91–102                | 98                    | 4.8        | Brumhard, B and Stuke, S           |
| Pea, green seed          | 0.01                           | 5 | 92–106                | 99                    | 5.3        | (2008, BIXAFEN_043)                |
|                          | 0.1                            | 5 | 94–103                | 98                    | 3.4        | m/z 398 → 378                      |
| Rape, seed               | 0.01                           | 5 | 100-110               | 104                   | 4.1        |                                    |
|                          | 0.1                            | 5 | 98–107                | 101                   | 3.9        |                                    |
| Wheat, grain             | 0.01                           | 5 | 96–103                | 100                   | 2.7        |                                    |
|                          | 0.1                            | 5 | 97–101                | 99                    | 1.8        |                                    |
| Maize, green<br>material | 0.01                           | 5 | 103–115               | 111                   | 4.3        |                                    |
|                          | 0.1                            | 5 | 100–109               | 104                   | 3.5        |                                    |
| Citrus fruit             | 0.01                           | 5 | 98–108                | 103                   | 4.1        | M21 (bixafen-desmethyl),           |
|                          | 0.1                            | 5 | 90–102                | 97                    | 4.6        | Brumhard, B and Stuke, S           |

| Matrix                   | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition       |
|--------------------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------------|
| Pea, green seed          | 0.01                           | 5 | 91-102                | 97                    | 5.2        | (2008, BIXAFEN_043)                      |
|                          | 0.1                            | 5 | 92-102                | 99                    | 4.2        | $m/z 398 \rightarrow 358$ (confirmation) |
| Rape, seed               | 0.01                           | 5 | 98–112                | 103                   | 5.6        |                                          |
|                          | 0.1                            | 5 | 93–102                | 97                    | 3.5        |                                          |
| Wheat, grain             | 0.01                           | 5 | 97–103                | 99                    | 2.6        |                                          |
|                          | 0.1                            | 5 | 96–102                | 99                    | 2.4        |                                          |
| Maize, green<br>material | 0.01                           | 5 | 102–114               | 110                   | 4.6        |                                          |
|                          | 0.1                            | 5 | 101-111               | 106                   | 4.4        |                                          |

In the <u>livestock animal</u> feeding study the analytical method 01036 was used, which was described by Schoening, R and Willmes, J (2008, BIXAFEN\_044).

Skim milk and cream first were separated by using a centrifuge. The residues were extracted from 5 g of whole milk, skim milk, muscle, kidney, and egg with acetonitrile/water (4/1, v/v) using an ultra-turax. After filtration and clean-up on a C18 Cartridge the stable labelled internal standards were added to the extracts.

Residues in fat and milk cream were extracted from 5 g sample material with n-hexane (saturated with acetonitrile) first in an ultra-turax. After filtration and clean-up through a syringe tube, acetonitrile (saturated with n-hexane) was added, and, after shaking, the acetonitrile phase was separated. Subsequently the stable isotopically labelled standards were added.

Residues in liver were extracted from 5 g sample material with acetonitrile/water (4/1, v/v), either directly by using a microwave (cattle liver) or for chicken liver by using a blender first and a subsequent microwave extraction of the solids with acetonitrile/water (7/3, v/v). After filtration and clean-up on a C18 cartridge, the stable isotopically labelled standards were added to the extracts.

The solutions were made up to volume, diluted, filtered through a membrane filter and subjected to reversed phase HPLC-MS/MS in positive (parent compound, BYF00587-desmethyl) or negative (BYF00587-desmethyl) ion modes. Two MRM transitions for quantitation and confirmation were monitored for each analyte and in each matrix tested (bixafen: m/z 414 $\rightarrow$  394 and 414 $\rightarrow$  266; bixafen-desmethyl: m/z 398 $\rightarrow$  378 and 398 $\rightarrow$  358). Residues were quantified using internal stable-labelled standards.

In the following tables the validation data for bixafen and M21 (bixafen-desmethyl) are summarised. The analytical method was successfully validated with LOQs of 0.01 mg/kg for bixafen and M21 (bixafen-desmethyl).

| Matrix              | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition |
|---------------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------|
| Egg (without shell) | 0.01                           | 5 | 97–107                | 102                   | 3.6        | Bixafen,                           |
|                     | 0.1                            | 5 | 98–104                | 101                   | 2.3        | Schoening, R and Willmes, J        |
| Egg yolk            | 0.01                           | 3 | 91–98                 | 95                    | 3.8        | (2008, BIXAFEN_044)                |
|                     | 0.1                            | 3 | 101-102               | 101                   | 0.6        | $m/z 414 \rightarrow 394$          |
| Egg white           | 0.01                           | 3 | 91–105                | 99                    | 7.3        |                                    |
|                     | 0.1                            | 3 | 100-105               | 102                   | 2.5        |                                    |
| Milk, whole         | 0.01                           | 5 | 87–105                | 98                    | 6.8        |                                    |

Table 65 Recovery data for analytical method 01036 measuring bixafen in animal matrices

| Matrix              | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition       |
|---------------------|--------------------------------|---|-----------------------|-----------------------|------------|------------------------------------------|
|                     | 0.1                            | 5 | 99–104                | 101                   | 2.1        |                                          |
| Skim milk           | 0.01                           | 3 | 91–104                | 97                    | 6.8        |                                          |
|                     | 0.1                            | 3 | 97–102                | 100                   | 2.9        |                                          |
| Milk cream          | 0.01                           | 3 | 93–95                 | 94                    | 1.1        |                                          |
|                     | 0.1                            | 3 | 94–95                 | 94                    | 0.6        |                                          |
| Muscle              | 0.01                           | 5 | 92-105                | 98                    | 5.4        |                                          |
|                     | 0.1                            | 5 | 89–100                | 96                    | 4.4        |                                          |
| Kidney              | 0.01                           | 5 | 91–99                 | 94                    | 3.3        |                                          |
|                     | 0.1                            | 5 | 97–99                 | 98                    | 0.7        |                                          |
| Poultry liver       | 0.01                           | 5 | 95-100                | 91                    | 4.8        |                                          |
|                     | 0.1                            | 5 | 96–100                | 97                    | 2.1        |                                          |
| Cattle liver        | 0.01                           | 5 | 96–102                | 99                    | 2.9        |                                          |
|                     | 0.1                            | 5 | 96–100                | 97                    | 1.7        |                                          |
| Fat                 | 0.01                           | 5 | 83–101                | 92                    | 7.8        |                                          |
|                     | 0.1                            | 5 | 93–99                 | 96                    | 2.6        |                                          |
| Egg (without shell) | 0.01                           | 5 | 92–99                 | 95                    | 3.2        | Bixafen,                                 |
|                     | 0.1                            | 5 | 99–104                | 101                   | 1.9        | Schoening, R and Willmes, J              |
| Egg yolk            | 0.01                           | 3 | 80–99                 | 91                    | 11.0       | (2008, BIXAFEN_044)                      |
|                     | 0.1                            | 3 | 95–98                 | 96                    | 1.6        | $m/z 414 \rightarrow 266$ (confirmation) |
| Egg white           | 0.01                           | 3 | 96-115                | 104                   | 9.7        |                                          |
|                     | 0.1                            | 3 | 100-104               | 102                   | 2.0        |                                          |
| Milk, whole         | 0.01                           | 5 | 97–113                | 103                   | 6.3        |                                          |
|                     | 0.1                            | 5 | 105-111               | 107                   | 2.1        |                                          |
| Skim milk           | 0.01                           | 3 | 103–119               | 110                   | 7.4        |                                          |
|                     | 0.1                            | 3 | 96–102                | 99                    | 3.0        |                                          |
| Milk cream          | 0.01                           | 3 | 69–103                | 99                    | 3.6        |                                          |
|                     | 0.1                            | 3 | 94–96                 | 95                    | 1.1        |                                          |
| Muscle              | 0.01                           | 5 | 93–104                | 100                   | 5.0        |                                          |
|                     | 0.1                            | 5 | 95–108                | 103                   | 5.1        |                                          |
| Kidney              | 0.01                           | 5 | 86–103                | 97                    | 6.8        |                                          |
|                     | 0.1                            | 5 | 95–98                 | 97                    | 1.3        |                                          |
| Poultry liver       | 0.01                           | 5 | 85–96                 | 90                    | 4.9        |                                          |
|                     | 0.1                            | 5 | 98–103                | 100                   | 2.1        |                                          |
| Cattle liver        | 0.01                           | 5 | 73–104                | 90                    | 12.7       |                                          |
|                     | 0.1                            | 5 | 95–97                 | 96                    | 0.9        |                                          |
| Fat                 | 0.01                           | 5 | 84–108                | 99                    | 9.3        |                                          |
|                     | 0.1                            | 5 | 96-104                | 101                   | 3.2        |                                          |

| Matrix              | Fortification<br>level (mg/kg) | n | Recovery<br>range (%) | Recovery,<br>mean (%) | RSD<br>(%) | Analyte, reference, MRM transition               |
|---------------------|--------------------------------|---|-----------------------|-----------------------|------------|--------------------------------------------------|
| Egg (without shell) | 0.01                           | 5 | 91-102                | 97                    | 4.1        | M21 (bixafen-desmethyl),                         |
|                     | 0.1                            | 5 | 94-101                | 97                    | 2.7        | Schoening, R and Willmes, J                      |
| Egg yolk            | 0.01                           | 3 | 85-103                | 95                    | 9.6        | (2008, BIXAFEN 044)                              |
|                     | 0.1                            | 3 | 94-103                | 99                    | 4.6        | $m/z 398 \rightarrow 378$                        |
| Egg white           | 0.01                           | 3 | 102-105               | 103                   | 1.7        |                                                  |
|                     | 0.1                            | 3 | 103-107               | 105                   | 2.0        |                                                  |
| Milk, whole         | 0.01                           | 5 | 94-104                | 99                    | 4.0        |                                                  |
|                     | 0.1                            | 5 | 96-102                | 99                    | 2.4        |                                                  |
| Skim milk           | 0.01                           | 3 | 91-104                | 98                    | 6.7        |                                                  |
|                     | 0.1                            | 3 | 97-101                | 99                    | 2.0        |                                                  |
| Milk cream          | 0.01                           | 3 | 91-99                 | 94                    | 4.6        |                                                  |
|                     | 0.1                            | 3 | 98-102                | 100                   | 2.0        |                                                  |
| Muscle              | 0.01                           | 5 | 95-109                | 101                   | 5.1        |                                                  |
|                     | 0.1                            | 5 | 89–98                 | 96                    | 4.0        |                                                  |
| Kidney              | 0.01                           | 5 | 89–100                | 95                    | 5.2        |                                                  |
|                     | 0.1                            | 5 | 94–97                 | 95                    | 1.4        |                                                  |
| Poultry liver       | 0.01                           | 5 | 83-100                | 93                    | 7.5        |                                                  |
| i outry nvoi        | 0.1                            | 5 | 93-96                 | 94                    | 1.5        |                                                  |
| Cattle liver        | 0.01                           | 5 | 92-99                 | 94                    | 3.1        |                                                  |
| Cuttle liver        | 0.1                            | 5 | 94-96                 | 95                    | 1.4        |                                                  |
| Fat                 | 0.01                           | 5 | 84–100                | 94                    | 5.6        |                                                  |
| 1 di                | 0.1                            | 5 | 88-98                 | 93                    | 4.0        |                                                  |
| Egg (without shell) | 0.01                           | 5 | 89–102                | 96                    | 6.1        | M21 (bixafen–desmethyl),                         |
| Egg (without shell) | 0.1                            | 5 | 91-96                 | 94                    | 2.8        | Schoening, R and Willmes, J                      |
| Egg yolk            | 0.01                           | 3 | 90–102                | 98                    | 6.8        | (2008, BIXAFEN 044)                              |
| Lgg yolk            | 0.1                            | 3 | 97-103                | 99                    | 3.2        | $m/z 398 \rightarrow 358 \text{ (confirmation)}$ |
| Egg white           | 0.01                           | 3 | 99–109                | 103                   | 5.0        |                                                  |
| Egg white           | 0.1                            | 3 | 100–104               | 102                   | 2.0        |                                                  |
| Milk, whole         | 0.01                           | 5 | 90–104                | 99                    | 5.8        |                                                  |
| white               | 0.1                            | 5 | 93-99                 | 97                    | 2.6        |                                                  |
| Skim milk           | 0.01                           | 3 | 91–110                | 99                    | 9.9        |                                                  |
| Skiili liilik       | 0.1                            | 3 | 92–97                 | 99                    | 2.7        |                                                  |
| Milk cream          | 0.01                           | 3 | 92-97                 | 94                    | 1.2        |                                                  |
| with creatil        | 0.1                            | 3 | 86-92                 | 89                    | 3.4        |                                                  |
| Muscle              | 0.01                           | 5 | 93-112                | 100                   | 7.3        |                                                  |
| 111105010           | 0.01                           | 5 | 93–112<br>88–99       | 95                    | 4.8        |                                                  |
| Kidney              |                                | 5 | 90–102                | 93<br>98              | 4.8<br>5.0 |                                                  |
| Multy               | 0.01                           | 5 | 90–102<br>97–105      | 102                   | 3.0        |                                                  |
| Poultry liver       | 0.1                            | 5 | 97–103<br>87–96       | 91                    | 3.1        |                                                  |
|                     | 1                              | 5 | 87–96<br>93–96        | 91                    |            |                                                  |
| Cattle liver        | 0.1                            | + | 1                     | 1                     | 1.2        |                                                  |
| Caule liver         | 0.01                           | 5 | 88-100                | 94                    | 5.3        |                                                  |
| E-4                 | 0.1                            | 5 | 93-97                 | 95                    | 1.6        |                                                  |
| Fat                 | 0.01                           | 5 | 81-101                | 90                    | 8.1        |                                                  |
|                     | 0.1                            | 5 | 90–99                 | 94                    | 4.1        |                                                  |

Table 66 Recovery data for analytical method 01036 measuring M21 (bixafen-desmethyl) in animal matrices

## Stability of pesticides in stored analytical samples

The storage stability of bixafen and M21 (bixafen-desmethyl) has been investigated in wheat grain, wheat straw, wheat green material, lettuce head, potato tuber, rape seed and soil for a storage period of up to 24 months. No significant degradation of the residues was observed.

For animal matrices no storage stability data were provided. Samples in livestock metabolism or feeding studies were analysed within one month.

The storage stability of bixafen and its primary metabolite M21 (bixafen-desmethyl) was investigated in plant matrices (wheat grain, wheat straw, wheat green material, lettuce head, potato tuber and rape seed) for up to 24 months by Schoening, R and Billian, P (2009, BIXAFEN\_045).

Homogenised samples were weighed into glass bottles and fortified individually at levels of 0.1 mg/kg for each analyte. After fortification, the solvent was allowed to evaporate. In addition, untreated samples of each sample material were prepared for control and recovery experiments. Subsequently the bottles were closed and stored deep frozen until analysis (except for the day 0 samples). At each sampling interval, three fortified and three control samples were removed from the deep-freezer. Subsequently, two of the control samples of each sample material were freshly fortified with a mixture of the test items to determine the concurrent recoveries. Fortification levels were at the same magnitude as the spiked storage samples. Bixafen and desmethyl-bixafen were spiked separately to separate control material.

The analytical method 01012 was used for the determination of bixafen and its metabolite desmethyl-bixafen in/on plant material. The analytes were extracted with acetonitrile/water (4/1, v/v) using a microwave. After filtration of the extract, the stable isotopically-labelled analytes were added as internal standards. The solution was made up to volume, diluted and subjected to reversed phase HPLC-MS/MS in positive and negative ion modes without further clean-up. Residues were quantified using internal stable-labelled standards. The LOQ was 0.01 mg/kg for all matrices and for both analytes investigated.

In the following table the recovered residues in stored samples are summarised:

Table 67 Storage stability of bixafen and M21 (bixafen-desmethyl) in plant commodities fortified at levels of 0.1 mg/kg

| Matrix                | Analyte                 | Storage            | Residue level in sto | red sample | es (%      | Procedural recovery<br>(% nominal level) |      |  |
|-----------------------|-------------------------|--------------------|----------------------|------------|------------|------------------------------------------|------|--|
|                       |                         | period<br>(months) | nominal level)       |            |            |                                          |      |  |
|                       |                         |                    | Individual values    | Mean       | RSD<br>(%) | Individual values                        | Mean |  |
| Wheat, grain          | bixafen                 | 0                  | 97, 94, 93, 96, 92   | 94         | 2.2        | -                                        | _    |  |
|                       |                         | 1                  | 87, 100, 92          | 93         | 7.1        | 99, 99                                   | 99   |  |
|                       |                         | 2                  | 101, 91, 101         | 98         | 5.9        | 94,95                                    | 95   |  |
|                       |                         | 3                  | 74, 88, 90           | 84         | 10.4       | 97.104                                   | 101  |  |
|                       |                         | 6                  | 100, 101, 103        | 101        | 1.5        | 98, 107                                  | 103  |  |
|                       |                         | 12                 | 84, 84, 86           | 85         | 1.4        | 95,98                                    | 97   |  |
|                       |                         | 18                 | 92, 100, 101         | 98         | 5.1        | 97, 105                                  | 101  |  |
|                       |                         | 24                 | 100, 98, 99          | 99         | 1.0        | 95,96                                    | 96   |  |
|                       | M21 (bixafen-desmethyl) | 0                  | 88, 86, 90, 89, 86   | 88         | 2.0        | -                                        | -    |  |
|                       |                         | 1                  | 120, 123, 129        | 124        | 3.7        | 98, 98                                   | 98   |  |
|                       |                         | 2                  | 115, 116, 117        | 116        | 0.9        | 98,96                                    | 97   |  |
|                       |                         | 3                  | 118, 118, 127        | 121        | 4.3        | 100, 98                                  | 99   |  |
|                       |                         | 6                  | 115, 119, 124        | 119        | 3.8        | 113, 97                                  | 105  |  |
|                       |                         | 12                 | 111, 112, 111        | 111        | 0.5        | 98, 97                                   | 98   |  |
|                       |                         | 18                 | 118, 118, 114        | 117        | 2.0        | 104, 109                                 | 107  |  |
|                       |                         | 24                 | 99, 104, 102         | 102        | 2.5        | 89,86                                    | 88   |  |
| Wheat, green material | bixafen                 | 0                  | 93, 86, 94, 96, 95   | 93         | 4.3        | _                                        | -    |  |
|                       |                         | 1                  | 101, 103, 100        | 101        | 1.5        | 102, 103                                 | 103  |  |
|                       |                         | 2                  | 101, 102, 99         | 101        | 1.5        | 98, 100                                  | 99   |  |
|                       |                         | 3                  | 105, 108, 111        | 108        | 2.8        | 101, 103                                 | 102  |  |
|                       |                         | 6                  | 95, 100, 102         | 99         | 3.6        | 102, 98                                  | 100  |  |
|                       |                         | 12                 | 91, 94, 94           | 93         | 1.9        | 93,96                                    | 95   |  |
|                       |                         | 18                 | 99, 99, 101          | 100        | 1.2        | 96, 98                                   | 97   |  |
|                       |                         | 24                 | 96, 96, 102          | 98         | 3.5        | 97, 102                                  | 100  |  |
|                       | M21 (bixafen-desmethyl) | 0                  | 87, 87, 89, 87, 83   | 87         | 2.5        | -                                        | -    |  |
|                       |                         | 1                  | 112, 114, 116        | 114        | 1.8        | 98, 98                                   | 98   |  |

| Matrix        | Analyte                 | Storage<br>period<br>(months) | Residue level in stor<br>nominal level) | Procedural recovery<br>(% nominal level) |            |                   |      |
|---------------|-------------------------|-------------------------------|-----------------------------------------|------------------------------------------|------------|-------------------|------|
|               |                         |                               | Individual values                       | Mean                                     | RSD<br>(%) | Individual values | Mean |
|               |                         | 2                             | 113, 120, 121                           | 118                                      | 3.7        | 95, 97            | 96   |
|               |                         | 3                             | 115, 120, 121                           | 119                                      | 2.7        | 103, 101          | 102  |
|               |                         | 6                             | 110, 110, 111                           | 110                                      | 0.5        | 96, 100           | 98   |
|               |                         | 12                            | 106, 113, 117                           | 112                                      | 5.0        | 101, 99           | 100  |
|               |                         | 18                            | 108, 105, 108                           | 107                                      | 1.6        | 98, 93            | 96   |
|               |                         | 24                            | 96, 93, 97                              | 95                                       | 2.2        | 81, 84            | 83   |
| Wheat, straw  | bixafen                 | 0                             | 93, 95, 98, 95, 96                      | 95                                       | 1.9        | _                 | _    |
|               |                         | 1                             | 89, 92, 92                              | 91                                       | 1.9        | 87, 88            | 88   |
|               |                         | 2                             | 86, 90, 93                              | 90                                       | 3.9        | 84, 85            | 85   |
|               |                         | 3                             | 90, 91, 93                              | 91                                       | 1.7        | 108, 104          | 106  |
|               |                         | 6                             | 104, 104, 105                           | 104                                      | 0.6        | 95,97             | 96   |
|               |                         | 12                            | 84, 87, 88                              | 86                                       | 2.4        | 87, 85            | 86   |
|               |                         | 18                            | 96, 96, 96                              | 96                                       | 0.0        | 93, 93            | 93   |
|               |                         | 24                            | 98, 93, 93                              | 95                                       | 3.1        | 90, 88            | 89   |
|               | M21 (bixafen-desmethyl) | 0                             | 85, 90, 86, 84, 88                      | 87                                       | 2.8        | _                 | _    |
|               |                         | 1                             | 104, 106, 107                           | 106                                      | 1.4        | 85, 88            | 87   |
|               |                         | 2                             | 101, 100, 107                           | 100                                      | 1.5        | 86, 85            | 86   |
|               |                         | 3                             | 115, 116, 118                           | 116                                      | 1.3        | 103, 109          | 106  |
|               |                         | 6                             | 98, 101, 103                            | 101                                      | 2.5        | 87, 87            | 87   |
|               |                         | 12                            | 104, 104, 104                           | 101                                      | 0.0        | 90, 91            | 91   |
|               |                         | 12                            | 107, 117, 112                           | 112                                      | 4.5        | 93, 95            | 94   |
|               |                         | 24                            | 100, 98, 100                            | 99                                       | 1.2        | 78, 80            | 79   |
| Potato, tuber | bixafen                 | 0                             | 90, 92, 91, 91, 91                      | 91                                       | 0.8        | -                 | _    |
| rotato, tuber |                         | 1                             | 104, 105, 104                           | 104                                      | 0.6        | 102, 107          | 105  |
|               |                         | 2                             | 74, 76, 76                              | 75                                       | 1.5        | 75, 73            | 74   |
|               |                         | 3                             | 129, 129, 129                           | 129                                      | 0.0        | 100, 100          | 100  |
|               |                         | 6                             | 102, 104, 104                           | 103                                      | 1.1        | 100, 100          | 100  |
|               |                         | 12                            | 95, 94, 96                              | 95                                       | 1.1        | 97, 93            | 95   |
|               |                         | 18                            | 102, 103, 100                           | 102                                      | 1.5        | 113, 96           | 105  |
|               |                         | 24                            | 93, 94, 95                              | 94                                       | 0.6        | 96, 94            | 95   |
|               | M21 (bixafen-desmethyl) | 0                             | 87, 89, 93, 90, 92                      | 90                                       | 2.6        | -                 | _    |
|               |                         | 1                             | 124, 125, 126                           | 125                                      | 0.8        | 98, 106           | 102  |
|               |                         | 2                             | 94, 97, 95                              | 95                                       | 1.6        | 80, 76            | 78   |
|               |                         | 3                             | 125, 130, 135                           | 130                                      | 3.8        | 99,97             | 98   |
|               |                         | 6                             | 118, 123, 121                           | 121                                      | 2.1        | 96,100            | 98   |
|               |                         | 12                            | 113, 113, 113                           | 113                                      | 0.0        | 96, 95            | 96   |
|               |                         | 12                            | 114, 114, 114                           | 113                                      | 0.0        | 111, 93           | 102  |
|               |                         | 24                            | 106, 107, 106                           | 106                                      | 0.5        | 84, 83            | 84   |
| Lettuce, head | bixafen                 | 0                             | 95, 96, 97, 103, 97                     | 98                                       | 3.2        | -                 | _    |
| Lettuce, nead |                         | 1                             | 103, 104, 102                           | 103                                      | 1.0        | 99, 100           | 100  |
|               |                         | 2                             | 101, 105, 111                           | 105                                      | 4.8        | 99, 100           | 100  |
|               |                         | 3                             | 112, 114, 115                           | 114                                      | 1.3        | 99, 104           | 102  |
|               |                         | 6                             | 104, 104, 117                           | 108                                      | 6.9        | 114, 100          | 100  |
|               |                         | 12                            | 104, 104, 117                           | 99                                       | 1.2        | 94, 100           | 97   |
|               |                         | 12                            | 99, 100, 101                            | 100                                      | 1.2        | 94,100            | 98   |
|               |                         | 24                            | 101, 100, 101                           | 100                                      | 0.6        | 97,99             | 98   |
|               | M21 (bixafen-desmethyl) | 0                             | 91, 93, 96, 93, 89                      | 92                                       | 2.8        | -                 | -    |
|               |                         | 1                             | 62, 75, 76                              | 71                                       | 11.0       | 101, 103          | 102  |
|               |                         | 2                             | 62, 75, 76<br>100, 101, 104             | 102                                      | 2.0        | 95, 100           | 98   |
|               |                         | 3                             |                                         |                                          |            |                   | 105  |
|               |                         |                               | 84, 81, 85                              | 83                                       | 2.5        | 103, 106          | -    |
|               |                         | 6                             | 79, 84, 90                              | 84                                       | 6.5        | 99, 113           | 106  |
|               |                         | 12                            | 92, 93, 95                              | 93                                       | 1.6        | 96, 93            | 95   |
|               |                         | 18                            | 92, 92, 93                              | 92                                       | 0.6        | 95, 92            | 94   |
| Dana 1        | himefor                 | 24                            | 97, 99, 93                              | 96                                       | 3.2        | 91, 87            | 89   |
| Rape, seed    | bixafen                 | 0                             | 87, 87, 91, 89, 89                      | 89                                       | 1.9        | -                 | -    |
|               |                         | 1                             | 91, 90, 93                              | 91                                       | 1.7        | 100, 99           | 100  |
|               |                         | 2                             | 63, 66, 67                              | 65                                       | 3.2        | 69, 69            | 69   |

| Matrix | Analyte                 | Storage<br>period<br>(months) | Residue level in stor<br>nominal level) | es (% | Procedural recovery<br>(% nominal level) |                   |      |
|--------|-------------------------|-------------------------------|-----------------------------------------|-------|------------------------------------------|-------------------|------|
|        |                         |                               | Individual values Mean RSD (%)          |       |                                          | Individual values | Mean |
|        |                         | 3                             | 109, 113, 114                           | 112   | 2.4                                      | 100, 101          | 101  |
|        |                         | 6                             | 94, 89,88                               | 90    | 3.6                                      | 98, 99            | 99   |
|        |                         | 12                            | 77, 89, 92                              | 86    | 9.2                                      | 92, 92            | 92   |
|        |                         | 18                            | 103, 96, 95                             | 98    | 4.5                                      | 93, 93            | 93   |
|        |                         | 24                            | 93, 91, 91                              | 92    | 1.3                                      | 89, 90            | 90   |
|        | M21 (bixafen-desmethyl) | 0                             | 90, 89, 86, 91, 91                      | 89    | 2.3                                      | -                 | -    |
|        |                         | 1                             | 123, 123, 122                           | 123   | 0.5                                      | 103, 100          | 102  |
|        |                         | 2                             | 86, 86, 86                              | 86    | 0.0                                      | 71, 74            | 73   |
|        |                         | 3                             | 114, 120, 121                           | 118   | 3.2                                      | 90, 98            | 94   |
|        |                         | 6                             | 111, 112, 113                           | 112   | 0.9                                      | 96, 95            | 96   |
|        |                         | 12                            | 117, 117, 117                           | 117   | 0.0                                      | 96, 96            | 96   |
|        |                         | 18                            | 113, 113, 121                           | 116   | 4.0                                      | 89, 89            | 89   |
|        |                         | 24                            | 105, 104, 104                           | 104   | 0.6                                      | 84, 89            | 87   |

In addition to plant matrices the storage stability of bixafen (Brumhard, B and Freitag, T, 2008, BIXAFEN\_046) and bixafen-desmethyl (Freitag, T and Hoffmann, M, 2009, BIXAFEN\_047) in stored <u>soil</u> samples was investigated.

Untreated soil from Laacher Hof, Germany (sandy loam) and Höfchen, Germany (silt loam) was used for the storage stability study and individually fortified at levels .of 50  $\mu$ g/kg with both analytes. After 273/279, 456 and 587 days for bixafen and 134, 183, and 721 days for M21 (bixafendesmethyl) samples were analysed for the remaining residue.

Soil samples were analysed for bixafen according to method 00952. The residue of M21 (bixafen-desmethyl) in soil was measured with the modified version 00950/M001. The LOQ for both methods was 5  $\mu$ g/kg soil (see analytical methods).

Table 68 Storage stability of bixafen and M21 (bixafen-desmethyl) in soil fortified at levels of  $50 \ \mu g/kg$ 

| Soil        | Analyte, Reference          | Storage<br>period<br>(days) | Residue level in stor<br>nominal level) | es (% | Procedural recovery<br>(% nominal level) |                   |      |
|-------------|-----------------------------|-----------------------------|-----------------------------------------|-------|------------------------------------------|-------------------|------|
|             |                             | (                           | Individual values                       | Mean  | RSD<br>(%)                               | Individual values | Mean |
| Laacher Hof | bixafen,                    | 0                           | 95, 98, 97, 94                          | 96    | 1.7                                      | -                 | -    |
|             | Brumhard, B and Freitag, T  | 273                         | 92, 93, 95, 94                          | 93    | 1.3                                      | 91.9              | -    |
|             | 2008, BIXAFEN_046           | 456                         | 94, 94, 93, 94                          | 94    | 0.6                                      | 97.4              | -    |
|             |                             | 587                         | 104, 95, 97, 96                         | 98    | 3.8                                      | 92.2              | -    |
|             | M21 (bixafen-desmethyl)     | 0                           | 95, 96, 95, 96                          | 96    | 0.8                                      | -                 | -    |
|             | Freitag, T and Hoffmann, M, | 134                         | 92, 98, 107, 96                         | 98    | 6.2                                      | 102               | -    |
|             | 2009, BIXAFEN_047           | 183                         | 112, 111, 107, 102                      | 108   | 4.4                                      | 107               | -    |
|             |                             | 721                         | 97, 95, 99, 91                          | 96    | 3.6                                      | 101               | -    |
| Höfchen     | bixafen,                    | 0                           | 96, 99, 100, 97                         | 98    | 1.9                                      | _                 | -    |
|             | Brumhard, B and Freitag, T  | 279                         | 97, 98, 97, 98                          | 97    | 0.6                                      | 100               | -    |
|             | 2008, BIXAFEN_046           | 456                         | 93, 95, 97, 94                          | 95    | 1.7                                      | 97.8              | -    |
|             |                             | 587                         | 100, 96, 97, 97                         | 98    | 2.0                                      | 100               | -    |
|             | M21 (bixafen-desmethyl)     | 0                           | 94, 92, 94, 95                          | 94    | 1.5                                      | _                 | -    |
|             | Freitag, T and Hoffmann, M, | 134                         | 100, 99, 107, 103                       | 102   | 3.7                                      | 98                | -    |
|             | 2009, BIXAFEN_047           | 183                         | 99, 107, 113, 103                       | 105   | 5.7                                      | 105               | -    |
|             |                             | 721                         | 95, 98, 102, 98                         | 98    | 3.0                                      | 105               | -    |

# **USE PATTERN**

Bixafen is a protectant fungicide. The Meeting received uses involving foliar spray applications in the field to rape plants and cereal grains.

