DITHIANON (180)

The first draft was prepared by Dr U Banasiak, Delegate for Federal Institute for Risk Assessment, Berlin, Germany

EXPLANATION

The fungicide dithianon was first evaluated by the JMPR in 1992 (T, R). The compound was evaluated for toxicology by the 2010 JMPR within the periodic review programme of the CCPR. The periodic review for residues was scheduled at the 39th Session of the CCPR for the 2012 JMPR but postponed to be evaluated by the 2013 Meeting.

The Meeting received information from the manufacturer on physical and chemical properties, metabolism studies on plants and animals, analytical methods, supervised residue trials data, processing studies as well as use pattern.

IDENTITY

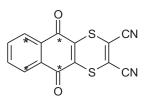
Common name:	Dithianon
Chemical name:	
IUPAC:	5,10-Dihydro-5,10-dioxonaphtho-[2,3-beta]-1,4-dithiine-2,3-dicarbonitrile
CA:	5,10-Dihydro-5,10-dioxonaphtho[2,3-beta]-1,4-dithi-in-2,3-dicarbonitrile
CAS number:	3347-22-6
CIPAC number:	153
Molecular formula:	$C_{14}H_4N_2O_2S_2$
Structural formula:	
Molecular mass:	296.3
Minimum purity:	active substance (ai) manufactured 930 g/kg

Formulations

Dithianon is available in numerous commercial formulations in different formulation types (SC, WDG, WP) in many countries.

PHYSICAL AND CHEMICAL PROPERTIES

Dithianon, the pure and the technical grade active ingredient are thermally stable solids. The compound is poorly soluble in water and hexane and soluble in toluene, dichloromethane and acetone. It hydrolyses rapidly under neutral or alkaline conditions, is not explosive, not self-igniting and does not burn. The physical and chemical properties of dithianon are shown in detail in Table 1 (ai = pure active ingredient, TC = technical material, purity in percent (%)).


	Guideline or method	Test material purity and specification	Findings and comments	Report
Melting point	OECD 102	ai 99.3% TC 96.9%	range of 215–216 °C 218.5 °C	DT-303-001 2005/1007543
Temperature of	OECD 102	TC 96.9%	222 °C, immediately after melting.	2005/1007543

	Guideline or method	Test material purity	Findings and comments	Report
decomposition		and specification		
Relative density	OECD 109	ai 99.3%	1.576	DT-308-001
(D_4^{20})	EEC A3	TC 95.5%	1.52	DT-308-007
Vapour pressure	OECD 104	ai 99.3%	2.71 × 10 ⁻⁹ Pa at 25 °C.	DT-306-001
TT 1 1 1 1		TC 96.9%	$< 1 \times 10^{-10}$ Pa at 20 and 25 °C.	2005/1007543
Henry's law constant			Henry's Law constant at 20 °C: H < 1.347 × 10 ⁻⁷ (Pa × m ³ /mol).	2005/1038558
Colour and physical	EPA Guideline	ai 99.9%	Solid, powdery, fibrous, fine-	DT-390-070
state	OPPTS 830.6302 830.6303	TC 95.5%	crystalline dark-brown	DT-390-069
	830.0302 830.0303	10 95.5%	Solid, powdery, fine-crystalline, medium-brown	DT-390-068 DT-390-067
Odour	EPA Guideline	ai 99.9%	characteristic musty-organic smell	DT-390-071
	OPPTS 830.6304	TC 95.5%		DT-390-066
UV/VIS, IR, NMR,	Standard UV, IR,	ai 99.0%	MS, NMR, IR, UV spectra	DT-360-012
MS spectra	NMR, MS		consistent with the assigned	
	Methodology		structure, UV spectra are dependent	
			on the pH of the environment	
	OECD 101	ai 98.6%	UV absorption	2008/1028546
			(extinction coefficient ϵ):	
			рН 6.2	
			$\lambda \text{ nm}$ $\epsilon (l \times \text{mol}^{-1} \text{cm}^{-1})$	
			199 22380	
			218.2 13635 250.0 15110	
			290.5 8724	
			350 7207	
			pH 1.3 λ nm ϵ (l × mol ⁻¹ cm ⁻¹)	
			λ nm ε (l × mol ⁻¹ cm ⁻¹) 199 18102	
			215.5 8767	
			237 9820	
			290.5 5100	
			342 4489	
			pH 12.8	
			λ nm) ϵ (l × mol ⁻¹ cm ⁻¹)	
			218 22186	
			242.3 15350	
			270 23196 290.5 15055	
			364 17179	
Solubility in water	OECD 105	ai 99.3%	pH 5: 0.27 mg/L	DT-311-001
including effect of pH			pH 7: 0.14 mg/L	
at 20 °C			pH 9: 0.19 mg/L	
		TC 96.9%	pH 4: 0.31 mg/L	2005/1008916
			pH 7: 0.38 mg/L	
			pH 9: 0.36 mg/L	
Solubility in organic	OECD 105	ai 99.3%	deionized water 0.22 mg/L expressed as g of ai soluble in 1000	DT-312-001
solvents at 20 °C	flask method		mL solvent:	21 312 001
	and EPA Guideline		hexane: 0.0096	
	63-8		toluene: 15.9	
			dichloromethane: 20.1	
			methanol: 0.8	
			acetone: 17.6 ethyl acetate 7.7	
Solubility in organic	EC Council	TC 95.5%	expressed as g of TC soluble in	DT-312-002
solvents	Directive		1000 mL of solvent:	
at 20 °C	92/69/EEC, A.6		hexane: 0.00877	
			toluene: 14.7	

	Guideline or method	Test material purity and specification	Findings and comments	Report
			dichloromethane:25.1 methanol: 0.815 acetone: 22.2 ethyl acetate: 10.6	
n-Octanol/water partition coefficient at 20 °C	OECD 107 flask method	ai 99.3%	log P _{OW} : > 3.34	DT-315-002
n-Octanol/water partition coefficient at 20 °C	92/69/EEC A.8 OECD 107 HPLC method	TC 91.6%	log P _{OW} : 3.2	DT-315-003
Hydrolysis rate at 20 °C	SETAC Guideline, Part 9 and OECD 111	[5,6,9,10- ¹⁴ C]- dithianone, radio- chemical purity: >98%	expressed as DT ₅₀ values: pH 5: 10.7 d pH 7: 0.6 d pH 9: 9.8 min	DT-322-008
Hydrolytic degradation at different pH and temperatures	OECD 111	[5,6,9,10- ¹⁴ C]- dithianone	expressed as DT_{50} values: pH 4: 11.6 d ^{50°C} , 4.9 d ^{60°C} , 1.8 d ^{70°C} pH 7: 6.3 h ^{30°C} , 1.5 h ^{40°C} , 0.5 h ^{50°C} pH 9: 0.2 h ^{15°C} , 0.1 h ^{25°C}	DT-322-006
Photochemical degradation at 20 °C in sterile pH 4 buffer	SETAC Guideline, Part 10 and OECD GD 97/21(1997)	[5,6,9,10- ¹⁴ C]- dithianone, radio- chemical purity: >98%	expressed as DT_{50} values: < 0.05 d Degradation to multiple photo- products including carbon dioxide. 3 major degradate fractions: phthalic acid $DT_{50} = 16.0$ d, phthaldialdehyde $DT_{50} = 1.4$ d, 1,2-benzenedimethanol $DT_{50} = 4.8$ d	DT-324-003
Quantum yield at pH 4 and 20 °C	OECD GD 97/21(1997)	[5,6,9,10- ¹⁴ C]- dithianone, radio- chemical purity: >98%	x 10^{-3} mol/einstein, expressed as DT ₅₀ value: 0.5 h (1 st order kinetic model)	DT-324-002
Flammability	EEC A.10	TC 95.5%	Non-flammable	DT-330-005
Explosive	EEC A.14	TC 95.5%	Non- explosive	DT-334-003
Surface tension at 20 °C	EEC A.5	TC 95.5%	72.7 mN/m	DT-340-001
Oxidizing	EEC A.17	TC 93.5%	No oxidizing	DT-356-001

METABOLISM AND ENVIRONMENTAL FATE

The metabolism and distribution of dithianon in plants and animals was investigated using the $[5,6,9,10-]^{14}$ C-labelled compound or, in some studies, a $[5,6,9,10-]^{13}$ C/¹⁴C-labelled compound.

* Denotes position(s) of carbon-¹³ label and position(s) of carbon-¹⁴ label

Chemical names, structures and code names of metabolites and degradation products of dithianon are summarized in Table 2.

Compound Code	Chemical Name	Chemical Structure
BAS 216 F (AC 37114) D0	5,10-Dihydro-5,10,dioxonaphtho[2,3- <i>b</i>]-1,4- dithiin-2,3-dicarbonitrile (Dithianon)	S CN S CN
D1	5,10-Dihydroxy-5,10-dioxonaphtho-[2, 3- <i>b</i>]- 1,4-dithiin-2,3-dicarbonitrile	
D2 (CL1025, Reg. No. 4107273)	1,4-Naphthoquinone	
D3	5,10-Dihydroxy [2',3',5,6]-[1,4]-dithiino-[2, 3- c]-isothiazole-3-carbonitrile	OH S OH CN
D4 (CL 66629, Reg. No. 31062)	Dibenzo-[<i>b</i> , <i>i</i>]-thianthrene-5,7,12,14-tetrone	
D5	4,11-Dithia-2-aza-cyclopenta [b]-anthracene- 1,3,5,10-tetraone	S NH O O
D8 (CL 902198, Reg. No- 4110933)	4,9-Dihydro-4,9-dioxonaphtho [2,3– <i>b</i>]- thiophene-2,3-dicarbonitrile	CN CN CN CN
D15 (CL902200, Reg. No. 4110934)	5,10-Dihydro-5,10,dioxonaphtho[2,3- <i>b</i>]-1,4- dithiin-2,3-dicarboxylic acid diamide	S CONH ₂ S CONH ₂
D19	5,10-Diacetoxynaphtho[2,3- <i>b</i>]-1,4-dithiin-2,3-dicarbonitrile	
D21	2,3-Dihydroxy-1,4-naphthoquinone	ОН ОН ОН
D27	2-Oxa-4,11-dithia-cyclopenta [b]-anthracene- 1,3,5,10-tetraone	
ROI 14 (R2, Reg. No. 4005234)	Phthalic acid	ОН ОН О

Table 2 Code names, chemical names and structures of dithianon related substances

Compound Code	Chemical Name	Chemical Structure
ROI 6 (R1, CL 231509)	2-Hydroxy-1,4-napthoquinone	ОН
CL 1017911 (Reg. No. 4110904)	5,6-Dicyano-3-(2-hydroxybenzoyl)-1,4- dithiine-2-carboxylic acid	OH O OH S CN O S CN
M216F020	glucuronic acid conjugate of 1,4- dihydroxynaphthalene	OGICA OH

Animal metabolism

The metabolism of dithianon has been studied in laboratory rats, goats and hens.

Rats

Rat metabolism studies were evaluated by the WHO Core Assessment Group of the 2010 JMPR. A summary of the rat metabolism is given below:

At tested doses of 10 and 50 mg/kg bw, orally administered dithianon was about 40–50% absorbed in rats. The majority of the administered dose was recovered in Faeces (64.0–72.2%) and in urine (26.7–31.4%). Dithianon was extensively metabolized according to the following key transformation steps: oxidation of the sulphur atoms, cleavage of the dithiine ring, reduction of the 1,4-naphthoquinone moiety and further glucuronidation, as well as substitution of the carbonitrile moieties by amino and carboxy groups. The only metabolite in rat urine at a level greater than 2% was M216F020 (glucuronic acid conjugate of 1,4-dihydroxynaphthalene).

Lactating goats

The fate of dithianon in lactating goats was investigated by Cheng (1990, DT-440-006 and 1992 DT-440-008) and Webb and Richardson (1994, DT-440-011).

Study 1 [Cheng 1990, DT-440-006; Cheng 1992, DT-440-008]

One lactating goat each was dosed by capsule at a daily nominal rate of 6 mg (equiv. to 2.5 mg/kg feed) and 60 mg¹⁴C-dithianon (equiv. to 28 mg/kg feed) for five days. One animal was assigned as control. Milk, urine and faeces were sampled during the course of the study and liver, kidney, muscles and fat were obtained after the end of the experiment.

Solid matrices were homogenized under frozen conditions followed by sample combustion. Faeces were homogenized with deionized H_2O , whereas the liquid samples (urine, blood, bile, milk and cage wash) were homogenized without any additional additives and finally combusted. Radioactivity was determined using liquid scintillation counter (LSC).

Each matrix was blended with a mixture of chloroform, methanol and with a buffer of either 0.1 M potassium phosphate (pH 5) or 0.1 M ammonium acetate (pH 5). The volume ratios of solvents were depending on the matrix adjusted and sample was blended again. The mixture was centrifuged and the resulting layers were transferred to separate containers. The extraction was repeated on the remaining solid. The chloroform fractions of the tissues were rotary-evaporated to dryness; and the residue was partitioned between hexane and acetonitrile. The aqueous/methanol and organic-soluble

fractions were concentrated before analysis. After extraction, the remaining solid was dried, and aliquots were combusted to obtain material balances of radioactivity for each examined sample.

Extracted ¹⁴C-dithianon from the goat milk, bile, excreta and tissues were subjected to highperformance liquid chromatography (HPLC) and thin-layer chromatography (TLC) to determine the metabolite profiles. Urine was hydrolysed using aryl sulfatase and β -glucuronidase and analysed by HPLC and TLC techniques. The total radioactive residues (TRR) in mg/kg and% of the total applied radioactivity (TAR) in goat tissue and milk after administration of ¹⁴C-radiolabelled dithianon are shown in Tables 3 and 4.

Matrix	Goat 1 (6 mg/an	Goat 1 (6 mg/animal/day)		nimal/day)
Matrix	TAR,%	TRR, mg/kg	TAR,%	TRR, mg/kg
Bile	< 0.01	0.332	0.04	2.883
Blood	ND	ND	< 0.01	0.162
Fat (omental)	ND	ND	< 0.01	0.014
Fat (renal)	< 0.01	0.003	< 0.01	0.013
Faeces	50.2 ^a	NA	53.7 ^{a)}	NA
Kidney	0.04	0.065	0.03	0.489
Liver	0.07	0.019	0.07	0.174
Milk	0.03 ^a	NA	0.07 ^{a)}	NA
Muscle (round)	ND	ND	< 0.01	0.013
Urine	27.9 ^a	NA	24.2 ^{a)}	NA
Total	78.2	-	78.1	-

Table 3 Total radioactivity residue levels in goat tissue, milk and excreta (DT-440-006, DT-440-008)

^a For details see Table 4

Collection time	Goat 1 (6 mg/ani	mal/day)	Goat 2 (60 mg/ani	imal/day)
Collection time	TAR,%	TRR, mg/kg	TAR,%	TRR, mg/kg
Milk				
Day 0 am	ND	ND	ND	ND
Day 0 pm	ND	ND	< 0.01	0.021
Day 1 am	ND	ND	< 0.01	0.018
Day 1 pm	< 0.01	0.002	< 0.01	0.030
Day 2 am	ND	ND	< 0.01	0.021
Day 2 pm	< 0.01	0.002	< 0.01	0.029
Day 3 am	< 0.01	< 0.001	< 0.01	0.022
Day 3 pm	< 0.01	0.003	< 0.01	0.027
Day 4 am	ND	ND	< 0.01	0.019
Sacrificed at day 4	< 0.01	0.002	< 0.01	0.024
Total	0.03	-	0.07	-
Faeces			·	· · · · ·
Day 0 am	ND		ND	
Day 0 pm	0.06		ND	
Day 1 am	7.79		7.51	
Day 1 pm	2.21		3.50	
Day 2 am	10.34		10.70	mat a multipath la
Day 2 pm	3.56	not applicable	3.94	not applicable
Day 3 am	8.62		9.30	
Day 3 pm	4.06		3.30	
Day 4 am	11.13		12.40	
Sacrificed at day 4	3.04		3.01	
Total	50.2	-	53.7	-
Urine			·	· · · · ·
Day 0 am	ND		ND	
Day 0 pm	3.55		no sample	
Day 1 am	2.78	not oppliable	4.97	not applicable
Day 1 pm	4.07	not applicable	3.37	not applicable
Day 2 am	2.16		2.45	
Day 2 pm	4.00		3.25	

Table 4 Total radioactivity residue levels in goat milk and excreta (DT-440-006, DT-440-008)

Collection time	Goat 1 (6 mg/animal/day)		Goat 2 (60 mg/animal/day)	
Confection time	TAR,%	TRR, mg/kg	TAR,%	TRR, mg/kg
Milk				
Day 3 am	2.76		2.30	
Day 3 pm	3.43		3.03]
Day 4 am	2.64		2.33]
Sacrificed at day 4	2.11		2.10]
Sacrificed at day 4 (Cage wash)	0.39		0.42	
Total	27.9	-	24.2	-

Sacrificed at day 4: Milk, urine and Faeces produced after last dose and before sacrifice

The nature of radioactive residues in lactating goat dosed with 60 mg radiolabeled ¹⁴Cdithianon/day was investigated by separation of radioactive residues into organo-soluble (non-polar), aqueous/methanol-soluble (polar) and non-extracted (bound/conjugated) fractions.

The results are shown in Tables 5 and 6 as well as were described below:

- In liver, several radioactive components were detected by HPLC analysis. The concentration of each component was low, with the highest being 0.02 mg/kg for the polar (aqueous-soluble component A-4). TLC analysis of the organic-soluble extract revealed several components. One component (accounted 0.96% of TRR) was presumably identified as parent dithianon.
- In kidney, several radioactive components were detected by HPLC analysis. The highest concentrations were detected in the aqueous-soluble extract and were identified as A-2 (0.03 mg/kg) and A-3 (0.03 mg/kg), respectively. One component was identified as dithianon (2.32% of TRR in the kidney sample).
- In milk, several radioactive components were detected by HPLC analysis and all had radioactive concentrations less that 0.01 mg/kg. A component in the organic-soluble extract was identified as dithianon and accounted for 8.2% of TRR in the milk sample.
- HPLC analysis of bile indicated the presence of several radioactive components. The major components were identified as A-2, A-3, A-4, and A-5. The percentage of the samples radioactivity that these components constituted ranged from 12.1% to 30.8%. Dithianon accounted for 2.19% of the TRR in the bile sample.
- In Faeces, several radioactive residue components were detected by analysis of the aqueoussoluble and the organic-soluble extracts. All components constituted less than 5% of TRR. Dithianon accounted for 3.27% of TRR in Faeces sample.
- HPLC analysis of urine indicated the presence of two major radioactive components, identified as A-2 and A-3. Each component constituted 21.1% and 37.0% of TRR, respectively. A minor component was identified as dithianon (1.7% of TRR).

Table 5 Distribution of radioactivity in goat tissues after treatment with 60 mg/goat/day (DT-440-006, DT-440-008)

	Liver		Kidney		Muscle	
	mg/kg	%	mg/kg	%	mg/kg	%
Total radioactive residues (TRR)	0.174	100	0.489	100	0.013	100
Extracted radioactive residues (ERR)	0.08	49.4	0.256	52.4	0.004	32.0
Aqueous/MeOH	0.057	32.5	0.229	46.8	0.003	24.4
Dithianon	ND	ND	0.0114	2.32		NA
Component A-1	ND	ND	0.0127	2.60		NA
Component A-2	< 0.01	3.87	0.0330	6.74		NA
Component A-3	0.0166	9.56	0.0305	6.23		NA
Component A-4	0.0211	12.1	0.0166	3.39		NA
Component A-5	0.0125	7.18	0.0186	3.80		NA
Component A-6	< 0.01	1.27	< 0.01	1.48		NA
Component A-7	ND	ND	ND	ND	ND	ND

	Liver		Kidney		Muscle	
	mg/kg	%	mg/kg	%	mg/kg	%
Total radioactive residues (TRR)	0.174	100	0.489	100	0.013	100
Component A-8	ND	ND	ND	ND	ND	ND
Chloroform		16.9		5.59	0.001	7.59
Hexane	0.013	7.4	0.008	1.7		NA
Acetonitrile	0.016	9.01	0.023	4.79		NA
Dithianon	< 0.01	0.96		NA		NA
Component B-1	< 0.01	0.88		NA		NA
Component B-2	< 0.01	2.06		NA		NA
Component B-3	< 0.01	0.77		NA		NA
Component B-4	< 0.01	0.40		NA		NA
Component B-5	ND	ND		NA		NA
Component B-6	ND	ND		NA		NA
Component B-7	ND	ND		NA		NA
Component B-8	ND	ND		NA		NA
PES	0.095	54.7	0.36	73.6	0.012	95.2

ERR: extracted radioactive residue (sum of all extracted fractions)

	Milk		Bile		Urine	Urine		Faeces	
Total radioactive residues	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	
(TRR)	0.024	100	2.89	100	12.8	100	5.18	100	
Extracted radioactive residues (ERR)	0.018	76.8	3.04	105	13.2	103	2.55	49.2	
Aqueous/MeOH	0.011	48.0	2.67	92.2	13.1	102	1.42	27.5	
Dithianon		ND	0.063	2.19	0.217	1.70	0.169	3.27	
Component A-1		ND	ND	ND	0.558	4.36	ND	ND	
Component A-2	< 0.01	9.34	0.486	16.8	2.701	21.1	0.066	1.28	
Component A-3	< 0.01	10.4	0.350	12.1	4.736	37.0	0.121	2.34	
Component A-4	< 0.01	7.17	0.850	30.8	0.573	4.48	0.202	3.89	
Component A-5	< 0.01	4.85	0.529	18.3	0.634	4.95	0.246	4.74	
Component A-6		ND	0.156	5.39	0.303	2.37	0.141	2.73	
Component A-7	ND	ND	ND	ND	0.174	1.36	0.199	3.85	
Component A-8	ND	ND	ND	ND	0.054	0.43	0.054	1.05	
Chloroform		28.8		12.8		1.0		21.7	
Hexane	0.001	6.08	NA	NA	NA	NA	0.054	1.04	
Acetonitrile	0.004	16.3	0.37	12.8	0.117	0.91	0.672	13.0	
Dithianon	< 0.01	8.20	ND	ND		NA	0.042	0.81	
Component B-1	< 0.01	4.47	ND	ND		NA	ND	ND	
Component B-2	< 0.01	1.48	ND	ND		NA	0.0307	0.59	
Component B-3	ND	ND	< 0.01	6.14		NA	0.046	0.89	
Component B-4	ND	ND	< 0.01	5.79		NA	0.0431	0.83	
Component B-5	ND	ND	ND	ND		NA	0.071	1.37	
Component B-6	ND	ND	ND	ND		NA	0.0616	1.19	
Component B-7	ND	ND	ND	ND		NA	0.127	2.45	
Component B-8	ND	ND	ND	ND		NA	0.087	1.68	
PES	0.005	20.2	NA	NA	NA	NA	2.54	49.1	

Table 6 Distribution of radioactivity	in goat milk, bile and excreta	(DT-440-006, DT-440-008)

For further characterization the urine sample was subjected to an enzymatic cleavage experiment. The HPLC results of the β -glucuronidase and sulfatase treatment of urine are summarized in Table 7.

Table 7 HPLC metabolite profiles of goat urine, enzymatic treatment (DT-440-006, DT-440-008)

	TRR,%						
Component	Urine	Urine	Urine	Urine	Urine		
	native	β-glucuronidase	control	Sulfatase	Control		
Dithianon	1.70	6.75	1.96	4.03	2.48		
A-1	4.36	1.44	2.35	3.43	14.1		

	TRR,%				
Component	Urine	Urine	Urine	Urine	Urine
	native	β-glucuronidase	control	Sulfatase	Control
A-2	21.2	9.24	13.5	17.7	27.1
A-3	37.0	16.0	28.3	19.7	27.1
A-4	4.48	12.0	6.28	11.0	19.4
A-5	4.95	13.9	5.23	10.6	6.90
A-6	2.37	6.74	2.77	5.66	3.01
A-7	1.36	3.93	1.79	2.46	1.67
A-8	0.425	2.75	ND	2.14	ND

Study 2 [Webb and Richardson, 1994, DT-440-011]

One lactating goat was dosed by capsule at a daily nominal rate of 60 mg ${}^{13}C/{}^{14}C$ -dithianon (equivalent to 25 mg/kg feed) for 5 consecutive days. Animals were sacrificed 6 hours post dose 5. The radiochemical purity was determined to be > 97% over the dosing period. The carbon-13 isotope abundance was 42.6%. Milk, urine and Faeces were sampled during the course of the study and liver, kidney, muscles and fat were obtained after the end of the experiment. Solid matrices were analysed by means of sample combustion. Radioactivity in liquid samples was measured by liquid scintillation counters (LSC). The results for TRR and of TAR are shown in Tables 8 and 9.

Table 8 Total radioactive residues in tissues and milk after administration of 60 mg/goat/day over 5 days (DT-440-011)

Goat matrix	TRR, mg/kg
Liver	0.157
Kidney	0.475
Muscle (fore leg)	0.012
Muscle (hind leg)	0.014
Subcutaneous fat	0.074
Renal fat	0.009
Whole milk ^{a)}	0.016
Cream ^{a)}	0.016
Curds ^{a)}	0.031
Whey ^{a)}	0.005
Bile	1.84
Plasma	0.199
Whole blood	0.135

^{a)} Sampled on day 5 in the morning (5 am)

Goat sample/time (hour)	TAR,%		
	Urine		
Day 1 (0-12)	2.32		
Day 2 (0-24)	3.53		
Day 3 (0-48)	7.5		
Day 4 (0-72)	11.9		
Day 5 (0-96)	16.9		
Urine/Day 5 (0-102)	18.1		
	Faeces		
Day 2 (0-24)	7.15		
Day 3 (0-48)	17.6		
Day 4 (0-72)	30.7		
Day 5 (0-96)	43.9		
Faeces/Day 5 (0-102)	47.4		
	Cage wash		

Table 9 Total balance results after administration of 60 mg/goat/day over 5 days (DT-440-011)

Goat sample/time (hour)	TAR,%	
Day 0 am	0.53	
Tissue	0.09	
Carcass	0.80	
GI tract	27.3	
Total		
Day 2 (0-24)	10.6	
Day 3 (0-48)	24.0	
Day 4 (0-72)	41.5	
Day 5 (0-96)	59.7	
Total/Day 5 (0-102)	94.2	

Different extraction approaches were used in order to extract radioactive material from the different matrices:

- Liver and kidney were extracted via methanol and chloroform and partitioned by KCl into chloroform, aqueous and methanol/water phases. The chloroform fraction was dried and partitioned into hexane and acetonitrile phases. The volume of the methanol/water phase was reduced; the methanol was removed and radioactive substances were extracted using ethyl-acetate. The acetonitrile and ethyl acetate phases were combined and concentrated (representing the organic phase).
- The extraction of muscle samples was done using chloroform/methanol following an aqueous KCl partitioning into a chloroform, methanol/water and final aqueous phase.
- Fat was extracted with dichloromethane. The revealed extract was dried and partitioned into an acetonitrile and a hexane phase.

After extraction, the samples of liver and kidney were treated with enzymes (pepsin, glucuronidase, sulfatase and pancreatin), acid and/or alkali hydrolysis to release the non-extracted radioactivity. Aliquots of the hydrolysate and remaining pellet were analysed by combustion and/or LSC. Liquid samples were analysed by a number of TLC and HPLC systems.

The distribution of TRR in tissues (as results of the solvent extraction) and in milk is summarized in Table 10. Solvent extraction of tissues afforded between 27.3% (0.043 mg/kg) and 49.1% (0.077 mg/kg) of the ¹⁴C-residues in liver (total residue 0.157 mg/kg), 40.6% (0.193 mg/kg) of the ¹⁴C-residues in kidney (total residue 0.475 mg/kg), 20% (0.003 mg/kg) of the ¹⁴C-residues in muscle (total residue 0.013 mg/kg), 26.1% (0.019 mg/kg) of the ¹⁴C-residues in fat (total residue 0.074 mg/kg) and 78.39% (0.012 mg/kg, 96 h sample) of the ¹⁴C-residues in whole milk (total residue between 0.003 and 0.018 mg/kg). Non-extracted residues accounted for 72.7% (0.114 mg/kg) of the liver residue, 59.4% (0.282 mg/kg) of the kidney residues, 80% (0.01 mg/kg) of the muscle residue, 73.9% (0.055 mg/kg) of the fat residue and 21.7% (0.003 mg/kg) of the milk residue (96–102 h value).

TRR	Liver		Kidney		Muscle		Fat		Milk	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
	0.157	100	0.475	100	0.013	100	0.074	100	0.016	100
ERR	0.043	27.3	0.193	40.6	0.003	20.0	0.019	26.1	0.012	78.3
Hexane phase	0.008	5.6	0.013	2.7						
Organic phase a)	0.019	12.0	0.038	8.0						
Aqueous phase	0.009	5.6	0.121	25.5						
Chloroform phase					11.2	0.0015				
Methanol/water phase					9.6	0.0012				
Final aqueous phase					0.9	0.0001				
Hexane phase							0.002	2.2		
Acetonitrile phase							0.017	23.0		
PES	0.114	72.7	0.282	59.4	0.010	80.0	0.055	73.9	0.003	21.7

Table 10 Distribution of radioactivity in goat tissues (DT-440-011)

^a Acetone, cyclohexane, dichloromethane

Chromatography of the extracted radioactivity revealed metabolites with a wide range of polarity. HPLC analysis proved to be the most efficient in terms of resolution of components. Comparison of the organic and aqueous phases using HPLC reverse phase system indicated that there were some similarities in the metabolite profiles for liver, kidney, urine and bile however the profiles were very complex, containing numerous metabolites (> 20 compounds in the organic phase and > 6 compounds in the aqueous phase). The quantitation of such complex mixtures was difficult due to the low concentration of radioactive residues and the incomplete resolution of all components, no single metabolite in these extracts was > 0.05 mg/kg. No parent was present in the extracts and none of the metabolites were identified. The metabolites did not appear to match any of the reference chemicals. No chromatographic profiling of the muscle, fat or milk extracts was carried out because of the low concentrations of metabolites.

The enzymatic hydrolysis of the PES was carried out as follows: After solvent extraction, unreleased radioactivity present in liver was partly solubilized by treatment with pepsin, (25% of the unextracted radioactivity) or base (NaOH, up to 67%). Pancreatin treatment of the residuum from base solubilisation afforded 52% of the remaining radioactivity. Base treatment solubilised 49% of the unextracted radioactivity in the RRR of kidney. Incubation in pH 7.5 buffer of the residuum from base solubilisation afforded 49% of the remaining radioactivity. Chromatographic profiles of the solubilised radioactivity were obtained but it was not possible to identify any of the components. No metabolic pathway can be directly derived since none of the metabolites being present could be identified.

In this study, a further experiment to demonstrate the reactivity of dithianon with nucleophiles (commonly thiols in the form of proteins and peptides such as glutathione) was undertaken *in vitro*. Glutathione and N-acetylcysteine were shown to react very quickly with dithianon when incubated in pH 6.5 buffers at 37 °C without the intermediacy of facilitating enzymes such as glutathione transferase. This experiment indicated that the reaction of dithianon with glutathione and protein thiol groups *in vivo* will be virtually instantaneous. Thus, the metabolism of dithianon was likely to have been initiated by the opening of the dithiine ring by endogenous thiols (e.g. glutathione). The reaction with protein thiol groups accounts for the high levels of unextracted radioactivity found in the tissues. Following the ring opening reaction, further biotransformation via, for example, the glutathione pathway will have produced the very complex metabolite mixtures seen during the chromatographic analysis of the tissue extracts and the analysis of urine and bile.

Laying hens

The absorption, distribution, excretion of dithianon in laying hens was studied by Cheng (1990, 1992).

Cheng, 1990, DT-440-005; Cheng, 1992, DT-440-007

Two groups of laying hens, five hens per group, were treated orally once daily for 5 consecutive days with gelatin capsules containing the test substance. Animals were sacrificed 6 hours after the last dose. One group of hens was treated at a nominal dose level of 0.36 mg/day and the other group was treated at a nominal dose level of 3.6 mg/day. A third group of 5 hens served as the control group and was treated with empty capsules. The doses of dithianon were equivalent to a nominal dose rate of 3 and 30 mg/kg in the feed based on a projected average feed consumption of 120 g per hen per day. The actual doses of dithianon administered were 0.396 mg/day and 3.99 mg/day, respectively, equivalent to 3.57 mg/kg and 38.7 mg/kg in the feed.

Excreta from each group were collected daily. Eggs were collected twice daily (am and pm) during the dosing period. The 'pm-eggs' were refrigerated and added to the 'am-collections' the following morning. The eggs were separated into yolks and whites, which were stored separately. All samples were pooled according to day, sample matrix and subset, and then weighed. Approximately 6 hours after administration of the last dose, the animals were sacrificed. A sample of heparinized blood

was taken from each animal. Tissue samples [skin adhering to fat, breast muscle, thigh muscle, kidneys (both), liver, fat (abdominal)] and gastrointestinal (GI) tract, GI tract contents, and shelled eggs in oviduct (if present) were collected. Blood was refrigerated until analysis; all other samples were stored at or below 0 °C.

All measurements of radioactivity in liquid samples were analysed directly by LSC. Radioactivity in solid samples was determined by combustion followed by LSC. Tissue samples (kidney, liver, thigh muscle, breast muscle, and abdominal fat, skin with fat and GI tract) were homogenized while frozen, and triplicate aliquots were weighed for combustion. Excreta samples were homogenized with water (1:1 w/v), and triplicate aliquots were weighed for combustion. Triplicate aliquots of blood samples were weighed for combustion. Egg white and egg yolk were homogenized separately, and triplicate aliquots were weighed for LSC. Post-extracted solid samples were combusted prior to analysis by LSC.

Tissues, egg yolk, blood, and excreta from chickens (high dose group; 38.7 mg/kg feed) were extracted for metabolite profiling. Extraction procedures were carried out with a mixture of chloroform, methanol and water. The chloroform-soluble fraction was separated from the methanol:water fraction and each was concentrated to dryness. The organo-soluble (chloroform) residue was reconstituted in hexane and re-extracted with acetonitrile. The hexane and acetonitrile fractions were separated for radioanalysis. The water soluble fraction (methanol:water) residue was reconstituted in water. The extracted ¹⁴C residues were analysed by TLC and high performance liquid chromatography (HPLC). Fractions of the HPLC eluate were collected, and each was analysed directly by LSC.

As shown in Table 11, following oral administration of ¹⁴C-dithianon to laying hens, the overall recoveries of radioactivity were approximately 93.9% and 94.6% of the total applied radioactivity (TAR) for the low and high dose groups, respectively. The elimination rate of radioactivity in excreta was rapid and constant. Approximately 90% of TAR was eliminated in excreta by 6 hours after the last dose. The majority of the radioactivity was in excreta (approximately 90% TAR), GI tract contents (3.4% to 4.8% TAR), GI tract (0.6% TAR), liver (0.03% TAR), and kidneys (0.02% TAR). All of the eggs together contained less than 0.01% of the dose administered, most of which was retained in the yolk.

Matuin	TAR,%	
Matrix	Low dose (3.57 mg/kg)	High dose (38.7 mg/kg)
Eggs yolk	0.006	0.009
Eggs white	ND	0.002
Organs and tissues		
Muscle (breast)	< 0.01	< 0.01
Muscle (thigh)	< 0.01	< 0.01
Kidneys	0.02	0.02
Liver	0.03	0.03
Fat (abdominal)	ND	< 0.01
Skin with fat	0.01	< 0.01
Blood	0.02	0.02
GI Tract	0.56	0.57
GI Tract (contents and wash)	3.35	4.79
Excreta	90.0	89.2
Total	93.9	94.6

Table 11 Material balance after administration of ¹⁴C-dithianon to laying hens (DT-440-005)

Total radioactive residues (TRR) in tissues, excreta and eggs are given in Table 12. Reported values are based on direct analysis by combustion and LSC.

Table 12 TRR in eggs and tissues of laying hens treated with ¹⁴C-dithianon (DT-440-005)

Matrix	Low dose (3.57 mg/kg)	High dose (38.7 mg/kg)		
Mauix	TRR, mg/kg	TRR, mg/kg		
Egg yolks, day 0	ND	ND		

Matrix	Low dose (3.57 mg/kg)	High dose (38.7 mg/kg)
	TRR, mg/kg	TRR, mg/kg
Egg yolks, day 1	ND	ND
Egg yolks, day 2	ND	0.003
Egg yolks, day 3	< 0.001	0.025
Egg yolks, day 4	0.003	0.051
Egg yolks, sac, day 4 ^{a)}	0.005	0.075
Egg white, day 0	ND	ND
Egg white, day 1	ND	ND
Egg white, day 2	ND	0.003
Egg white, day 3	ND	0.004
Egg white, day 4	ND	0.004
Egg white, sac, day 4	ND	0.004
Egg, day 0 ^{b)}	ND	ND
Egg, day 1 ^{b)}	ND	ND
Egg, day 2 ^{b)}	ND	0.006
Egg, day $3^{(b)}$	< 0.001	0.029
Egg, day 4 ^{b)}	0.003	0.055
Egg, sac, day 4 ^{b)}	0.005	0.081
Muscle (breast)	0.002	0.013
Muscle (thigh)	0.002	0.022
Abdominal fat	ND	0.014
Liver	0.017	0.178
Kidney	0.042	0.339
Skin with fat	0.005	0.039
GI tract	0.138	1.519
GI tract, contents and wash	0.387	5.537

^a Sac day 4: eggs in the oviduct taken about 6 hours after sacrifice

^b TRR values for egg yolk and white combined

The extraction procedure served to characterize the radioactivity in each sample as organosoluble (non-polar), aqueous : methanol-soluble (polar), and non-extracted residues. The distribution of radioactivity in eggs, tissues and excreta from the high dose group is summarized in Table 13. The results for partitioning of the chloroform-soluble residues between hexane and acetonitrile are presented in Table 14 for egg yolks, skin with fat, liver and kidney. Acetonitrile-hexane partitioning of the chloroform-soluble residues in muscle, abdominal fat, blood and excreta was not performed.

Table 13 TRR extracted in eggs, tissues and excreta of laying hens after dosing with ¹⁴C-dithianon, equivalent to 38.7 mg/kg in the feed (DT-440-007)

Matrix	TRR ^a , mg/kg	Chloroform TRR, mg/kg (%)	Aqua methanol TRR, mg/kg (%)	ERR ^b TRR, mg/kg (%)	PES ^c TRR, mg/kg (%)	Recovery ^d TRR, mg/kg (%)
Egg yolks (last day)	0.078	0.010 (12.4)	0.027 (34.5)	0.037 (46.9)	0.042 (53.5)	0.079 (101)
Muscle	0.022	0.003 (12.6)	0.012 (55.7)	0.015 (68.3)	0.008 (35.0)	0.023 (103)
Skin with fat	0.041	0.004 (10.8)	0.027 (64.8)	0.031 (75.6)	0.011 (27.7)	0.042 (103)
Liver	0.186	0.029 (15.6)	0.105 (56.5)	0.134 (72.1)	0.046 (24.7)	0.180 (97)
Kidney	0.378	0.025 (6.6)	0.254 (67.1)	0.279 (73.7)	0.126 (33.3)	0.405 (107)
Blood	0.275	0.013 (4.73)	0.103 (37.6)	0.116 (42.3)	0.162 (58.8)	0.278 101
Excreta, pool (last day)	20.1	1.81 (8.99)	13.7 (68.0)	15.48 (77.0)	7.14 (35.5)	22.6 (113)

^a TRR values measured directly by combustion and LSC

^b ERR: Extracted radioactive residue (sum of chloroform and methanol: water extracts)

^c PES: Post-extraction solids remaining after extraction

^d Sum of TRR in all extracts and PES

Matrix	TRRª, mg/kg	Chloroform-soluble TRR, mg/kg (%)	Hexane-soluble TRR, mg/kg (%)	Acetonitrile-soluble TRR, mg/kg (%)
Egg yolks (last day)	0.078	0.010 (12.4)	0.008 (9.9)	0.002 (2.5)
Skin with fat	0.041	0.004 (9.8)	0.002 (4.9)	0.002 (4.9)
Liver	0.186	0.029 (15.6)	0.012 (6.5)	0.016 (8.6)
Kidney	0.378	0.025	0.012 (3.3)	0.012 (3.3)

Table 14 Distribution of ¹⁴C-dithianon-derived chloroform-soluble tissue residues between hexane and acetonitrile (DT-440-007)

^a TRR values measured directly by combustion and LSC

The findings of the characterization of metabolites (components) are summarized in Table 15 for liver, kidney, skin with fat and egg yolk. Additionally, for all matrices including blood and excreta the results are described as follows:

- Of the pooled <u>egg yolks</u> TRR (0.078 mg/kg), 46.9% (0.037 mg/kg) were extracted and 53.5% (0.042 mg/kg) were un-extracted. The aqueous:methanol-soluble extract accounted for 34.5% (0.127 mg/kg) of the egg yolk residue. Component C-14 (10.5%, 0.008 mg/kg) was the most abundant metabolite in the egg yolk. Other metabolites found in this fraction were component C-10 (5.72%, (0.004 mg/kg) and C-11 (2.16%, 0.002 mg/kg). Following solvent partitioning of the chloroform-soluble residue (12.4%, 0.010 mg/kg), the hexane-soluble fraction accounted for 9.9% of the TRR (0.008 mg/kg) and the acetonitrile fraction accounted for 2.5% (0.002 mg/kg).
- Of the TRR in <u>skin with adhering fat</u> (0.041 mg/kg), 75.6% (0.031 mg/kg) were extracted and 27.7% (0.011 mg/kg) were not extracted. The aqueous:methanol-soluble fraction accounted for 65.8% (0.027 mg/kg) and contained the highest percentage of component C-10 (36%, 0.015 mg/kg). Also detected was C-14 (3.51%, 0.001 mg/kg). Solvent partitioning of the chloroform-soluble fraction (9.8%, 0.004 mg/kg) resulted in hexane- and acetonitrile-soluble fractions, each containing 4.9% TRR (0.002 mg/kg).
- Of the TRR in <u>liver</u> (0.186 mg/kg), 72.1% (0.134 mg/kg) were extracted and 24.7% (0.046 mg/kg) were un-extracted. The chloroform-soluble fraction accounted for 15.6% (0.029 mg/kg) and the aqueous:methanol-soluble fraction accounted for 56.5% (0.105 mg/kg). Following the acetonitrile/hexane partitioning of the initial chloroform-soluble residue, six components were detected in the acetonitrile fraction (8.6%, 0.016 mg/kg). C-5 amounted to 1.32% (0.002 mg/kg), C-3 accounted for 1.42% (0.003 mg/kg) and C-4 accounted for 0.62% (0.001 mg/kg). The concentrations of components C-1, C-6 and C-7 were < 0.5% (< 0.001 mg/kg). Three components were found in the liver aqueous:methanol fractions, C-10 (18.9%, 0.035 mg/kg), C-11 (1.13%, 0.002 mg/kg) and C-13 (1.59%, 0.003 mg/kg).
- Of the TRR in <u>kidney</u> (0.378 mg/kg), 73.7% (0.279 mg/kg) were extracted and 33.3% (0.126 mg/kg) were un-extracted. The chloroform-soluble fraction accounted for 6.6% (0.025 mg/kg), and the aqueous:methanol fraction accounted for 67.1% (0.254 mg/kg). Following the acetonitrile/hexane partitioning of the initial chloroform-soluble residue, five minor components were detected in the acetonitrile fraction (3.3%, 0.012 mg/kg). Component C-4 accounted for 0.72% (0.003 mg/kg), C-3 for 0.52% (0.002 mg/kg), and C-5 for 0.66% (0.002 mg/kg). The concentrations of components C-1 and C-2 were less than 0.2%. Four components were found in the aqueous:methanol fraction: C-10 accounted for 11.1% (0.042 mg/kg), C-14 (7.26%, 0.027 mg/kg), C-12 (5.14%, 0.019 mg/kg) and C-11 (0.71%, 0.03 mg/kg).

- Low levels of radioactive residues were found in <u>muscle (0.022 mg/kg)</u>.Of the TRR, 68.3% (0.015 mg/kg) was extracted and 35% (0.008 mg/kg) was un-extracted. The nature of the extracted residue was not characterized.
- Of the excreta TRR, 77.0% of the TRR were extracted of which 9% was recovered as chloroformsoluble and 68% were recovered as aqueous:methanol-soluble. Six compounds were found in the chloroform extract. One was identified as dithianon and accounted for 0.44% (0.087 mg/kg). The other components found in the chloroform-soluble fraction were: C-4 (1.65%, 0.332 mg/kg), C-3 (1.90%, 0.382 mg/kg), C-5 (0.641%, 0.129 mg/kg), and C-1 (0.183%, 0.037 mg/kg). Five components were found in the aqueous:methanol-soluble fraction. These were C-14 (8.52%, 1.71 mg/kg), C-10 (6.39%, 1.28 mg/kg), C-12 (5.64%, 1.13 mg/kg), C-13 (4.3%, 0.864 mg/kg), and C-11 (3.16%, 0.635 mg/kg).
- Of the TRR in <u>blood</u> (0.275 mg/kg), 42.3% (0.116 mg/kg) were extracted and 58.8% (0.162 mg/kg) were not extracted. Two components were found in the chloroform extract (4.73%, 0.013 mg/kg), corresponding to C-4 (3.1%, 0.008 mg/mg), and C-5 (0.41%, 0.001 mg/kg). One component was found in the aqueous-methanol extract (37.6%, 0.103 mg/kg), corresponding to C-10 (28.2%, 0.002 mg/kg).

The metabolites were not identified.

	Liver rep 1	olicate	Liver rep 4	olicate			Kidney r 2 ^a	Kidney replicate 2 ^a		th fat	Egg yol	k
Component	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%
	0.186	100	0.186	100	0.378	100	0.378	100	0.041	100	0.078	100
Dithianon	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-
C-1	< 0.001	0.189	< 0.001	0.275	< 0.001	0.177	< 0.001	0.139	-	-	-	-
C-2	ND	ND	ND	ND	< 0.001	0.155	ND	ND	-	-	-	-
C-3	0.003	1.42	0.001	0.618	0.002	0.519	0.001	0.305	-	-	-	-
C-4	0.002	1.20	0.002	1.27	0.003	0.720	0.002	0.474	-	-	-	-
C-5	0.002	1.32	< 0.001	0.312	0.002	0.655	< 0.001	0.055	-	-	-	-
C-6	< 0.001	0.353	< 0.001	0.364	ND	ND	< 0.001	0.060	-	-	-	-
C-7	< 0.001	0.22	< 0.001	0.155	ND	ND	ND	ND	-	-	-	-
C-8	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-
C-9	ND	ND	ND	ND	ND	ND	0.003	0.852	-	-	-	-
C-10	-	-	0.035	18.9	0.042	11.1	-	-	0.015	36.0		5.72
C-11	-	-	0.002	1.13	0.003	0.711	-	-	ND	ND	ND	2.16
C-12	-	-	ND	ND	0.019	5.14	-	-	ND	ND	ND	ND
C-13	-	-	0.003	1.59	ND	ND	-	-	ND	ND	ND	ND
C-14	-	-	ND	ND	0.027	7.27	-	-	0.001	3.51	0.008	10.5
^a Repeated a	nalysis		- No	ot analyse	ed	NI	D not detec	ted				

Table 15 HPLC metabolite profile of tissues and egg yolk of chickens (DT-440-007)

Plant metabolism

The metabolism of dithianon has been studied in citrus, apples, spinach and wheat.

Oranges

The metabolism of dithianon in citrus was investigated by Hubert (1991, 1992), Mayo (1994), Schlueter and Memmesheimer (1994, including an amendment by Schlueter, 1996) and finally by Schlueter (1998).

Hubert, 1991, DT-640-015; Hubert, 1992, DT-640-016 (amendment to DT-640-015)

A single orange tree was treated with ¹⁴C-dithianon at a specific activity of 49.4 μ Ci/mg. The test plot consisted of an area of the test tree (ca. 1.2 m × 1.2 m) containing 50 fruits and the surrounding foliage. The test solution was applied three times as a foliar spray at the rate of 1.87 kg ai/ha. Applications were made when the oranges were approximately 2.5 cm in diameter and at

approximately 30-day intervals after that. Fruit and foliage were sampled at each spray application (pre- and post-application sampling) and at full commercial maturity.

The oranges sampled at full commercial maturity were rinsed with dichloromethane and the rinse was analysed. Orange (whole fruit, peel, pulp) and leave samples were homogenized frozen (liquid nitrogen) and analysed by means of oxidative combustion followed by a measurement using liquid scintillation counting. Extensive extraction and fractionation procedures (using chloroform, acidic acetone, dichloromethane and methanol as solvents) were applied in conjunction with two-dimensional thin-layer chromatography for characterization of ¹⁴C-residues in peel, pulp and final harvest fruit rinse. The TTR in fruits and foliage are presented in Table 16. The reported LOD by LSC was 0.022 mg/kg (based on a calculation using 0.2 g as a representative sample weight and a specific activity of 7820). The highest concentration of radioactivity (3280 mg/kg) was found in foliage samples taken from the treated plants at the 31-day post application sampling point. The highest concentration in the whole oranges from treated plants was 92.8 mg/kg found in oranges harvested at day 60. The TRR in peel, pulp and rinse at final harvest was 17.6, 0.85 and 109 mg/kg, respectively, based on the individual matrix masses. The concentrations are 5.9, 0.92 and 64.4 mg/kg, respectively, when based on the mass of whole oranges. The results of the distribution of TRR of the acidic acetone fraction are provided in Table 17.

Sample	Sampling point	Day	TRR (mg equivalents/kg)
	Pre application	0	< 0.022
	Post application	0	954
	Pre application	31	1010
Foliage	Post application	51	3280
-	Pre application	60	2800
	Post application	00	782
	Final harvest	121	1430
	Pre application	0	< 0.022
	Post application	0	19.1
Whole fruit	Pre application	31	10.5
whole if uit	Post application	51	68.8
	Pre application	60	35.6
	Post application	00	92.8
Peel	Final harvest	121	17.6
Pulp	Final harvest	121	0.85
Rinse	Final harvest	121	109

Table 16 TRR in fruit and foliage of oranges after application of ¹⁴C-dithianon (DT-640-015)

Table 17 Distribution of TRR in oranges treated with ¹⁴C-dithianon (DT-640-015, DT-640-016)

	TRR in surf	àce rinse	Peel		Pulp	
Classification	%	mg equiv./kg	%	mg equiv./kg	%	mg equiv./kg
Dithianon	88.0	62.5	ND	ND	ND	ND
Unknowns ^a			1.8	1.3	0.47	0.32
Polar origin	2.3	1.7	2.1	1.5	0.33	0.24
Diffuse ^b			0.91	0.64	NA	NA
Total	90.3	64.2	4.8	3.44	0.8	0.56

^a Multiple components; no assignment could be made.

^b Radioactivity that is not found in discrete zones / spots.

Mayo, 1994, DT-640-018; Schlueter and Memmesheimer, 1994, DT-640-020; Schlueter, 1996, DT-123-045 (amendment to DT-640-020), Schlueter, 1998, DT-123-066

Mature oranges were treated two times with ${}^{13}C/{}^{14}C$ -dithianon (treatment interval: 4 weeks) at a specific activity of 27.8 μ Ci/mg. ${}^{13}C$ -labelling was used in order to facilitate mass-spectroscopic identification of unknown metabolites and fragments by their characteristic ${}^{12}C/{}^{13}C$ -mass doublets. An air brush sprayer was used to apply test material to the 30 fruit on the tree. Each fruit was sprayed to

almost run-off. During the application, the leaves adjacent to the fruit were also sprayed. The nominal application rate was 0.44 kg ai/ha (actual 0.39 kg ai/ha). Samples were taken 2 weeks and 4 weeks after the last application. Upon arrival in the lab, oranges were stored frozen until analysis. In the 1994 studies (DT-640-018, DT-640-020), two oranges from the first and five oranges from the second sampling occasion were randomly selected and analytically processed as follows:

- The weight of the oranges was determined and residues were washed from the surface by submerging the samples two times in dichloromethane/acetic acid (1000:1) and one time in acetone/acetic acid (1000:1) at solvent temperatures of -20 °C.
- Following surface extraction and after peeling the oranges, the peel and pulp samples were separately homogenized. The peel was extracted two times with dichloromethane/acetic acid (1000:1) followed by one extraction step using acetone/acetic acid (1000:1). The radioactivity in the extracts was determined by LSC, all peel extracts were combined according to sampling date and solvent and investigated further by TLC.
- Equal amounts of the peel extracts and the third surface rinse (acetone/0.1% acetic acid) were combined, concentrated and diluted with acidified deionized water and the aqueous solution extracted $3 \times$ with dichloromethane. The radioactivity in the organo-soluble (dichloromethane) and water-soluble fraction was determined by LSC.

Different metabolite fractions from the organo-soluble radioactivity were purified by TLC and HPLC and partly further investigated by TLC. The polar components of the water-soluble radioactivity were further subjected to a derivatization with pentafluorobenzyl bromide. An aliquot of the aqueous layer was evaporated nearly to dryness using a rotary evaporator. After the addition of tetrabutylammonium-fluoride in a Na_2HPO_4/KH_2PO_4 -buffer (pH 8) and a mixture of pentafluorobenzyl bromide in dichloromethane solution, the reaction mixture was sonicated for 1 hour. Thereafter, the solution was subjected to partitioning with dichloromethane and analysed by TLC.

Following determination of the radioactivity by combustion analysis and liquid scintillation counting, aliquots of the non-extractable peel residues were subjected to enzyme cleavage using protease. The reaction mixtures were filtered, the undigested residue was washed with buffer solution and freeze dried. After the determination of radioactivity the buffer solution was subjected to a further partitioning with dichloromethane. Finally, the organic layer was investigated by TLC.

The pulp was analysed in the same way as described for the peel. For thin-layer chromatographic (TLC) purposes of metabolite identification, reference compounds were co-chromatographed with the surface rinse and extractable residues from peel and pulp.

In the 1998 study (DT-123-066), the samples out of the 1994 study (DT-640-020) were reanalysed to characterize and to identify metabolites occurring in and on the peel of mature oranges. After initial storage stability investigations using the same extraction procedures, the remaining oranges (28 DAT) were further investigated using the following techniques:

Thin layer chromatography using normal phase and reversed phase (RP-18) plates

- Liquid/liquid partition experiments
- Reversed phase HPLC of the organo soluble peel extracts
- Purification of fractions, components by solid phase extraction (SPE, C 18), HPLC semi-and preparative TLC fractionation, gel chromatography (2 different gel systems)

HPLC-MS investigations

Hydrolytic cleavage reactions using hydrochloric acid.

The TRR in the surface, peel and pulp of oranges treated with ${}^{13}C/{}^{14}C$ -dithianon are shown in Table 18. After two applications of radio-labelled dithianon on mature oranges, most of the radioactivity was found in the surface wash. On oranges sampled 2 weeks after application the TRR accounted 94.2% and after 4 weeks 87.25% of the TRR. After peeling, the radioactivity accounted

between 5.44% (2 weeks after application) and 12% (4 weeks after application) in the peel as well as between 0.36% (2 weeks after application) and 0.75% (4 weeks after application) in the pulp. Generally, half of the radioactivity was detected in the extractable portion and the remaining radioactive material was bound to the PES fractions.

Commla	Surface ^a	Peel ^b			Pulp			
Sample	Surface	extracted	PES	total	Extracted	PES	Total	
	2 we	eks after applic	ation (values = 1	nean of 2 o	ranges)			
Amount, µg	771.3	22.6	22.3	44.9	1.6	1.1	2.7	
TRR, mg equiv./kg	4.213	0.122	0.121	0.243	0.009	0.007	0.016	
TRR%	94.20	2.73	2.71	5.44	0.21	0.15	0.36	
Total TRR in whole oranges, mg equiv./kg		4.47						
Total TRR,%				100				
	4 we	eks after applic	ation (values $=$ 1	nean of 5 o	ranges)			
Amount, µg	928.5	73.5	53.9	127.4	3.2	4.9	8.0	
TRR, mg equiv./kg	4.590	0.362	0.270	0.632	0.016	0.024	0.039	
TRR,%	87.25	6.88	5.12	12.01	0.30	0.45	0.75	
Total TRR in whole oranges, mg equiv./kg		5.26						
Total TRR,%				100				

Table 18 TRR in orange matrices after two applications of ¹³C/¹⁴C-dithianon (DT-640-020)

^a 1st and 2nd surface rinse

^b 3rd surface rinse, 1st and 2nd peel extraction

In 1998, the residues of ¹⁴C-dithianon were re-analysed (oranges from 4 weeks post applications only). No significant differences between the first and the second determination of radioactive residues were found. The measured data sets of the second analysis in comparison to the previous results are summarized in Table 19. The results of distribution and characterization of radioactive residues compartments as surface wash, peel and pulp are summarized in Table 20.

Table 19 TRR, comparison of the results reported in 1994 (DT-640-020) and in 1998 (DT-123-066)

Matrix	TRR,% (analysed 1994)	TRR,% (re-analysed 1998)
1 st surface rinse	85.6	82.2
2 nd surface rinse	1.6	2.0
3 rd surface rinse	2.2	2.3
1 st Peel extraction	3.0	2.6
2 nd Peel extraction	1.7	0.3
3 rd Peel extraction	Not analysed	2.1
Pulp extraction	0.3	0.4
PES (peel)	5.1	7.1
PES (pulp)	0.45	0.9
Total extracted radioactivity	94.4	92.0
Total non-extracted radioactivity	5.6	8.0

Table 20 Characterization of ¹⁴C-dithianon-derived radioactive residues in oranges (DT-123-066)

Residue fractions		TRR	
Residue fractions		%	mg/kg
TRR in whole samp	ble	100.0	5.261
TRR in the wash ar	nd extracts	94.4	4.967
	Components in wash	87.3	4.590
Surface rinse a)	Dithianon	80.3	4.222
	Others	6.99	0.368
	Components in peel extract	6.88	0.362
Peel extracts b)	Organo-soluble fraction ^d	4.14	0.218
reel extracts	Dithianon (component by HPLC)	0.27	0.014
	Pe01 (4 components by TLC)	1.05	0.055

Residue fractions		TRR	
Residue fractions		%	mg/kg
	Pe02 (baseline radioactivity by TLC)	0.61	0.032
	Pe03 (2 components by TLC)	0.97	0.051
	Pe04 (baseline radioactivity by TLC)	0.68	0.036
	Pe05 (8 components by HPLC including BAS 216 F)	0.65	0.034
	Pe06 (baseline radioactivity by TLC)	0.19	0.010
	Water-soluble fraction ^{e, f)}	2.74	0.144
	Organo-soluble fraction (6 components by TLC) ^{d)}	1.52	0.080
	Water-soluble fraction	1.22	0.064
	Components in pulp extract ^{e)}	0.30	0.015
Pulp extracts c)	Organo-soluble fraction (4 components by TLC) ^{d)}	0.10	0.005
	Water-soluble fraction ^{d)}	0.20	0.010
Total identified dir	hianon (80.3% surface rinse, 0.27% peel extract)	80.5	4.236
	Peel	5.12	0.270
PES peel	Organo-soluble fraction (multiple components) of enzyme digest $(Pronase E)^{d}$	0.19	0.010
-	Water-soluble fraction of enzyme digest (Pronase E) ^{d)}	2.98	0.157
	Undigested	1.98	0.104
PES pulp	Pulp	0.45	0.024

^{a)} Combined residues from surface washes with dichloromethane/0.1% acetic acid

^{b)} Combined residues from peel extracts with dichloromethane/0.1% acetic acid and acetone/0.1% acetic acid surface wash

^{c)} Combined residues from pulp extracts

^{d)} Dichloromethane fraction (organo-soluble) from solvent partitioning

e) Water-soluble fraction from solvent partitioning

^{f)} The fraction was derivatized with pentafluorobenzyl bromide, then solvent partitioned

Thin-layer chromatography of <u>surface washes</u> showed that the major radioactive component (approximately 92%) was the parent dithianon. This corresponds to approximately 80% of the TRR. The surface washes of the radioactive residues obtained from the five treated oranges collected 28 days after treatment contained 87% of the total terminal residue. TLC and HPLC analysis showed that 92% of the radioactivity recovered in the dichloromethane/0.1% acetic acid rinses (or 80% TRR, 4.22 mg/kg) was unchanged dithianon. The identification was confirmed by mass spectrometry.

Initial TLC investigations of the <u>peel extracts</u> showed the presence of mainly polar compounds and a proportion of radioactivity migrating with reference compound dithianon. In order to separate the polar and the less polar fractions, equal amounts of the peel extracts and the third surface acetone/acetic acid extract were combined and subjected to a partitioning with dichloromethane and water. Approximately 60% of the radioactivity contained in the combined peel extracts proved to be organosoluble. The TLC of the organic layer revealed three prominent metabolite fractions (Pe01, Pe03 and Pe05, corresponding to 0.055 mg/kg, 0.051 mg/kg and 0.034 mg/kg, respectively), which were isolated from the TLC-plates and further investigated. One-and two-dimensional thin-layer chromatography revealed that the radioactivity contained in fractions Pe01 and Pe03 did not represent single metabolites but a number of more or less polar degradation products: TLC investigations of fraction Pe01 indicated the presence of at least 4 different compound fractions none of which exceeded 0.018 mg/kg (0.34% TRR). Furthermore, the TLC-chromatogram of fraction Pe03 showed at least two metabolite fractions representing only 0.17% and 0.75% of the TRR (0.009 mg/kg and 0.040 mg/kg). In the case of Pe05 a small amount of unchanged dithianon was identified (0.014 mg/kg) by LC/MS investigations following purification by HPLC.

The radioactive residues remaining in the aqueous solution after the above mentioned partitioning were further subjected to derivatization with pentafluorobenzyl bromide. As a result, approximately 56% of the originally water-soluble residue could additionally partitioned into dichloromethane. TLC investigations of the organic layer revealed the presence of several product fractions, which did not exceeded 0.045 mg/kg or 0.86% of the TRR.

The <u>non-extracted peel residues</u>, which amounted approximately 5.12% of the TRR (0.27 mg/kg) were subjected to enzyme cleavage reaction. After incubating aliquots of the non-

extracted peel residues with pronase E, about 62% of the original non-extracted radioactivity was found in the buffer solution. Further partitioning of the aqueous solution with dichloromethane proved 0.01 mg/kg of the radioactivity to be organosoluble whereas 0.157 mg/kg remained in the aqueous solution. TLC investigations of the organosoluble compounds again revealed the presence of several products. Also in this case, all metabolite fractions represented only traces of the radioactivity found on or in whole oranges (0.001–0.005 mg/kg).

Radioactive residues found in <u>pulp</u> at 28 days after application accounted for 0.75% of the TRR (0.039 mg/kg). After homogenization and extraction of the pulp samples, only 0.30% of the TRR (0.015 mg/kg) proved to be extracted and 0.45% (0.024 mg/kg) as non-extracted. Also in this case, the combined pulp extracts were subjected to a partitioning with dichloromethane and water in order to separate the polar and the less polar metabolite fractions. A portion of 34% of the radioactivity, originally in the pulp extracts, was transferred into the organic layer, whereas 66% remained in the aqueous solution. The TLC investigations of the organosoluble compounds revealed the presence of different metabolite fractions, each representing only traces of the terminal radioactive residue (< 0.002 mg/kg).

From all results obtained in the course of the DT-123-066 (1998) and the previous study DT-640-020 (1994), it can be stated that the main portion of the TRR found on or in whole oranges treated with ^{13,14}C-dithianon, remained on the surface of the fruits (87%). Furthermore, the majority of this surface residue (approximately 80% of the TRR) was still the unchanged parent compound. The remaining radioactive residues, ca. 12% (6.9 ERR + 5.12 PES) of TRR in the peel and ca. 0.8% (0.3% ERR + 0.45% PES) of TRR in the pulp, was composed of a large number of mostly polar compounds none of which can be considered major.

Apple

The fate of dithianon was characterized in apples by Hawkins (*et al.* 1991) and Mayo (1993). Apple trees grown outdoor were treated with 100 μ L droplets of a formulation that contained ¹⁴C-labelled dithianon at a concentration between 0.07% and 0.1%. The number of applications ranged from 1 to 4 and 5 treatments. Apples and leaves were harvested directly after the application as well as 21 days after successive 2-weekly ¹⁴C-dithianon applications or 15 days after 5 successive 2-weekly ¹⁴C-dithianon applications.

The samples (apples and leaves) were surface washed (within 1 hour after harvesting) by soaking in dichloromethane with 0.1% acetic acid. Surface wash was repeated three times and combined for measurement of radioactivity. A fourth surface wash was carried out with acetone with 0.1% acetic acid. Apples were subsequently peeled and the peel and flesh extracted separately by homogenizing with acetone, centrifugation, and separation of the extract from the residue. Washes, extracts and post-extracted residues were analysed for total radioactive residues (TRR) by liquid scintillation counting (LSC) and combustion. The TRR was determined as the sum of the total radioactivity in the surface rinse, the extracts and the post-extracted residues of the remaining plant parts after combustion. Thin layer chromatography (TLC) on normal phase and reverse phase TLC plates was used for the characterization and identification of the ¹⁴C-dithianon-derived residues in the washes and extracts the apples and leaves. For measurement of proportions of radioactive components, radio-chromatographs of TLC plates were obtained. To aid in the identification, the radioactive samples were co-chromatographed with appropriate reference compounds and these were located by quenching of a fluorescent indicator under UV light at 254 nm.

The radioactive residues in treated apples and leaves, expressed in mg/kg dithianon equivalents and as portion of the applied dose of ¹⁴C-dithianon are summarized in Table 21. TRR after 4 to 5 application of dithianon onto apple fruits and leaves were determined to be between 2.6 and 5.4 mg/kg in apple fruits and in leaves between 217 to 485 mg/kg.

Table 21. Radioactive residues in apples and leaves after treatment with 14 C-dithianon, mean values ± SD (DT-640-013).

Sampling interval	F	Fruits	Leaves		
	TRR, mg/kg	TAR,%	TRR, mg/kg	TAR,%	

1 hour after 1 st application	Not reported	91.9	Not reported	92.7
21 days after 4 th application	5.4 ± 2.5	69.6 ± 8.4	217 ± 72	49.3 ± 9.6
15 days after 5 th application	2.6 ± 0.7	61.3 ± 1.6	485 ± 118	41.2 ± 6.6

Most of the recovered radioactivity was found in washed surface fraction of both apple fruit (81.4% to 89.7% of TRR) and leaves (90.3% to 94.0% of TRR (see Table 22).

Table 22 Distribution of radioactivity in apple matrices after application of ¹⁴C-dithianon (DT-640-013)

Comula	TRR,	%
Sample	Mean	\pm SD
Apple fruit (21	days after 4 applications)	
Surface wash $1-3$	89.7	6.0
Surface wash 4	0.5	0.2
Peel extract	1.3	0.3
Flesh extract	1.3	0.8
Peel (PES)	1.1	0.9
Flesh (PES)	6.2	4.0
Apple fruit (15	days after 5 applications)	
Surface wash $1-3$	81.4	2.4
Surface wash 4	2.8	0.2
Peel extract	2.3	0.4
Flesh extract	2.7	1.0
Peel (PES)	1.3	0.7
Flesh (PES)	9.4	1.4
	days after 4 applications)	
Surface wash $1 - 3$	90.3	4.6
Surface wash 4	0.7	0.2
Extract	1.0	0.4
PES	8.1	4.7
Apple leaf (15	days after 5 applications)	
Surface wash $1 - 3$	94.0	0.6
Surface wash 4	0.2	0.0
Extract	0.6	0.1
PES	5.1	0.6

The nature of ¹⁴C-dithianon residues in various apple matrices was characterized by TLC. TLC of surface washes showed that the major radioactive component was co-chromatographed with the parent dithianon. The parent accounted for means of 72.7% to 82.0% (apples) and 69.7% to 85.7% (leaves) of the TRR corresponding to 2 to 4 mg/kg (apples) and 151 to 415 mg/kg (leaves), respectively (see Table 23). Only dithianon could be identified in the extracted residues.

Table 23 Characterization of ¹⁴C-dithianon-derived radioactive residues in apples (DT-640-013)

		TRR	TRR						
	7		21DAT4 ^d		21DAT4		15DAT5 Fruit		Г5
		Fruit	Fruit		Leaves				
Residue fractions		%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg
TRR in whole sample		100	5.40	100	217	100	2.6	100	485
TRR in wash + extracts		92.8	5.01	92.0	199.5	89.2	2.3	94.8	459.8
Surface wash ^a	Components:								
	Dithianon	82.0	4.43	69.7	151	72.7	1.89	85.7	415
	TLC Baseline b	6.1	0.33	18.2	39	6.7	0.17	5.7	28
	Others	1.6	0.09	2.4	5	1.8	0.05	2.7	13
Extract	Components:								
	Dithianon	ND		ND		ND		ND	
	Others	2.6	0.14 ^c	0.9	2	5.0	0.13 ^c	1.6	3
Total identified		82.0	4.43	69.7	151	72.7	1.89	85.7	415
PES	Unknown	7.3	0.39	8.1	18	10.4	0.44	5.1	15.6

^a Combined residues from washes with dichloromethane/0.1% acetic acid and acetone/0.1% acetic acid

^b For both the 21DAT4 and 15DAT5 samples, this residue fraction consisted of at least two components, each at \leq 0.24 mg/kg (\leq 5%TRR) in apples, and \leq 29 mg/kg (\leq 13%TRR) in leaves

^c Peel and flesh

^d 21DAT4: 21 days after 4 treatments

Spinach

A greenhouse study was conducted in 1999 by van Dijk (2000, DT-640-023) to elucidate the metabolic fate of dithianon in spinach.

For the study, three plastic containers (70 cm \times 50 cm; soil depth: 40 cm), each providing an application area of 0.35 m², were filled with silt loam soil and were sown within a depth of 2-3 cm with 43 g of spinach seeds per m² or 15 g/container. Two containers were established for treatment with a WP formulation of ¹⁴C-dithianon (plot A) and one container (plot B) for treatment with the blank formulation to provide control samples.

¹⁴C-labelled dithianon at the 5, 6, 9 and 10 positions of the naphthoquinone ring (specific activity 1.569 MBq/mg, radiochemical purity 98.1%) was mixed with ¹³C-labelled dithianon (purity 98.1%), also labelled at the 5, 6, 9 and 10 positions, and non-labelled ¹²C-dithianon (purity 99.9%) to yield material with a specific activity of 0.092 MBq/mg (5526 dpm/µg; or 2.49 µCi/mg).

The ¹³C-dithianon was added as a mass marker to aid in mass spectrometric analysis and identification of the radioactive residues derived from dithianon in the spinach samples. The labelled material, hereafter is referred to as ¹⁴C-dithianon.

Three applications of test substance, formulated as a WP with blank formulation were made over plot A at 38 days (early 6-leaf stage), 51 days (6–8-leaf stage) and 61 days (8-leaf stage) after sowing at nominal dose rates of 1 kg ai/ha/application. Spinach samples (above-ground parts) were collected on the day of the first, second, and third application, and 20 days after the third application. The spinach plants in Plot B (control) were treated with the blank formulation.

All plant samples were analysed for TRR by combustion and LSC. The TRR values for the whole plant samples were determined by summing the radioactive residue in the surface rinses with the radioactive residue in the rinsed plant samples. The radioactive residue in the rinsed plant is referred to as the post rinse residue (PRR). ¹⁴C-dithianon-derived residues in the spinach samples in the surface rinse and extracts of the PRR were taken for characterization and identification by TLC (normal and reversed phase) and reversed phase HPLC by co-chromatography with reference compounds and, where possible, by mass spectrometry. The limit of quantitation of the radioassay for the determination of the TRR was validated at 0.01 mg/kg by combustion of control spinach (0.5 g) fortified with 25 dpm of ¹⁴C-dithianon. The TRR in spinach leaf, expressed as mg/kg equivalents of ¹⁴C-dithianon, are summarized in Table 24.

Sampling Inter	val	Т	RR in mg/kg and (%	(0)
Days After Sowing (Growth		Total	Rinse	Rinsed Spinach
Stage)	DAT ^a	(unwashed spinach)		(PRR) ^b
38 (early 6-leaf stage)	0DAT1	91.4 (100)	86.4 (94.6)	4.93 (5.4)
51 (6-8 leaf stage)	0DAT2	112.7 (100)	103.1 (91.5)	9.58 (8.5)
61 (8 leaf stage)	0DAT3	305.8 (100)	292.9 (95.8)	12.9 (4.2)
81 (final harvest)	20DAT3	149.5 (100)	143.9 (96.2)	5.67 (3.8)

Table 24 TRR in spinach samples following three applications of ¹⁴C-dithianon (DT-640-023).

^a DAT denotes days after treatment; for example, 20DAT3 denotes 20 days after treatment three

^b PRR: post rinse residues (TRR in the rinsed spinach)

The results showed that the surface rinse accounted for > 90% of the TRR and the post rinse residue (PRR) accounted for < 9% TRR at each sampling interval. During the three treatments, the PRR concentrations increased from 4.93 mg/kg after the first treatment to 12.89 mg/kg after the third

treatment. Because of the growth that increased plant mass, the PRR decreased from 12.89 mg/kg on the day of third treatment to 5.67 mg/kg 20 days later.

The post rinse residues (PRR) in spinach from all sampling intervals accounted for 3.8-8.5% of the TRR, with the majority of the radioactivity released by exhaustive extractions (3.4-7.5% TRR released by extractions). The extraction steps included aqueous acetonitrile, enzymatic treatment (pronase and cellulase), and reflux with methanol/ammonia (8:2) all in the presence of 0.1% acetic acid. The non-extracted PRR residue was very low, accounting for $\leq 1\%$ TRR at all sampling intervals. Extraction results of the incurred radioactivity in the spinach forage derived from ¹⁴C-dithianon are summarized in Table 25. At harvest, 20 days after the third application, radioactivity in the three extracts ranged from 0.9-1.5% TRR (1.36-2.18 mg/kg).

	TRR,% (mg/kg)				
Main fractions	0DAT1 ^a	0DAT2	0DAT3	20DAT3	
TRR in whole unwashed sample	100 (91.36)	100 (112.68)	100 (305.77)	100 (149.53)	
Surface rinse	94.6 (86.44)	91.5 (103.1)	95.8 (292.88)	96.21 (143.87)	
ERR ^b	5.10 (4.66)	7.47 (8.42)	3.88 (11.88)	3.41 (5.10)	
Extracts/washes ^c	1.27 (1.16)	1.11 (1.25)	1.19 (3.64)	1.04 (1.56)	
Enzymatic treatment	3.15 (2.88)	4.70 (5.30)	0.86 (2.63)	1.46 (2.18)	
Base/acid hydrolysis (reflux)	0.68 (0.62)	1.66 (1.87)	1.52 (4.65)	0.91 (1.36)	
Others	NP	NP	031 (0.65)	NP	
PES	0.29 (0.27)	1.03 (1.16)	0.33 (1.01)	0.38 (0.57)	

Table 25 Distribution of ¹⁴C-dithianon-derived radioactive residues in spinach (DT-640-023)

^a DAT: <u>Days After T</u>reatment; for example, 0DAT1 denotes 0 days after first treatment.

^b ERR: Extractable Radioactive Residue (sum of all treatments from extraction, enzymatic treatment, hydrolysis and others).

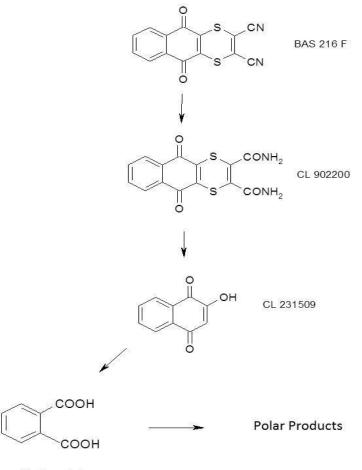
^c Sequential extraction and washes of post-rinse residue (PRR) followed by enzyme treatment and base/acid hydrolysis. NP: Not performed

The surface rinses and selected extracts were analysed by TLC, reversed phase HPLC, and mass spectrometry, where appropriate. The radioactivity recovered in the surface rinse was due exclusively to parent compound for all sampling intervals. The identification of parent was confirmed by HPLC, TLC, GC-MS and EI-MS (electron impact/mass spectrometry). The radioactivity profiles of the residues extracted from the surface rinsed spinach at the different growth stages and treatment timings were qualitatively similar.

For all sampling intervals, dithianon accounted for 92–96% of the TRR and was identified in the surface rinse. The extractable residues contained at least 14 '*Regions Of Interest*' (ROIs), five of them being very polar, occurring in amounts of 0.1–0.5% of TRR at harvest. No dithianon was detected in the extracted residues at any of the growth stages and treatment timings. By HPLC and TLC analysis of the spinach extracts with the reference compounds, ROI 6 was identical to reference compound 2-hydroxy-napthoquinone (R1, CL 231509). ROI 7 was identical to reference compound 5,10-dioxo-5,10-dihyro-naphtho[2,3-b]-1,4-dithiin-2,3-dicarboxylic acid diamide (D15, CL 902200). ROI 14 was contained a minor sub-fraction identical to reference compound phthalic acid (R2). A summary of the quantified and identified radioactive residues in spinach samples collected at harvest (20 days after the third application, 20DAT3) is provided in Table 26.

Table 26 Identification and quantification of ¹⁴C-dithianon derived radioactive residues in spinach, 20DAT3 (DT-640-023)

Fraction	Component identified	TRR	TRR		
	-	%	mg/kg		
Whole unwashed sample		100	149.53		
Surface rinse ^a		96.2	143.87		
Extract ^b		3.41	5.10		
Rinse	Dithianon	96.2	143.87		
Extract	ROI 1	0.11	0.16		
	ROI 2	0.10	0.14		


Fraction	Component identified	TRR	
		%	mg/kg
	ROI 3, ROI 4, ROI 5	0.33	0.50
	ROI 6 (identified as R1, CL 231509)/ ROI 7 (identified as D15, CL 902200)	0.26	0.39
	ROI 8	0.14	0.20
	ROI 9	0.15	0.23
	ROI 10	0.23	0.34
	ROI 11	0.08	0.13
	ROI 12, ROI 13	0.42	0.64
	ROI 14 (identified as R2)	0.54	0.80
	Others (unresolved)	0.59	0.91
Total Identified		97	145
PES	Unknown	0.38	0.57

^a Residue from rinse

^b Residue from extracts/washes, enzyme and base treatment

The main residue component in spinach, accounting for more than 90% of the TRR, was unchanged parent compound. In the post rinse spinach residues, no parent was detected. Besides multiple polar minor unknown components, metabolites identified by co-chromatography with the authentic reference compounds were 2,3-dicarboxylic acid diamide derivative (D15; CL 902200), 2-hydroxy-naphthoquinone (R1; CL 231509) and phthalic acid [benzyl 1, 2-dicarboxylic acid, (R2)]. This indicated that absorbed dithianon, which accounted for 3.8–8.5% of the TRR, was completely metabolized by the spinach plants.

In summary, besides the multiple unidentified polar minor components, based on the metabolites that were identified and characterized in spinach plants, the metabolism of dithianon in spinach first undergoes hydrolysis of the cyano groups to yield the diacid diamide (CL 902200). Further aromatic oxidation of the sulfur atoms and cleavage of the dithiine ring followed by hydroxylation of the naphthoquinone ring to yield metabolite CL 231509. The naphthoquinone undergoes further aromatic oxidation and cleavage to yield phthalic acid. The proposed metabolic pathway in spinach is shown in Figure 1.

phtalic acid

Figure 1 Proposed metabolic pathway of ¹⁴C-dithianon (BAS 216 F) in spinach (DT-640-023).

Wheat

The metabolism of dithianon in wheat was investigated by Mayo (1994, DT-640-019), Schlueter and Grahl, 1994 (1994/7001689), Schlueter, 1996 (DT-640-021, amendment to report 1994/7001689), Schlueter, 1998 (DT-640-017) and Hawkins, 1991 (DT-640-014).

Mayo, 1994, DT-640-019

A field study was conducted in 1992 to characterize the nature of dithianon and its metabolites in spring wheat. For the preparation of the test substance, the materials were mixed to provide ¹²C- and ¹³C-dithianon in a 1:1 ratio and ¹⁴C-dithianon at a nominal specific activity of 30 μ Ci/mg. The plants had been treated at two growth stages, "Zadoks 59" and "Zadoks 61" (equivalent to BBCH 59 and 61). The application rate was at both sprayings equivalent to 1.5 kg ai/ha. Samples of wheat were taken at 2 hours after the second application (0 days), at 20 days after and finally at 35 days after the second application. At 0 and 21 days, the plants were separated into stems and ears and at 35 days into grain, husk and straw.

Schlueter and Grahl, 1994, 1994/7001689; Schlüter, 1996, DT-640-021 (amendment to 1994/7001689

The wheat samples generated in report DT-640-019 were further investigated. The samples were washed with acetonitrile/hydrochloric acid and the washings were removed by centrifugation. The plant material was homogenized and extracted with acetonitrile/hydrochloric acid and the extracts were removed. The surface rinse and extracts were analysed for TRR by LSC, the non-extracted residues were analysed by combustion followed by LSC. The surface rinse and extracts were partitioned with hexane/ethyl acetate, dichloromethane and dichloromethane/diethyl ether. The radioactive dithianon-derived residues in the wheat extracts were analysed by TLC and reversed phase HPLC. The TRR in all plant parts were determined as the sum of the TRR of the extracts and the non-extracted residues. The non-extracted residues were subjected to a variety of hydrolysis and extraction procedures to release additional radioactivity. The extracted plant material was further treated with acidic, basic and enzymatic cleavage and with selective extraction of main wheat cell wall components. The TRR in wheat samples, expressed as mg/kg equivalents of ¹⁴C-dithianon, are summarized in Table 27.

Table 27 TRR in wheat samples following 2 applications of ¹⁴C-dithianon at 1.5 kg ai/ha per application (1994/7001689; DT-640-021)

Sampling time (DAT) ^a	Sample type	TRR in mg/kg
0DAT2	Immature stems	61.0
	Immature ears	51.9
20DAT2	Immature stems	74.9
	Immature ears	67.6
35DAT2	Mature straw	68.1
	Mature grain	1.9
	Husks	60.6

^a DAT: days after treatment; for example, 20DAT2 denotes twenty days after treatment two.

The distribution of radioactivity in the extracts of immature and mature wheat commodities is provided in Table 28. For all samples, the surface rinsed residues were partitioned using hexane followed by dichloromethane/ethyl acetate, resulting in 21–48% TRR recovered in the hexane fraction, 27–44% TRR recovered in the dichloromethane/ethyl acetate fraction, and 0.2–2% TRR remaining in the water-soluble fraction. The extracted residues of all samples were also sequentially partitioned using hexane followed by dichloromethane/ethyl acetate. Following partitioning of the surface rinse and the extracts of the wheat samples, the major portion of the extractable residues was partitioned into organic layers.

Table 28 Distribution of ¹⁴C-derived radioactive residues in wheat (1994/7001689; DT-640-021)

	TRR,% (mg/l	(g)					
Fraction	0DAT2 ^a		20DAT2		35DAT2		
	Stems	Ears	Stems	Ears	Straw	Husks	Grain
Whole sample	100 (61.0)	100 (51.9)	100 (74.9)	100 (67.6)	100 (68.1)	100 (60.6)	100 (1.9)
Surface rinse ^b	80.5 (49.1)	87.4 (45.3)	65.1 (48.8)	66.7 (45.1)	57.3 (39.0)	50.8 (30.8)	55.9 (1.0)
Hexane-soluble fraction	35.8 (21.9)	48.3 (25.1)	23.1 (17.3)	34.1 (23.1)	24.2 (16.5)	23.7 (14.3)	21.4 (0.4)
Dichloromethane/ethyl acetate- soluble fraction	44.4 (27.0)	38.7 (20.1)	41.7 (31.2)	32.4 (21.9)	32.3 (22.0)	26.5 (16.1)	33.0 (0.6)
Water-soluble fraction	0.3 (0.2)	0.3 (0.2)	0.3 (0.2)	0.2 (0.1)	0.8 (0.5)	0.6 (0.4)	1.5 (<0.1)
Extract ^c	9.3 (5.7)	4.4 (2.3)	8.3 (6.2)	14.4 (9.7)	12.8 (8.7)	16.2 (9.8)	8.5 (0.2)
Hexane-soluble fraction	2.5 (1.5)	0.5 (0.3)	1.6 (1.2)	3.6 (2.5)	2.9 (1.9)	3.8 (2.3)	1.4 (<0.1)
Dichloromethane/ethyl acetate- soluble fraction	6.4 (3.9)	3.7 (1.9)	6.4 (4.8)	10.4 (7.0)	9.5 (6.5)	11.5 (7.0)	6.3 (0.1)
Water-soluble fraction	0.4 (0.2)	0.2 (0.1)	0.4 (0.3)	0.4 (0.2)	0.5 (0.3)	0.8 (0.5)	0.8 (<0.1)
	89.8 (54.8)	91.8 (47.6)	73.4 (55.0)	81.1 (54.8)	70.1 (47.7)	67.0 (40.6)	64.4 (1.2)
PES ^{e, f, g, h, i}	10.2 (6.2)	8.2 (4.3)	26.6 (19.9)	18.9 (12.8)	29.9 (20.4)	33.0 (20.0)	35.7 (0.7)

^a DAT: Days After Treatment; for example, 20DAT2 denotes twenty days after second treatment

^b Surface rinse with acetonitrile/concentrated hydrochloric acid (99:1, v/v) at -20 °C; residues in surface rinse were

^c Extract $2 \times$ with acetonitrile/concentrated hydrochloric acid (99:1), v/v); residues in extract were solvent partitioned as indicated

^d ERR: Extracted Radioactive Residue (sum of surface rinse and fractions)

^e PES: Post Extraction Solids

^f For 0DAT2 wheat, 18% of RRR in stems and 21% of RRR in ear was released by acid hydrolysis

^g For 20DAT2 wheat, 41% of RRR in stems and 27% of RRR in ears was released by acid hydrolysis

 $^{\rm h}$ For 35DAT2 wheat, 17% of the RRR in straw, 24% of the RRR in husk and 57% of the RRR in grain was released by acid hydrolysis

ⁱ For 35DAT2 straw, 32-39% of the RRR was released by base hydrolysis, versus 20% RRR released by pronase E, 13% RRR released by cellulase, and 10% RRR released by pectinase

The non-extracted residues amounted to 30, 33, and 36% of the TRR in the straw, husk and grain, respectively. Radioactivity remaining in the non-extracted plant material of all samples was subjected to acid hydrolysis, which released approximately 20–60% of the radioactivity.

The PES-fractions of samples taken 35 days after the second application (35 DAT2) were further analysed. Non-extracted residues in wheat straw were subjected to alkaline hydrolysis, which released approximately 30–40% of the radioactivity. Furthermore, the PES-fractions of straw and grain were additionally subjected to sequential enzymatic treatments (pronase E, cellulase and pectinase). For the PES of wheat straw, 3% of the TRR was associated with the pectin, 11% TRR was associated with the lignin, 5% TRR was associated with the non-cellulosic polysaccharides, and 3% TRR was associated with cellulose. The corresponding results for the PES of wheat grain were 15, 16, 2, and 3% TRR, respectively. Results from the further treatments of the non-extracted residues in wheat straw and grain are presented in Table 29.

Table 29 Further extraction of wheat straw and grain (35DAT2) treated with ¹⁴C-dithianon (1994/7001689; DT-640-021)

	TRR,% (mg/kg)		
Fraction	Straw	Grain	
Whole sample	100 (68.1)	100 (1.9)	
Surface rinse	57.3 (39.0)	55.9 (1.0)	
Extract	12.8 (8.7)	8.5 (0.2)	
PES	29.0 (20.4)	35.6 (0.7)	
Sequential treatment of PES ^a			
Na ₂ EDTA (pectin fraction)	2.5 (1.7)	14.6 (0.28)	
Dimethyl sulfoxide/35 °C (lignin fraction)	8.2 (5.60)	12.0 (0.23)	
Dimethyl sulfoxide/80 °C (lignin fraction)	2.7 (1.9)	3.5 (0.07)	
Concentrated NH ₃ (non-cellulose polysaccharide fraction)	4.6 (3.1)	2.2 (0.04)	
Residual radioactivity from NH ₃ -extraction	11.9 (8.2)	3.3 (0.06)	
Schweizer's reagent ^b (cellulose fraction)	3.1 (2.1)	3.2 (0.06)	
Residual radioactivity from Schweizer's reagent b	13.6 (9.3)	2.4 (0.05)	

^a PES: radioactive residues in post extraction solids described in Table 27

^b Schweizer's reagent: saturated solution of copper hydroxide in concentrated ammonium hydroxide

Schlueter and Varga, 1998, DT-640-017

The wheat samples generated in 1992 by Mayo (1994, DT-640-019) were further investigated in order to quantify, characterize and identify metabolites occurring in and on wheat. Focus of the additional study was on further investigations of the extractable radioactivity.

In order to prove the storage stability, the TRR, the extraction behaviour and the distribution of the radioactivity in the extracts were investigated and compared with the previous study. When the additional investigations started, the samples had been stored for a period of 32 months. Samples of plant material were washed with acetonitrile/hydrochloric acid and the washings were removed by centrifugation. The plant material was homogenized and extracted with acetonitrile/hydrochloric and

the extracts were removed. The surface rinse and extracts were analysed for TRR by LSC, the nonextracted residues were analysed by combustion followed by LSC. The surface rinse and extracts were sequentially partitioned with hexane, dichloromethane/ethyl acetate and ethyl acetate. The extracts have been further and extensively characterized using as techniques:

TLC using normal phase and reversed phase (RP-18) plates

Reversed phase HPLC

Liquid/liquid partition experiments

Purification of fractions by HPLC fractionation

Derivatization with pentafluorobenzyl bromide

HPLC-MS

In order to prove the storage stability of the samples under investigation, the samples were first subjected to the same work-up procedures. The results of the investigations are summarized in Table 30. The data indicate that the samples had been stable over the period of storage. In deviation to the study of 1994 (1994/7001689; DT-640-021), no further characterization work of the non-extracted radioactivity has been carried out.

			TRF	R, mg/kg (%)			
Fraction	0D.	AT2	20D	AT2		35DAT2	
	Stems	Ears	Stems	Ears	Straw	Husks	Grain
Whole sample	50.72	57.67	79.78	79.43	48.14	92.43	2.20
-	(100)	(100)	(100)	(100)	(100)	(100)	(100)
Surface rinse	36.25	47.61	52.58	56.02	29.71	57.08	1.25
	(71.5)	(82.5)	(65.9)	(70.5)	(61.7)	(61.8)	(56.7)
Organo-soluble fraction	36.08	47.45	51.90	55.77	29.44	56.50	1.21
	(71.1)	(82.3)	(65.1)	(70.2)	(61.2)	(61.1)	(55.0)
Water-soluble fraction	0.17	0.15	0.68	0.24	0.27	0.59	0.04
	(0.3)	(0.3)	(0.9)	(0.3)	(0.6)	(0.6)	(1.8)
Extract	9.93	5.66	4.99	12.26	3.02	14.63	0.34
	(19.6)	(9.8)	(6.3)	(15.4)	(6.3)	(15.8)	(15.4)
Organo-soluble fraction	9.63	5.44	4.80	11.71	2.91	13.94	0.32
	(19.0)	(9.4)	(6.0)	(14.7)	(6.0)	(15.1)	(14.5)
Water-soluble fraction	0.30	0.21	0.20	0.55	0.11	0.69	0.02
	(0.6)	(0.4)	(0.2)	(0.7)	(0.2)	(0.7)	(0.9)
ERR	46.19	53.26	57.57	68.27	32.73	71.71	1.59
	(91.1)	(92.3)	(72.2)	(85.9)	(68.0)	(77.6)	(72.1)
PES	4.54	4.41	22.20	11.16	15.41	20.72	0.61
	(8.9)	(7.7)	(27.8)	(14.1)	(32.0)	(22.4)	(27.9)

Table 30 Distribution of ¹⁴C-dithianon derived radioactive residues from wheat (DT-640-017)

During the conduct of the plant metabolism studies, more experience was gained with regard to the instability of dithianon in plant extracts (especially under alkaline conditions). Dithianon was found to be unstable during concentration using a rotary evaporator, but also during TLC analyses under normal phase conditions. In deviation to the studies performed before specific consideration was given to the sensitive and careful work-up of the sample material. Reducing purification and concentration procedures to the minimum extent minimized any artificial degradation of dithianon. Due to this fact, higher amounts of the parent were found in the 1998 study. The TRR partitioned into the organic layers were further subjected to TLC and HPLC investigations. The results of these investigations are shown in Table 31.

	Sample		ianon	Remaining radioactivity		
DAT ^{a)}	Matrix	mg/kg	% of TRR	mg/kg	% TRR	
0	stem	40.46	79.8	5.74	11.2	
0	ears	48.21	83.5	5.06	8.7	
20	stem	52.46	65.7	5.11	6.5	
20	ears	60.75	76.5	7.52	9.4	
	straw	29.67	61.6	3.05	6.3	
35	grain	1.13	50.9	0.46	21.2	
	husk	61.12	66.1	10.59	11.4	

Table 31 Quantification of dithianon and unknown extracted residues recovered in wheat matrices (DT-640-017)

^{a)} DAT: Days After last Treatment

Besides the parent compound fraction, considerable amounts of radioactivity (up to approximately 10% TRR) proved to be spread over the total length of run (in the case of TLC analysis) or elute constantly from the column (in the case of HPLC) without any single major substance peak. Due to this fact, the extracts obtained after sample homogenization were chosen for further characterization or identification of the fractions (metabolites) M1 to M4. The quantitation of the metabolites M1 to M4 in the extracts is shown in Table 32.

Table 32 Quantification of fractions M1 - M4 contained in the 2^{nd} extracts of wheat commodities (DT-640-017)

	Residues m	ıg/kg (% TRR)					
Days	0		20		35		
Matrix	Stems	Ears	Stems	Ears	Straw	Grain	Husk
Fraction M1	NQ	0.2 (0.4)	0.38 (0.5)	0.66 (0.8)	0.21 (0.4)	0.02 (0.8)	0.61 (0.7)
Fraction M2	NQ	NQ	NQ	NQ	NQ	0.01 (0.6)	NQ
Fraction M3	0.5 (1.0)	0.79 (1.4)	0.42 (0.5)	1.08 (1.4)	0.27 (0.6)	0.07 (3.3)	1.02 (1.1)
Fraction M4	NQ	NQ	NQ	0.38 (0.5)	NQ	0.01 (0.6)	NQ

NQ: not quantified

In the extracts obtained after sample homogenization, four fractions (M1 - M4) were found which amounted to $\geq 3.3\%$ TRR. HPLC isolation and purification of these metabolites was attempted. In the course of these attempts, the main fractions (M1 and M3) proved to be of considerable instability again. Therefore, the four fractions were directly subjected to HPLC/MS without any further purification but no interpretable results were obtained. Since M3 is the most abundant peak, it was additionally subjected to derivatization with pentafluorobenzyl bromide. Following this procedure, about 92% of the residue could be partitioned into dichloromethane. HPLC investigations of the organic layer revealed the presence of at least four product fractions which either indicates artificial degradation of the metabolite occurring during the isolation and/or the derivatization procedure itself. The occurrence of more than one derivative could also result that peak M3 consists of more than one component. No further investigation of the products formed was carried out.

Hawkins et al., 1991, DT-640-014

Winter wheat has grown in an outdoor environment. A plot of 1 m^2 was sprayed with ¹⁴C-diathinon formulated as SC when the wheat was at approximately growth stage Zadoks 39. The second treatment was carried out 19 days after the first spray (Zadoks 59). The application rate at both sprayings was 150 mg/m², equivalent to 1.5 kg ai/ha. Samples were taken 2 hours after the second spray (0 days) and then at 14 and 39 days post treatment and finally the whole crop at 31 days after the second spray. At 0 and 14 days, the wheat was separated into stems and ears and at 39 and 51 days into grain, husk and straw.