Table 69 List of uses of bixafen

| Crop            | Country                 | Applica | tion detail |          |                                      |     |                                            |
|-----------------|-------------------------|---------|-------------|----------|--------------------------------------|-----|--------------------------------------------|
|                 |                         | Form    | Туре        | kg ai/ha | Growth<br>stage at last<br>treatment | No. | Pre harvest interval (PHI) in days         |
| Oilseeds        |                         |         |             |          |                                      |     |                                            |
| Oilseed         | United Kingdom          | EC      | annovina    | 0.075    |                                      | 2   | 56                                         |
| rape<br>Cereals | United Kingdom          | EU      | spraying    | 0.073    | _                                    | 2   | 30                                         |
| Barley          | Austria                 | EC      | spraying    | 0.075    | BBCH 69                              | 2   | 35                                         |
| Daney           | Ausula                  | EC      | spraying    | 0.075    | BBCII 09                             | 2   | not established—covered by growth          |
| Barley          | Belgium                 | EC      | spraying    | 0.075    | BBCH 49                              | 2   | stage                                      |
| Barley          | Estonia                 | EC      | spraying    | 0.075    | BBCH 61                              | 2   | 35                                         |
| Barley          | France                  | EC      | spraying    | 0.075    | BBCH 61                              | 1   | 35                                         |
|                 |                         |         |             |          |                                      | -   | not established—covered by growth          |
| Barley          | Germany                 | EC      | spraying    | 0.075    | BBCH 61                              | 2   | stage                                      |
| Barley          | Hungary                 | EC      | spraying    | 0.075    | flowering                            | 2   | 35                                         |
| -               |                         |         |             |          |                                      |     | not established—covered by growth          |
| Barley          | Ireland                 | EC      | spraying    | 0.06     | BBCH 61                              | 2   | stage                                      |
| Barley          | Latvia                  | EC      | spraying    | 0.06     | BBCH 61                              | 2   | 35                                         |
| Barley          | Lithuania               | EC      | spraying    | 0.06     | BBCH 61                              | 2   | 35                                         |
|                 |                         |         |             |          |                                      |     | not established-covered by growth          |
| Barley          | Netherlands             | EC      | spraying    | 0.075    | BBCH 61                              | 2   | stage                                      |
| Barley          | Romania                 | EC      | spraying    | 0.05     | BBCH 59                              | 2   | 35                                         |
|                 |                         | 5.0     |             |          |                                      |     | not established—covered by growth          |
| Barley          | Switzerland             | EC      | spraying    | 0.075    | BBCH 51                              | 1   | stage                                      |
| Dealers         | I In the d IZ in a dama | EC      |             | 0.125    | DDCU (1                              | 2   | not established—covered by growth          |
| Barley          | United Kingdom          | EC      | spraying    | 0.125    | BBCH 61                              | 2   | stage<br>not established—covered by growth |
| Oats            | Belgium                 | EC      | spraying    | 0.075    | BBCH 59                              | 2   | stage                                      |
| Oats            | Estonia                 | EC      | spraying    | 0.075    | BBCH 59<br>BBCH 61                   | 2   | 35                                         |
| Oats            | France                  | EC      | spraying    | 0.073    | BBCH 61                              | 1   | 35                                         |
| Oats            | Hungary                 | EC      | spraying    | 0.075    | flowering                            | 2   | 35                                         |
| Outo            | Trangary                | 20      | spraying    | 0.075    | nowening                             |     | not established—covered by growth          |
| Oats            | Ireland                 | EC      | spraying    | 0.06     | BBCH 61                              | 2   | stage                                      |
|                 |                         |         | -1 -7 -8    |          |                                      |     | not established—covered by growth          |
| Oats            | Netherlands             | EC      | spraying    | 0.075    | BBCH 61                              | 2   | stage                                      |
|                 |                         |         |             |          |                                      |     | not established—covered by growth          |
| Oats            | United Kingdom          | EC      | spraying    | 0.125    | BBCH 61                              | 2   | stage                                      |
| Rye             | Austria                 | EC      | spraying    | 0.094    | BBCH 69                              | 2   | 35                                         |
| Rye             | Belgium                 | EC      | spraying    | 0.094    | BBCH 59                              | 2   | covered by growth stage                    |
| Rye             | Estonia                 | EC      | spraying    | 0.075    | BBCH 69                              | 2   | 35                                         |
| Rye             | France                  | EC      | spraying    | 0.094    | BBCH 69                              | 1   | 35                                         |
| Rye             | Germany                 | EC      | spraying    | 0.094    | BBCH 69                              | 2   | covered by growth stage                    |
| Rye             | Hungary                 | EC      | spraying    | 0.075    | flowering                            | 2   | 35                                         |
| _               |                         |         |             |          |                                      |     | not established—covered by growth          |
| Rye             | Ireland                 | EC      | spraying    | 0.094    | BBCH 73                              | 2   | stage                                      |
| Rye             | Latvia                  | EC      | spraying    | 0.06     | BBCH 69                              | 2   | 35                                         |
| Rye             | Lithuania               | EC      | spraying    | 0.06     | BBCH 69                              | 2   | 35                                         |
| Duo             | Netherlands             | EC      | annovina    | 0.094    | DDCU 40                              | 2   | not established—covered by growth          |
| Rye             | remendius               | EC      | spraying    | 0.094    | BBCH 69                              | 4   | stage<br>not established—covered by growth |
| Rye             | Switzerland             | EC      | spraying    | 0.094    | BBCH 61                              | 1   | stage                                      |
| ityt            | Switzeriallu            | LC      | spraying    | 0.024    | DDCI101                              | 1   | not established—covered by growth          |
| Rye             | United Kingdom          | EC      | spraying    | 0.125    | BBCH 73                              | 2   | stage                                      |
|                 | Childe Kingdolli        |         | spraying    | 0.120    | DDCH /J                              | -   | not established—covered by growth          |
| Spelt           | Belgium                 | EC      | spraying    | 0.094    | BBCH 65                              | 2   | stage                                      |
| Spelt           | Netherlands             | EC      | spraying    | 0.094    | BBCH 69                              | 2   | not established—covered by growth          |

| Crop      | Country        | Applica | Application detail |          |                                      |     |                                            |  |  |  |  |
|-----------|----------------|---------|--------------------|----------|--------------------------------------|-----|--------------------------------------------|--|--|--|--|
|           |                | Form    | Туре               | kg ai/ha | Growth<br>stage at last<br>treatment | No. | Pre harvest interval (PHI) in days         |  |  |  |  |
|           |                |         |                    |          |                                      |     | stage                                      |  |  |  |  |
|           |                |         |                    |          |                                      |     | not established-covered by growth          |  |  |  |  |
| Spelt     | Switzerland    | EC      | spraying           | 0.075    | BBCH 61                              | 1   | stage                                      |  |  |  |  |
| Triticale | Austria        | EC      | spraying           | 0.094    | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Triticale | Belgium        | EC      | spraying           | 0.094    | BBCH 65                              | 2   | covered by growth stage                    |  |  |  |  |
| Triticale | Estonia        | EC      | spraying           | 0.075    | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Triticale | France         | EC      | spraying           | 0.094    | BBCH 69                              | 1   | 35                                         |  |  |  |  |
| Triticale | Germany        | EC      | spraying           | 0.094    | BBCH 69                              | 2   | covered by growth stage                    |  |  |  |  |
| Triticale | Hungary        | EC      | spraying           | 0.075    | flowering                            | 2   | 35                                         |  |  |  |  |
|           |                |         |                    |          |                                      |     | not established-covered by growth          |  |  |  |  |
| Triticale | Ireland        | EC      | spraying           | 0.094    | BBCH 73                              | 2   | stage                                      |  |  |  |  |
| Triticale | Latvia         | EC      | spraying           | 0.06     | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Triticale | Lithuania      | EC      | spraying           | 0.06     | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Triticale | Netherlands    | EC      | spraying           | 0.094    | BBCH 69                              | 2   | not established—covered by growth stage    |  |  |  |  |
| Triticale | Switzerland    | EC      | spraying           | 0.094    | BBCH 61                              | 1   | not established—covered by growth stage    |  |  |  |  |
|           |                |         |                    |          |                                      |     | not established-covered by growth          |  |  |  |  |
| Triticale | United Kingdom | EC      | spraying           | 0.125    | BBCH 73                              | 2   | stage                                      |  |  |  |  |
| Wheat     | Austria        | EC      | spraying           | 0.094    | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Wheat     | Belgium        | EC      | spraying           | 0.094    | BBCH 65                              | 2   | covered by growth stage                    |  |  |  |  |
| Wheat     | Estonia        | EC      | spraying           | 0.075    | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Wheat     | France         | EC      | spraying           | 0.094    | BBCH 69                              | 1   | 35                                         |  |  |  |  |
| Wheat     | Germany        | EC      | spraying           | 0.094    | BBCH 69                              | 2   | covered by growth stage                    |  |  |  |  |
| Wheat     | Hungary        | EC      | spraying           | 0.075    | flowering                            | 2   | 35                                         |  |  |  |  |
| Wheat     | Ireland        | EC      | spraying           | 0.094    | BBCH 73                              | 2   | not established—covered by growth stage    |  |  |  |  |
| Wheat     | Latvia         | EC      | spraying           | 0.06     | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Wheat     | Lithuania      | EC      | spraying           | 0.06     | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Wheat     | Netherlands    | EC      | spraying           | 0.094    | BBCH 69                              | 2   | not established—covered by growth stage    |  |  |  |  |
| Wheat     | Romania        | EC      | spraying           | 0.06     | BBCH 69                              | 2   | 35                                         |  |  |  |  |
| Wheat     | Switzerland    | EC      | spraying           | 0.094    | BBCH 61                              | 1   | not established—covered by growth<br>stage |  |  |  |  |
| Wheat     | United Kingdom | EC      | spraying           | 0.125    | BBCH 73                              | 2   | not established—covered by growth<br>stage |  |  |  |  |

## **RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS**

Residue levels were reported as measured. Application rates were always reported as bixafen equivalents. When residues were not detected they are shown as below the LOQ, e.g., < 0.01 mg/kg. Application rates and spray concentrations have generally been rounded to two significant figures. HR and STMR values from the trials conducted according to maximum GAP have been used for the estimation of maximum residue levels. These results are underlined.

Laboratory reports included method validation including batch recoveries with spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Field reports provided data on the sprayers used and their calibration, plot size, residue sample size and sampling date. Although trials included control plots, no control data are recorded in the tables except where residues in control samples exceeded the LOQ. Residue data are recorded unadjusted for % recovery.

Bixafen—supervised residue trials

| Commodity | Indoor/Outdoor | Treatment | Countries                               | Table    |
|-----------|----------------|-----------|-----------------------------------------|----------|
| Rape seed | outdoor        | foliar    | Belgium, France, Germany, Italy, Spain, | Table 70 |

| Commodity      | Indoor/Outdoor | Treatment | Countries                                                                   | Table            |
|----------------|----------------|-----------|-----------------------------------------------------------------------------|------------------|
|                |                |           | The Netherlands, United Kingdom                                             |                  |
| Barley         | outdoor        | foliar    | Belgium, France, Germany, Italy, Portugal,<br>Spain, Sweden, United Kingdom | Table 71         |
| Wheat          | outdoor        | foliar    | France, Germany, Greece, Italy, Portugal,<br>Spain, Sweden, United Kingdom  | Table<br>72Table |
| Rape forage    | outdoor        | foliar    | Belgium, France, Germany, Italy, Spain,<br>The Netherlands, United Kingdom  | Table 73         |
| Barley, forage | outdoor        | foliar    | Belgium, France, Germany, Italy, Portugal,<br>Spain, Sweden, United Kingdom | Table 74         |
| Wheat, forage  | outdoor        | foliar    | France, Germany, Greece, Italy, Portugal,<br>Spain, Sweden, United Kingdom  | Table 75         |
| Barley, straw  | outdoor        | foliar    | Belgium, France, Germany, Italy, Portugal,<br>Spain, Sweden, United Kingdom | Table 76         |
| Wheat, straw   | outdoor        | foliar    | France, Germany, Greece, Italy, Portugal,<br>Spain, Sweden, United Kingdom  | Table 77         |

| Table 70 Residues of bixafen and M21 | (bixafen-desmethyl) in rape seed | s following foliar spray with |
|--------------------------------------|----------------------------------|-------------------------------|
| an EC formulation                    |                                  |                               |

| Location,                           | App | lication       |                 |               |          | Residue     | s, mg/kg |                        |                  |                     | Trial No.,                |  |
|-------------------------------------|-----|----------------|-----------------|---------------|----------|-------------|----------|------------------------|------------------|---------------------|---------------------------|--|
| Year (variety)                      | no  | kg<br>ai/ha    | kg<br>ai/hL     | water<br>L/ha | BBCH     | Sample      | DALT     | Bixafen                | M21 <sup>a</sup> | Total <sup>a</sup>  | Reference                 |  |
| cGAP UK                             | 2   | 0.075          | 0.025-<br>0.075 | 100-<br>300   | n.s.     |             |          |                        |                  |                     |                           |  |
| France<br>(North),                  | 2   | 0.075<br>0.075 | 0.025<br>0.025  | 300<br>300    | 63<br>67 | pod<br>seed | 42<br>55 | 0.02                   | 0.01             | 0.03                | 08-2116-01<br>BIXAFEN_057 |  |
| Braslou<br>2008<br>(Grizzly)        |     |                |                 |               |          |             | 55       | <u>0.01</u>            | < 0.01           | 0.02                |                           |  |
| The<br>Netherlands,<br>Hoofddorp    | 2   | 0.075<br>0.075 | 0.038<br>0.038  | 200<br>200    | 64<br>69 | seed        | 64       | < 0 <u>.01</u>         | < 0.01           | < 0 <u>.02</u>      | 08-2116-02<br>BIXAFEN_057 |  |
| 2008<br>(Maximus)                   |     |                |                 |               |          |             |          |                        |                  |                     | Processing trial          |  |
| Belgium,<br>Cortil-<br>Noirmont     | 2   | 0.075<br>0.075 | 0.038<br>0.038  | 200<br>200    | 64<br>73 | pod<br>seed | 42<br>56 | 0.09<br>< 0 <u>.01</u> | 0.09<br>0.01     | 0.18<br><u>0.02</u> | 08-2116-03<br>BIXAFEN_057 |  |
| 2008<br>(Exocet)                    |     |                |                 |               |          |             |          |                        |                  |                     |                           |  |
| Germany,<br>Werl                    | 2   | 0.075<br>0.075 | 0.038<br>0.038  | 200<br>200    | 65<br>69 | seed        | 56       | <u>0.01</u>            | 0.01             | 0.02                | 08-2116-04<br>BIXAFEN_057 |  |
| 2008<br>(Astrid)                    |     |                |                 |               |          |             |          |                        |                  |                     |                           |  |
| The<br>Netherlands,<br>Nieuw Beerta | 2   | 0.075<br>0.075 | 0.025<br>0.025  | 300<br>300    | 69<br>77 | seed        | 49       | < 0 <u>.01</u>         | < 0.01           | < 0 <u>.02</u>      | 09-2053-02<br>BIXAFEN_058 |  |
| 2009<br>(not<br>specified)          |     |                |                 |               |          |             |          |                        |                  |                     |                           |  |
| Belgium,<br>Cortil-<br>Noirmont     | 2   | 0.075<br>0.075 | 0.038<br>0.038  | 200<br>200    | 65<br>73 | pod         | 30<br>42 | 0.20<br>0.14           | 0.03<br>0.03     | 0.23<br>0.17        | 09-2053-03<br>BIXAFEN_058 |  |
|                                     |     |                |                 |               |          | seed        | 55       | < 0 <u>.01</u>         | < 0.01           | < 0 <u>.02</u>      |                           |  |

| Location,                                    | App | olication      |                |               |          | Residue     | Trial No.,     |                                |                        |                                |                                               |
|----------------------------------------------|-----|----------------|----------------|---------------|----------|-------------|----------------|--------------------------------|------------------------|--------------------------------|-----------------------------------------------|
| Year (variety)                               | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample      | DALT           | Bixafen                        | M21 <sup>a</sup>       | Total <sup>a</sup>             | Reference                                     |
| 2009<br>(Monalisa)                           |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| France<br>(North),<br>Lignieres les<br>Roye  | 2   | 0.075<br>0.075 | 0.025<br>0.025 | 300<br>300    | 67<br>79 | seed        | 55             | < 0 <u>.01</u>                 | < 0.01                 | < 0 <u>.02</u>                 | 09-2053-04<br>BIXAFEN_058                     |
| 2009<br>(Kador)                              |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| United<br>Kingdom,<br>Bishop<br>Burton       | 2   | 0.075<br>0.075 | 0.039<br>0.038 | 192<br>200    | 65<br>69 | pod<br>seed | 30<br>42<br>56 | 0.19<br>0.05<br>< 0 <u>.01</u> | 0.05<br>0.02<br>< 0.01 | 0.24<br>0.07<br>< 0 <u>.02</u> | 09-2244-01<br>Bixafen_059                     |
| 2009<br>(Castille)                           |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| Germany,<br>Burscheid                        | 2   | 0.06<br>0.06   | 0.02 0.02      | 300<br>300    | 71<br>78 | pod         | 31             | 0.18                           | 0.11                   | 0.29                           | 11-2013-03<br>BIXAFEN 060                     |
| 2011<br>(Elektra)                            |     |                |                |               |          | seed        | 50             | <u>0.017</u>                   | 0.011                  | <u>0.028</u>                   |                                               |
| France<br>(North),<br>Cahmbourg<br>sur Indre | 2   | 0.06<br>0.06   | 0.02<br>0.02   | 300<br>300    | 76<br>80 | pod<br>seed | 21<br>33       | 0.24<br>< 0.01                 | 0.04<br>< 0.01         | 0.28<br>< 0.02                 | 08-2112-01<br>BIXAFEN_066                     |
| 2008<br>(Flash)                              |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| Germany,<br>Burscheid                        | 2   | 0.06<br>0.06   | 0.02<br>0.02   | 300<br>300    | 69<br>73 | seed        | 35             | 0.02                           | < 0.01                 | 0.03                           | 08-2112-02<br>BIXAFEN_066                     |
| 2008<br>(Titan)                              |     |                |                |               |          |             |                |                                |                        |                                | Processing trial                              |
| Belgium,<br>Cortil-<br>Noirmont              | 2   | 0.06<br>0.06   | 0.02<br>0.02   | 300<br>300    | 77<br>80 | pod<br>seed | 21<br>28       | 0.32<br>< 0.01                 | 0.09<br>< 0.01         | 0.41<br>< 0.02                 | 08-2112-03<br>BIXAFEN_066                     |
| 2008<br>(Exocet)                             |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| Germany,<br>Werl                             | 2   | 0.06<br>0.06   | 0.02<br>0.02   | 300<br>300    | 75<br>78 | seed        | 30             | 0.02                           | < 0.01                 | 0.03                           | 08-2112-04<br>BIXAFEN_066                     |
| 2008<br>(Astrid)                             |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| United<br>Kingdom,<br>Bishop<br>Burton       | 2   | 0.06<br>0.06   | 0.03<br>0.03   | 200<br>200    | 67<br>75 | pod<br>seed | 29<br>44       | < 0.01<br><u>0.01</u>          | < 0.01<br>< 0.01       | < 0.02<br><u>0.02</u>          | 09-2245-01<br>BIXAFEN_067<br>Processing trial |
| 2009<br>(Castille)                           |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| United<br>Kingdom,<br>Banbury                | 2   | 0.06<br>0.06   | 0.03<br>0.03   | 200<br>200    | 80<br>83 | Seed        | 28             | 0.052                          | < 0.01                 | 0.062                          | 11-2137-01<br>BIXAFEN_073                     |
| 2011<br>(D.K.<br>Cabernet)                   |     |                |                |               |          |             |                |                                |                        |                                |                                               |
| Spain,<br>Les                                | 2   | 0.063<br>0.06  | 0.02<br>0.02   | 315<br>300    | 74<br>78 | pod         | (14)<br>21     | -<br>< 0.01                    | -<br>< 0.01            | -<br>< 0.02                    | 11-2013-01<br>BIXAFEN_060                     |
| Franqueses<br>del Valles                     |     |                |                |               |          | seed        | 30             | 0.017                          | < 0.01                 | 0.027                          |                                               |

| Location,                              | App | lication      |              |               |          | Residue | s, mg/kg |              |                  |                    | Trial No.,                |
|----------------------------------------|-----|---------------|--------------|---------------|----------|---------|----------|--------------|------------------|--------------------|---------------------------|
| Year (variety)                         | no  | kg<br>ai/ha   | kg<br>ai/hL  | water<br>L/ha | BBCH     | Sample  | DALT     | Bixafen      | M21 <sup>a</sup> | Total <sup>a</sup> | Reference                 |
| 2011<br>(Pacific)                      |     |               |              |               |          |         |          |              |                  |                    |                           |
| France<br>(South),<br>Bouloc<br>2011   | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 72<br>79 | seed    | 30       | < 0.01       | < 0.01           | < 0.02             | 11-2013-02<br>BIXAFEN_060 |
| (NK Alamir)                            |     |               |              |               |          |         |          |              |                  |                    |                           |
| Italy,<br>Tarquinia                    | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 73<br>75 | pod     | 14<br>21 | 0.48<br>0.51 | 0.063<br>0.087   | 0.543<br>0.597     | 11-2013-04<br>BIXAFEN_060 |
| 2011<br>(Hybristar)                    |     |               |              |               |          | seed    | 30       | < 0.01       | < 0.01           | < 0.02             |                           |
| Spain,<br>La Luisiana                  | 2   | 0.06<br>0.069 | 0.02<br>0.02 | 300<br>344    | 77<br>82 | seed    | 31       | < 0.01       | < 0.01           | < 0.02             | 11-2013-05<br>BIXAFEN_060 |
| 2011<br>(Eswilliams)                   |     |               |              |               |          |         |          |              |                  |                    |                           |
| France<br>(South),<br>Velleron<br>2011 | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 79<br>80 | seed    | 30       | < 0.01       | < 0.01           | < 0.02             | 11-2013-06<br>BIXAFEN_060 |

<sup>a</sup> Expressed as bixafen

DALT = Days after last treatment

BBCH 63 = 30% of flowers on main raceme open

BBCH 64 = 40% of flowers on main raceme open

BBHC 65 = Full flowering: 50% of flowers on main raceme open

BBCH 67 = Flowering declining: majority of petals fallen

BBCH 69 = End of flowering

BBCH 71-78 = 10% to 80% of pods have reached final size

BBCH 79 = Nearly all pods have reached final size

BBCH 82 = 20% of pods ripe, seeds dark and hard

| Table 71 Residues of bixafen and M21 | (bixafen-desmethyl) in barley | grain following foliar spray with |
|--------------------------------------|-------------------------------|-----------------------------------|
| an EC formulation                    |                               |                                   |

| Location,                                                         | App | lication       |                |               |          | Residues | , mg/kg  |                     |                  |                     | Trial No.,                   |
|-------------------------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|----------|---------------------|------------------|---------------------|------------------------------|
| Year (variety)                                                    | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT     | Bixafen             | M21 <sup>a</sup> | Total <sup>a</sup>  | Reference                    |
| France<br>(North),<br>St. Cyr en<br>Arthies<br>2006<br>(Carafe)   | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain    | 34       | 0.04                | < 0.01           | 0.05                | R 2006 0432/7<br>BIXAFEN_049 |
| France<br>(North),<br>Chambourg<br>sur Indre<br>2006<br>(Vanessa) | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain    | 49       | 0.08                | 0.02             | 0.10                | R 2006 0433/5<br>BIXAFEN_049 |
| Sweden,<br>Staffanstorp                                           | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain    | 36<br>45 | <u>0.09</u><br>0.06 | 0.02<br>0.01     | $\frac{0.11}{0.07}$ | R 2006 0434/3<br>BIXAFEN_049 |

| Location,           | App | lication |       |       |      | Residue  | s, mg/kg |             |                  |                    | Trial No.,    |  |
|---------------------|-----|----------|-------|-------|------|----------|----------|-------------|------------------|--------------------|---------------|--|
| Year (variety)      | no  | kg       | kg    | water | BBCH | Sample   | DALT     | Bixafen     | M21 <sup>a</sup> | Total <sup>a</sup> | Reference     |  |
|                     |     | ai/ha    | ai/hL | L/ha  |      |          |          |             |                  |                    |               |  |
| 2006                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Pasadena)          |     |          |       |       |      |          |          |             |                  |                    |               |  |
| United              | 2   | 0.125    | 0.042 | 300   | 39   | grain    | 62       | 0.04        | < 0.01           | 0.05               | R 2006 0435/1 |  |
| Kingdom,            | 2   | 0.125    | 0.042 | 300   | 61   | Sram     | 02       | 0.01        | • 0.01           | 0.05               | BIXAFEN 049   |  |
| Hoxne               |     | 0.125    | 0.012 | 200   | 01   |          |          |             |                  |                    | DININ LIN_019 |  |
|                     |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2006                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Sequel)            |     |          |       |       |      |          |          |             |                  |                    |               |  |
| Germany,            | 2   | 0.125    | 0.042 | 300   | 37   | grain    | 35       | 0.07        | 0.01             | 0.08               | R 2006 0437/8 |  |
| Swisttal-           |     | 0.125    | 0.042 | 300   | 61   |          |          |             |                  |                    | BIXAFEN_049   |  |
| Heimerzheim         |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2007                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2006<br>(Class)     |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Class)<br>France   | 2   | 0.125    | 0.042 | 300   | 37   |          | 34       | 0.16        | 0.04             | 0.20               | R 2007 0081/4 |  |
| (North),            | 2   | 0.125    | 0.042 | 300   | 61   | ear      | 54       | 0.16        | 0.04             | 0.20               | BIXAFEN 050   |  |
| St. Cyr en          |     | 0.125    | 0.042 | 500   | 01   | grain    | 58       | 0.04        | 0.01             | 0.05               | DIAAPEN_050   |  |
| Arthies             |     |          |       |       |      | gram     | 50       | 0.04        | 0.01             | 0.05               |               |  |
| 1 ii iii ii ii      |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2007                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Heinley)           |     |          |       |       |      |          |          |             |                  |                    |               |  |
| France              | 2   | 0.125    | 0.042 | 300   | 41   | ear      | 35       | 0.09        | 0.02             | 0.11               | R 2007 0082/0 |  |
| (North),            |     | 0.125    | 0.042 | 300   | 61   |          |          |             |                  |                    | BIXAFEN_050   |  |
| Carrépuis           |     |          |       |       |      | grain    | 60       | 0.02        | < 0.01           | 0.03               |               |  |
|                     |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2007                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Prestige)          |     |          |       |       |      |          |          |             |                  |                    |               |  |
| Germany,            | 2   | 0.125    | 0.042 | 300   | 37   | grain    | 35       | <u>0.10</u> | 0.01             | <u>0.11</u>        | R 2007 0160/8 |  |
| Vechta-             |     | 0.125    | 0.042 | 300   | 61   |          |          |             |                  |                    | BIXAFEN_050   |  |
| Lanförden           |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2007                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Tocada)            |     |          |       |       |      |          |          |             |                  |                    |               |  |
| United              | 2   | 0.125    | 0.042 | 300   | 39   | grain    | 35       | 0.04        | 0.01             | 0.05               | R 2007 0161/6 |  |
| Kingdom,            | -   | 0.125    | 0.042 | 300   | 69   | Bruin    | 66       | 0.05        | 0.01             | 0.06               | BIXAFEN 050   |  |
| Sandringham         |     |          |       |       |      |          |          |             |                  |                    |               |  |
| Ũ                   |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2007                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Tippel)            |     |          |       |       |      |          |          |             |                  |                    |               |  |
| Belgium,            | 2   | 0.125    | 0.042 | 300   | 37   | grain    | 34       | 0.07        | 0.02             | 0.09               | R 2007 0162/4 |  |
| Villers-Perwin      |     | 0.125    | 0.042 | 300   | 61   |          | 51       | <u>0.09</u> | 0.01             | <u>0.10</u>        | BIXAFEN_050   |  |
| 2007                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2007<br>(Bastriv)   |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Beatrix)<br>France | 2   | 0.125    | 0.042 | 300   | 37   | grain    | 35       | 0.10        | 0.01             | 0.11               | R 2006 0438/6 |  |
| (South),            | 2   | 0.125    | 0.042 | 300   | 61   | grain    | 33       | 0.10        | 0.01             | 0.11               | BIXAFEN 051   |  |
| Villeneuve lés      |     | 0.125    | 0.042 | 300   | 01   |          |          |             |                  |                    | DIAAPEN_031   |  |
| Bouloc              |     |          |       |       |      |          |          |             |                  |                    |               |  |
| Douioe              |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2006                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Prestige)          |     |          |       |       |      |          |          |             |                  |                    |               |  |
| Italy,              | 2   | 0.125    | 0.042 | 300   | 37   | grain    | 35       | 0.04        | < 0.01           | 0.05               | R 2006 0439/4 |  |
| Bologna             |     | 0.125    | 0.042 | 300   | 61   |          | 46       | 0.04        | < 0.01           | 0.05               | BIXAFEN_051   |  |
|                     |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2006                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Federal)           |     | 0.15     | 0.545 |       | 105  | <u> </u> | 0.5      |             | 0.55             | 0.1.5              |               |  |
| France              | 2   | 0.125    | 0.042 | 300   | 37   | grain    | 35       | 0.14        | 0.02             | 0.16               | R 2006 0440/8 |  |
| (South),            |     | 0.125    | 0.042 | 300   | 71   |          |          |             |                  |                    | BIXAFEN_051   |  |
| Quincieux           |     |          |       |       |      |          |          |             |                  |                    |               |  |
| 2006                |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Scarlett)          |     |          |       |       |      |          |          |             |                  |                    |               |  |
| (Sourieu)           |     | 1        | 1     | 1     | 1    | 1        | 1        | 1           | 1                | 1                  | 1             |  |

| Location,                                              | App | lication       |                |               |          | Residues     |          |                     | Trial No.,       |                     |                                                  |
|--------------------------------------------------------|-----|----------------|----------------|---------------|----------|--------------|----------|---------------------|------------------|---------------------|--------------------------------------------------|
| Year (variety)                                         | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample       | DALT     | Bixafen             | M21 <sup>a</sup> | Total <sup>a</sup>  | Reference                                        |
| Spain,<br>Llerona                                      | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain        | 35<br>48 | $\frac{0.08}{0.06}$ | 0.02<br>0.02     | $\frac{0.10}{0.08}$ | R 2006 0441/6<br>BIXAFEN_051                     |
| 2006<br>(Graphic)                                      |     |                |                |               |          |              |          |                     |                  |                     |                                                  |
| Portugal,<br>Azambuja                                  | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain        | 35<br>57 | 0.02<br><u>0.03</u> | < 0.01<br>< 0.01 | 0.03<br><u>0.04</u> | R 2006 0442/4<br>BIXAFEN_051                     |
| 2006<br>(Prestige)                                     |     |                |                |               |          |              |          |                     |                  |                     |                                                  |
| France<br>(South),<br>Villeneuve<br>Lés Bouloc<br>2007 | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | ear<br>grain | 34<br>60 | 0.17<br><u>0.06</u> | 0.07<br>0.02     | 0.24<br><u>0.08</u> | R 2007 0083/0<br>BIXAFEN_052                     |
| (Prestige)                                             | 2   | 0.125          | 0.042          | 300           | 39       | grain        | 39       | 0.06                | 0.02             | 0.08                | R 2007 0084/9                                    |
| Italy,<br>Bologna                                      | 2   | 0.125          | 0.042          | 300           | 61       | gram         | 56       | 0.06                | 0.02             | 0.08                | BIXAFEN_052                                      |
| 2007<br>(Tunica)                                       |     |                |                |               |          |              |          |                     |                  |                     |                                                  |
| Spain,<br>Caldes de<br>Montbui                         | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain        | 35<br>40 | <u>0.25</u><br>0.25 | 0.04<br>0.04     | <u>0.29</u><br>0.29 | R 2007 0085/7<br>BIXAFEN_052                     |
| 2007<br>(Grafit)                                       |     |                |                |               |          |              |          |                     |                  |                     |                                                  |
| France (South),                                        | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | ear          | 35       | 0.08                | 0.04             | 0.12                | R 2007 0158/6<br>BIXAFEN 052                     |
| Cherves<br>2007                                        |     | 0.125          | 0.042          | 500           | 01       | grain        | 50       | <u>0.04</u>         | < 0.01           | <u>0.05</u>         | BIAAI EN_032                                     |
| (Scarlett)<br>Italy,<br>Senetica di<br>Bondeno<br>2007 | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | grain        | 35       | 0.34                | 0.04             | 0.38                | R 2007 0159/4<br>BIXAFEN_052                     |
| (Tunica)                                               |     |                |                |               |          |              |          |                     |                  |                     |                                                  |
| Sweden,<br>Staffanstorp                                | 2   | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | grain        | 40       | 0.23                | 0.03             | 0.26                | R 2006 0444/0<br>BIXAFEN_062                     |
| 2006<br>(Prestige)                                     |     |                |                |               |          |              |          |                     |                  |                     | processing trial                                 |
| Germany,<br>Swisttal-                                  | 2   | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | grain        | 35       | 0.13                | 0.02             | 0.15                | R 2006 0445/9<br>BIXAFEN_062                     |
| Heimerzheim<br>2006<br>(Class)                         |     |                |                |               |          |              |          |                     |                  |                     | processing trial                                 |
| France<br>(North),<br>Fresnoy les<br>Roye              | 2   | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | grain        | 46       | 0.20                | 0.02             | 0.22                | R 2006 0446/7<br>BIXAFEN_062<br>processing trial |
| 2006                                                   |     |                |                |               |          |              |          |                     |                  |                     | 1                                                |
| (Scarlet)<br>Germany,<br>Burscheid                     | 2   | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | grain        | 43       | 0.03                | < 0.01           | 0.04                | R 2006 0447/5<br>BIXAFEN 062                     |
| 2006<br>(Barke)                                        |     |                |                |               |          |              |          |                     |                  |                     | processing trial                                 |

<sup>a</sup> Expressed as bixafen

DALT = Days after last treatment

BBCH 37 = Flag leaf just visible, still rolled

BBCH 39 = Flag leaf stage: flag leaf fully unrolled, ligule just visible

BBCH 41 = Early boot stage: flag leaf sheath extending

BBCH 61 = Beginning of flowering: first anthers visible

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

BBCH 71 = Watery ripe: first grains have reached half their final size

| Table 72 Residues of bixafen and M21 | (bixafen-desmethyl) in wheat grain following foliar spray with |
|--------------------------------------|----------------------------------------------------------------|
| an EC formulation                    |                                                                |

| Location,                                    | Application |                |                |               |          | Residues     | s, mg/kg |                          |                  |                          | Trial No.,                   |
|----------------------------------------------|-------------|----------------|----------------|---------------|----------|--------------|----------|--------------------------|------------------|--------------------------|------------------------------|
| Year (variety)                               | no          | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample       | DALT     | Bixafen                  | M21 <sup>a</sup> | Total <sup>a</sup>       | Reference                    |
| France<br>(North),<br>Chambourg<br>sur Indre | 2           | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 34       | 0.01                     | < 0.01           | 0.02                     | R 2006 0421/1<br>BIXAFEN_053 |
| 2006<br>(Tecnico)                            |             |                |                |               |          |              |          |                          |                  |                          |                              |
| France<br>(North),<br>Chaussy                | 2           | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 37       | < 0 <u>.01</u>           | < 0.01           | < 0 <u>.02</u>           | R 2006 0423/8<br>BIXAFEN_053 |
| 2006<br>(Isengrain)                          |             |                |                |               |          |              |          |                          |                  |                          |                              |
| Sweden,<br>Staffanstorp                      | 2           | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 35<br>47 | < 0 <u>.01</u><br>< 0.01 | < 0.01<br>< 0.01 | < 0 <u>.02</u><br>< 0.02 | R 2006 0424/6<br>BIXAFEN_053 |
| 2006<br>(Vinjett)                            |             |                |                |               |          |              |          |                          |                  |                          |                              |
| United<br>Kingdom,<br>Thetford               | 2           | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 34<br>38 | $\frac{0.03}{0.01}$      | < 0.01<br>< 0.01 | $\frac{0.04}{0.02}$      | R 2006 0425/4<br>BIXAFEN_053 |
| 2006<br>(Paragon)                            |             |                |                |               |          |              |          |                          |                  |                          |                              |
| Germany,<br>Leverkusen                       | 2           | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 35       | 0.01                     | < 0.01           | 0.02                     | R 2006 0426/2<br>BIXAFEN_053 |
| 2006<br>(Batis)                              |             |                |                |               |          |              |          |                          |                  |                          |                              |
| France (North),                              | 2           | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | ear          | 35       | 0.17                     | 0.12             | 0.29                     | R 2007 0091/1<br>BIXAFEN_054 |
| Braslou                                      |             |                |                |               |          | grain        | 44       | < 0 <u>.01</u>           | < 0.01           | < 0 <u>.02</u>           |                              |
| 2007<br>(Mendel)                             |             |                |                |               |          |              |          |                          |                  |                          |                              |
| United<br>Kingdom,                           | 2           | 0.125<br>0.125 | 0.039<br>0.042 | 318<br>300    | 47<br>69 | ear          | 35       | 0.06                     | 0.05             | 0.11                     | R 2007 0093/8<br>BIXAFEN_054 |
| Diss                                         |             |                |                |               |          | grain        | 73       | < 0 <u>.01</u>           | < 0.01           | < 0 <u>.02</u>           |                              |
| 2007<br>(Belvoir)                            |             |                |                |               |          |              |          |                          |                  |                          |                              |
| France<br>(North),<br>Chambourg<br>sur Indre | 2           | 0.125<br>0.125 | 0.042 0.042    | 300<br>300    | 47<br>69 | ear<br>grain | 35<br>56 | 0.14<br>< 0 <u>.01</u>   | 0.10<br>< 0.01   | 0.24<br>< 0 <u>.02</u>   | R 2007 0094/6<br>BIXAFEN_054 |
| 2007                                         |             |                |                |               |          |              |          |                          |                  |                          |                              |