At 0 days, TRR in ears and stems were 29.76 mg/kg and 18.46 mg/kg respectively and at 14 days 12.27 mg/kg and 7.92 mg/kg respectively. TRR in grain, husk and straw were 0.303 mg/kg,

21.72 mg/kg and 16.2 mg/kg respectively at harvest (51 days). The TRR in grain analysed after 2 months storage at -15 °C was 0.431 mg/kg. The samples were washed with acetonitrile/hydrochloric acid cooled to -20 °C to remove surface residues. After the washes, the samples were macerated with acetonitrile/hydrochloric acid at -20 °C. The results are summarized in Table 33.

Table 33 TRR in washes and extracts of wheat matrices after the last 2 applications of 14 C-dithianon (DT-640-014)

Sample	Sample		Wash		Extract		Residues remaining	
Day	Туре	mg/kg	%	mg/kg	%	mg/kg	%	
0	Ears	24.98	83.9	3.79	12.7	0.99	3.3	
	Stems	15.54	84.2	1.77	9.6	1.14	6.2	
14	Ears	9.41	76.7	2.10	17.1	0.76	6.2	
	Stems	6.10	77.0	1.06	13.4	0.76	9.6	
39	Grain	0.146	48.2	0.066	21.8	0.091	30.0	
	Straw	10.36	64.0	3.04	18.8	2.81	17.3	
	Husk	14.20	65.4	4.91	22.6	2.61	12.0	
51	Grain (A)	0.248	49.8	0.069	13.9	0.181	36.3	
	Straw	19.44	34.5	14.91	26.5	22.0	39.0	
	Husk	18.25	46.2	9.66	24.4	11.63	29.4	
51	Grain (B)	0.211	49.0	0.058	13.5	0.162	37.6	

Grain (A): sample A was analysed at harvest time

Grain (B): sample B was analysed 2 months after harvest

Residues remaining (PES): TRR in the wheat matrices remaining after washing and extracting with acetonitrile/hydrochloric acid at -20 °C.

The harvest samples of grain, straw and husk were extracted further with acetonitrile/hydrochloric acid, 2 × methanol and methanol/hydrochloric acid at room temperature. These further extracts accounted for 18.4%, 17.8% and 18.0% of TRR in grain, straw and husk, respectively. The residues remaining in the samples after these further extractions accounted for 16.5% (0.083 mg/kg), 16.7% (9.42 mg/kg) and 13.7% (5.42 mg/kg) of the TRR for grain, straw and husk respectively.

The characterization of the radioactivity in the washes and extracts of wheat matrices have been examined by TLC. At all times the major component was unchanged dithianon. At harvest dithianon represented 53.5% of TRR in grain after extraction and ca. 65% of the TRR in the extract. For husk and straw, dithianon represented 55.6% and 45.9% of the TRR in the sample after extraction and 63% each of TRR in the extract.

Environmental fate in soil and water-sediment systems

The FAO Manual (FAO, 2009) explained the data requirements for studies of environmental fate. The focus should be on those aspects that are most relevant to MRL setting. For dithianon, supervised residue trials data were received for foliar spray on permanent crops such as citrus fruits, tree nuts, pome fruits, stone fruits, grapes and hops. Therefore, according to the FAO manual, neither environmental fate nor rotational crops studies are required. For information on hydrolysis and photolysis see chapter "Physical and chemical properties", Table 1.

RESIDUE ANALYSIS

Analytical methods

The Meeting received descriptions and validation data for analytical methods for residues of dithianon in plant and animal commodities. Residue analytical methods for dithianon rely on HPLC with UV-detection or LC/MS-MS for plants and HPLC with electrochemical detection or LC-MS/MS for animal matrices. Typical LOQs achieved for plant and animal commodities fall in the range of 0.01–0.05 mg/kg. Methods have been subjected to independent laboratory validation.

Plant commodities

Dithianon is used since more than 30 years as fungicide in fruit, vegetables and cereals crops. In this time period, many residue analytical methods have been developed. The HPLC methods described in this section were performed over the past 20 years; they have been used for the analysis of the samples generated during the supervised field trials, processing fraction studies and storage stability tests (see Table 34). New methods have been developed from 2006 to 2011 and are based on LC-MS/MS and also include a second transition as confirmatory technique (see Tables 35 - 37). The analysis of the most recent supervised field trials and studies on residues in processed commodities occurred with method No. L0152/01, which is, with the exception of minor modifications, identical to method SOP-PA.0281. The further developments of SOP-PA.0281 have been performed to include the degradation product CL 1017911, known from the hydrolysis study at exaggerated temperatures in buffer solutions, in the analytical method. With this elaborated method further information can be obtained on the presence/absence of CL 1017911 on RAC and processed products (see Table 38).

The analytical methods are described briefly as follows:

Grapes, juice, wine, beer, method no. RLA 12616V (Smalley 2001, DT-244-065 including amendments 1 and 2)

Analyte:DithianonMethod: HPLC-UVDLOQ: 0.01 mg/kgDescription:Dithianon is extracted from the grape and processed commodities with concentrated hydrochloric
acid/acetonitrile 1:2 (v/v). After further washing with acetonitrile, the extract is subjected to liquid-
liquid partitioning with dichloromethane. The dried residue is reconstituted in acidic methanol (1%
acetic acid) and a portion cleaned up using gel permeation chromatography (GPC) with acidic methanol
(0.06% acetic acid) as the eluant. The collected solution is evaporated to approximately 0.5 ml and re-
dissolved in acetonitrile/water/acetic acid (60:38:2). Quantitative determination is carried out by HPLC
(column: Luna Phenyl Hexyl) with UV detection, using acetonitrile/water/acetic acid (60:38:2) as
mobile phase. Specificity of the method may be confirmed using a diode array detector.

Apples and processed commodities, method no. RLA 12616.03V (Smalley 2001, DT-244-068 including amendments 1 and 2)

 Analyte:
 DithianonMethod: HPLC-UVD
 LOQ: 0.01 mg/kg

 Description:
 Dithianon is extracted from the apple with concentrated hydrochloric acid/acetonitrile 1:2 (v/v) as described above for grapes (DT-244-065)

Grapes, must, wine, method no. FAMS 028-02 (Weitzel, 1996, DT-244-054)

Analyte:DithianonMethod: HPLC-UVDLOQ: 0.01 mg/kg must, wine; 0.02 mg/kg grapesDescription:Dithianon is extracted from the grapes, must and wine with concentrated hydrochloric acid/acetonitrile1:2 (v/v). After further washing with acetonitrile the extract is subjected to liquid-liquid partitioning
with dichloromethane. After evaporation of the organic phase, the residue is reconstituted in acidic
methanol (1% acetic acid) and a portion cleaned up using gel permeation chromatography (GPC) with
acidic methanol (0.01 M of acetic acid in methanol) as the eluant. The collected solution is evaporated
to 0.5 ml and redissolved in methanol/acetic acid (99:1, v/v). Quantitative determination is carried out
by HPLC (column: Nucleosil100-phenyl) with UV detection, using acetonitrile/ water/acetic acid
(575:423:2, v/v) as mobile phase.

Apple, method number FAMS 028-02 (Weitzel, 1996, DT-244-055)

Analyte:	DithianonMethod: HPLC-UVD	LOQ: 0.02 mg/kg
Description:	Dithianon is extracted from the apple v	with concentrated hydrochloric acid/acetonitrile 1:2 (v/v) as
	described above for grapes (DT-244-0	54).

Grapes, method number HUK 460/38 (Todd, 1992, DT-244-045)

 Analyte:
 DithianonMethod: HPLC-UVD
 LOQ: 0.05 mg/kg grapes

 Description:
 Dithianon is extracted from grapes with concentrated acetic acid/acetonitrile 1:15 (v/v). After further washing with acetonitrile, a second extraction was conducted with concentrated acetic acid/acetonitrile

1:15 (v/v). Aliquot of the extract is subjected to two times liquid-liquid partitioning using n-hexane, hydrochloric acid, water and sodium chloride. The n-hexane solution is concentrated to approximately 0.5 mL on a rotary evaporator and the residue is reconstituted in acidic dichloromethane (1%) and subjected to column chromatography using activated silica gel and acidic dichloromethane as the eluant. The collected solution is evaporated to 0.5 mL and re-dissolved in methanol/acetic acid (99:1, v/v). Quantitative determination is carried out by high pressure liquid chromatography (HPLC) with UV detection, using acetonitrile/methanol/water/acetic acid (55:10:35:1, v/v) as mobile phase.

Apple and pear, method number HUK 460/38 (Jones, 1989, DT-244-037)

Analyte:	DithianonMethod: HPLC-UVD	LOQ: 0.05 mg/kg
Description:	Dithianon is extracted from the apple	with concentrated hydrochloric acid/acetonitrile 1:2 (v/v) as
	described above for grapes (DT-244-0	45).

Must, red and white wine, method number FAMS 009-01, HUK 460/55-01R (Curl, 1992, DT-244-048)

 Analyte:
 DithianonMethod: HPLC-UVD
 LOQ: 0.05 mg/kg

 Description:
 Dithianon is extracted from must and wine, acidified with concentrated hydrochloric acid and extracted 4 times with n-hexane. The organic fraction is reduced in volume to near dryness and re-dissolved in 0.1% acetic acid in dichloromethane and subjected to column chromatography using activated silica gel and acidic dichloromethane as the eluant (0.1%). The collected organic solution is evaporated to 0.5 ml and re-dissolved in methanol/acetic acid (99:1, v/v).

Apples, grapes, lettuce, whole oranges, wheat grain, rape seed, hops, method number SOP-PA.0281 (Class and Richter, 2006, 2006/1032406;

Analyte:	DithianonMethod: LC-MS/MS	LOQ: 0.01 mg/kg, except hops LOQ: 1 mg/kg
Description:	portion of the extract is centrifuged an LC/MS-MS, monitoring for each analy	materials with acetonitrile/water/2 N HCl ($70/25/5$, $v/v/v$). A d an aliquot of the supernatant is diluted for determination by the two parent-daughter ion transitions (MRMs). The first reas the second can be used for confirmatory purposes.

Wheat, sunflower, lettuce, green-apple, hops, ILV of SOP-PA.0281 (Jones, 2007, 2007/1017102; Bross, 2010, 2010/1062111)

 Analyte:
 DithianonMethod: LC-MS/MS
 LOQ: 0.01 mg/kg, except hops LOQ: 1 mg/kg

 Description:
 The analyte was extracted from the homogenized plant materials with acetonitrile/water/HCl. A portion of the extract was centrifuged and an aliquot of the supernatant was diluted for determination by LC-MS/MS, monitoring each analyte with at least two parent-daughter ion transitions (MRMs).

Citrus, apple, grape, wine, plum, method number L0152/01 (Lehmann, 2011, 2010/1021354)

 Analytes:
 Dithianon, CL 1017911
 Method: LC-MS/MS
 LOQ: 0.01 mg/kg

 Description:
 The analytes were extracted from the homogenized plant materials with acetonitrile/water/2N HCl. A portion of the extract was centrifuged and an aliquot of the supernatant was diluted for determination by LC-MS/MS, monitoring for each analyte at least two parent-daughter ion transitions (MRMs).

Table 34 Recovery data from the internal (LV) and independent laboratory validation testing (ILV) for dithianon in plant commodities

Matrix	Analyte	Study	Fortification	Recovery,%		RSD,	N	Report
			level, mg/kg	mean	Range	%		
Apples	Dithianon	ILV	0.01	76	64-83	10	5	DT-244-068
			1.0	81	77-86	5	5	
		LV	0.01	80	74-88	7	5	
			1.0	74	71-76	3	5	

Matrix Analyte Apple sauce Dithianon Apple juice Dithianon Apple dried Dithianon Pomace Dithianon	Study ILV LV ILV LV ILV	Fortification level, mg/kg 0.01 1.0 0.01 1.0 0.01 1.0 0.01	mean 77 78 75 77	overy,% Range 70-83 74-84 69-87	% 7 6	5 5	Report DT-244-068
Apple juice Dithianon Apple dried Dithianon	LV ILV LV	1.0 0.01 1.0 0.01 1.0	78 75 77	74-84	6		DT-244-068
Apple dried Dithianon	ILV LV	0.01 1.0 0.01 1.0	75 77			5	
Apple dried Dithianon	ILV LV	1.0 0.01 1.0	77	69-87		-	
Apple dried Dithianon	LV	0.01 1.0			10	5	
Apple dried Dithianon	LV	1.0		68-86	10	5	DT 244 0(0
			91 94	81-101 87-99	8 5	5 5	DT-244-068
		0.01	94	87-99	12	5	
	ILV	1.0	89	81-96	7	5	
		0.01	74	71-83	7	5	DT-244-068
		1.0	71	62-76	8	5	
	LV	0.01	76	62-97	17	5	
		1.0	70	63-78	8	5	
Apples Dithianon	LV	0.02	93	83-102	7 ^{a)}	2	DT-244-055
		0.10	99	97-100		2	
		1.0	92	91-93	* 2)	2	
Apples Dithianon	LV	0.05	80		9 ^{a)}	1	DT-244-037
		0.1 0.25	90 84			1	
		0.23	84 70			1	
		1.0	78			1	
Grapes Dithianon	ILV	0.01	82	74-104	16	5	DT-244-065
Grupes Ditilitation	IL V	1.0	72	70-74	3	4	D1 211 005
	LV	0.01	73	62-82	10	5	
		1.0	78	70-86	7	5	
Grape juice Dithianon	ILV	0.01	88	85-92	3	5	DT-244-065
		1.0	87	76-92	7	5	
	LV	0.01	79	75-82	3	5	
		1.0	86	82-93	5	5	
Wine Dithianon	ILV	0.01	85	77-90	6	5	DT-244-065
	T 77	1.0	91	90-93	1	4	
	LV	0.01	83	78-88	4	5	
Grapes Dithianon	LV	1.0 0.02	82 82	79-90 77-87	6 7 ^{a)}	52	DT-244-054
Grapes Ditination	LV	0.02	82	79-85	1.	2	D1-244-034
		0.10	91	87-95		2	
		1.0	90	89-90		2	
Must Dithianon	LV	0.01	103	98-108	13 ^{a)}	2	DT-244-054
		0.10	79	75-82		2	
		1.0	95	93-97		2	
Wine Dithianon	LV	0.01	73	69-76	7 ^{a)}	2	DT-244-054
		0.10	76	75-76		2	
		1.0	83	81-85	* 2)	2	
Grapes Dithianon	LV	0.05	66	1	9 ^{a)}	1	DT-244-045
		0.10 0.25	72 72	1		1	
		0.23	84			1	
		1.0	75			1	
Must (grape) Dithianon	LV	0.05	82		7 ^{a)}	1	DT-244-048
(g		0.10	96		,	1	
		0.25	97	1		1	1
		0.50	87	1		1	
		1.0	90			1	
White wine Dithianon	LV	0.05	70		16 ^{a)}	1	DT-244-048
		0.10	70			1	
		0.25	99	1		1	
		0.50	95 84	1		1	
Red wine Dithianon	LV	1.0 0.05	84 74		10 ^{a)}	1	DT-244-048
Neu wine Diunailon	LV	0.03	74		10	1	D1-244-048
		0.25	92			1	
		0.50	75	1		1	
		1.0	74	1		1	

^{a)} Overall RSD in% within the respective matrix

Matrix	Fortification	N	Transition <i>m/z</i>	296 → <i>m/z</i> 264	Transition m/z	296 → <i>m/z</i> 238
Matrix	level (mg/kg)	IN	mean%	RSD%	mean%	RSD%
	0.01	5	81	5	79	6
Apple	3.0	5	93	17	93	16
	0.01 + 3.0	10	87	14	86	15
	0.01	5	80	12	78	11
Grape	3.0	5	101	7	102	7
	0.01 + 3.0	10	90	15	90	16
	0.01	5	76	4	77	4
Lettuce	0.10	5	82	5	80	3
	0.01 + 0.1	10	79	6	78	4
	0.01	5	80	6	80	6
Whole orange	0.10	5	80	7	79	7
	0.01 + 0.10	10	80	6	80	6
	0.01	5	96	12	104	9
Wheat grain	0.10	5	82	6	89	5
	0.01 + 0.10	10	89	13	96	11
	0.01	5	85	18	85	20
Rape seed	0.10	5	74	9	81	9
	0.01 + 0.10	10	79	16	83	15
Hops, dried	1.0	5	106	25	Interferen	ce present
riops, uneu	100.0	5	101	14	106	13

Table 35 Recovery data of dithianon in apples, grapes, lettuce, whole oranges, wheat grain, rape seed and dried hops (2006/1032406)

Table 36 Recovery data of dithianon in wheat, sunflower, lettuce, green apple and hops, dried, ILV of SOP-PA0281 (2007/1017102)

Matrix	Fortification		Transiti	on <i>m/z</i> 296 →	<i>m/z</i> 264	Transiti	on <i>m/z</i> 296 →	<i>m/z</i> 238
Ividulix	level (mg/kg)	n	mean%	SD +/-	RSD%	mean%	SD +/-	RSD%
	0.01	5	108	4.5	4.1	82	4.5	5.5
Wheat grain	0.1	5	89	8.2	9.2	87	5.7	6.6
_	0.01 + 0.1	10	99	11.8	12.0	85	5.5	6.5
	0.01	5	84.0	13.4	16.0	94	11.4	12.1
Sunflower seed	0.1	5	94.0	11.4	12.1	92	4.5	4.9
	0.01 + 0.1	10	89	12.9	14.5	93	8.2	8.9
	0.01	5	92	8.4	9.1	96	8.9	9.3
Lettuce	0.2	5	98	13.0	13.3	96	8.9	9.3
	0.01 + 0.2	10	95	10.8	11.4	96	8.4	8.8
	0.01	5	84	11.4	13.6	82	8.4	10.2
Green apple	3.0	5	105	3.6	3.5	104	4.3	4.2
	0.01 + 3.0	10	95	13.8	14.6	93	13.3	14.3
	1.0	5	80	9.9	12.4	100	6.6	6.6
Hops, dried	50	5	102	3.1	3.0	106	3.6	3.4
	1.0 + 50	10	91	13.6	14.9	103	5.9	5.8

Table 37 Recovery data for dithianon, method L0152/01 (2010/1021354)

	Fort.	Fort. Transition $m/z 296 \rightarrow m/z 264$ T							Transition $m/z 296 \rightarrow m/z 238$								
	Level, mg/kg					mean %	SD +/-	RSD %	Recoveries,%				mean %	SD +/-	RSD %		
	0.01	86.4	85.2	85.2	82.4	84.0	85	1.5	1.8	98.4	81.2	93.6	86.4	85.2	89	6.9	7.8
Citrus	0.1	81.6	87.6	84.0	86.4	86.4	85	2.4	2.8	86.8	86.4	88.4	86.8	85.6	87	1.0	1.2
		Overall mean:				mean:	85	1.9	2.3	Overall mean:			mean:	88	4.8	5.5	
	0.01	88.3	89.9	85.1	75.1	77.9	83	6.5	7.8	81.3	82.1	77.7	89.7	70.9	70	6.9	8.5
Apples	0.1	95.6	92.4	92.4	96.4	92.8	94	1.9	2.1	94.1	92.9	95.7	96.9	94.5	95	1.5	1.6
				0	verall	mean:	89	7.2	8.1	Overall mean: 88 9.				9.0	10.2		

	Fort.	Fort. Transition $m/z \ 296 \rightarrow m/z \ 264$ Transition m/z							n <i>m/z '</i>	296 —	$5 \rightarrow m/z \ 238$						
Matrix Level, mg/kg						mean %	SD +/-	RSD %		Recoveries,%				mean %	SD +/-	RSD %	
	0.01	113.3	110.9	112.1	109.7	116.5	113	2.6	2.6	126.2	124.6	122.2	114.2	111.0	120	6.7	5.6
Grapes	0.1	105.6	103.2	107.2	104.4	104.4	105	1.5	1.4	108.7	101.1	108.3	103.9	107.1	106	3.2	3.1
_		Overall mean:			109	4.5	4.1			С	verall	mean:	113	8.8	7.8		
	0.01	96.2	103.8	83.3	93.0	94.2	94	7.4	7.8	97.6	100.8	96.0	90.8	93.6	96	3.8	4.0
Wine	0.1	77.1	97.9	80.7	80.7	81.5	84	8.2	9.8	79.1	98.7	85.5	79.9	79.9	85	8.3	9.8
				0	verall	mean:	89	9.2	10.4			С	verall	mean:	90	8.4	9.4
	0.01	111.6	111.2	110.4	107.2	107.2	110	2.2	2.0	119.0	118.6	112.6	108.6	105.6	113	5.9	5.3
Plums	0.1	102.6	103.4	100.2	103.0	101.8	102	1.3	1.2	103.4	102.2	102.2	100.2	104.2	102	1.5	1.5
				0	verall	mean:	106	4.2	4.0			C	verall	mean:	108	6.9	6.4

Table 38 Recovery data for metabolite CL 1017911 (Reg. No. 4110904), method L0152/01 (2010/1021354)

	Fort.	Transiti	Transition m/z 329 $\rightarrow m/z$ 109					Transition m/z 329 $\rightarrow m/z$ 82					'z 82				
Matrix	Level, mg/kg	Recove	ries,%				mean %	SD +/-	RSD %	Recoveries,%					mean %	SD +/-	RSD %
	0.01	107.2	106.8	106.4	101.6	101.6	105	2.9	2.7	118.0	106.0	102.4	102.4	99.2	106	7.3	6.9
Citrus	0.1	97.2	94.0	96.4	93.2	94.8	95	1.7	1.7	96.0	94.0	95.2	93.6	94.4	95	1.0	1.0
		Overall mean:			100	5.5	5.5	Overa	ll mea	n:			100	7.6	7.6		
	0.01	100.4	94.0	94.0	91.6	93.2	95	3.4	3.6	98.8	98.8	93.6	93.2	91.6	95	3.4	3.5
Apples	0.1	102.0	99.6	100.8	101.6	100.8	101	0.9	0.9	102.0	104.4	102.4	102.0	100.0	102	1.6	1.5
		Overall mean:			98	4.1	4.2	Overall mean:				99	4.4	4.5			
	0.01	124.9	123.7	112.1	119.3	114.1	119	5.7	4.8	117.8	113.1	117.1	117.9	121.1	117	2.9	2.4
Grapes	0.1	113.4	112.2	112.2	113.0	109.8	112	1.4	1.2	113.1	111.5	110.7	110.3	111.9	112	1.1	1.0
		Overall	mean	:			116	5.3	4.6	Overa	ıll mea	n:			115	3.7	3.2
	0.01	119.6	113.2	118.4	118.8	116.0	117	2.6	2.2	124.4	123.2	118.8	118.4	115.2	120	3.8	3.1
Wine	0.1	122.0	115.6	120.0	114.4	121.1	119	3.4	2.9	119.6	111.6	120.0	121.2	121.2	119	4.0	3.4
		Overall	mean	;			118	3.0	2.5	Overa	ıll mea	n:			119	3.7	3.1
	0.01	104.8	97.2	97.2	96.8	97.6	99	3.4	3.5	100.8	96.0	94.0	94.4	94.0	96	2.9	3.0
Plums	0.1	99.2	100.8	98.8	96.8	98.8	99	1.4	1.4	101.2	100.4	100.4	99.2	99.6	100	0.8	0.8
		Overall mean:				99	2.5	2.5	Overall mean:				98	3.0	3.1		

Animal commodities

Bovine muscle, fat, whole milk, chicken eggs, method number M 3435 (Nejad and Connolly, 2001, DT-245-007; Nejad and Connolly, 2001, DT-245-008 amendment to DT-245-007)

 Analyte:
 dithianon Method: HPLC-ECD
 LOQ: 0.01 mg/kg

 Description:
 Residues of dithianon are extracted from chicken egg, bovine whole milk, bovine muscle and fat with acidic acetonitrile. Acid organic extracts are cleaned up by liquid-liquid partitioning followed by GPC. Residues of dithianon are determined by HPLC with an electrochemical detector operating in the reductive mode. Confirmation of dithianon residues > 0.01 mg/kg is provided by HPLC/Negative Ion Electrospray Ionization Tandem MS.

Bovine muscle, fat, whole milk, chicken eggs, method number M 3435 (Bross, 2006, 2006/1034178)

 Analyte:
 dithianon Method: HPLC-ECD
 LOQ: 0.01 mg/kg

 Description:
 Samples were extracted and cleaned up as described above (DT-245-007). Residues of dithianon are determined by HPLC with an electrochemical detector (see above) operating in the reductive mode. Confirmation of dithianon residues > 0.01 mg/kg is provided by HPLC/Negative Ion Electrospray Ionization Tandem MS.

Cow liver, kidney, fat, milk, method number L0135/01 (Schweda, 2009, 2009/1045474; 2009/1045475)

 Analyte:
 dithianon Method: LC-MS/MS
 LOQ: 0.01 mg/kg

 Description:
 Dithianon residues are extracted with a mixture of acetonitrile/water/2 N hydrochloric acid (70:25:5, v/v/v). A portion of the extract is centrifuged and an aliquot of the supernatant is cleaned by SPE on a reversed phase column. The final determination of is performed by HPLC-MS/MS, monitoring two parent-daughter ion transitions. Matrix-matched calibration solutions are necessary

Recoveries from the internal (LV) and independent laboratory validation (ILV) testing for dithianon in animal commodities based on detection via HPLC-ECD are summarized in Tables 39 and 40.

Table 39 Recoveries for s	spiked dithianon in animal	matrices based on o	detection via HPLC-ECD
---------------------------	----------------------------	---------------------	------------------------

Matrix	Study	Fortification	Recove	ery rate,%	RSD	Ν	Report
		level, mg/kg	mean	Range	%		
Chicken eggs	ILV	0.01	97	95-102	3	5	DT-245-007
		0.1	93	83-103	8	5	
	LV	0.01	93	79-111	14	5	
		0.1	93	83-99	7	5	
Whole milk	ILV	0.01	90	85-94	4	5	DT-245-007
		0.1	88	86-91	3	5	
	LV	0.01	87	79-93	8	5	
		0.1	98	82-110	14	5	
Bovine fat	ILV	0.01	88	83-100	9	4	DT-245-007
		0.1	91	77-99	12	5	
Bovine fat	LV	0.01	97	97-98	1	5	DT-245-008
		0.1	89	80-96	9	5	
Bovine muscle	ILV	0.01	97	90-101	5	5	DT-245-008
		0.1	92	86-100	7	5	
	LV	0.01	94	83-105	9	5	
		0.1	99	94-105	5	5	
Chicken eggs	LV	0.01	91	79-105	9	5	2006/1034178
		0.1	91	82-97	7	5	
Whole milk	LV	0.01	89	84-93	4	5	2006/1034178
		0.1	94	81-104	11	5	
Muscle	LV	0.01	95	88-103	7	5	2006/1034178
		0.1	96	92-101	4	5	
Fat	LV	0.01	97	85-103	8	5	2006/1034178
		0.1	94	91-98	5	5	

Table 40 Recoveries of dithianon in cow tissues and milk, method L0135/01 (2009/1045474, 2009/1045475)

	Fortification		Transiti	Transition $m/z \ 296 \rightarrow m/z \ 264$ Transition $m/z \ 296$				
Matrix	level, mg/kg	n	Mean recovery,%	SD +/-	RSD,%	Mean recovery,%	SD +/-	RSD,%
	0.01	5	87.8	3.9	4.4	84.2	1.4	1.7
Liver	0.1	5	85.5	2.8	3.2	82.0	0.7	0.9
	0.01 + 0.1	10	86.6	3.4	3.9	83.1	1.6	1.9
	0.01	5	84.8	3.6	4.3	78.8	6.3	8.0
Kidney	0.1	5	98.9	2.2	2.3	99.6	1.5	1.5
	0.01 + 0.1	10	91.8	7.9	8.7	89.2	11.8	13.3
	0.01	5	88.4	7.6	8.6	97.4	4.4	4.5
Fat	0.1	5	93.2	4.3	4.6	95.8	7.4	7.7
	0.01 + 0.1	10	90.8	6.3	7.0	96.6	5.8	6.0
	0.01	5	74.7	2.7	3.6	81.5	8.7	10.6
Milk, whole	0.1	5	93.0	7.1	7.6	91.1	4.3	4.8
	0.01 + 0.1	10	83.9	10.9	13.0	86.6	8.2	9.5

Stability of residues in stored analytical samples

Information was received on the freezer storage stability of dithianon residues in plant commodities. The data are summarized in Table 41. The nominal storage interval is reported in months, if available, the actual storage interval in days is shown in brackets. In general, the values are <u>not</u> corrected for the procedural recovery, except study DT-326-010 (hops), where only corrected values were reported.

In study 2013/1061828, incurred residues were analysed. The samples were stored as whole fruit to exclude degradation in homogenized sample matrix during storage. The stability of the analyte in homogenized samples, the re-analysis of stored homogenized samples were performed. The variability of the results for whole apples in range of 0.15–0.36 mg/kg is caused by the fact that whole apples were stored and reflect the variability of dithianon residues in apples.

Matrix	Fortification level, mg/kg	No	Storage T, °C	Months (days)	Residues remaining, mg/kg	Mean, mg /kg	Mean, %	Report, year, method number
Apples	5	3	- 20	0	3.97, 3.79, 4.24	4.0	80	DT-326-005,
rippies	5	3	20	1	2.67, 3.69, 4.24	3.5	71	1992,
		3		2	2.74, 2.37, 2.64	2.6	52	HUK 460/38
		3		4	3.32, 3.56, 3.23	3.4	67	110K 400/38
		3		6	3.62, 3.72, 3.09	3.4	70	
		3		12	3.38, 3.30, 3.59	3.4	68	
		3		24	2.83, 3.08, 3.37	3.4	62	
Apples	0.5	3	- 5	0	0.45, 0.41, 0.45	0.44	87	DT-123-019,
Apples	0.5	3	- 5	1	0.34, 0.34, 0.36	0.44	69	1994.
		3		3	0.34, 0.34, 0.30	0.33	65	FAMS 009.001
		3		5 6	· · · · ·		63 37	FAMS 009.001
				9	0.19, 0.18, 0.19	0.19		
		3		-	0.16, 0.16, 0.18	0.17	34	
		2		12	0.11, 0.12	0.12	23	
		3		18	0.071, 0.082, 0.058	0.07	15	
		3	-	24	0.043, 0.040, 0.038	0.04	8.0	
Apples,	Incurred	2	- 20	0	0.146, 0.150	0.15		2013/1061838,
Whole	residues	2		(14)	0.247, 0.286	0.27		2013,
fruit		2		(28)	0.205, 0.245	0.23		L0152/01
		2		(57)	0.303, 0.316	0.31		
		2		(89)	0.252, 0.264	0.26		
		2		(182)	0.362, 0.330	0.35		
		2		(378)	0.249, 0.238	0.25		
		2		(650)	0.330, 0.350	0.34		
		2		(733)	0.276, 0.344	0.31		
Apples,	Incurred	2	- 20	0	0.15, 0.15	0.15		2013/1061838,
homo-	residues	2		(27)	0.26, 0.27	0.27		2013,
genized		2		(223)	0.35, 0.26	0.31		L0152/01
fruits		2		(316)	0.20, 0.22	0.21		
		2		(348)	0.22, 0.24	0.23		
		2		(377)	0.24, 0.19	0.22		
		2		(391)	0.27, 0.26	0.27		
		2		(762)	0.22, 0.25	0.24		
Apple	5	2	- 20	0	4.59, 4.48	4.5	91	2005/1029468
sauce	5	2	20	1 (48)	4.26, 4.39	4.3	87	(final report),
sauce		2		3 (91)	4.20, 4.30	4.3	85	2005.
		$\frac{2}{2}$		6 (197)	3.84, 3.94	3.9	78	2003, 2003/1001123 (interim
		2		18 (511)	not reported	5.9	78 79	report),
		2		24 (748)	not reported		77	RLA 12616
Pears	5	3	- 20	< /	4.05, 3.84, 4.34	4.1	82	
Pears	5	3	- 20	0	,,	4.1 3.5	82 70	DT-326-003, 1992,
				1	3.91, 3.98, 2.62			,
		3		2	2.65, 2.92, 2.90	2.8	56	HUK 460/38
		3		4	2.82, 3.57, 3.50	3.3	66 62	
		3		6	3.09, 3.44, 2.99	3.2	63	
		3		12	3.14, 3.61, 3.09	3.3	66	
		3	ļ	24	2.45, 3.00, 2.85	2.8	55	
Pears	1.0	3	- 5	0	0.85, 0.82, 0.69	0.79	79	DT-123-019,
		3		1	0.64, 0.53, 0.51	0.56	56	1994,
		3		3	0.33, 0.23, 0.33	0.30	27	FAMS 009.001
	1	3		6	0.18, 0.18, 0.20	0.19	19	

Table 41 Freezer storage stability data for dithianon residues in plant matrices

	Fortification		Storage	Months	Residues remaining,	Mean, mg	Mean,	Report, year, method
Matrix	level, mg/kg	No	T, °C	(days)	mg/kg	/kg	%	number
	10, 01, 118, 118	3	1, 0	9	0.20, 0.25, 0.19	0.21	21	ingino vi
		3		12	0.10, 0.11, 0.12	0.21	11	
		3		12	0.12, 0.14, 0.13	0.13	13	
		3		24	0.091, 0.042, 0.040	0.058	5.8	
		3		30	0.037, 0.018, 0.026	0.027	2.7	
Grapes	5	3	- 20	0	5.01, 5.07, 5.69	5.3	105	DT-326-007,
Grapes	5	3	- 20	1	3.66, 2.94, 3.13	3.2	65	1992,
		3		2	3.21, 3.51, 3.09	3.3	65	HUK 460/38
		2		6	6.45, 3.18	3.3	66	1101 100/50
		3		12	3.71, 3.51, 3.30	3.5	70	
Wine	Incurred	3	< - 18	0	4.1, 4.3, 4.4	4.3	100	DT-326-018,
grapes	residues	3	< - 10	4	4.4, 3.6, 4.2	4.1	95	1999,
grupes	residues	3		9	4.4, 4.4, 4.6	4.5	105	FAMS 028-02
		3		14	4.8, 4.7, 4.3	4.6	105	TANIS 020-02
Wine	5	2	- 20	0	3.86, 3.71	3.8	76	2005/1029468
w me	5	$\frac{2}{2}$	- 20	1 (61)	0.48, 0.83	0.66	13	(final report),
		2		3 (95)	3.83, 0.81	2.3	46	2005,
		2		6 (182)	0.22, 0.20	0.21	4.2	2003, 2003/1001123 (interim
		2		0 (182)	0.22, 0.20	0.21	7.2	report),
								RLA 12616
Grape	5	2		0	4.29, 4.29	4.3	86	2005/1029468
must	5	2	- 20	1 (63)	4.29, 4.29	4.3	86 86	(final report),
must		2	- 20	3(91)	4.30, 4.30	4.3	80 87	(Intal report), 2005,
		2		6 (186)	4.20, 4.74	4.4	89	2003, 2003/1001123 (interim
		2		18 (514)	Not reported	4.5	84	report),
		2		24 (749)	Not reported		77	RLA 12616
Grape	5	2	- 20	0	3.43, 3.43	3.4	68.6	2005/1029468
pomace	5	2	- 20	1 (34)	3.47, 3.72	3.4	72.0	(final report),
pomace		2		3 (91)	3.47, 3.26	3.4	67.4	2005,
		2		6 (195)	4.01, 4.51	4.3	85.2	2003, 2003/1001123 (interim
		2		18 (516)	Not reported	4.5	83.2 58.0	
		2		24 (783)	1		42.5	report), RLA 12616
Creans	5	2	- 20	0	Not reported 4.49, 2.77	3.6	72.6	2005/1029468
Grape	3	2	- 20	-		3.0 4.3	72.0 85.8	
juice		2		1(59)	4.28, 4.30	4.5		(final report),
		2		3 (93)	4.01, 4.13	4.1	81.4	2005, 2002/1001122 (interim
		2		6 (182)	3.95, 3.95	4.0	79.0 76.5	2003/1001123 (interim
		2 2		18 (509) 24 (748)	Not reported Not reported		69.5	report), RLA 12616
Cereal	5		Not	· · · ·	1	4.0	79.6	
	3	3		0	4.19, 4.18, 3.57	2.7	79.6 54.4	DT-326-004, 1992
grain, not		3	reported	1	2.68, 2.93, 2.56		54.4 57.4	1992
speci-fied		3		2	2.78, 2.97, 2.86	2.9		
		3		4	2.78, 2.60, 2.79	2.7	54.4 59.8	
Canaal	5	-	Mat		2.90, 3.34, 2.74	3.0		DT 226 004
Cereal	5	3	Not	0	3.41, 3.50, 3.85 2.26, 1.82, 1.93	3.6	71.8	DT-326-004, 1992
straw,		3 3	reported	1 2		2.0	40.0	1 772
not speci-		3			2.24, 1.43, 1.71	1.8	35.8	
fied		3 3		4 6	1.57, 1.43, 1.52	1.5	30.2	
Hong	5		< 10		2.03, 1.76, 1.73	1.8	36.8	DT 226 010
Hops,	5	2	< -18	0(1)	4.32, 3.99	4.2	83	DT-326-010,
green	5	2 2		3 (84)	4.34, 4.38	4.4	88	1994, D 14 005 02
cones	5			6 (180)	3.99, 3.50	3.8	75	P-14.005.02
	50	2		0(1)	43.00, 40.27	42	84	Values corrected for
	50 50	2 2		3(84)	37.03, 41.85	39	79	procedural recovery
Harr	50		/ 10	6 (180)	38.99, 40.95	40	80	DT 226 010
Hops,	10	2	< - 18	0(1)	7.99, 9.28	8.6	87	DT-326-010,
dried	10			3 (84)	7.64, 6.99	7.3	73	1994, D 14 005 02
cones	10			6 (180)	8.63, 8.50	8.6	86	P-14.005.02
	100	2		0(1)	93.06, 92.41	93	93	Values corrected for
	100	2 2 2 2 2 2		3 (84)	87.11, 86.93	87	87	procedural recovery
D	100		. 10	6 (180)	83.73, 83.76	84	84	
Beer	0.5	2	< - 18	0(1)	0.37, 0.35	0.36	72	DT-326-010, 1994,
		2 2		0.5 (16)	0.38, 0.42	0.40	80	P-14.005.02
		12	1	1 (31)	0.46, 0.43	0.45	90	Values corrected for
		2		- ()				procedural recovery

Matrix	Fortification level, mg/kg	No	Storage T, °C	Months (days)	Residues remaining, mg/kg	Mean, mg /kg	Mean, %	Report, year, method number
Hops, yeast	0.5	2 2 2	< - 18	0 (1) 0.5 (16) 1 (31)	0.43, 0.37 0.45, 0.47 0.43, 0.39	0.41 0.46 0.41	81 92 83	DT-326-010, 1994, P-14.005.02 Values corrected for
Spent hops	0.5	2 2 2 2	<-18	0 (1) 0.5 (16) 1 (31) 2 (59)	0.43, 0.39 0.55, 0.49 0.41, 0.40 0.38, 0.45	0.41 0.52 0.41 0.42	82 105 81 84	procedural recovery DT-326-010, 1994, P-14.005.02 Values corrected for procedural recovery

Information was received on the freezer storage stability of the metabolite Reg. No. 4110904 in plant commodities. The data are summarized in Table 42. The values reported are <u>not</u> corrected for the procedural recovery.

Table 42 Freezer storage stability	data for the metabolite Reg. N	No. 4110904 in plant matrices

Matrix	Fortification	No of	Storage	Days	Residues remaining,	Mean, mg/kg	Mean,	Report, year,
	level, mg/kg	analysis	T, ℃	-	mg/kg		%	method number
Apples	1.0	2	- 20	0	0.956, 0.968	0.962	96.2	2013/1061837,
11		2		7	0.656, 0.684	0.670	67.0	2013,
		2 2		13	not reported	-	-	L0152/01
		2		43	1.07, 1.04	1.06	106	
		2		95	0.792, 0.788	0.79	79.0	
		2		368	0.769, 0.801	0.785	78.5	
		2		739	0.788, 0.872	0.83	83.0	
		2		818	0.604, 0.664	0.634	63.4	
Plums	1.0	2	- 20	0	0.904, 0.956	0.930	93.0	2013/1061837,
		2		7	0.836, 0.860	0.844	84.4	2013,
		2 2		13	0.824, 0.820	0.822	82.2	L0152/01
		2		43	1.04, 1.02	1.03	103	
		2		95	0.783, 0.783	0.783	78.3	
		2		368	0.753, 0.777	0.765	76.5	
		2		739	0.800, 0.832	0.816	81.6	
		2		818	0.648, 0.660	0.654	65.4	
Grapes	1.0	2	- 20	0	0.937, 0.785	0.861	86.1	2013/1061837,
-				7	0.706, 0.750	0.728	72.8	2013,
		2 2		13	0.660, 0.704	0.682	68.2	L0152/01
		2		43	0.936, 0.908	0.922	92.2	
		2		95	0.664, 0.628	0.646	64.6	
		2		368	0.684, 0.644	0.664	66.4	
		2		739	0.676, 0.644	0.660	66.0	
		2		818	0.524, 0.584	0.554	55.4	
Wine	1.0	2	- 20	0	0.856, 0.852	0.854	85.4	2013/1061837,
		2		7	0.634, 0.694	0.664	66.4	2013,
		2		13	0.728, 0.724	0.726	72.6	L0152/01
		2		43	1.02, 0.968	0.994	99.4	
		2		95	0.736, 0.748	0.742	74.2	
		2		368	0.842, 0.838	0.840	84.0	
		2		739	1.11, 1.07	1.09	109	
		2		818	0.688, 0.728	0.708	70.8	
Lemon	1.0	2	- 20	0	0.816, 0.820	0.818	81.8	2013/1061837,
		22		7	0.562, 0.538	0.550	55.0	2013,
		2		13	0.543, 0.555	0.549	54.9	L0152/01
		2		43	0.652, 0.696	0.674	67.4	
		2		95	0.484, 0.512	0.498	49.8	
		2		368	0.519, 0.491	0.505	50.5	
		22		739	0.520, 0.564	0.542	54.2	
		2		818	0.408, 0.440	0.424	42.4	

USE PATTERNS

The fungicide dithianon is registered in many countries for control of diseases on a large variety of crops. Dithianon is applied either as solo product or in combinations with other active substances as cymoxanil, dimethomorph, pyraclostrobin and pyrimethanil. The information available to the Meeting on registered uses on citrus fruits, pome fruits, stone fruits, berries and other small fruits, tree nuts and hops is summarized in Table 43 and refers for application rates etc. to dithianon only. Labels were submitted by the manufacturer.

Crop	Country	Form	-	reatment			ication rate per tr		PHI,
			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Citrus fruits	Argentina	SC	Spraying	1-4	15	0.068	4000	2.7	14
Citrus fruits	Spain	SC	Spraying			0.038– 0.053			
Citrus fruits	Japan	SC	Spraying	1–3	10	0.012- 0.015	2000-7000	0.84–2.94	30
Citrus fruits	Taiwan	WG	Foliar spraying			0.053 - 0.093	1500-2000	1.05-1.4	
Citrus fruits	Uruguay	SC, WP				0.075-0.1			30
Mandarin	Korea	WG	Foliar spraying	5	10	0.044	4800–5200	2.11–2.29	14
Mandarin	Korea	WP	Foliar spraying	3	30	0.026	4800–5200	1.25–1.35	7
Mandarin	Korea	SC	Foliar spraying	5	14	0.043	4800–5200	2.06–2.24	21
Mandarin	Korea	WP	Foliar spraying	3	10	0.075	4800–5200	3.6–3.9	30
Mandarin	Korea	WG	Foliar spraying	5	15	0.03	4800–5200	1.44–1.56	14
Mandarin	Korea	SE	Foliar spraying	3	10	0.012	4800–5200	0.58-0.62	7
Mandarin	Korea	WP	Foliar spraying	3	14	0.03	4800–5200	1.44-1.56	30
Pome fruits	Austria	WG	Foliar spraying	12		0.035	500 (per m crown height)	0.18 (per m crown height)	21
Pome fruits	Bulgaria	WG	High volume spraying	1–12	7–12	0.035– 0.088	400–1000	0.35	20
Pome fruits	Czech Republic	WG	Spraying		8-14	0.049– 0.163	300-1000	0.49	21
Pome fruits	Estonia	WG	High volume spraying	3	7	0.035	1000	0.35	21
Pome fruits	France	WG	High volume spraying	1–7	7	0.023– 0.175	200–1500	0.35	14
Pome fruits	Germany	WG	Foliar spraying	12		0.035	500 (per m crown height)	0.18 (per m crown height)	21
Pome fruits	Germany	WG	Foliar spraying	4	10 -14	0.02	500 (per m crown height)	0.1 (per m crown height)	35
Pome fruits	Hungary	WG	High volume spraying		7–10	0.025– 0.044	800-1000	0.25-0.35	21

Table 43 Registered uses of dithianon

Crop	Country	Form		reatment		Appli	PHI,		
			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Pome fruits	Slovakia	WG	High volume spraying		8–14	0.049– 0.163	300-1000	0.49	21
Pome fruits	Spain	SC	Spraying	1 -5	8	0.038-0.07	800-1000	0.38-0.56	21
Apple	Argentina	SC	Spraying	1-4	15	0.053	2000	1.05	14
Apple	Belgium	WG	High volume spraying	1–18	7–10	0.03–0.263	200-1500	0.45-0.53	28
Apple	Belgium	WG	Spraying	1-4	8-10	0.023	1000	0.23	35
Apple	Belarus	WG	Foliar spraying	6	5–7	0.035- 0.049	1000	0.35-0.49	20
Apple	Belarus	WG	Foliar spraying	4	10-14	0.024–0.03	1000	0.24 -0.3	35
Apple	Bulgaria	WG	High volume spraying	1–4	7	0.052	1500	0.78	28
Apple	Chile	WG	Foliar spraying	1–14	7	0.052	1500	0.78	28
Apple	Croatia	WG	Spraying	1–6		0.035- 0.053	1000	0.35-0.53	35
Apple	Croatia	WG	Spraying	1-4		0.024-0.03	1000	0.24-0.3	35
Apple	Cyprus	WG	Foliar Spraying	4		0.028- 0.112	1000-2000	0.56-1.01	21
Apple	Cyprus	WG	Foliar Spraying	4		0.018-0.07	1000–2000	0.35-0.7	21
Apple	Cyprus	WG	Foliar Spraying	4		0.026 - 0.14	1000–2000	0.53-1.4	21
Apple	Cyprus	WG	Foliar Spraying	3	10 -14	0.015-0.03	1000-1500	0.23–0.3	35
Apple	Czech Republic	WG	Spraying	3	7–10	0.03-0.1	300-1000	0.3	35
Apple	Denmark	WG	High volume spraying	10-15	10			0.7	21
Apple	Georgia	WG	High volume spraying	3	7–10	0.035– 0.098	500-1000	0.35-0.49	30
Apple	Georgia	WG	High volume spraying	3	7–10	0.024–0.06	500-1000	0.24–0.3	30
Apple	Greece	WG	Foliar Spraying	4		0.028– 0.112	1000-2000	0.56-1.01	21
Apple	Greece	WG	Foliar Spraying	4		0.018-0.07	1000–2000	0.35-0.7	21
Apple	Greece	WG	Foliar Spraying	4		0.026-0.14	1000–2000	0.53–1.4	21
Apple	Greece	SC	Foliar Spraying	4		0.03-0.12	1000–2000	0.6-1.2	21
Apple	Greece	SC	Foliar Spraying	4		0.019– 0.075	1000–2000	0.38-0.75	21
Apple	Greece	SC	Foliar Spraying	4		0.025-0.15	1000–2000	0.5–1.5	21
Apple	Greece	WG	Foliar Spraying	3	10-14	0.015-0.03	1000-1500	0.23–0.3	35
Apple	Ireland	SC	Foliar spraying	8	10-14	0.038- 0.638	200-1000	0.38-1.28	28

Crop	Country	Form]	Treatment Application rate per treatm		reatment	PHI,		
			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Apple	Ireland	WG	Foliar spraying	12	7–14	0.053– 0.263	200–1000	0.53	21
Apple	Israel	SC	Foliar spraying	2–4	7–12	0.05	600–1200		
Apple	Italy	WG	High volume spraying	6–8	7–10	0.046– 0.126	1000-1500	0.7–1.26	21
Apple	Italy	WG	High volume spraying	6–8	7–10	0.037– 0.063	1000-1500	0.56-0.63	21
Apple	Italy	SC	High volume spraying	6–8	7–10	0.043–0.12	1000–1500	0.65–1.2	21
Apple	Italy	SC	High volume spraying	6–8	7–10	0.04-0.09	1000-1500	0.6–0.9	21
Apple	Italy	WP	High volume spraying	6–8	7–10	0.044– 0.119	1000-1500	0.66–1.19	21
Apple	Italy	WP	High volume spraying	6–8	7–10	0.035– 0.089	1000-1500	0.53–0.89	21
Apple	Italy	WG	Spraying	1-4	8-14	0.02	1500	0.3	35
Apple	Japan	SC	Spraying	1–3	10	0.012– 0.147	2000-7000	0.84–2.09	60
Apple	Japan	SC	Spraying	1–3	10	0.006– 0.147	2000-7000	0.42–2.94	60
Apple	Latvia	WG	High volume spraying	6	7–14	n.a.	500 (per m crown height)	0.25–0.5	21
Apple	Lithuania	WG	High volume spraying	2-6	8-14	0.035-0.1	700–1000	0.35–0.7	21
Apple	Luxem- bourg	WG	High volume spraying	1–18	7–10	0.023–0.26 (BBCH 7– 67)	200-1500	0.35–0.52	28
						0.011- 0.123 (BBCH 67- 79)		0.16-0.25	
Apple	Macedonia	WG	Spraying	2–3	10–14	0.035- 0.053	1000	0.35-0.53	35
Apple	Macedonia	WG	Spraying	4	10	0.024– 0.030	1000-1200	0.24–0.30	35
Apple	Moldova	WG	High volume spraying	4	7–10	0.035– 0.098	500-1000	0.35-0.49	30
Apple	Moldova	WG	High volume spraying	2–3	7–10	0.024–0.06	500-1000	0.24–0.3	35
Apple	Netherlands	WG	Spraying	1–12	7	0.019– 0.105	500-100	0.19–0.53	28
Apple	Poland	WG	Spraying	6	5	0.05-0.21	250-750	0.35-0.53	21
Apple	Poland	WG	Spraying	2	12	0.032-0.12	250-750	0.24-0.3	35
Apple	Portugal	WG	High volume spraying		8–10	0.035– 0.044	800–1000	0.35	21

Crop	Country	Form	Г	reatment		Appli	cation rate per tr	reatment	PHI,
erep	Country	1 01111	Method	No. per	interval,	kg ai/hL	Water L/ha	kg ai/ha	Days
				season	days	-		_	
Apple	Romania	WG	Spraying	1-5	7-10	0.035	1000	0.35	21
Apple	Romania	WG	Spraying	3	12	0.027	1000	0.27	35
Apple	Russia	WG	Foliar spraying	5	7–14	0.035- 0.049	1000	0.35-0.49	28
Apple	Russia	WG	Foliar spraying	3	10-14	0.024–0.03	1000	0.35-0.49	20
Apple	Serbia	WG	Foliar spraying	1–3		0.053–0.07	1000	0.53–0.7	35
Apple	Serbia	WG	Foliar spraying	1–3		0.009– 0.012	1000	0.09-0.12	35
Apple	Slovakia	WG	Spraying	2-3	12	0.03-0.05	600-1000	0.3	35
Apple	Slovenia	WG	Spraying	1-5		0.035	1000	0.35	21
Apple	Slovenia	WG	Spraying	1–3	10	0.03	1000	0.3	35
Apple	United Kingdom	SC	Foliar spraying	8	10-14	0.056– 0.413	200-1000	0.56-0.83	28
Apple	United Kingdom	WG	Foliar spraying	12	7–14	0.053- 0.263	200–1000	0.53	28
Apple	United Kingdom	SC, WG	Foliar spraying	4	7–10	0.03-0.15	200–1000	0.3	7–10
Apple	Uruguay	SC, WP	Foliar spraying			0.05-0.08			21
Medlar	Spain	SC	Drip application	1–5	8	0.031- 0.084	800-1200	0.38-0.67	14
Medlar	Hungary	WG	Spraying	4	10-16	0.02– 0.0375	800–1200	0.24–0.3	35
Pear	Argentina	SC	Spraying	1-4	15	0.034	2000	0.67	21
Pear	Austria	WG	Foliar	4		0.035	500	0.18	F ^a
			spraying			up to BBCH 65	(per m crown height)	(per m crown height)	Up to BBCH 65
Pear	Austria	WG	Foliar spraying	8		0.035	500 (per m crown height)	0.18 (per m crown height)	21
Pear	Belgium	WG	High volume spraying	1-18	7–10	0.03–0.263	200-1500	0.45-0.53	28
Pear	Belgium	WG	Spraying	1–4	8-10	0.023	1000	0.23	35
Pear	Belarus	WG	Foliar spraying	6	5–7	0.035- 0.049	1000	0.35-0.49	20
Pear	Croatia	WG	Spraying	1–6		0.035- 0.053	1000	0.35-0.53	35
Pear	Denmark	WG	High volume spraying	10-15	10			0.7	21
Pear	Georgia	WG	High volume spraying	3	7–10	0.035– 0.098	500-1000	0.35-0.49	30
Pear	Georgia	WG	High volume spraying	3	7–10	0.024–0.06	500-1000	0.24-0.3	30
Pear	Germany	WG	Foliar spraying	4		0.035	500 (per m crown height)	0.18 (per m crown height)	F ^a Up to BBCH 65
Pear	Germany	WG	Foliar spraying	8		0.035	500 (per m crown height)	0.18 (per m crown height)	21

Crop	Country	Form]	Freatment		Application rate per treatment			PHI,
_			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Pear	Greece	WG	Foliar Spraying	4		0.028– 0.112	1000–2000	0.56-1.01	21
Pear	Greece	WG	Foliar Spraying	4		0.018–0.07	1000-2000	0.35-0.7	21
Pear	Greece	WG	Foliar Spraying	4		0.026-0.14	1000–2000	0.53-1.4	21
Pear	Greece	SC	Foliar Spraying	4		0.03-0.12	1000–2000	0.6–1.2	21
Pear	Greece	SC	Foliar Spraying	4		0.019– 0.075	1000–2000	0.38-0.75	21
Pear	Greece	SC	Foliar Spraying	4		0.025-0.15	1000-2000	0.5–1.5	21
Pear	Greece	SC	Foliar Spraying	4		0.038- 0.075	1000-2000	0.38-0.75	21
Pear	Greece	WG	Foliar Spraying	3	10–14	0.015 - 0.03	1000-1500	0.23-0.3	35
Pear	Hungary	WG	Spraying	4	10–16	0.02- 0.0375	800-1200	0.24-0.3	35
Pear	Ireland	SC	Foliar spraying	8	10–14	0.038- 0.638	200-1000	0.38-1.28	28
Pear	Ireland	WG	Foliar spraying	12	7–14	0.053- 0.263	200-1000	0.53	21
Pear	Israel	SC	Foliar spraying	2–4	7–12	0.05	600–1200		
Pear	Italy	WG	High volume spraying	6–8	7–10	0.037- 0.084	1000-1500	0.56–0.84	21
Pear	Italy	WG	High volume spraying	3–4	7–10	0.105	1000	1.05	21
Pear	Italy	SC	High volume spraying	6–8	7–10	0.04-0.09	1000-1500	0.60-0.9	21
Pear	Italy	SC, WP	High volume spraying	3–4	7–10	0.1	1000	1.0	21
Pear	Italy	WP	High volume spraying	6–8	7–10	0.035- 0.079	1000-1500	0.53-0.79	21
Pear	Italy	WG	Spraying	1-3	8-14	0.02	1500	0.3	35
Pear	Japan	SC	Spraying	1-4		0.012– 0.147	2000-7000	0.84–2.94	60
Pear	Lithuania	WG	High volume spraying	2–6	7–14	0.0525-0.1	700–1000	0.525–0.7	21
Pear	Luxem- bourg	WG	High volume spraying	1-18	7–10	0.023–0.26	200–1500	0.35-0.52	28
Pear	Macedonia	WG	Spraying	4	10	0.032- 0.040	1000-1200	0.32-0.40	35
Pear	Nether-lands	WG	Spraying	1-12	7	0.019-0.105	500-100	0.19–0.53	28
Pear	Portugal	WG	High volume spraying		8–10	0.035- 0.044	800-1000	0.35	21
Pear	Romania	WG	Spraying	1-5	7-10	0.035	1000	0.35	21
Pear	Slovenia	WG	Spraying	1-5		0.035	1000	0.35	21

Crop	Country	Form]	Freatment		Appli	cation rate per tr	reatment	PHI,
1			Method	No. per season	interval,	kg ai/hL	Water L/ha	kg ai/ha	Days
Pear	Slovenia	WG	Spraying	1-3	days 10	0.03	1000	0.3	35
Pear	United Kingdom	SC	Foliar spraying	8	10-14	0.056-0.413	200–1000	0.56-0.83	28
Pear	United Kingdom	WG	Foliar spraying	12	7–14	0.053- 0.263	200–1000	0.53	28
Pear	United Kingdom	WG	Foliar spraying	4	7–10	0.03-0.012	250-1000	0.3	7–10
Pear	Uruguay	SC, WP	Foliar spraying			0.05-0.08			21
Quince	Cyprus	WG	Foliar Spraying	4		0.028- 0.112	1000–2000	0.56-1.01	28
Quince	Cyprus	WG	Foliar Spraying	4		0.018-0.07	1000–2000	0.35-0.7	28
Quince	Greece	WG	Foliar Spraying	4		0.028- 0.112	1000-2000	0.56-1.01	28
Quince	Greece	WG	Foliar Spraying	4		0.018-0.07	1000-2000	0.35-0.7	28
Quince	Greece	SC	Foliar Spraying	4		0.03-0.12	1000–2000	0.6–1.2	28
Quince	Greece	SC	Foliar Spraying	4		0.025-0.15	1000–2000	0.5–1.5	28
Quince	Greece	SC	Foliar Spraying	4		0.019– 0.075	1000-2000	0.38-0.75	28
Quince	United Kingdom	SC	Foliar spraying	8	10–14	0.056– 0.413	200–1000	0.56-0.83	28
Stone fruits	Estonia	WG	High volume spraying	3	7	0.035	1000	0.35	21
Stone fruits	Hungary	WG	High volume spraying	2–3	7–10	0.053– 0.066	800–1000	0.53	21
Cherries	Austria	WG	Foliar Spraying	3		0.035	500 (per m crown height)	0.18 (per m crown height)	21
Cherries	Belgium	WG	High volume spraying	1-6	10	0.047– 0.245	300-1500	0.7–0.74	28
Cherries	Bulgaria	WG	High volume spraying	1-6	7–14	0.035– 0.088	400–1000	0.35	20
Cherries	Cyprus	WG	Foliar spraying	2	-	0.024	1500	0.35	28
Cherries	Denmark	WG	High volume spraying	3	10			0.7	21
Cherries	France	WG	High volume spraying	3	7–10	0.033– 0.245	200–1500	0.49	14
Cherries	Germany	WG	Foliar Spraying	3		0.035	500 (per m crown height)	0.18 (per m crown height)	21
Cherries	Greece	WG	Foliar spraying	2		0.024	1500	0.35	28
Cherries	Greece	SC	Foliar spraying	2		0.025	1500	0.38	28

Crop	Country	Form		Freatment			cation rate per tr		PHI,
			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Cherries	Lithuania	WG	High volume spraying	2–4	14	0.035-0.1	700–1000	0.35–0.7	21
Cherries	Luxem- bourg	WG	High volume spraying	2	10	0.032–0.23	300-1500	0.49–0.7	28
Cherries	Luxem- bourg	WG	High volume spraying	3	10-15	0.012– 0.058	300-1500	0.175	28
Cherries	Netherlands	WG	Spraying	1–3	7	0.019– 0.105	500-1000	0.19–0.53	
Cherries	Serbia	WG	Foliar spraying	1–2		0.053–0.07	1000	0.53-0.7	35
Cherries	Slovakia	WG	High volume spraying		14	0.049– 0.163	300-1000	0.49	28
Cherry sour	Belgium	WG	High volume spraying	1–6	10	0.047–0.23	300-1500	0.7 High trees: 0.15–0.74	28
Cherry sour	Czech Republic	WG	Spraying	1–5	14	0.047-0.23	300-1000	0.49	28
Cherry sweet	Czech Republic	WG	Spraying	1–5	14	0.047–0.23	300-1000	0.49	28
Cherry sweet	Lithuania	WG	High volume spraying	2–4	14	0.035-0.1	700–1000	0.35–0.7	21
Plums	Belarus	WG	Foliar Spraying	2	5-7	0.049	1000	0.49	39
Plums	Cyprus	WG	Foliar spraying	2		0.023	1500	0.35	28
Plums	Cyprus	SC	Foliar spraying	2		0.025	1500	0.38	28
Plums	France	WG	High volume spraying	3	7–10	0.023– 0.175	200–1500	0.35	14
Plums	Greece	WG	Foliar spraying	2		0.023	1500	0.35	28
Plums	Greece	SC	Foliar spraying	2		0.025	1500	0.38	28
Plums	Lithuania	WG	High volume spraying	2–4	14	0.053–0.1	700–1000	0.53–0.7	21
Plums	Luxembourg	WG	High volume spraying	2		0.007– 0.175	300-1500	0.11-0.53	28
Plums	Romania	WG	Spraying	1-5	7–10	0.024- 0.035	1000	0.24-0.35	21
Cherry plum	France	WG	High volume spraying	3	7–10	0.023– 0.175	200–1500	0.35	14
Apricot	Austria	WG	Foliar spraying	3	10–14	0.035	500 (per m crown height)	0.18 (per m crown height)	F ^a
Apricot	Belgium	WG	High volume spraying	3		0.042-0.21	300-1500	0.63	28
Apricot	Belgium	WG	High volume spraying	3		0.059– 0.294	300-1500	0.88	28

Crop	Country	Form]	Freatment		Appli	cation rate per ti	reatment	PHI,
1	,		Method	No. per	interval,	kg ai/hL	Water L/ha	kg ai/ha	Days
		WG	TT' 1	season	days				
Apricot	Bulgaria	WG	High volume	1-6	7-14	0.035-	400-1000	0.35	20
			spraying			0.088			
Apricot	Croatia	WG	Spraying			0.053-0.07	1000	0.53-0.7	35
Apricot	Cyprus	WG	Foliar	2		0.056-0.07	1500	0.84-1.05	28
		NIC.	spraying	4					
Apricot	France	WG	High volume	4	7–10	0.023-	200-1500	0.35	28
			spraying			0.175			
Apricot	France	WG	High	4	7-10	0.033-	200-1500	0.49	
			volume			0.245			
A	Consta	WG	spraying High	3	7 10	0.025	500 1000	0.25 0.40	20
Apricot	Georgia	WU	volume	5	7–10	0.035- 0.098	500-1000	0.35 -0.49	20
			spraying			0.070			
Apricot	Germany	WG	Foliar	3	10-14	0.035	500	0.18	F ^a
			spraying				(per m crown height)	(per m crown height)	
Apricot	Greece	WG	Foliar	2		0.056-0.07	1500	0.84–1.05	28
Apricot	Greece		spraying			0.050 0.07	1500	0.04 1.05	20
Apricot	Greece	SC	Foliar	2		0.07	1500	1.05	28
A	C	SC	spraying Foliar	2		0.06.0.07	1500	0.00 1.05	29
Apricot	Greece	30	spraying	2		0.06-0.07	1500	0.90-1.05	28
Apricot	Israel	SC		2–4	7-12		600-1200		
Apricot	Luxembourg	WG	High	1-2	10-14	0.023-0.21	300-1500	0.35-0.63	28
1	0		volume						
	T 1	WG	spraying High	1.0		0.022	200 1500	0.40.000	20
Apricot	Luxembourg	wu	volume	1–2		0.032- 0.294	300-1500	0.49–0.88	28
			spraying			0.294			
Nectarine	Cyprus	WG	Foliar	2		0.07	1500	1.05	28
			spraying						
Nectarine	Greece	SC, WG	Foliar	2		0.056-0.07	1500	0.84-1.05	28
Nectarine	Japan	SC	spraying Spraying	1		0.02-0.245	2000-7000	1.4-4.9	90
Nectarine	Japan	SC	Spraying	1		0.012-	2000-7000	0.84-4.9	90
Incetainie	Japan	30	Spraying	1		0.012-	2000-7000	0.04-4.9	90
Nectarine	Luxembourg	WG	High	1-2	10-14	0.023-0.21	300-1500	0.35-0.63	28
			volume						
			spraying						
Nectarine	Luxembourg	WG	High volume	1-2		0.032-	300-1500	0.49-0.88	28
			spraying			0.294			
Nectarine	Luxembourg	WG	High	1-2		0.023-	300-1500	0.35	28
			volume			0.117			
			spraying						
Peach	Argentina	SC	Spraying	1-4	15	0.067	1500	1.01	21
Peach	Austria	WG	Foliar	3	10-14	0.035	500	0.18	F ^a
			spraying				(per m crown height)	(per m crown height)	
Peach	Azerbaijan	WG	High	2	7-10	0.035-	500–1000	0.35-0.49	20
**			volume			0.098			
			spraying						
Peach	Belgium	WG	High	3		0.042-0.21	300-1500	0.63	28
			volume spraying						
Peach	Belgium	WG	High	3		0.059–	300-1500	0.88	28
i caell	Deigiuili	110	volume	5		0.039=	500-1500	0.00	20
			spraying						

Crop	Country	Form	1	Freatment		Appli	cation rate per tr	reatment	PHI,
1	,		Method	No. per	interval,	kg ai/hL	Water L/ha	kg ai/ha	Days
				season	days				
Peach	Bulgaria	WG	High	1–6	7-14	0.035-	400-1000	0.35	20
			volume spraying			0.088			
Peach	Croatia	WG	Spraying			0.053-0.07	1000	0.53-0.7	35
Peach	Cyprus	WG	Foliar	2		0.056 -	1500	0.84-1.05	28
			spraying			0.07			
Peach	Czech Republic	WG	Spraying		10-14	0.07–0.233	300-1000	0.7	
Peach	France	WG	High	4	7–10	0.023-	200-1500	0.35	28
			volume spraying			0.175			
Peach	France	WG	High	4	7-10	0.033-	200-1500	0.49	
1 00000	1 Tullee		volume			0.245	200 1000	0115	
			spraying						
Peach	Georgia	WG	High	3	7–10	0.035-	500-1000	0.35-0.49	20
			volume spraying			0.098			
Peach	Germany	WG	Foliar	3	10-14	0.035	500	0.18	F ^a
			spraying				(per m crown	(per m crown	
							height)	height)	
Peach	Greece	SC, WG	Foliar spraying	2		0.056 - 0.07	1500	0.84-1.05	28
Peach	Israel	SC	spraying	2-4	7-12	0.07	600–1200		
Peach	Italy	WG	High	3	7-10	0.07-0.105	1000-1500		21
i cucii	itary	110	volume	5	, 10	0.07 0.105	1000 1200		21
			spraying						
Peach	Italy	SC,	High	3	7-10	0.058-0.1	1000-1200	0.7-1.0	21
		WP	volume spraying						
Peach	Luxembourg	WG	High	1-2	10-14	0.023-0.21	300-1500	0.35-0.63	28
	Ū		volume						
			spraying						
Peach	Luxembourg	WG	High volume	1–2		0.032- 0.294	300-1500	0.49–0.88	28
			spraying			0.294			
Peach	Moldova	WG	High	4	7-10	0.035-	500-1000	0.35-0.49	30
			volume			0.098			
Decel	Carleia	WC	spraying Foliar	1.2		0.0525	1000	0.52.0.7	E a
Peach	Serbia	WG	spraying	1-2		0.0525- 0.07	1000	0.53-0.7	F ^a Until BBCH
						,			51
Peach	Slovakia	WG	High		10-14	0.070-	300-1000	0.7	28
			volume			0.233			
	т ·	0.0	spraying	2.5	7 10	0.025.01	1500 2000	0.75.1.5	20
Peach	Taiwan	SC	Foliar spraying	3–5	7–10	0.025–0.1	1500-3000	0.75–1.5	30
Peach	Ukraine	WG	High	3	7-10	0.07-0.14	500-1000	0.7	20
			volume						
			spraying						
Peach	Uruguay	SC, WP				0.1			21
Berries	Netherlands	WG	Spraying	1-3	7	0.07	1000-1200	0.84	
Blueberries	Belgium	WG	High	3	7	0.098-	300-1000	0.98	
	0		volume			0.326			
			spraying						
Blueberries	Belarus	WG	Foliar	2	10–14	0.06	500	0.3	50
1	1		spraying	1	1			1	1

Crop	Country	Form	1	reatment		Appli	cation rate per tr	eatment	PHI,
1	,		Method	No. per	interval,	kg ai/hL	Water L/ha	kg ai/ha	Days
				season	days				
Blueberries	Luxembourg	WG	High volume spraying	3	7	0.098– 0.326	300-1000	0.98	
Currants	Belgium	WG	High volume spraying	3	7	0.098– 0.326	300-1000	0.98	
Currants	France	WG	High volume spraying	2	7–10	0.033– 0.245	200–1500	0.49	14
Currants	Luxembourg	WG	High volume spraying	3	7	0.098– 0.326	300-1000	0.98	
Currant, black	France	WG	High volume spraying	2	7–10	0.033– 0.245	200–1500	0.49	14
Currant, black	Lithuania	WG	High volume spraying	2–4	10-14	0.07-0.14	500	0.35–0.7	21
Currant, red	Lithuania	WG	High volume spraying	2–4	10-14	0.07–0.14	500	0.35–0.7	21
Bilberry, red	Belgium	WG	High volume spraying	3	7	0.098– 0.326	300-1000	0.98	
Bilberry, red	Luxembourg	WG	High volume spraying	3	7	0.098– 0.326	300-1000	0.98	
Blackberry	Belgium	WG	High volume spraying	3		0.098– 0.326	300-1000	0.98	14
Blackberry	Luxembourg	WG	High volume spraying	2–3		0.098– 0.326	300-1000	0.98	14
Cranberry	Belarus	WG	Foliar spraying	6	5–7	0.07–0.098	500	0.35-0.49	70
Cranberry	Belarus	WG	Foliar spraying	2	10-14	0.048–0.06	500	0.24–0.3	50
Gooseberry	Belgium	WG	High volume spraying	3	7	0.098– 0.326	300-1000	0.98	
Gooseberry	Lithuania	WG	High volume spraying	2–4	10–14	0.07–0.14	500	0.35–0.7	21
Gooseberry	Luxembourg	WG	High volume spraying	2–3	7	0.098– 0.326	300-1000	0.98	
Grapes	Argentina	SC	Spraying	1–4	15	0.053-0.14	500-1000	0.53-0.7	21
Grapes	Belgium	WG	Spraying	1		0.05	1000	0.5	48
Grapes	Belarus	WG	Foliar spraying	6	5–7	0.042- 0.053	800-1000	0.42	30
Grapes	Bulgaria	WG	High volume spraying	1-8	7–12	0.035– 0.088	400–1000	0.35	20
Grapes	Croatia	WG	Spraying	1–6		0.026	1000	0.26	49
Grapes	Cyprus	WG	Foliar spraying	4		0.028–0.14	500-1000	0.28-0.7	28

Crop	Country	Form	Т	reatment		Appli	cation rate per tr	eatment	PHI,
1			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Grapes	France	WG	High volume spraying	2		0.041– 0.123	4000-1200	0.49	42
Grapes	Georgia	WG	High volume spraying	3	7–10	0.035– 0.098	500-1000	0.35-0.49	30
Grapes	Georgia	WG	High volume spraying	3	7–10	0.053–0.14	500-1000	0.53-0.7	30
Grapes	Greece	WG	Foliar spraying	4		0.028-0.14	500-1000	0.28–0.7	28
Grapes	Greece	SC	Foliar spraying	4		0.03-0.15	500-1000	0.3–0.75	28
Grapes	Greece	WG	Foliar spraying	3	10-12	0.021- 0.084	500-1000	0.21-0.42	28
Grapes	Hungary	WG	High volume spraying		7–10	0.025– 0.058	600–1000	0.25 -0.35	28
Grapes	Italy	WG, WP	High volume spraying	3–5	7–10	0.046– 0.126	800-1200	0.56-1.01	40
Grapes	Japan	SC	Spraying	1–2		0.014– 0.175	2000-7000	1.00-3.5	75
Grapes	Japan	SC	Spraying	1		0.071- 0.875	2000-7000	5.0-17.5	Dormancy application
Grapes	Moldavia	WG	High volume spraying	3–4	7–10	0.053–0.14	500-1000	0.525-0.7	30
Grapes	Morocco	WG		3	7-12			0.53	
Grapes	Romania	WG	Spraying	1-5	7-10	0.035	1000	0.35	21
Grapes	Russia	WG	Foliar spraying	6	7–14	0.035- 0.061	800–1000	0.35-0.49	28
Grapes	Russia	WG	Foliar spraying	3	10-12	0.042- 0.053	1000	0.42-0.53	30
Grapes	Serbia	WG	Foliar spraying	1–3		0.026– 0.035	1000	0.26-0.35	35
Grapes	Slovakia	WG	High volume spraying		8–14	0.035	1000	0.35	21
Grapes	Slovenia	WG	Spraying	1-8		0.035	1000	0.35	42
Grapes	Slovenia	WG	Spraying	1-8		0.053	1000	0.53	42
Grapes	Ukraine	WG	High volume spraying	3	7–10	0.035–0.14	500-1000	0.35-0.7	30
Grapes	Uruguay	SC, WP				0.05-0.1			21
Table grapes	Macedonia	WG	Foliar spraying	3		Basic: 0.021-0.17 GS 61: 0.042 - 0.34 GS 71: 0.063-0.5 GS 73: 0.068-0.5	100–800	Basic: 0.17 GS 61: 0.34 GS 71: 0.5 GS 73: 0.55	35

Crop	Country	Form]	Freatment		Appli	cation rate per tr	eatment	PHI,
Ĩ			Method	No. per season	interval, days	kg ai/hL	Water L/ha	kg ai/ha	Days
Wine grapes	Austria	WG	Foliar spraying	8 (per crop and year)		0.053	Basic: 400 GS 61: 800	Basic: 0.21 GS 61: 0.42	49
Wine grapes	Austria	WG	Foliar spraying	3		0.042	Basic: 400 GS 61: 800 GS 71: 1200 GS 73: 1300	Basic: 0.17 GS 61: 0.34 GS 71: 0.5 GS 73: 0.55	35
Wine grapes	Austria	WP	Spraying	5	8-14	0.025	1000	0.25	42
Wine grapes	Austria	WP	Spraying	3	8-14	0.0313	1000	0.313	42
Wine grapes	France	WG	Spraying	3		0.21-0.525	100-250	0.53	35
Wine grapes	Germany	WG	Foliar spraying	8 (per crop and year)		0.053	Basic: 400 GS 61: 800	Basic: 0.21 GS 61: 0.42	49
Wine grapes	Germany	WG	Foliar spraying	3		0.042	Basic: 400 GS 61: 800 GS 71: 1200 GS 73: 1300	Basic: 0.17 GS 61: 0.34 GS 71: 0.5 GS 73: 0.55	35
Wine grapes	Italy	WG	Spraying	1–3	10-12	0.043- 0.053	1000	0.44-0.53	40
Wine grapes	Luxembourg	WG	High volume spraying	1		0.049	1000	0.49	48
Wine grapes	Macedonia	WG	Foliar spraying	3		Basic: 0.021-0.17 GS 61: 0.042 - 0.34 GS 71: 0.063-0.5 GS 73: 0.068-0.55	100–800	Basic: 0.17 GS 61: 0.34 GS 71: 0.5 GS 73: 0.55	35
Wine grapes	Netherlands	WG	Foliar spraying	3	7–10	0.14	150	0.21	42 BBCH 19–59
Raspberries	Belgium	WG	High volume spraying	3	14	0.098– 0.326	300-1000	0.98	
Raspberries	France	WG	High volume spraying	2	7–10	0.033– 0.245	200–1500	0.49	14
Raspberries	Lithuania	WG	High volume spraying	2–4	10-14	0.105–0.14	500	0.525-0.7	21
Raspberries	Luxembourg	WG	High volume spraying	2–3		0.098– 0.326	300-1000	0.98	14
Strawberry	Japan	SC	Spraying	1–2		0.014- 0.126	1000–3000	0.42–1.26	
Strawberry	Uruguay	SC, WP	Spraying			0.1			21
Tree nuts	Luxembourg	WG	High volume spraying	1		0.049	1000	0.49	
Almonds	France	WG	High volume spraying	2	7–10	0.023– 0.175	200–1500	0.35	58