| Location,                           | App | lication       |                |               |          | Residues     | s, mg/kg |                          | Trial No.,       |                          |                              |
|-------------------------------------|-----|----------------|----------------|---------------|----------|--------------|----------|--------------------------|------------------|--------------------------|------------------------------|
| Year (variety)                      | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample       | DALT     | Bixafen                  | M21 <sup>a</sup> | Total <sup>a</sup>       | Reference                    |
| (Apache)<br>Sweden,<br>Staffanstorp | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | ear          | 35<br>69 | 0.18                     | 0.17             | 0.35<br>< 0.02           | R 2007 0095/4<br>BIXAFEN_054 |
| 2007<br>(Vinjett)                   |     |                |                |               |          |              |          |                          |                  |                          |                              |
| Germany,<br>Burscheid<br>2007       | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 35<br>56 | <u>0.03</u><br>< 0.01    | 0.01<br>< 0.01   | <u>0.04</u><br>< 0.02    | R 2007 0155/1<br>BIXAFEN_054 |
| (Thasos)<br>Greece,                 | 2   | 0.125          | 0.042          | 300           | 47       | grain        | 35       | < 0.01                   | < 0.01           | < 0.02                   | R 2006 0427/0                |
| Thiva<br>2006<br>(Claudio)          |     | 0.125          | 0.042          | 300           | 69       |              | 43       | < 0.01                   | < 0.01           | < 0.02                   | BIXAFEN_055                  |
| Italy,<br>Palidoro<br>Fiumicino     | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 35<br>52 | <u>0.01</u><br>< 0.01    | < 0.01<br>< 0.01 | <u>0.02</u><br>< 0.02    | R 2006 0428/9<br>BIXAFEN_055 |
| 2006<br>(Claudio)<br>France         | 2   | 0.125          | 0.042          | 300           | 47       | - min        | 35       | < 0.01                   | < 0.01           | < 0.02                   | R 2006 0429/7                |
| (South),<br>Lagardelle/<br>Lèze     | 2   | 0.125          | 0.042          | 300           | 69       | grain        | 33       | < 0 <u>.01</u>           | < 0.01           | < 0 <u>.02</u>           | BIXAFEN_055                  |
| 2006<br>(not specified)             |     |                |                |               |          |              |          |                          |                  |                          |                              |
| Spain,<br>Paradas<br>Sevilla        | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 53<br>69 | grain        | 35<br>47 | <u>0.03</u><br>0.02      | < 0.01<br>< 0.01 | <u>0.04</u><br>0.03      | R 2006 0430/0<br>BIXAFEN_055 |
| 2006<br>(Italo)                     |     |                |                |               |          |              |          |                          |                  |                          |                              |
| France<br>(South),<br>Vouille       | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | grain        | 35<br>35 | < 0 <u>.01</u><br>< 0.01 | < 0.01<br>< 0.01 | < 0 <u>.02</u><br>< 0.02 | R 2006 0431/9<br>BIXAFEN_055 |
| 2006<br>(Technico)                  |     |                |                |               |          |              |          |                          |                  |                          |                              |
| France (South),                     | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | ear          | 35       | 0.37                     | 0.24             | 0.61                     | R 2007 0086/5<br>BIXAFEN_056 |
| Villeneuve lès<br>Bouloc            |     |                |                |               |          | grain        | 35       | < 0 <u>.01</u>           | < 0.01           | < 0 <u>.02</u>           |                              |
| 2007<br>(Panifor)                   | -   |                | 0.040          |               | 1.5      |              |          | 0.61                     | 0.15             | 0.50                     | D. 0005.0005/0               |
| Italy,<br>Spinazzola                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | ear<br>grain | 35<br>44 | 0.61<br>0.02             | 0.15             | 0.76                     | R 2007 0087/3<br>BIXAFEN_056 |
| 2007<br>(Simeto)                    |     |                |                |               |          | 8            |          |                          |                  |                          |                              |
| France<br>(South),<br>Les Chères    | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 52<br>69 | ear<br>grain | 35<br>44 | 0.14<br>< 0 <u>.01</u>   | 0.17<br>< 0.01   | 0.31<br>< 0 <u>.02</u>   | R 2007 0088/1<br>BIXAFEN_056 |
| 2007<br>(Autan)                     |     |                |                |               |          |              |          |                          |                  |                          |                              |
| Spain,<br>Alcala de                 | 2   | 0.125<br>0.125 | 0.045<br>0.042 | 279<br>300    | 47<br>69 | ear          | 36       | 0.38                     | 0.13             | 0.51                     | R 2007 0090/3<br>BIXAFEN_056 |
| Guadaira                            |     |                |                |               |          | grain        | 54       | <u>0.02</u>              | < 0.01           | 0.03                     |                              |

| Location,                                    | App | lication       |                |               |          | Residues     | s, mg/kg |                        | Trial No.,       |                        |                                                  |
|----------------------------------------------|-----|----------------|----------------|---------------|----------|--------------|----------|------------------------|------------------|------------------------|--------------------------------------------------|
| Year (variety)                               | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample       | DALT     | Bixafen                | M21 <sup>a</sup> | Total <sup>a</sup>     | Reference                                        |
| Sevilla                                      |     |                |                |               |          |              |          |                        |                  |                        |                                                  |
| 2007<br>(Bolido R1)                          |     |                |                |               |          |              |          |                        |                  |                        |                                                  |
| Portugal,<br>Ereira                          | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | ear<br>grain | 35<br>53 | 0.47<br>< 0 <u>.01</u> | 0.25<br>< 0.01   | 0.72<br>< 0 <u>.02</u> | R 2007 0157/8<br>BIXAFEN_056                     |
| 2007<br>(Galeira)                            |     |                |                |               |          |              |          |                        |                  |                        |                                                  |
| United<br>Kingdom,<br>Bury St.<br>Edmunds    | 2   | 0.23<br>0.25   | 0.082<br>0.083 | 279<br>300    | 47<br>69 | grain        | 40       | 0.05                   | < 0.01           | 0.06                   | R 2006 0527/7<br>BIXAFEN_064<br>processing trial |
| 2006<br>(Cordiale)                           |     |                |                |               |          |              |          |                        |                  |                        |                                                  |
| Sweden,<br>Staffanstorp                      | 2   | 0.25<br>0.25   | 0.083<br>0.083 | 300<br>300    | 47<br>61 | grain        | 75       | 0.03                   | 0.01             | 0.04                   | R 2006 0528/5<br>BIXAFEN_064                     |
| 2006<br>(Tommi)                              |     |                |                |               |          |              |          |                        |                  |                        | processing trial                                 |
| France<br>(North),<br>Fresnoy les<br>Roye    | 2   | 0.25<br>0.25   | 0.083<br>0.083 | 300<br>300    | 47<br>69 | grain        | 53       | 0.02                   | 0.01             | 0.03                   | R 2006 0529/3<br>BIXAFEN_064<br>processing trial |
| 2006<br>(Chango)                             |     |                |                |               |          |              |          |                        |                  |                        |                                                  |
| France<br>(North),<br>Chambourg<br>sur Indre | 2   | 0.25<br>0.25   | 0.083<br>0.083 | 300<br>300    | 47<br>69 | grain        | 39       | 0.04                   | < 0.01           | 0.05                   | R 2006 0530/7<br>BIXAFEN_064<br>processing trial |
| 2006<br>(Apache)                             |     |                |                |               |          |              |          |                        |                  |                        |                                                  |

<sup>a</sup> Expressed as bixafen

DALT = Days after last treatment

BBCH 47 = Flag leaf sheath opening

BBCH 52 = 20% of inflorescence emerged

BBCH 53 = 30% of inflorescence emerged

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

| Location,                                          | App | olication      |                |               |          | Residues                   | , mg/kg       |                     | Trial No.,           |                      |                           |  |
|----------------------------------------------------|-----|----------------|----------------|---------------|----------|----------------------------|---------------|---------------------|----------------------|----------------------|---------------------------|--|
| Year (variety)                                     | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample                     | DALT          | Bixafen             | M21 <sup>a</sup>     | Total <sup>a</sup>   | Reference                 |  |
| France<br>(North),<br>Braslou<br>2008<br>(Grizzly) | 2   | 0.075<br>0.075 | 0.025<br>0.025 | 300<br>300    | 63<br>67 | forage<br>rest of<br>plant | -0<br>0<br>42 | 0.44<br>1.5<br>0.08 | 0.04<br>0.04<br>0.02 | 0.48<br>1.54<br>0.10 | 08-2116-01<br>BIXAFEN_057 |  |
| The<br>Netherlands,                                | 2   | 0.075<br>0.075 | 0.038<br>0.038 | 200<br>200    | 64<br>69 | forage                     | $-0 \\ 0$     | 0.19<br>2.5         | 0.03<br>0.03         | 0.22<br>2.53         | 08-2116-02<br>BIXAFEN_057 |  |

# Table 73 Residues of bixafen and M21 (bixafen-desmethyl) in rape forage following foliar spray with an EC formulation

| Location,                                   | App | olication      |                |               |          | Residues         | , mg/kg                              |              |                  |                    | Trial No.,                |
|---------------------------------------------|-----|----------------|----------------|---------------|----------|------------------|--------------------------------------|--------------|------------------|--------------------|---------------------------|
| Year (variety)                              | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample           | DALT                                 | Bixafen      | M21 <sup>a</sup> | Total <sup>a</sup> | Reference                 |
| Hoofddorp                                   |     |                |                |               |          |                  |                                      |              |                  |                    | Processing trial          |
| 2008<br>(Maximus)                           |     |                |                |               |          |                  |                                      |              |                  |                    |                           |
| Belgium,<br>Cortil-<br>Noirmont             | 2   | 0.075<br>0.075 | 0.038<br>0.038 | 200<br>200    | 64<br>73 | forage           | $\begin{array}{c} -0\\ 0\end{array}$ | 0.17<br>1.3  | 0.05<br>0.05     | 0.22<br>1.35       | 08-2116-03<br>BIXAFEN_057 |
| 2008<br>(Exocet)                            |     |                |                |               |          | rest of plant    | 42                                   | 0.07         | 0.02             | 0.09               |                           |
| Germany,<br>Werl                            | 2   | 0.075<br>0.075 | 0.038<br>0.038 | 200<br>200    | 65<br>69 | forage           | $\begin{array}{c} -0\\ 0\end{array}$ | 0.27<br>1.5  | 0.04<br>0.04     | 0.31<br>1.54       | 08-2116-04<br>BIXAFEN_057 |
| 2008<br>(Astrid)                            |     |                |                |               |          |                  |                                      |              |                  |                    |                           |
| The<br>Netherlands,<br>Nieuw Beerta         | 2   | 0.075<br>0.075 | 0.025<br>0.025 | 300<br>300    | 69<br>77 | forage           | -0<br>0                              | 0.17<br>0.99 | 0.03<br>0.02     | 0.20<br>1.01       | 09-2053-02<br>BIXAFEN_058 |
| 2009<br>(not<br>specified)                  |     |                |                |               |          |                  |                                      |              |                  |                    |                           |
| Belgium,<br>Cortil-<br>Noirmont             | 2   | 0.075<br>0.075 | 0.038<br>0.038 | 200<br>200    | 65<br>73 | forage           | _0<br>0                              | 0.17<br>1.0  | 0.01<br>0.01     | 0.18<br>1.01       | 09-2053-03<br>BIXAFEN_058 |
| 2009<br>(Monalisa)                          |     |                |                |               |          | rest of plant    | 30<br>42                             | 0.31<br>0.19 | 0.02<br>0.02     | 0.33<br>0.21       |                           |
| France<br>(North),<br>Lignieres les<br>Roye | 2   | 0.075<br>0.075 | 0.025<br>0.025 | 300<br>300    | 67<br>79 | forage           | -0<br>0                              | 0.11<br>0.74 | 0.01<br>0.02     | 0.12<br>0.76       | 09-2053-04<br>BIXAFEN_058 |
| 2009<br>(Kador)                             |     |                |                |               |          |                  |                                      |              |                  |                    |                           |
| United<br>Kingdom,<br>Bishop                | 2   | 0.075<br>0.075 | 0.039<br>0.038 | 192<br>200    | 65<br>69 | forage           | $\begin{array}{c} -0\\ 0\end{array}$ | 0.28<br>1.7  | 0.03<br>0.03     | 0.31<br>1.73       | 09-2244-01<br>Bixafen_059 |
| Burton<br>2009<br>(Castille)                |     |                |                |               |          | rest of<br>plant | 30<br>42                             | 0.09<br>0.18 | 0.02<br>0.02     | 0.11<br>0.20       |                           |
| Germany,<br>Burscheid                       | 2   | 0.06<br>0.06   | 0.02<br>0.02   | 300<br>300    | 71<br>78 | forage           | _0<br>0                              | 0.23<br>1.1  | 0.028<br>0.028   | 0.258<br>1.128     | 11-2013-03<br>BIXAFEN_060 |
| 2011<br>(Elektra)                           |     |                |                |               |          |                  |                                      |              |                  |                    |                           |
| France<br>(North),<br>Cahmbourg             | 2   | 0.06<br>0.06   | 0.02<br>0.02   | 300<br>300    | 76<br>80 | forage           | _0<br>0                              | 0.23<br>1.3  | 0.02<br>0.02     | 0.25<br>1.35       | 08-2112-01<br>BIXAFEN_066 |
| sur Indre                                   |     |                |                |               |          | rest of plant    | 21                                   | 0.29         | 0.02             | 0.31               |                           |
| (Flash)                                     |     |                |                |               |          |                  |                                      |              |                  |                    |                           |
| Germany,                                    | 2   | 0.06           | 0.02           | 300           | 69       | forage           | -0                                   | 0.14         | 0.01             | 0.15               | 08-2112-02                |

| Location,                       | App | lication      |              |               |          | Residues         | s, mg/kg                             |                 | Trial No.,       |                    |                           |
|---------------------------------|-----|---------------|--------------|---------------|----------|------------------|--------------------------------------|-----------------|------------------|--------------------|---------------------------|
| Year (variety)                  | no  | kg<br>ai/ha   | kg<br>ai/hL  | water<br>L/ha | BBCH     | Sample           | DALT                                 | Bixafen         | M21 <sup>a</sup> | Total <sup>a</sup> | Reference                 |
| Burscheid                       |     | 0.06          | 0.02         | 300           | 73       |                  | 0                                    | 1.3             | 0.02             | 1.32               | BIXAFEN_066               |
| 2008<br>(Titan)                 |     |               |              |               |          |                  |                                      |                 |                  |                    | Processing trial          |
| Belgium,<br>Cortil-<br>Noirmont | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 77<br>80 | forage           | 0<br>0                               | 0.23<br>0.88    | 0.02<br>0.02     | 0.25<br>0.90       | 08-2112-03<br>BIXAFEN_066 |
| 2008<br>(Exocet)                |     |               |              |               |          | rest of plant    | 21                                   | 0.25            | 0.04             | 0.29               |                           |
| Germany,<br>Werl                | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 75<br>78 | forage           | $^{-0}_{0}$                          | 0.27<br>1.5     | 0.03<br>0.03     | 0.30<br>1.53       | 08-2112-04<br>BIXAFEN_066 |
| 2008<br>(Astrid)                |     |               |              |               |          |                  |                                      |                 |                  |                    |                           |
| United<br>Kingdom,<br>Bishop    | 2   | 0.06<br>0.06  | 0.03<br>0.03 | 200<br>200    | 67<br>75 | forage           |                                      | 0.17<br>0.69    | 0.01<br>0.01     | 0.18<br>0.70       | 09-2245-01<br>BIXAFEN_067 |
| Burton<br>2009<br>(Castille)    |     |               |              |               |          | rest of<br>plant | 29                                   | 0.06            | 0.01             | 0.07               | Processing trial          |
| United<br>Kingdom,<br>Banbury   | 2   | 0.06<br>0.06  | 0.03<br>0.03 | 200<br>200    | 80<br>83 | Forage           | -0<br>0                              | 0.54<br>1.7     | 0.03<br>0.029    | 0.57<br>1.7        | 11-2137-01<br>BIXAFEN_073 |
| 2011<br>(D.K.<br>Cabernet)      |     |               |              |               |          |                  |                                      |                 |                  |                    |                           |
| Spain,<br>Les<br>Franqueses     | 2   | 0.063<br>0.06 | 0.02<br>0.02 | 315<br>300    | 74<br>78 | forage           | $\begin{array}{c} -0\\ 0\end{array}$ | 0.12<br>0.26    | 0.012<br>0.017   | 0.132<br>0.277     | 11-2013-01<br>BIXAFEN_060 |
| del Valles<br>2011<br>(Pacific) |     |               |              |               |          | rest of<br>plant | 14<br>21                             | 0.087<br>< 0.01 | < 0.01<br>< 0.01 | 0.097<br>< 0.02    |                           |
| France<br>(South),<br>Bouloc    | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 72<br>79 | forage           | 0<br>0                               | 0.39<br>1.8     | 0.065<br>0.074   | 0.455<br>1.874     | 11-2013-02<br>BIXAFEN_060 |
| 2011<br>(NK Alamir)             |     |               |              |               |          |                  |                                      |                 |                  |                    |                           |
| Italy,<br>Tarquinia             | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 73<br>75 | forage           | $^{-0}_{0}$                          | 0.22<br>0.87    | 0.013<br>0.01    | 0.233<br>0.88      | 11-2013-04<br>BIXAFEN_060 |
| 2011<br>(Hybristar)             |     |               |              |               |          | rest of plant    | 14<br>21                             | 0.20<br>0.18    | < 0.01<br>0.01   | 0.21<br>0.19       |                           |
| Spain,<br>La Luisiana           | 2   | 0.06<br>0.069 | 0.02<br>0.02 | 300<br>344    | 77<br>82 | forage           | $\begin{array}{c} -0\\ 0\end{array}$ | 0.47<br>2.1     | 0.093<br>0.077   | 0.563<br>2.177     | 11-2013-05<br>BIXAFEN_060 |
| 2011<br>(Eswilliams)            |     |               |              |               |          |                  |                                      |                 |                  |                    |                           |
| France<br>(South),<br>Velleron  | 2   | 0.06<br>0.06  | 0.02<br>0.02 | 300<br>300    | 79<br>80 | forage           | -0<br>0                              | 0.31<br>1.1     | 0.035<br>0.041   | 0.345<br>1.141     | 11-2013-06<br>BIXAFEN_060 |

| Location,          | App | Application |             |               |      |        | , mg/kg |         | Trial No.,       |                    |           |
|--------------------|-----|-------------|-------------|---------------|------|--------|---------|---------|------------------|--------------------|-----------|
| Year (variety)     | no  | kg<br>ai/ha | kg<br>ai/hL | water<br>L/ha | BBCH | Sample | DALT    | Bixafen | M21 <sup>a</sup> | Total <sup>a</sup> | Reference |
| 2011<br>(Hybrilux) |     |             |             |               |      |        |         |         |                  |                    |           |

-0 = Sampling directly before last treatment

<sup>a</sup> Expressed as bixafen

DALT = Days after last treatment

BBCH 63 = 30% of flowers on main raceme open

BBCH 64 = 40% of flowers on main raceme open

BBHC 65 = Full flowering: 50% of flowers on main raceme open

BBCH 67 = Flowering declining: majority of petals fallen

BBCH 69 = End of flowering

BBCH 71-78 = 10% to 80% of pods have reached final size

BBCH 79 = Nearly all pods have reached final size

BBCH 82 = 20% of pods ripe, seeds dark and hard

| Table 74 Residues of bixafen and M21 | (bixafen-desmethyl) in barl | ley forage following foliar spray |
|--------------------------------------|-----------------------------|-----------------------------------|
| with an EC formulation               |                             |                                   |

| Location,                                               | App | olication      |                |               |          | Residues | , mg/kg                                                                                         |                                            |                                                                     |                                                                                 | Trial No.,                   |
|---------------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|-------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|
| Year<br>(variety)                                       | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT                                                                                            | Bixafen                                    | M21<br>a                                                            | Total <sup>a</sup>                                                              | Reference                    |
| France<br>(North),<br>St. Cyr en<br>Arthies<br>2006     | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage   | -0<br>0                                                                                         | 1.4<br><u>4.4</u>                          | 0.08<br>0.08                                                        | 1.48<br><u>4.48</u>                                                             | R 2006 0432/7<br>BIXAFEN_049 |
| (Carafe)                                                |     |                |                |               |          |          |                                                                                                 |                                            |                                                                     |                                                                                 |                              |
| France<br>(North),<br>Chambourg<br>sur Indre            | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage   | _0<br>0                                                                                         | 1.0<br><u>3.9</u>                          | 0.03<br>0.04                                                        | 1.03<br><u>3.94</u>                                                             | R 2006 0433/5<br>BIXAFEN_049 |
| 2006<br>(Vanessa)                                       |     |                |                |               |          |          |                                                                                                 |                                            |                                                                     |                                                                                 |                              |
| Sweden,<br>Staffanstorp<br>2006<br>(Pasadena)           | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage   | 0<br>0<br>7<br>14<br>28                                                                         | 1.7<br><u>7.0</u><br>4.1<br>3.7<br>4.6     | 0.23<br>0.25<br>0.51<br>0.60<br>0.49                                | 1.93<br><u>7.25</u><br>4.61<br>4.3<br>5.09                                      | R 2006 0434/3<br>BIXAFEN_049 |
| United<br>Kingdom,<br>Hoxne<br>2006<br>(Sequel)         | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 39<br>61 | forage   | $     \begin{array}{r}       -0 \\       0 \\       8 \\       14 \\       28     \end{array} $ | 0.42<br><u>2.1</u><br>0.80<br>0.59<br>0.38 | $\begin{array}{c} 0.03 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.04 \end{array}$ | $\begin{array}{c} 0.45 \\ \underline{2.14} \\ 0.85 \\ 0.65 \\ 0.42 \end{array}$ | R 2006 0435/1<br>BIXAFEN_049 |
| Germany,<br>Swisttal-<br>Heimerzheim<br>2006<br>(Class) | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage   | -0<br>0<br>7<br>13<br>28                                                                        | 0.88<br><u>3.9</u><br>2.0<br>2.7<br>2.8    | 0.11<br>0.10<br>0.12<br>0.21<br>0.20                                | $ \begin{array}{r} 0.99 \\ \underline{4.0} \\ 2.12 \\ 2.91 \\ 3.0 \end{array} $ | R 2006 0437/8<br>BIXAFEN_049 |

| Location,                                                                         | App | lication       |                |               |          | Residues          | , mg/kg                                                                                         |                                                                                 |                                      |                                                                                                                        | Trial No.,                   |
|-----------------------------------------------------------------------------------|-----|----------------|----------------|---------------|----------|-------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Year<br>(variety)                                                                 | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample            | DALT                                                                                            | Bixafen                                                                         | M21<br>a                             | Total <sup>a</sup>                                                                                                     | Reference                    |
| France<br>(North),<br>St. Cyr en<br>Arthies<br>2007                               | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage            | 0<br>0<br>7<br>14<br>28                                                                         | $ \begin{array}{c} 0.47 \\ \underline{3.4} \\ 2.1 \\ 1.5 \\ 0.41 \end{array} $  | 0.07<br>0.07<br>0.13<br>0.14<br>0.08 | $ \begin{array}{r} 0.54 \\ \underline{3.47} \\ 2.23 \\ 1.64 \\ 0.49 \end{array} $                                      | R 2007 0081/4<br>BIXAFEN_050 |
| (Heinley)                                                                         |     |                |                |               |          | rest of plant     | 34                                                                                              | 0.54                                                                            | 0.11                                 | 0.64                                                                                                                   |                              |
| France<br>(North),<br>Carrépuis                                                   | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 41<br>61 | forage<br>rest of | -0<br>0<br>35                                                                                   | 1.5<br><u>4.3</u><br>0.66                                                       | 0.09<br>0.10<br>0.09                 | 1.59<br><u>4.4</u><br>0.75                                                                                             | R 2007 0082/0<br>BIXAFEN_050 |
| 2007<br>(Prestige)                                                                |     |                |                |               |          | plant             |                                                                                                 |                                                                                 |                                      |                                                                                                                        |                              |
| Germany,<br>Vechta-<br>Lanförden<br>2007<br>(Tocada)                              | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage            | $     \begin{array}{r}       -0 \\       0 \\       7 \\       14 \\       28     \end{array} $ | $\begin{array}{c} 0.37 \\ \underline{2.5} \\ 1.5 \\ 0.90 \\ 1.1 \end{array}$    | 0.08<br>0.07<br>0.11<br>0.09<br>0.07 | $ \begin{array}{r} 0.45 \\ \underline{2.57} \\ 1.61 \\ 0.99 \\ 1.17 \end{array} $                                      | R 2007 0160/8<br>BIXAFEN_050 |
| United<br>Kingdom,<br>Sandringham<br>2007<br>(Tippel)                             | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 39<br>69 | forage            | 0<br>0<br>8<br>14<br>28                                                                         | $ \begin{array}{c} 0.36 \\ \underline{2.4} \\ 1.3 \\ 0.84 \\ 0.39 \end{array} $ | 0.07<br>0.07<br>0.08<br>0.11<br>0.09 | $\begin{array}{c} 0.43 \\ \underline{2.47} \\ 1.38 \\ 0.95 \\ 0.48 \end{array}$                                        | R 2007 0161/6<br>BIXAFEN_050 |
| Belgium,<br>Villers-<br>Perwin<br>2007                                            | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage            | 0<br>0                                                                                          | 0.18<br><u>2.8</u>                                                              | 0.07<br>0.09                         | 0.25<br><u>2.89</u>                                                                                                    | R 2007 0162/4<br>BIXAFEN_050 |
| (Beatrix)<br>France<br>(South),<br>Villeneuve<br>lés Bouloc<br>2006<br>(Prestige) | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage            | -0<br>0                                                                                         | 0.84<br><u>3.6</u>                                                              | 0.12<br>0.10                         | 0.96<br><u>3.7</u>                                                                                                     | R 2006 0438/6<br>BIXAFEN_051 |
| Italy,<br>Bologna<br>2006<br>(Federal)                                            | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage            | -0<br>0                                                                                         | 0.58<br><u>3.4</u>                                                              | 0.01<br>0.01                         | 0.59<br><u>3.41</u>                                                                                                    | R 2006 0439/4<br>BIXAFEN_051 |
| France<br>(South),<br>Quincieux<br>2006<br>(Scarlett)                             | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>71 | forage            | -0<br>0<br>7<br>14<br>27                                                                        | 0.89<br>3.8<br>2.5<br>1.6<br>2.2                                                | 0.21<br>0.20<br>0.34<br>0.28<br>0.26 | 1.1<br>4.0<br>2.84<br>1.88<br>2.46                                                                                     | R 2006 0440/8<br>BIXAFEN_051 |
| Spain,<br>Llerona<br>2006<br>(Graphic)                                            | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage            | -0<br>0<br>7<br>14<br>28                                                                        | $ \begin{array}{c} 1.2 \\ \underline{3.3} \\ 2.8 \\ 2.1 \\ 2.0 \end{array} $    | 0.10<br>0.11<br>0.16<br>0.18<br>0.27 | $     \begin{array}{r}       1.3 \\       \underline{3.41} \\       2.96 \\       2.28 \\       2.27     \end{array} $ | R 2006 0441/6<br>BIXAFEN_051 |
| Portugal,                                                                         | 2   | 0.125          | 0.042          | 300           | 37       | forage            | -0                                                                                              | 1.1                                                                             | 0.08                                 | 1.18                                                                                                                   | R 2006 0442/4                |

| Location,                                                            | Application Residues, |                |                |               |          |                            | , mg/kg                                                                                                     |                                                                                         |                                              | Trial No.,                                                                                |                                                  |
|----------------------------------------------------------------------|-----------------------|----------------|----------------|---------------|----------|----------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|
| Year<br>(variety)                                                    | no                    | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample                     | DALT                                                                                                        | Bixafen                                                                                 | M21<br>a                                     | Total <sup>a</sup>                                                                        | Reference                                        |
| Azambuja<br>2006<br>(Prestige)                                       |                       | 0.125          | 0.042          | 300           | 61       |                            | 0<br>7<br>14<br>28                                                                                          | 2.6<br>1.5<br>1.4<br>1.1                                                                | 0.09<br>0.11<br>0.15<br>0.11                 | 2.69<br>1.61<br>1.55<br>1.21                                                              | BIXAFEN_051                                      |
| France<br>(South),<br>Villeneuve<br>Lés Bouloc<br>2007<br>(Prestige) | 2                     | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage<br>rest of<br>plant | $     \begin{array}{r}       -0 \\       0 \\       7 \\       13 \\       27 \\       34     \end{array} $ | $ \begin{array}{c} 0.85 \\ \underline{3.1} \\ 1.4 \\ 0.96 \\ 0.51 \\ 0.17 \end{array} $ | 0.12<br>0.14<br>0.16<br>0.18<br>0.16<br>0.07 | $ \begin{array}{r} 0.96 \\ \underline{3.24} \\ 1.56 \\ 1.14 \\ 0.67 \\ 0.24 \end{array} $ | R 2007 0083/0<br>BIXAFEN_052                     |
| Italy,<br>Bologna<br>2007                                            | 2                     | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 39<br>61 | forage                     | -0<br>0                                                                                                     | 0.46<br><u>3.6</u>                                                                      | 0.22<br>0.20                                 | 0.68<br><u>3.8</u>                                                                        | R 2007 0084/9<br>BIXAFEN_052                     |
| (Tunica)<br>Spain,<br>Caldes de<br>Montbui<br>2007<br>(Grafit)       | 2                     | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage                     | -0<br>0<br>7<br>13<br>28                                                                                    | 0.13<br><u>3.0</u><br>1.8<br>1.5<br>2.1                                                 | 0.03<br>0.04<br>0.11<br>0.17<br>0.20         | 0.16<br><u>3.04</u><br>1.91<br>1.67<br>2.3                                                | R 2007 0085/7<br>BIXAFEN_052                     |
| France<br>(South),<br>Cherves<br>2007<br>(Scarlett)                  | 2                     | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage<br>rest of<br>plant | $     \begin{array}{r}       -0 \\       0 \\       7 \\       14 \\       28 \\       35     \end{array} $ | $ \begin{array}{c} 0.91 \\ \underline{4.2} \\ 2.8 \\ 1.4 \\ 0.50 \end{array} $          | 0.06<br>0.07<br>0.14<br>0.15<br>0.08         | 0.97<br><u>4.27</u><br>2.94<br>1.55<br>0.58                                               | R 2007 0158/6<br>BIXAFEN_052                     |
| Italy,<br>Senetica di<br>Bondeno<br>2007                             | 2                     | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | forage                     | 0<br>0                                                                                                      | 0.69<br><u>5.8</u>                                                                      | 0.18<br>0.17                                 | 0.87<br><u>5.97</u>                                                                       | R 2007 0159/4<br>BIXAFEN_052                     |
| (Tunica)<br>Sweden,<br>Staffanstorp<br>2006<br>(Prestige)            | 2                     | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | forage                     | 0                                                                                                           | 9.1                                                                                     | 0.18                                         | 9.28                                                                                      | R 2006 0444/0<br>BIXAFEN_062<br>processing trial |
| Germany,<br>Swisttal-<br>Heimerzheim<br>2006<br>(Class)              | 2                     | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | forage                     | 0                                                                                                           | 6.1                                                                                     | 0.18                                         | 6.28                                                                                      | R 2006 0445/9<br>BIXAFEN_062<br>processing trial |
| France<br>(North),<br>Fresnoy les<br>Roye<br>2006<br>(Scarlet)       | 2                     | 0.25<br>0.25   | 0.084<br>0.084 | 300<br>300    | 37<br>61 | forage                     | 0                                                                                                           | 7.8                                                                                     | 0.17                                         | 7.97                                                                                      | R 2006 0446/7<br>BIXAFEN_062<br>processing trial |
| Germany,                                                             | 2                     | 0.25           | 0.084          | 300           | 37       | forage                     | 0                                                                                                           | 6.3                                                                                     | 0.07                                         | 6.37                                                                                      | R 2006 0447/5                                    |

| Location,         | App | olication   |             |               |      | Residues, mg/kg |      |         |          |                    | Trial No.,       |
|-------------------|-----|-------------|-------------|---------------|------|-----------------|------|---------|----------|--------------------|------------------|
| Year<br>(variety) | no  | kg<br>ai/ha | kg<br>ai/hL | water<br>L/ha | BBCH | Sample          | DALT | Bixafen | M21<br>a | Total <sup>a</sup> | Reference        |
| Burscheid         |     | 0.25        | 0.084       | 300           | 61   |                 |      |         |          |                    | BIXAFEN_062      |
| 2006<br>(Barke)   |     |             |             |               |      |                 |      |         |          |                    | processing trial |