Crop	Country	Form	Т	reatment		Appli	ication rate per tr	eatment	PHI,
			Method	No. per	interval,	kg ai/hL	Water L/ha	kg ai/ha	Days
				season	days				
Almonds	France	WG	High volume	2	7–10	0.033- 0.245	200-1500	0.49	
			spraying			0.245			
Almonds	Israel	SC		2–4	7-12	0.05	600–1200		
Almonds	Luxembourg	WG	High	2		0.35	1000	0.35	
			volume						
		~~~	spraying						
Walnut	France	SC	High volume	1	7–10	0.35–0.263	200-1500	0.53	42
			spraying						
Walnut	France	WG	High	1	7-10	0.033-	200-1500	0.35	42
			volume			0.245			
			spraying						
Hops	Austria	WG	Foliar	10				until GS 37:	14
			spraying					0.63	
								until GS 55: 0.98	
								at GS 55: 1.4	
Hops	Austria	WP	Spraying	2	10–14	0.007-	400-1500	0.1-0.375	14
nops	Ausula	VV 1	Spraying	2	10-14	0.007-	400-1500	0.1-0.373	14
Hops	Belgium	WG	Spraying	1-8	7-10	0.035	1000	0.35	28
Hops	Cyprus	WG	Foliar	4		0.046-0.07	2500	1.12-1.75	28
			spraying						
Hops	Germany	WG	Foliar	10				until GS 37:	14
			spraying					0.63	
								until GS 55: 0.98	
								at GS 55: 1.4	
Hops	Greece	SC,	Foliar	4		0.045-	2500	1.13-1.88	28
- <b>F</b>		WG	spraying			0.075			-
Hops	Luxembourg	WG	High	1-8	7-10	0.035	1000	0.35	28
			volume						
	G1 ·	NVG.	spraying	1.0		0.025	1000	0.05	1.4
Hops	Slovenia	WG	Spraying	1-8		0.035	1000	0.35	14

^a F: PHI is fixed by the approved use

# **RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS**

The Meeting received information on supervised field trials for dithianon uses that produced residues on the following commodities:

Crop Group	Commodity	Tables
Citrus fruits	Citrus fruits	44
Pome fruits	Apple	45, 46
	Pear	47
Stone fruits	Cherries	48, 49
	Peaches	50, 51
		52, 53
Berries and other small fruits	Grapes	54, 55
	Currants, black	56

Crop Group	Commodity	Tables
Tree nuts	Almonds	57
Dried herbs	Hops, dry	58

Conditions of the supervised residue trials were generally well reported in detailed field reports. However, some trials conducted in the 1970s and 1980s were reported in summary tables only. Laboratory reports generally included method validation with procedural recoveries from spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analysis or duration of residue sample storage were provided in most cases, if not, it is indicated in the relevant table.

Because of the age of many trials, the analytical methods used are described in the text and are listed in the tables below. Residue data are recorded unadjusted for recovery. Undetected residues were generally reported lower than the LOQ. Residues and application rates have generally been rounded to two significant figures. Residue values from the trials conducted according to maximum GAP, or, in case of exceeding the ARfD, according to an alternative GAP, have been used for the estimation of maximum residue levels. Those results included in the evaluation are underlined.

In some supervised trials on apples, cherries, peaches, plums and grapes, residues of the parent dithianon and the metabolite 5,6-dicyano-3-(2-hydroxybenzoyl)-1,4-dithiine-2-carboxylic acid (Reg. No. 411094) were analysed.

#### Citrus fruits

The reports for dithianon residues in citrus fruits conducted in Japan were submitted in the Japanese language but only with a short English explanation. Trials were carried out on mandarins (varieties unshiu, mikan, satsuma), pomelos (natsudaidai, variety amanatsu), citrus sudachi and citrus sphaerocarpa (variety kabosu). Trials were carried out either indoors "G" or outdoors "F". Peel and pulp samples were analysed separately. The residues in whole fruits were calculated from the weight ratio of peel and pulp.

Samples were analysed using HPLC with UV-detection in parallel in different analytical laboratories: Japan Food Research Laboratories (JFRL), Institute of Environmental Toxicology (IET), Tahara Laboratories, Dainihon Jochugiku or in the Japanese Food Analysis Center (JFAC). Average recoveries in pulp and peel as reported in the English summary, ranged between 77% and 93%; LODs were reported as 0.01–0.02 mg/kg for pulp and 0.02–0.05 mg/kg for peel. The residue trials data are presented in Table 44.

Country, year,	Applica	tion			PHI,			Doc ID-No,
location, F/G ^{a)} (variety)	Form	kg ai/hL	Water L/ha	No	days	Commodity	Residue, mg/kg	analysis facility
Japan, 1990, Kagawa, G Mandarin (Unshiu Mikan)	SC	0.5	5000	3	21 30 21 30 21 30 21 30 21 30 21 30 21 30 21 30 30 30 30 30 30 30 30 30 30	Pulp Pulp Peel Whole fruit Whole fruit Pulp Peel Peel Whole fruit Whole fruit Mean fruit Mean pulp	0.23 0.05 16 12 2.9 2.2 0.20 0.09 13 12 2.3 2.2 2.2 0.07	2012/1278420, analysis by JFRL, LOQ 0.02 mg/kg 2012/1278420, analysis by IET, LOQ 0.01 mg/kg

Table 44 Dithianon residues in citrus fruits, scaled residue values are shown in brackets

Country, year,	Applic	ation	1	T	PHI,			Doc ID-No,
location, F/G ^{a)} (variety)	Form	kg ai/hL	Water L/ha	No	days	Commodity	Residue, mg/kg	analysis facility
					20	Pulp	0.08	
Japan, 1990,					29	Pulp	0.06	2012/1278420,
Kagoshima, G	SC	0.5	5000	3	20	Peel	1.5	analysis by
Mandarin	50	0.5	2000	5	29	Peel	2.6	JFRL, LOQ
(Unshiu Mikan)					20	Whole fruit	0.45	0.02 mg/kg
					29	Whole fruit	0.68	
					20	Pulp	0.11	
					29	Pulp	0.04	2012/1278420,
					20	Peel	2.1	analysis by IET,
					29	Peel	2.6	LOQ
					20	Whole fruit	0.62	0.01 mg/kg
					29	Whole fruit	0.72	
					29	Mean fruit	0.7	
			1		29	Mean pulp	0.05	ļ
				1	23	Pulp	< 0.02	
				1	32	Pulp	< 0.02	
					45	Pulp	< 0.02	
					60	Pulp	< 0.02	
Japan, 1990,					23	Peel	3.8	2012/1278421,
Shizuoka, F	SC	0.5	5000	3	32	Peel	3.4	analysis by
Pomelo					45	Peel	1.1	JFRL, LOQ
(Natsudaidai)					60	Peel	3.1	0.02 mg/kg
					23	Whole fruit	1.1	
					32	Whole fruit	1.0	
					45 60	Whole fruit Whole fruit	0.36 0.86	
					22			
					32	Pulp Pulp	0.01 0.01	
					52 50	Pulp	0.01	
					50 60	Pulp	0.02	
					22	Peel	4.1	2012/1278421,
					32	Peel	3.7	analysis by IET,
					50	Peel	2.7	LOQ
					60	Peel	4.1	0.01 mg/kg
					22	Whole fruit	1.2	0.01 mg/ng
					32	Whole fruit	1.1	
					50	Whole fruit	0.76	
					60	Whole fruit	1.2	
					32	Mean fruit	1.05	
				1	50	Pulp	0.02	
	1			1	20	Pulp	< 0.02	T
				1	30	Pulp	< 0.02	
				1	46	Pulp	< 0.02	
				1	60	Pulp	< 0.02	
Japan, 1990,				1	20	Peel	4.7	2012/1278421,
Ehime, F	SC	0.5	5000	3	30	Peel	4.2	analysis by
Pomelo	SC	0.5	5000	5	46	Peel	3.5	JFRL, LOQ
(Natsudaidai)				1	60	Peel	3.4	0.02 mg/kg
				1	20	Whole fruit	1.5	
				1	30	Whole fruit	1.4	
				1	46	Whole fruit	0.92	
					60	Whole fruit	1.2	

Country, year,	Applic	ation			PHI,			Doc ID-No,
location, F/G ^{a)} (variety)	Form	kg ai/hL	Water L/ha	No	days	Commodity	Residue, mg/kg	analysis facility
					20	Pulp	0.02	
					30	Pulp	< 0.01	
					46	Pulp	0.08	
					60	Pulp	< 0.01	
					20	Peel	3.4	2012/1278421,
					30	Peel	4.6	analysis by IET,
					46	Peel	3.8	LOQ
					60	Peel	4.3	0.01 mg/kg
					20	Whole fruit	1.1	
					30	Whole fruit	1.5	
					46	Whole fruit	1.3	
					60	Whole fruit	1.4	
					30	Mean fruit	1.45	
					46	Mean pulp	0.05	
					14	Pulp	< 0.01	
					30	Pulp	< 0.01	2012/1278423,
Japan, 1984,					45	Pulp	0.01	analysis by
Mie, F					14	Peel	9.4	Dainihon
Mandarin	WP	0.7	6000	3	30	Peel	3.5	Jochugiku,
(Unshiu)					45	Peel	2.6	LOQ
(					14	Whole fruit	2.0	0.01 mg/kg
					30	Whole fruit	0.78	
					45	Whole fruit	0.65	
					14	Pulp	< 0.04	
					30	Pulp	< 0.04	
					45	Pulp	< 0.04	2012/1278423,
					14	Peel	7.9	analysis by
					30	Peel	2.1	JFAC, LOQ
					45	Peel	2.2	0.04 mg/kg
					14	Whole fruit	1.68	88
					30	Whole fruit	0.49	
					45	Whole fruit	0.56	
					30	Mean fruit	0.64 (0.46)	
					45	Mean pulp	< 0.025 (< 0.018)	
					1.4	D-1-	< 0.01	2012/1278423,
Jaman 1094					14 30	Pulp	< 0.01	analysis by Dainihon
Japan, 1984, Mie, F					30 45	Pulp Pulp	< 0.01	
Mandarin	WP	0.7	6000	5	43 14	Peel	< 0.01 5.6	Jochugiku, residue in
(Unshiu)					30	Peel	5.4	whole fruit
(Unshiu)					45	Peel	4.5	were not
						1 001	т.5	calculated
		+			14	Pulp	< 0.04	1
	1				30	Pulp	< 0.04	2012/1278423,
	1				45	Pulp	< 0.04	analysis JFAC,
	1				14	Peel	3.4	residues for
					30	Peel	4.9	whole fruit not
	1				45	Peel	5.4	calculated
					30	Mean pulp	< 0.025	
							(< 0.018)	
					16	Pulp	< 0.01	
					32	Pulp	< 0.01	2012/1278423,
Japan, 1984,					46	Pulp	0.01	analysis by
Saga, F					16	Peel	13	Dainihon
Mandarin	WP	0.7	5000	3	32	Peel	4.7	Jochugiku,
(Unshiu)	1				46	Peel	1.7	LOQ
(Unishing)					16	Whole fruit	2.8	0.01 mg/kg
					32	Whole fruit	1.0	0.01 mg/ng
					46	Whole fruit	0.43	

Country, year,	Applica	tion	-		PHI,			Doc ID-No,
location, F/G ^{a)}	Form	kg ai/hL	Water L/ha	No	days	Commodity	Residue, mg/kg	analysis
(variety)		8			, , , , , , , , , , , , , , , , , , ,			facility
					16	Pulp	< 0.04	
					32	Pulp	< 0.04	
					46	Pulp	< 0.04	2012/1278423,
					16	Peel	10	analysis by
					32	Peel	6.0	JFAC, LOQ
					46	Peel	2.6	0.04 mg/kg
					16	Whole fruit	2.2	0.04 mg/kg
					32	Whole fruit	1.3	
					46	Whole fruit	0.65	
					32	Mean fruit	1.15 (0.82)	
					46	Mean pulp	< 0.025 (< 0.018)	
Japan, 1984, Saga, F Mandarin (Unshiu)	WP	0.58	6000	5	16 32 46 16 32 46 16 32 46	Pulp Pulp Pulp Peel Peel Peel Pulp Pulp Pulp	0.03 < 0.01 < 0.01 9.1 1.2 2.9 < 0.04 < 0.04 < 0.04	2012/1278423, analysis by Dainihon Jochugiku, residues in whole fruit not calculated 2012/1278423, analysis by JFAC,
					16	Peel	6.6	residues in
					32	Peel	3.3	whole fruit not
					46	Peel	1.8	calculated
					32	Mean pulp	< 0.025 (< 0.021)	
Japan, 2001, Tokushima, F (Sudachi)	SC	0.5	4000	3	21 28 42	Whole fruit	1.2 0.84 (1.2) 0.66	2012/1278422, analysis by Tahara Lab.
Japan, 2001, Ohita, F (Kabosu)	SC	0.5	6400	3	21 28 42	Whole fruit	2.2 2.5 (2.3) 0.94	2012/1278422, analysis by Tahara Lab.

^{a)} G indoor, F outdoor

# Apple

During the years 1975–2003, trials were conducted in Northern and Southern Europe. In 2003, different products were tested in three plots side-by-side (Doc ID-No. 2004/1000752). The summary of the residue trials data for apple, whole fruit, is presented in Table 45. The samples were analysed as follows:

- Apples from trials conducted during 1975–1985 were analysed by similar methods using HPLC-UV (e.g. RU 107/34/10) or by colorimetry (Merck-Method M 101/67; only for two trials in 1975), all of which were validated at 0.03–0.05 mg/kg and for which procedural recoveries of dithianon were 70–110%.
- For trials conducted from 1990–1995, samples were analysed using method FAMS 028-02 for which procedural recoveries of dithianon fortified in fruit at 0.02–1.0 mg/kg were 91–103%; or the samples were analysed using methods similar to FAMS 028-02, such as method FAMS 009-01 and HUK 460/38. Using the latter methods, recoveries of parent obtained from apple fruit fortified at 0.05–1.9 mg/kg were 74–95%.
- Most of the samples from the trials conducted in the years 2000 were analysed with method RLA 12616 or further versions, which quantifies dithianon using HPLC with UV detection and an LOQ of 0.01 mg/kg in apple fruit. Procedural recoveries of dithianon fortified in whole fruit at 0.01 mg/kg were 70–110%. HPLC-UV methods similar to RLA 12616 were employed to analyse samples from the remaining trials.

Country, year,	Applic	ation				PHI,		Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, mg/kg	method of analysis
Germany, 1975, Oberraderach, (Golden Delicious), F 75-01-06-01	SC	Foliar spray	0.63	420	14	0 2 7 15 22	1.0 0.5 0.03 <0.03 <0.03	DT-711-005, Colorimetric method Merck M 101/67, not further specified, LOQ 0.03 mg/kg
Germany, 1975 Kippenhausen (Golden Delicious) F 75-01-06-02	SC	Foliar spray	0.63	1800	13	0 3 7 15 22	0.4 0.2 < 0.05 < 0.05 < 0.05	DT-711-006, Colorimetric method Merck M 101/67, not further specified, LOQ 0.03 mg/kg
Germany, 1985 Hagnau (Boskop) C 85 11 06b	SC	Foliar spray	0.6	400	13	0 7 14 21	0.85 0.31 0.48 0.48	DT-711-009, Method not specified, HPLC-UV, LOQ 0.05 mg/kg
Germany, 1985 Ingelheim (Golden Delicious) C 85 11 72 01d	SC	Foliar spray	0.56	500	12	0 7 14 21 28 35	2.6 2.1 2.1 1.9 1.0 0.95	DT-711-013, Method not specified, HPLC-UV, LOQ 0.05 mg/kg
Germany, 1985 Hagnau (Boskop) C 85 11 06a	SC	Foliar Spray	$\begin{array}{l} 4\times0.81\\ 9\times0.61\end{array}$	400	13	0 7 14 21	0.72 0.46 0.41 0.38	DT-711-019, Method not specified, HPLC-UV, LOQ 0.05 mg/kg
Germany, 1985 Ingelheim (Golden Delicious) C 85 11 72 02b	SC	Foliar Spray	$3 \times 0.76$ 9 × 0.6	500	12	0 7 14 21 28 35	1.8 2.1 1.5 1.0 1.3 0.82	DT-711-020, Method not specified, HPLC-UV, LOQ 0.05 mg/kg
France South,1990 not reported (Red Delicious) FRA-90-01	SC	Foliar Spray	0.53	393 - 536	14	0 3 7 14 21 80	4.4 3.8 1.7 1.9 1.7 0.39	DT-711-085, HUK 460/38
Germany, 1993 Bornheim- Breuig (Jonica) SKG-9302-01	SC	Foliar Spray	0.55 - 0.64 last treatment0.56	737 - 833	12	0 21	2.5 1.7	DT-711-094, FAMS 028-02
Germany, 1993 Mühlheim-Klärlich (Gloster) SKG-9302-02	SC	Foliar Spray	0.55 - 0.57	735 - 754	12	0 21	1.6 1.5	DT-711-095, FAMS 028-02
Germany, 1995 Bornheim-Breuig (Berlepesch) 95-082-01	WG	Foliar spray	0.53 - 0.55	1510 - 1576	12	-0 0 5 11 17 21	0.47 0.92 0.93 0.68 0.32 0.36	DT-711-098, FAMS 028-02
Germany, 1995 Euskirchen-Dorn Esch (Gloster) 95-082-02	WG	Foliar spray	0.53 - 0.54	1501 - 1528	12	-0 0 7 11 16 21	0.84 1.3 0.86 0.89 1.1 0.48	DT-711-098 FAMS 028-02
Germany, 1995 Meckenheim- Altendorf (Elstar)	WG	Foliar spray	0.51 - 0.54	721 - 773	12	-0 0 7 11	1.1 2.3 1.3 1.0	DT-711-098, FAMS 028-02

Table 45 Dithianon residues in apples

Country, year,	Applic	ation				PHI,		Doc ID-No,	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, mg/kg	method of analysis	
95-082-03			di/ IId	L/IId		16	1.2		
						21	0.76		
Germany, 1995 Koblenz-Gülz (Jonagold) 95-082-04	WG	Foliar spray	0.51 - 0.55	730 - 792	12	-0 0 6 11 17 21	0.96 1.5 1.0 0.94 0.77 0.62	DT-711-098, FAMS 028-02	
France South, 2000 Saint Andiol (Golden Delicious) 00-981-640	WG	Foliar spray	0.48–0.55 last treatment 0.51	922 - 1044	12	21	0.13	DT-711-104, RLA 12616	
France South, 2000 Saint Andiol (Golden Delicious) 00-981-640	WG	Foliar spray	0.67–0.73 last treatment 0.69	958 - 1044	8	21	0.18	DT-711-104, RLA 12616	
France South, 2000 Noves (Golden Delicious) 00-981-641	WG	Foliar spray	0.5–0.57 last treatment 0.54	943 - 1083	12	-0 +0 3 7 14 21	0.14 0.53 0.50 0.40 0.34 0.24	DT-711-105, RLA 12616	
France South, 2000 Noves (Golden Delicious) 00-981-641	WG	Foliar spray	0.68–0.73 last treatment 0.72	971 - 1048	8	-0 +0 3 7 14 21	0.03 0.57 0.47 0.27 0.12 0.18	DT-711-105, RLA 12616	
Italy, 2000 Fossanova, San Marco (Golden) 00-801-01	WG	Foliar spray	0.53	1250	12	21	0.20	2002/1011502, RLA 12620.00V	
Italy, 2000 Fossanova, San Marco (Golden) 00-801-01	WG	Foliar spray	0.7	1250	8	21	0.13	2002/1011502, RLA 12620.00V	
Italy, 2000 Fossanova, San Marco (Red Chief) 00-802-01	WG	Foliar spray	0.53	1250	12	0- 0+ 3 7 14 21	0.13 0.39 0.28 0.18 0.21 0.12	2002/1011501, RLA 12620.00V	
Italy, 2000 Fossanova, San Marco (Red Chief) 00-802-01	WG	Foliar spray	0.7	1250	8	0- 0+ 3 7 14 21	0.06 0.35 0.26 0.16 0.12 0.10	2002/1011501, RLA 12620.00V	
Spain, 2001 Calatorao, Zaragoza (Golden Smooth) ALO/45/01	WG	Foliar spray	0.53	1000	12	0 7 15 21 28	0.70 0.74 0.47 0.37 0.43	2002/1011505, RLA 12616	
Spain, 2001 Calatorao, Zaragoza (Golden Smooth) ALO/45/01	WG	Foliar spray	0.7	1000	8	0 7 15 21 28	0.81 0.60 0.61 0.39 0.43	2002/1011505, RLA 12616	
Spain, 2001 Calatorao, Zaragoza (Red Chief)	WG	Foliar spray	0.53	1000	12	0 7 15	1.4 1.0 0.82	2002/1011505, RLA 12616	

Country, year,	Applic	ation				PHI,		Doc ID-No,	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, mg/kg	method of analysis	
ALO/46/01						21 28	0.85 0.86		
Spain, 2001 Calatorao, Zaragoza (Red Chief) ALO/46/01	WG	Foliar spray	0.7	1000	8	0 7 15 21 28	1.6 1.7 0.72 1.0 0.98	2002/1011505, RLA 12616	
Greece, 2001 Arnissa, Macedonia (Granny Smith) HEL/06/01	WG	Foliar spray	0.53	1000	12	0 7 14 21 28	2.1 0.79 0.89 0.04 0.59	2002/1011505, Method RLA 12616	
Greece, 2001 Arnissa, Macedonia (Granny Smith) HEL/06/01	WG	Foliar spray	0.7	1000	8	0 7 14 21 28	1.3 1.3 0.92 0.19 0.07	2002/1011505, RLA 12616	
Italy, 2001 Piemonte (Golden Delicious) ITA/24/01	WG	Foliar spray	0.53	1000	12	0 7 14 21 29	1.9 1.5 2.2 1.7 1.5	2002/1011505, RLA 12616	
Italy, 2001 Piemonte (Golden Delicious) ITA/24/01	WG	Foliar spray	0.7	1000	8	0 7 14 21 29	2.9 2.1 2.5 1.4 1.2	2002/1011505, RLA 12616	
Belgium, 2003 Limburg (Decofta) AGR/09/03	WG	Foliar spray	0.35	1000	4	0 21 28 35 42	0.19 0.09 0.05 0.10 0.04	2004/1000752, RLA 12616.05V	
	WG	Foliar spray	0.35	1000	4	0 21 28 35 42	0.33 0.11 0.10 0.09 0.08		
	WG	Foliar spray	0.3	1000	4	0 21 28 35 42	0.26 0.13 0.11 0.11 0.04		
The Netherlands, 2003 Limburg (Golden Delicious) AGR/10/03	WG	Foliar Spray	0.35	1000	4	0 20 27 34 41	0.64 0.34 0.15 0.30 0.25	2004/1000752, RLA 12616.05V	
	WG	Foliar Spray	0.35	1000	4	0 20 27 34 41	0.49 0.48 0.12 0.39 0.34		
	WG	Foliar spray	0.3	1000	4	0 20 27 34 41	0.46 0.30 0.30 0.29 0.32		
France North, 2003 Alsace (Golden) FAN/09/03	WG	Foliar spray	0.35	1000	4	0 20 28 35 42	0.14 0.09 0.11 0.05 0.04	2004/1000752, RLA 12616.05V	

Country, year,	Applic	ation				PHI,		Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, mg/kg	method of analysis
	WG	Foliar spray	0.35	1000	4	0 20 28 35 42	0.50 0.15 0.21 0.13 0.11	
	WG	Foliar spray Foliar spray	0.3	1000	4	0 20 28 35 42	0.33 0.15 0.11 0.14 0.08	
France South, 2003 Midi-Pyrenees (Star Kimson) FTL/05/03	WG	Foliar spray	0.35	1000	4	0 21 28 35 42	0.70 0.33 0.15 0.20 0.16	2004/1000752, RLA 12616.05V
	WG	Foliar spray	0.35	1000	4	0 21 28 35 42	0.98 0.31 0.36 0.34 0.34	
	WG	Foliar spray	0.3	1000	4	0 21 28 35 42	1.1 0.52 0.37 0.42 0.43	
Italy, 2003 Piemonte (Cooper) ITA/07/03	WG	Foliar spray	0.35	1000	4	0 21 29 35 42	0.58 0.50 0.26 0.20 0.13	2004/1000752, RLA 12616.05V
	WG	Foliar spray	0.35	1000	4	0 21 29 35 42	0.85 0.70 0.39 0.35 0.26	
	WG	Foliar spray	0.3	1000	4	0 21 29 35 42	0.86 0.44 0.27 0.29 0.22	

During the 2010 growing season, a total of 11 field trials were conducted in Germany, the United Kingdom, Belgium, the Netherlands, France, Greece, Italy and Spain. Specimens were analysed for dithianon and its metabolite Reg. No. 4110904 using method No. L0152/01 with a LOQ of 0.01 mg/kg. The results for apple, whole fruit are summarized in Table 46.

Table 46 Residues of dithianon and metabolite Reg. No. 4110904 in apples

Country, year,	Applic	ation				PHI.	Dagidua	ma/lea	Doc ID-No, method of	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, mg/kg Dithianon 4110904		analysis	
Germany, 2010 Werneuchen (Jonagold) L100477	WG	Foliar spray	0.36	1000	4	28 35	0.05 0.06		2011/1059016, L0152/01	
UK, 2010 Cottenham (Discovery) L100478	WG	Foliar Spray	0.36	1000	4	0 29 36 43	< 0.01 < 0.01		2011/1059016, L0152/01	

Country, year,	Applic	ation			]	PHI,	Residue,	ma/ka	Doc ID-No, method of
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Dithianon		analysis
Belgium, 2010 Fleurus (Cabarette) L100479	WG	Foliar Spray	0.36	1000	4	0 28 35 42	0.30 0.17 0.16 0.07	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016, L0152/01
The Netherlands, 2010 LC Homoet (Elstar) L100480	WG	Foliar Spray	0.36	1000	4	0 28 35 42	0.31 0.04 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016, L0152/01
France North, 2010 Saint Hilaire-saint- Mesmin (Golden) L100481	WG	Foliar Spray	0.36	1000	4	0 28 35 42	0.33 0.16 0.10 0.08	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016, L0152/01
Spain, 2010 Bellvis (Golden Delicious) L100482	WG	Foliar Spray	0.36	1000	4	0 28 35 42	0.55 0.21 0.14 0.14	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016, L0152/01
Greece, 2010 Nea-Trapezounda (Fuji) L100483	WG	Foliar Spray	0.36	1000	4	0 29 36 42	0.77 0.40 0.22 0.27	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016, L0152/01
France South, 2010 Orange (Smothie) L100484	WG	Foliar Spray	0.36	1000	4	0 28 36 42	0.50 0.16 0.21 0.12	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016,L0152/01
Italy, 2010 Arcagna Montanaso L.do (Top Red) L100485	WG	Foliar Spray	0.36	1000	4	0 28 35 42	1.8 0.32 0.48 0.65	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016,L0152/01
Spain, 2010 Bellvis (Granny Smith) L100486	WG	Foliar Spray	0.36	1000	4	0 28 35 42	0.15 0.08 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016, L0152/01
Italy, 2010 Faedo Valtellino (Stark) L100487	WG	Foliar Spray	0.36	1000	4	0 28 36 42	0.35 0.27 0.34 0.12	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059016,L0152/01

# Pear

Four field trials with pears were conducted in 2004 in Northern France, Denmark, Germany and the Netherlands. The specimens were analysed for residues of dithianon according to method M 3442 (= RLA 12616) with an LOQ of 0.01 mg/kg. The residue trials data for pear, whole fruit are presented in Table 47.

T 11 47	D 11	0 11 1 1	•
Table 47	Residues	of dithianon	in pears
10010 17	10010000	01 01011011011	in pears

Country, year,	Applica	Application						Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	PHI, Days	Residue, mg/kg	method of analysis
Germany, 2004 Werder, Brandenburg (Conference) ACK/04/04	WG	Foliar spray	0.53	1000	12	7 14 22		2005/1014012, RLA 12616

Country, year,	Applica	tion				PHI,		Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	Days	Residue, mg/kg	method of analysis
The Netherlands, 2004 Limburg (Doyenné du Comice) AGR/05/04		Foliar spray	0.53	1000	12	0 8 15 21 28	1.9 0.82 0.79 0.37 0.30	2005/1014012, RLA 12616
Denmark, 2004 Fuenen (Clara Friis) ALB/01/04	WG	Foliar spray	0.53	1000	12	0 7 14 21 28	1.7 0.86 0.82 0.69 0.87	2005/1014012, RLA 12616
France North, 2004 Alsace (Williams) FAN/04/04	WG	Foliar spray	0.53	1000	12	0 7 14 21 28	2.0 0.74 0.52 0.39 0.33	2005/1014012, RLA 12616

### Cherries

Trials on cherries were conducted in Germany in the years 1985, 1986 and 1995. The residue data (whole fruit) are summarized in Table 48. Samples from 1985 and 1986 were analysed for dithianon residues by method CM-RU 107/34/10 (HPLC-UV) with an LOQ of 0.05 mg/kg and a recovery of about 75%. The samples from the trials conducted in the year 1995 were analysed by method FAMS 028-01 (HPLC-UV). The LOQ for dithianon was 0.02 mg/kg in cherry fruit with recoveries at 89%.

Table 48 Residues of dithianon in cherries, sour

Country, year,	Applica	ation				PHI.		Doc ID-No,	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	Days	Residue, mg/kg	method of analysis	
Germany, 1985 Schwabenheim (Schattenmorellen) C 85 12 72 B	SC	Foliar spray	0.53	500	3	0 14 21 28	1.9 1.3 0.80 0.41	DT-712-006, CM-RU 107/34/10	
Germany, 1986 Schwabenheim (Schattenmorellen) C 86 02 72 D	SC	Foliar spray	0.53	390	3	0 14 21 28 35	2.5 0.92 0.49 0.26 0.20	DT-712-007, CM-RU 107/34/10	
Germany, 1986 Schwabenheim (Schattenmorellen C 86 02 72 S	SC	Foliar spray	0.53	390	3	0 14 21 28 35	2.2 0.86 0.28 0.22 0.12	DT-712-008, CM-RU 107/34/10	
Germany, 1995 Bornheim-Brenig (Schattenmorellen) 95-078-01	WG	Foliar spray	0.53	1500	3	-0 +0 9 15 22 28	0.48 2.9 0.86 0.34 0.17 0.12	DT-712-028, FAMS 028-01	
Germany, 1995 Meckenheim Altendorf (Schattenmorellen) 95-078-02	WG	Foliar spray	0.53	1500	3	-0 +0 8 14 21 28	0.77 1.6 1.1 1.3 0.34 0.23	DT-712-028, FAMS 028-01	

Country, year,	Applica	tion				PHI,		Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	Days	Residue, mg/kg	method of analysis
Germany, 1995 Grafschaft Gelsdorf (Schattenmorellen) 95-078-03	WG	Foliar spray	0.53	750	3	21	1.5 3.5 1.2 0.97 0.41 0.26	DT-712-028, FAMS 028-01
Germany, 1995 Winningen, Mosel (Schattenmorellen) 95-078-04	WG	Foliar spray	0.53	750	3	22	2.0 2.0 1.1 0.63 0.20 0.26	DT-712-028, FAMS 028-01

In 2009 and 2010, trials with sweet and sour cherries were conducted in France, Germany, Italy, Greece, the Netherlands, the United Kingdom and Spain in order to determine the residues of dithianon and its metabolite Reg. No. 4110904. The results for whole fruits are summarized in Table 49. Samples were analysed with method L0152/01 for dithianon (LOQ 0.01 mg/kg) and its metabolite Reg. No. 4110904 (LOQ 0.01 mg/kg). The recoveries were 93–94% for dithianon and 89–111% for the metabolite Reg. No. 4110904 at fortification levels of 0.01 and 0.1 mg/kg.

Country, year,	Applica	tion				PHI,	Residue, mg/kg		Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Dithianon		method of analysis
United Kingdom, 2010, Essex (Stella) Cherries, sweet, L100277	WG	Foliar spray	0.53	1000	3	0 13 20 26	2.4 1.0 0.59 0.34	0.05 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
France (S), 2010 Goult, (Folfer) Cherries, sweet L100281	WG	Foliar spray	0.53	1000	3	0 14 21 26	1.4 0.27 0.15 0.19	0.3 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
Greece, 2010 Pella, (Bourla) Cherries, sweet L100282	WG	Foliar spray	0.53	1000	3	0 14 21 26	1.3 0.20 0.04 0.03	0.02 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
The Netherlands, 2010, Ressen, (Morellenfeuer) Cherries, sour L100279	WG	Foliar spray	0.53	1000	3	0 13 20 26	3.0 0.95 0.21 0.82	0.05 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
Germany, 2010, Gau Algesheim (Schattenmorellen) Cherries, sour L100280	WG	Foliar spray	0.53	1000	3	0 13 20 26	3.0 1.2 0.89 1.0	0.04 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
Italy, 2010, Castellfranco, (Marasca di Vigo) Cherries, sour L100283	WG	Foliar spray	0.53	1000	3	0 14 20 26	3.7 0.33 0.19 0.17	0.02 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
Italy, 2010, Modena, (Montmoreny) Cherries, sour L100284	WG	Foliar spray	0.53	1000	3	0 14 20 25	3.2 1.5 0.90 0.63	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01

Table 49 Residues of dithianon and metabolite Reg. No. 4110904 in cherries, sweet and sour

Country, year, location, (variety), trial no	Applica Form	tion Method	kg ai/ha	Water L/ha	No	PHI, days	Residue, I Dithianon		Doc ID-No, method of analysis
Germany, 2009 Gau Algesheim (Sweet heart) CFL0008-01	WG	Foliar spray	0.53	1000	3	0 13 20 27	0.99 0.74 0.50 0.19	<0.01 < 0.01 < 0.01 < 0.01 < 0.01	2011/1050127, L0152/01
France North, 2009/2010 Coulanges la Vineuse (Hedelfinger) CFL0008-02	WG	Foliar spray	0.53	1000	3	0 14 21 28	1.4 0.33 0.09 0.08	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01
The Netherlands, 2009, Ressen (Kelleriis 16) CFL0008-03	WG	Foliar spray	0.53	1000	3	0 14 21 28	1.3 0.58 0.38 0.20	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01
UK, 2009 Boxford, (Morello) CFL0008-04	WG	Foliar spray	0.53	1000	3	0 13 20 27	2.0 0.89 0.69 0.08	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01
Spain, 2010 Beniaia (Sweet heart) CFL0008-05	WG	Foliar spray	0.53	1000	3	0 14 21 28	2.6 0.72 0.43 0.13	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01
Greece, 2010 Platani, Pella (Lapin) CFL0008-06	WG	Foliar spray	0.53	1000	3	0 14 21 28	1.4 0.81 0.45 0.33	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01
France South, 2010 Apt, (Montmorency) CFL0008-07	WG	Foliar spray	0.53	1000	3	0 14 21 28	2.5 0.59 0.57 0.52	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01
Italy, 2010 Rivoli Veronese (Stevemberg) CFL0008-08	WG	Foliar spray	0.53	1000	3	0 14 21 28	1.1 0.28 0.21 0.17	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014785, L0152/01

# Peach

Trials with dithianon on peaches were conducted in 2001 in Southern France. Fruits were analysed with a "GRAPPA in-house" HPLC-method (UV-detection) for dithianon (LOQ 0.05 mg/kg) using extraction with 2N hydrochloric acid and dichloromethane. After some purification steps the extract is further purified by using SPE (Sep-Pak Florisil Plus). The recovery of dithianon in peaches ranged from 78 to 85%. The data are summarized in Table 50.

Table 50 Residues of dithianon in peaches

Country, year,	Applicat	tion				PHI,		Residue,	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Commodity	mg/kg	Doc ID-No
France South, 2001 Montfavet (Flavorcrest) RE01029	WG		0.45	960 - 980	2	25 25		0.24 0.25	2002/1025517
France South, 2001 Grabeson (Fantasia) RE01030	WG		0.46	580 - 600	2	28 28	Whole fruit Pulp	0.05 0.05	2002/1025517
France South, 2001 Montans (Red Top) RE01031	WG		0.47	790 - 830	2	27 27		0.14 0.15	2002/1025517

Country, year,						PHI,		Residue,	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Commodity	mg/kg	Doc ID-No
France South, 2001 Montans (Dixired) RE01032	WG		0.46	800 - 805	2	-		0.13 0.14	2002/1025517

Trials on peaches were conducted in 2009 and 2010 in Germany, France, Greece, Italy and Spain. Specimens were analysed by method L0152/01 for dithianon and its metabolite Reg. No. 4110904 (LOQ each 0.01 mg/kg). The recoveries were about 81% for dithianon and about 102% for the metabolite Reg. No. 4110904 at fortification levels of 0.01 and 0.1 mg/kg. The results for peaches, whole fruit are summarized in Table 51.

Table 51 Residues of dithianon and metabolite Reg. No. 4110904 in peaches

Country, year,	Applica	ition		_		PHI.	Residue,	ma/ka	Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	Days	dithianon	4110904	method of analysis
Germany, 2009 Windischenbach (Red Heaven) CFL0006-01	WG	Foliar spray	0.53	1000	3	0 20 27 34	4.2 1.6 0.66 0.60	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014784, L0152/01
France (N), 2009 Mont Villers (Sanguine) CFL0006-02	WG	Foliar spray	0.53	1000	3	0 22 29 36	1.4 0.24 0.36 0.38	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014784, L0152/01
France South (S), 2009, Mirmande (September Star) CFL0006-03	WG	Foliar spray	0.53	1000	3	0 21 28 35	0.56 0.24 0.11 0.11	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014784, L0152/01
Greece, 2009 Galatades (A37) CFL0006-04	WG	Foliar spray	0.53	1000	3	0 21 27 35	0.76 0.17 0.08 0.07	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014784, L0152/01
Italy, 2009 San Giovanni Lupatoto (Roberta Barolo) CFL0006-05	WG	Foliar spray	0.53	1000	3	0 20 28 35	1.3 0.32 0.43 0.15	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014784, L0152/01
Spain, 2009 Turis, (Federica) CFL0006-06	WG	Foliar spray	0.53	1000	3	0 21 28 35	1.3 0.56 0.19 0.13	< 0.01 < 0.01 < 0.01 < 0.01	2010/1014784, L0152/01
Germany, 2010 Coswig, (Redhaven) L100368	WG	Foliar spray	0.53	1000	3	0 21 28 35	2.6 1.0 0.60 0.24	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059017, L0152/01
France (N), 2010 Loromontzey (Sanguine chanas) L100369	WG	Foliar spray	0.53	1000	3	0 21 29 36	1.9 0.60 0.33 0.30	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059017, L0152/01
Fance (S), 2010 Garons, (Orion) L100370	WG	Foliar spray	0.53	1000	3	0 21 28 35	0.40 0.13 0.18 0.15	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059017, L0152/01
Greece, 2010 Galatades (Katerina) L100371	WG	Foliar spray	0.53	1000	3	0 21 28 34	4.6 0.36 0.44 0.24	< 0.01 < 0.01 < 0.01 < 0.01	2011/1059017, L0152/01

Country, year,	Applica	tion	-			PHI,	Residue, 1	ma/ka	Doc ID-No,	
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	Days		4110904	method of analysis	
Italy, 2010 Ceolara Caselle di Sommacampagna (Royal Glory) L100372	WG	Foliar spray	0.53	1000	3	0 21 28 35	4.1 0.36 0.07 0.15	0.02 < 0.01 < 0.01 < 0.01	2011/1059017, L0152/01	
Spain, 2010 Turis (Spring crest) L100373	WG	Foliar spray	0.53	1000	3	0 21 28 35	2.2 0.45 0.16 0.10	0.02 < 0.01 < 0.01 < 0.01	2011/1059017, L0152/01	

# Plums

During the 1996 growing season, three field trials with plums were conducted in France. Dithianon residues in plums were analysed after acetonitrile extraction with an HPLC-UV (LOQ 0.03 mg/kg, recovery 77%, GRAPPA in-house method). Further trials on plums were conducted in 1998 in France. Dithianon residues were analysed with method FAMS 028-02. The results are summarized in Table 52.

Country, year,	Applic	ation				PHI,			Doc ID-No,
location, (variety),	Form	Method	kg	Water	No	days	Commodity	Residue, mg/kg	method of
trial no	гопп	Method	ai/ha	L/ha		uays			analysis
$E_{response}(S) = 1006$					2	15	Flesh	0.06	DT-712-031,
France (S), 1996	WG	Foliar	0.35	500		30	Flesh	0.07	GRAPPA in-
Riocaud Aquitaine	WG	Spray	0.35	300		15	Whole fruit a)	0.06	house method
(Ente 707), 54102						30	Whole fruit	0.06	HPLC-UV
France (S), 1996					2	15	Flesh	0.03	DT-712-031,
Labastide St Pierre	WG	Foliar	0.35	600		30	Flesh	< 0.03	GRAPPA in-
(Reine-Claude),	WG	spray	0.55	000		15	Whole fruit	0.03	house method
54103						30	Whole fruit	< 0.03	HPLC-UV
France (S), 1996					2	15	Flesh	0.12	DT-712-031,
Malaucène	WG	Foliar	0.35	500		24	Flesh	0.17	GRAPPA in-
(Golden Japan),	wG	Spray	0.55	500		15	Whole fruit	0.11	house method
54104						24	Whole fruit	0.15	HPLC-UV
					2	-0	Flesh	0.11	
						-0	Whole fruit	0.10	
France (N), 1998						+0	Flesh	0.17	
						+0	Whole fruit	0.16	
80400 Douilly (Mirabelle de	WG	Foliar	0.35	1000		3	Flesh	0.20	DT-712-032,
	WG	Spray	0.55	1000		3	Whole fruit	0.18	FAMS 028-02
Nancy) 98-116-001						7	Flesh	0.14	
98-110-001						7	Whole fruit	0.13	
						14	Flesh	0.14	
						14	Whole fruit	0.13	
					2	-0	Flesh	0.07	
						-0	Whole fruit	0.07	
Eman an (NI) 1009						+0	Flesh	0.17	
France (N), 1998 55210 Vieville sous						+0	Whole fruit	0.16	
	WG	Foliar	0.35	1000		3	Flesh	0.21	DT-712-032,
les cotes, (Mirabelle	WG	Spray	0.55	1000		3	Whole fruit	0.19	FAMS 028-02
de Nancy) 98-116-002						7	Flesh	0.11	
						7	Whole fruit	0.10	
						14	Flesh	0.13	
						14	Whole fruit	0.12	

Country, year,	Applica	ation				PHI,			Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days Commodi		Residue, mg/kg	method of analysis
					2	-0	Flesh	< 0.02	
						-0	Whole fruit	< 0.02	
						+0	Flesh	0.03	
France (N), 1998						+0	Whole fruit	0.03	
08130 Suzanne Ouetsche), 98-116-	WG	Foliar	0.35	1000		3	Flesh	0.03	DT-712-032,
(Quetsche), 98-116-	wu	Spray	0.55	1000		3	Whole fruit	0.03	FAMS 028-02
003	3					7	Flesh	0.02	17111015 020-02
						7	Whole fruit	< 0.02	
						14	Flesh	< 0.02	
						14	Whole fruit	< 0.02	
					2	-0	Flesh	0.03	
						-0	Whole fruit	0.03	
						+0	Flesh	0.06	
France (N), 1998						+0	Whole fruit	0.06	
80400 Douilly	WG	Foliar	0.35	1000		3	Flesh	0.06	DT-712-032,
(Quetsche d'Alsace)		Spray	0.55	1000		3	Whole fruit	0.06	FAMS 028-02
98-116-004						7	Flesh	0.05	
						7	Whole fruit	0.05	
						15	Flesh	0.04	
						15	Whole fruit	0.04	

^a Residue concentrations calculated for whole fruit including stones.

During the 2009/2010 growing seasons, trials in plums were conducted in Northern France, Italy, Spain and Germany. The results are summarized in Table 53. Shortly before analyses the plum fruits were pitted and the weight ratio of the stones and flesh was determined. Only the flesh was analysed. The residues were calculated for the whole fruit based on the individual ratio stone to flesh. All specimens were analysed for dithianon and its metabolite Reg. No. 4110904 using BASF method number L0152/01 which has a limit of quantitation of 0.01 mg/kg for each of the two analytes.

Table 53 Residues of dithianon and metabolite Reg. No. 4110904 in plums, residues calculated for whole fruit

Country, year,	Applica	tion	-	•		PHI,	Residue, 1	ma/ka	Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days		4110904	method of analysis
Germany, 2009 Gau Algesheim (Elena), L090435	WG	Foliar spray	0.53	1000	3	0 14 21 27	0.17 0.09 0.10 0.10	< 0.01 < 0.01 < 0.01 < 0.01	2010/1006343, L0152/01
Germany, 2009 Werder (Cacaks Fruchtbare) L090436	WG	Foliar spray	0.53	1000	3	0 14 20 27	0.12 0.04 0.04 0.03	< 0.01 < 0.01 < 0.01 < 0.01	2010/1006343, L0152/01
France North, 2009 Billy sous les Cotes Lorrains (Mirabelle), L090437	WG	Foliar spray	0.53	1000	3	0 14 22 28	0.33 0.32 0.27 0.24	< 0.01 < 0.01 < 0.01 < 0.01	2010/1006343, L0152/01
France North, 2009 Vigneulles les Hattochatel Lorrains (Quetche d'Alsace) L090438	WG	Foliar spray	0.53	1000	3	0 14 21 28	0.27 0.10 0.10 0.07	< 0.01 < 0.01 < 0.01 < 0.01	2010/1006343, L0152/01
Spain, 2009 El Coronil Andalucia/Sevilla (Friar), L090439	WG	Foliar spray	0.53	1000	3	0 13 20 28	0.09 0.03 0.05 0.06	< 0.01 < 0.01 < 0.01 < 0.01	2010/1006343, L0152/01

Country, year,	Applica	tion	1	1		PHI,	Residue,	ma/ka	Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	dithianon	4110904	method of analysis
Italy, 2009 Barbiano di Cotignola Ravenna (Bella die Barbiano) L090440	WG	Foliar spray	0.53	1000	3	0 14 21 28	0.08 0.04 0.05 0.04	< 0.01 < 0.01 < 0.01 < 0.01	2010/1006343, L0152/01
Germany, 2010 Gau Algesheim (Hauszwetsche) L100212	WG	Foliar spray	0.53	1000	3	0 15 22 29	0.19 0.22 0.18 0.06	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050128, L0152/01
Germany, 2010 Werder (Elena), L200213	WG	Foliar spray	0.53	1000	3	0 15 22 29	0.26 0.34 0.32 0.13	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050128, L0152/01
Belgium, 2010 Gelrod (Valor), L100214	WG	Foliar spray	0.53	1000	3	0 14 21 29	0.20 0.22 0.25 0.13	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050128, L0152/01
France North, 2010 Vigneulies les Hattonchâtel (Mirabelle de Nancy) L100215	WG	Foliar spray	0.53	1000	3	0 15 21 29	0.59 0.55 0.40 0.21	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050128, L0152/01
Spain, 2010 Utrera (Fortune), L100216	WG	Foliar spray	0.53	1000	3	0 14 21 27	0.32 0.73 0.45 0.23	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050128, L0152/01
Italy, 2010 Barbiano di Cotignola (T.C. Sun), L100217	WG	Foliar spray	0.53	1000	3	0 14 21 28	0.10 0.21 0.21 0.10	< 0.01 < 0.01 < 0.01 < 0.01	2011/1050128, L0152/01

#### Grapes

Trials on grapes were conducted in Northern Europe in the 1970s, 1980s and early 1990s. The samples were either analysed for dithianon by HPLC-UV (methods RU 501/02/10, RU 107/34/10, SFS AMS 003-02 and FAMS 028-02), GC-ECD (methods P-14.078.01 and P-14.013.02) or, in one case, by a colorimetric method. The LOQs of all methods applied vary between 0.01 mg/kg and 0.05 mg/kg and the recoveries from 71 to 100%.

Further trials were conducted from 2001 to 2004 in France (North and South), Germany, Greece, Spain and Italy. The fruits were analysed for residues of dithianon using methods M 3442 (RLA 12616) or version RLA 12616.05V with an LOQ of 0.01 mg/kg and mean recovery rates of 70–110%. In the trial FTL/17/03 conducted in Southern France, the harvest was very poor due to extremely dry weather conditions in this area. Because of this, the last sampling was not possible anymore as no more grape samples were left at that time. These extreme conditions also caused considerably higher residues found in this trial compared to all other ones. A summary of the residue trials data is presented in Table 54. The scaled residues according to Slovenian GAP ( $8 \times 0.35$  kg ai/ha) and to Serbian GAP ( $3 \times 0.35$  kg ai/ha) are shown in brackets.

T 11 54 D 11	0 11.1 1	1 1	1 1 1 1
Table 54 Residues o	t dithianon ir	oranes scaled	values in brackets
Tuble 34 Residues 0	i unimunon n	i grupes, seureu	values in oracito

Country, year, location,	Applica	ation				PHI,		Doc ID-No,
(variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, mg/kg	method of analysis, remarks
Germany, 1979 Hagnau (Müller-Thurgau) C 79 09 06 01	WP	Foliar spray	0.47	1500	8	0 14 21 28 35		DT-713-006, colorimetric determination, LOQ 0.05 mg/kg, method not further described

Country was location	Application					DIII		Doc ID-No,
Country, year, location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	PHI, days	Residue, mg/kg	method of analysis, remarks
Germany, 1986 Bockenheim (Müller-Thurgau) C 86 04 34	SC	Foliar spray	0.23 - 0.6	200 - 533	8	0 14 28 35 42	1.2 0.88 0.49 0.64 0.62 ( <u>0.36)</u>	DT-713-031, RU 107/34/10
Germany, 1986 Schwabenheim (Müller-Thurgau) C 86 04 72	SC	Foliar spray	0.23 - 0.44	200 - 350	8	0 14 28 35 42	0.96 0.70 0.47 1.2 1.0 ( <u>0.80</u> )	DT-713-039, RU 107/34/10
Germany, 1987 Bockenheim (Müller-Thurgau) C 87 14 34	SC	Foliar spray	0.3 - 0.6	266 - 533	8	0 14 28 35 42	0.98 0.97 0.63 0.73 0.25 ( <u>0.15)</u>	DT-713-034, RU 107/34/10
Germany, 1987 Gleiszellen (Müller-Thurgau) C 87 14 03	SC	Foliar spray	0.23 - 0.68	600 - 1800	8	0 14 28 35 42	6.5 3.7 2.1 1.8 2.7 ( <u>1.4</u> )	DT-713-035, RU 107/34/10
Germany, 1987 Schwabenheim (Müller-Thurgau) C 87 14 72	SC	Foliar spray	0.38 - 0.56	1000 - 1500	8	0 14 28 35 42	1.7 1.4 0.86 1.6 1.2 ( <u>0.75</u> )	DT-713-037, RU 107/34/10
Germany, 1987 Deidesheim (Portugieser) CU 88-501	SC	Foliar spray	0.19 - 0.68	170 - 600	7	0 14 28 35 42	4.5 9.4 3.0 4.5 1.9 (1.0)	DT-713-038, RU 107/34/10
Germany, 1988 Geisenheim (Riesling) R 117-88	SC	Foliar spray	0.25 - 0.56	800 - 1800	8	0 14 28 35 42	2.2 1.5 1.0 0.94 0.97 (0.61)	DT-713-029, SFS AMS 003-02
Germany, 1988 Geisenheim (Riesling) R 117-88 / 05393	WP	Foliar spray	0.25 - 0.56	800 - 1800	8	0 14 28 35 42	1.9 1.8 0.68 0.56 0.30 ( <u>0.19</u> )	DT-713-030, SFS AMS 003-02
Germany, 1989 Veitshöchheim (Müller-Thurgau) R 79/89	EC	Foliar spray	0.4 - 0.47	300 - 350	8	0 14 28 35 42 49	3.3 2.2 3.6 3.1 3.4 (2.5) 3.0	DT-713-043, P-14-013.02
Germany, 1989 Geisenheim (Riesling) R 80/89	EC	Foliar spray	0.33 - 0.5	1000 - 1500	8	0 14 28 35 42 49	0.26 0.25 0.25 0.41 0.40 0.69 ( <u>0.48</u> )	DT-713-043, P-14-013.02
Germany, 1989 Neustadt (Portugieser) R 81/89	EC	Foliar spray	0.17 - 0.6	170 - 600	8	0 14 28 35 42 49	3.5 1.7 1.8 1.3 1.2 1.3 ( <u>0.76</u> )	DT-713-043, P-14-013.02

Constant in the sting	Application					DIII		Doc ID-No,
Country, year, location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	PHI, days	Residue, mg/kg	method of analysis, remarks
Germany, 1989 Ingelheim (Spätburgunder) R 82/89	EC	Foliar spray	0.33 - 0.5	1000 - 1500	8	0 14 28 35 42 49	1.4 1.3 1.3 0.69 0.61 ( <u>0.43</u> ) 0.54	DT-713-043, P-14-013.02
Germany, 1990 Veitshöchheim (Müller Thurgau) R 166-90	EC	Foliar spray	0.4 - 0.53	300 - 400	8	0 14 29 35 42 47 49	4.6 2.6 2.3 2.2 1.6 1.8 ( <u>1.2</u> ) 1.6	DT-713-045, P-14-013.02
Germany, 1993 Partenheim (Dornfelder) SKG-9307-01	WP	Foliar spray	0.25 - 0.48	199 - 386	8	0 14 28 42 49	1.2 1.4 0.58 0.61 ( <u>0.44</u> ) 0.45	DT-790-065, P-14.078.01
Germany, 1994 Weisenheim am Sand (Portugieser) 9402-01	WP	Foliar spray	0.27 - 0.48	217 - 385	8	43	0.69 ( <u>0.50</u> )	DT-713-114, FAMS 028-01
Germany, 1994 Weisenheim am Sand (Riesling) 9402-02	WP	Foliar spray	0.27 - 0.5	214 - 391	8	42	1.5 ( <u>1.05</u> )	DT-713-114, FAMS 028-01
Germany, 1995 Weisenheim am Sand (Müller Thurgau) 95-085-01	WG	Foliar spray	0.24 - 0.64	688 - 1817	8	+0 -0 14 28 35 43 49	1.8 2.4 1.4 1.5 1.2 0.98 ( <u>0.54</u> ) 0.57	DT-713-058 FAMS 028-02
Germany, 1995 Bockenheim (Spätburgunder) 95-085-02	WG	Foliar spray	0.25 - 0.63	704 - 1802	8	+0 -0 14 28 35 42 49	2.8 3.6 1.5 2.6 2.2 2.2 ( <u>1.2</u> ) 0.91	DT-713-058 FAMS 028-02
Germany, 1995 Gau Algesheim (Dornfelder) 95-085-03	WG	Foliar spray	0.28 - 0.68	197 - 486	8	+0 -0 14 28 35 41 49	2.3 4.5 2.0 2.0 1.9 0.57 ( <u>0.29</u> ) 0.56	DT-713-058 FAMS 028-02
Germany, 1995 Gau Algesheim (Silvaner) 95-085-04	WG	Foliar spray	0.25 - 0.64	182 - 456	8	+0 -0 13 27 34 42 48	$ \begin{array}{c} 1.3 \\ 1.8 \\ 1.0 \\ 0.66 \\ 0.64 \\ 0.58 \\ 0.62 (\underline{0.34}) \end{array} $	DT-713-058 FAMS 028-02
Germany, 1995 Weisenheim am Sand (Portugieser) 95-115-01	WG	Foliar spray	0.25 - 0.64	701 - 1827	8	+0 -0 7 14 28 35 42	2.4 2.4 1.9 1.1 1.4 1.4 1.4 1.1 ( <u>0.60</u> )	DK-713-032, FAMS 002-04

Country, year, location, (variety), trial no	Application					DIII	1	Doc ID-No,
	Form	Method	kg ai/ha	Water L/ha	No	PHI, days	Residue, mg/kg	method of analysis, remarks
Germany, 1995 Bockenheim (Scheurebe) 95-155-02	WG	Foliar spray	0.25 - 0.63	703 - 1812	8	+0 -0 7 14 28 35 42	2.2 3.5 2.7 2.1 2.3 1.1 1.3 ( <u>0.72</u> )	DK-713-032, FAMS 002-04
Germany, 1995 Heidesheim (Portgieser) 95-115-03	WG	Foliar spray	0.25 - 0.65	178 - 465	8	+0 -0 8 15 29 35 43	2.5 3.0 1.3 1.6 1.3 0.72 1.7 (0.92)	DK-713-032, FAMS 002-04
Germany, 1995 Gau-Algesheim (Silvaner) 95-115-04	WG	Foliar spray	0.25 - 0.64	177 - 456	8	+0 -0 6 13 27 35 41	1.4 1.8 1.2 1.6 0.8 0.59 0.80 ( <u>0.44</u> )	DK-713-032, FAMS 002-04
Spain, 2001 Sevilla, Andalucia (Cardenal) ALO/1901	WG	Foliar spray	0.56	1000	8	0 27 34 41 48	0.87 0.38 0.43 0.34 ( <u>0.21</u> ) 0.26	2002/1008746, 2003/1018259, RLA 12616
Germany, 2001 Wachenheim (Portugieser) DU4/04/01	WG	Foliar spray	0.56	1000	8	0 28 35 42 48	1.7 2.4 1.5 1.3 ( <u>0.81</u> ) 1.2	2002/1008746, 2003/1018259, RLA 12616
France North, 2001 Handschuheim (Pinot noir) FAN/14/01	WG	Foliar spray	0.56	1000	8	0 27 34 41 48	2.5 0.96 0.85 1.4 ( <u>0.88</u> ) 0.90	2002/1008746, 2003/1018259, RLA 12616
Greece, 2001 Edessa, Nisi (Mochato) HEL/12/01	WG	Foliar spray	0.56	1000	8	0 28 35 42 49	5.6 4.7 3.2 2.7 3.4 ( <u>2.1</u> )	2002/1008746, 2003/1018259, RLA 12616
Italy, 2001 Monleale (Croatina) ITA/25/01	WG	Foliar spray	0.56	1000	8	0 28 35 42 49	1.7 2.4 1.5 1.3 ( <u>0.81</u> ) 1.2	2002/1008746, 2003/1018259, RLA 12616
Italy, 2001 Monleale (Timorasso) ITA/26/01	WG	Foliar spray	0.56	1000	8	0 29 35 42 49	2.1 0.98 1.0 1.1 ( <u>0.69</u> ) 0.79	2002/1008746, 2003/1018259, RLA 12616
Spain, 2002 Utrera (Cardenal) ALO/16/02	WG	Foliar spray	0.56	1000	8	0 28 35 42 49	0.98 0.53 0.36 0.52 ( <u>0.33</u> ) 0.25	2003/1004349, RLA 12616
Spain, 2002 La Frontera (Palomino) AYE/12/02	WG	Foliar spray	0.56	1000	8	0 27 34 41 48	1.0 0.85 1.1 0.59 ( <u>0.37</u> ) 0.53	2003/1004349, RLA 12616

Country, year, location, (variety), trial no	Application					DIII		Doc ID-No,
	Form	Method	kg ai/ha	Water L/ha	No	PHI, days	Residue, mg/kg	method of analysis, remarks
France South, 2002 Pont de L'isère (Syrah) FBD/10/02	WG	Foliar spray	0.56	1000	8	0 28 34 41 49	8.5 6.8 5.5 7.4 ( <u>4.6</u> ) 4.7	2003/1004349, RLA 12616
France South, 2002 Fronton (Negrette) FTL/11/02	WG	Foliar spray	0.56	1000	8	0 29 36 43 50	2.1 1.1 1.2 1.5 ( <u>0.94</u> ) 1.1	2003/1004349, RLA 12616
Italy, 2002 Monleale (Croatina) ITA/18/02	WG	Foliar spray	0.56	1000	8	0 29 36 42 50	1.1 0.34 0.33 0.38 0.44 (0.28)	2003/1004349, RLA 12616
Spain, 2003 Andalucia, Sevilla (Cardenal) ALO/18/03	WG	Foliar spray	0.56	1000	8	0 28 35 42 49	5.1 1.5 0.72 1.1 ( <u>0.69</u> ) 0.69	2003/1001125, RLA 12616.05V
Italy, 2003 Monleale, Piemonte (Croatina) ITA/12/03	WG	Foliar spray	0.56	1000	8	0 28 35 41 49	2.8 1.4 1.6 1.0 ( <u>0.63</u> ) 0.93	2003/1001125, RLA 12616.05V
Germany, 2003 Kesten (Müller Thurgau) AGR/23/03	WG	Foliar Spray	0.53	800	3	0 21 27 35 42	2.8 1.8 1.5 0.87 (0.57) 0.10	2004/1000746, RLA 12616
Germany, 2003 Kesten (Dornfelder) AGR/24/03	WG	Foliar Spray	0.53	800	3	0 21 27 35 42	3.5 2.5 1.4 1.5 ( <u>0.99</u> ) 1.3	2004/1000746, RLA 12616
Spain, 2003 Utrera, Andalucia (Cardenal) ALO/19/03	WG	Foliar Spray	0.53	800	3	0 21 28 35 42	1.8 0.65 0.93 0.41 0.44 ( <u>0.29</u> )	2004/1000746, RLA 12616