-0 = Sampling directly before last treatment

<sup>a</sup> Expressed as bixafen

DALT = Days after last treatment

BBCH 37 = Flag leaf just visible, still rolled

BBCH 39 = Flag leaf stage: flag leaf fully unrolled, ligule just visible

BBCH 41 = Early boot stage: flag leaf sheath extending

BBCH 61 = Beginning of flowering: first anthers visible

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

BBCH 71 = Watery ripe: first grains have reached half their final size

| Table 75 Residues of bixafen and M | 421 (bixafen-desmethyl) in | n wheat forage following foliar spray |
|------------------------------------|----------------------------|---------------------------------------|
| with an EC formulation             |                            |                                       |

| Location,                                           | App | olication      |                |               |          | Residues | , mg/kg                                                                                         |                                           |                                      |                                                                                 | Trial No.,                   |
|-----------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|-------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|------------------------------|
| Year (variety)                                      | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT                                                                                            | Bixafen                                   | M21<br>a                             | Total <sup>a</sup>                                                              | Reference                    |
| France<br>(North),<br>Chambourg<br>sur Indre        | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage   | -0<br>0                                                                                         | 1.9<br><u>7.1</u>                         | 0.19<br>0.21                         | 2.09<br><u>7.31</u>                                                             | R 2006 0421/1<br>BIXAFEN_053 |
| 2006<br>(Tecnico)                                   |     |                |                |               |          |          |                                                                                                 |                                           |                                      |                                                                                 |                              |
| France<br>(North),<br>Chaussy                       | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage   | _0<br>0                                                                                         | 1.1<br><u>3.0</u>                         | 0.09<br>0.09                         | 1.19<br><u>3.09</u>                                                             | R 2006 0423/8<br>BIXAFEN_053 |
| 2006<br>(Isengrain)                                 |     |                |                |               |          |          |                                                                                                 |                                           |                                      |                                                                                 |                              |
| Sweden,<br>Staffanstorp<br>2006<br>(Vinjett)        | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage   | $-0 \\ 0 \\ 7 \\ 14 \\ 28$                                                                      | 1.8<br><u>4.6</u><br>4.1<br>3.2<br>3.2    | 0.12<br>0.13<br>0.36<br>0.39<br>0.50 | 1.92<br><u>4.73</u><br>4.46<br>3.59<br>3.7                                      | R 2006 0424/6<br>BIXAFEN_053 |
| United<br>Kingdom,<br>Thetford<br>2006<br>(Paragon) | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage   | $     \begin{array}{r}       -0 \\       0 \\       7 \\       14 \\       28     \end{array} $ | 0.83<br><u>2.7</u><br>2.1<br>1.8<br>1.8   | 0.07<br>0.08<br>0.13<br>0.13<br>0.13 | 0.90<br><u>2.78</u><br>2.23<br>1.93<br>1.93                                     | R 2006 0425/4<br>BIXAFEN_053 |
| Germany,<br>Leverkusen<br>2006<br>(Batis)           | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage   | -0<br>0<br>7<br>14<br>28                                                                        | 0.31<br><u>2.2</u><br>1.3<br>0.92<br>0.59 | 0.05<br>0.05<br>0.06<br>0.10<br>0.11 | $\begin{array}{c} 0.36 \\ \underline{2.25} \\ 1.36 \\ 1.02 \\ 0.70 \end{array}$ | R 2006 0426/2<br>BIXAFEN_053 |
| France<br>(North),<br>Braslou                       | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage   | -0<br>0<br>7<br>14                                                                              | $2.6 \\ \underline{1.4} \\ 0.88 \\ 0.65$  | 0.09<br>0.14<br>0.18<br>0.26         | $2.69 \\ \underline{1.54} \\ 1.06 \\ 0.91$                                      | R 2007 0091/1<br>BIXAFEN_054 |

| Location,                                                                         | App | olication      |                |               |          | Residues      | , mg/kg                              |                                                                                                                       | Trial No.,                           |                                             |                              |
|-----------------------------------------------------------------------------------|-----|----------------|----------------|---------------|----------|---------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------|
| Year (variety)                                                                    | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample        | DALT                                 | Bixafen                                                                                                               | M21<br>a                             | Total <sup>a</sup>                          | Reference                    |
| 2007<br>(Mandal)                                                                  |     |                |                |               |          |               | 28                                   | 0.45                                                                                                                  | 0.09                                 | 0.54                                        |                              |
| (Mendel)                                                                          |     |                |                |               |          | rest of plant | 35                                   | 0.97                                                                                                                  | 0.33                                 | 1.3                                         |                              |
| United<br>Kingdom,<br>Diss                                                        | 2   | 0.125<br>0.125 | 0.039<br>0.042 | 318<br>300    | 47<br>69 | forage        | $\begin{array}{c} -0\\ 0\end{array}$ | 0.57<br><u>2.7</u>                                                                                                    | 0.16<br>0.17                         | 0.73<br><u>2.87</u>                         | R 2007 0093/8<br>BIXAFEN_054 |
| 2007<br>(Belvoir)                                                                 |     |                |                |               |          | rest of plant | 35                                   | 0.36                                                                                                                  | 0.25                                 | 0.61                                        |                              |
| France<br>(North),<br>Chambourg<br>sur Indre                                      | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | -0<br>0<br>7<br>14<br>28             | 0.70<br><u>3.6</u><br>1.8<br>1.2<br>1.1                                                                               | 0.16<br>0.19<br>0.25<br>0.28<br>0.45 | 0.86<br><u>3.79</u><br>2.05<br>1.48<br>1.55 | R 2007 0094/6<br>BIXAFEN_054 |
| 2007<br>(Apache)                                                                  |     |                |                |               |          | rest of plant | 35                                   | 1.5                                                                                                                   | 0.63                                 | 2.13                                        |                              |
| Sweden,<br>Staffanstorp                                                           | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | $\begin{array}{c} -0\\ 0\end{array}$ | 2.8<br><u>3.2</u>                                                                                                     | 0.14<br>0.15                         | 2.94<br><u>3.35</u>                         | R 2007 0095/4<br>BIXAFEN_054 |
| 2007<br>(Vinjett)                                                                 |     |                |                |               |          | rest of plant | 35                                   | 1.4                                                                                                                   | 0.70                                 | 2.1                                         |                              |
| Germany,<br>Burscheid<br>2007<br>(Thasos)                                         | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | $-0 \\ 0 \\ 7 \\ 14 \\ 28$           | $     \begin{array}{r}       1.5 \\       \underline{4.5} \\       2.0 \\       1.4 \\       1.0 \\     \end{array} $ | 0.24<br>0.26<br>0.29<br>0.30<br>0.31 | 1.74<br><u>4.76</u><br>2.29<br>1.7<br>1.31  | R 2007 0155/1<br>BIXAFEN_054 |
| Greece,<br>Thiva<br>2006                                                          | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | -0<br>0                              | 1.0<br><u>3.8</u>                                                                                                     | 0.07<br>0.07                         | 1.07<br><u>3.87</u>                         | R 2006 0427/0<br>BIXAFEN_055 |
| (Claudio)<br>Italy,<br>Palidoro<br>Fiumicino<br>2006                              | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | -0<br>0                              | 0.48<br><u>2.5</u>                                                                                                    | 0.09<br>0.08                         | 0.57<br><u>2.58</u>                         | R 2006 0428/9<br>BIXAFEN_055 |
| (Claudio)<br>France<br>(South),<br>Lagardelle/<br>Lèze<br>2006<br>(not specified) | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | -0<br>0<br>7<br>14<br>28             | 1.2<br><u>5.3</u><br>2.7<br>2.9<br>3.4                                                                                | 0.13<br>0.15<br>0.18<br>0.24<br>0.34 | 1.33<br><u>5.45</u><br>2.88<br>3.14<br>3.74 | R 2006 0429/7<br>BIXAFEN_055 |
| Spain,<br>Paradas<br>Sevilla<br>2006<br>(Italo)                                   | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 53<br>69 | forage        | -0<br>0<br>7<br>14<br>28             | 1.0<br><u>2.8</u><br>1.6<br>1.1<br>1.7                                                                                | 0.08<br>0.07<br>0.09<br>0.09<br>0.17 | 1.08<br><u>2.87</u><br>1.69<br>1.19<br>1.87 | R 2006 0430/0<br>BIXAFEN_055 |
| France<br>(South),<br>Vouille                                                     | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage        | -0<br>0<br>7<br>14                   | 1.2<br><u>5.1</u><br>3.6<br>3.0                                                                                       | 0.07<br>0.09<br>0.22<br>0.31         | 1.27<br><u>5.19</u><br>3.82<br>3.31         | R 2006 0431/9<br>BIXAFEN_055 |

| Location,                                              | App | olication      |                |               |          | Residues          | , mg/kg                                                                                         |                                           |                                      |                                                                                   | Trial No.,                                       |  |
|--------------------------------------------------------|-----|----------------|----------------|---------------|----------|-------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|--|
| Year (variety)                                         | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample            | DALT                                                                                            | Bixafen                                   | M21<br>a                             | Total <sup>a</sup>                                                                | Reference                                        |  |
| 2006<br>(Technico)                                     |     |                |                |               |          |                   | 28                                                                                              | 2.9                                       | 0.30                                 | 3.2                                                                               |                                                  |  |
| France<br>(South),<br>Villeneuve lès<br>Bouloc<br>2007 | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage            | -0<br>0<br>7<br>14<br>28                                                                        | 0.53<br><u>4.3</u><br>1.5<br>0.86<br>0.77 | 0.22<br>0.24<br>0.31<br>0.31<br>0.37 | $\begin{array}{c} 0.75 \\ \underline{4.54} \\ 1.81 \\ 1.17 \\ 1.14 \end{array}$   | R 2007 0086/5<br>BIXAFEN_056                     |  |
| (Panifor)                                              |     |                |                |               |          | rest of plant     | 35                                                                                              | 1.1                                       | 0.42                                 | 1.52                                                                              |                                                  |  |
| Italy,<br>Spinazzola<br>2007<br>(Simeto)               | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage            | $     \begin{array}{c}       -0 \\       0 \\       7 \\       14 \\       28     \end{array} $ | 0.58<br>0.76<br><u>2.8</u><br>2.0<br>1.7  | 0.09<br>0.16<br>0.17<br>0.20<br>0.19 | 0.67<br>0.92<br><u>2.97</u><br>2.20<br>1.89                                       | R 2007 0087/3<br>BIXAFEN_056                     |  |
|                                                        |     |                |                |               |          | rest of plant     | 35                                                                                              | 3.1                                       | 0.33                                 | 3.43                                                                              |                                                  |  |
| France<br>(South),<br>Les Chères<br>2007<br>(Autan)    | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 52<br>69 | forage            | $-0 \\ 0 \\ 7 \\ 14 \\ 28$                                                                      | 0.56<br><u>2.5</u><br>1.3<br>0.96<br>0.46 | 0.17<br>0.16<br>0.26<br>0.31<br>0.24 | $ \begin{array}{r} 0.73 \\ \underline{2.66} \\ 1.56 \\ 1.27 \\ 0.70 \end{array} $ | R 2007 0088/1<br>BIXAFEN_056                     |  |
|                                                        |     |                |                |               |          | rest of plant     | 35                                                                                              | 0.79                                      | 0.33                                 | 1.12                                                                              |                                                  |  |
| Spain,<br>Alcala de<br>Guadaira<br>Sevilla             | 2   | 0.125<br>0.125 | 0.045<br>0.042 | 279<br>300    | 47<br>69 | forage<br>rest of | -0<br>0<br>36                                                                                   | 0.48<br><u>3.5</u><br>1.8                 | 0.05<br>0.05<br>0.26                 | 0.53<br><u>3.55</u><br>2.06                                                       | R 2007 0090/3<br>BIXAFEN_056                     |  |
| 2007<br>(Bolido R1)                                    |     |                |                |               |          | plant             |                                                                                                 |                                           |                                      |                                                                                   |                                                  |  |
| Portugal,<br>Ereira                                    | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | forage            | -0<br>0                                                                                         | 0.60<br><u>4.0</u>                        | 0.14<br>0.18                         | 0.74<br><u>4.18</u>                                                               | R 2007 0157/8<br>BIXAFEN_056                     |  |
| 2007<br>(Galeira)                                      |     |                |                |               |          | rest of plant     | 35                                                                                              | 2.7                                       | 0.55                                 | 3.25                                                                              |                                                  |  |
| United<br>Kingdom,<br>Bury St.<br>Edmunds<br>2006      | 2   | 0.23<br>0.25   | 0.082<br>0.083 | 279<br>300    | 47<br>69 | forage            | 0                                                                                               | 4.3                                       | 0.11                                 | 4.41                                                                              | R 2006 0527/7<br>BIXAFEN_064<br>processing trial |  |
| (Cordiale)<br>Sweden,                                  | 2   | 0.25           | 0.083          | 300           | 47       | forage            | 0                                                                                               | 10                                        | 0.17                                 | 10.17                                                                             | R 2006 0528/5                                    |  |
| Staffanstorp<br>2006<br>(Tommi)                        |     | 0.25           | 0.083          | 300           | 61       |                   |                                                                                                 |                                           |                                      |                                                                                   | BIXAFEN_064<br>processing trial                  |  |
| France<br>(North),<br>Fresnoy les<br>Roye              | 2   | 0.25<br>0.25   | 0.083<br>0.083 | 300<br>300    | 47<br>69 | forage            | 0                                                                                               | 4.2                                       | 0.13                                 | 4.33                                                                              | R 2006 0529/3<br>BIXAFEN_064<br>processing trial |  |
| 2006<br>(Chango)                                       |     |                |                |               |          |                   |                                                                                                 |                                           |                                      |                                                                                   |                                                  |  |

| Location,                                    | App | olication    |                |               |          | Residues | , mg/kg |         |          |                    | Trial No.,                                       |
|----------------------------------------------|-----|--------------|----------------|---------------|----------|----------|---------|---------|----------|--------------------|--------------------------------------------------|
| Year (variety)                               | no  | kg<br>ai/ha  | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT    | Bixafen | M21<br>a | Total <sup>a</sup> | Reference                                        |
| France<br>(North),<br>Chambourg<br>sur Indre | 2   | 0.25<br>0.25 | 0.083<br>0.083 | 300<br>300    | 47<br>66 | forage   | 0       | 5.8     | 0.13     | 5.93               | R 2006 0530/7<br>BIXAFEN_064<br>processing trial |
| 2006<br>(Apache)                             |     |              |                |               |          |          |         |         |          |                    |                                                  |

-0 = Sampling directly before last treatment

<sup>a</sup> expressed as bixafen

DALT = Days after last treatment

BBCH 47 = Flag leaf sheath opening

BBCH 52 = 20% of inflorescence emerged

BBCH 53 = 30% of inflorescence emerged

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

| Table 76 Residues of bixafen | and M21 | (bixafen-desmethyl) | in barley | straw | following | foliar | spray |
|------------------------------|---------|---------------------|-----------|-------|-----------|--------|-------|
| with an EC formulation       |         |                     |           |       |           |        |       |

| Location,                                           | App | lication       |                |               |          | Residues | , mg/kg  |                  |             |                       | Trial No.,                   |
|-----------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|----------|------------------|-------------|-----------------------|------------------------------|
| Year (variety)                                      | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT     | Bixafen          | M21<br>a    | Total<br><sup>a</sup> | Reference                    |
| France<br>(North),<br>St. Cyr en<br>Arthies<br>2006 | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 34       | <u>5.4</u>       | 0.18        | <u>5.58</u>           | R 2006 0432/7<br>BIXAFEN_049 |
| (Carafe)                                            |     |                |                |               |          |          |          |                  |             |                       |                              |
| France<br>(North),<br>Chambourg<br>sur Indre        | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 49       | <u>3.7</u>       | 0.20        | <u>3.9</u>            | R 2006 0433/5<br>BIXAFEN_049 |
| 2006<br>(Vanessa)                                   |     |                |                |               |          |          |          |                  |             |                       |                              |
| Sweden,<br>Staffanstorp                             | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 36<br>45 | $\frac{10}{4.3}$ | 1.4<br>0.66 | $\frac{11.4}{4.96}$   | R 2006 0434/3<br>BIXAFEN_049 |
| 2006<br>(Pasadena)                                  |     |                |                |               |          |          |          |                  |             |                       |                              |
| United<br>Kingdom,<br>Hoxne                         | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 39<br>61 | straw    | 62       | <u>1.1</u>       | 0.08        | <u>1.18</u>           | R 2006 0435/1<br>BIXAFEN_049 |
| 2006<br>(Sequel)                                    |     |                |                |               |          |          |          |                  |             |                       |                              |
| Germany,<br>Swisttal-<br>Heimerzheim                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35       | <u>4.8</u>       | 0.37        | <u>5.17</u>           | R 2006 0437/8<br>BIXAFEN_049 |
| 2006<br>(Class)                                     |     |                |                |               |          |          |          |                  |             |                       |                              |
| France<br>(North),                                  | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 58       | <u>0.64</u>      | 0.08        | <u>0.72</u>           | R 2007 0081/4<br>BIXAFEN_050 |

| Location,                                      | App | olication      |                |               |          | Residues | , mg/kg  |                     |              |                       | Trial No.,                   |
|------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|----------|---------------------|--------------|-----------------------|------------------------------|
| Year (variety)                                 | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT     | Bixafen             | M21<br>a     | Total<br><sup>a</sup> | Reference                    |
| St. Cyr en<br>Arthies                          |     |                |                |               |          |          |          |                     |              |                       |                              |
| 2007<br>(Heinley)                              |     |                |                |               |          |          |          |                     |              |                       |                              |
| France<br>(North),<br>Carrépuis                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 41<br>61 | straw    | 60       | <u>0.77</u>         | 0.08         | <u>0.85</u>           | R 2007 0082/0<br>BIXAFEN_050 |
| 2007<br>(Prestige)                             |     |                |                |               |          |          |          |                     |              |                       |                              |
| Germany,<br>Vechta-<br>Lanförden               | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35       | <u>0.70</u>         | 0.04         | <u>0.74</u>           | R 2007 0160/8<br>BIXAFEN_050 |
| 2007<br>(Tocada)                               |     |                |                |               |          |          |          |                     |              |                       |                              |
| United<br>Kingdom,<br>Sandringham<br>2007      | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 39<br>69 | straw    | 35<br>66 | 0.45<br><u>1.1</u>  | 0.13<br>0.14 | 0.58<br><u>1.24</u>   | R 2007 0161/6<br>BIXAFEN_050 |
| (Tippel)                                       | 2   | 0.105          | 0.042          | 200           | 27       |          | 24       | 0.60                | 0.17         | 0.05                  | D 2007 01 (2/4               |
| Belgium,<br>Villers-Perwin                     | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 34<br>51 | 0.68<br><u>0.86</u> | 0.17<br>0.14 | 0.85<br><u>1.0</u>    | R 2007 0162/4<br>BIXAFEN_050 |
| 2007<br>(Beatrix)                              |     |                |                |               |          |          |          |                     |              |                       |                              |
| France<br>(South),<br>Villeneuve lés<br>Bouloc | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35       | <u>5.2</u>          | 0.40         | <u>5.6</u>            | R 2006 0438/6<br>BIXAFEN_051 |
| 2006<br>(Prestige)                             |     |                |                |               |          |          |          |                     |              |                       |                              |
| Italy,<br>Bologna                              | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35<br>46 | $\frac{0.46}{0.32}$ | 0.04<br>0.03 | $\frac{0.50}{0.35}$   | R 2006 0439/4<br>BIXAFEN_051 |
| 2006<br>(Federal)                              |     |                |                |               |          |          |          |                     |              |                       |                              |
| France<br>(South),<br>Quincieux                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>71 | straw    | 35       | 3.7                 | 0.37         | 4.07                  | R 2006 0440/8<br>BIXAFEN_051 |
| 2006<br>(Scarlett)                             |     |                |                |               |          |          |          |                     |              |                       |                              |
| Spain,<br>Llerona                              | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35<br>48 | 4.2<br><u>5.7</u>   | 0.41<br>0.42 | 4.61<br><u>6.12</u>   | R 2006 0441/6<br>BIXAFEN_051 |
| 2006<br>(Graphic)                              |     |                |                |               |          |          |          |                     |              |                       |                              |
| Portugal,<br>Azambuja                          | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35<br>57 | 1.4<br><u>1.5</u>   | 0.11<br>0.14 | 1.51<br><u>1.64</u>   | R 2006 0442/4<br>BIXAFEN_051 |
| 2006<br>(Prestige)                             |     |                |                |               |          |          |          |                     |              |                       |                              |

| Location,                                                            | App | olication      |                |               |          | Residues | , mg/kg  |                     |              |                       | Trial No.,                   |
|----------------------------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|----------|---------------------|--------------|-----------------------|------------------------------|
| Year (variety)                                                       | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT     | Bixafen             | M21<br>a     | Total<br><sup>a</sup> | Reference                    |
| France<br>(South),<br>Villeneuve<br>Lés Bouloc<br>2007<br>(Prestige) | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 60       | 1.2                 | 0.10         | <u>1.3</u>            | R 2007 0083/0<br>BIXAFEN_052 |
| Italy,<br>Bologna<br>2007<br>(Tunica)                                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 39<br>61 | straw    | 39<br>56 | 0.75<br><u>0.76</u> | 0.25<br>0.25 | 1.0<br><u>1.01</u>    | R 2007 0084/9<br>BIXAFEN_052 |
| Spain,<br>Caldes de<br>Montbui<br>2007<br>(Grafit)                   | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35<br>40 | $\frac{3.1}{2.5}$   | 0.22<br>0.18 | <u>3.32</u><br>2.68   | R 2007 0085/7<br>BIXAFEN_052 |
| France<br>(South),<br>Cherves<br>2007<br>(Scarlett)                  | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 50       | <u>1.9</u>          | 0.23         | 2.13                  | R 2007 0158/6<br>BIXAFEN_052 |
| Italy,<br>Senetica di<br>Bondeno<br>2007<br>(Tunica)                 | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 37<br>61 | straw    | 35       | <u>6.2</u>          | 0.48         | <u>6.68</u>           | R 2007 0159/4<br>BIXAFEN_052 |

a Expressed as bixafen

DALT = Days after last treatment

BBCH 37 = Flag leaf just visible, still rolled

BBCH 39 = Flag leaf stage: flag leaf fully unrolled, ligule just visible

BBCH 41 = Early boot stage: flag leaf sheath extending

BBCH 61 = Beginning of flowering: first anthers visible

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

BBCH 71 = Watery ripe: first grains have reached half their final size

Table 77 Residues of bixafen and M21 (bixafen-desmethyl) in wheat straw following foliar spray with an EC formulation

| Location,                                    | App | Application    |                |               |          |        | , mg/kg |           | Trial No., |                       |                              |
|----------------------------------------------|-----|----------------|----------------|---------------|----------|--------|---------|-----------|------------|-----------------------|------------------------------|
| Year (variety)                               | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample | DALT    | Bixafen   | M21<br>a   | Total<br><sup>a</sup> | Reference                    |
| France<br>(North),<br>Chambourg<br>sur Indre | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw  | 34      | <u>10</u> | 0.78       | <u>10.78</u>          | R 2006 0421/1<br>BIXAFEN_053 |
| 2006<br>(Tecnico)                            |     |                |                |               |          |        |         |           |            |                       |                              |

| Location,                                    | App | olication      |                |               |          | Residues | , mg/kg  |                    |              |                       | Trial No.,                   |
|----------------------------------------------|-----|----------------|----------------|---------------|----------|----------|----------|--------------------|--------------|-----------------------|------------------------------|
| Year (variety)                               | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT     | Bixafen            | M21<br>a     | Total<br><sup>a</sup> | Reference                    |
| France<br>(North),<br>Chaussy                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 37       | <u>1.8</u>         | 0.27         | <u>2.07</u>           | R 2006 0423/8<br>BIXAFEN_053 |
| 2006<br>(Isengrain)                          |     |                |                |               |          |          |          |                    |              |                       |                              |
| Sweden,<br>Staffanstorp                      | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35<br>47 | <u>8.4</u><br>7.8  | 1.2<br>1.3   | <u>9.6</u><br>9.1     | R 2006 0424/6<br>BIXAFEN_053 |
| 2006<br>(Vinjett)                            |     |                |                |               |          |          |          |                    |              |                       |                              |
| United<br>Kingdom,<br>Thetford               | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 34<br>38 | $\frac{3.6}{3.1}$  | 0.26<br>0.18 | 3.86<br>3.28          | R 2006 0425/4<br>BIXAFEN_053 |
| 2006<br>(Paragon)                            |     |                |                |               |          |          |          |                    |              |                       |                              |
| Germany,<br>Leverkusen<br>2006               | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35       | <u>1.3</u>         | 0.20         | <u>1.5</u>            | R 2006 0426/2<br>BIXAFEN_053 |
| (Batis)<br>France<br>(North),<br>Braslou     | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 44       | 0.95               | 0.35         | <u>1.3</u>            | R 2007 0091/1<br>BIXAFEN_054 |
| 2007<br>(Mendel)                             |     |                |                |               |          |          |          |                    |              |                       |                              |
| United<br>Kingdom,<br>Diss                   | 2   | 0.125<br>0.125 | 0.039<br>0.042 | 318<br>300    | 47<br>69 | straw    | 73       | <u>0.52</u>        | 0.26         | <u>0.78</u>           | R 2007 0093/8<br>BIXAFEN_054 |
| 2007<br>(Belvoir)                            |     |                |                |               |          |          |          |                    |              |                       |                              |
| France<br>(North),<br>Chambourg<br>sur Indre | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 56       | <u>1.9</u>         | 0.6          | <u>2.5</u>            | R 2007 0094/6<br>BIXAFEN_054 |
| 2007<br>(Apache)                             |     |                |                |               |          |          |          |                    |              |                       |                              |
| Sweden,<br>Staffanstorp                      | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 69       | <u>0.93</u>        | 0.31         | <u>1.24</u>           | R 2007 0095/4<br>BIXAFEN_054 |
| 2007<br>(Vinjett)                            |     |                |                |               |          |          |          |                    |              |                       |                              |
| Germany,<br>Burscheid                        | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35<br>56 | $\frac{4.1}{0.55}$ | 0.30<br>0.21 | $\frac{4.4}{0.76}$    | R 2007 0155/1<br>BIXAFEN_054 |
| 2007<br>(Thasos)                             |     |                |                |               |          |          |          |                    |              |                       |                              |
| Greece,<br>Thiva                             | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35<br>43 | 2.6<br><u>3.2</u>  | 0.47<br>0.50 | 3.07<br><u>3.7</u>    | R 2006 0427/0<br>BIXAFEN_055 |
| 2006                                         |     |                |                |               |          |          |          |                    |              |                       |                              |

| Location,                                      | App | olication      |                |               |          | Residues | , mg/kg  |                    |              |                       | Trial No.,                   |
|------------------------------------------------|-----|----------------|----------------|---------------|----------|----------|----------|--------------------|--------------|-----------------------|------------------------------|
| Year (variety)                                 | no  | kg<br>ai/ha    | kg<br>ai/hL    | water<br>L/ha | BBCH     | Sample   | DALT     | Bixafen            | M21<br>a     | Total<br><sup>a</sup> | Reference                    |
| (Claudio)                                      |     |                |                |               |          |          |          |                    |              |                       |                              |
| Italy,<br>Palidoro<br>Fiumicino                | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35<br>52 | 0.90<br><u>1.8</u> | 0.27<br>0.37 | 1.17<br><u>2.17</u>   | R 2006 0428/9<br>BIXAFEN_055 |
| 2006<br>(Claudio)                              |     |                |                |               |          |          |          |                    |              |                       |                              |
| France<br>(South),<br>Lagardelle/<br>Lèze      | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35       | <u>5.7</u>         | 0.52         | <u>6.22</u>           | R 2006 0429/7<br>BIXAFEN_055 |
| 2006<br>(not specified)                        |     |                |                |               |          |          |          |                    |              |                       |                              |
| Spain,<br>Paradas<br>Sevilla                   | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 53<br>69 | straw    | 35<br>47 | <u>1.7</u><br>1.5  | 0.18<br>0.21 | <u>1.88</u><br>1.71   | R 2006 0430/0<br>BIXAFEN_055 |
| 2006<br>(Italo)                                |     |                |                |               |          |          |          |                    |              |                       |                              |
| France<br>(South),<br>Vouille                  | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 35<br>35 | $\frac{5.4}{4.9}$  | 0.59<br>0.60 | <u>5.99</u><br>5.5    | R 2006 0431/9<br>BIXAFEN_055 |
| 2006<br>(Technico)                             |     |                |                |               |          |          |          |                    |              |                       |                              |
| France<br>(South),<br>Villeneuve lès<br>Bouloc | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 45       | <u>1.4</u>         | 0.51         | <u>1.91</u>           | R 2007 0086/5<br>BIXAFEN_056 |
| 2007<br>(Panifor)                              |     |                |                |               |          |          |          |                    |              |                       |                              |
| Italy,<br>Spinazzola                           | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 44       | <u>3.6</u>         | 0.45         | <u>4.05</u>           | R 2007 0087/3<br>BIXAFEN_056 |
| 2007<br>(Simeto)                               |     |                |                |               |          |          |          |                    |              |                       |                              |
| France<br>(South),<br>Les Chères               | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 52<br>69 | straw    | 44       | <u>0.79</u>        | 0.36         | <u>1.15</u>           | R 2007 0088/1<br>BIXAFEN_056 |
| 2007<br>(Autan)                                |     |                |                |               |          |          |          |                    |              |                       |                              |
| Spain,<br>Alcala de<br>Guadaira<br>Sevilla     | 2   | 0.125<br>0.125 | 0.045<br>0.042 | 279<br>300    | 47<br>69 | straw    | 54       | <u>2.6</u>         | 0.64         | 3.24                  | R 2007 0090/3<br>BIXAFEN_056 |
| 2007<br>(Bolido R1)                            |     |                |                |               |          |          |          |                    |              |                       |                              |
| Portugal,<br>Ereira                            | 2   | 0.125<br>0.125 | 0.042<br>0.042 | 300<br>300    | 47<br>69 | straw    | 53       | <u>3.3</u>         | 0.61         | <u>3.91</u>           | R 2007 0157/8<br>BIXAFEN_056 |
| 2007                                           |     |                |                |               |          |          |          |                    |              |                       |                              |

| Location,      | App                                     | olication |  |  |      | Residues, mg/kg |      |         |          |            | Trial No., |
|----------------|-----------------------------------------|-----------|--|--|------|-----------------|------|---------|----------|------------|------------|
| Year (variety) | no kg kg water BBCH<br>ai/ha ai/hL L/ha |           |  |  | BBCH | Sample          | DALT | Bixafen | M21<br>a | Total<br>ª | Reference  |
| (Galeira)      |                                         |           |  |  |      |                 |      |         |          |            |            |

a Expressed as bixafen

DALT = Days after last treatment

BBCH 47 = Flag leaf sheath opening

BBCH 52 = 20% of inflorescence emerged

BBCH 53 = 30% of inflorescence emerged

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

## FATE OF RESIDUES IN STORAGE AND PROCESSING

## Nature of residue during processing

The hydrolysis of bixafen under processing conditions was investigated by Justus, K and Kuhnke, G (2008, BIXAFEN\_061). [Pyrazole-5-<sup>14</sup>C]-bixafen was diluted in buffered drinking water at 0.25 mg ai/L, which corresponds to approximately 50% of the water solubility. The test solutions contained 0.7% acetonitrile. Incubation was done at three representative sets of hydrolysis conditions: 90 °C, pH 4 for 20 minutes (pasteurisation); 100 °C, pH 5 for 60 minutes (baking, brewing and boiling) and 120 °C, pH 6 for 20 minutes (sterilisation).

Parent compound and potential hydrolysis products were identified and quantified by HPLC. Thin layer chromatography was used for confirmation of the identity of the test item by cochromatography with the non-labelled reference item. Material balances were established for each set of hydrolysis conditions.

In the following table the recovered radioactivity and its composition is summarised:

| Hydrolysis conditions | Incubation time (min) | Bixafen |                         |
|-----------------------|-----------------------|---------|-------------------------|
|                       |                       | mg/L    | % applied radioactivity |
| рН 4, 90 °С           | 0                     | 0.240   | 100                     |
|                       | 20                    | 0.236   | 98.2                    |
| рН 5, 100 °С          | 0                     | 0.222   | 100                     |
|                       | 60                    | 0.222   | 100                     |
| рН 6, 120 °С          | 0                     | 0.245   | 100                     |
|                       | 20                    | 0.240   | 980                     |

Table 78 Hydrolysis of bixafen under simulated processing conditions

## Residues after processing

The fate of bixafen and its metabolite M21 (bixafen-desmethyl) during processing of raw agricultural commodity (RAC) was investigated in rapeseeds, barley grain and wheat grain using important processing procedures. As a measure of the transfer of residues into processed products, a processing factor (PF) was used, which is defined as:

 $PF = \frac{\text{Total residue in processed product (mg kg^{-1})}}{\text{Total residue in raw agricultural commodity (mg kg^{-1})}}$ 

If residues in the RAC were below the LOQ, no processing factor could be derived. In case of residues below the LOQ, but above the LOD in the processed product, the numeric value of the LOQ

was used for the calculation. If residues in the processed product were below the LOD, the numeric value of the LOQ was used for the calculation but the PF was expressed as "less than" (e.g. < 0.5).

A summary of all processing factors for bixafen relevant for the estimation of maximum residue levels of the dietary intake is given in Table 79.

## Rape seed

For the processing of oilseed, <u>rape seed</u> collected from three locations in Northern Europe (Freitag, T, Reineke, A and Krusell, L, 2010, BIXAFEN\_057; Freitag, T, Reineke, A and Krusell, L, 2010, BIXAFEN\_066 and Noss, G and Teubner, L, 2010, BIXAFEN\_067) were processed into pomace, meal and different oils simulating the industrial practice at a laboratory scale (Freitag, T and Hoffmann, M, 2011, BIXAFEN\_68; Freitag, T and Hoffmann, M, 2011, BIXAFEN\_69 and Hoffmann, M and Teubner, L, 2012, BIXAFEN\_70). The treatment program consisted of two spray applications at 0.06 or 0.075 kg ai/ha for each treatment. The first treatment was carried out at the growth stage BBCH 64 to 69 (end of flowering), and the second one at BBCH 69 to 75. The sampling dates were 35, 44 or 64 days after the final application was carried out.

The rape seeds were dried and cleaned using a sieve. The conditioned and cleaned rape seeds were pressed in a screw press yielding <u>oil, screw-pressed</u> and <u>pomace</u>.

An aliquot of the pomace was milled and then extracted with addition of n-hexane. In the rotary evaporator the n-hexane was removed, yielding <u>oil</u>, <u>solvent extracted</u>. The <u>solvent-extracted</u> <u>meal</u> was sampled after storing at room temperature or drying.

The oil fractions (screw-pressed oil and solvent extracted oil) were mixed yielding the sample of crude oil. The crude oil was filtered or hydrated and deslimed by adding water and phosphorus acid, heating and stirring, yielding the sample <u>crude oil</u>, <u>preclarified</u>.

The oily phase was heated while stirring and a sodium hydroxide solution was added. Water was added and the phases were allowed to separate. After phase separation the watery phase was removed. <u>Crude oil, neutralised</u> was sampled.

For bleaching, the oil was heated up to 90–100 °C while stirring. After addition of 1% pod sol the oil was bleached for 5 min without vacuum and 20 min with vacuum. Afterwards the pod sol was removed (filtration).

The oil was heated under vacuum up to160 °C while stirring. After reaching 160 °C, steam was transferred through the oil for deodorization. After cooling to 160 °C the steam supply was stopped and then the oil was dried under vacuum until a temperature of  $\leq 80$  °C was reached. The refined oil was sampled.

All samples were analysed for bixafen and M21 (bixafen-desmethyl) according to method 01013. The limit of quantification (LOQ) was 0.01 mg/kg for the individual analytes, and consequently 0.02 mg/kg for the sum of both in all matrices. In the following table the residues found in the processed products are summarised:

| Location, year,<br>reference<br>(variety) | No. | kg<br>ai/ha    | BBCH     | Sample                 | DALT | Bixafen | _  | M21 (bi<br>desmeth |    | Total  |    |
|-------------------------------------------|-----|----------------|----------|------------------------|------|---------|----|--------------------|----|--------|----|
|                                           |     |                |          |                        |      | mg/kg   | PF | mg/kg              | PF | mg/kg  | PF |
| The<br>Netherlands,                       | 2   | 0.075<br>0.075 | 64<br>69 | seed                   | 64   | < 0.01  | _  | < 0.01             | _  | < 0.01 | _  |
| Hoofddorp                                 |     |                |          | oil, screw-<br>pressed | 64   | < 0.01  | -  | < 0.01             | _  | < 0.01 | _  |
| 2008<br>(Maximus)                         |     |                |          | pomace                 | 64   | < 0.01  | _  | < 0.01             | _  | < 0.01 | _  |

Table 79 Residues of bixafen and M21 (bixafen-desmethyl) in processed rape commodities and calculation of processing factors

| Location, year,<br>reference<br>(variety) | No. | kg<br>ai/ha  | BBCH     | Sample                     | DALT | Bixafen |       | M21 (bi<br>desmeth |    | Total  |        |
|-------------------------------------------|-----|--------------|----------|----------------------------|------|---------|-------|--------------------|----|--------|--------|
|                                           |     |              |          |                            |      | mg/kg   | PF    | mg/kg              | PF | mg/kg  | PF     |
| 08-2116-02                                |     |              |          | meal                       | 64   | < 0.01  | -     | < 0.01             | -  | < 0.01 | _      |
| Field part:<br>BIXAFEN_057                |     |              |          | oil, solv.<br>extracted    | 64   | < 0.01  | _     | < 0.01             | _  | < 0.01 | _      |
| Processing part:<br>BIXAFEN 068           |     |              |          | oil, crude                 | 64   | < 0.01  | -     | < 0.01             | _  | < 0.01 | -      |
| DIAM LIV_000                              |     |              |          | crude oil,<br>preclarified | 64   | < 0.01  | _     | < 0.01             | _  | < 0.01 | _      |
|                                           |     |              |          | crude oil,<br>neutralised  | 64   | < 0.01  | _     | < 0.01             | _  | < 0.01 | _      |
|                                           |     |              |          | oil, refined               | 64   | < 0.01  | -     | < 0.01             | _  | < 0.01 | -      |
| Germany,<br>Burscheid                     | 2   | 0.06<br>0.06 | 69<br>73 | seed                       | 35   | 0.02    | -     | < 0.01             | -  | 0.03   | -      |
| 2008<br>(Titan)                           |     | 0.00         | 75       | oil, screw-<br>pressed     | 35   | < 0.01  | < 0.5 | < 0.01             | _  | < 0.02 | < 0.66 |
| × /                                       |     |              |          | pomace                     | 35   | 0.01    | 0.5   | 0.01               | _  | 0.02   | 0.66   |
| 08-2112-02                                |     |              |          | meal                       | 35   | < 0.01  | < 0.5 | 0.01               | _  | 0.02   | 0.66   |
| Field part:<br>BIXAFEN_056                |     |              |          | oil, solv.<br>extracted    | 35   | < 0.01  | < 0.5 | < 0.01             | _  | < 0.02 | < 0.66 |
| Processing part:<br>BIXAFEN_069           |     |              |          | oil, crude                 | 35   | 0.01    | 0.5   | < 0.01             | _  | 0.02   | 0.66   |
|                                           |     |              |          | crude oil,<br>preclarified | 35   | < 0.01  | < 0.5 | < 0.01             | _  | < 0.02 | < 0.66 |
|                                           |     |              |          | crude oil,<br>neutralised  | 35   | < 0.01  | < 0.5 | < 0.01             | _  | < 0.02 | < 0.66 |
|                                           |     |              |          | oil, refined               | 35   | < 0.01  | < 0.5 | < 0.01             | _  | < 0.02 | < 0.66 |
| United<br>KIngdom,                        | 2   | 0.06<br>0.06 | 67<br>75 | seed                       | 44   | 0.01    | -     | < 0.01             | -  | 0.02   | -      |
| Bishop Burton                             |     | 0.00         | 75       | oil, screw-<br>pressed     | 44   | < 0.01  | < 1   | < 0.01             | _  | < 0.02 | < 1    |
| 2008<br>(Castille)                        |     |              |          | pomace                     | 44   | 0.01    | 1     | < 0.01             | _  | 0.02   | 1      |
| 09-2245-01                                |     |              |          | meal                       | 44   | 0.02    | 2     | < 0.01             | _  | 0.03   | 1.5    |
| Field part:<br>BIXAFEN_067                |     |              |          | oil, solv.<br>extracted    | 44   | 0.02    | 2     | < 0.01             | _  | 0.03   | 1.5    |
| Processing part:                          |     |              |          | oil, crude                 | 44   | 0.01    | 1     | < 0.01             | _  | 0.02   | 1      |
| BIXAFEN_070                               |     |              |          | crude oil,<br>preclarified | 44   | 0.01    | 1     | < 0.01             | _  | 0.02   | 1      |
|                                           |     |              |          | crude oil,<br>neutralised  | 44   | 0.02    | 2     | < 0.01             | _  | 0.03   | 1.5    |
|                                           |     |              |          | oil, refined               | 44   | 0.02    | 2     | < 0.01             | _  | 0.03   | 1.5    |

DALT = Days after last treatment

PF = Processing factor

BBCH 64 = 40% of flowers on main raceme open

BBCH 67 = Flowering declining: majority of petals fallen

BBCH 69 = End of flowering

BBCH 71-78 = 10% to 80% of pods have reached final size

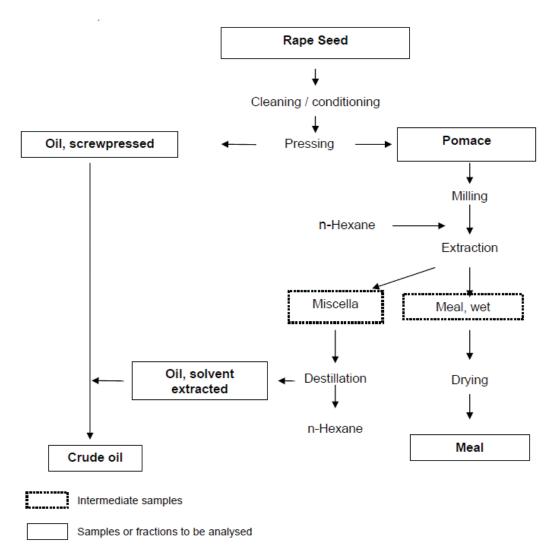
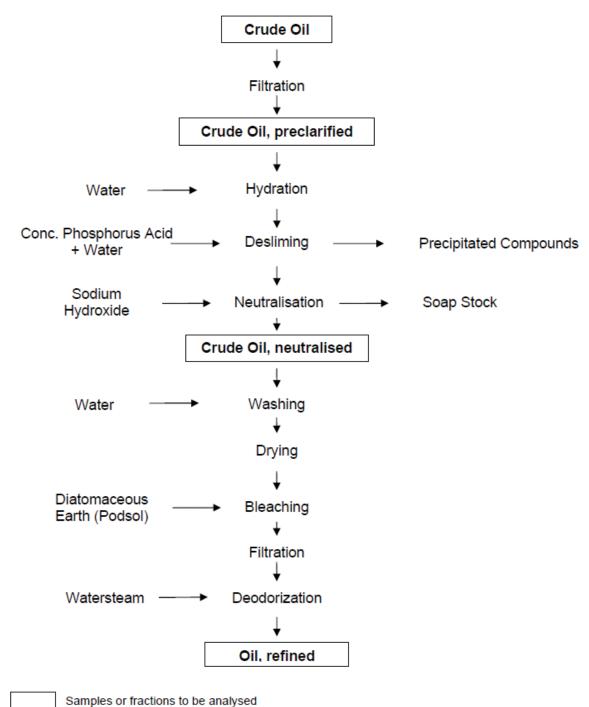




Figure 8 Flow chart of rape seeds processed into pomace, oil, screw-pressed, crude oil, oil, solvent extracted and meal



Samples of fractions to be analysed

Figure 9 Flow chart for rape seeds processed into crude oil, preclarified, crude oil, neutralised and oil, refined

## Barley

In Northern Europe four supervised field trials on <u>barley</u> were conducted involving two treatments at BBCH 37 and 61 with 0.25 kg ai/ha each (Schoening, R and Wolters, A, 2007, BIXAFEN\_062). Samples were collected 35 to 46 days after the last treatment.

The production of both beer and pearl barley from grain of these trials was performed on a technical scale simulating commercial procedures (Schoening, R, Billian, P and Wolters, A, 2007, BIXAFEN\_063).

In order to prepare <u>pearl barley</u>, the grain was first cleaned to separate husks and other impurities from the barley. Then the seeds were conditioned by adjusting the moisture content to about 14–16%. Depending on the initial moisture content this was done by damping prior to further processing for two of the four samples. Finally, the seeds were decorticated in a mill where they were passed through a vertically rotating cylinder. An abrasion of 30-35% was reached. For analysis, samples of pearl barley and pearl barley rub-off were collected (see Figure ).

The <u>beer brewing</u> process starts with sieving and cleaning of the specimen. Before the beginning of the malting, the barley grains undergo a 3-step steeping procedure (combination of wet and dry steeping) at a temperature of 13–14 °C, over 2 days, until a final steeping degree of 44.8–44.9% was reached. Germination took place at a temperature of  $14 \pm 1$  °C for 5 days at a relative air humidity of > 90%. After germination, the malting process is terminated by kiln-drying at maximum 82 °C. At the end of drying, samples of brewing malt and malt culms (malt sprouts) were taken.

In a next step, the malt was ground. Mash was produced by adding water, and heating the mixture at stepwise increasing temperatures with a defined temperature and time regime. The mash was then lautered in a 2-step process (filtering and washing). This process resulted in brewer's grain, of which samples were taken, and wort. The wort was cooked and commercially bought hops were added. After boiling, the flocs (hops draff) were separated in a whirlpool. The deposited hops draff was sampled. After cooling and ventilating of the wort, yeast was added. After a period of 6–-7 days, the yeast deposited on the tank bottom and was sampled as brewer's yeast. At the beginning of maturation the young beer was stored at room temperature (warm maturation) for 2 days in casks. Subsequently, the young beer was stored under pressure at 2 °C for about 4 weeks (cold maturation). During this time the remaining extract was fermented and sludge particles and yeast settled at the bottom. The rack beer was then filtered and filled into bottles. Following filtration, beer samples were taken (see Figure & 12).

All samples were analysed for bixafen and M21 (bixafen-desmethyl) according to method 01012. The limit of quantification (LOQ) was 0.01 mg/kg for the individual analytes, and consequently 0.02 mg/kg for the sum of both in all matrices. In the following table the residues found in the processed products are summarised:

| Location, year,<br>reference<br>(variety)                                                                                       | No. | kg<br>ai/ha  | BBCH     | Sample                                                                                                                                          | DALT                                               | Bixafen                                                                                         |                                                                                        | M21 (bi<br>desmeth                                                                              |                                                        | Total                                                                                         |                                                              |
|---------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                 |     |              |          |                                                                                                                                                 |                                                    | mg/kg                                                                                           | PF                                                                                     | mg/kg                                                                                           | PF                                                     | mg/kg                                                                                         | PF                                                           |
| Sweden,<br>Staffanstorp<br>2006<br>(Prestige)<br>R 2006 0444/0<br>Field part:<br>BIXAFEN_062<br>Processing part:<br>BIXAFEN_063 | 2   | 0.25 0.25    | 37<br>61 | grain<br>brewer's malt<br>malt culms<br>beer<br>brewer's<br>yeast<br>brewer's<br>grain<br>hops draff<br>pearl barley<br>pearl barley<br>rub-off | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | $\begin{array}{c} 0.23\\ 0.22\\ 0.17\\ < 0.01\\ 0.04\\ 0.23\\ 0.17\\ 0.04\\ 0.74\\ \end{array}$ | $\begin{array}{c} -\\ 0.96\\ 0.74\\ < 0.04\\ 0.17\\ 1\\ 0.74\\ 0.17\\ 3.2 \end{array}$ | $\begin{array}{c} 0.03\\ 0.06\\ 0.06\\ < 0.01\\ 0.01\\ 0.04\\ 0.03\\ 0.01\\ 0.09\\ \end{array}$ | -<br>2<br>2<br>< 0.33<br>0.33<br>1.3<br>1<br>0.33<br>3 | $\begin{array}{c} 0.26\\ 0.27\\ 0.23\\ < 0.02\\ 0.05\\ 0.27\\ 0.20\\ 0.05\\ 0.84 \end{array}$ | -<br>1<br>0.88<br>< 0.08<br>0.19<br>1<br>0.77<br>0.19<br>3.2 |
| Germany,<br>Swisttal-<br>Heimerzheim                                                                                            | 2   | 0.25<br>0.25 | 37<br>61 | grain<br>brewer's malt<br>malt culms                                                                                                            | 35<br>35<br>35                                     | 0.13<br>0.12<br>0.14                                                                            | -<br>0.92<br>1.1                                                                       | 0.02<br>0.03<br>0.04                                                                            | -<br>1.5<br>2                                          | 0.15<br>0.15<br>0.18                                                                          | -<br>1<br>1.2                                                |

| Table 80 Residues of bixafen and M21 | (bixafen-desmethyl) in | processed barley | commodities and |
|--------------------------------------|------------------------|------------------|-----------------|
| calculation of processing factors    |                        |                  |                 |

| Location, year,<br>reference<br>(variety)                                                                                                     | No. | kg<br>ai/ha  | BBCH     | Sample                                                                                                                                          | DALT                                                     | Bixafen                                                                                             |                                                                                               | M21 (bixafen-<br>desmethyl)                                                                                                   |                                                                                        | Total                                                                                               |                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                                               |     |              |          |                                                                                                                                                 |                                                          | mg/kg                                                                                               | PF                                                                                            | mg/kg                                                                                                                         | PF                                                                                     | mg/kg                                                                                               | PF                                                                                               |
| 2006<br>(Class)<br>R 2006 0445/9<br>Field part:<br>BIXAFEN_062<br>Processing part:<br>BIXAFEN_063                                             |     |              |          | beer<br>brewer's<br>yeast<br>brewer's<br>grain<br>hops draff<br>pearl barley<br>pearl barley<br>rub-off                                         | 35<br>35<br>35<br>35<br>35<br>35<br>35                   | < 0.01<br>0.01<br>0.14<br>0.09<br>0.03<br>0.67                                                      | < 0.08<br>0.08<br>1.1<br>0.69<br>0.23<br>5.2                                                  | < 0.01<br>< 0.01<br>0.03<br>0.02<br>0.01<br>0.07                                                                              | < 0.5<br>< 0.5<br>1.5<br>1<br>0.5<br>3.5                                               | < 0.02<br>0.02<br>0.16<br>0.10<br>0.04<br>0.74                                                      | < 0.13<br>0.13<br>1.1<br>0.67<br>0.27<br>4.9                                                     |
| France (North),<br>Fresnoy les<br>Roye<br>2006<br>(Scarlet)<br>R 2006 0446/7<br>Field part:<br>BIXAFEN_062<br>Processing part:<br>BIXAFEN_063 | 2   | 0.25<br>0.25 | 37<br>61 | grain<br>brewer's malt<br>malt culms<br>beer<br>brewer's<br>yeast<br>brewer's<br>grain<br>hops draff<br>pearl barley<br>pearl barley<br>rub-off | 46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46       | $\begin{array}{c} 0.20\\ 0.16\\ 0.14\\ < 0.01\\ 0.04\\ 0.17\\ 0.13\\ 0.04\\ 0.91\\ \end{array}$     | $\begin{array}{c} - \\ 0.8 \\ 0.7 \\ < 0.05 \\ 0.2 \\ 0.85 \\ 0.65 \\ 0.2 \\ 4.6 \end{array}$ | $\begin{array}{c} 0.02\\ 0.04\\ 0.03\\ < 0.01\\ < 0.01\\ 0.03\\ 0.02\\ 0.01\\ 0.06\\ \end{array}$                             | $\begin{array}{c} - \\ 2 \\ 1.5 \\ < 0.5 \\ < 0.5 \\ 1.5 \\ 1 \\ 0.5 \\ 3 \end{array}$ | $\begin{array}{c} 0.22\\ 0.20\\ 0.17\\ < 0.02\\ 0.05\\ 0.19\\ 0.15\\ 0.05\\ 0.97\\ \end{array}$     | $\begin{matrix} - \\ 0.91 \\ 0.77 \\ < 0.09 \\ 0.23 \\ 0.86 \\ 0.68 \\ 0.23 \\ 4.4 \end{matrix}$ |
| Germany,<br>Burscheid<br>2006<br>(Barke)<br>R 2006 0447/5<br>Field part:<br>BIXAFEN_062<br>Processing part:<br>BIXAFEN_063                    | 2   | 0.25<br>0.25 | 37<br>61 | grain<br>brewer's malt<br>malt culms<br>beer<br>brewer's<br>yeast<br>brewer's<br>grain<br>hops draff<br>pearl barley<br>pearl barley<br>rub-off | 43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43 | $\begin{array}{c} 0.03\\ 0.01\\ 0.01\\ < 0.01\\ < 0.01\\ 0.01\\ 0.01\\ < 0.01\\ 0.11\\ \end{array}$ | $\begin{array}{c} -\\ 0.33\\ 0.33\\ < 0.33\\ < 0.33\\ 0.33\\ 0.33\\ < 0.33\\ 3.7 \end{array}$ | $\begin{array}{c} < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.01 \end{array}$ |                                                                                        | $\begin{array}{c} 0.04\\ 0.02\\ 0.02\\ < 0.02\\ < 0.02\\ 0.02\\ 0.02\\ < 0.02\\ 0.12\\ \end{array}$ | $\begin{array}{c} - \\ 0.5 \\ 0.5 \\ < 0.5 \\ < 0.5 \\ 0.5 \\ 0.5 \\ < 0.5 \\ 3 \end{array}$     |

DALT = Days after last treatment

PF = Processing factor

BBCH 37 = Flag leaf just visible, still rolled

BBCH 61 = Beginning of flowering: first anthers visible

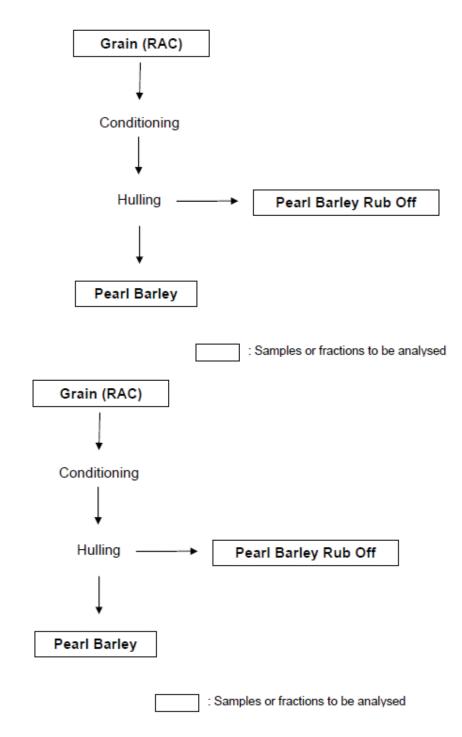



Figure 10 Flow chart of the processing of barley to pearl barley

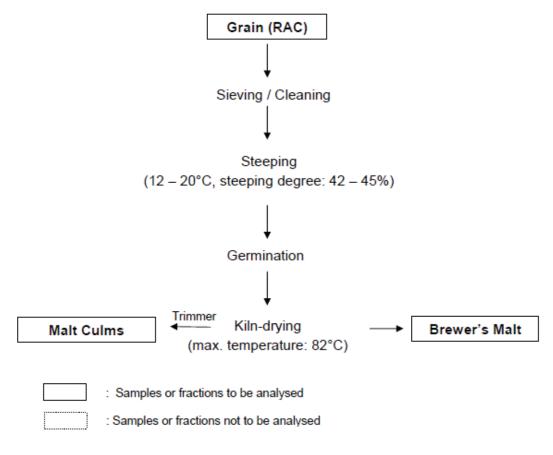



Figure 11 Flow chart of the processing of barley to malt

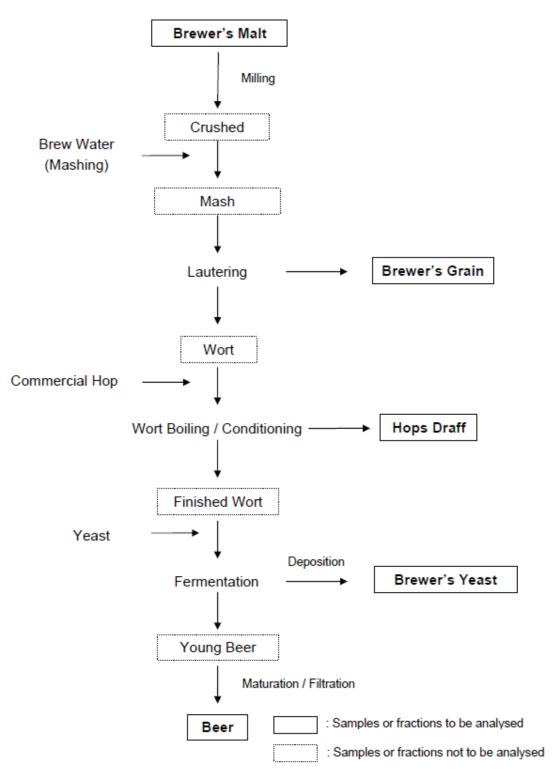



Figure 12 Flow chart of the processing of malt to beer

## Wheat

In 2006, four residue studies on winter <u>wheat</u> were conducted in Northern Europe by Schoening, R and Erler, S (2007, BIXAFEN\_064). The treatment program consisted of two spray applications at BBCH 47 and BBCH 69 with application rates of 0.232 to 0.250 kg ai/ha each. The sampling dates were 39 to 53 days after the final application.

The processing of wheat grain samples collected from three of the locations into processed fractions (white flour, white flour bran, semolina, semolina bran, white bread, whole-meal, whole-meal bread and wheat germs) was performed in specialised pilot plants to simulate industrial procedures of the milling and bakery industry (Schoening, R and Erler, S, 2007, BIXAFEN\_065). The sample originating from the United Kingdom was divided in two portions (A and B). The second portion (B) was processed at a different processing site than portion A.

In order to prepare <u>flour</u> and <u>semolina</u>, the grain was first cleaned and a moisture content of about 17% was adjusted. The cleaned grain was then milled to either white flour and white flour bran, to whole meal flour, or to semolina and semolina bran.

For preparation of <u>white bread</u> the ingredients of the dough were weighed, combined and kneaded. After kneading the dough was placed into the fermentation chamber for fermentation. The bread was baked on one level in the baking oven at a constant heat of 230  $^{\circ}$ C (oven setting) for 30 min.

For preparation of <u>whole-meal bread</u> the sourdough was prepared one day before the baking process. Whole-meal and water were mixed together with the starter. The mixture was placed into the fermentation chamber. The ingredients of the dough were weighted, combined and kneaded. After kneading the dough was placed into the fermentation chamber for fermentation. The bread was baked on one level in the baking oven at a constant heat of 207 °C (oven setting) for nearly 1 hour.

All samples were analysed for bixafen and M21 (bixafen-desmethyl) according to method 01012. The limit of quantification (LOQ) was 0.01 mg/kg for the individual analytes, and consequently 0.02 mg/kg for the sum of both in all matrices. In the following table the residues found in the processed products are summarised:

| Location, year,<br>reference<br>(variety)                                                                                                                      | No. | kg<br>ai/ha  | BBCH     | Sample                                                                                                                        | DALT                                               | Bixafen                                                                                             |                                                                                                         | M21 (bixafen-<br>desmethyl)                                                        |    | Total                                                                                                        |                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                                |     |              |          |                                                                                                                               |                                                    | mg/kg                                                                                               | PF                                                                                                      | mg/kg                                                                              | PF | mg/kg                                                                                                        | PF                                                                                          |
| United<br>Kingdom,<br>Bury St.<br>Edmunds<br>2006<br>(Cordiale)<br>R 2006 0527/7<br>Field part:<br>BIXAFEN_064<br>Processing part:<br>BIXAFEN_065<br>Portion A | 2   | 0.23<br>0.25 | 47<br>69 | grain<br>white flour<br>bran<br>semolina<br>semolina<br>bran<br>white bread<br>whole meal<br>wholemeal<br>bread<br>wheat germ | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | $\begin{array}{c} 0.05\\ 0.01\\ 0.13\\ < 0.01\\ < 0.01\\ < 0.01\\ 0.04\\ 0.02\\ 0.06\\ \end{array}$ | $\begin{array}{c} - \\ 0.2 \\ 2.6 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ 0.8 \\ 0.4 \\ 1.2 \end{array}$ | < 0.01<br>< 0.01<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>0.02 |    | $\begin{array}{c} 0.06\\ 0.02\\ 0.15\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ 0.05\\ 0.03\\ 0.08\\ \end{array}$ | $\begin{array}{c} -\\ 0.33\\ 2.5\\ < 0.33\\ < 0.33\\ < 0.33\\ 0.83\\ 0.5\\ 1.33\end{array}$ |
| United<br>Kingdom,<br>Bury St.<br>Edmunds                                                                                                                      | 2   | 0.23<br>0.25 | 47<br>69 | grain<br>white flour<br>white flour<br>bran<br>semolina                                                                       | 40<br>40<br>40<br>40                               | 0.05<br>0.01<br>0.14<br>< 0.01                                                                      | -<br>0.2<br>2.4<br>< 0.2                                                                                | < 0.01<br>< 0.01<br>0.02<br>< 0.01                                                 |    | 0.06<br>0.02<br>0.16<br>< 0.02                                                                               | -<br>0.33<br>2.7<br>< 0.33                                                                  |

Table 81 Residues of bixafen and M21 (bixafen-desmethyl) in processed wheat commodities and calculation of processing factors

| Location, year,<br>reference<br>(variety)                                                                                                       | No. | kg<br>ai/ha  | BBCH     | Sample                                                                                                                        | DALT                                                           | Bixafen                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M21 (bixafen-<br>desmethyl)                                                                                                                                  |    | Total                                                                                                      |                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                                                                                                                                 |     |              |          |                                                                                                                               |                                                                | mg/kg                                                                                               | PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                                                                                                        | PF | mg/kg                                                                                                      | PF                                                               |
| 2006<br>(Cordiale)<br>R 2006 0527/7<br>Field part:<br>BIXAFEN_064<br>Processing part:<br>BIXAFEN_065<br>Portion B                               |     |              |          | semolina<br>bran<br>white bread<br>whole meal<br>wholemeal<br>bread<br>wheat germ                                             | 40<br>40<br>40<br>40<br>40                                     | 0.07<br>0.01<br>0.04<br>0.03<br>0.03                                                                | 1.4<br>0.2<br>0.8<br>0.6<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>0.02                                                                                                                   |    | 0.08<br>0.02<br>0.05<br>0.04<br>0.05                                                                       | 1.33<br>0.33<br>0.83<br>0.66<br>0.83                             |
| France (North),<br>Fresnoy les<br>Roye<br>2006<br>(Chango)<br>R 2006 0527/7<br>Field part:<br>BIXAFEN_064<br>Processing part:<br>BIXAFEN_065    | 2   | 0.25<br>0.25 | 47<br>69 | grain<br>white flour<br>bran<br>semolina<br>semolina<br>bran<br>white bread<br>whole meal<br>wholemeal<br>bread<br>wheat germ | 53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53 | $\begin{array}{c} 0.02\\ 0.01\\ 0.07\\ < 0.01\\ 0.01\\ < 0.01\\ 0.03\\ 0.01\\ 0.03\\ \end{array}$   | $- 0.5 \\ 3.5 \\ < 0.5 \\ 0.5 \\ < 0.5 \\ 1.5 \\ 0.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 $ | $\begin{array}{c} 0.01 \\ < 0.01 \\ 0.05 \end{array}$ $\begin{array}{c} < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.02 \\ 0.01 \end{array}$ $0.05 \end{array}$ |    | $\begin{array}{c} 0.03\\ 0.02\\ 0.12\\ < 0.02\\ 0.02\\ < 0.02\\ 0.05\\ 0.02\\ 0.08\\ \end{array}$          | -<br>0.66<br>4<br>< 0.66<br>0.66<br>< 0.66<br>1.7<br>0.66<br>2.7 |
| France (North),<br>Chambourg sur<br>Indre<br>2006<br>(Apache)<br>R 2006 0527/7<br>Field part:<br>BIXAFEN_064<br>Processing part:<br>BIXAFEN_065 | 2   | 0.25 0.25    | 47<br>69 | grain<br>white flour<br>bran<br>semolina<br>semolina<br>bran<br>white bread<br>whole meal<br>wholemeal<br>bread<br>wheat germ | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39<br>39<br>39       | $\begin{array}{c} 0.04\\ 0.01\\ 0.11\\ < 0.01\\ - 0.01\\ < 0.01\\ 0.04\\ 0.02\\ 0.03\\ \end{array}$ | $- 0.25 \\ 2.8 \\ < 0.25 \\ 0.25 \\ < 0.25 \\ < 0.25 \\ 1 \\ 0.5 \\ 0.75 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01                                                                                                          |    | $\begin{array}{c} 0.05\\ 0.02\\ 0.12\\ < 0.02\\ 0.02\\ < 0.02\\ < 0.02\\ 0.05\\ 0.03\\ 0.04\\ \end{array}$ | $- \\ 0.4 \\ 2.4 \\ < 0.4 \\ 0.4 \\ < 0.4 \\ 1 \\ 0.6 \\ 0.8 \\$ |

Portion A/B = Field samples split into two processing samples

DALT = Days after last treatment

PF = Processing factor

BBCH 47 = Flag leaf sheath opening

BBCH 69 = End of flowering: all spikelets have completed flowering but some dehydrated anthers may remain

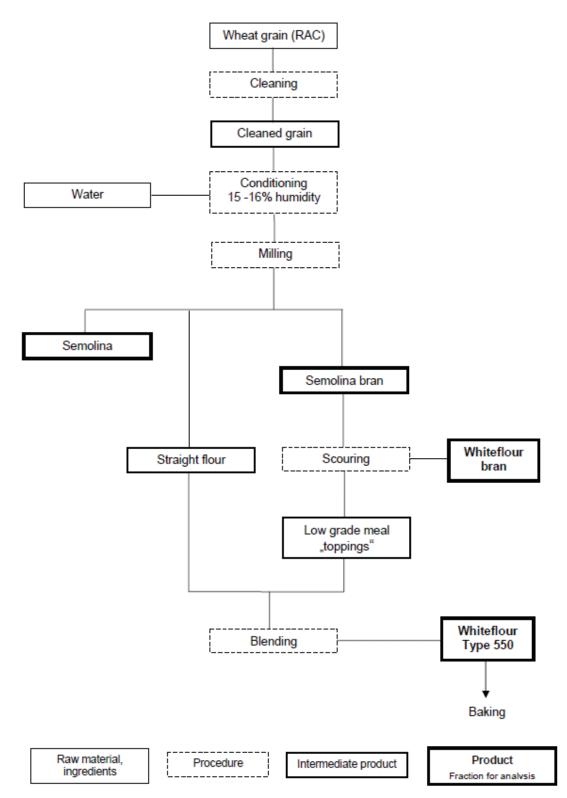



Figure 13 Flow chart for processing wheat grain into white flour, semolina and white flour bran

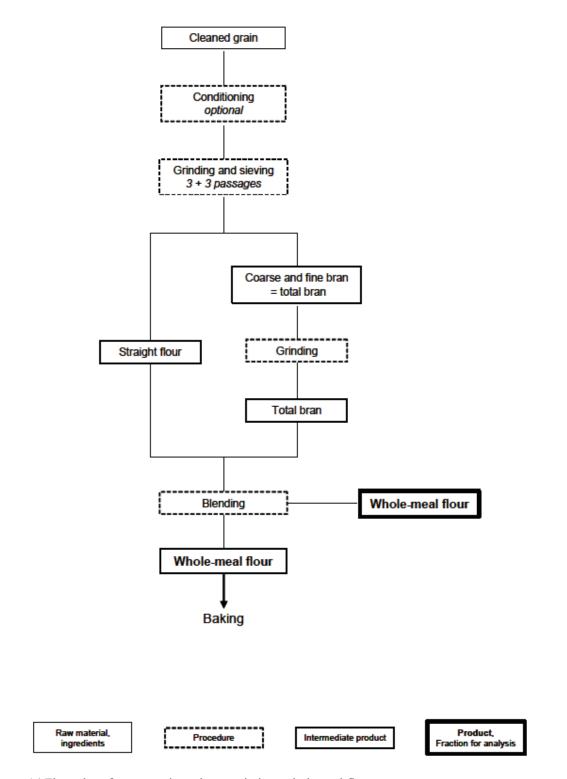



Figure 14 Flow chart for processing wheat grain into wholemeal flour

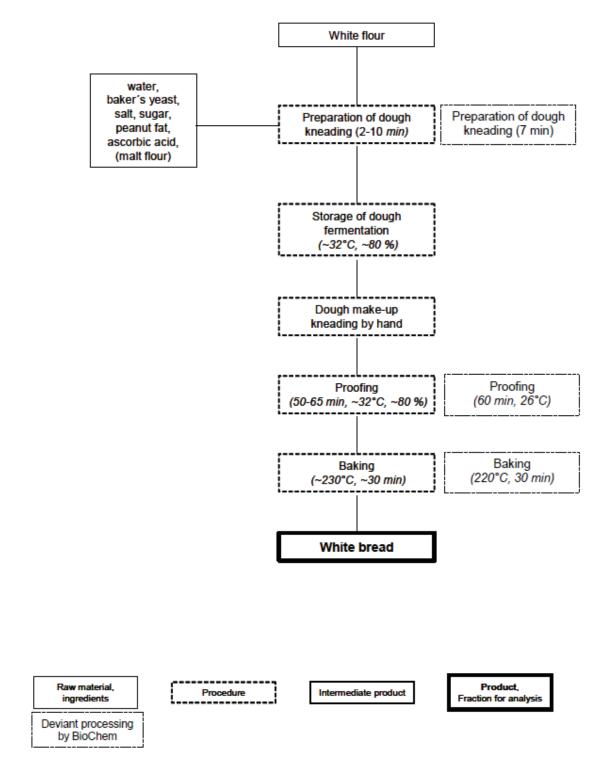



Figure 15 Flow chart for processing wheat grain into white bread

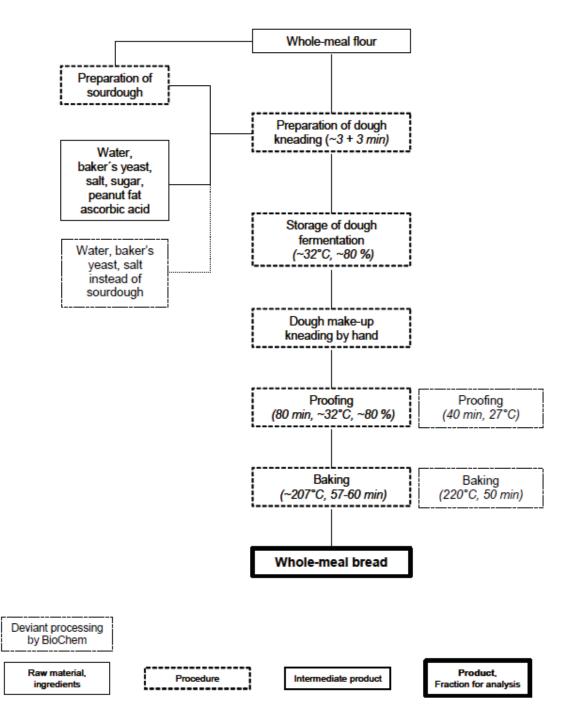



Figure 16 Flow chart for processing wheat grain into wholemeal bread

| T 11 00 0 '      | C C           |                | C 1 C        | 1 ' 1 '1          |
|------------------|---------------|----------------|--------------|-------------------|
| I able X7 Overvi | lew of proces | ssing factors  | tor bixaten  | -derived residues |
| 14010 02 010111  | iew or proces | soning ractors | 101 OlMuloll | dell'ed l'estades |

| Raw<br>commodity | Processed commodity        | Bixafen                              |                                                  | M21 (bixafen-                       | desmethyl)                                       | Total residue                       | Total residue                                      |  |  |
|------------------|----------------------------|--------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------------|----------------------------------------------------|--|--|
|                  |                            | Individual<br>processing<br>factors  | Mean or best<br>estimate<br>processing<br>factor | Individual<br>processing<br>factors | Mean or best<br>estimate<br>processing<br>factor | Individual<br>processing<br>factors | Median or<br>best estimate<br>processing<br>factor |  |  |
| Rape             | oil, screw-<br>pressed     | < 0.5, < 1                           | 1 (best<br>estimate)                             | -                                   | -                                                | < 0.66, < 1                         | 1 (best<br>estimate)                               |  |  |
|                  | pomace                     | 0.5, 1                               | 0.75                                             | -                                   | -                                                | 0.66, 1                             | 0.83                                               |  |  |
|                  | meal                       | < 0.5, 2                             | 2 (best<br>estimate)                             | _                                   | _                                                | 0.66, 1.5                           | 1.5 (best<br>estimate)                             |  |  |
|                  | oil, solv.<br>extracted    | < 0.5, 2                             | 2 (best<br>estimate)                             | _                                   | _                                                | < 0.66, 1.5                         | 1.5 (best<br>estimate)                             |  |  |
|                  | oil, crude                 | 0.5, 1                               | 0.75                                             | -                                   | -                                                | 0.66, 1                             | 0.83                                               |  |  |
|                  | crude oil,<br>preclarified | < 0.5, 1                             | 1 (best<br>estimate)                             | _                                   | _                                                | < 0.66, 1                           | 1.5 (best<br>estimate)                             |  |  |
|                  | crude oil,<br>neutralised  | < 0.5, 2                             | 2 (best<br>estimate)                             | _                                   | _                                                | < 0.66, 1.5                         | 1.5 (best<br>estimate)                             |  |  |
|                  | oil, refined               | < 0.5, 2                             | 2 (best<br>estimate)                             | -                                   | -                                                | < 0.66, 1.5                         | 1.5 (best<br>estimate)                             |  |  |
| Barley           | brewer's malt              | 0.33, 0.8,<br>0.92, 0.96             | 0.86                                             | 1.5, 2, 2                           | 2                                                | 0.5, 0.91, 1, 1                     | 0.96                                               |  |  |
|                  | malt culms                 | 0.33, 0.7,<br>0.74, 1.1              | 0.72                                             | 1.5, 2, 2                           | 2                                                | 0.5, 0.77,<br>0.88, 1.2             | 0.83                                               |  |  |
|                  | beer                       | < 0.04,<br>< 0.05,<br>< 0.08, < 0.33 | < 0.065                                          | < 0.33, < 0.5,<br>< 0.5             | < 0.5                                            | 0.08, < 0.09,<br>< 0.13, < 0.5      | < 0.11                                             |  |  |
|                  | brewer's yeast             | 0.08, 0.17,<br>0.2, < 0.33           | 0.19                                             | 0.33, < 0.5,<br>< 0.5               | < 0.5                                            | 0.13, 0.19,<br>0.23, < 0.5          | 0.21                                               |  |  |
|                  | brewer's grain             | 0.33, 0.85, 1,<br>1.1                | 0.93                                             | 1.3, 1.5, 1.5                       | 1.5                                              | 0.5, 0.86, 1,<br>1.1                | 0.93                                               |  |  |
|                  | hops draff                 | 0.33, 0.65,<br>0.69, 0.74            | 0.67                                             | 1, 1, 1                             | 1                                                | 0.5, 0.67,<br>0.68, 0.77            | 0.68                                               |  |  |
|                  | pearl barley               | 0.17, 0.2,<br>0.23, < 0.33           | 0.22                                             | 0.33, 0.5, 0.5                      | 0.5                                              | 0.19, 0.23,<br>0.27, < 0.5          | 0.25                                               |  |  |
|                  | pearl barley<br>rub-off    | 3.2, 3.3, 4.6,<br>5.2                | 4                                                | 3, 3, 3.5                           | 3                                                | 3, 3.2, 4.4, 4.9                    | 3.8                                                |  |  |
| Wheat            | white flour                | 0.2, 0.2, 0.25,<br>0.5               | 0.23                                             | < 1                                 | < 1                                              | 0.33, 0.33,<br>0.4, 0.66            | 0.37                                               |  |  |
|                  | White flour<br>bran        | 2.4, 2.6, 2.8,<br>3.5                | 2.7                                              | 5                                   | 5                                                | 2.4, 2.5, 2.7, 4                    | 2.6                                                |  |  |
|                  | semolina                   | < 0.2, < 0.2,<br>< 0.25, < 0.5       | < 0.23                                           | < 1                                 | < 1                                              | < 0.33,<br>< 0.33, < 0.4,<br>< 0.66 | < 0.37                                             |  |  |
|                  | semolina bran              | < 0.2, 0.25,<br>0.5, 1.4             | 0.38                                             | < 1                                 | < 1                                              | < 0.33, 0.4,<br>0.66, 1.33          | 0.53                                               |  |  |
|                  | white bread                | < 0.2, 0.2,<br>< 0.25, < 0.5         | 0.2 (best estimate)                              | < 1                                 | < 1                                              | < 0.33, 0.33,<br>< 0.4, < 0.66      | 0.33 (best estimate)                               |  |  |
|                  | whole meal                 | 0.8, 0.8, 1, 1.5                     | 0.9                                              | 2                                   | 2                                                | 0.83, 0.83, 1,<br>1.7               | 0.91                                               |  |  |
|                  | wholemeal bread            | 0.4, 0.5, 0.5,<br>0.6                | 0.5                                              | 1                                   | 1                                                | 0.5, 0.6, 0.66,<br>0.66             | 0.63                                               |  |  |
|                  | wheat germ                 | 0.6, 0.75, 1.2, 1.5                  | 1                                                | 5                                   | 5                                                | 0.8, 0.83, 1.3,<br>2.7              | 1.1                                                |  |  |

## **RESIDUES IN ANIMAL COMMODITIES**

## Farm animal feeding studies

For the estimation of residues of bixafen and its metabolite M21 (bixafen-desmethyl) in animal matrices laying hens and lactating cow feeding studies were submitted to the Meeting.