France North, 2003 Handschuheim (Pinot noir) FAN/22/03	WG	Foliar Spray	0.53	800	3	0 21 28 35 42	2.6 1.7 1.7 1.6 ( <u>1.1</u> ) 1.3	2004/1000746, RLA 12616
France South, 2003 Pont de L'isère (Syrah) FBD/14/03	WG	Foliar Spray	0.53	800	3	0 21 27 35 41	4.6 3.9 1.9 1.8 ( <u>1.2</u> ) 1.5	2004/1000746, RLA 12616
France North, 2003 Martigné-Biand (Cabernet Sauvignon) FBM/16/03	WG	Foliar Spray	0.53	800	3	0 21 29 35 43	1.3 1.8 1.6 1.0 1.1 ( <u>0.73)</u>	2004/1000746, RLA 12616
France South, 2003 Fronton, Midi-Pyrenees (Negrette) FTL/17/03	WG	Foliar Spray	0.53	800	3	0 21 28 35	7.5 8.4 6.6 4.9	2004/1000746, RLA 12616 Extreme weather conditions, high temperature and dryness

Country was location	Applic	ation				рин		Doc ID-No,
Country, year, location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	PHI, days	Residue, mg/kg	method of analysis, remarks
Italy, 2003 Monleale, Piemonte (Dolcetto) ITA/13/03	WG	Foliar Spray	0.53	800	3	0 21 29	2.3 2.0 1.6	2004/1000746, RLA 12616
Spain, 2004 Utrera, Andalucia (Alren) ALO/29/04	WG	Foliar Spray	0.53	800	3	0 21 28 35 42	1.4 0.70 0.70 0.60 0.72 ( <u>0.48</u> )	2005/1004963, RLA 12616
Germany, 2004 Wiesloch (Riesling) DU2/11/04	WG	Foliar Spray	0.53	800	3	0 20 28 35 42	1.6 1.5 1.1 0.95 ( <u>0.63</u> ) 0.70	2005/1004963, RLA 12616
Germany, 2004 Eschbach (Portugieser) DU4/11/04	WG	Foliar Spray	0.53	800	3	0 21 28 35 42	1.1 0.69 0.42 0.48 0.76 ( <u>0.50</u> )	2005/1004963, RLA 12616
France North, 2004 Handschuheim (Auxerrols) FAN/18/04	WG	Foliar Spray	0.53	800	3	0 21 28 35 42	1.7 1.3 1.4 0.79 0.89 ( <u>0.59</u> )	2005/1004963, RLA 12616
France South, 2004 Pont de L'isère (Syrah) FBD/19/04	WG	Foliar Spray	0.53	800	3	0 21 29 35 42	3.2 0.73 0.53 0.59 ( <u>0.39</u> ) 0.51	2005/1004963, RLA 12616
France North, 2004 Martigné-Brand (Chenin) FBM/11/04	WG	Foliar Spray	0.53	800	3	0 20 28 35 42	1.7 1.9 2.4 1.3 ( <u>0.86</u> ) 1.3	2005/1004963, RLA 12616
France South, 2004 Fronton, Midi-Pyrenees (Negrette) FTL/18/04	WG	Foliar Spray	0.53	800	3	0 21 29 35 42	0.67 1.1 0.74 0.75 0.97 ( <u>0.64</u> )	2005/1004963, RLA 12616
Greece, 2004 Naousa, Macedonia (Xinomavro) GRE/20/04	WG	Foliar Spray	0.53	800	3	0 21 29 35 42	2.6 2.1 1.6 1.9 ( <u>1.3</u> ) < 0.01	2005/1004963, RLA 12616
Italy, 2004 Monleale, Piemont (Croatina) ITA/19/04	WG	Foliar Spray	0.53	800	3	0 20 28 34 42	1.3 0.61 0.75 0.85 ( <u>0.56</u> ) 0.57	2005/1004963, RLA 12616

During the growing season of 2010, four trials with grapes were conducted in Greece, Italy and Spain in order to determine the influence of different water volumes on the residue situation. Each field trial consisted of five plots and a control plot. All treated grape specimens were analysed for dithianon and its metabolite Reg. No. 4110904 according to analytical method L0152 (LC-MS/MS, LOQ for each analyte 0.01 mg/kg). The results are summarized in Table 55.

Country, year,	Applic	ation				DIII	Residue, mg/kg		
location, (variety),	Form	Method	kg ai/ha	Water	No	PHI, Days	,	0 0	Doc ID-No, method of analysis
trial no	1 OIIII	Wiethou	kg al/lla	L/ha			dithianon		of undrysis
Spain, 2010						0	0.85	< 0.01	
Seville	WG	Foliar	0.53	1000	1	28	0.17	< 0.01	2011/1120995,
(Cardinal) L100541		spray				35 42	0.11 0.07	< 0.01 < 0.01	L0152
L100341						0	2.0	< 0.01	
	NVG.	Foliar	0.50	1000	~	28	0.22	< 0.01	2011/1120995,
	WG	spray	0.53	1000	2	35	0.13	< 0.01	L0152
						42	0.27	< 0.01	
						0	2.1	< 0.01	
	WG	Foliar	0.53	800	2	28 35	0.40 0.38	< 0.01 < 0.01	2011/1120995, L0152
		spray				42	0.38	< 0.01	L0152
						0	2.0	< 0.01	
	WG	Foliar	0.53	400	2	28	0.38	< 0.01	2011/1120995,
	WG	spray	0.55	400	2	35	0.86	< 0.01	L0152
						42	0.42	< 0.01	
		Foliar				0	1.8	< 0.01	2011/1120005
	WG	Foliar spray	0.53	200		28 35	0.88 0.80	< 0.01 < 0.01	2011/1120995, L0152
		spray				42	0.50	< 0.01	10152
Spain, 2010						0	2.2	< 0.01	
Seville	WG	Foliar	0.53	1000	1	28	0.28	< 0.01	2011/1120995,
(Matilde)	wG	spray	0.55	1000	1	35	0.18	< 0.01	L0152
L100542						42	0.27	< 0.01	
		Foliar spray	0.53			0	2.2	< 0.01	2011/1120995,
	WG			1000	2	28 35	0.26 0.24	< 0.01 < 0.01	L01171120995,
		spray				42	0.24	< 0.01	10152
						0	3.2	< 0.01	
	WG	Foliar	0.53	800	2	28	0.32	< 0.01	2011/1120995,
	wu s	spray	0.55	800	2	35	0.32	< 0.01	L0152
						42	0.47	< 0.01	
	WG	Foliar				0 28	2.4 0.38	< 0.01 < 0.01	2011/1120995,
		spray	0.53	400	2	20 35	0.38	< 0.01	L0152
						42	0.44	< 0.01	
						0	2.6	< 0.01	
	WG	Foliar spray	0.53	200	2	28	0.38	< 0.01	2011/1120995, L0152
						35	0.23	< 0.01	
1, 1, 2010						42	0.47	< 0.01	
Italy, 2010 Taranto		Foliar				0 28	1.1 0.27	< 0.01 < 0.01	2011/1120995,
(Victoria)	WG	spray	0.53	1000	1	35	0.27	< 0.01	L0152
L100543		spray				42	0.11	< 0.01	20102
						0	3.4	0.01	
	WG	Foliar	0.53	1000	2	28	0.74	< 0.01	2011/1120995,
		spray	0.55	1000	2	35	0.84	< 0.01	L0152
						42	0.91	< 0.01	
		Foliar				0 28	1.6 1.2	< 0.01 < 0.01	
	WG	spray	0.53	800	2	28 35	0.71	< 0.01	2011/1120995,L0152
		Spray				42	0.41	< 0.01	
		1	1	1		0	1.8	< 0.01	
	WG	Foliar	0.53	400	2	28	0.50	< 0.01	2011/1120995, L0152
		spray	0.55	100	-	35	0.65	< 0.01	2011/1120995, L0152
	1					42	0.63	< 0.01	
			1						2011/1120225
		Foliar				0	2.8	0.01	2011/1120005
	WG	Foliar spray	0.53	200	2	0 28 35	2.8 0.57 0.72	< 0.01 < 0.01 < 0.01	2011/1120995, L0152

Table 55 Residues of dithianon and metabolite Reg. No. 4110904 in grapes

Country, year,	Applic	ation				DIII	Residue,	ma/lra	Dee ID Ne method
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	PHI, Days	dithianon	0 0	Doc ID-No, method of analysis
Greece, 2010 Aggelochori (Victoria) L100544	WG	Foliar spray	0.53	1000	1	0 29 35 42	2.1 0.38 0.26 0.15	< 0.01 < 0.01 < 0.01 < 0.01	2011/1120995, L0152
	WG	Foliar spray	0.53	1000	2	0 29 35 42	2.2 0.34 0.16 0.11	< 0.01 < 0.01 < 0.01 < 0.01	2011/1120995, L0152
	WG	Foliar spray	0.53	800	2	0 29 35 42	2.6 0.30 0.23 0.18	< 0.01 < 0.01 < 0.01 < 0.01	2011/1120995, L0152
	WG	Foliar spray	0.53	400	2	0 29 35 42	2.7 0.34 0.26 0.20	< 0.01 < 0.01 < 0.01 < 0.01	2011/1120995, L0152
	WG	Foliar spray	0.53	200	2	0 29 35 42	1.2 0.34 0.25 0.22	< 0.01 < 0.01 < 0.01 < 0.01	2011/1120995, L0152

# Currants, black

Six field trials with black currants were conducted in 1993/1994 in France (see Table 56). Specimens were analysed after extraction with acetonitrile and liquid-liquid partition with dichloromethane by HPLC-UV with LOQs of 0.05 mg/kg (SICACRO Laboratoire in-house method) or 0.1 mg/kg (no method number, recovery levels were 77% and 85% at 0.1 mg/kg fortification level).

Table 56 Residues of dithianon in black currants

Country, year,	Applic	ation				PHI.	Desiders	Dee ID Ne, method
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	days	Residue, m g/kg	Doc ID-No, method of analysis
France North, 1993 Marchenoir (Black Down) RCAS 93.03/41.01	SC	Foliar spray	0.53	600	2	7 14	< 0.05 < 0.05	DT-713-063, SICACRO Laboratoire in-house method, HPLC-UV
France South, 1993 Anneyron (Andega) RCAS 93.03/26.01	SC	Foliar spray	0.53	1150	2	7 14	< 0.05 0.61	DT-713-063, SICACRO Laboratoire in-house method, HPLC-UV
France South, 1993 St. Didier sous Riverie (Black Down) RCAS 93.03/69.01	SC	Foliar spray	0.53	400 - 500	2	7 14	2.7 0.89	DT-713-063, SICACRO Laboratoire in-house method, HPLC-UV
France North, 1993 Bragny sur Saône (Noir de Bourgogne) RCAS 93.03/71.01	SC	Foliar spray	0.53	300	2	7 14	< 0.05 < 0.05	DT-713-063, SICACRO Laboratoire in-house method, HPLC-UV
France North, 1994 Marey les Fussey (Noir de Bourgogne) 02101	SC	Foliar spray	0.53	600	2	14	< 0.1	DT-713-127, No method no., HPLC-UV
France North, 1994 Marchenoir (Black Down) 04101	SC	Foliar spray	0.53	600	2	14	0.11	DT-713-127, No method no., HPLC-UV

## Almonds

Four trials were laid down in France in 1996. The crop growth stage at the final application was "young fruit" in all trials. Almonds without shell were analysed with a "GRAPPA in-house" HPLCmethod (UV-detection) for dithianon (LOQ 0.05 mg/kg) using extraction with dichloromethane. Recoveries were in the range of 62% to 92%. The results are summarized in Table 57.

Country, year,	Applicat	ion				PHI,		Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water L/ha	No	Days	Residue, mg/kg	method of analysis
France, 1996 Saint Marcel D'ardeche (Al), 53/100	WG	Foliar spray	0.35	683	2	63 140	< 0.05 < 0.05	DT-740-002, GRAPPA in-house method, HPLC-UV
France, 1996 Saint Marcel D'ardeche (Ferragnes), 53/101	WG	Foliar spray	0.35	683	2	63 140	< 0.05 < 0.05	DT-740-002, GRAPPA in-house method, HPLC-UV
France, 1996 Fontvieille (Ferra Star), 53/98	WG	Foliar spray	0.35	500	2	58 119	< 0.05 < 0.05	DT-740-002, GRAPPA in-house method, HPLC-UV
France, 1996 St. Martin de Crau (Laurane), 53/99	WG	Foliar spray	0.35	500	2	58 119	< 0.05 < 0.05	DT-740-002, GRAPPA in-house method, HPLC-UV

Table 57 Residues of dithianon in almonds, whole fruit without shell

# Hops

Trials were conducted in representative hops growing areas in Germany in the growing seasons 1987, 1989–1991 and 1995. The samples from the trials conducted between 1987 and 1991 were either analysed with a GC-ECD method (P-14.005.01 and P-14.005.02). The samples from the trials conducted in 1995 were analysed with method P-14.078 of Dr. Specht & Partner Laboratories. The LOQ for dithianon of all methods is 0.05 mg/kg in hop cones. The recoveries were in the range of 71 to 100% at varying fortification levels. A summary of the residue trials data is presented in Table 58.

Table 58 Residues of dithianon in hops	Table 58	3 Residues	of dithianon	in hops
----------------------------------------	----------	------------	--------------	---------

Country, year,	Applica	ation			]				Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water lL/ha	No	PHI, days	Commodity	Residue, mg/kg	method of analysis
Germany, 1987 Forchheim (Perle) C 87 08 05 01	WP	Foliar spray	0.45 - 1.13	1200 - 3000	8	0 7 10 14	Green cones	12 10 9.7 8.0	DT-790-022, 14.005.01
Germany, 1987 Forchheim (Hersbrucker) C 87 08 05 02	WP	Foliar spray	0.45 - 1.13	1200 - 3000	8	0 7 10 14	Green cones	12 13 11 7.6	DT-790-023, 14.005.01
Germany, 1989 Au, Hallertau (Brewers Gold) R 95-89	SC	Foliar spray	0.3 - 1.13	800 - 3000	12	0 7 10 10 14 14	Green cones Green cones Dried cones Green cones Dried cones Green cones	10 9.2 13 7.4 4.1 5.4	DT-790-035, 14.005.02

Country, year,	Applic	ation	1	1					Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water lL/ha	No	PHI, days	Commodity	Residue, mg/kg	method of analysis
Germany, 1989						0	Green cones	4.3	
Tettnang		Foliar	0.38	1000		7 10	Green cones Dried cones	2.6 2.5	DT-790-036,
(Tettnanger	SC	spray	-	-	10	10	Green cones	3.2	14.005.02
Landsorte)		spray	1.13	3000		14	Dried cones	16	
R 96-89						14	Green cones	9.7	
						0	Green cones	94	
Germany, 1989			0.3	800		7	Green cones	78	DT-790-037,
Au, Hallertau	SC	Foliar	- 1.13	- 3000	12	10 10	Dried cones	29 22	14.005.02
(Brewers Gold) R 97-89		spray	1.15	3000		10	Green cones Dried cones	22	
K ) /-0)						14	Green cones	12	
G 1000						0	Green cones	8.6	
Germany, 1989			0.20	1000		7	Green cones	4.4	DT 700 029
Tettnang (Tettnanger	SC	Foliar	0.38	1000	10	10	Dried cones	21	DT-790-038, 14.005.02
Landsorte)	30	spray	1.13	3000	10	10	Green cones	4.2	14.005.02
R 98-89				2000		14	Dried cones	17	
						14	Green cones	8.4	
Germany, 1990						0 7	Green cones Green cones	35 35	
Forchheim		Foliar	0.42	753		10	Green cones	30	DT-790-031,
(Perle)	SC	spray		-	12	10	Dried cones	92	14.005.02
14429	20	opray	1.11	2064		14	Green cones	24	
						14	Dried cones	94	
						0	Green cones	41	
Germany, 1990			0.45	1200		7	Green cones	22	DT-790-041,
Meckenbeuren	SC	Foliar	-	-	12	10	Green cones	30	14.005.02
(Hallertauer) 14425		spray	1.5	4000		10 14	Dried cones Green cones	85 27	
14423						14 14	Dried cones	96	
						0	Green cones	26	
Germany, 1990			0.50	000		7	Green cones	32	DT 700 040
Forchheim	SC	Foliar	0.52	920	12	10	Green cones	30	DT-790-042, 14.005.02
(Hersbrucker)	sc	spray	- 1.24	- 2206	12	10	Dried cones	74	14.005.02
14428			1.21	2200		14	Green cones	42	
						14	Dried cones	88	
Commonwe 1000						0	Green cones	67 61	DT 700 042
Germany, 1990 Meckenbeuren		Foliar	0.45	1200		10	Green cones Green cones	38	DT-790-043, 14.005.02
(Tettnanger)	SC	spray	-	-	12	10	Dried cones	91	11.005.02
14424		1 . 7	1.5	4000		14	Green cones	17	
						14	Dried cones	58	
						0	Green cones	76	
Germany, 1991		<b>.</b>	0.59	1578		7	Green cones	63	DT-790-044,
Heißmanning (Hersbrucker)	SC	Foliar	-	-	12	10 10	Green cones Dried cones	57 187	14.005.02
(Hersbrucker) 9142-01		spray	1.49	3975		10 14	Green cones	187 56	
ν1-τ <b>4</b> -V1					1	14	Dried cones	89	
		1	1			0	Green cones	155	1
Germany, 1991			0.0	1(02		7	Green cones	143	DT 700 045
Rohr	SC	Foliar	0.6	1603	12	10	Green cones	92	DT-790-045, P-14.005.02
(Northern Brewer)	SC	spray	- 1.5	- 3971	12	10	Dried cones	193	1-14.003.02
9142-02			1.0	57/1	1	14	Green cones	123	
						14	Dried cones	242	+
Cormony 1001						$     0 \\     7 $	Green cones	17 94	DT 700 046
Germany, 1991 Holstum		Foliar	0.53		1	7 10	Green cones Green cones	94 12	DT-790-046, 14.005.02
(Tettnanger)	WG	spray	-	2000	12	10	Dried cones	81	17.003.02
9142-03		-pray	0.84			14	Green cones	36	
	1	1	1	1	1	14	Dried cones	84	1

Country, year,	Applic	ation							Doc ID-No,
location, (variety), trial no	Form	Method	kg ai/ha	Water lL/ha	No	PHI, days	Commodity	Residue, mg/kg	method of analysis
						-0	Green cones	7.0	
Germany, 1995						+0	Green cones	20	
Prünzurlay	WG	Foliar	0.52	1498		7	Green cones	11	DT-790-049,
(Northern Brewer)	WU	1 Ollar	-	-		14	Green cones	6.4	P-14.078
(Northern Brewer) 95-079-01		spray	1.4	4010		14	Dried cones	13	
95-079-01						21	Green cones	9.7	
						21	Dried cones	32	
						-0	Green cones	2.4	
Germany, 1995						+0	Green cones	11	
Holsthum	WG	Foliar	0.52	1498		8	Green cones	6.2	DT-790-049,
(Brewers Gold)	WU		-	-	10	14	Green cones	4.2	P-14.078
(Brewers Gold) 95-079-02		spray	1.43	4089		14	Dried cones	22	
95-079-02						21	Green cones	2.7	
						21	Dried cones	8.9	
						-0	Green cones	13	
Germany, 1995						+0	Green cones	24	
Pfaffenhofen-		Foliar	0.55	1567		7	Green cones	13	DT-790-049,
Heißmanning	WG		-	-	10	15	Green cones	6.4	P-14.078
(Brewers Gold)		spray	1.43	4073		15	Dried cones	82	
95-079-03						21	Green cones	14	
						21	Dried cones	16	
						-0	Green cones	14	
Germany, 1995						+0	Green cones	40	
Oberempfenbach		Foliar	0.55	1582		7	Green cones	24	DT-790-049,
(Brewers Nugget)	WG		-	-	10	15	Green cones	18	P-14.078
(Brewers Nugget) 95-079-04		spray	1.43	4094		15	Dried cones	70	
95-079-04						21	Green cones	4.3	
						21	Dried cones	59	

## FATE OF RESIDUES IN STORAGE AND PROCESSING

### In processing - nature of residues

Three studies were provided on hydrolysis of dithianon to assist with identification of the nature of the residues during processing. To estimate the degradation behaviour of dithianon during industrial processing or household preparation, the process of pasteurization (90 °C, 20 min), the process of baking, boiling, brewing (100 °C, 60 min) and the process of sterilization (120 °C, 20 min) was simulated.

### Study DT-790-060 (Tsalta, 2001)

The hydrolysis of dithianon was performed using ¹⁴C-dithianon labelled at positions 5, 6, 9 and 10 of the molecule. The test substance had a radiochemical purity of 98.7% (by HPLC) and a specific activity of 42.4  $\mu$ Ci/mg. The experiments were carried out in a closed system under the simulated processing conditions. The hydrolysis of ¹⁴C-dithianon was studied at 90, 100, and 120 °C in sterile buffers at pH 4, 5, and 6, respectively. Radio-labelled test compound was applied at an application rate of 0.13 mg/L. The samples were incubated for 20 to 60 minutes at 90, 100, and 120 °C in the dark. Samples from the test solutions were assayed by liquid scintillation counting at 0-time (immediately after dosing) and after incubation to determine the concentration and recovery. Aliquots of the samples were analysed by reversed phase HPLC directly without sample work-up.

The results for the hydrolysis experiment conducted at pH 4 showed that dithianon was stable under simulated processing conditions of pasteurization. ¹⁴C-dithianon accounted for 94.7% to 97.1% and 90.2% to 94.2% of the recovered radioactivity at 0-time and after 90 °C, 20 minutes incubation, respectively.

The results for the hydrolysis experiment conducted at **pH 5** showed that dithianon was significantly degraded under simulated processing conditions of baking, brewing, and boiling (100 °C, 60 min). ¹⁴C-dithianon accounted for 93.4% to 94.4% of the recovered radioactivity at 0-time.

After incubation at 100 °C for 60 minutes at pH 5, ¹⁴C-dithianon had degraded to a large extent (> 90%) to many mostly polar substances. One major and four minor degradation products were detected. The major degradation product, accounting for 46% to 57% of the recovered radioactivity, was identified by MS and ¹H-NMR as compound Reg. No. 4110904 (CL 1017911) [(1,4-dithiin-2-carboxylic acid, 5,6-dicyano-3-(2-hydroxy-benzoyl)]. The minor degradates formed each accounted for 3.5% to 8.5% of the recovered radioactivity. The MS and ¹H-NMR data revealed that compound Reg. No. 4110904 was formed by cleavage of the quinone ring (under high temperature hydrolytic conditions) resulting in a carboxylic acid. The ¹H-NMR data also showed that the isolated product contained a minor component postulated as CL 1017912 {benzoic acid, 2-[(5,6-dicyano-3-hydroxy-1,4-dithiin-2-yl)carbonyl} which is probably the positional isomer with the carboxyl and the hydroxy groups in reversed positions.

The results for the hydrolysis experiment conducted at pH 6 showed that dithianon was significantly degraded under simulated processing conditions of sterilization (120 °C, 20 minutes).

The HPLC analysis of the 0-time solutions showed that  14 C-dithianon was degrading rapidly even at room temperature conditions. Dithianon accounted for 75.1% to 77.1% of the recovered radioactivity and compound Reg. No. 4110904 had already started forming at 6.5% to 6.9% of the recovered radioactivity at 0-time. The HPLC analysis of the incubated solutions (20 min) showed no detectable peak corresponding to parent. The major degradation product formed at pH 6, compound Reg. No. 4110904, accounted for 19.8% to 21.2% of the recovered radioactivity. The chromatographic profile of the degradation products was qualitatively very similar to the profile at pH 5. As at pH 5, an additional four degradation products formed, each accounting for an average 6% to 9.5% of recovered radioactivity.

## Study 2009/1065632 (Hassink, 2009)

To estimate the degradation behaviour of the test item during industrial processing or household preparation of apple juice, the process of pasteurization was simulated. The test solution containing 0.01 mg dithianon suspended in natural turbid apple juice at pH 3.8 was heated to 90 °C in a round-bottom flask under backflow. The test was performed in duplicate (test A and B). The samples were measured for radioactivity (LSC) and were analysed by HPLC to determine an eventual metabolite pattern. Comparing the overall radioactivity measured by LSC before and after each test it can be seen that no loss of radioactive material occurred.

% Total applied radioactivity (TAR)						
pH 4, 90 °C, test A	pH 4, 90 °C, test B					
100	100					
94.82	98.99					
	pH 4, 90 °C, test A 100					

The distribution of radioactivity was determined by HPLC-analysis. Dithianon degraded in both experiments (test A: 24.4% TAR, test B: 31.7% TAR) to a high number of unknown degradation products. In test A about 44 HPLC-peaks could be separated, three of them above 5% TAR (4.9 min: 8.3%; 13.8 min: 6.3%; 46.4 min: 5.9%). In test B 39 peaks occurred, only one of them was quantified above 5% TAR (5.1 min: 5.1%). The quantified peaks consist of several compounds and could not be separated.

#### Study 2013/1078029 (Class, 2013)

To estimate the degradation behaviour of the test item during industrial processing or household preparation of fruits, the process of pasteurization (90 °C, 20 min), the process of baking, boiling,

brewing (100 °C, 60 min) and the process of sterilization (120 °C, 20 min) was simulated. Apple juice was used as example. ¹⁴C-dithianon was diluted with ¹²C-dithianon in a ratio of about 1:1, in acetonitrile + 1% formic acid as solvent. This dose solution was then added to a commercial naturally turbid apple juice (containing 10% of a pH 4 buffer) to prepare the test solutions. The test solutions were examined by direct LSC for total applied radioactivity (TAR) prior to hydrolysis and after hydrolysis for total radioactive residue (TRR), indicating complete mass balance during hydrolysis. The culture tubes were heated in an oil bath to 90 °C for 20 minutes, 100 °C for 60 minutes or 120 °C for 20 minutes. After hydrolysis the culture tubes were cooled in an ice/water bath, subsequently stored refrigerated (approximately 5 °C). An aliquot of the hydrolysed juice was used for radio-chromatography by RP-HPLC analysis. Additionally, aliquots of the hydrolysed test solutions were dosed with solutions of selected reference compounds for identification by co-chromatography. Selected hydrolysis solutions were re-injected after various storage intervals to establish stable radio-chromatographic patterns. Almost all degradation products identified by RP-HPLC-UV/LSC and found to be  $\geq$  5% of the TAR was confirmed by HPLC-MS/MS.

Based on the results of the initial high temperature hydrolysis of apple juice at 120 °C for 20 minutes and subsequent refrigerated storage, an additional hydrolysis test was conducted to confirm the presence of component Reg. No. 4107273 (D2) only found immediately after hydrolysis. This sample was dosed with ¹⁴C-dithianon, hydrolysed as described above, characterised using HPLC-UV/LSC immediately after hydrolysis and the structure of component Reg. No. 4107273 (D2) confirmed by HPLC-MS/MS immediately following characterisation.

Further hydrolysis tests were conducted with un-buffered apple juice, in order to demonstrate that apple juice available to the consumer would have a similar degradation pattern as that determined in the presence of buffer. In this case, an apple juice sample was dosed with ¹⁴C-dithianon, hydrolysed at 120 °C for 20 minutes as described initially, but without buffer, and examined by HPLC-UV/LSC immediately after hydrolysis. Samples were then analysed after 6, 24 and 48 hours, and 7, 14/15, 21 days of room temperature storage until a stable radio-chromatographic pattern was obtained.

All samples of the test solutions were analysed directly without further work-up. Samples were measured for radioactivity (LSC) and were analysed by HPLC-UV/LSC to determine an eventual degradation pattern. Confirmation of almost all degradation products identified in excess of 5% of the TAR was accomplished using HPLC-MS/MS.

The results of initial high temperature hydrolysis tests with ¹⁴C-dithianon in buffered apple juice are shown in Table 59.

	Hydrolysis conditio	ns	
Hydrolysis / Degradation Product	90 °C, 20 min	100 °C, 60 min	120 °C, 20 min
	% TAR	% TAR	% TAR
Compound identified			
Dithianon	44.4-47.3	0.9-1.0	0.2-0.5
Naphthoquinone, Reg. No. 4107273 ^{a)} (D2)	na	na	12.0-12.7
Reg. No. 4110904	5.5-6.2	7.3–9.4	5.5-5.8
Reg. No. 31062 (D4)	1.1-2.0	8.8-10.5	8.8-10.0
Phthalic acid, Reg. No. 4005234	na	1.8-2.2	1.3-2.0
Reg. No. 4110933 (D8)	2.1-2.2	3.5-4.0	4.0-4.1
Characterized			
UK1 (polar)	na	4.3-4.8	3.8-4.7
UK2 (polar)	na	4.3-4.5	na
UK3 (less polar) ^{a b}	2.8-3.6	3.2-4.5	6.1–7.4
UK4 (less polar)	1.6-1.7	na	na
UK5 (non-polar)	na	1.6-2.7	na

Table 59 Degradation	products	observed	direct after	hydrolysis

na = not assignable;

^a is not assignable after 21 days of storage

^b less polar, co-elutes with Reg. No. 4110934 (D15)

A stable radio-chromatographic pattern was achieved, as confirmed by the percentage of the TAR assigned, between hydrolysed apple juice samples stored refrigerated for 18/21 days and the sample stored refrigerated for 30/33 days. These results are shown in Tables 60 to 62.

Table 60 Degradation products after hydrolysis at 90 °C and 21 or 33 days refrigerated storage

Identified Degradation Product	Hydrolysis conditions / storage				
Identified Degradation Floduct	90 °C, 20 min / 21 days,% TAR	90°C, 20 min / 33 days,% TAR			
Phthalic acid, Reg. No. 4005234	1.6	2.1			
Reg. No. 4110904	5.5	6.1			
Reg. No. 4110933 (D8)	2.3	2.2			
Dithianon	50.8	52.7			
Reg. No. 31062 (D4)	1.7	1.3			

Table 61 Degradation products after hydrolysis at 100 °C and 18 or 30 days refrigerated storage

Identified Degradation Product	Hydrolysis conditions / storage				
Identified Degradation Froduct	100 °C, 60 min / 18 days,% TAR	100 °C, 60 min / 30 days,% TAR			
Phthalic acid, Reg. No. 4005234	2.5	2.6			
Reg. No. 4110904	7.9	8.2			
Reg. No. 4110933 (D8)	3.4	3.5			
Dithianon	0.6	0.6			
Reg. No. 31062 (D4)	9.8	8.9			

Table 62 Degradation products after hydrolysis at 120 °C and 21 or 33 days refrigerated storage

Identified Degradation Product	Hydrolysis conditions / storage 120 °C, 20 min / 21 days,% TAR	120 °C, 20 min / 33 days,% TAR
Phthalic acid, Reg. No. 4005234	3.1	3.8
Reg. No. 4110904	5.3	5.7
Reg. No. 4110933 (D8)	4.2	4.8
Dithianon	0.0	0.0
Reg. No. 31062 (D4)	10.9	11.2

The room temperature storage of apple juice samples hydrolysed at 120 °C for 20 minutes showed that the radio-chromatographic pattern/composition of the ¹⁴C-dithianon degradates remained stable from 7 days through 21 days (see Table 63). The degradation pattern is essentially the same with buffer (stored refrigerated for 33 days) and without buffer (stored at room temperature).

Table 63 Degradation products after hydrolysis at 120 °C and storage at room temperature

	Average%	6 TAR								
Degradation Product	Storage in	Storage interval								
	0 hours	6 hours	24 hours	48 hours	7 days	14/15 days	21 days			
Phthalic acid, 4005234	2.1	2.6	3.1	2.8	4.1	3.2	3.4			
UK1	5.3	4.7	5.4	7.0	5.5	4.3	5.8			
UK3 ^a	8.7	na	na	na	na	na	na			
Reg. No. 4107273 (D2)	13.7	11.7	5.9	4.4	na	na	na			
Reg. No. 4110904	5.7	4.9	5.4	5.7	4.0	4.8	4.9			
Reg. No. 4110933(D8)	4.1	3.8	3.1	4.3	3.9	3.9	3.9			
Dithianon	na	na	na	na	na	na	na			
Reg. No. 31062 (D4)	7.4	7.0	2.8	8.0	7.8	7.2	8.5			

na = not assignable;

^a less polar, co-elutes with Reg. No. 4110934 (D15)

# In processing – effect on the residue level

The Meeting received information on the fate of dithianon residues during the processing of oranges to juice and pulp, of apple to juice, sauce, pomace and dried fruits, of grapes to juice, must, wine and pomace and of hops to beer. Further studies conducted in 2009/2010 on apples, cherries, plums and

grapes investigated the fate of parent dithianon and of the metabolite Reg. No. 4110904 after processing. The information submitted on processing procedures is summarized below.

RAC,	Procedure description, remarks	Doc Id-No
Country, year		Dee la rie
Oranges, USA, 1991	No detailed information on the processing procedures of oranges to peel, juice, dry and wet pulp, oil and molasses was submitted.	DT-710-008
Apple, Germany, 1993	A description of processing methods used was not provided.	DT-711-094 DT-711-095
Apple, Italy, 2000	Apples were crushed and pressed to produce juice and wet pomace. Pectolytic enzymes were added to the juice and it was left to settle at least for 12 hours. The juice was filtered, pasteurised by heating to approximately 85 °C for at least one minute, and was then placed in sterilized glass bottles with screw caps. For dried pomace, the wet pomace was placed into an oven and dried at 60 °C for one day. To produce <u>puree</u> , the apples were blanched in hot water (80 °C for 5 minutes) and crushed and sieved to obtain puree. After addition of sugar, heating until a degree Brix of about 24%. The puree was then sterilised at 115-120 °C for 10 minutes and frozen. To produce <u>canned apples</u> the apples were peeled, blanched in hot water (80 °C, for 5 min),	2002/1011501 2002/1011502
Apple, Italy, Spain, 2001	core was removed and the apples were cut into pieces. Apples were processed into apple juice by crushing with a crushing machine. Ascorbic acid $(300 \text{ mg/kg})$ was added to prevent oxidation. The crushed apples were immediately pressed in a mechanical wine press. The juice was then poured into a stainless steel vat. Pectolytic enzymes (at a concentration of 5 g/hl) were added to the juice to accelerate the clarification process. A subsample of pomace was taken from each specimen and frozen. After a clarification period of at least 12 hours, the dregs were discarded and only clear juice was bottled, and samples of juice were taken.	2002/1011555
Apple, Germany, 2003	In a first step the apples were filled in a stainless steel tank and washed by hand. The washed apples were transferred into a shredder and subsequently ground. The resulting pulp samples were divided into two parts - the major part was used for juice production; the other part was processed to apple sauce. For the production of juice, an aliquot of the pulp sample was transferred into a tube press. The pressure was increased. The resulting juice was passed through a cloth and a metal sieve. The juice and the fresh pomace were collected separately in tubs. Parts of the fresh pomace were dried at an oven at 90 °C until constant weights were achieved. The other part was used as specimen for analysis. For clarification of the fresh juice, pectinase was added first; in a second step and prior to a filtration step gelatine and Kieselsol were added. The clear juice resulting from the filtration step was subjected to pasteurization (90 °C, 5 min). For the preparation of <u>apple sauce</u> , an aliquot of pulp was filled into a sauce pan and heated up to 85 °C. As soon as the 85 °C was reached (which is sufficient to turn the pulp into mash, duration between 30 and 70 min), the mash was strained using a puree apparatus and filled into sample containers while still hot. Cooling down.	2003/1001126
Apple, Germany, 2010	<ul> <li>Preparation of <u>canned apple</u>: Peeling, cutting in small pieces, removal of core and stalk. Addition of water, ascorbic acid, citric acid and glucose syrup. Boiling. Regulation of pH and dry substance. Pasteurisation in jars. Cooling down.</li> <li>Preparation of <u>apple sauce</u>: Cutting in half pieces, removal of stalks. Soft boiling of apple pieces in water. Sieving of cooked apples. Addition of sugar and ascorbic acid. Regulation of pH and dry substance. Pasteurisation in jars. Cooling down.</li> <li><u>Dried apple</u> preparation: Removal of core and stalks, cutting into rings. Drying in an oven. Juice preparation: Apples were mashed. Pressing to extract the raw juice → wet pomace. The raw juice was pasteurized. Cooling down. Wet pomace dried in an oven → dried pomace.</li> </ul>	2011/1135917
Cherries, Germany, 2009	Jam preparation: Washed fruits will be stoned, addition of sugar and glucose syrup to the fruits. Cooking until a dry substance of $63 - 65\%$ . Adding of pectine and citric acid. Cooking until a dry substance of $60 - 62\%$ . Cooling down.	2010/1093253
	Preparation of <u>canned cherries</u> : Addition of water, ascorbic acid, citric acid and sugar to the	

000
-----

RAC, Country,	Procedure description, remarks	Doc Id-No
year	fruits. Cooking, filling product into cans. Cooling down. Preparation of juice: Washed cherries were mashed in a masher. Pressing to extract the raw	
	juice $\rightarrow$ wet pomace. The raw juice was pasteurized. Cooling down.	
Plums, Germany, 2009	Preparation of <u>puree</u> : Plums washed, stalks were removed. Fruits will be stoned, cut into small pieces. Addition of sugar, gingerbread, spice, citric acid and glucose syrup to the fruits. Cooking until dry substance > 53%. Cooling down.	2011/1031148
	Preparation of <u>dried prunes</u> : Fruits will be stoned. Dipping in 0.5% ascorbic acid solution. Drying in an oven (65 °C) until a maximal moisture content of 25%.	
Grapes, Germany, 2010	<u>Rose grape variety</u> : The unwashed grapes were crushed. The mesh (stalks, flesh, skin, seed, juice) was pressed to extract the liquid. Before the must was clarified, $K_2S_2O_5$ was added. After the clarification, <u>raw juice</u> was pasteurized (83–87 °C, 2 min). Raw juice was poured into glass vessels, yeast and nutrient salt was added for fermentation. After fermentation, $K_2S_2O_5$ was added. Clarification of the fermentation product. First transfer of wine between vessels. Bentonite was added to absorb proteins. Second transfer of wine and $K_2S_2O_5$ was added. The young <u>wine</u> was filtered after clarification, bottled for maturation and stored at 5–8 °C.	2011/1248836
	<u>Red grape variety</u> : The unwashed grape bunches were crushed. The stalks were removed. $K_2S_2O_5$ was added The mesh (flesh, skin, seed, juice) was heated up to 60 °C. During heating, mesh was stirred. Subsequent to the cooling down phase, the mesh was pressed to extract the liquid. After the clarification, <u>raw juice</u> was pasteurized (83–87 °C, 2 min.). Raw juice was poured into glass vessels, yeast and nutrient salt was added for fermentation. After fermentation, $K_2S_2O_5$ was added. Clarification of the fermentation product. First transfer of wine between vessels. Bentonite was added to absorb proteins. Second transfer of wine and $K_2S_2O_5$ was added. The young <u>wine</u> was filtered after clarification, bottled for maturation and stored at 5–8 °C.	
	<u>Raisin production</u> : washed grape bunches were put in boiling water for 8–10 sec and afterwards they were manually washed (3 min) with cold tap water. The bunches were dried in a oven (66–74 °C) for 24 hours until a moisture content of 10–14% was achieved. After drying, raisins were removed from the stalks.	
Grapes, Germany, 1986/87	Trials on red grapes (variety Portugieser) and white grapes (variety Müller-Thurgau). A description of processing methods used in the trials was not provided.	DT-713-031
Grapes, Germany, Spain, France, Italy, 2001	White wine production (Germany, Italy): The grapes were placed directly into the wine press in order to be pressed. Wet pomace and must were separated immediately after the pressing step. Aliquots of the wet pomace sample were dried at about 60°C in an oven. The resulting must was allowed to settle. After decantation from the must deposits, the alcoholic fermentation took place; it is considered as complete when fermentation has slowed down or stopped (indicated by a density below 1000). For stabilizing and after addition of gelatine / potassium metabisulphite, the young wine was kept under cold storage conditions for at least two weeks. After filtration, the wine was bottled. Red wine production (Spain, France): The grapes used for red wine processing were crushed and stemmed with an electric crusher/stemmer. The crushed grapes were recovered in a stainless steel tank. The stems were weighed and discarded. Potassium metabisulphite was added to the remaining crushed grapes. Dry active yeasts (0.1 g/L) were added to the must. The progress of the alcoholic fermentation yes followed each day by measuring the density, temperature and pH of the must. In case of the French trial, sugar was added to increase the alcohol concentration. The alcoholic fermentation was considered as complete when the density of the must felt below the value 1000 (duration: about one week). The wine was run off to the tank (free-run wine) and the solid part was pressed with a water press in such a	2003/1014014
	manner as to recover the maximum quantity or wine. The pressed wine was added to the free-run wine; wet pomace and young wine sample were taken. Aliquots of the wet pomace sample were dried at about 60 °C in an oven. The malolactic fermentation was carried out in absence of air, at ambient temperatures with a direct inoculation of lactic bacteria. The progress of the malolactic fermentation was followed-up one time each week. After the completion of the malolactic fermentation, potassium metabisulphite was added for natural clarification. After the first clarification step, sediment samples (designated as lees) were taken; subsequently, dry gelatine and further potassium metabisulphite were added to the wine. As for white wine, the young wine was stored in the cold room for stabilization. In order to remove impurities (solid material), the wine was finally filtered and bottled.	

RAC, Country, year	Procedure description, remarks	Doc Id-No
	<u>Juice production:</u> The grapes kept for grape juice processing were crushed and stemmed. The crushed grapes were weighed and, after addition of pectolytic enzymes, placed in plastic jars. The depectinisation of juice took place for two hours at a temperature between 45°C and 60°C (measured by a thermometric probe inside the jar). The glass jars were then removed from the saucepan and their content was pressed in a water press. The wet pomace was then weighed and discarded. The recovered juice was analysed (degree Brix, total acidity, and pH) and then put back in glass jars for clarification. The clarification took place for 5 minutes at a temperature of about 85 °C. This clarification phase was followed by a cold storage of at least 12 hours. After cold storage and racking, only the clear juice (without sediment) was filtered, pasteurized for 1 minute at 85 °C and bottled.	
Hops, Germany, 2001	Besides the hops, malt, yeast and drinking water were used. The brewing process was done at a laboratory scale, but fully comparable to industrial brewing process, including the steps brewing, lautering ( $\rightarrow$ brewer's grain), wort cooking ( $\rightarrow$ spent hops), primary fermentation ( $\rightarrow$ brewer's yeast) and secondary fermentation ( $\rightarrow$ beer).	2002/1006301

The results of the processing studies on oranges, apples, cherries, plums, grapes and hops for parent dithianon and of the degradation product Reg. No. 4110904 on apples, cherries, plums and grapes are presented in Table 64.

RAC,	Applicatio			PHI,	Commodity	Residues, mg/kg	Doc Id-No,
country, year	Form	kg ai/ha	No	Days			Analytical Method
Oranges,	SC	5.6	2	0	Whole fruit	0.59	DT-710-008,
USA, FL					Peel	0.11	HUK 460/62-01R
1991						< 0.05	
					···· <b>r</b> ·· <b>r</b>	< 0.05	
					Juice	< 0.05	
					Molasses	< 0.05	
					Oil	0.30	
Oranges,	SC	7.5	3	30	Whole fruit	3.48	DT-710-008,
USA, FL					Peel	0.42	HUK 460/62-01R
1991					Dry pulp	0.10	
					Wet pulp	0.10	
					Juice	< 0.05	
					Molasses	< 0.05	
					Oil	1.59	
Apple,	SC	0.55-0.64	12	21	Whole fruit	1.7	DT-711-094,
Germany,					Washed apple	1.5	FAMS 009-01
1993					Juice	< 0.05	
					Wet pomace	2.1	
					Sauce	< 0.05	
					Dried apple	< 0.05	
Apple,	SC	0.55-0.57	12	21	Whole fruit	1.5	DT-711-095,
Germany,					Washed apple	1.4	FAMS 009-01
1993					Juice	0.06	
					Wet pomace	1.6	
					Sauce	< 0.05	
					Dried apple	< 0.05	
Apple,	WG	1.05	8	21		0.95	2003/1001126,
Germany,			1		T T T	0.62	RLA 12616.05V
2003					Juice	< 0.01	
					The second secon	1.4	
						0.57	
						< 0.01	
Apple,	WG	1.05	8	21		1.8	2003/1001126,
Germany,			1		T T T	1.4	RLA 12616.05V
2003			1			< 0.01	
			1			5.5	
			1			0.91	
					Sauce	< 0.01	
Apple, Italy,	WG	0.51-0.53	12	21	Whole fruit	0.13	2002/1011501,

2000         Washed apple         0.23         RLA 126           Juice         <0.01         RLA 126           Wet pomace         0.36         RLA 126           Wet pomace         0.01         RLA 126           Apple, Italy,         WG         0.69-0.71         8         21         Whole fruit         0.10         RLA 126           2000         WG         0.69-0.71         8         21         Whole fruit         0.10         RLA 126           2000         WG         0.69-0.71         8         21         Whole fruit         0.10         RLA 126           Juice         <0.01         RLA 126         Washed apple         0.10         RLA 126           Juice         <0.01         RLA 126         Wet pomace         0.34           Dry pomace         0.07         Sauce         <0.01         RLA 126           2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           Apple, Italy,         WG         0.68-0.71         8         21         Whole fruit         0.08         2002/101           Apple, Italy,         WG         0.68-0.71         8         21         Whole fruit <t< th=""><th>al Method 516.03V 520.00V 11501, 516.03V</th></t<>	al Method 516.03V 520.00V 11501, 516.03V
2000         Washed apple         0.23         RLA 126           Juice         < 0.01	520.00V 11501, 516.03V
Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit Washed apple         0.10         2002/101           Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit         0.10         RLA 126           Mashed apple         0.10         RLA 126         Washed apple         0.01         RLA 126           Mashed apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit         0.30         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit         0.08         2002/101           Apple, Italy, 2000         WG         1.05         8         21         Whole fruit         2.12         2001         RLA 126           Wet pomace         0.04         Sauce         <0.01	11501, 516.03V
Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit Washed apple         0.10         2002/10           Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit Washed apple         0.10         RLA 126           Juice         <0.01	516.03V
Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit Washed apple         0.01         2002/101           2000         WG         0.69-0.71         8         21         Whole fruit Washed apple         0.10         RLA 126           2000         WG         0.59-0.71         8         21         Whole fruit Washed apple         0.01         RLA 126           2000         WG         0.51-0.54         12         21         Whole fruit Dry pomace         0.07         RLA 126           2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           2000         WG         0.68-0.71         8         21         Whole fruit         0.08         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit         0.08         2002/101           Apple, Italy, 2000         WG         1.05         8         21         Whole fruit         0.28         2002/101           Apple, Italy, 2001         WG         1.05         8	516.03V
Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit Uashed apple Juice         0.10         RLA 126 RLA 126 (0.01)           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Uashed apple Dry pomace         0.07 (0.07)         8         2002/101           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Uashed apple         0.07         RLA 126           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Uashed apple         0.07         RLA 126           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Uashed apple         0.08         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Uashed apple         0.06         RLA 126           Apple, Italy, 2000         WG         1.05         8         22         Whole fruit Uashed apple         0.04         2002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Uashed apple         0.01         2002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit	516.03V
Apple, Italy, 2000         WG         0.69-0.71         8         21         Whole fruit Washed apple Juice         0.10         2002/101 RLA 126           2000         WG         0.51-0.54         12         21         Whole fruit Washed apple Dry pomace         0.07         RLA 126           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Washed apple         0.07         RLA 126           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Washed apple         0.07         RLA 126           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit         0.30         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit         0.08         2002/101           Apple, Italy, 2000         WG         1.05         8         21         Whole fruit         0.06         RLA 126           Wet pomace         0.28         Dry pomace         0.01         RLA 126           Juice         < 0.01	516.03V
2000         Washed apple         0.10         RLA 126           Juice         <0.01	516.03V
Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Wet pomace Canned apple         0.07 (0.01)         RLA 12(0)           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Uice         0.30         2002/101           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Uice         0.30         2002/101           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Uice         0.30         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Uice         0.08         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Uice         0.06         RLA 126           Apple, Italy, 2000         WG         1.05         8         22         Whole fruit Uice         2.02         2.002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Uice         2.92         RLA 126           Whole fruit Uice         1.05         8         21         Whole fruit         2.92         RLA 126           Wet pomace         4	
Apple, Italy, 2000         WG         0.51-0.54         12         21         Wet pomace Sauce         0.07 Sauce         2002/101           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit         0.30         2002/101           RLA 126         Washed apple         0.07         RLA 126           Juice         < 0.01	
Apple, Italy, 2000WG $0.51-0.54$ 1221Sauce Canned apple< 0.01Apple, Italy, 2000WG $0.51-0.54$ 1221Whole fruit Washed apple $0.07$ RLA 120Juice< 0.01	
Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Washed apple Juice         0.30         2002/101 RLA 126           2000         NG         0.51-0.54         12         21         Whole fruit Uice         0.07         RLA 126           2000         NG         0.51-0.54         12         21         Whole fruit Uice         0.07         RLA 126           2000         NG         0.68-0.71         8         21         Whole fruit Uice         0.01         RLA 126           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Uice         0.06         RLA 126           Apple, Italy, 2000         WG         1.05         8         22         Whole fruit Uice         0.06         RLA 126           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Uice         2.21         2002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Uice         2.92         RLA 126           Apple, Spain,         WG         1.05         8         21         Whole fruit         2.92         RLA 126	
Apple, Italy, 2000         WG         0.51-0.54         12         21         Whole fruit Washed apple Juice         0.30         2002/101 RLA 126           2000         WG         0.51-0.54         12         21         Whole fruit Juice         0.07         RLA 126           Juice         <0.01	
2000	
Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Vert pomace         0.08         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Vert pomace         0.06         RLA 126           Apple, Italy, 2000         WG         1.05         8         21         Whole fruit Vert pomace         0.06         RLA 126           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Vert pomace         0.28         0.01         RLA 126           Met pomace         0.28         0.01         0.04         2002/101         RLA 126           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Vert pomace         2.01         2002/101           Apple, Spain, Apple, Spain,         WG         1.05         8         21         Whole fruit         2.92         RLA 126	
Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Vashed apple         0.08         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Vashed apple         0.06         RLA 126           Apple, Italy, 2000         WG         1.05         8         21         Whole fruit Vashed apple         0.06         RLA 126           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Vashed apple         0.04         2002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Vashed apple         2.21         2002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Vashed apple         2.92         RLA 126           Apple, Spain, Apple, Spain,         WG         1.05         8         21         Whole fruit         1.85         2002/101	
Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Washed apple         0.08         2002/101           Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Washed apple         0.06         RLA 126           Vet pomace         0.01         RLA 126         Juice         < 0.01	520.00 v
Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Washed apple         0.08         2002/101           2000         WG         0.68-0.71         8         21         Whole fruit Juice         0.06         RLA 126           2000         WG         0.68-0.71         8         21         Whole fruit Juice         0.06         RLA 126           2000         WG         1.05         8         22         Whole fruit Sauce         0.04         2002/101           Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Sauce         2.21         2002/101           Apple, Spain,         WG         1.05         8         22         Whole fruit Wet pomace         2.92         RLA 126           Washed apple         0.02         Juice         <0.01	
Apple, Italy, 2000         WG         0.68-0.71         8         21         Whole fruit Washed apple Juice         0.08         2002/101           2000         Kan and the second Washed apple         0.06         RLA 126           Juice         < 0.01	
2000       2000       Washed apple       0.06       RLA 126         Juice       < 0.01	
Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Wet pomace         2.01         RLA 126           Apple, Spain,         WG         1.05         8         21         Whole fruit         2.92         RLA 126           Market Space         4.01         8         22         Whole fruit         2.21         2002/101           Market Space         4.98         1.05         8         21         Whole fruit         2.92         RLA 126	
Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.21         2002/101           Apple, Spain,         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.92         RLA 126           Apple, Spain,         WG         1.05         8         21         Whole fruit         2.002/101	
Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.92         RLA 126           Apple, Spain,         WG         1.05         8         21         Whole fruit Whole fruit ^{a)} 2.92         RLA 126	520.00V
Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.21         2002/101           Apple, Spain,         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.92         RLA 126           Apple, Spain,         WG         1.05         8         21         Whole fruit         2.002/101	
Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.21         2002/101           2001         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td></td>	
Apple, Italy, 2001         WG         1.05         8         22         Whole fruit Whole fruit ^{a)} 2.21         2002/101           2001         WG         1.05         8         22         Whole fruit Washed apple Juice         2.92         RLA 126           Apple, Spain,         WG         1.05         8         21         Whole fruit         1.85         2002/101	
2001         Whole fruit ^{a)} 2.92         RLA 126           Washed apple         0.02         Juice         <0.01	11555.
Juice         < 0.01           Juice         4.98           Apple, Spain,         WG           1.05         8         21           Whole fruit         1.85         2002/101	
Wet pomace         4.98           Apple, Spain,         WG         1.05         8         21         Whole fruit         1.85         2002/101	
Apple, Spain,         WG         1.05         8         21         Whole fruit         1.85         2002/101	
Apple, Spain,         WG         1.05         8         21         Whole fruit         1.85         2002/101           2001	
2001 Whole fruit ^{a)} 0.58 RLA 126 Juice 0.91	516
Wet pomace < 0.01	
Apple,         WG         0.7         4         35         Whole fruit         0.14 (< 0.01)         2011/113	35917,
Germany, Washed apple 0.10 (< 0.01) Trial L10	
2010 Sauce < 0.01 (< 0.01) L0152/0	1
Canned apples $< 0.01 (< 0.01)$	
Wet pomace $0.52 (< 0.01)$	
Juice         < 0.01 (< 0.01)           Dried apples         0.03 (< 0.01)	
Dried apples         0.03 (< 0.01)           Dried pomace         1.72 (< 0.01)	
Fruit syrup $< 0.01 (< 0.01)$	
Apple,         WG         0.7         4         35         Whole fruit         0.32 (< 0.01)         2011/113	35917,
Germany, Washed apple 0.14 (< 0.01) Trial L10	00472,
2010 Sauce < 0.01 (< 0.01) L0152/0	1
Canned apples $< 0.01 (< 0.01)$	
Wet pomace $0.71 (< 0.01)$ buice $< 0.01 (< 0.01)$	
Juice         < 0.01 (< 0.01)           Dried apples         0.02 (< 0.01)	
Dried appres $0.02 (< 0.01)$ Dried pomace $1.81 (< 0.01)$	
Fruit syrup < 0.01 (< 0.01)	
Apple,         WG         0.7         4         35         Whole fruit         0.21 (< 0.01)         2011/113	35917,
Germany, Washed apple 0.12 (< 0.01) Trial L10	
2010 Sauce < 0.01 (< 0.01) L0152/0	/
Canned apples $< 0.01 (< 0.01)$	/
Wet pomace $0.48 (< 0.01)$ wise $< 0.01 (< 0.01)$	/
Juice         < 0.01 (< 0.01)           Dried apples         0.03 (< 0.01)	/
Dried apples $0.05 (< 0.01)$ Dried pomace $1.24 (< 0.01)$	/
Dried pointace $1.24 (< 0.01)$ Fruit syrup $< 0.01 (< 0.01)$	/
Apple,         WG         0.7         4         35         Whole fruit         0.40 (< 0.01)         2011/113	/

RAC,	Applicatio	on		PHI,	Commodity	Residues, mg/kg	Doc Id-No,
country, year	Form	kg ai/ha	No	Days	Commounty	residues, illg/ kg	Analytical Method
Germany,					Washed apple	0.24 (< 0.01)	Trial L100474,
2010					Sauce	< 0.01 (< 0.01)	L0152/01
					Canned apples	< 0.01 (< 0.01)	
					Wet pomace	1.64 (< 0.01)	
					Juice	0.01 (< 0.01)	
					Dried apples Dried pomace	0.10 (< 0.01) 5.20 ( <b>0.02</b> )	
					Fruit syrup	< 0.01 (< 0.01)	
Cherries,	WG	1.6	3	21	Cherries	0.08 (< 0.01)	2010/1093253,
2009					Washed cherries	0.01 (< 0.01)	Trial L090416,
					Canned cherries	< 0.01 (< 0.01)	L0152/01
					Jam	< 0.01 (< 0.01)	
					Juice	< 0.01 (< 0.01)	
Cherries,	WG	1.6	3	21	Wet pomace Cherries	0.04 (< 0.01) 0.27 (< 0.01)	2010/1093253,
2009	WG	1.0	5	21	Washed cherries	0.27 (< 0.01) 0.03 (< 0.01)	Trial L090417,
2007					Canned cherries	< 0.01 (< 0.01)	L0152/01
					Jam	< 0.01 (< 0.01)	
					Juice	< 0.01 (< 0.01)	
					Wet pomace	0.10 (< 0.01)	
Cherries,	WG	1.6	3	21	Cherries	0.14 (< 0.01)	2010/1093253,
2009					Washed cherries	0.02 (< 0.01)	Trial L090418,
					Canned cherries Jam	< 0.01 (< 0.01) < 0.01 (< 0.01)	L0152/01
					Juice	< 0.01 (< 0.01)	
					Wet pomace	0.05 (< 0.01)	
Cherries,	WG	1.6	3	21	Cherries	0.39 (< 0.01)	2010/1093253,
2009					Washed cherries	0.03 (< 0.01)	Trial L090419,
					Canned cherries	< 0.01 (< 0.01)	L0152/01
					Jam	< 0.01 (< 0.01)	
					Juice	< 0.01 (< 0.01)	
Dhuma	WG	1.6	3	21	Wet pomace Whole fruit	0.08 (< 0.01)	2011/1021149
Plums, Germany,	wG	1.0	3	21	Washed plums	0.19 (< 0.01) 0.12 (< 0.01)	2011/1031148, Trial L090412,
2009					Puree	< 0.01 (< 0.01)	L0152/01
2009					Dried prunes	0.11 (< 0.01)	20102/01
Plums,	WG	1.6	3	21	Whole fruit	0.25 (< 0.01)	2011/1031148,
Germany,					Washed plums	0.12 (< 0.01)	Trial L090413,
2009					Puree	< 0.01(< 0.01)	L0152/01
DI	NUC	1.6		21	Dried prunes	0.17 (< 0.01)	2011/1021140
Plums,	WG	1.6	3	21	Whole fruit	0.30 (< 0.01)	2011/1031148, Trial L090414,
Germany, 2009					Washed plums Puree	0.16 (< 0.01) < 0.01 (< 0.01)	L0152/01
2007					Dried prunes	0.07 (< 0.01)	L0132/01
Plums,	WG	1.6	3	21	Whole fruit	0.95 (< 0.01)	2011/1031148,
Germany,					Washed plums	0.51 (< 0.01)	Trial L090415,
2009					Puree	0.03 (< 0.01)	L0152/01
~					Dried prunes	0.43 (< 0.01)	
Grapes,	WG	1.05	4	35	Fruit	6.84 ( <b>0.01</b> )	2011/1248836, Trial L 100505
Germany, 2010					Rose wine: - Pomace, wet	8.92 ( <b>0.04</b> )	Trial L100595, L0152/01
2010					- Pomace, wet - Must	8.92 ( <b>0.04</b> ) < 0.01 (< 0.01)	LUIJ2/01
					- Juice	< 0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
					Red wine:	, , ,	
					- Pomace, wet	3.01 (< 0.01)	
					- Must	0.02 (< 0.01)	
					- Juice	< 0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
Cronac	WC	1.05	4	25	Raisins	21.28 ( <b>0.11</b> ) 2.96 (< 0.01)	2011/12/0026
Grapes, Germany,	WG	1.05	4	35	Fruit Rose wine:	2.90 (< 0.01)	2011/1248836, Trial L100596,
Cermany, 2010					- Pomace, wet	8.40 ( <b>0.02</b> )	L0152/01
2010					- Must	< 0.01 (< 0.01)	LU1J2/01
	1	1		I	111450	0.01 ( 0.01)	1

RAC,	Applicatio	on		PHI,	Commodity	Residues, mg/kg	Doc Id-No,
country, year	Form	kg ai/ha	No	Days			Analytical Method
· · · · ·	1	<u> </u>			- Juice	< 0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
					Red wine:		
					- Pomace, wet	1.66 (< 0.01)	
					- Must	< 0.01 (< 0.01)	
					- Juice	< 0.01 (< 0.01)	
					- Wine Raisins	< 0.01 (< 0.01) 6.16 ( <b>0.02</b> )	
Grapes,	WG	1.05	4	35	Fruit	3.43 (< 0.01)	2011/1248836,
Germany,		1.00		55	Rose wine:	5.15 (*0.01)	Trial L100597,
2010					- Pomace, wet	4.52 (< 0.01)	L0152/01
					- Must	0.02 (< 0.01)	
					- Juice	0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
					Red wine:	1.00 ( < 0.01)	
					- Pomace, wet	1.88 (< 0.01)	
					- Must - Juice	< 0.01 (< 0.01) < 0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
					Raisins	4.08 (0.02)	
Grapes,	WG	1.05	4	35	Fruit	7.96 (< 0.01)	2011/1248836,
Germany,					Rose wine:	× ,	Trial L100598,
2010					- Pomace, wet	10.96 ( <b>0.02</b> )	L0152/01
					- Must	0.02 (< 0.01)	
					- Juice	< 0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
					Red wine: - Pomace, wet	2.85 (< 0.01)	
					- Pomace, wet - Must	2.83 (< 0.01) 0.02 (< 0.01)	
					- Juice	< 0.01 (< 0.01)	
					- Wine	< 0.01 (< 0.01)	
					Raisins	5.04 ( <b>0.02</b> )	
Grapes,	SC	0.3-0.8	8	35	Grapes	0.64	DT-713-031,
Germany,					Must	< 0.05	RU 107/34/10
1986			-		Wine	< 0.05	
Grapes,	SC	0.38	8	35	Grapes	1.11	DT-713-032, RU
Germany, 1986					Must Wine	0.11 < 0.05	107/34/10
Grapes,	SC	0.23	8	35	Grapes	4.16	DT-713-033, RU
Germany,	30	0.25	0	55	Must	0.10	107/34/10
1986					Wine	< 0.05	10//0//10
Grapes,	SC	0.3-0.6	8	35	Grapes	0.73	DT-713-034, RU
Germany,					Must	0.02	107/34/10
1987	<u> </u>	ļ			Wine	0.03	
Grapes,	SC	0.23-0.68	8	35	Grapes	1.83	DT-713-035, RU
Germany,					Must	0.04	107/34/10
1987 Grapes,	SC	0.3-0.45	7	35	Wine Grapes	0.03	DT-713-036, RU
Grapes, Germany,	sc	0.3-0.43	/	35	Must	0.24	107/34/10
1987					Wine	< 0.02	107131110
Grapes,	SC	0.38-0.56	8	35	Grapes	1.61	DT-713-037, RU
Germany,					Must	< 0.02	107/34/10
1987					Wine	< 0.02	
Grapes,	SC	0.19-0.68	7	35	Grapes	4.5	DT-713-038, RU
Germany,					Must	0.11	107/34/10
1987			-	1 2 5	Wine	< 0.02	
Grapes,	SC	0.23-0.44	8	35	Grapes	1.21	DT-713-039, RU
Germany,					Must	< 0.05	107/34/10
1987 Grance	WC	1.1	8	41	Wine	< 0.05	2002/101/01/
Grapes, Germany,	WG	1.1	8	41	Grapes Grapes ^{a)}	4.17 3.45	2003/1014014, 2003/1014345,
2001					Must	0.72	2003/1014343, RLA 12616V
2001					Wet pomace	6.79	RLA 12620V
					Dry pomace	1.18	1(L/1 12020 V
	.1	.1	1	1	Poindee		

RAC,	Application	on		PHI,	Commodity	Residues, mg/kg	Doc Id-No,
country, year	Form	kg ai/ha	No	Days	2		Analytical Method
					Young wine	< 0.01	
					Wine	< 0.01	
					Juice	< 0.01	
Grapes, Italy,	WG	1.1	8	42	Grapes	4.68	2003/1014014,
2001					Grapes ^{a)}	4.77	2003/1014345,
					Must	1.55	RLA 12616V
					Wet pomace	10.22	RLA 12620V
					Dry pomace	0.72	
					Young wine	< 0.01	
					Wine	< 0.01	
					Juice	< 0.01	
Grapes,	WG	1.1	8	41	Grapes	3.27	2003/1014014,
Spain, 2001					Grapes ^{a)}	2.03	2003/1014345,
-					Must	0.85	RLA 12616V
					Wet pomace	0.61	RLA 12620V
					Dry pomace	0.25	
					Young wine	< 0.01	
					Wine	< 0.01	
					Juice	< 0.01	
Grapes,	WG	1.1	8	41	Grapes	4.85	2003/1014014,
France, 2001					Grapes ^{a)}	4.60	2003/1014345,
					Must	0.20	RLA 12616V
					Wet pomace	1.65	RLA 12620V
					Dry pomace	1.03	
					Young wine	< 0.01	
					Wine	< 0.01	
					Juice	< 0.01	
Hops,	WG	0.7-2.8	10	13	Dried hops	140	2002/1006301,
Germany,					Brewer's grain	$< 0.02^{\text{b}}$	M 3442
2001,					Spent hops	<0.1 ^{c)}	
Trial 11-					Brewer's yeast	< 0.02	
G01N059R					Beer	< 0.02	
Hops,	WG	0.7-2.8	10	13	Dried hops	94	2002/1006301,
Germany,					Brewer's grain	< 0.02	M 3442
2001,					Spent hops	< 0.1	
Trial 5-					Brewer's yeast	< 0.02	
G01N060R				10	Beer	< 0.02	<b>A</b> 0.0 <b>A</b> (4.00 (5.5.1 - 5.
Hops,	WG	0.7-2.8	10	13	Dried hops	69	2002/1006301, M
Germany,					Brewer's grain	< 0.02	3442
2001,					Spent hops	< 0.02	
Trial 11-					Brewer's yeast	< 0.02	
G01N061R	WC	0720	10	12	Beer	< 0.02	2002/100/201
Hops,	WG	0.7-2.8	10	13	Dried hops	51	2002/1006301,
Germany,					Brewer's grain	< 0.02	M 3442
2001,					Spent hops	< 0.02	
Trial 11-					Brewer's yeast	< 0.02	
G01N062R					Beer	< 0.02	

^a Whole fruit, starting material: RAC just before processing

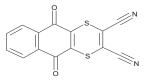
^b LOD 0.02 mg/kg

^c LOQ 0.1 mg/kg

The processing factors for dithianon residues were calculated from the data recorded in Table 64 and reflect commercial and household processing. The factors and the best estimate are summarized in Table 65.

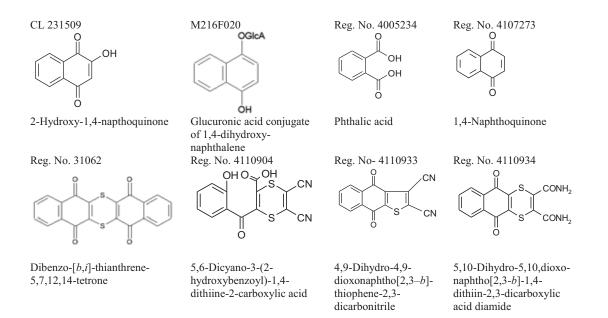
RAC	Processed commodity	Calculated processing factors	Best estimate
Oranges	Juice	< 0.014, < 0.085	< 0.05 (mean)
	Oil	0.46, 0.51	0.49 (mean)
	Wet pulp	0.029, <0.085	<0.06 (mean)
	Dry pulp	0.029, <0.084	<0.06 (mean)
Apple	Juice	<0.005, <0.005, <0.006, < 0.01, <0.03, <0.03, <0.03, <0.03, <0.03, 0.04, < 0.05, <0.07, <0.08, <0.1, <0.13	<0.03 (median)
	Sauce	<0.006, <0.08, < 0.01, <0.03, <0.03, <0.03, <0.03, <0.03, <0.03, <0.03, <0.03, <0.05, <0.07, <0.1, <0.13	<0.03 (median)
	Fruit syrup	<0.03, <u>&lt;0.03</u> , <u>&lt;0.05</u> , <0.07	< 0.04 (median)
	Canned apple	<0.03, <0.03, < 0.04, <u>&lt; 0.05</u> , <u>&lt;0.07</u> , <0.08, <0.1, <0.13	<0.06 (median)
	Dried apple	<0.03, <0.03, <u>0.06</u> , <u>0.14</u> , 0.21, 0.25	0.1 (mean)
	Wet pomace	0.49, 1.07, 1.07, 1.2, 1.47, <u>2.22</u> , <u>2.25</u> , 2.29, 2.77, 3.06, 3.4, 3.5, 3.71, 4.10	2.2 (median)
Cherries	Juice	<0.03, <u>&lt; 0.04</u> , <u>&lt;0.07</u> , <0.13	< 0.055 (median)
	Canned cherry	<0.03, <u>&lt; 0.04</u> , <u>&lt;0.07</u> , <0.13	< 0.055 (median)
	Jam	<0.03, <u>&lt; 0.04</u> , <u>&lt;0.07</u> , <0.13	< 0.055 (median)
Plums	Puree	<0.03, 0.03, < 0.04, < 0.05,	0.035 (median)
	Dried prunes	0.23, 0.45, 0.58, 0.68	0.515 (median)
Grapes	Juice	<0.001, <0.001, <0.001, <0.001, <0.002, <u>&lt;0.002</u> , <u>&lt;0.003</u> , <0.003, <0.003, <0.003, <0.005	<0.0025 (median)
	Must	<pre>&lt;0.001, &lt;0.003, &lt;0.003, &lt;0.003, 0.003, 0.003, 0.003, 0.003, 0.01, &lt; 0.012, 0.022, 0.024, 0.024, 0.027, &lt; 0.041, 0.043, &lt;0.078, 0.083, 0.099, 0.21, 0.32, 0.42</pre>	0.024 (median)
	Wine	$\begin{array}{c} <0.001, < 0.001, < 0.001, < 0.001, < 0.002, < 0.002, < 0.003, < 0.003, \\ < 0.003, < 0.003, \underline{<0.003}, < 0.004, < 0.005, < 0.007, < 0.012, < 0.012, \\ 0.016, < 0.041, 0.041, < 0.045, < 0.078 \end{array}$	<0.003 (median)
	Wet pomace	0.30, 0.36, 0.36, 0.44, 0.55, 0.56, 1.3, 1.32, 1.38, 1.97, 2.14, 2.84	0.93 (median)
	Dry pomace	0.12, 0.15, 0.22, 0.34	0.19 (median)
	Raisins	0.63, 1.19, 2.08, 3.11	1.64 (median)
Hops	Beer	<0.0001, <u>&lt;0.0002</u> , <u>&lt;0.0003</u> , <0.0004	<0.0003 (median)
	Brewer's grain	<0.0001, <0.0002, <0.0003, <0.0004	<0.0003 (median)

Table 65 Summary of processing factors for dithianon residues


# **RESIDUES IN ANIMAL COMMODITIES**

## Farm animal feeding studies

No data were received.


## APPRAISAL

The fungicide dithianon (5,10-dihydro-5,10-dioxonaphtho-[2,3-beta]-1,4-dithiine-2,3-dicarbonitrile) has been evaluated by the JMPR for the first time in 1992 (T, R). The compound was evaluated for toxicology by the 2010 JMPR where an ADI of 0.01 mg/kg bw and an ARfD of 0.1 mg/kg was allocated. The periodic review for residues was scheduled at the 39th session of the CCPR for the 2012 JMPR but postponed to evaluate in 2013.



The Meeting received information from the manufacturer on physical and chemical properties, metabolism studies on plants and animals, analytical methods, supervised residue trials data, processing studies as well as use pattern.

The metabolism and distribution of dithianon in plants and animals as well as the nature of the residue under simulated processing conditions, was investigated using the  $[5,6,9,10-]^{14}$ C-labelled compound or, in some studies, a  $[5,6,9,10-]^{13}$ C/¹⁴C-labelled compound. The following abbreviations are used for the metabolites or degradation products discussed below.



## Animal metabolism

Metabolism studies on <u>rats</u> reviewed by the 2010 JMPR show that at tested doses of 10 and 50 mg/kg bw orally administered dithianon was about 40–50% absorbed in rats. The majority of the administered dose was recovered in faeces (64–72%) and in urine (27–31%). Dithianon was extensively metabolized according to the following key transformation steps: oxidation of the sulphur atoms, cleavage of the dithine ring, reduction of the 1,4-naphthoquinone moiety and further glucuronidation, as well as substitution of the carbonitrile moieties by amino and carboxy groups. The only metabolite in rat urine at a level greater than 2% was M216F020.

Two studies were submitted on the metabolism of dithianon in <u>lactating goats</u>. In the first study, one lactating goat each was dosed by capsule at a daily nominal rate of 6 mg (equiv. to 2.5 ppm in the feed) and 60 mg [¹⁴C] dithianon (equiv. to 28 ppm) for five days. The highest radioactive residues (TRR) of the high dose group were detected in kidney (0.49 mg/kg as dithianon equivalents) and in liver (0.17 mg/kg equiv.). Lowest TRR were found in fat (0.013 mg/kg equiv.), in milk (0.018 mg/kg equiv.) and muscle (0.013 mg/kg equiv.). Most of the [¹⁴C] residue was rapidly and constantly excreted via faeces and urine - almost 80% of the applied dose was eliminated at the end of the study.

Further investigation on the nature of radioactive residues was carried out with the high dose (60 mg/day) samples. The TRR (calculated as dithianon equivalents) in muscle and fat were very low

(0.013–0.014 mg/kg equiv.), and no further characterization was possible. For milk and edible tissues, the extracted radioactive residues ranged from 49% of TRR (0.08 mg/kg equiv.) in liver to 77% (0.018 mg/kg equiv.) in milk. The radioactivity in post extraction solids (PES) ranged from 20% (0.005 mg/kg equiv.) in milk to 74% (0.36 mg/kg equiv.) in kidney. Several radioactive components were detected in the extracts but not further identified. Parent dithianon was identified in liver (0.96% of TRR), kidney (2.3% of TRR) and milk (8.2% of TRR).

In the second goat study, after five consecutive daily administrations of  $[^{13}C/^{14}C]$  dithianon at a dose of 60 mg/animal and day (equivalent to 25 ppm in the feed), the highest TRR were detected in kidney (0.48 mg/kg equiv.) and in liver (0.16 mg/kg equiv.). Lower radioactive residues were found in muscle (0.013 mg/kg), in milk (0.018 mg/kg) and fat (subcutaneous 0.074 mg/kg equiv., renal 0.009 mg/kg equiv.). The major route of excretion of radioactivity was via faeces, accounting for 47% of the total administered dose. A further 18% of the total administered radioactivity was excreted via urine.

With the exception of milk, most of the radioactive residues could not be extracted. The PES in liver, kidney, muscle and fat ranged from 59.4% in kidney to 80% in muscle. Neither parent nor any corresponding metabolite was identified. However, in liver, kidney, urine and bile a very complex metabolite profile was noted. More than 20 components were found in the organic phase and at least six components were detected in the aqueous phase at low absolute residue levels (< 0.05 mg/kg) in tissues. In milk, the extracted radioactivity accounted for 78.3% of TRR (0.012 mg/kg equiv.).

The reactivity of dithianon with nucleophiles (commonly thiols in the form of proteins and peptides such as glutathione) was demonstrated *in vitro*. Glutathione and N-acetylcysteine react very quickly with dithianon when incubated in pH 6.5 buffers at 37 °C. It was indicated that the reaction of dithianon with glutathione and protein thiol groups *in vivo* should be virtually instantaneous.

Two groups of <u>laying hens</u>, five hens per group, were treated orally once daily for 5 consecutive days with gelatin capsules containing dithianon. The actual doses of dithianon administered were 0.4 mg/day and 4 mg/day, equivalent to 3.6 ppm and 39 ppm in the feed, respectively.

Over the dosing period, a rapid absorption and excretion of radioactivity occurred. About 90% of the total radioactivity administered was eliminated in excreta by 6 hours after the last dose. There was no indication of accumulation of  $[^{14}C]$  dithianon in poultry tissues and eggs.

The highest TRR (in mg/kg as dithianon equiv.) were found in the kidney (0.042 and 0.34-0.38 mg/kg low and high dose, respectively), liver (0.017 and 0.17-0.19 mg/kg), skin with fat (0.005 and 0.039-0.041 mg/kg) and GI Tract (0.14 and 1.5 mg/kg). The lowest concentrations were found in muscle (0.002 and 0.022 mg/kg) and abdominal fat (< 0.002 and 0.014 mg/kg). The highest TRR in egg yolks were 0.005 and 0.075 mg/kg at the end of the study.

Solvent extraction was performed on the high dose group samples and released about of 68% of TRR in muscle (0.008 mg/kg equiv.), 76% of TRR in skin with fat (0.031 mg/kg equiv.), 72% of TRR in liver (0.13 mg/kg equiv.), 74% of TRR in kidney (0.28 mg/kg equiv.) and 47% of the TRR egg yolks (0.037 mg/kg equiv.). The majority of the extracted radioactivity was aqueous/methanol-soluble (35% in egg yolk to 67% of TRR in kidney). The chloroform-soluble radioactivity, containing less polar components, accounted for 6.6% in kidney to 16% of the TRR in liver. Radioactivity in the PES accounted for 25% in liver to 54% of the TRR in egg yolk.

Parent dithianon, detected in minor amounts in the excreta only (1.5% of TRR), was extensively metabolized to yield numerous minor metabolites. The metabolites were profiled by HPLC but were not identified as low concentrations prevented isolation. The organo-soluble metabolites accounted for  $\leq 0.003$  mg/kg equiv. each in the kidney and liver. One major polar component found in the aqueous/methanol extract accounted for 19% TRR (0.035 mg/kg equiv.) in liver, 11% TRR (0.042 mg/kg equiv.) in kidney, 36% TRR (0.015 mg/kg equiv.) in skin and fat, and 5.7% TRR (0.004 mg/kg equiv.) in egg yolk.

Metabolism studies performed on rats, goats and hens have shown that dithianon is rapidly and intensively metabolized by a number of degradation processes; it was only detected in trace amounts in tissues and/or excreta. As key degradation steps oxidation/reduction and reaction with nucleophiles, commonly R-SH in the form of proteins and peptides such a glutathione are assumed. These reactions result in a huge number of individual metabolites, but also incorporation into natural products. No individual metabolites had been identified; all of them were present in very minor amounts.

#### Plant metabolism

The metabolism of dithianon has been studied with [¹⁴C] dithianon on citrus trees, apple trees, spinach and wheat. The study designs of the plant up-take parts reflect the intended use pattern with several foliar post emergence applications.

Following foliar applications, there was no translocation from the part being directly treated to other parts of the plant. When applied to fruit crops, the dithianon residues remained predominantly associated with the peel. Most of the radioactivity present (> 50% TRR) could be washed of by a surface rinse using acetonitrile/HCl. Neither parent nor any metabolite was translocated to a significant degree into flesh or pulp. Dithianon was identified as the major component of the TRR and ranged from 50.9% in wheat grain up to 96% in spinach leaves.

The parent compound is further metabolized to a large number of polar components. With the exception of spinach, these components could not be identified. None of these metabolites was found in amounts exceeding 5% of the TRR. In spinach, metabolite 4110934, a dicarboxylic acid diamide derivative, 2-hydroxynapthoquinone (CL 231509) and phthalic acid were found, indicating that the absorbed dithianon was completely metabolised by the plants. All of the individual components of the extracted residues in spinach were between 0.1 and 0.5% of the TRR (0.13–0.8 mg/kg equiv.).

The different functional groups on the dithianon molecule provide multiple sites for chemical and enzymatic attacks resulting in cleavage of the dithiine as well as the quinone ring. The primary products formed are very reactive and could be the target of quite a number of further metabolism and conjugation reactions (e.g. hydroxylation, sulphur oxidation, and reactions with naturally occurring plant constituents), but also incorporation into plant constituents. The Meeting considered parent as the only relevant residue occurring after foliar treatment of plants with dithianon.

## Environmental fate

For dithianon, supervised residue trials data were received for foliar spray on permanent crops such as citrus fruits, tree nuts, pome fruits, stone fruits, grapes and hops. Therefore, neither environmental fate nor rotational crops studies are necessary.

Dithianon is not stable in aqueous media. A hydrolysis study showed  $DT_{50}$  values of 10.7 days at pH 5, 0.6 days at pH 7 and ca. 10 minutes at pH 9. The photochemical degradation at 20 °C in sterile pH 4 buffer resulted in a  $DT_{50}$  value lower than 0.05 days.

#### Methods of analysis

The Meeting received descriptions and validation data for analytical methods for residues of dithianon in plant and animal commodities. Residue analytical methods for dithianon rely on HPLC with UV-detection or LC-MS/MS for plants and HPLC with electrochemical detection or LC-MS/MS for animal matrices. Typical LOQs achieved for plant and animal commodities fall in the range of 0.01–0.05 mg/kg (except hops, dried, 1 mg/kg). Methods have been subjected to independent laboratory validation.

Descriptions and validation data for analytical methods for residues of the degradation product 4110904 in citrus fruit, apples, grapes, plums and grape wine were received. The analytical methods rely on LC-MS/MS. Typical LOQs achieved for plants commodities were 0.01 mg/kg.

## Stability of residues in stored analytical samples

Information was received on the freezer storage stability of dithianon and 4110904 residues in plant commodities.

Older studies from 1992–1994 show that dithianon residues were not stable in spiked samples for a period longer than two months. Newer studies with incurred residues in apples (testing period 2 years) and wine grapes (testing period 14 months) show that dithianon residues were apparently stable at freezer temperature for the intervals tested. Residues of dithianon were not stable in wine, declining on average by 86% of the original fortification after 26 weeks of frozen storage.

The storage stability studies with 4110904 demonstrate that the compound is stable under freezer conditions in plant matrices for about two years in apples, plums and wine. Residues of 4110904 were not stable in grapes, declining by ca. 65% of the fortification level after 3 months, and in lemons, declining by ca. 55% after a week.

## Definition of the residue

Animal metabolism studies were performed in lactating goats and laying hens. The parent compound dithianon is rapidly and intensively metabolized and was only detected in trace amounts in tissues and excreta. There was no bioaccumulation in tissues, milk and eggs. No individual metabolites had been identified; all of them were present in very minor amounts (< 0.05 mg/kg and also < 10% TRR).

Dithianon has a log  $P_{OW}$  of 3.2. In animal metabolism studies, the TRR in muscle and fat were comparable (dithianon *per se* could not be detected). The Meeting decided that the residue of dithianon is not fat-soluble.

In plant metabolism studies performed on fruits (oranges, apples), leafy crops (spinach) and cereals (wheat) the same metabolic behaviour was observed. The parent compound dithianon is the dominant component of the residue in plant commodities and ranged from 50.9% of the TRR in wheat grain up to 96% of the TRR in spinach leaves. No individual metabolite occur at relative amounts > 10% of TRR and of absolute concentrations of > 0.05 mg/kg in the same matrix.

Therefore, from the metabolism studies on plants and animals presented, the proposed definition of the residue is parent dithianon only.

The Meeting took into account the possibility of the formation of two hydrolysis products (Reg. No. 31062 and 4110904) in significant concentrations during industrial or household processing of dithianon treated fruits. Based on their dietary risk assessment, the Meeting concluded that there is no need to include both degradates in the residue definition for estimation of the dietary intake.

<u>Definition of the residue</u> (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: *Dithianon*.

The residue is not fat-soluble.

## Results of supervised residue trials on crops

The Meeting received supervised residue trials data for citrus fruits, apple, pear, cherries, peaches, plums, grapes, currants, almonds and hops. If two field samples were taken or results of two replicate plots were submitted, the mean value was calculated. For HR estimation, the highest single value of the trials according to GAP was used. From two or more trials carried out side-by-side the higher residue was chosen.

### Citrus fruits

In Japan, dithianon is registered for foliar spray use on citrus fruits at a maximum application rate of  $3 \times 0.5$  kg ai/hL with a PHI of 30 days. Supervised trials with  $3 \times 0.5$ –0.7 kg ai/hL with a PHI of 28–30 days were available from Japan: four on mandarins (four for whole fruit, six for pulp), two on pomelo, as well as one each on the small citrus fruits sudachi and kabosu (citrus sphaerocarpa).

The Meeting agreed to use the proportionality approach and scaled the residue data of the overdosed trials according to an application rate of 0.5 kg ai/hL.

The scaled dithianon residue values were in:

mandarins 0.46, 0.7, 0.82, 2.2 mg/kg (whole fruit) and < 0.018, < 0.018, < 0.018, < 0.021, 0.05, 0.07 mg/kg (pulp). The highest single value in pulp was 0.09 mg/kg.

pomelos 1.05, 1.45 mg/kg (whole fruit) and 0.02, 0.05 mg/kg (pulp)

sudachi and kabosu 0.84, 2.5 mg/kg (whole fruit).

The Meeting noted that only four residue trials on mandarin, two on pomelo and two on the small citrus varieties (sudachi/kabosu) are insufficient to estimate a maximum residue level for the whole group of citrus fruits.

The Meeting considered that six residue trials were available for mandarin. It was noted that in four trials data for whole fruit and in six trials pulp data were submitted. The Meeting agreed that only four trials on mandarin (whole fruit) are insufficient to estimate a maximum residue level for the subgroup mandarins. The previous recommendations of 3 mg/kg for mandarin, shaddocks or pomelos should be withdrawn.

## Pome fruits

Dithianon is registered for foliar spray treatment on pome fruit in Germany with 12 treatments per season of 0.035 kg ai/hL and 0.18 kg ai/ha per m crown height (equivalent to 0.54 kg ai/ha for 3 m crown height) and a PHI of 21 days.

During the years 1975–2000, 21 trials on <u>apples</u> were conducted in Germany (12), France (3), Greece (1), Italy (3) and Spain (2). Foliar applications were made from 12 to 14 times to apple trees at application rates of 0.51-0.63 kg ai/ha. At a PHI of 21 days, the residues were < 0.03, < 0.05, 0.12, 0.13, 0.20, 0.24, 0.36, 0.38, 0.43, 0.48, 0.48, 0.59, 0.62, 0.76, 0.86, 1.0, 1.3, 1.5, 1.7, 1.7 and 1.7 mg/kg.

Four trials on <u>pears</u> were conducted in 2004 in Germany, The Netherlands, Northern France and Denmark with foliar spray by  $12 \times 0.53$  kg ai/ha. The dithianon residues were at a PHI of 21-22 days 0.19, 0.37, 0.39 and 0.87 mg/kg.

The rank order of the combined dithianon residues on apple and pear were (n = 25): < 0.03, < 0.05, 0.12, 0.13, 0.19, 0.20, 0.24, 0.36, 0.37, 0.38, 0.39, 0.43, 0.48, 0.48, 0.59, 0.62, 0.76, 0.86, 0.87, 1.0, 1.3, 1.5, 1.7, 1.7 and 1.7 mg/kg.

The Meeting noted that the ARfD of 0.1 mg/kg bw is exceeded for apple by the IESTI for children (120% of ARfD) using 1.7 mg/kg as HR and decided that the dataset is not appropriate to estimate a maximum residue level for pome fruit.

An alternative GAP is an Italian use of  $4 \times 0.3$  kg ai/ha on apple and of  $3 \times 0.3$  kg ai/ha on pear with a PHI of 35 days. In Macedonia, dithianon is registered in apples with  $4 \times 0.24$ –0.30 kg ai/ha and in pear with  $4 \times 0.32$ –0.4 kg ai/ha. The PHI is 35 days also.

Five apple trials were conducted in 2003 with  $4 \times 0.3$ –0.35 kg ai/ha. The dithianon residues were 34–35 days after treatment 0.11, 0.14, 0.35, 0.39 and 0.43 mg/kg.

Eleven apples trials were carried out in 2010 in Germany (1), the UK (1), Belgium (1), the Netherlands (1), France (2), Greece (1), Italy (2) and Spain (2) with  $4 \times 0.36$  kg ai/ha. The dithianon residues were after a PHI of 35 days < 0.01, 0.02, 0.02, 0.06, 0.10, 0.14, 0.16, 0.21, 0.27, 0.34 and 0.65 mg/kg.

The combined dithianon residue data after application of  $4 \times 0.3-0.36$  kg ai/ha from 2003 and 2010 were (n = 16): < 0.01, 0.02, 0.02, 0.06, 0.10, 0.11, 0.14, <u>0.14</u>, <u>0.16</u>, 0.21, 0.27, 0.34, 0.35, 0.39, 0.43 and 0.65 mg/kg.

The Meeting agreed to extrapolate from apple to the whole group and estimated a maximum residue level of 1 mg/kg for dithianon residues in pome fruits to replace the previous recommendation (5 mg/kg). An STMR and an HR value of 0.15 mg/kg and 0.65 mg/kg were estimated.

## Stone fruits

The GAP for stone fruits in Hungary is 2–3 times foliar spray treatment of 0.053–0.066 kg ai/hL, 0.53 kg ai/ha and a PHI of 21 days. Supervised trials were available for cherries, peaches and plums.

On <u>cherries</u>, sour, seven trials were carried out in Germany from 1985 to 1995 by an application of  $3 \times 0.53$  kg ai/ha and a PHI of 21 days. The dithianon residues were 0.17, 0.26, 0.28, 0.34, 0.41, 0.49 and 0.80 mg/kg.

Further trials on cherries (sweet and sour) were conducted in 2009/2010 in the UK (2), France (3), Germany (2), Greece (2), Italy (3), The Netherlands (2) and Spain (1) with  $3 \times 0.53$  kg ai/ha and a PHI of 20–21 days. The dithianon residues were 0.04, 0.09, 0.19, 0.19, 0.21, 0.38, 0.43, 0.45, 0.50, 0.57, 0.59, 0.69, 0.82, 0.90 and 1.0 mg/kg.

The Meeting concluded to combine the dithianon residues on cherries from both datasets. The dithianon residues on cherries were in rank order (n = 22): 0.04, 0.09, 0.17, 0.19, 0.19, 0.21, 0.26, 0.28, 0.34, 0.38, 0.41, 0.43, 0.45, 0.49, 0.50, 0.57, 0.59, 0.69, 0.80, 0.82, 0.90 and 1.0 mg/kg.

On <u>plums</u>, twelve trials were conducted in 2009/2010 in France (3), Belgium (1), Germany (4), Italy (2) and Spain (2) with  $3 \times 0.53$  kg ai/ha and a PHI of 20–22 days. The dithianon residues were 0.04, 0.05, 0.06, 0.10, 0.10, 0.18, 0.21, 0.25, 0.27, 0.32, 0.40 and 0.45 mg/kg.

On <u>peaches</u>, twelve trials were conducted in 2009/2010 in France (4), Germany (2), Greece (2), Italy (2) and Spain (2) with  $3 \times 0.53$  kg ai/ha and a PHI of 20–21 days. The dithianon residues were 0.17, 0.18, 0.24, 0.36, 0.38, 0.43, 0.44, 0.45, 0.56, 0.60, 1.0 and 1.6 mg/kg.

The Meeting noted that the Hungarian GAP is for the stone fruit group, and considered a group maximum residue level. To consider a group maximum residue level, residues in individual commodities should be similar (e.g. medians should not differ by more than five times). The Meeting agreed to estimate a maximum residue level for the group stone fruit.

In deciding whether to combine the datasets for the different crops for use in the statistical calculator or to only utilise the data from the commodity with the highest residues, the Meeting recognised the similarity of the datasets of cherries and peaches (confirmed by the Mann-Whitney U-test). The Meeting agreed to combine these datasets for the purposes of determining a group maximum residue level for stone fruit.

The rank order of the combined dataset of cherries and peaches is (n = 34): 0.04, 0.09, 0.17, 0.17, 0.18, 0.19, 0.19, 0.21, 0.24, 0.26, 0.28, 0.34, 0.36, 0.38, 0.38, 0.41, <u>0.43</u>, <u>0.43</u>, 0.44, 0.45, 0.45, 0.49, 0.50, 0.56, 0.57, 0.59, 0.60, 0.69, 0.80, 0.82, 0.90, 1.0, 1.0 and 1.6 mg/kg.

The Meeting estimated a maximum residue level of 2 mg/kg, an STMR of 0.43 mg/kg and an HR of 1.6 mg/kg for dithianon residues in stone fruits. The previous recommendation of 5 mg/kg for dithianon in cherries was withdrawn.

#### Grapes

Dithianon is registered for foliar spray treatment on grapes in Slovenia with  $1-8 \times 0.35$  kg ai/ha and a PHI of 42 days.

Trials on <u>grapes</u> were available from Germany (24). The plants were treated eight times during the growing season with 0.23-0.68 kg ai/ha; the last applications were in a range of 0.44-0.68 kg ai/ha. The Meeting agreed to use the proportionality approach to scale the residues of a PHI of 41–43 days according an application rate of 0.35 kg ai/ha. The rank order of scaled residues was (n = 24): 0.15, 0.19, 0.29, 0.34, 0.36, 0.43, 0.44, 0.44, 0.48, 0.50, 0.54, 0.60, 0.61, 0.72, 0.75, 0.76, 0.80, 0.92, 1.0, 1.05, 1.2, 1.2, 1.4 and 2.5 mg/kg.

Further trials were conducted in France (3), Germany (1), Greece (1), Italy (4) and Spain (4). Grapes were treated with  $8 \times 0.56$  kg ai/ha. The PHI was 41–42 days. The rank order of the scaled dithianon residues on the application rate of 0.35 kg ai/ha were (n = 13): 0.21, 0.28, 0.33, 0.37, 0.63, 0.69, 0.69, 0.81, 0.81, 0.88, 0.94, 2.1 and 4.6 mg/kg.

The rank order of the combined scaled residue data was (n = 37): 0.15, 0.19, 0.21, 0.28, 0.29, 0.33, 0.34, 0.36, 0.37, 0.43, 0.44, 0.44, 0.48, 0.50, 0.54, 0.60, 0.61, 0.63, <u>0.69</u>, 0.69, 0.72, 0.75, 0.76, 0.80, 0.81, 0.81, 0.88, 0.92, 0.94, 1.0, 1.05, 1.2, 1.2, 1.4, 2.1, 2.5 and 4.6 mg/kg.

The Meeting estimated a maximum residue level of 5 mg/kg for dithianon residues in grapes. Because the ARfD of 0.1 mg/kg bw is exceeded by the IESTI of dithianon for grapes using 4.6 mg/kg as HR (310% for children, 150% for general population), the Meeting decided that the maximum residue level of 5 mg/kg is not suitable for table grapes and should be apply to <u>wine grapes</u> only. For calculation of residues in processed commodities (juice, wine), a median residue level of 0.69 mg/kg was estimated.

The Meeting agreed to search for an alternative GAP to estimate a maximum residue level, an STMR and an HR for table grapes.

Another registration exists in Serbia of  $3 \times 0.35$  kg ai/ha and a PHI of 35 days for grapes. Trials on grapes treated with  $3 \times 0.53$  kg ai/ha and a PHI of 35 days from Germany (4), France (7), Spain (2), Italy (1) and Greece (1) were submitted. The Meeting agreed to use the proportionality approach to estimate a separate maximum residue level, an STMR and HR for table grapes. The scaled residue values according to Serbian application rate were (n = 15): 0.29, 0.39, 0.48, 0.50, 0.56, 0.57, 0.59, 0.63, 0.64, 0.73, 0.86, 0.99, 1.1, 1.2 and 1.3 mg/kg.

The Meeting estimated a maximum residue level of 2 mg/kg for dithianon residues in <u>table</u> <u>grapes</u>. The previous recommendation for grapes of 3 mg/kg was withdrawn. An STMR of 0.63 mg/kg and an HR of 1.3 mg/kg were estimated.

## Currants

In France, dithianon may be used as foliar spray on <u>currants</u> with an application rate of  $2 \times 0.49$  kg ai/ha and a PHI of 14 days.

Six trials on black currants according to the French GAP ( $2 \times 0.53$  kg ai/ha, PHI 14 days) were submitted. The dithianon residues were < 0.05, < 0.05, < 0.1, 0.11, 0.61 and 0.89 mg/kg.

The Meeting agreed to extrapolate from black currants to currants, black, red, white and estimated a maximum residue level of 2 mg/kg, an STMR of 0.105 mg/kg and an HR of 0.89 mg/kg for dithianon residues in currants.

### Almonds

The registered use of dithianon in <u>almonds</u> in France is foliar spray treatment of  $2 \times 0.35$  kg ai/ha and a PHI of 58 days. Four French trials in line with French GAP were available. The dithianon residues were in almonds (without shell) < 0.05 mg/kg (4).

The Meeting considered four trials as sufficient for the estimation of a maximum residue level in almonds because dithianon is located on the surface of the shell and no residues are to be expected in the nutmeat and estimated a maximum residue level of  $0.05^*$  mg/kg, and an STMR and an HR of 0 mg/kg.

# Hops, dry

In Austria and Germany, dithianon is registered for use on <u>hops</u> at  $10 \times 0.63-1.4$  kg ai/ha (depending from growth stage) and a PHI of 14 days. German trials in line with GAP ( $10-12 \times 0.3-1.5$  kg ai/ha, PHI 14 days) were submitted. The residues were in dried cones 4.1, 16, 17, 21, 22, 32, <u>58</u>, <u>70</u>, 82, 88, 89, 94, 96 and 242 mg/kg.

The Meeting estimated for dithianon residues in hops, dry a maximum residue level of 300 mg/kg and an STMR of 64 mg/kg. The previous recommendation of 100 mg/kg should be replaced.

# Fate of residues during processing

### Nature of residues

Three studies on the nature of the residue under simulated processing conditions, performed with [¹⁴C] dithianon at higher temperatures, were received.

In the <u>first study</u>, hydrolysis was conducted in buffers solutions whereas in the <u>second study</u>, [¹⁴C] dithianon was incubated in apple juice under the conditions of pasteurization (pH 4, incubation for 20 minutes at 90 °C). In both studies, at pH 4, the parent molecule formed the major part of the radioactivity. In addition, a multiple number of unknown degradation products was formed; each of them < 10% of the total applied radioactivity (TAR). At high temperature conditions and pH 5 (simulated processing conditions of baking, brewing and boiling) or pH 6 (simulated processing conditions of sterilization) the hydrolytic degradation of dithianon was fast and resulted in many degradation products. The degradation product 4110904 was found at pH 5 and pH 6 in concentrations exceeding the level of 10% the total applied radioactivity (TAR) accounting for 46–57% of TRR at pH 5 and for about 20% of TRR at pH 6.

A <u>third hydrolysis study</u> on the degradation of dithianon in apple juice at 90 °C, 100 °C and 120 °C was conducted for further characterization of the components formed. The initial high temperature hydrolysis tests with [¹⁴C] dithianon in apple juice resulted in the rapid disappearance of dithianon. Between 44 and 47% of the TAR remained as dithianon after hydrolysis at 90 °C for 20 minutes, 0.9–1% of the TAR remained as dithianon after hydrolysis at 100 °C for 60 minutes and less than 1% of the TAR remained as parent after hydrolysis at 120 °C for 20 minutes. The results of the identification of the degradation products are as follows:

- The initial high temperature hydrolysis tests resulted in the formation of naphthoquinone (4107273) at greater than 10% of the TAR upon 20 minutes of hydrolysis at 120 °C. Formation of 4107273 was not observed in the lower temperature hydrolysis samples. 4107273 was also no longer found after refrigerated storage (21 days/33 days) of the apple juice sample hydrolysed at 120 °C. The compound was only found immediately after hydrolysis.
- Phthalic acid (4005234) and compound 4110933 were both observed in hydrolysed apple juice, but always at less than 5% of the TAR.
- Compounds 4110904 and 31062 were formed at 9.4% and 10.5% of TAR, respectively, upon 60 minutes of hydrolysis at 100 °C. At 20 minutes of hydrolysis at 120 °C, 4110904 was formed at 5.8% and 31062 at 10% of TAR. Both compounds appear to be stable in hydrolysed apple juice stored refrigerated.

### Level of residues

The Meeting received information on the fate of <u>dithianon</u> residues during the processing of <u>oranges</u> to juice, oil and dry pulp, of apples to juice, sauce, dried apple and wet pomace, of cherries to juice, canned cherries and jam, of plums to puree and dried prunes, of grapes to juice, must, wine, raisins and wet pomace and of hops to beer.

The processing factors obtained in the processing studies and estimated STMR-P and HR-P values are summarized below.

Raw agricultural commodity (RAC)			Processed commodity			
Name	STMR	HR	Name	Processing factor	STMR-P	HR-P
	(mg/kg)	(mg/kg)		(median or best estimate)	(mg/kg)	(mg/kg)
Apples	0.15		Juice	< 0.03 (median)	0.0045	
			Sauce	< 0.03 (median)	0.0045	

Raw agricultura	l commodity (	(RAC)	Processed commodi	ity		
Name	STMR	HR	Name	Processing factor	STMR-P	HR-P
	(mg/kg)	(mg/kg)		(median or best estimate)	(mg/kg)	(mg/kg)
			Syrup	< 0.04 (median)	0.006	
			Canned apple	< 0.06 (median)	0.009	
			Dried apple	0.1 (median)	0.015	
			Wet pomace	2.2 (median)	0.33	
Cherries	0.43		Juice	< 0.055 (median)	0.024	
			Canned cherries	< 0.055 (median)	0.024	
			Jam	< 0.055 (median)	0.024	
Plums	0.43		Puree	0.035 (median)	0.015	
			Dried prunes	0.515 (median)	0.22	
Wine-grapes	0.69		Juice	< 0.0025 (median)	0.002	
			Must	0.024 (median)	0.017	
			Wine	< 0.003 (median)	0.002	
			Wet pomace	0.93 (median)	0.64	
Table-grapes	0.63	1.3	Raisins	1.64 (median)	1.03	2.13
Hops	64		Beer	< 0.0003 (median)	0.019	

The Meeting noted that dithianon concentrated during processing in apple pomace, wet and in raisins. Because apple pomace is not a commodity in trade, no maximum residue level is estimated.

Based on the recommended MRL of 2 mg/kg for dithianon residues in table grapes and the processing factor of 1.64, the Meeting estimated a maximum residue level of 3.5 mg/kg for dried grapes ( $2 \times 1.64 = 3.28$ ). An STMR-P of 1.03 mg/kg and an HR-P of 2.13 mg/kg were estimated for raisins.

The Meeting discussed the relevance of the hydrolysis products <u>411094 and 31062</u> for the residue definition for industrial or household preparations of dithianon treated fruits and made the following assumptions to estimate their dietary intake:

According to the results of the hydrolysis studies, both degradation products accounted for about 10% of the TAR.

In addition to dithianon, the degradation product  $\underline{4110904}$  was investigated in the processing studies for dithianon on apples, cherries, plums and grapes. No residues of 4110904 above the LOQ of 0.01 mg/kg were detected in the RAC. The degradate was not detected in must, wine and juice, but in raisins where the residues were lower than 1% of the dithianon residue. The Meeting agreed to use the LOQ for must, wine and juice or the highest real measured value for raisins to estimate the dietary intake of 4110904. For hops, because no data for 4110904 were available, 10% of the STMR for dithianon in hops adjusted by the molecular weight of 4110904 (330.3) was used.

Because no residue data for the degradate  $\underline{31062}$  in RAC and the related processed products were submitted, the estimated dietary intake is based on 10% of the STMR of parent dithianon. The Meeting noted that 31062 was formed by dimerization, resulting in the doubling of the radioactivity per molecule. Therefore the stoichiometric factor to extrapolate from dithianon to 31062 residues is 0.635 [376.1 ÷ (2 × 296.3)]. The 31062 concentrations are calculated as follows:

RESIDUE₃₁₀₆₂ = STMR_{Dithianon}  $\times$  0.635  $\div$  10.

The following concentrations of the degradates 4110904 and 31062 were estimated for chronic and acute dietary intake purposes:

Name	Name	4110904, mg/kg	Basis	31062, mg/kg	Basis
Apples,	Juice	0.01	LOQ ₄₁₁₀₉₀₄	0.0095	STMR _{Dithianon}
Pears	Sauce	0.01	LOQ ₄₁₁₀₉₀₄	0.0095	STMR _{Dithianon}
	Canned	0.01	LOQ ₄₁₁₀₉₀₄	0.0095	STMR _{Dithianon}
	Dried	0.01	LOQ ₄₁₁₀₉₀₄	0.0095	STMR _{Dithianon}
Currants	Juice	0.012	STMR _{Dithianon}	0.007	STMR _{Dithianon}
Stone fruits	Juice	0.01	LOQ ₄₁₁₀₉₀₄	0.0273	STMR _{Dithianon}
	Canned	0.01	LOQ ₄₁₁₀₉₀₄	0.0273	STMR _{Dithianon}

Name	Name	4110904, mg/kg	Basis	31062, mg/kg	Basis
	Jam	0.01	LOQ ₄₁₁₀₉₀₄	0.0273	STMR _{Dithianon}
	Plum puree	0.01	LOQ ₄₁₁₀₉₀₄	0.0273	STMR _{Dithianon}
	Dried prunes	0.01	LOQ ₄₁₁₀₉₀₄	0.052	HR _{Dithianon}
Wine-grapes	Juice	0.01	LOQ ₄₁₁₀₉₀₄	0.044	STMR _{Dithianon}
	Must	0.01	LOQ ₄₁₁₀₉₀₄	0.044	STMR _{Dithianon}
	Wine	0.01	LOQ ₄₁₁₀₉₀₄	0.044	STMR _{Dithianon}
Table-grapes	Raisins	0.11	4110904	0.135	HR _{Dithianon}
			measured value		
Hops	Beer	7.1	STMR _{Dithianon}	4.06	STMR _{Dithianon}

Conservative estimates of long-term exposure of the degradation products Reg. No. 31062 and Reg. No. 4110904 after industrial or household processing were calculated for the 13 GEMS/Food cluster diets using residue concentrations estimated above. The maximum long-term daily intake was 4.7  $\mu$ g per person (0.00008 mg/kg bw). Applying this intake to the TTC approach (threshold value 0.0015 mg/kg bw, Cramer Class III), the calculated exposures were up to 5% of the TTC.

Conservative estimates of short-term exposure of the degradation products Reg. No. 31062 and Reg. No. 4110904 were calculated using the residue concentrations estimated above. The maximum short-term daily intake was 115  $\mu$ g per person (0.00192 mg/kg bw). Applying this intake to the TTC approach (threshold value 0.005 mg/kg bw, Cramer Class III), the maximum calculated exposure was 40% of the TTC.

The Meeting concluded that the long-term and short-term intake of residues of Reg. No. 31062 and Reg. No. 4110904 arising of dithianon, when used in ways that have been considered by the JMPR, is unlikely to present a public health concern.

## Farm animal dietary burden

The 2013 JMPR evaluated residues of dithianon in apple pomace wet and grape pomace wet which are listed under by-products in the OECD feeding table for beef and dairy cattle but not for poultry.

## Estimated maximum and mean dietary burdens of farm animals

Dietary burden calculations based on the feed items evaluated for beef cattle and dairy cattle as presented in Annex 6. The calculations were made according to the livestock diets from Australia, the EU, Japan and US-Canada in the OECD Table. Because the calculation based on the STMR-P values of the processed by-products, the maximum and mean burden is identical. The table below shows the values calculated.

Because apple pomace wet and grape pomace wet are no feed items for poultry, the livestock dietary burden for broiler and layer is zero.

	Livestock die	Livestock dietary burden, dithianon, ppm of dry matter diet							
	US-Canada	US-Canada		EU		Australia		Japan	
	Max	Mean	Max	Mean	Max	Mean	Max	Mean	
Beef cattle	0	0	0.165	0.165	0.853 ^a	0.853 ^a	0	0	
Dairy cattle	0.083	0.083	0.090	0.090	0.853 ^a	0.853 ^a	0	0	
Poultry-broiler	0	0	0	0	0	0	0	0	
Poultry-layer	0	0	0	0	0	0	0	0	

^a Highest mean and maximum beef or dairy cattle dietary burden suitable for MRL and STMR estimates for mammalian meat, edible offal and milk.

## Farm animal feeding and metabolism studies

No animal feeding studies of dithianon were submitted. The Meeting agreed to extrapolate the residue levels to be expected in ruminant tissues and milk from the goat metabolism studies.

The metabolism studies in lactating goats were performed at actual dose levels of 2.5 and 28 ppm in the first study and of 25 ppm in the feed of the second study. The overdosing factors are calculated as about 2.9 (2.5 ppm  $\div$  0.853 ppm), 33 (28 ppm  $\div$  0.853 ppm) and 29 (25 ppm  $\div$  0.853 ppm), respectively.

## Animal commodity maximum residue levels

The expected total residues in milk and edible tissues of ruminants can be extrapolated from the highest TRR found in the goat metabolism studies as follows:

Commodity	Feeding level, ppm	TRR from metabolism study, mg/kg	TRR extrapolated from actual dietary
			burden, mg/kg
Milk	2.5	< 0.01	< 0.003
Liver		0.07	0.024
Kidney		0.04	0.014
Muscle		Not detected	-
Fat		< 0.01	< 0.003
Milk	28	0.030	0.0009
Liver		0.174	0.0053
Kidney		0.489	0.0149
Muscle		0.013	0.0004
Fat		0.014	0.0004
Milk	25	0.016	0.0006
Liver		0.157	0.0054
Kidney		0.475	0.0162
Muscle		0.014	0.0005
Fat		0.074	0.0025

The extrapolated TRR are for milk, muscle and fat are lower than the LOQ of 0.01 of dithianon in animal products. In case of liver and kidney, the extrapolated TRR range from 0.005-0.02 mg/kg and 0.01-0.02 mg/kg, respectively.

The Meeting noted that the results from metabolism studies on rats, goats and hens show that dithianon is intensively metabolized. In the goat, parent dithianon was detected at low levels ( $\leq 0.01$  mg/kg) and no single metabolite in the extracts was detected > 0.05 mg/kg. Therefore, it is not expected that the calculated TRR in cattle tissues and milk arising from a burden of 0.853 ppm would account for 100% of dithianon or a related metabolite. In case of poultry, the dietary burdens for broiler and layer are zero. The Meeting concluded that the contribution of dithianon arising residues in animal products to the dietary intake is negligible.

The Meeting estimated maximum residue levels of 0.01* mg/kg for meat of mammals, other than marine mammals, edible offal (mammalian), milk, poultry meat, poultry edible offal and eggs. The STMR for milk and the STMR/HR values for mammalian and poultry meat, mammalian and poultry edible offal as well as for eggs are zero.

## RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI and IESTI assessment.

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: *Dithianon*.

The residue is not fat-soluble.

	Commodity	MRL, mg/k	кg	STMR or STMR-P	HR or HR-P
CCN	Name	Proposed	previous	mg/kg	mg/kg
TN 0660	Almonds	0.05*		0	0
FS 0013	Cherries	W	5 ^a		
FB 0021	Currants, Black, Red, White	2		0.105	0.89
DF 0269	Dried grapes	3.5		1.03	2.13
MO 0105	Edible offal (mammalian)	0.01*		0	0
PE 0112	Eggs	0.01*		0	0
FB 0269	Grapes	W	3 ^b		
DH 1100	Hops, dry	300	100	64	
FC 0206	Mandarin	W	3		
MM 0095	Meat (from mammals other than marine mammals)	0.01*		0	0
ML 0106	Milks	0.01*		0	0
FP 0009	Pome fruits	1	5	0.15	0.65
PM 0110	Poultry meat	0.01*		0	0
PO 0110	Poultry, Edible offal of	0.01*		0	0
FC 0005	Shaddocks or pomelos	W	3		
FS 0012	Stone fruits	2		0.43	1.6
FB 1235	Table grapes	2		0.63	1.3
FB 1236	Wine grapes	5		0.69 °	

MRL recommendations and dietary intake

W: The recommendation is withdrawn.

^a The recommendation for cherries is withdrawn and replaced by a recommendation for stone fruit.

^b The recommendation for grapes is withdrawn and replaced by separate recommendations for table grapes and wine grapes.

^c Median value for calculation of STMR-P for wine, juice and must.

Dietary intake only

CCN	Commodity name	STMR or STMR-P, mg/kg	HR or HR-P
	Apples, canned	0.009	
DF 0226	Apples, dried	0.015	
JF 0226	Apple juice	0.0045	
	Apple sauce	0.0045	
	Apple syrup	0.006	
	Apple wet pomace	0.33	
	Beer	0.019	
	Cherries, canned	0.024	
	Cherry jam	0.024	

CCN	Commodity name	STMR or STMR-P, mg/kg	HR or HR-P
	Cherry juice	0.024	
JF 0269	Grape juice	0.002 ^a	
	Grape must	0.017 ^a	
	Grape wine	0.002 ^a	
	Grape wet pomace	0.64 ^a	
	Plum puree	0.015	
DF 0014	Prunes	0.22	0.82

^a STMR-P based on median residue of wine grapes.

## DIETARY RISK ASSESSMENT

## Long-term intake

The International Estimated Dietary Intakes (IEDIs) of dithianon were calculated for the 13 GEMS/Food cluster diets using STMRs and STMR-Ps estimated by the current Meeting (Annex 3 of the 2013 JMPR Report). The ADI is 0–0.01 mg/kg bw and the calculated IEDIs were 1–7% of the maximum ADI. The Meeting concluded that the long-term intake of residues of dithianon resulting from the uses considered by the current JMPR is unlikely to present a public health concern.

## Short-term intake

The International Estimated Short Term Intake (IESTI) for <u>dithianon</u> was calculated for food commodities and their processed fractions for which maximum residue levels were estimated and for which consumption data were available. The results are shown in Annex 4 of the 2013 JMPR Report.

The Meeting noted that for apples and grapes the IESTI calculated according to the maximum GAP exceeded the ARfD of 0.1 mg/kg bw and used an alternative GAP.

For the commodities considered by the JMPR, the IESTI represented 0-40% of the ARfD for the general population and 0-90% of the ARfD for children. The Meeting concluded that the short-term intake of residues of dithianon, when used in ways that have been considered by the JMPR, is unlikely to present a public health concern.

Doc-ID No	Author(s)	Year	Title
1994/7001689	Schlueter H., Grahl U.	1994	14C-Dithianon: Investigation on the nature of metabolites occuring in wheat. Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
2002/1006301	Pollmann B.	2002	Determination of residues of Dithianon in field samples and in processed goods after application of BAS 216 03 F in hops at 4 sites in Germany in 2001. GAB Biotechnologie GmbH & IFU Umweltanalytik GmbH, Niefern-Oeschelbronn, Germany Fed. Rep. Unpublished
2002/1008746	Jones S.	2003	Study on the residue behaviour of BAS 216 F in grapes after application of BAS 216 03 F under field conditions in Germany, Spain, France (N), Italy, Greece, 2001. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
2002/1011501	Smalley R.	2002	BAS 216 03 F (Dithianon) 700 g as/kg WG (SF 09321): Decline curve residue study on Dithianon in apples - Italy, 2000. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
2002/1011502	Smalley R.	2002	BAŠ 216 03 F (Dithianon) 700 g as/kg WG (SF 09321): A harvest residue study on Dithianon in apples - Italy, 2000. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
2002/1011505	Jones S.	2002	Study on the residue behaviour of BAS 216 F in apples after application of BAS 216 03 F under field conditions in Spain, Italy, Greece, 2001. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
2002/1011555	Jones S.	2002	The magnitude of BAS 216 F residues in apple processed fractions. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished

#### REFERENCES

Doc-ID No	Author(s)	Year	Title
2002/1025517	Malet J.C.,	2002	Mesure du niveau de residus de Dithianon sur peche - Residues of Dithianon in peach.
2003/1001123	Allard L. Dale T.	2003	Ministere de l Agriculture et de la Peche, Paris, France. Unpublished Freezer storage stability of BAS 216 F (Dithianon) in wine, grape juice, grape pomace, grape must and apple sauce. BASF plc, Gosport Hampshire PO13 0AU, United
2003/1001125	Schulz H.	2005	Kingdom. (Interim report to 2005/1029468) Unpublished Study on the residue behaviour of Dithianon in wine grapes after treatment with BAS 216 03 F under field conditions in Spain and Italy, 2003. SGS Institut Fresenius GmbH,
2003/1001126	Schulz H.	2004	Taunusstein, Germany Fed. Rep. Unpublished Study on the residue behaviour of Dithianon in apples and processed products after treatment with BAS 216 03 F under field conditions in Germany, 2003. Institut Fresenius Chemische und Biologische Laboratorien AG, Taunusstein, Germany Fed.
2003/1004349	Smalley R.	2003	Rep. Unpublished Study on the residue behaviour of BAS 216 F in grape vines after application of BAS 216 03 F under field conditions in Italy, France South and Spain, 2002. BASF plc,
2003/1014014	Jones S.	2003	Gosport Hampshire PO13 0AU, United Kingdom. Unpublished Processing study on the residue behaviour of BAS 216 F in grapes after application of BAS 216 03 F under field conditions in Germany, Spain, France (N), Italy, 2001. BASF
2003/1014345	Jones S.	2003	plc, Gosport Hampshire PO13 0AU, United Kingdom, Unpublished Final report amendment: Processing study on the residue behaviour of BAS 216 F in grapes after application of BAS 216 03 F under field conditions in Germany, Spain, France (N), Italy, 2001. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
2003/1018259	Jones S.	2003	Report amendment No. 1 to final report: Study on the residue behaviour of BAS 216 F in grapes after application of BAS 216 03 F under field conditions in Germany, Spain, France (N), Italy, Greece, 2001. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
2004/1000746	Raunft E., Mackenroth C.	2004	Study on the residue behaviour of Dimethomorph and Dithianon in grapes after application of BAS 553 00 F under field conditions in Germany, France (N/S), Italy and Spain, 2003. BASF AG Agrarzentrum Limburgerhof, Limburgerhof, Germany Fed. Rep. Unpublished
2004/1000752	Schulz H.	2004	Study on the residue behaviour of BAS 216 F, BAS 500 F, BF 500-3 and BAS 510 F in apples after application of either BAS 584 GB F, BAS 216 03 F or BAS 516 01 F under field conditions in France, Belgium, Italy and the Netherlands, 2003. Institut Fresenius Chemische und Biologische Laboratorien AG, Taunusstein, Germany Fed. Rep.
2005/1004963	Schulz H.	2005	Unpublished Study on the residue behaviour of BAS 550 F and BAS 216 F in vine after treatment with BAS 553 00 F under field conditions in Germany, Northern and Southern France, Greece, Italy and Spain, 2004. SGS Institut Fresenius GmbH, Taunusstein, Germany
2005/1007543	Kroehl T.	2005	Fed. Rep. Unpublished Melting point and vapour pressure of Dithianon (TGAI, Source: Merck KGAA). BASF AG Agrarzentrum Limburgerhof, Limburgerhof, Germany Fed. Rep. Unpublished
2005/1008916	Daum A.	2005	Determination of the water solubility of Dithianon (BAS 216 F, Reg.No. 049 638) TGAI, BASF AG Agrarzentrum Limburgerhof, Limburgerhof, Germany Fed. Rep. Unpublished
2005/1014012	Schulz H.	2005	Study on the residue behaviour of Dithianon in pears after treatment with BAS 216 03 F under field conditions in Denmark, Germany, Northern France and the Netherlands, 2004. SGS Institut Fresenius GmbH, Taunusstein, Germany Fed. Rep. Unpublished
2005/1029468	Rawle N.W., Edwards J.	2005	Freezer storage stability of BAS 216 F (Dithianon) in wine, grape juice, grape pomace, grape must and apple sauce. CEMAS - CEM Analytical Services Ltd., North Ascot Berkshire SL5 8JB, United Kingdom. Unpublished
2005/1038558	Brem G.	2005	Henry s law constant for BAS 216 F. BASF AG Agrarzentrum Limburgerhof, Limburgerhof, Germany Fed. Rep. Unpublished
2006/1032406	Class T., Richter M.	2006	Validation of a residue enforcement method for the determination of Dithianon (BAS 216 F), Pyraclostrobin (BAS 500 F), and its metabolite BF500-3 in plant materials. PTRL Europe GmbH, Ulm, Germany Fed. Rep. Unpublished
2006/1034178	Bross M.	2006	Dithianon (BAS 216 F): Supplemental information on residue analytical methods (dossier section M-II, 4.2.1): Confirmatory method in animal matrices. BASF AG Agrarzentrum Limburgerhof, Limburgerhof, Germany Fed. Rep. Unpublished
2007/1017102	Jones B.	2007	Independent laboratory validation (ILV) of the SOP-PA.0281 for the determination of Dithianon (BAS 216 F) - Residues in wheat, sunflower, lettuce, green-apple and hop. BASF SA, Resende, Brazil. Unpublished
2008/1028546	Kroehl T.	2008	UV/VIS spectra of Dithianon PAI (Reg.No. 49638, BAS 216 F). BASF SE, Limburgerhof, Germany Fed. Rep. Unpublished
2009/1045474	Schweda Z.	2009	Validation of BASF method L0135/01: Method for the determination of Dithianon (BAS 216 F) in animal matrices. BASF SE, Limburgerhof, Germany Fed. Rep. Unpublished
2009/1045475	Schweda Z.	2009	Technical procedure: Method for the determination of Dithianon (BAS 216 F) in animal matrices. BASF SE, Limburgerhof, Germany Fed. Rep. Unpublished
2009/1065632	Hassink J.	2009	BAS 216 F: Hydrolysis in apple juice during simulation of the processing step pasteurization. BASF SE, Limburgerhof, Germany Fed. Rep. Unpublished
2010/1006343	Erdmann HP.	2010	Study on the residue behaviour of Dithianon in plums after application of BAS 216 03 F under field condition in Northern France, Italy, Spain and Germany, 2009. Agro-Check Dr. Teresiak & Erdmann GbR, Lentzke, Germany Fed. Rep. Unpublished

Doc-ID No	Author(s)	Year	Title
2010/1014784	Schaeufele M.	2010	Residue study (decline) with BAS 216 03 F applied to peaches in Germany, Northern France, Southern France, Greece, Italy and Spain in 2009. Huntingdon Life Sciences
2010/1014785	Schaeufele M.	2011	Ltd., Huntingdon Cambridgeshire PE28 4HS, United Kingdom. Unpublished Residue study (decline) with BAS 216 03 F applied to sweet and sour cherries in Germany, Northern France, the Netherlands and the UK in 2009 and in Spain, Greece, Southern France and Italy in 2010. Huntingdon Life Sciences Ltd., Eye Suffolk IP23
2010/1021354	Lehmann A.	2011	7PX, United Kingdom. Unpublished Validation of BASF method L0152/01: Method for the determination of Dithianon (BAS 216 F) and its metabolite (Reg.No. 4110904) in plant matrices. BASF SE,
2010/1062111	Bross M.	2010	Limburgerhof, Germany Fed. Rep. Unpublished Additional information - Dithianon (BAS 216 F): Residue analytical methods in food of plant origin (Reporting table: Comment A1 (53)). BASF SE, Limburgerhof, Germany End. Base Unsuchished
2010/1093253	Harant, H.	2010	Fed. Rep. Unpublished Determination of residues of BAS 216 F (Dithianon) in cherries and their processed products after three applications of BAS 216 03 F in Germany. BioChem Project No. 091047021. Study code 358244. Unpublished.
2011/1031148	Harant, H.	2011	Determination of residues of BAS 216 F (Dithianon) in plums and their processed products after three applications of BAS 216 03 F in Germany. BioChem Project No. 091047022. Study code 358342. Unpublished.
2011/1050127	Erdmann HP.	2012	Study on the residue behaviour of Dithianon in cherry (sour and sweet) after application of BAS 216 03 F under field condition in The Netherlands, UK, Southern France, Greece, Italy and Germany, 2010. Agro-Check Dr. Teresiak & Erdmann GbR, Lentzke,
2011/1050128	Erdmann HP.	2011	Germany Fed. Rep. Unpublished Study on the residue behaviour of Dithianon in plum after application of BAS 216 03 F under field condition in Northern France, Belgium, Italy, Spain and Germany, 2010.
2011/1059016	Schaeufele M.	2011	Agro-Check Dr. Teresiak & Erdmann GbR, Lentzke, Germany Fed. Rep. Unpublished Residue study (decline) with BAS 584 00 F applied to apples in Germany, The UK, Belgium, The Netherlands, Northern France, Southern France, Greece, Italy and Spain in 2010. Huntingdon Life Sciences Ltd., Eye Suffolk IP23 7PX, United Kingdom.
2011/1059017	Schaeufele M.	2011	Unpublished Residue study (decline) with BAS 216 03 F applied to peaches in Germany, Northern France, Southern France, Greece, Italy and Spain in 2010. Huntingdon Life Sciences
2011/1120995	Moreno S.	2011	Ltd., Eye Suffolk IP23 7PX, United Kingdom. Unpublished Study on the residue behaviour of Dimethomorph and Dithianon in grapes (table) after treatment with BAS 553 01 F under field conditions in South Europe, season 2010.
2011/1135917	Plier, S.	2011	Agricultura y Ensayo SL, Alcala de Guadaira, Spain. Unpublished Determination of residues of BAS 216 F (Dithianon) in apples and their processed products after four applications of BAS 216 03 F in Germany. BioChem Project No. 101047026. Study code 375146. Unpublished.
2011/1248836	Plier, S.	2012	Determination of residues of BAS 216 F (Dithianon) in grapes and their processed products after four applications of BAS 216 03 F in Germany. BioChem Project No. 101047040. Study code 375146. Unpublished.
2012/1278420	Anonymous	1991	Dithianon residues in mandarin oranges grown in Japan. Unpublished
2012/1278421	Anonymous	1991	Dithianon residues in Natsumikan citrus grown in Japan. Unpublished
2012/1278422	Anonymous	1991	Dithianon 40% SC residues in citrus (sudachi and kabosu) grown in Japan. Unpublished
2012/1278423	Imai et al.	1985	Pesticide residue analysis - Result report - Dithianon, 70%WP - Citrus (Unshiu) – Japan. Unpublished
2013/1061837	Lehmann, A.	2013	Investigation of the storage stability of BASF 216 F metabolite Reg. No. 4110904 in plant matrices. Study code 375110, BASF SE Limburgerhof, Germany, Unpublished
2013/1061838	Lehmann, A.	2013	Investigation of the storage stability of incurred BASF 216 F residues (Dithianon) in apples. Study code 389041. BASF SE Limburgerhof, Germany. Unpublished
2013/1078029	Class, T.	2013	14C-Labelled dithianon: high temperature hydrolysis in apple juice at 90 °C, 100 °C and 120 °C. PTRL Europe, Ulm, Germany, BASF Ref. No. 410081-1. Unpublished.
DK-713-032	Dombo P. et al.	1997	Dimethomorph / Dithianon (CL 336379 / CL 37114) 150/350 g ai/kg WG (SF09392): Decline curve residue study on CL 336379 and CL37114 in vine (Germany, 1995). Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-123-019	Bixler T.A.	1994	Freezer storage stability of Dithianon in apple and pear. Huntingdon Analytical Services, Middleport NY, USA. Unpublished
DT-123-045	Schlueter H.	1996	Amendment no. 1 to report CFS 1994-059: 14C-Dithianon: Investigation on the nature of metabolites occurring in oranges - Supplemental data. Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep. (Amendment 1 to report DT-640-020). Unpublished
DT-123-066	Schlueter H.	1998	Unpublished 14C-Dithianon (CL 37114): Further investigation on the nature of metabolites occurring in oranges. Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-244-037	Jones A.	1989	Certificate of analysis - The determination of Dithianon residues in samples of apples and pears. Hazleton UK, Harrogate North Yorkshire HG3 1PY, United Kingdom. Unpublished
DT-244-045	Todd M.A.	1992	Dithianon: The validation of method HUK 460/38 for the determination of residues in grapes. Hazleton UK, Harrogate North Yorkshire HG3 1PY, United Kingdom. Unpublished
DT-244-048	Curl M.G.	1992	Dithianon: The validation of method FAMS 009-01 for the determination of residues in must, red and white wine. Hazleton UK, Harrogate North Yorkshire HG3 1PY, United Kingdom. Unpublished

Doc-ID No	Author(s)	Year	Title
DT-244-054	Weitzel R.	1996	Dithianon (CL37114): Validation of analytical method FAMS 028-02 for the
			determination of active ingredient in grapes, must and wine (Germany, 1995).
			Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-244-055	Weitzel R.	1996	Dithianon (CL37114): Validation of analytical method FAMS 028-02 for the
			determination of active ingredient in apples (Germany, 1995). Cyanamid Forschung
			GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-244-065	Smalley R.	2001	Validation of method RLA 12616 to include Dithianon residues in grapes, juice, wine
			and beer. BASF plc, Gosport Hampshire PO13 0AS, United Kingdom. Unpublished
DT-244-065	Smalley R.	2001	Amendment No. 1 to report: Validation of method RLA 12616 to include Dithianon
(Amendment 1)			residues in grapes, juice, wine and beer. BASF plc, Gosport Hampshire PO13 0AS,
			United Kingdom. Unpublished
DT-244-065	Smalley R.	2001	Amendment No. 2 to report: Validation of method RLA 12616 to include Dithianon
(Amendment 2)			residues in grapes, juice, wine and beer. BASF plc, Gosport Hampshire PO13 0AS,
			United Kingdom. Unpublished
DT-244-068	Smalley R.	2001	Validation of a method to determine Dithianon residues in apples and their processed
			commodities. BASF plc, Gosport Hampshire PO13 0AS, United Kingdom. Unpublish
DT-244-068	Smalley R.	2001	Amendment 1 to report: Validation of a method to determine Dithianon residues in
(Amendment 1)			apples and their processed commodities. BASF plc, Gosport Hampshire PO13 0AS,
			United Kingdom. Unpublished
DT-244-068	Smalley R.	2001	Amendment 2 to report: Validation of a method to determine Dithianon residues in
(Amendment 2)			apples and their processed commodities. BASF plc, Gosport Hampshire PO13 0AS,
			United Kingdom. Unpublished
DT-245-007	Nejad H.,	2001	CL 37114 (Dithianon): Validation and independent laboratory validation of method M
	Connolly P.		3435 for the determination of CL 37114 residues in bovine tissues (muscle and fat) and
			animal products (chicken egg and bovine whole milk) by HPLC-ECD. BASF Corp.
			Agro Research, Princeton NJ, USA. Unpublished
DT-245-008	Nejad H.,	2001	Amendment 1: Validation and independent laboratory validation of method M 3435 f
	Connolly P.		the determination of CL 37114 residues in bovine tissues (muscle and fat) and animal
			products (chicken egg and bovine whole milk) by HPLC-ECD. BASF Corp. Agro
			Research, Princeton NJ, USA. Unpublished (Amendment 1 to report DT-245-007)
DT-303-001	Ost W.,	1989	Determination of the melting point of Dithianon. Shell Forschung GmbH, Ingelheim,
	Henke S.		Germany Fed. Rep. Unpublished
DT-306-001	Ost W.,	1989	Determination of the vapour pressure of Dithianon. Shell Forschung GmbH, Ingelhei
	Henke S.		Germany Fed. Rep. Unpublished
DT-306-001	Ost W.,	1990	Addendum 1 to report: Determination of the vapour pressure of Dithianon. Shell
(Amendment 1)	Henke S.		Forschung GmbH, Ingelheim, Germany Fed. Rep. Unpublished
DT-308-001	Ost W.,	1989	Determination of the density (20°C) of Dithianon. Shell Forschung GmbH, Ingelhein
	Henke S.		Germany Fed. Rep. Unpublished
DT-308-007	Werle H.	2000	Determination of the relative density of AC 37114 (CL 37114) (BAS 216 F) technica
			grade active material according to EC council directive 92/69/EEC A.3. BioChem
			GmbH, Karlsruhe, Germany Fed.Rep. Unpublished
DT-311-001	Ost W.,	1989	Determination of the water solubility of Dithianon. Shell Forschung GmbH, Ingelhein
	Henke S.		Germany Fed. Rep. Unpublished
DT-311-001	Ost W.,	1990	Amendment 1: Determination of the water solubility of Dithianon. Shell Forschung
(Amendment 1)	Henke S.		GmbH, Ingelheim, Germany Fed.Rep. Unpublished
DT-312-001	Ost W.,	1989	Determination of the solubility of Dithianon in different solvents at 20°C. Shell
	Henke S.		Forschung GmbH, Ingelheim, Germany Fed. Rep. Unpublished
DT-312-002	Kramer H. T.et	2001	Dithianon (BAS 216 F): Solubility in organic solvents. Covance Laboratories Inc.,
	al.	4.0.7.7	Madison WI, USA. Unpublished
DT-315-002	Ost W.,	1989	Determination of the partition-coefficient N-Octanol/water log pow of Dithianon. She
	Henke S.		Forschung GmbH, Ingelheim, Germany Fed. Rep. Unpublished
DT-315-003	Vogel W.	1990	Determination of the partition coefficient of Dithianon (n-octanol/water). RCC
	·· · -		Umweltchemie AG, Itingen, Switzerland. Unpublished
DT-322-008	Knoch E.,	2001	Dithianon (BAS 216 F): Hydrolysis. Institut Fresenius Chemische und Biologische
DE AA CAAS	Ta C.		Laboratorien GmbH, Herten, Germany Fed. Rep. Unpublished
DT-324-002	Knoch E.,	2000	Dithianon (AC 37114): Determination of the quantum yield on basis of the direct
	Ta C.		phototransformation in buffered medium at pH 4. Institut Fresenius Chemische und
			Biologische Laboratorien GmbH, Herten, Germany Fed. Rep. Unpublished
DT-324-003	Knoch E.,	2001	Dithianon (BAS 216 F): Aqueous photolysis at pH 4. Institut Fresenius Chemische un
	Ta C.		Biologische Laboratorien GmbH, Herten, Germany Fed. Rep. Unpublished
DT-326-003	Todd M.	1992	Dithianon stability in pears. Hazleton UK, Harrogate North Yorkshire HG3 1PY,
			United Kingdom. Unpublished
DT-326-004	Todd M.A.	1992	Dithianon stability in grain and straw. Hazleton UK, Harrogate North Yorkshire HG3
			1PY, United Kingdom. Unpublished
DT-326-005	Todd M.	1992	Dithianon stability in apples. Hazleton UK, Harrogate North Yorkshire HG3 1PY,
			United Kingdom. Unpublished
DT-326-007	Curl M.G.	1992	Dithianon: Stability in grape samples. Hazleton UK, Harrogate North Yorkshire HG3
			1PY, United Kingdom. Unpublished
DT-326-010	Weber H.	1994	Storage stability of Dithianon in hops and processed matrices. Dr. Specht & Partner
			Chemische Laboratorien GmbH, Hamburg, Germany Fed.Rep. Unpublished
DT-326-018	Weitzel R.	1999	Dithianon (CL 37114) / Cymoxanil (CL 309806): Storage stability of residues of
			Dithianon and Cymoxanil in wine grapes at <-18°C (Germany, 1997). Cyanamid

Doc-ID No	Author(s)	Year	Title
DT-330-005	Werle H.	2000	Determination of the flammability (solids) of AC 37114 (CL 37114) (BAS 216 F) technical grade active material according to EC council directive 92/69/EEC A.10.
			BioChem GmbH, Karlsruhe, Germany Fed. Rep. Unpublished
DT-334-003	Angly H.	2000	Determination of the explosive properties AC 37114 (CL 37114) (BAS 216 F) technical grade active material according to EC council directive 92/69/EEC part A.14. Institute
DT 240 001	Werla H	2000	of Safety & Security, Basel, Switzerland. Unpublished
DT-340-001	Werle H.	2000	Determination of the surface tension of AC 37114 (CL 37114) (BAS 216 F) technical grade active material according to EC directive 92/69/EEC A.5. BioChem GmbH, Karlsruhe, Germany Fed. Rep. Unpublished
DT-356-001	Werle H.	2000	Determination of the oxidizing properties of AC 37114 (CL 37114) (BAS 216 F)
			technical grade active material according to EC council directive 92/69/EEC A.17.
DT-360-012	Philburn K.R.	1999	BioChem GmbH, Karlsruhe, Germany Fed. Rep. Unpublished AC 37114 (Dithianon) spectral database. American Cyanamid Co., Princeton NJ, USA.
DT 200 0//	W71 - TT	2000	Unpublished
DT-390-066	Werle H.	2000	Determination of the odor of AC 37114 (CL 37114) (BAS 216 F) technical grade active material according to EPA guideline OPPTS 830.6304. BioChem GmbH, Karlsruhe, Germany Fed. Rep. Unpublished
DT-390-067	Werle H.	2000	Determination of the color of AC 37114 (CL 37114) (BAS 216 F) technical grade active material according to EPA guideline OPPTS 830.6302. BioChem GmbH,
			Karlsruhe, Germany Fed. Rep. Unpublished
DT-390-068	Werle H.	2000	Determination of the physical state of AC 37114 (CL 37114) (BAS 216 F) technical grade active material according to EPA guideline OPPTS 830.6303. BioChem GmbH,
DT 200 060	Warls H	2000	Karlsruhe, Germany Fed. Rep. Unpublished
DT-390-069	Werle H.	2000	Determination of the color of AC 37114 (CL 37114) (BAS 216 F) secondary standard according to EPA guideline OPPTS 830.6302. BioChem GmbH, Karlsruhe, Germany Fed. Rep. Unpublished
DT-390-070	Werle H.	2000	Determination of the physical state of AC 37114 (CL 37114) (BAS 216 F) secondary
			standard according to EPA guideline OPPTS 830.6303. BioChem GmbH, Karlsruhe,
DT 200 071	Wents II	2000	Germany Fed. Rep. Unpublished
DT-390-071	Werle H.	2000	Determination of the odor of AC 37114 (CL 37114) (BAS 216 F) secondary standard according to EPA guideline OPPTS 830.6304. BioChem GmbH, Karlsruhe, Germany
			Fed. Rep. Unpublished
DT-440-005	Cheng T.	1990	Five-day repeated dose of 14C-Dithianon in laying hens. Hazleton Laboratories
	~ ~		America Inc., Madison WI, USA. Unpublished
DT-440-006	Cheng T.	1990	Five-day repeated dose of 14C-Dithianon in lactating goats. Hazleton Laboratories
DT-440-007	Cheng T.	1992	America Inc., Madison WI, USA. Unpublished Supplement No. 1 to final report: Five-day repeated dose of 14C-Dithianon in laying
DT-440-008	Cheng T.	1992	hens. Hazleton Laboratories America Inc., Madison WI, USA. Unpublished Supplement No. 1 to final report: Five-day repeated dose of 14C-Dithianon in lactating
	ching I.	1772	goats. Hazleton Laboratories America Inc., Madison WI, USA. Unpublished
DT-440-011	Webb J.D.,	1994	Dithianon (WL 049890): Fate of [5,6,9,10-13C/14C] Dithianon in the lactating goat
	Richardson		following 5 consecutive daily doses (60 mg/day). Shell Research Ltd., Sittingbourne
DT-640-013	K.A. Hawkins D.R.	1991	Kent ME9 8AG, United Kingdom. Unpublished The metabolism of 14C-Dithianon after application to apples. Huntingdon Research
D1-040-015	et al.	1771	Centre Ltd., Huntingdon Cambridgeshire PE18 6ES, United Kingdom. Unpublished
DT-640-013	Mayo B.C.	1993	Amendment no. 1: The metabolism of 14C-Dithianon after application to apples.
(Amendment 1)			Huntingdon Research Centre Ltd., Huntingdon Cambridgeshire PE18 6ES, United
DT (40.014		1001	Kingdom. Unpublished
DT-640-014	Hawkins D.R. et al.	1991	The metabolism of 14C-Dithianon in wheat. Huntingdon Research Centre Ltd., Huntingdon Cambridgeshire PE18 6ES, United Kingdom. Unpublished
DT-640-015	Hubert T.D.	1991	14C-Dithianon: Nature of the residue in citrus. Hazleton Laboratories America Inc.,
DT (40.01(		1002	Madison WI, USA. Unpublished
DT-640-016	Hubert T.D.	1992	Amendment No. 1 to the final report 14C-Dithianon: Nature of the residue in citrus. Hazleton Laboratories America Inc., Madison WI, USA. Unpublished
DT-640-017	Schlueter H.,	1998	14C-Dithianon (CL 37114): Further investigation on the nature of metabolites occurring
	Varga J.		in wheat. Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep.
			Unpublished
DT-640-018	Mayo B.C.	1994	14C-Dithianon: The metabolism in oranges. Huntingdon Research Centre Ltd.,
DT-640-019	Mayo B.C.	1994	Huntingdon Cambridgeshire PE18 6ES, United Kingdom. Unpublished The metabolism of 14C-Dithianon in wheat. Huntingdon Research Centre Ltd., Huntingdon Cambridgeshira DE18 6ES. United Kingdom. Unpublished
DT-640-020	Schlueter H.,	1994	Huntingdon Cambridgeshire PE18 6ES, United Kingdom. Unpublished 14C-Dithianon: Investigation on the nature of metabolites occurring in oranges.
D1-040-020	Memmes- heimer H.	1774	Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-640-021	Schlueter H.,	1996	14C-Dithianon: Investigation on the nature of metabolites occurring in wheat -
			Supplemental data. Cyanamid Forschung GmbH, Schwabenheim, Germany Fed. Rep.
			(Amendment 1 to report 1994/7001689). Unpublished
DT-640-023	Dijk van A.	2000	Dithianon (CL 37114): Metabolism of 14C-Dithianon in spinach. RCC Ltd., Itingen,
DT-710-008	Furr H.	1993	Switzerland. Unpublished Dithianon: The determination of residues in citrus process fractions from the USA.
D1-/10-000	1 411 11.	1773	Hazleton UK, Harrogate North Yorkshire HG3 1PY, United Kingdom. Unpublished
DT-711-005	Heupt W.	1976	Pflanzenschutzmittel - Rueckstaende: Dithianon - Aepfel. Celamerck GmbH & Co.

Doc-ID No	Author(s)	Year	Title
DT-711-006	Heupt W.	1976	Pflanzenschutzmittel - Rueckstaende: Dithianon – Aepfel. Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-711-009	Schenk W.,	1986	Report on residue trials with Dithianon in apples. Celamerck GmbH & Co. KG,
	Eichler D.		Ingelheim, Germany Fed. Rep. Unpublished
DT-711-013	Schenk W.,	1986	Report on residue trials with Dithianon in apples. Celamerck GmbH & Co. KG,
DT-711-019	Eichler D.	1986	Ingelheim, Germany Fed. Rep. Unpublished Rueckstandsuntersuchungen mit Pflanzenbehandlungsmitteln: Dithianon – Aepfel.
D1-/11-019	Schenk W., Eichler D.	1980	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-711-020	Schenk W.,	1986	Rueckstandsuntersuchungen mit Pflanzenbehandlungsmitteln: Dithianon – Aepfel.
D1-/11-020	Eichler D.	1700	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-711-085	Todd M.A.	1992	Dithianon: The determination of residues in apples from France. Hazleton UK,
			Harrogate North Yorkshire HG3 1PY, United Kingdom.Unpublished
DT-711-094	Anonymous	1994	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Aepfel. Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-711-095	Anonymous	1994	Rueckstandsuntersuchungen mit Pflanzenschuttmitteln - Rueckstaende Aepfel. Dr.
D1-711-095	Anonymous	1774	Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep.
DT 711 000	D'4-V	1000	Unpublished
DT-711-098	Bitz K.	1996	Dithianon (CL 37114) 700 g ai/kg WG (SF 09321): Decline curve residue study in
			apples - (Germany, 1995). Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.
DT 711 104	Smalla D	2001	Rep. Unpublished
DT-711-104	Smalley R.	2001	BAS 216 03 F (Dithianon) 700 g as/kg WG (SF 09321): At harvest residue study on Dithianon in applea. South Erange 2000, BASE also Corport Hamschire PO12 0AU
			Dithianon in apples - South France, 2000. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
DT-711 105	Smallay P	2001	BAS 216 03 F (Dithianon) 700g as/kg WG (SF 09321): Decline curve residue study on
DT-711-105	Smalley R.	2001	
			Dithianon in apples - South France, 2000. BASF plc, Gosport Hampshire PO13 0AU, United Kingdom. Unpublished
DT-712-006	Eichler D.	1986	Rueckstandsuntersuchungen mit Dithianon 750 g/L - Rueckstaende Sauerkirsche.
21-/12-000	Licitor D.	1700	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-712-007	Eichler D.	1986	Rueckstandsuntersuchungen mit Dithianon 253 g/L SC - Rueckstaende Sauerkirsche.
	Elemer D.	1,00	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-712-008	Eichler D.	1986	Rueckstandsuntersuchungen mit Dithianon 750 g/L SC - Rueckstaende Sauerkirsche.
		- > 00	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-712-028	Bitz K.	1996	Dithianon (CL 37114) 700 g ai/kg WG (SF 09321): Decline curve residue study in
		-	cherries (Germany, 1995). Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.
			Rep.Unpublished
DT-712-031	Cugier J.P.	1997	Traitement des parties aeriennes - Delan 70 WG sur maladie criblee du prunier.
	-		Ministere de l'Àgriculture et de la Peche, Paris, France. Unpublished
DT-712-032	Weitzel R. et al.	1999	Dithianon (CL 37114) 700 g ai/kg WG (SF09321): Decline curve residue study on
			Dithianon (CL 37114) in plums (France-North, 1998). Cyanamid Forschung GmbH,
		105-	Schwabenheim, Germany Fed. Rep. Unpublished
DT-713-006	Anonymous	1998	Field trials, crop residue summary - Dithianon residues in grapes in Germany.
DT 712 020		1003	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-029	Anonymous	1992	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Trauben. Shell
DT 712 020	XX7 1, 1 P	1000	Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-713-030	Weitzel R.	1992	Rueckstandsuntersuchungen mit Dithianon (Aktuan WP) - Rueckstaende Trauben. Shell
DT 712 021	A	1007	Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-713-031	Anonymous	1987	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Trauben. Shell
DT 712 022	Eichlar D	1097	Forschung GmbH, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-032	Eichler D.	1987	Rueckstandsuntersuchungen mit Pflanzenbehandlungsmitteln: Dithianon –
			Weintrauben. Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT_713_022	Eichler D.	1987	Unpublished Rueckstandsuntersuchungen mit Pflanzenbehandlungsmitteln: Dithianon –
DT-713-033	Elemen D.	170/	Weintrauben. Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep.
			Unpublished
DT-713-034	Anonymous	1988	Plan und Versuchsbericht Rueckstandsversuche - Rueckstaende Weintrauben.
LI /15 054	1 110113 111043	1,00	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-035	Anonymous	1988	Plan und Versuchsbericht Rueckstandsversuche - Rueckstaende Weintrauben.
	1 11011 / 111040	1,00	Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-036	Eichler D.	1988	Plan und Versuchsbericht Rueckstandsversuche: Dithianon – Weintrauben. Celamerck
		- > 00	GmbH & Co. KG, Ingelheim, Germany Fed.Rep. Unpublished
DT-713-037	Eichler D.	1988	Plan und Versuchsbericht Rueckstandsversuche: Dithianon – Weintrauben. Celamerck
			GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-038	Eichler D.	1988	Rueckstandsuntersuchungen mit Pflanzenbehandlungsmitteln: Dithianon - Weintrauben.
			Celamerck GmbH & Co. KG, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-039	Anonymous	1987	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Weintrauben.
	<b>,</b>		Shell Forschung GmbH, Ingelheim, Germany Fed. Rep. Unpublished
DT-713-043	Anonymous	1991	Rueckstandsuntersuchungen mit Aktuan SC - Rueckstaende Weintrauben. Dr. Specht &
	-		Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT 712 045	Anonymous	1990	Residues of Dithianon in grapes grown in Germany in 1990 after treatment with Aktuan
01-/13-045			
DT-713-045	2		SC - Field trial data. Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg,

	Author(s)	Year	Title
DT-713-058	Bitz K.	1996	Dithianon (CL 37114) - 700 g ai/kg WG (SF 09321): Decline curve residue study in
			vine (Germany, 1995). Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.
			Rep. Unpublished
DT-713-063	Anonymous	1993	Delan 75 SC en application foliaire sur l Anthracnose et la Rouille du cassissier.
			Unpublished
DT-713-114	Weitzel R.	1995	Rueckstandsuntersuchungen mit Aktuan 35 WP - Rueckstaende Weinreben. Cyanamid
			Forschung GmbH, Schwabenheim, Germany Fed. Rep. Unpublished
DT-713-127	Anonymous	2001	Dithianon - Essais residus complementaires - Cassis. BASF Agro SAS, Levallois-
			Perret, France. Unpublished
DT-740-002	Regis S.	1997	Delan 70 WG sur la maladie criblee de l amandier. Ministere de l Agriculture de la
			Peche et de l Alimentation, Paris, France. Unpublished
DT-790-022	Anonymous	1988	Dithianon (Praeparat Aktuan) - Rueckstaende Hopfen. Dr. Specht & Partner Chemische
			Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-790-023	Anonymous	1988	Dithianon (Aktuan) - Rueckstaende Hopfen. Dr. Specht & Partner Chemische
			Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-790-031	Anonymous	1991	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen. Dr.
			Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep.
			Unpublished
DT-790-035	Specht W.	1990	Rueckstandsuntersuchungen auf Dithianon an Hopfen. Dr. Specht & Partner Chemische
	*		Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-790-036	Specht W.	1990	Rueckstandsuntersuchungen auf Dithianon an Hopfen. Dr. Specht & Partner Chemische
	1		Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-790-037	Specht W.	1990	Rueckstandsuntersuchungen auf Dithianon an Hopfen. Dr. Specht & Partner Chemische
			Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-790-038	Specht W.	1990	Rueckstandsuntersuchungen auf Dithianon an Hopfen. Dr. Specht & Partner Chemische