## Poultry

The magnitude of the residue of bixafen and its metabolite M21 (bixafen-desmethyl) has been studied in <u>laying hens</u> by Billian, P, Barfknecht, R and Wolters, A (2008, BIXAFEN\_071). Adult chickens (12 birds per diet group divided into three subgroups with four animals each, one control group with four birds) were exposed for 28 consecutive days to levels of 1.5 ppm (1× dose group), 4.5 ppm (3× dose group), or 15 ppm feed/day (10× dose group) corresponding to approximately 0.1, 0.3 and 1.0 mg/kg bw/day. For a depuration study, three groups of hens were fed at the 10× dose rate for 28 consecutive days followed by untreated feed for another 7 days, 14 days or 21 days. Each subgroup comprised five birds.

Eggs were collected during the whole dosing period. On day 29 after the first dose, the hens were sacrificed, and liver, fat and overlaying skin, and muscle from breast and leg were collected for analysis.

Tissues and eggs were pooled and analysed using method 01036 (see analytical method section). The analytical method was validated for bixafen and M21 at a LOQ of 0.01 mg/kg for each analyte. The LOQ of the total bixafen residues (sum of bixafen and bixafen-desmethyl) was calculated to be 0.02 mg/kg. Residue data were obtained by high performance liquid chromatography-electrospray ionization/tandem mass spectrometry (HPLC-MS/MS) using isotopically labelled internal standards.

In the following table the residues found in eggs are summarised. Prior to dosing of bixafen, eggs collected contained no detectable residues of bixafen or M21 (bixafen-desmethyl). The results for these samples are not presented.

| Days | Residues in mg bixafen-equivalents p                     | er kg [mean]                                                                                          |                                                                                            |
|------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|      | 1× (1.5 ppm, 0.1 mg/kg bw)                               | 3× (4.5 ppm, 0.3 mg/kg bw)                                                                            | 10× (15 ppm, 1.0 mg/kg bw)                                                                 |
| 0    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3) | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                              | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                   |
| 1    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3) | bixafen: <0.01(3)<br>M21: <0.01(3)<br>Total: <0.02(3)                                                 | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                   |
| 2    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3) | bixafen: <0.01, <0.01, 0.01 [0.01]<br>M21: <0.01(3)<br>Total: <0.01, <0.01, 0.01 [0.01]               | bixafen:0.03, 0.03, 0.04 [0.033]M21:0.01, 0.01, 0.02 [0.013]Total:0.04, 0.04, 0.06 [0.047] |
| 5    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3) | bixafen: 0.01, 0.01, 0.02 [0.013]<br>M21: 0.01, 0.01, 0.02 [0.013]<br>Total: 0.02, 0.02, 0.04 [0.027] | bixafen:0.05, 0.06, 0.07 [0.06]M21:0.05, 0.06, 0.07 [0.06]Total:0.1, 0.12, 0.14 [0.12]     |
| 7    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3) | bixafen: 0.02, 0.02, 0.04 [0.027]<br>M21: 0.02, 0.03, 0.04 [0.03]<br>Total: 0.04, 0.05, 0.07 [0.053]  | bixafen:0.05, 0.05, 0.07 [0.057]M21:0.07, 0.07, 0.08 [0.073]Total:0.12, 0.13, 0.14 [0.13]  |
| 9    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3) | bixafen:0.02, 0.02, 0.03 [0.023]M21:0.02, 0.03, 0.03 [0.027]Total:0.04, 0.05, 0.06 [0.05]             | bixafen:0.06, 0.07, 0.08 [0.07]M21:0.08, 0.08, 0.09 [0.083]Total:0.13, 0.14, 0.16 [0.143]  |

Table 83 Residues of bixafen and M21 (bixafen-desmethyl) in eggs after administration of bixafen at 0.1, 0.3 or 1.0 mg/kg bw and day

| Days          | Residues in mg bixafen-equivalents po                                                   | er kg [mean]                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |
|---------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 1× (1.5 ppm, 0.1 mg/kg bw)                                                              | 3× (4.5 ppm, 0.3 mg/kg bw)                                                                                                                  | 10× (15 ppm, 1.0 mg/kg bw)                                                                                                                                                                                                                                                                                         |
| 12            | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                | bixafen:0.02, 0.02, 0.03 [0.023]M21:0.02, 0.02, 0.03 [0.023]Total:0.04, 0.05, 0.05 [0.047]                                                  | bixafen:         0.06, 0.07, 0.11 [0.08]           M21:         0.07, 0.08, 0.12 [0.09]           Total:         0.13, 0.15, 0.23 [0.17]                                                                                                                                                                           |
| 14            | bixafen: < 0.01(3)<br>M21: < 0.01, < 0.01, 0.01 [0.01]<br>Total: < 0.02(2), 0.02 [0.02] | bixafen:0.03, 0.03, 0.03 [0.03]M21:0.03, 0.03, 0.03 [0.03]Total:0.06, 0.06, 0.06 [0.06]                                                     | bixafen:0.06, 0.06, 0.1 [0.073]M21:0.07, 0.08, 0.1 [0.083]Total:0.13, 0.14, 0.2 [0.157]                                                                                                                                                                                                                            |
| 16            | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                | bixafen:0.03, 0.03, 0.03 [0.03]M21:0.03, 0.03, 0.03 [0.03]Total:0.06, 0.06, 0.06 [0.06]                                                     | bixafen:0.05, 0.07, 0.08 [0.067]M21:0.07, 0.09, 0.09 [0.083]Total:0.12, 0.16, 0.17 [0.15]                                                                                                                                                                                                                          |
| 21            | bixafen: < 0.01(3)<br>M21: < 0.01, < 0.01, 0.01 [0.01]<br>Total: < 0.02(2), 0.02 [0.02] | bixafen: 0.03, 0.03, 0.03 [0.03]<br>M21: 0.03, 0.03, 0.04 [0.033]<br>Total: 0.06, 0.06, 0.07 [0.063]                                        | $ \begin{array}{lll} bixafen: & 0.06, 0.06, 0.08^{a}, 0.09^{a}, \\ 0.09^{a} & 0.1 \ [0.08] \\ M21: & 0.07, 0.09, 0.09^{a}, 0.1^{a}, \\ & 0.12^{a}, 0.12 \ [0.098] \\ Total: & 0.13, 0.15, 0.18^{a}, 0.18^{a}, \\ & 0.21^{a}, 0.22 \ [0.178] \\ \end{array} $                                                       |
| 23            | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                | bixafen:         0.02, 0.02, 0.03 [0.023]           M21:         0.02, 0.03, 0.03 [0.027]           Total:         0.04, 0.05, 0.06 [0.05]  | $ \begin{array}{rll} bixafen: & 0.06, 0.07, 0.07^a, 0.08, \\ & 0.08^a, 0.09^a \left[ 0.075 \right] \\ M21: & 0.09, 0.09, 0.09^a, 0.1^a, \\ 0.1^a, & 0.11 \left[ 0.097 \right] \\ Total: & 0.15, 0.16, 0.16^a, 0.18^a, \\ 0.19, & 0.19^a \left[ 0.172 \right] \\ \end{array} $                                      |
| 26            | bixafen: < 0.01(3)<br>M21: < 0.01, < 0.01, 0.01 [0.01]<br>Total: < 0.02(2), 0.02 [0.02] | bixafen:         0.02, 0.03, 0.03 [0.027]           M21:         0.02, 0.03, 0.04 [0.03]           Total:         0.05, 0.06, 0.06 [0.057]  | $ \begin{array}{rl} \text{bixafen:} & 0.07, 0.07, 0.07^{a}, 0.07^{a}, \\ & 0.08, 0.09^{a} \left[ 0.075 \right] \\ \text{M21:} & 0.08, 0.08^{a}, 0.09, 0.09^{a}, \\ 0.1, & 0.1^{a} \left[ 0.09 \right] \\ \text{Total:} & 0.14, 0.16, 0.17^{a}, 0.17^{a}, \\ & 0.17^{a}, 0.18 \left[ 0.165 \right] \\ \end{array} $ |
| 28            | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                | bixafen:         0.02, 0.03, 0.03 [0.027]           M21:         0.02, 0.03, 0.03 [0.027]           Total:         0.05, 0.05, 0.06 [0.057] | bixafen: $0.05, 0.07, 0.07^{a}, 0.08^{a}, 0.09, 0.09^{a} [0.075]$<br>M21: $0.06, 0.08^{a}, 0.09, 0.09, 0.09^{a}, 0.1^{a} [0.085]$<br>Total: $0.11, 0.16, 0.17^{a}, 0.17^{a}, 0.17^{a}, 0.17^{a}, 0.18 [0.16]$                                                                                                      |
| 30            | not performed                                                                           | not performed                                                                                                                               | bixafen: 0.04 <sup>a</sup> , 0.05 <sup>a</sup> , 0.05 <sup>a</sup><br>[0.047]<br>M21: 0.06 <sup>a</sup> , 0.08 <sup>a</sup> , 0.08 <sup>a</sup><br>[0.073]<br>Total: 0.11 <sup>a</sup> , 0.12 <sup>a</sup> , 0.13 <sup>a</sup> [0.12]                                                                              |
| 33            | not performed                                                                           | not performed                                                                                                                               | bixafen:         0.02 <sup>a</sup> 0.02 <sup>a</sup> 0.02 <sup>a</sup> 0.02           M21:         0.03 <sup>a</sup> 0.03 <sup>a</sup> 0.03 <sup>a</sup> 0.03 <sup>a</sup> 0.03           Total:         0.05 <sup>a</sup> 0.05 <sup>a</sup> 0.05 <sup>a</sup> 0.05         0.05                                   |
| 35            | not performed                                                                           | not performed                                                                                                                               | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                               |
| 37,<br>40, 42 | not performed                                                                           | not performed                                                                                                                               | bixafen: <0.01 <sup>a</sup> (2)<br>M21: <0.01 <sup>a</sup> (2)<br>Total: <0.02 <sup>a</sup> (2)                                                                                                                                                                                                                    |
| 44,<br>48, 49 | not performed                                                                           | not performed                                                                                                                               | bixafen: $< 0.01^{a}$<br>M21: $< 0.01^{a}$<br>Total: $< 0.02^{a}$                                                                                                                                                                                                                                                  |

<sup>a</sup> Depuration sub-group

The distribution of the residue between egg yolk and egg white was investigated for the  $10 \times$  group on eggs collected after 22, 25 and 27 days. In the following table the residues of bixafen and M21 (bixafen-desmethyl) are presented:

Table 84 Distribution of bixafen and M21 (bixafen-desmethyl) in egg yolk and egg white after administration of bixafen at 1.0 mg/kg bw and day ( $10\times$ )

| Day | Residues in<br>[mg bixafer | i egg yolk<br>n equiv./kg] |       | Residues in egg white<br>[mg bixafen equiv./kg] |      | Residues in whole egg<br>[mg bixafen equiv./kg] |         |      |       |
|-----|----------------------------|----------------------------|-------|-------------------------------------------------|------|-------------------------------------------------|---------|------|-------|
|     | bixafen                    | M21                        | total | bixafen                                         | M21  | total                                           | bixafen | M21  | total |
| 22  | 0.13                       | 0.20                       | 0.33  | 0.04                                            | 0.01 | 0.05                                            | 0.07    | 0.08 | 0.15  |
| 25  | 0.14                       | 0.24                       | 0.38  | 0.05                                            | 0.02 | 0.07                                            | 0.08    | 0.09 | 0.17  |
| 27  | 0.10                       | 0.20                       | 0.30  | 0.03                                            | 0.01 | 0.04                                            | 0.05    | 0.07 | 0.12  |

For poultry, tissues residues of bixafen and M21 (bixafen-desmethyl) found directly at the end of the dosing period are presented in the following table. In samples collected from animal after depuration, no detectable residue of bixafen or M21 (bixafen-desmethyl) were present.

Table 85 Residues of bixafen and M21 (bixafen-desmethyl) in tissues of laying hens after administration of bixafen at 0.1, 0.3 or 1.0 mg/kg bw and day ( $1\times$ ,  $3\times$  or  $10\times$ )

| Commodity        | Residues in mg bixafen-equivalents per kg [mean]                                                    |                                                                                                                                             |                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 1× (1.5 ppm, 0.1 mg/kg bw)                                                                          | 3× (4.5 ppm, 0.3 mg/kg bw)                                                                                                                  | 10× (15 ppm, 1.0 mg/kg bw)                                                                                                                 |
| Skin with<br>fat | bixafen: < 0.01, < 0.01, 0.01<br>[0.01]<br>M21: < 0.01(3)<br>Total: < 0.02, < 0.02, 0.02<br>[0.02]  | bixafen:         0.04, 0.04, 0.05 [0.043]           M21:         0.01, 0.01, 0.02 [0.013]           Total:         0.05, 0.06, 0.06 [0.057] | bixafen:         0.05, 0.05, 0.07 [0.057]           M21:         0.01, 0.01, 0.02 [0.013]           Total:         0.06, 0.06, 0.09 [0.07] |
| Liver            | bixafen: < 0.01(3)<br>M21: < 0.01, < 0.01, 0.01<br>[0.01])<br>Total: < 0.02, < 0.02, 0.02<br>[0.02] | bixafen: < 0.01, 0.01, 0.01 [0.01]<br>M21: 0.01, 0.02, 0.03 [0.02]<br>Total: 0.02, 0.03, 0.04 [0.03]                                        | bixafen: < 0.01, < 0.01, 0.01<br>[0.01]<br>M21: 0.02, 0.03, 0.04 [0.03]<br>Total: 0.03, 0.04, 0.05 [0.04])                                 |
| Muscle           | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                            | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                                                                    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                                                                   |

## Lactating cows

Residues in <u>lactating cows</u> were investigated by Schoening, R and Wolters, A (2007, BIXAFEN\_072). Thirteen lactating Holstein dairy cows (*Bos taurus*; three cows/treatment group, one control cow and a depuration group consisting of three cows) were dosed orally, via capsule, for 29 consecutive days with bixafen with either 0 ppm (control,  $0\times$ ), 4 ppm (1× dose group), 12 ppm (3× dose group), or 40 ppm(10× dose group), corresponding to 0, 0.15 mg/kg bw, 0.45 mg/kg bw and 1.5 mg/kg bw, respectively.

Milk was collected twice daily. On day 29 after the administration of the first dose, the animals with the exception of the cows of the depuration group were sacrificed and liver, kidney, composite muscle, subcutaneous fat, mesenteric fat and perirenal fat were collected for analysis. For the depuration group  $(10\times)$ , milk for analysis was additionally sampled during the depuration phase. The animals of this group were sacrificed on day 8, 15 or 22 after the last dosing (corresponding to day 36, 43 or 50 after the first dosing), and animal tissues were collected for analysis.

Tissue and milk samples were analysed for bixafen and M21 (bixafen-desmethyl) residue by high performance liquid chromatography-electrospray ionization/tandem mass spectrometry (LC-

MS/MS) using isotopically labelled internal standards (method 01036, see section for analytical methods). The limit of quantitation (LOQ) was 0.01 mg/kg for each analyte, expressed as bixafen equivalents. The LOQ of the total residue of bixafen was calculated to be 0.02 mg/kg.

In milk residues of bixafen and M21 (bixafen-desmethyl) are presented in the following table:

Table 86 Residues of bixafen and M21 (bixafen-desmethyl) in milk after administration of bixafen at 0.15, 0.45 or 1.5 mg/kg bw and day

| Days | Residues in mg bixafen-equivalents p                                                                                      | er kg [mean]                                                                                                             |                                                                                                                                                                                                                                                                                                      |
|------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1× (4 ppm, 0.15 mg/kg bw)                                                                                                 | 3× (12 ppm, 0.45 mg/kg bw)                                                                                               | 10× (40 ppm, 1.5 mg/kg bw)                                                                                                                                                                                                                                                                           |
| 0    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                                                  | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                                                 | bixafen: < 0.01(6)<br>M21: < 0.01(6)<br>Total: < 0.02(6)                                                                                                                                                                                                                                             |
| 1    | bixafen: < 0.01(3)<br>M21: < 0.01(3)<br>Total: < 0.02(3)                                                                  | bixafen: < 0.01(3)<br>M21: 0.011, 0.012, 0.017<br>[0.013]<br>Total: 0.021, 0.022, 0.027<br>[0.023]                       | $ \begin{array}{ll} \text{bixafen:} & 0.017^{a}, 0.023, 0.023^{a}, \\ 0.031, & 0.031^{a}, 0.032 \; [0.026] \\ \text{M21:} & 0.23^{a}, 0.26^{a}, 0.03, 0.035, \\ & 0.41^{a}, 0.043 \; [0.033] \\ \text{Total:} & 0.04^{a}, 0.049^{a}, 0.058, \\ 0.062, & 0.072^{a}, 0.074 \; [0.059] \\ \end{array} $ |
| 2    | bixafen: < 0.01(3)<br>M21: < 0.01, < 0.01, 0.011<br>[0.01]<br>Total: < 0.02, < 0.02, 0.021<br>[0.02]                      | bixafen: < 0.01, 0.014, 0.014<br>[0.013]<br>M21: 0.023, 0.027, 0.049<br>[0.033]<br>Total: 0.033, 0.041, 0.063<br>[0.046] | $ \begin{array}{lll} bixafen: & 0.033^a, 0.4^a, 0.043, 0.053^a, \\ & 0.064, 0.085 \ [0.053] \\ M21: & 0.072^a, 0.073^a, 0.086, \\ 0.102^a, & 0.113, 0.146 \ [0.099] \\ Total: & 0.105^a, 0.113^a, 0.129, \\ 0.155^a, & 0.198, 0.210 \ [0.152] \\ \end{array} $                                       |
| 4    | bixafen: < 0.01(3)<br>M21: < 0.01, 0.012, 0.015<br>[0.012]<br>Total: < 0.02, 0.022, 0.025<br>[0.022]                      | bixafen: 0.01, 0.017, 0.025 [0.017]<br>M21: 0.029, 0.042, 0.076<br>[0.049]<br>Total: 0.039, 0.059, 0.101<br>[0.066]      |                                                                                                                                                                                                                                                                                                      |
| 8    | bixafen: < 0.01(3)<br>M21: < 0.01, 0.013, 0.014<br>[0.012]<br>Total: < 0.02, 0.023, 0.024<br>[0.022]                      | bixafen: 0.014, 0.021, 0.023<br>[0.0119]<br>M21: 0.032, 0.041, 0.067<br>[0.047]<br>Total: 0.046, 0.062, 0.09[0.066]      | $ \begin{array}{lll} bixafen: & 0.054, 0.057^a, 0.069, \\ 0.076^a, & 0.078^a, 0.147 \ [0.08] \\ M21: & 0.082, 0.102^a, 0.108^a, \\ 0.143^a, & 0.176, 0.214 \ [0.138] \\ Total: & 0.136, 0.165^a, 0.18^a, \\ 0.219^a, & 0.245, 0.361 \ [0.218] \\ \end{array} $                                       |
| 10   | bixafen: < 0.01, < 0.01, 0.012<br>[0.011]<br>M21: 0.013, 0.018, 0.019<br>[0.017]<br>Total: 0.023, 0.028, 0.031<br>[0.027] | bixafen: 0.013, 0.022, 0.026<br>[0.020]<br>M21: 0.028, 0.049, 0.062<br>[0.046]<br>Total: 0.041, 0.071, 0.088<br>[0.067]  | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                |
| 13   | bixafen: < 0.01(3)<br>M21: 0.011, 0.014, 0.021<br>[0.015]<br>Total: 0.021, 0.024, 0.031<br>[0.025]                        | bixafen: 0.014, 0.021, 0.023<br>[0.019]<br>M21: 0.028, 0.044, 0.059<br>[0.044]<br>Total: 0.042, 0.065, 0.082<br>[0.063]  | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                |
| 17   | bixafen: < 0.01, 0.011, 0.012<br>[0.011]<br>M21: 0.022, 0.027, 0.034<br>[0.028]<br>Total: 0.033, 0.038, 0.046<br>[0.039]  | bixafen: 0.013, 0.018, 0.021[0.017]<br>M21: 0.03, 0.043, 0.054 [0.042]<br>Total: 0.043, 0.054, 0.072<br>[0.056]          | $ \begin{array}{lll} bixafen: & 0.053^a, 0.061, 0.065, \\ 0.069^a, & 0.071^a, 0.083 \ [0.067] \\ M21: & 0.088^a, 0.127, 0.131, \\ 0.135^a, & 0.142^a, 0.149 \ [0.129] \\ Total: & 0.141^a, 0.192, 0.206^a, \\ 0.21, & 0.211^a, 0.214 \ [0.196] \\ \end{array} $                                      |

| Days                               | Residues in mg bixafen-equivalents p                                                                              | er kg [mean]                                                                                                            |                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | 1× (4 ppm, 0.15 mg/kg bw)                                                                                         | 3× (12 ppm, 0.45 mg/kg bw)                                                                                              | 10× (40 ppm, 1.5 mg/kg bw)                                                                                                                                                                                                                                                                                        |
| 20                                 | bixafen: < 0.01(3)<br>M21: 0.013, 0.02, 0.02 [0.018]<br>Total: 0.023, 0.03, 0.03 [0.028]                          | bixafen: 0.012, 0.017, 0.022<br>[0.017]<br>M21: 0.031, 0.042, 0.072<br>[0.048]<br>Total: 0.043, 0.059, 0.094<br>[0.065] |                                                                                                                                                                                                                                                                                                                   |
| 24                                 | bixafen: < 0.01, < 0.01, 0.01 [0.01]<br>M21: 0.01, 0.019, 0.024 [0.018]<br>Total: 0.02, 0.029, 0.034 [0.028]      | bixafen: 0.017, 0.021, 0.022 [0.02]<br>M21: 0.038, 0.043, 0.058<br>[0.046]<br>Total: 0.051, 0.064, 0.080<br>[0.065]     |                                                                                                                                                                                                                                                                                                                   |
| 28                                 | bixafen: < 0.01(3)<br>M21: 0.012, 0.015, 0.017<br>[0.015]<br>Total: 0.022, 0.025, 0.027<br>[0.025]                | bixafen: 0.01, 0.024, 0.026 [0.02]<br>M21: 0.031, 0.052, 0.089<br>[0.057]<br>Total: 0.041, 0.076, 0.115[0.077]          | bixafen: $0.052^{a}, 0.055^{a}, 0.062,$<br>$0.079, 0.083, 0.084^{a}$ [0.069]<br>M21: $0.104^{a}, 0.105^{a}, 0.135,$<br>$0.144, 0.17^{a}, 0.19$ [0.141]<br>Total: $0.157^{a}, 0.159^{a}, 0.206,$<br>$0.218, 0.254^{a}, 0.269$ [0.211]                                                                              |
| 29                                 | bixafen: < 0.01, < 0.01, 0.012<br>[0.011]<br>M21: 0.011, 0.021, 0.028 [0.02]<br>Total: 0.021, 0.031, 0.04 [0.031] | bixafen: 0.13, 0.21, 0.22 [0.019]<br>M21: 0.037, 0.046, 0.076<br>[0.053]<br>Total: 0.05, 0.067, 0.098[0.072]            | $ \begin{array}{lll} bixafen: & 0.051, 0.054^{a}, 0.056^{a}, \\ 0.059^{a}, & 0.06, 0.091 \left[ 0.062 \right] \\ M21: & 0.101^{a}, 0.103^{a}, 0.106, \\ 0.118^{a}, & 0.143, 0.147 \left[ 0.12 \right] \\ Total: & 0.157, 0.157^{a}, 0.157^{a}, \\ 0.177^{a}, & 0.207, 0.234 \left[ 0.182 \right] \\ \end{array} $ |
| 31                                 | not performed                                                                                                     | not performed                                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                              |
| 34,<br>36,<br>41,<br>43,<br>48, 50 | not performed                                                                                                     | not performed                                                                                                           | bixafen: <0.01(3)<br>M21: <0.01(3)<br>Total: <0.02(3)                                                                                                                                                                                                                                                             |

The distribution of the residue between skim milk and cream was investigated for the milk from the  $10\times$  group at day 26. In the following table the residues of bixafen and M21 (bixafendesmethyl) are presented:

Table 87 Distribution of bixafen and M21 (bixafen-desmethyl) in skim milk and cream after administration of bixafen at 1.5 mg/kg bw and day ( $10 \times$ , day 26)

| Sample                 | Residue<br>[mg bixafen equiv./kg] |       |                                |       |                              |       |
|------------------------|-----------------------------------|-------|--------------------------------|-------|------------------------------|-------|
|                        | bixafen                           | ratio | M21                            | ratio | total                        | ratio |
| Whole milk             | 0.072 <sup>a</sup>                | 1     | 0.141 <sup>a</sup>             | 1     | 0.213 <sup>a</sup>           | 1     |
| Skim milk              | < 0.01(3)                         | 0.14  | 0.03, 0.03, 0.03 [0.03]        | 0.21  | 0.04, 0.04, 0.04 [0.04]      | 0.19  |
| Cream                  | 0.562, 0.81, 1.41<br>[0.927]      | 13    | 1.038, 1.163, 1.336<br>[1.179] | 8.4   | 1.6, 1.973, 2.746<br>[2.106] | 9.9   |
| (milk fat <sup>b</sup> |                                   | (20)  |                                | (13)  |                              | (15)  |

<sup>a</sup> Residues for whole milk on day 26 not reported. The values represent the mean of the pooled day 24 and day 28 samples

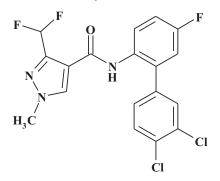
 $<sup>^{\</sup>rm b}$  Based on average measured milk fat content in cream of 65%

For bovine tissues residues of bixafen and M21 (bixafen-desmethyl) found directly at the end of the dosing period are presented in the following table.

Table 88 Residues of bixafen and M21 (bixafen-desmethyl) in tissues of lactating cows after administration of bixafen at 0.15, 0.45 or 1.5 mg/kg bw and day  $(1\times, 3\times \text{ or } 10\times)$ 

| Commodity           | Residues                                         | in mg bixafen-equivalents                                                                | per kg [m                                       | lean]                                                                                   |                                                          |                                                                                              |
|---------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                     | 1× (4 pp                                         | m, 0.15 mg/kg bw)                                                                        | 3× (12 p)                                       | pm, 0.45 mg/kg bw)                                                                      | 10× (40 j                                                | ppm, 1.5 mg/kg bw)                                                                           |
| Perirenal fat       | bixafen:<br>[0.08]<br>M21:<br>[0.104]<br>Total:  | 0.059, 0.09, 0.092<br>0.08, 0.114, 0.117<br>0.139, 0.204, 0.209<br>[0.184]               | bixafen:<br>M21:<br>[0.24]<br>Total:            | 0.135, 0.213, 0.218<br>[0.189]<br>0.191, 0.263, 0.266<br>0.326, 0.476, 0.484<br>[0.429] | bixafen:<br>M21:<br>Total:<br>[1.385]                    | 0.326, 0.667, 1.041<br>[0.678]<br>0.474, 0.767, 0.881<br>[0.707]<br>0.80, 1.434, 1.922       |
| Mesenteric<br>fat   | bixafen:<br>M21:<br>[0.09]<br>Total:             | 0.061, 0.076, 0.086<br>[0.074]<br>0.075, 0.085, 0.109<br>0.136, 0.161, 0.195<br>[0.164]  | bixafen:<br>M21:<br>Total:<br>[0.396]           | 0.118, 0.204, 0.214<br>[0.179]<br>0.178, 0.228, 0.246<br>[0.217]<br>0.296, 0.432, 0.46  | bixafen:<br>M21:<br>Total:                               | 0.394, 0.615, 0.927<br>[0.645]<br>0.503, 0.76, 0.838 [0.7]<br>0.897, 1.375, 1.765<br>[1.346] |
| Subcutaneous<br>fat | bixafen:<br>[0.053]<br>M21:<br>Total:<br>[0.1]   | 0.036, 0.06, 0.062<br>0.032, 0.051, 0.059<br>[0.047]<br>0.068, 0.111, 0.121              | bixafen:<br>[0.083]<br>M21:<br>[0.07]<br>Total: | 0.053, 0.08, 0.117<br>0.05, 0.064, 0.095<br>0.103, 0.144, 0.212<br>[0.153]              | bixafen:<br>[0.431]<br>M21:<br>Total:<br>[0.796]         | 0.144, 0.3, 0.849<br>0.156, 0.278, 0.662<br>[0.365]<br>0.3, 0.578, 1.511                     |
| Liver               | bixafen:<br>[0.045]<br>M21:<br>Total:            | 0.033, 0.05, 0.053<br>0.383, 0.556, 0.632<br>[0.524]<br>0.416, 0.606, 0.685<br>[0.569]   | bixafen:<br>M21:<br>[1.29]<br>Total:            | 0.083, 0.169, 0.184<br>[0.145]<br>1.148, 1.199, 1.523<br>1.231, 1.368, 1.707<br>[1.435] | bixafen:<br>M21:<br>Total:<br>[4.983]                    | 0.377, 0.443, 0.481<br>[0.434]<br>4.318, 4.441, 4.889<br>[4.549]<br>4.761, 4.818 5.37        |
| Muscle              | bixafen:<br>0.011[0.0<br>M21:<br>Total:          | <0.01, 0.01,<br>013]<br>0.029, 0.042, 0.054<br>[0.042]<br>0.039, 0.052, 0.065<br>[0.052] | bixafen:<br>M21:<br>Total:<br>[0.162]           | 0.012, 0.029, 0.045<br>[0.029]<br>0.069, 0.117, 0.215<br>[0.134]<br>0.081, 0.146, 0.26  | bixafen:<br>[0.14]<br>M21:<br>[0.68]<br>Total:<br>[0.82] | 0.128, 0.135, 0.157<br>0.505, 0.695, 0.84<br>0.633, 0.83, 0.997                              |
| Kidney              | bixafen:<br>M21:<br>[0.119]<br>Total:<br>[0.135] | 0.012, 0.017, 0.019<br>[0.016]<br>0.09, 0.133, 0.133<br>0.102, 0.15, 0.152               | bixafen:<br>[0.046]<br>M21:<br>Total:<br>[0.34] | 0.03, 0.051, 0.056<br>0.252, 0.314, 0.318<br>[0.295]<br>0.282, 0.365, 0.374             | bixafen:<br>M21:<br>[1.039]<br>Total:<br>[1.189]         | 0.134, 0.152, 0.166<br>[0.151]<br>0.906, 1.07, 1.14<br>1.04, 1.222, 1.306                    |

For the  $10 \times$  group three animals were kept for depuration for an interval of up to 21 additional days. Residues found in tissues sampled after sacrifice are presented in the following table:


Table 89 Residues of bixafen and M21 (bixafen-desmethyl) in tissues of lactating cows after administration of bixafen at 0.15, 0.45 or 1.5 mg/kg bw and day ( $1\times$ ,  $3\times$  or  $10\times$ ) destined for depuration of up to 21 days

| Commodity     | Residues in mg bixafen-equivalents per kg [mean] |                                                 |                                                 |
|---------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|               | 7 day depuration (day 36)                        | 14 day depuration (day 43)                      | 21 day depuration (day 50                       |
| Perirenal fat | bixafen: 0.018<br>M21: <0.01<br>Total: 0.028     | bixafen: < 0.01<br>M21: < 0.01<br>Total: < 0.02 | bixafen: < 0.01<br>M21: < 0.01<br>Total: < 0.02 |

| Commodity         | Residues in mg bixafen-equivalents          | Residues in mg bixafen-equivalents per kg [mean] |                                                 |  |
|-------------------|---------------------------------------------|--------------------------------------------------|-------------------------------------------------|--|
|                   | 7 day depuration (day 36)                   | 14 day depuration (day 43)                       | 21 day depuration (day 50                       |  |
| Mesenteric<br>fat | bixafen: 0.02<br>M21: < 0.01<br>Total: 0.03 | bixafen: < 0.01<br>M21: < 0.01<br>Total: < 0.02  | bixafen: < 0.01<br>M21: < 0.01<br>Total: < 0.02 |  |
| Subcutaneous fat  | bixafen: 0.097                              | bixafen: < 0.01                                  | bixafen: < 0.01                                 |  |
|                   | M21: <0.01                                  | M21: < 0.01                                      | M21: < 0.01                                     |  |
|                   | Total: 0.107                                | Total: < 0.02                                    | Total: < 0.02                                   |  |
| Liver             | bixafen: < 0.02                             | bixafen: < 0.01                                  | bixafen: < 0.01                                 |  |
|                   | M21: 0.117                                  | M21: 0.089                                       | M21: 0.071                                      |  |
|                   | Total: 0.137                                | Total: 0.099                                     | Total: 0.081                                    |  |
| Muscle            | bixafen: < 0.01                             | bixafen: < 0.01                                  | bixafen: < 0.01                                 |  |
|                   | M21: < 0.01                                 | M21: < 0.01                                      | M21: < 0.01                                     |  |
|                   | Total: < 0.02                               | Total: < 0.02                                    | Total: < 0.02                                   |  |
| Kidney            | bixafen: < 0.01                             | bixafen: < 0.01                                  | bixafen: < 0.01                                 |  |
|                   | M21: < 0.01                                 | M21: < 0.01                                      | M21: < 0.01                                     |  |
|                   | Total: < 0.02                               | Total: < 0.02                                    | Total: < 0.02                                   |  |

# APPRAISAL

Bixafen (ISO common name) is a pyrazole-carboxamide fungicide used to control diseases on rape plants and cereals. Bixafen inhibits fungal respiration by binding to mitochondrial respiratory complex II. It was considered for the first time by the 2013 JMPR for toxicology and residues.



The IUPAC name of bixafen is N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide and the CA name is 1H-pyrazole-4-carboxamide, N-(3',4'-dichloro-5-fluoro[1,1'-biphenyl]-2-yl)-3-(difluoromethyl)-1-methyl-.

Bixafen labelled either in the pyrazole- or dichlorophenyl-moiety was used in the metabolism and environmental fate studies.

The following abbreviations are used for the metabolites discussed below:

| M14                            | S-[3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1-methyl-1H-<br>pyrazol-4-yl]carbonyl}amino)-3-<br>hydroxybiphenyl-2-yl]cysteine<br>(IUPAC)                            | F<br>N<br>N<br>H <sub>3</sub> C<br>F<br>O<br>H<br>H<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M18                            | 3',4'-dichloro-6-({[3-(difluoromethyl)-<br>1-methyl-1H-pyrazol-4-<br>yl]carbonyl}amino)-2-<br>(methylthio)biphenyl-3-yl beta-L-<br>glucopyranosiduronic acid (IUPAC) | F<br>F<br>N<br>CH <sub>3</sub><br>CH <sub>3</sub><br>CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| M20                            | not nomenclature possible - position of<br>hydroxy group not specified                                                                                               | $OH = S = O$ $HO_{I,I} = O$ $HO_{I,$ |
| M21<br>(bixafen-<br>desmethyl) | N-(3',4'-dichloro-5-fluorobiphenyl-2-<br>yl)-3-(difluoromethyl)-1H-pyrazole-4-<br>carboxamide (IUPAC)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M23                            | not nomenclature possible - structure<br>not specified                                                                                                               | F<br>N<br>N<br>H<br>H<br>Cl<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| M24 | not nomenclature possible - structure<br>not specified                                                                           | $\begin{bmatrix} F & F \\ N & H \\ H & C \\ C \\ C \end{bmatrix}$ glycoside |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| M25 | not nomenclature possible - structure<br>not specified                                                                           | $\begin{bmatrix} F & F \\ N & H \\ H & Glycoside \\ Cl & Cl \end{bmatrix}$  |
| M26 | not nomenclature possible - structure<br>not specified                                                                           | $\begin{bmatrix} F \\ H \\ H \\ H \\ C \\ C \\ C \\ C \\ C \\ C \\ C$       |
| M27 | not nomenclature possible - structure<br>not specified                                                                           |                                                                             |
| M37 | S-[3',4'-dichloro-6-({[3-<br>(difluoromethyl)-1H-pyrazol-4-<br>yl]carbonyl}amino)-3-<br>hydroxybiphenyl-2-yl]cysteine<br>(IUPAC) | F F O OH O<br>N H S OH<br>H CI<br>CI                                        |
| M43 | 3-(difluoromethyl)-1-methyl-1H-<br>pyrazole-4-carboxamide (IUPAC)                                                                | H <sub>3</sub> C                                                            |

| M44 | 3-(difluoromethyl)-1H-pyrazole-4-<br>carboxylic acid (IUPAC) | F F O OH                |
|-----|--------------------------------------------------------------|-------------------------|
|     |                                                              | proposal for tautomer 1 |
| M45 | 5-(difluoromethyl)-1H-pyrazole-4-<br>carboxylic acid (IUPAC) | HN OH                   |
|     |                                                              | proposal for tautomer 2 |
| M47 | 3-hydroxy-1H-pyrazole-4-carboxylic<br>acid (IUPAC)           | HN NH OH                |

## Animal metabolism

Information was available on the metabolism of bixafen in laboratory animals, lactating goats and laying hens.

In rats given (dichlorophenyl-U-<sup>14</sup>C)-labelled bixafen orally by gavage, absorption was rapid and accounted for at least 83% of the total administered radioactivity after a single low dose (2 mg/kg bw). The maximum plasma concentrations of radioactivity were reached approximately 2–4 and 8 hours after administration of the low and high doses (2 and 50 mg/kg bw), respectively. Radioactivity was widely distributed throughout the body. Elimination of the radioactivity was mainly via faeces ( $\geq$  91%), whereas elimination via urine accounted for 1–3% of the administered dose. In bile duct– cannulated rats, extensive biliary excretion (up to 83%) was demonstrated. Elimination of the radioactivity from the body was rapid, with a half-life in plasma of 8–9 hours and a mean residence time of 13–19 hours (for the low dose). Residues in tissues at 72 hours after a single oral dose as well as after repeated oral dosing accounted for 0.1–3% of the administered radioactivity, with liver and kidneys containing the highest concentrations of residues.

Metabolism of bixafen in rats was extensive, and more than 30 metabolites were identified. The main metabolic routes included demethylation, hydroxylation of the parent and bixafendesmethyl, and conjugation with glucuronic acid or glutathione. A minor metabolic reaction was the cleavage of the amide bridge of bixafen.

Two studies on metabolism in lactating goats were available. The goats received five daily doses of [pyrazole-<sup>14</sup>C]-bixafen or [dichlorophenyl-<sup>14</sup>C]-bixafen at rates equivalent to 35 ppm and 46 ppm in the diet, respectively. The animals were sacrificed approximately 24 hours after the last dose. In both studies approximately 1.3% of the total dose was recovered from milk or tissues of the animals. Most of the radioactivity was excreted via faeces (74–82% AR) and urine (1.8–5.4% AR).

The metabolic pattern in both studies was comparable. In milk (TRR: 0.064-0.17 mg eq/kg), muscle (TRR: 0.047-0.057 mg eq/kg) and fat (TRR: 0.47-0.61 mg eq/kg) unchanged bixafen was the major residue, representing 74–77%, 56–66% and 89% of the total radioactivity, respectively. M21 (bixafen-desmethyl) was the only major metabolite being present at 16–18% of the TRR in milk, 34–43% in muscle and 10–11% in fat.

For kidney (TRR: 0.14–0.2 mg eq/kg) and liver (TRR: 0.74–1.2 mg eq/kg) parent bixafen was also a major residue, representing 44–46% of the total radioactivity in kidney and 18–23% in liver. Significant metabolites identified were M21 (bixafen-desmethyl), representing 37–38% of the TRR in

kidney and 19–21% TRR in liver, followed by the two M23 isomers counting for a total of 9.3-15% of the TRR in kidney and 14–19% in liver.

For laying hens groups of hens received daily doses of  $[pyrazole-^{14}C]$ -bixafen or [dichlorophenyl-<sup>14</sup>C]-bixafen at rates equivalent to 26 ppm and 32 ppm in the diet for 14 consecutive days. The animals were sacrificed ca. 24 hours after the last dose. Approximately 1.5% of the total dose in both studies was recovered from eggs or tissues of the animals. Most of the radioactivity administered was found in the excreta (88–93% AR). Total radioactive residues were 0.53–0.9 mg eq/kg in eggs, 0.032–0.037 mg eq/kg in muscle, 0.23–0.38 mg eq/kg in fat and 0.64–0.81 mg eq/kg in liver.

Parent bixafen was a major residue in eggs and all tissues except liver, representing 51-69% of the TRR in eggs, 23-41% in muscle and 80% in fat. In hens liver, only minor amounts of bixafen were detected (4.5-6.7% TRR).

M21 (bixafen-desmethyl) was the only major metabolite found in poultry tissues and eggs. It was found at levels of 26-39% of the TRR in eggs, 35-51% in muscle, 19-20% in fat and 24-26% in liver. In liver, M14, M18, M24, M25, M26, M27 and M37 were identified as minor metabolites, representing 1.0-8.8% of the TRR (0.007-0.067 mg eq/kg) each.

In summary bixafen is the major residue in most tissues, milk and eggs. It is moderately metabolized in goats and hens mainly resulting in M21 (bixafen-desmethyl). All major metabolites were also identified in the rat. The metabolites M18, M25 and M26, mainly found in poultry liver, were not directly identified in the rat.

## Plant metabolism

The Meeting received plant metabolism studies for bixafen following foliar application of either [pyrazole-<sup>14</sup>C]-bixafen or [dichlorophenyl-<sup>14</sup>C]-bixafen to soya beans or wheat.

Soya beans were independently treated with both bixafen-labels with three foliar applications of 0.06 kg ai/ha each when the first flowers opened (BBCH 60), at the end of flowering (BBCH 69) and finally when approximately 80% of the pods were ripe (BBCH 88). Samples were collected containing forage (5 days after 2nd application), hay (29 days after 2nd application), straw and seed (26 days after the 3rd application). Total radioactive residues were 4.0-5.3 mg eq/kg for forage, 2.8-4.0 mg eq/kg for hay, 9.5-13 mg eq/kg for straw and 0.005-0.024 mg eq/kg for seeds.

In all plant parts directly affected by the spray solution, unchanged bixafen was the major residue representing 96–98% of the TRR in forage, 92% in hay and 90–92% in straw. The only other metabolite identified was M21 (bixafen-desmethyl), present at 0.5–2.6% of the TRR.

For soya bean seeds, only samples following application of the pyrazole-label contained sufficient total radioactive residues for further investigation. Bixafen was the major residue with 30% of the TRR. Metabolites identified were M44 and M45 (19% TRR, 0.004 mg eq/kg) and M47 (12% TRR, 0.003 mg eq/kg). M21 (bixafen-desmethyl) was not identified in soya bean seeds.

Wheat was independently treated with both bixafen-labels using one foliar application of 0.125 kg ai/ha at the end of tillering / beginning of stem elongation (BBCH 29–31) followed by a second spraying with 0.15 kg ai/ha at the end of flowering (BBCH 69). Forage was harvested 9 days after the 1<sup>st</sup> application, hay 9 days after the 2<sup>nd</sup> application and straw and grain at maturity (50 days after the 2<sup>nd</sup> application). Total radioactive residues were 1.6–1.7 mg eq/kg for forage, 6.6–7.6 mg eq/kg for hay, 23–24 mg eq/kg for straw and 0.16–0.23 mg eq/kg for seeds.

In all samples unchanged bixafen was the major residue, representing > 90% of the TRR. The only other metabolite identified was M21 (bixafen-desmethyl) at 0.8–2.4% of the TRR.

In summary the plant metabolism of bixafen in the plants investigated is very limited. In plant parts directly affected by the spray solution, unchanged bixafen was the only residue significant. M21 (bixafen-desmethyl) was present at low levels up to 2.6% of the TRR.

In soya bean seeds, which were protected by the pod during treatment, bixafen was present at lower concentrations of 0.007 mg eq/kg (30% TRR). Major metabolites in soya bean seeds were M44, M45 and M47, probably taken up from the soil and distributed systemically, however at low levels not exceeding 0.004 mg eq/kg. All three of these metabolites were not identified in the rat.

## Environmental fate in soil

The Meeting received information on the fate of bixafen after aerobic degradation in soil and after photolysis on the soil surface. In addition, the Meeting received information on the uptake and metabolism of bixafen soil residues by rotational crops, its dissipation under field conditions and long-term accumulation in soil.

In soil photolysis studies degradation of bixafen was not observed.

In aerobic soil metabolism studies under laboratory conditions bixafen was highly persistent with 80–90% remaining after 120 days. The only metabolite found was M44 (maximum 2.9% of AR), while the rest of the radioactivity remained unextracted or was recovered as <sup>14</sup>CO<sub>2</sub>. DT<sub>50</sub> values could not be calculated due to the minimal degradation observed within 120 days.

In soil samples from the confined rotational crop metabolism studies mentioned below, bixafen was also slowly degraded. The only metabolite found was identified as M21 (bixafendesmethyl), slowly increasing from 0.5% (day 30) to 2.3% TRR at the end of the study (day 418). M44 was not detected.

In summary it can concluded that bixafen is persistent in soil, being degraded to a very minor extent.

Confined rotational crop studies on Swiss chard, turnips and wheat were conducted at rates equivalent to 0.79 kg ai/ha (pyrazole-label) and 0.85 kg ai/ha (dichlorophenyl-label). In plant commodities bixafen (11–78% TRR) and M21 (bixafen-desmethyl, 3–73% TRR) were the major residue components found for both labels. Quantified concentrations for the sum of both analytes were 0.016–0.024 mg eq/kg for Swiss chard, 0.005–0.035 mg eq/kg in turnip roots and tops and 0.011–0.041 mg eq/kg, 0.106–0.18 mg eq/kg and 0.152–0.462 mg eq/kg for wheat forage, hay and straw, respectively. In grain TRR levels were too low for identification (0.001–< 0.01 mg eq/kg).

Following application of the pyrazole-labelled active substance, the cleavage products M43 (3-15% TRR), M44 (0.3-37% TRR) and M45 (2-23% TRR) were identified as major metabolites. Concentrations were between 0.001–0.015 mg eq/kg each.

Following treatment with the dichlorophenyl-label, M20 was found in Swiss chard only at levels of 25-38% of the TRR (0.007-0.016 mg eq/kg).

The residue concentrations of bixafen and M21 in plants declined moderately in animal feed commodities while in food commodities only a slow decline of the residue was observed over the three crop rotations investigated. In all commodities investigated, except for wheat grain, detectable residues above the LOQ of 0.01 mg/kg were found for bixafen.

Field rotational crop studies were conducted at four locations in Europe. Bixafen was either applied to bare soil to simulate crop failure (0.28 kg ai/ha) or to barley as a primary crop (0.16 kg ai/ha at BBCH 56 plus 0.125 kg ai/ha at BBCH 69). Turnip/carrots, lettuce and wheat were planted as rotational crops at three rotations. Samples analysed for residues of bixafen and M21 were below the LOQ of 0.01 mg/kg for each analyte, except for one sample of wheat straw (M21: 0.02 mg/kg) and lettuce at a pre-mature growth stage (BBCH 46; bixafen: 0.05 mg/kg).

Field dissipation studies at six locations in Europe (four in the north, two in the south) confirmed the slow degradation of bixafen in soil observed in the aerobic metabolism studies. Within the first 100 days, a significant degradation of the residue concentration in soil was observed, leaving 42–63% of the initial concentrations. However, the decline after this period up to 730 days was minimal, leaving 17–47% of the initial concentration. M21 was not found above the LOQ of the analytical method.

The Meeting observed that the degradation of bixafen in soil follows a bi-phasic kinetics, starting with a fast decline within the first 100 days. After that initial interval, bixafen is highly persistent in soil, accumulating with subsequent treatments over multiple years.

In a long-term soil accumulation study under field conditions residues of bixafen and M21 (bixafen-desmethyl) in soil were investigated involving five and seven years of annual treatment with 0.14 kg ai/ha to the ground. In the first location in France a plateau for the bixafen concentration in soil was reached after five years, resulting in concentrations of up to 0.18 mg per kg soil. In Germany, the study was terminated after 7 years, due to technical reasons, without reaching a plateau, showing a bixafen peak concentration of 0.35 mg per kg soil. Most of the residue (> 95%) was present as unchanged parent substance located in the initial 10 cm soil layer. Based on an average density of 1.5 g/cm<sup>3</sup> for soil these concentrations are equivalent to single application rates to the bare soil of 0.27 kg ai/ha in the French trial and 0.53 kg ai/ha in the German trial.

The Meeting concluded that bixafen residues accumulate in soil after annual treatments. Under consideration of the highest annual application rate reported in the authorised GAPs of 0.25 kg ai/ha, soil residue concentrations equivalent to single application rates to bare soil of 0.9 kg ai/ha could be reached.

In summary the Meeting concluded that bixafen is persistent in soil, accumulating after subsequent years of annual treatment. Confined rotational crop studies indicate a potential uptake of residues for bixafen and M21 (bixafen-desmethyl) into plant commodities. The Meeting also recognized that field rotational crop studies involved soil treatment rates not addressing the soil concentrations expected after subsequent annual treatment.

# Methods of residue analysis

The Meeting received analytical methods for the analysis of bixafen and M21 (bixafen-desmethyl) in plant and animal matrices. The basic principle employs extraction by homogenisation with acetonitrile/water (4/1, v/v) or n-hexane with acetonitrile partitioning for fatty samples. The extracts were cleaned with filtration and C18 solid-phase extraction. Residues are determined by liquid chromatography (LC) in combination with tandem mass spectroscopy (MS/MS). Mass-transitions are m/z 414 $\rightarrow$ 394 (m/z 414 $\rightarrow$ 266 for confirmation) for bixafen and m/z 398 $\rightarrow$ 378 (m/z 398 $\rightarrow$ 358 for confirmation) for M21 (bixafen-desmethyl). The methods submitted are suitable for measuring residues of bixafen and M21 in plant and animal commodities with a LOQ of 0.01 mg/kg for each analyte.

The extraction efficiency with acetonitrile/water (4/1, v/v) was tested for wheat (forage, grain straw) obtained from plant metabolism and confined rotational crop studies. Extraction rates were of > 90% for primary treated commodities and 68–73% (corresponding to 72–99% of the TTR) for commodities from rotational crops.

For the application of multi-residue methods the DFG S-19 was tested, but found to be unsuitable for analysing bixafen or M21 in plant matrices.

#### Stability of residues in stored analytical samples

The Meeting received information on the storage stability of bixafen and M21 (bixafen-desmethyl) in plant matrices. In wheat grain, wheat straw, wheat green material, lettuce head, potato tuber, rape seed and in soil, no significant degradation of both analytes was observed within 24 months.

For animal matrices no storage stability data were provided. Samples in livestock metabolism or feeding studies were analysed within one month of sampling.

# Definition of the residue

Livestock animal metabolism studies were conducted on laying hens (36–32 ppm) and lactating goats (35–46 ppm).

In goats parent bixafen and M21 (bixafen-desmethyl) were the major residue. Bixafen represented 74–77% TRR in milk, 56–66% TRR in muscle, 44–46% TRR in kidney, 18–23% TRR in

liver and 89% TRR in fat. M21 was the major metabolite present at 16–18% TRR in milk, 34–43% TRR in muscle, 37–38% TRR in kidney, 19–21% TRR in liver and 10–11% TRR in fat. In kidney and liver the two isomers of M23 were found at 9–15% of the TRR in kidney (isomer 1: 2.8–4.3%; isomer 2: 6.5–10% TRR) and of 14–19% in liver (isomer 1: 8.6–13% TRR; isomer 2: 5.2–5.8% TRR).

In laying hens again bixafen was the major residue in eggs and all tissues except liver, representing 51–69% TRR in eggs, 23–41% in muscle and 80% in fat. In liver only minor amounts of bixafen were detected (4.5–6.7% of the TRR). M21 (bixafen-desmethyl) was the major metabolite found in poultry tissues and eggs. It accounted for 26–39% of the TRR in eggs, 35–51% in muscle, 19–20% in fat and 24–26% in liver. In liver, M14, M18, M24, M25, M26, M27 and M37 were identified as minor metabolites, representing 1.0–8.8% of the TRR (0.007–0.067 mg eq/kg) each. Of these, M18, M25 and M26 were not identified in the rat, however the exposure of M18 was below the respective acute and chronic TTCs for Cramer class III while M25 and M26 have structural similarity to bixafen-desmethyl and are covered by the ADI for bixafen. As a consequence no consideration of dietary intake is required.

M21 (bixafen-desmethyl) was identified as the major residue in rat studies, suggesting that it is covered by toxicological reference values for parent bixafen. The Meeting concluded that parent bixafen and M21 (bixafen-desmethyl) are suitable marker compounds in animal commodities and should be included into the residue definition for compliance with MRLs and for the estimation of the dietary intake. Analytical methods are capable of measuring both analytes.

In livestock feeding studies the distribution of bixafen and M21 between skim milk/cream and egg white/egg yolk was investigated. The average ratio for cream/skim milk was > 93 for bixafen and 39 for M21. Egg yolk concentrations of bixafen were three times higher than in egg white while M21 showed ratios of 12–20. For the parent substance a log  $P_{ow}$  of 3.3 was measured.

The data for milk and eggs suggests that bixafen and M21 partition in the fat portion. In addition, residues in fat tissues were about ten times higher when compared to muscle. The Meeting decided that residues of bixafen are fat-soluble.

The fate of bixafen in plants was investigated following foliar application to soya beans and wheat. In all samples unchanged bixafen was the major residue, normally representing at least 90% of the TRR. M21 was present at very low levels, not exceeding 3% of the TRR. In soya bean seeds, which were not directly exposed to the spray solution due to the pods, only 30% of the TRR (0.007 mg eq/kg) was present as bixafen. Further major metabolites in soya bean seeds were identified as the tautomers M44 and M45 (19% TRR, 0.004 mg eq/kg) and M47 (12% TRR, 0.003 mg eq/kg).

In confined rotational crop studies, plant commodities Swiss chard, wheat and turnips contained concentrations of radioactive residues as high as 0.49 mg eq/kg, in wheat straw. Bixafen (11–78% TRR) and M21 (bixafen-desmethyl, 3–73% TRR) were the major compounds identified. In addition, M43 (3–15% TRR), M44 (0.3–37% TRR) and M45 (2–23% TRR) were identified as major metabolites in all rotational crops. M20 was only found in Swiss chard (25–38% TRR, 0.007–0.016 mg eq/kg). Wheat grain did not contain TRR levels allowing further identification (0.001– < 0.01 mg eq/kg).

The Meeting concluded that parent bixafen is a suitable maker for compliance with MRLs in all plant commodities (primary treated or rotational). For the estimation of the dietary intake M21 was insignificant in wheat and soya beans directly treated, but was identified in high relative amounts in rotational crops. Therefore, the Meeting decided to include M21 (bixafen-desmethyl) into the residue definition for dietary intake with the parent substance. The metabolites M20, M44, M45 and M47, mainly found in rotational crops, were not identified in the rat. However, the estimated exposure levels based on the confined rotational crop study are below the respective acute and chronic TTCs for Cramer class III. As a result, no consideration is required for dietary intake.

Analytical methods are capable of measuring bixafen and M21 (bixafen-desmethyl) in plant matrices.

Definition of the residue for compliance with MRL for plant commodities: bixafen

Definition of the residue for compliance with MRL for animal commodities and (for the estimation of dietary intake) for plant and animal commodities: *sum of bixafen and N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-(difluoromethyl)-1H-pyrazole-4-carboxamide (bixafen-desmethyl), expressed as bixafen* 

The residue is fat-soluble.

#### Results of supervised residue trials on crops

The Meeting received supervised European trial data for applications of bixafen to rape seed, barley and wheat.

Residue values referred to as "total" describe the sum of bixafen and M21 (bixafendesmethyl), expressed as bixafen.

The Meeting concluded that field rotational crop studies do not address residues in soil expected after subsequent annual application of bixafen. Confined rotational crop studies available are not considered representative of field conditions. In the absence of suitable data, residue concentrations in plant commodities taken up from the soil by annual crops could not be estimated. Therefore, the Meeting decided, that no recommendations on maximum residue levels and median/highest residues could be made for bixafen in non-permanent crops.

Nevertheless, for the benefit of potential future assessments of bixafen uses, the Meeting decided to evaluate GAPs and residue data following direct application.

#### Rape seed

Bixafen is registered in the UK for use on rape seed at rates of  $2 \times 0.075$  kg ai/ha with a PHI of 56 days. Supervised field trials conducted in northern Europe, according to this GAP, were submitted.

For MRL compliance purposes residues of parent bixafen in rape seeds were (n=10): < 0.01(6), 0.01(3), 0.017 mg/kg.

For dietary intake purposes the total residues in rape seeds were (n=10): < 0.02(5), 0.02(4), 0.028 mg/kg.

## Barley and oats

For barley and oats the maximum GAP in northern Europe was reported from the UK involving two foliar applications of up to 0.125 kg ai/ha each. The last application is conducted at BBCH 61 and the PHI is covered by the growth between treatment and harvest. Supervised field trials conducted in northern Europe according to this GAP were submitted.

For MRL compliance purposes residues of parent bixafen in barley grain in northern Europe were (n=10): 0.02, 0.04(3), 0.05, 0.07, 0.08, 0.09, 0.09, 0.1 mg/kg.

For dietary intake purposes the total residues in barley grain in northern Europe were (n=10): 0.03, 0.05(3), 0.06, 0.08, 0.1, 0.1, 0.11, 0.11 mg/kg.

In Southern Europe a GAP for barley and oats was reported from France with one application of 0.075 kg ai/ha up to BBCH 61 with a 35 day PHI. However, no corresponding residue data were submitted.

The Meeting decided to explore the use of global residue data as outlined in the 2011 JMPR Report (2.4) for the residue data originating from southern Europe against the GAP of the UK.

For MRL compliance purposes residues of parent bixafen in barley grain in southern Europe according to the UK GAP were (n=9): 0.03, 0.04, 0.04, 0.06, 0.06, 0.08, 0.1, 0.25, 0.34 mg/kg.

For dietary intake purposes the total residues in barley grain in southern Europe according to the UK GAP were (n=9): 0.04, 0.05, 0.05, 0.08, 0.08, 0.1, 0.11, 0.29, 0.38 mg/kg.

The Meeting decided to combine that data and evaluate all European supervised field trials against the UK GAP for barley:

For MRL compliance purposes residues of parent bixafen in barley grain in whole Europe (n=19): 0.02, 0.03, 0.04(5), 0.05, 0.06, 0.06, 0.07, 0.08, 0.08, 0.09, 0.09, 0.1, 0.1, 0.25 and 0.34 mg/kg.

For dietary intake purposes the total residues in barley grain in whole Europe were (n=19): 0.03, 0.04, 0.05(5), 0.06, 0.08(3), 0.1(3), 0.11(3), 0.29 and 0.38 mg/kg.

#### Wheat, rye, triticale and spelt

For wheat, rye and triticale the maximum GAP in Northern Europe was reported from the UK and involved two foliar applications of up to 0.125 kg ai/ha each. The last application is conducted at BBCH 69 and the PHI is covered by the growth between treatment and harvest. Supervised field trials conducted in Northern Europe according to this GAP were submitted.

For MRL compliance purposes residues of parent bixafen in wheat grain in northern Europe were (n=10): < 0.01(6), 0.01, 0.01, 0.03, 0.03 mg/kg.

For dietary intake purposes the total residues in wheat in northern Europe were (n=10): < 0.02(6), 0.02, 0.02, 0.04, 0.04 mg/kg.

In southern Europe a GAP for wheat, rye and triticale was reported from France with one application of 0.094 kg ai/ha up to BBCH 69 with a 35 day PHI. However, no corresponding residue data were submitted.

The Meeting decided to explore the use of global residue data as outlined in the 2011 JMPR Report (2.4) for residue data from southern Europe against UK GAP:

For MRL compliance purposes residues of parent bixafen in wheat grain in Southern Europe according to the UK GAP were (n=10): < 0.01(6), 0.01, 0.02, 0.03 mg/kg.

For dietary intake purposes the total residues in wheat grain in southern Europe according to UK GAP were (n=10): < 0.02(6), 0.02, 0.03, 0.04 mg/kg.

The Meeting decided to combine that data and evaluate all European supervised field trials against the UK GAP for wheat:

For monitoring purposes residues of parent bixafen in wheat grain in whole Europe (n=20): < 0.01(12), 0.01(3), 0.02, 0.02, 0.03, 0.03 and 0.03 mg/kg.

For dietary intake purposes the total residues in wheat grain in whole Europe were (n=20): < 0.02(12), 0.02(3), 0.03, 0.03, 0.04, 0.04 and 0.04 mg/kg.

## Animal feeds

## Oilseed rape, forage

The Meeting noted that the only authorisation submitted for bixafen in rape was from UK explicitly relating to oilseed rape. This GAP involves late treatment of the crop 56 days before harvest, which is normally beyond the common timeframe for utilization of oilseed rape as a forage crop, i.e., before winter and up to BBCH 39. This is supported by supervised field trials in northern Europe, where last applications were conducted at growth stages at the end of flowering or at early maturity.

The Meeting concluded that the reported GAP for bixafen is not relevant for the utilization of oilseed rape as an animal forage crop.

## Barley, oats, rye, triticale and wheat – forage of cereals

GAPs for barley and oats in the UK are for a maximum of two foliar applications up to flowering (BBCH 61) with 0.125 kg ai/ha each. The PHI is covered by the interval between treatment and harvest (covered by growth stage).

For the calculation of the livestock animal dietary burden the total residues in barley forage (fresh) in northern Europe were (n=10): 2.1, 2.5, 2.6, 2.9, 3.5, 3.9, 4.0, 4.4, 4.5, 7.3 mg/kg.

In southern Europe a GAP for barley and oats was reported from France with one application of 0.075 kg ai/ha up to BBCH 61 with a 35 day PHI. However, no corresponding residue data were submitted.

The Meeting decided to explore the use of global residue data as outlined in the 2011 JMPR Report (2.4) for residue data from southern Europe against the UK GAP:

For the calculation of the livestock animal dietary burden the total residues in barley forage (fresh) in southern Europe were (n=9): 2.7, 3.0, 3.2, 3.4, 3.4, 3.7, 3.8, 4.3, 6.0 mg/kg.

The Meeting decided to combine that data and evaluate all European supervised field trials against the UK GAP for barley and oat forage:

For the calculation of the livestock animal dietary burden the total residues in barley forage (fresh) in whole Europe were (n=19): 2.1, 2.5, 2.6, 2.7, 2.9, 3.0, 3.2, 3.4, 3.4, 3.5, 3.7, 3.8, 3.9, 4.0, 4.3, 4.4, 4.5, 6.0, 7.3 mg/kg.

For wheat, rye and triticale the maximum GAP in northern Europe was reported for the UK involving two foliar applications of up to 0.125 kg ai/ha. The last application is at BBCH 69 with the PHI covered by growth between treatment and harvest. Supervised field trials conducted in northern Europe according to this GAP were submitted.

For the calculation of the livestock animal dietary burden the total residues in wheat forage (fresh) in northern Europe were (n=10): 1.5, 2.4, 2.8, 2.9, 3.1, 3.4, 3.8, 4.7, 4.8, 7.3 mg/kg.

In southern Europe a GAP for wheat, rye and triticale was reported from France with one application of 0.094 kg ai/ha up to BBCH 69 with a 35 day PHI. However, no corresponding residue data were submitted.

The Meeting decided to explore the use of global residue data as outlined in the 2011 JMPR Report (2.4) for residue data from southern Europe against the UK GAP.

For the calculation of the livestock animal dietary burden the total residues in wheat forage (fresh) in southern Europe were (n=10): 2.6, 2.7, 2.9, 3.0, 3.6, 3.9, 4.2, 4.5, 5.2, 5.5 mg/kg.

The Meeting decided to combine that data and evaluate all European supervised field trials against the UK GAP for wheat forage.

For the calculation of the livestock animal dietary burden the total residues in barley and wheat forage (fresh) in Europe were (n=20): 1.5, 2.4, 2.6, 2.7, 2.8, 2.9, 2.9, 3.0, 3.1, 3.4, 3.6, 3.8, 3.9, 4.2, 4.5, 4.7, 4.8, 5.2, 5.5, 7.3 mg/kg.

## Barley, oats, rye, triticale and wheat – straw and fodder

GAPs for barley and oats in the UK are for a maximum of two foliar applications up to flowering (BBCH 61) with 0.125 kg ai/ha each. The PHI is covered by the interval between treatment and harvest (covered by growth stage).

For MRL compliance purposes residues of parent bixafen in barley straw (fresh) in northern Europe (n=10): 0.64, 0.7, 0.77, 0.86, 1.1, 1.1, 3.7, 4.8, 5.4, 10 mg/kg.

For the calculation of the livestock animal dietary burden the total residues in barley straw (fresh) in northern Europe were (n=10): 0.72, 0.74, 0.85, 1.0, 1.2, 1.2, 3.9, 5.2, 5.6, 11 mg/kg.

In southern Europe a GAP for barley and oats was reported from France with one application of 0.075 kg ai/ha up to BBCH 61 with a 35 day PHI. However, no corresponding residue data were submitted.

The Meeting decided to explore the use of global residue data as outlined in the 2011 JMPR Report (2.4) for residue data from Southern Europe against the UK GAP.

For MRL compliance purposes residues of parent bixafen in barley straw (fresh) in southern Europe (n=9): 0.46, 0.76, 1.2, 1.5, 1.9, 3.1, 5.2, 5.7, 6.2 mg/kg.

For the calculation of the livestock animal dietary burden the total residues in barley straw (fresh) in southern Europe were (n=9): 0.5, 1.0, 1.3, 1.6, 2.1, 3.3, 5.6, 6.1, 6.7 mg/kg.

Since both datasets are not significantly different (Mann-Whitney-U-testing), the Meeting decided to combine that data and evaluate all European supervised field trials against the UK GAP for barley and oat straw.

For MRL compliance purposes residues of parent bixafen in barley straw (fresh) in whole Europe (n=19): 0.46, 0.64, 0.7, 0.76, 0.77, 0.86, 1.1, 1.1, 1.2, 1.5, 1.9, 3.1, 3.7, 4.8, 5.2, 5.4, 5.7, 6.2 and 10 mg/kg.

For the calculation of the livestock animal dietary burden the total residues in barley straw (fresh) in whole Europe were (n=19): 0.5, 0.72, 0.74, 0.85, 1.0, 1.0, 1.2, 1.2, 1.3, 1.6, 2.1, 3.3, 3.9, 5.2, 5.6, 5.6, 6.1, 6.7, 11 mg/kg.

For wheat, rye and triticale the maximum GAP in Northern Europe was reported from the UK and involved two foliar applications of up to 0.125 kg ai/ha. The last application is at BBCH 69 and the PHI is covered by growth between treatment and harvest. Supervised field trials conducted in northern Europe according to this GAP were submitted.

For MRL compliance purposes residues of parent bixafen in wheat straw (fresh) in northern Europe (n=10): 0.52, 0.93, 0.95, 1.3, 1.8, 1.9, 3.6, 4.1, 8.4 and 10 mg/kg.

For the calculation of the livestock animal dietary burden the total residues in wheat straw (fresh) in northern Europe were (n=10): 0.78, 1.2, 1.3, 1.5, 2.1, 2.5, 3.9, 4.4, 9.6 and 11 mg/kg.

In southern Europe a GAP for wheat, rye and triticale was reported from France with one application of 0.094 kg ai/ha up to BBCH 69 with a 35 day PHI. However, no corresponding residue data were submitted.

The Meeting decided to explore the use of global residue data as outlined in the 2011 JMPR Report (2.4) for residue data from southern Europe against the UK GAP:

For MRL compliance purposes residues of parent bixafen in wheat straw (fresh) in southern Europe (n=10): 0.79, 1.4, 1.7, 1.8, 2.6, 3.2, 3.3, 3.6, 5.4 and 5.7 mg/kg.

For the calculation of the livestock animal dietary burden the total residues in wheat straw (fresh) in southern Europe were (n=10): 1.2, 1.9, 1.9, 2.2, 3.2, 3.7, 3.9, 4.1, 6.0 and 6.2 mg/kg.

The Meeting decided to combine that data and evaluate all European supervised field trials against the UK GAP for wheat, rye and triticale straw:

For MRL compliance purposes residues of parent bixafen in wheat straw (fresh) in whole Europe (n=20): 0.52, 0.79, 0.93, 0.95, 1.3, 1.4, 1.7, 1.8, 1.8, 1.9, 2.6, 3.2, 3.3, 3.6, 3.6, 4.1, 5.4, 5.7, 8.4 and 10 mg/kg.

For the calculation of the livestock animal dietary burden the total residues in wheat straw (fresh) in whole Europe were (n=20): 0.78, 1.2, 1.2, 1.3, 1.5, 1.9, 1.9, 2.1, 2.2, 2.5, 3.2, 3.7, 3.9, 3.9, 41, 4.4, 6.0, 6.2, 9.6 and 11 mg/kg.

## **Residues in rotational crops**

Bixafen is highly persistent in soil, showing accumulation over subsequent years of treatment. In field rotational crop studies conducted at rates corresponding to the highest annual application rates registered, no significant residues were found in plant commodities. However, the long-term field accumulation study submitted suggests plateau residues in soil after up to seven years of annual treatment are equivalent to 2–3 times the soil residues expected after a single treatment at the registered maximum annual application rate. In confined rotational crop studies approximating this plateau level observed in soil, residues above the LOQ of 0.01 mg/kg were found for bixafen and M21 (bixafen-desmethyl) in all plant commodities investigated except for wheat grain.

The Meeting concluded that the accumulation of bixafen in soil results in residue concentrations in follow crops which are relevant for MRL compliance, dietary intake assessment and the estimation of livestock dietary burden. However, the Meeting recognized that the available field rotational crop studies were underdosed compared to the soil concentrations following long-term use of bixafen, while confined rotational crop studies are not considered representative for field conditions.

The Meeting decided that further information on bixafen in rotational crops under field conditions are required involving application rates approximating the plateau levels in soil after subsequent years of treatment. The estimation of maximum residue levels and median or highest residues for annual crops is not possible without considering the contribution of residues taken up from soil and will be postponed to a future meeting when new data becomes available to assess the rotational crop situation.

#### Fate of residues during processing

The Meeting received information on the hydrolysis of radio-labelled bixafen as well as processing studies using unlabelled material on grown residues in oilseed rape, barley and wheat.

In a hydrolysis study using radio-labelled bixafen typical processing conditions were simulated (pH 4,5 and 6 with 90  $^{\circ}$ C, 100  $^{\circ}$ C and 120  $^{\circ}$ C for 20, 60 and 20 minutes). In duplicate samples of sterile buffer solution no degradation was observed.

The Meeting concluded that no recommendations on bixafen residues in plant commodities can be made (see residues in rotational crops section) and therefore no processing factors are required. For an overview of the available information on the fate of bixafen during processing please refer to the 2013 Evaluation.

## **Residues in animal commodities**

#### Farm animal feeding studies

The Meeting received feeding studies involving bixafen on lactating cows and laying hens.

Three groups of lactating cows were dosed daily at levels of 4, 12 and 40 ppm in the diet (0.15, 0.45 and 1.5 mg/kg bw) for 28 consecutive days. Milk was collected throughout the whole study and tissues were collected on day 29 within 24 hours of the last dose.

In milk highest mean total residues were 0.039 mg/kg for the 4 ppm group, 0.077 mg/kg for the 12 ppm group and 0.218 mg/kg for the 40 ppm group. Investigation of the distribution of the residue in cream gave a 9.9 fold higher concentration than in whole milk (15 between whole milk and milk fat).

Total residues in muscle for the 4, 12 and 40 ppm groups were 0.039–0.065 mg/kg (mean: 0.052 mg/kg), 0.081–0.26 mg/kg (mean: 0.162 mg/kg) and 0.63–1.0 mg/kg (mean: 0.82 mg/kg), respectively. In liver residues were 0.42–0.69 mg/kg (mean: 0.57 mg/kg) for the 4 ppm group, 1.2–1.7 mg/kg (mean: 1.4 mg/kg) for the 12 ppm group and 4.8–5.4 mg/kg (mean: 5.0 mg/kg) for the 40 ppm group. Kidney contained total residues of 0.1–0.15 mg/kg (mean: 0.14 mg/kg), 0.28–0.37 mg/kg (mean: 0.34 mg/kg) and 1.0–1.3 mg/kg (mean: 1.2 mg/kg) for the for the 4, 12 and 40 ppm group.

For fat three different tissues were analysed (perirenal, mesenteric and subcutaneous fat). Highest residues were found in perirenal fat with 0.14–0.21 mg/kg (mean: 0.18 mg/kg) for the 4 ppm group, 0.33–0.48 mg/kg (mean: 0.43 mg/kg) for the 12 ppm group and 0.8–1.9 mg/kg (mean: 1.4 mg/kg) for the 40 ppm group.

For laying hens three groups of animals were dosed with rates of 1.5, 4.5 and 15 ppm in the dry weight feed (0.1, 0.3 and 1.0 mg/kg bw) for 28 consecutive days. Eggs were collected throughout the whole study and tissues were collected on day 29 after the last dose.

In eggs total residues at the plateau phase were < 0.02-0.02 mg/kg (highest daily mean: 0.02 mg/kg) for the 1.5 ppm group and ranged between 0.05 to 0.07 mg/kg (highest daily mean: 0.063 mg/kg) for the 4.5 ppm and between 0.13 to 0.22 mg/kg (highest daily mean: 0.178 mg/kg) for the 15 ppm group.

In tissues no residues above the LOQ were found in muscle. Total residues in fat for the 1.5, 4.5 and 15 ppm groups were < 0.02-0.02 mg/kg (mean: 0.02 mg/kg), 0.05-0.06 mg/kg (mean: 0.057 mg/kg) and 0.06-0.09 mg/kg (mean: 0.07 mg/kg), respectively. In liver residues were < 0.02-0.02 mg/kg (mean: 0.02 mg/kg) for the 1.5 ppm group, 0.02-0.04 mg/kg (mean: 0.03 mg/kg) for the 4.5 ppm group and 0.03-0.05 mg/kg (mean: 0.04 mg/kg) for the 15 ppm group.

# *Estimated maximum and mean dietary burdens of livestock and animal commodities maximum residue levels*

The Meeting noted that the uptake of bixafen and M21 (bixafen-desmethyl) from soil contributes significantly to the overall residues in annual crops. Based on the information available (see residues in rotational crops), no estimation on livestock animal dietary burdens and the corresponding residue levels in animal commodities can be made.

## RECOMMENDATIONS

Definition of the residue for compliance with MRL for plant commodities: bixafen

Definition of the residue for compliance with MRL for animal commodities and (for the estimation of dietary intake) for plant and animal commodities: *sum of bixafen and N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-(difluoromethyl)-1H-pyrazole-4-carboxamide (bixafen-desmethyl), expressed as bixafen* 

The residue is fat-soluble.

## FURTHER WORK OR INFORMATION

The Meeting considered that the currently available information on residues in rotational crops was not sufficient to make recommendations on maximum residue levels in plant and animal commodities. For future recommendations field rotational crop studies approximating plateau concentrations of bixafen in soil are required.

## DIETARY RISK ASSESSMENT

The Meeting concluded that the contribution of residues in plant commodities from soil uptake cannot be estimated based on the available data. Thus no estimations on median or highest residues in food commodities of plant and animal origin could be made, precluding both long and short-term dietary risk assessments for bixafen.

Consequently, the dietary risk assessment will be undertaken at a future meeting when the residues derived from both direct application and those taken up from the soil in a rotational crop situation can be evaluated together.

#### REFERENCES

| Code        | Author     | Year | Title, Institute, Report reference                                                                                                                                                                                       |
|-------------|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIXAFEN_001 | Smeykal, H | 2007 | Bixafen (BYF 00587), pure substance—Melting point A.1. (OECD 102)—<br>Boiling point A.2. (OECD 103)—Thermal stability (OECD 113). Siemens AG,<br>Frankfurt am Main, Germany. Bayer CropScience, Report No.: 20070773.01, |

| Code        | Author                        | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                      |
|-------------|-------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                               |      | Edition Number: M-292133-01-1. Unpublished                                                                                                                                                                                                                                                              |
| BIXAFEN_002 | Smeykal, H                    | 2007 | Bixafen, BYF 00587, technical substance —Melting point A.1. (OECD 102)—<br>Boiling point A.2. (OECD 103)—Thermal stability (OECD 113). Siemens AG,<br>Frankfurt am Main, Germany. Bayer CropScience, Report No.: 20070674.01,<br>Edition Number: M-294637-01-1. Unpublished                             |
| BIXAFEN_003 | Bogdoll, B and<br>Strunk, B   | 2007 | Relative density of bixafen (BYF 00587), pure and technical substance. Bayer<br>CropScience AG, Frankfurt am Main, Germany. Bayer CropScience, Report No.:<br>PA07/056, Edition Number: M-295164-01-1.Unpublished                                                                                       |
| BIXAFEN_004 | Smeykal, H                    | 2006 | BYF 00587 PBF-2005-00053-TOX-07146—Vapour pressure A.4 (OECD 104)<br>1st Amendment to report No. 20050616.01. Siemens AG, Frankfurt am Main,<br>Germany. Bayer CropScience, Report No.: 20050616.01, Edition Number: M-<br>259168-02-1. Unpublished                                                     |
| BIXAFEN_005 | Bogdoll, B and<br>Lemke, G    | 2007 | Henry's law constant of bixafen (BYF 00587). Bayer CropScience AG,<br>Frankfurt am Main, Germany. Bayer CropScience, Report No.: AF06/047,<br>Edition Number: M-295269-01-1. Unpublished                                                                                                                |
| BIXAFEN_006 | Bogdoll, B and<br>Strunk, B   | 2007 | Physical characteristics—Color, physical state and odor of bixafen (BYF 00587),<br>pure substance and technical substance. Bayer CropScience AG, Monheim,<br>Germany. Bayer CropScience, Report No.: PA07/058, Edition Number: M-<br>294428-01-1. Unpublished                                           |
| BIXAFEN_007 | Jungheim, R                   | 2005 | Determination of the water solubility (Column elution method) of BYF 00587.<br>Bayer Industry Services GmbH, Leverkusen, Germany. Bayer CropScience,<br>Report No.: G 4/0097/00 LEV, Edition Number: M-248055-01-1. Unpublished                                                                         |
| BIXAFEN_008 | Bogdoll, B                    | 2008 | Bixafen (BYF 00587): Statement on the pH independence of the water solubility<br>and the partition coefficient 1-octanol/water. Bayer C.S., Frankfurt am Main,<br>Germany. Bayer CropScience AG, Report No.: AF08/009, Edition Number: M-<br>296951-01-1. Unpublished                                   |
| BIXAFEN_009 | Bogdoll, B and<br>Eyrich, U   | 2007 | Solubility of bixafen (BYF 00587) in organic solvents. Bayer CropScience AG,<br>Frankfurt am Main, Germany. Bayer CropScience, Report No.: PA05/117,<br>Edition Number: M-294748-01-1. Unpublished                                                                                                      |
| BIXAFEN_010 | Bogdoll, B and<br>Wiche, A    | 2007 | Dissociation constant of bixafen (BYF 00587) in water (screening method).<br>Bayer CropScience AG, Frankfurt am Main, Germany. Bayer CropScience,<br>Report No.: AF07/049, Edition Number: M-295540-01-1. Unpublished                                                                                   |
| BIXAFEN_011 | Bogdoll, B and<br>Lemke, G    | 2005 | BYF 00587—Partition coefficient 1—Octanol / water (HPLC-method). Bayer<br>CropScience GmbH, Frankfurt am Main, Germany, Bayer CropScience, Report<br>No.: PA05/095, Edition Number: M-258522-01-1, Date: 2005-10-07, GLP/GEP:<br>yes, unpublished                                                       |
| BIXAFEN_012 | Oddy, AM                      | 2005 | [ <sup>14</sup> C]-BYF 00587: Hydrolysis in buffer solutions at pH 4, 7 and 9. Battelle UK<br>Ltd., Ongar, Essex, United Kingdom. Bayer CropScience, Report No.:<br>CX/05/036, Edition Number: M-273248-01-1. Unpublished                                                                               |
| BIXAFEN_013 | Muehmel, T and Fliege, R      | 2006 | [dichlorophenyl-UL- <sup>14</sup> C]BYF 00587: Phototransformation in water. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience, Report No.: MEF-<br>06/016, Edition Number: M-281658-01-1. Unpublished                                                                                       |
| BIXAFEN_014 | Spiegel, K and<br>Koester, J  | 2007 | Metabolism of [pyrazole-5- <sup>14</sup> C]BYF 00587 in the lactating goat. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.:<br>MEF-06/316, Edition Number: M-296034-01-1. Unpublished                                                                                      |
| BIXAFEN_015 | Spiegel, K and<br>Koester, J  | 2007 | Metabolism of [dichlorophenyl-UL- <sup>14</sup> C]BYF 00587 in the lactating goat. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.:<br>MEF-06/288, Edition Number: M-288615-02-1. Unpublished                                                                               |
| BIXAFEN_016 | Koester, .                    | 2007 | Metabolism of [pyrazole-5- <sup>14</sup> C]BYF 00587 in the laying hen. Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.: MEF-06/460, Edition Number: M-290845-01-1. Unpublished                                                                                                |
| BIXAFEN_017 | Koester, J                    | 2007 | Metabolism of [dichlorophenyl-UL- <sup>14</sup> C]BYF 00587 in the laying hen. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.:<br>MEF-06/415, Edition Number: M-290951-01-1. Unpublished                                                                                   |
| BIXAFEN_018 | Spiegel, K                    | 2007 | Metabolism of [pyrazole-5- <sup>14</sup> C]BYF 00587 in soya beans after spray application.<br>Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Report<br>No.: MEF-07/069, Edition Number: M-289916-01-1. Unpublished                                                                      |
| BIXAFEN_019 | Spiegel, K                    | 2007 | Metabolism of [dichlorophenyl-UL- <sup>14</sup> C]-BYF 00587 in soya beans after spray application. Bayer CropScience AG, Monheim, Germany. Bayer CropScience                                                                                                                                           |
| BIXAFEN_020 | Miebach, D and<br>Bongartz, R | 2007 | AG, Report No.: MEF-07/068, Edition Number: M-289680-01-1. Unpublished<br>Metabolism of [pyrazole-5- <sup>14</sup> C]BYF 00587 in wheat after Spray Application.<br>Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Report<br>No.: MEF-06/347, Edition Number: M-286756-01-1. Unpublished |
| BIXAFEN_021 | Miebach, D and<br>Bongartz, R | 2007 | Miebach, D. and Bongartz, R. 2007b. Metabolism of [dichlorophenyl-UL-<br><sup>14</sup> C]BYF00587 in Wheat after Spray Application. Bayer CropScience AG,                                                                                                                                               |

| Code         | Author                         | Year | Title, Institute, Report reference                                                                                                                                            |
|--------------|--------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                |      | Monheim, Germany. Bayer CropScience AG, Report No.: MEF-06/348, Edition                                                                                                       |
| DIVACENT 000 | N 1 1 T 1                      | 2007 | Number: M-290581-01-1. Unpublished                                                                                                                                            |
| BIXAFEN_022  | Muehmel, T and Z<br>Fliege, R  | 2007 | [Dichlorophenyl-UL- <sup>14</sup> C] and [pyrazole-5- <sup>14</sup> C]-BYF00587: Phototransformation<br>on Soil. Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG |
|              | T nege, it                     |      | Report No. MEF-06/522, Edition Number: M-289028-01-1. Unpublished                                                                                                             |
| BIXAFEN_023  |                                | 2005 | [Pyrazole-5-14C] & [Dichlorophenyl-UL- <sup>14</sup> C] BYF00587: Aerobic Soil                                                                                                |
|              | Koehn, D                       |      | Metabolism in 4 EU Soils. Bayer CropScience AG, Monheim, Germany. Bayer                                                                                                       |
|              |                                |      | CropScience AG Report No.: MEF-05/172, Edition Number: M-260359-01-1.<br>Unpublished                                                                                          |
| BIXAFEN 024  | De Souza, TJT                  | 2011 | Rate of degradation of [Pyrazole-5- <sup>14</sup> C]-BYF 00587 in Brazilian soils.                                                                                            |
|              |                                |      | Bioensaios Anälises e Consultoria Ambiental, Viamäo - RS—Brazil. Bayer                                                                                                        |
|              |                                |      | CropScience AG Report No.: 2097-BS120-204-09, Edition Number: M-411621-                                                                                                       |
| DIVACEN 025  | Montro II                      | 2008 | 01-2. Unpublished<br>[Pyrazole-5- <sup>14</sup> C] and [Dichlorophenyl-UL- <sup>14</sup> C]BYF00587: Degradation in Soil                                                      |
| BIXAFEN_025  | Melike, U                      | 2008 | Under Rotational Crops. Bayer CropScience AG, Monheim, Germany. Bayer                                                                                                         |
|              |                                |      | CropScience AG Report No.: MEF-07/408, Edition Number: M 296513-01-1.                                                                                                         |
|              |                                |      | Unpublished                                                                                                                                                                   |
| BIXAFEN_026  | Heinemann, O                   | 2007 | Determination of the Residues of BYF 00587 and BYF 00587-desmethyl in/on                                                                                                      |
|              |                                |      | Soil after Spraying of BYF 00587 (450 SC) in the Field in Germany, United Kingdom, Sweden, France, Spain and Italy. Bayer CropScience AG, Monheim,                            |
|              |                                |      | Germany. Bayer CropScience AG Report No. RA-2056/05, Edition Number: M-                                                                                                       |
|              |                                |      | 294067-01-1. Unpublished                                                                                                                                                      |
| BIXAFEN_027  | ,                              | 2013 | Determination of the Residues of BYF 00587 and BYF 00587-desmethyl in/on                                                                                                      |
|              | and Weuthen, M                 |      | Soil after Spraying of BYF 00587 (450 SC) in Germany and France (South).<br>Final report, Bayer CropScience AG, Leverkusen, Germany. Bayer CropScience                        |
|              |                                |      | AG Report No. 09-2801, Edition Number: M-453441-01-1. Unpublished                                                                                                             |
| BIXAFEN_028  |                                | 2007 | Metabolism of [dichlorophenyl-UL- <sup>14</sup> ]BYF 00587 in confined rotational crops.                                                                                      |
|              | Weber, E and                   |      | Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Report                                                                                                          |
| BIXAFEN 029  | Koehn, D<br>Kuhnke, G,         | 2007 | No.: MEF-07/070, Edition Number: M-295889-02-1. Unpublished<br>Metabolism of [pyrazole-5- <sup>14</sup> C]BYF 00587 in confined rotational crops. Bayer                       |
| DIAM LIV_02) | Weber, E and                   | 2007 | CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.:                                                                                                           |
|              | Koehn, D                       |      | MEF-07/071, Edition Number: M-295793-01-1. Unpublished                                                                                                                        |
| BIXAFEN_030  | Schoening, R and               | 2008 | Determination of the residues of BYF 00587 in/on the field rotational crops                                                                                                   |
|              | Erler, S                       |      | turnip, lettuce, winter wheat and spring wheat after spraying of BYF 00587 (125 EC) in the field in Germany. Bayer CropScience AG, Monheim, Germany.                          |
|              |                                |      | Bayer CropScience AG, Report No.: RA-2139/06, Edition Number: M-296357-                                                                                                       |
|              |                                |      | 02-1. Unpublished                                                                                                                                                             |
| BIXAFEN_031  |                                | 2008 | Determination of the residues of BYF 00587 in/on the field rotational crops                                                                                                   |
|              | Erler, S                       |      | turnip, lettuce, winter wheat and spring wheat after spraying of BYF 00587 (125 EC) in the field in Northern France. Bayer CropScience AG, Monheim,                           |
|              |                                |      | Germany. Bayer CropScience AG, Report No.: RA-2143/06, Edition Number:                                                                                                        |
|              |                                |      | M-296525-02-1. Unpublished                                                                                                                                                    |
| BIXAFEN_032  | Schoening, R and               | 2008 | Determination of the residues of BYF 00587 in/on the field rotational crops                                                                                                   |
|              | Erler, S                       |      | turnip, lettuce, winter wheat and spring wheat after spraying of BYF 00587 (125 EC) in the field in Germany. Bayer CropScience AG, Monheim, Germany.                          |
|              |                                |      | Bayer CropScience AG, Report No.: RA-2144/06, Edition Number: M-296536-                                                                                                       |
|              |                                |      | 02-1. Unpublished                                                                                                                                                             |
| BIXAFEN_033  | Schoening, R and Z<br>Erler, S | 2008 | Determination of the residues of BYF 00587 in/on the field rotational crops carrot, lettuce and winter wheat after spraying of BYF 00587 (125 EC) in the                      |
|              | Lifei, 5                       |      | field in Spain. Bayer CropScience AG, Monheim, Germany. Bayer CropScience                                                                                                     |
|              |                                |      | AG, Report No.: RA-2145/06, Edition Number: M-296409-01-1. Unpublished                                                                                                        |
| BIXAFEN_034  | /                              | 2006 | Analytical method 00983 for the determination of residues of BYF00587 in/on                                                                                                   |
|              | Schoening, R                   |      | plant matrices by HPLC-MS/MS. Bayer CropScience AG, Monheim, Germany.<br>Bayer CropScience AG, Method No.: 00983, Report No.: MR-06/029, Edition                              |
|              |                                |      | Number: M-276019-02-1. Unpublished                                                                                                                                            |
| BIXAFEN_035  | Ballesteros C and              | 2007 | Independent laboratory validation of the analytical method 00983 for the                                                                                                      |
|              | Portet, M                      |      | determination of residues of BYF00587 in/on plant matrices. Bayer CropScience                                                                                                 |
|              |                                |      | S.A., Lyon, France. Bayer CropScience AG, Report No.: MR-08/005, Edition<br>Number: M-296264-01-1. Unpublished                                                                |
| BIXAFEN 036  | Class, T                       | 2006 | Assessment of the Applicability of the DFG Method S19 (extended and revised                                                                                                   |
| —            |                                |      | version) for the Determination of residues of BYF00587. PTRL Europe GmbH,                                                                                                     |
|              |                                |      | Ulm, Germany. Bayer CropScience AG, Report No.: P/B 1045 G, Edition                                                                                                           |
| BIXAFEN 037  | Billian P and                  | 2007 | Number: M-273106-01-1. Unpublished<br>Analytical Method 01063 for the determination of residues of BYF00587 and its                                                           |
|              | Druskus, M                     |      | metabolite BYF00587-desmethyl in/on animal tissues, milk and eggs. Bayer                                                                                                      |
|              |                                |      | CropScience AG, Monheim, Germany. Bayer CropScience AG, Method No.:                                                                                                           |
|              |                                |      |                                                                                                                                                                               |

| Code          | Author                                      | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|---------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                             |      | 01063, Report No.: MR-07/279, Edition Number: M-294142-01-1. Unpublished                                                                                                                                                                                                                                                                                                                               |
| BIXAFEN_038   | Ballesteros, C                              | 2007 | Independent Laboratory Validation of the analytical method No. 01063 for the determination of residues of BYF00587 and its metabolite BYF00587-desmethyl in/on animal tissues, milk and eggs by HPLC/MS/MS. Bayer CropScience S.A., Lyon, France. Bayer CropScience AG, Report No.: MR-08/004, Edition                                                                                                 |
| BIXAFEN 039   | Brumhard, B and                             | 2006 | Number: M-296906-01-1. Unpublished<br>Analytical Method 00959 for the Determination of Residues of BYF00587 in                                                                                                                                                                                                                                                                                         |
| DIAAI EIV_037 | Freitag, T                                  | 2000 | Soil by HPLC-MS/MS. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG Report No.: MR-140/05, Method No.: 00959, Edition Number:<br>M-281595-01-1. Unpublished                                                                                                                                                                                                                            |
| BIXAFEN_040   | Schoening, R                                | 2006 | Analytical method 01012 for the determination of residues of BYF00587 and its metabolite BYF00587-desmethyl in/on plant matrices by HPLC-MS/MS. Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Method No.:                                                                                                                                                                              |
| BIXAFEN_041   | Sur, R and<br>Kuhnke, G                     | 2007 | 01012, Report No.: MR-06/131, Edition Number: M-277851-02-1. Unpublished<br>Extraction efficiency testing of the residue method for the determination of<br>BYF00587 and BYF 00587-desmethyl using aged radioactive residues from a<br>wheat metabolism study. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG, Report No.: MEF-07/356, Edition Number: M-294920-01-1.<br>Unpublished  |
| BIXAFEN_042   | Justus, K and<br>Kuhnke, G                  | 2007 | Extraction efficiency testing of the residue method for the determination of<br>BYF00587 and BYF00587-desmethyl using aged radioactive residues from a<br>confined rotational crop study. Bayer CropScience AG, Monheim, Germany.<br>Bayer CropScience AG, Report No.: MEF-07/436, Edition Number: M-296876-                                                                                           |
| BIXAFEN_043   | Brumhard, B and<br>Stuke, S                 | 2008 | 01-1. Unpublished<br>Analytical Method 01013 for the simultaneous determination of residues of the<br>active items BYF00587, Prothioconazole, Tebuconazole, Trifloxystrobin and the<br>metabolites BYF00587-desmethyl, JAU6476-desthio (SXX0665) and<br>CGA321113 in/on Plant Material by HPLC-MS/MS. Bayer CropScience AG,                                                                            |
| BIXAFEN_044   | Schoening, R and<br>Willmes, J              | 2008 | Monheim, Germany. Bayer CropScience AG, Method No.: 01013, Report No.:<br>MR-06/138, Edition Number: M-283439-03-1. Unpublished<br>Analytical method 01036 for the determination of residues of BYF00587 and its<br>metabolite BYF00587-desmethyl in/on animal tissues by HPLC-MS/MS. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience AG, Method No.:                                     |
| BIXAFEN_045   | Schoening, R and<br>Billian, P              | 2009 | 01036, Report No.: MR-07/221, Edition Number: M-293285-02-1. Unpublished Storage stability of BYF 00587 and its metabolite BYF00587-desmethyl in/on wheat (grain, straw, green material), potato tuber, lettuce head and oil seed rape for 24 months. Bayer CropScience AG, Monheim, Germany. Bayer CropScience                                                                                        |
| BIXAFEN_046   | Brumhard, B and<br>Freitag, T               | 2008 | AG, Report No.: MR-08/206, Edition Number: M-327638-01-1. Unpublished<br>Determination of the storage stability of BYF00587 in soil. Bayer CropScience<br>AG, Monheim, Germany. Bayer CropScience AG Report No. MR-07/370,<br>Edition Number: M-297230-01-1. Unpublished                                                                                                                               |
| BIXAFEN_047   | Freitag, T and<br>Hoffmann, M               | 2009 | Determination of the storage stability of BYF00587 metabolite BYF00587-<br>desmethyl (BCS-AA 10008) in soil during freezer storage of 24 Months. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.:<br>MR-09/108, Edition Number: M-356410-01-1. Unpublished                                                                                                                 |
| BIXAFEN_048   | Brumhard, B and<br>Koch, V                  | 2008 | Analytical Method 00952/M01 for the Determination of Residues of BYF00587<br>and BYF00587-desmethyl (BCS-AA-10008) in Soil by HPLC-MS/MS, Bayer<br>CropScience AG, Monheim, Germany, Bayer CropScience AG, Report No.:<br>MR-07/289, Unpublished                                                                                                                                                       |
| BIXAFEN_049   | Schoening, R and<br>Raecker, T              | 2007 | Determination of the residues of BYF 00587 in/on spring barley and winter<br>barley after spraying of BYF 00587 (125 EC) in the field in Northern France,<br>Sweden, the United Kingdom and Germany. Bayer CropScience AG, Monheim,<br>Germany. Bayer CropScience AG, Report No.: RA-2322/06, Edition Number:<br>M-292772-01-1, includes R 2006 0432/7, 0433/5, 0434/3, 0435/1, 0437/8.<br>Unpublished |
| BIXAFEN_050   | Schoening, R and<br>Reineke, A              | 2008 | Determination of the residues of BYF 00587 in/on spring barley after spraying of<br>BYF 00587 (125 EC) in the field in Northern France, Germany, the United<br>Kingdom and Belgium. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG, Report No.: RA-2003/07, Edition Number: M-296368-01-1,<br>includes R 2007 0081/4, 0082/2, 0160/6, 0161/6, 0162/4. Unpublished                     |
| BIXAFEN_051   | Schoening, R,<br>Raecker, T and<br>Erler, S | 2007 | Determination of the residues of BYF 00587 in/on spring barley and winter<br>barley after spraying of BYF 00587 (125 EC) in the field in Southern France,<br>Italy, Spain and Portugal. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG, Report No.: RA-2323/06, Edition Number: M-293305-01-1,<br>includes R 2006 0438/6, 0439/4, 0440/8, 0441/6, 0442/4. Unpublished                 |

| Code        | Author                                         | Year | Title, Institute, Report reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIXAFEN_052 | Schoening, R and<br>Reineke, A                 | 2008 | Determination of the residues of BYF 00587 in/on spring barley and winter<br>barley after spraying of BYF 00587 (125 EC) in the field in Southern France,<br>Italy and Spain. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG, Report No.: RA-2004/07, Edition Number: M-295811-02-1,<br>includes R 2007 0083/0, 0084/9, 0085/7, 0158/6, 0159/4. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BIXAFEN_053 | Schoening, R,<br>Raecker, T and<br>Erler, S    | 2007 | Determination of the residues of BYF 00587 (1058/0, 0159/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 0169/4, 01 |
| BIXAFEN_054 | Schoening, R and<br>Reineke, A                 | 2008 | Determination of the residues of BYF 00587 in/on winter wheat and spring<br>wheat after spraying of BYF 00587 (125 EC) in the field in Northern France, the<br>United Kingdom, Sweden and Germany. Bayer CropScience AG, Report No.:<br>RA-2006/07. Edition Number: M-296300-01-1, includes R 2007 0091/1, 0093/8,<br>0094/6, 0095/4, 0155/1. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BIXAFEN_055 | Schoening, R,<br>Raecker, T and<br>Lorenz, S.\ | 2007 | Determination of the residues of BYF 00587 in/on winter wheat, wheat, durum<br>and spring wheat after spraying of BYF 00587 (125 EC) in the field in Greece,<br>Italy, Southern France and Spain. Bayer CropScience AG, Report No.: RA-<br>2321/06, Edition Number: M-292764-01-1, includes R 2006 0427/0, 0428/9,<br>0429/7, 0430/0, 0431/9. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BIXAFEN_056 | Schoening, R and<br>Reineke, A                 | 2008 | Determination of the residues of BYF 00587 in/on spring wheat, wheat, durum<br>and winter wheat after spraying of BYF 00587 (125 EC) in the field in Southern<br>France, Italy, Spain and Portugal. Bayer CropScience AG, Report No.: RA-<br>2005/07, Edition Number: M-296364-01-1, includes R 2007 0086/5, 0087/3,<br>0088/1, 0090/3, 0157/8. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BIXAFEN_057 | Freitag, T,<br>Reineke, A and<br>Krusell, L    | 2010 | Determination of the residues of BYF 00587, prothioconazole and tebuconazole<br>in/on winter rape after spraying of Bixafen & Prothioconazole & Tebuconazole<br>EC 275 in the field in Belgium, France (North), Germany and the Netherlands.<br>Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Report<br>No.: 08-2116, Edition Number: M-385576-02-1, includes 08-2116-01, 08-2116-<br>02, 08-2116-03, 08-2116-04. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BIXAFEN_058 | Freitag, T                                     | 2010 | Determination of the residues of BYF 00587 and prothioconazole in/on Rape,<br>Winter after spraying of bixafen & prothioconazole EC 225 in the field in<br>Belgium, France (North), and the Netherlands. Bayer CropScience AG,<br>Monheim, Germany. Bayer CropScience AG, Report No.: 09-2053, Edition<br>Number: M-390359-01-1, includes 09-2053-02, 09-2053-03, 09-2053-04.<br>Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BIXAFEN_059 | Noss, G, Krusell,<br>L and Reineke, A          |      | Determination of the residues of BYF 00587 and prothioconazole in/on winter<br>rape after spraying of bixafen & prothioconazole EC 225 in the field in the<br>United Kingdom. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG, Report No.: 09-2244, Edition Number: M-388919-01-1,<br>includes 09-2244-01. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BIXAFEN_060 | Bomke, S                                       | 2010 | Determination of the residues of BYF 00587 and prothioconazole in/on winter<br>rape after spray application of bixafen & prothioconazole EC 225 in Spain,<br>southern France, Germany and Italy. Bayer CropScience AG, Monheim,<br>Germany. Bayer CropScience AG, Report No.: 11-2013, Edition Number: M-<br>433723-01-1, includes 11-2013-03. Unpublished.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BIXAFEN_061 | Justus, K and<br>Kuhnke, G                     | 2008 | BYF 00587: Aqueous hydrolysis under conditions of processing studies. Bayer<br>CropScience AG, Monheim, Germany. Bayer CropScience AG, Report No.<br>MEF-07/437, Edition Number: M-296836-01-1. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BIXAFEN_062 | Schoening, R and Wolters, A                    | 2007 | Determination of the residues of BYF 00587 in/on spring barley after spraying of<br>BYF 00587 (125 EC) in the field in Sweden, Germany, and Northern France.<br>Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG, Report<br>No.: RA-2324/06, Edition Number: M-293318-01-1. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BIXAFEN_063 | Schoening, R,<br>Billian, P and<br>Wolters, A  | 2007 | Determination of the residues of BYF00587 in/on spring barley grain and the processed fractions (brewer's malt, malt culms, beer, brewer's yeast, brewer's grain, hops draff, pearl barley, pearl barley rub off) after spraying of BYF 00587 (125 EC) in the field in Sweden, Germany and Northern France. Bayer CropScience AG., Monheim, Germany. Bayer CropScience AG, Report No.: RA-3324/06, Edition Number: M-293322-01-1. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BIXAFEN_064 | Schoening, R and<br>Erler, S                   | 2007 | Determination of the residues of BYF 00587 in/on winter wheat after spraying of<br>BYF 00587 (125 EC) in the field in the United Kingdom, Sweden and Northern<br>France. Bayer CropScience AG, Monheim, Germany. Bayer CropScience AG,<br>Report No.: RA-2325/06, Edition Number: M-294521-01-1. Unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BIXAFEN_065 | Schoening, R and Erler, S                      | 2007 | Determination of the residues of BYF 00587 in/on winter wheat grain and the processed fractions (white flour, white flour bran, semolina, semolina bran, white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Code        | Author Yea                                         | r Title, Institute, Report reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIXAFEN_066 |                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | Reineke, A and<br>Krusell, L                       | rape after spraying of bixafen & prothioconazole EC 225 in the field in Belgium,<br>France (North) and Germany. Bayer CropScience, Monheim, Germany. Bayer<br>CropScience AG, Report No.: 08-2112, Edition Number: M-385740-03-1.<br>Unpublished                                                                                                                                                                                                                                                                                   |
| BIXAFEN_067 | Noss, G and 201<br>Teubner, L                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BIXAFEN_068 | Freitag, T and 201<br>Hoffmann, M                  | Determination of the residues of BYF 00587 and prothioconazole in the<br>processed fractions of winter rape (oil, screw-pressed; pomace; meal; oil, solvent<br>extracted; oil, crude; crude oil, preclarified; crude oil, neutralized and oil,<br>refined) after spraying of Bixafen & Prothioconazole & Tebuconazole EC 275 in<br>the field in the Netherlands. Bayer CropScience, Monheim, Germany. Bayer<br>CropScience AG, Report No.: 08-3116, Edition Number: M-393067-02-1.<br>Unpublished                                  |
| BIXAFEN_069 | Freitag, T and 201<br>Hoffmann, M                  | Determination of the residues of BYF 00587 and prothioconazole in the<br>processed fractions of winter rape (oil, screw-pressed; pomace; meal; oil, solvent<br>extracted; oil, crude; crude oil, preclarified; crude oil, neutralized and oil,<br>refined) after spraying of Bixafen & Prothioconazole EC 225 in the field in<br>Germany. Bayer CropScience, Monheim, Germany. Bayer CropScience AG,<br>Report No.: 08-3112, Edition Number: M-392874-02-1. Unpublished                                                            |
| BIXAFEN_070 | Hoffmann, M and201<br>Teubner, L                   | 2 Determination of the residues of BYF 00587 and prothioconazole in/on rape,<br>winter and the processed fractions (oil, screw-pressed; pomace; extracted meal;<br>oil, solv. extracted; oil, crude; crude oil, preclarified; crude oil, neutralised and<br>oil, refined) after spraying of Bixafen & Prothioconazole EC 225 in the field in<br>the United Kingdom. Bayer CropScience AG, Monheim, Germany. Bayer<br>CropScience AG, Report No.: 09-3245, Edition Number: not yet available,<br>includes 09-3245-01. I Unpublished |
| BIXAFEN_071 | Billian, P, 200<br>Barfknecht, R<br>and Wolters, A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BIXAFEN_072 | · · · · · · · · · · · · · · · · · · ·              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BIXAFEN_073 | Noss, G and 201<br>Ballmann, C                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |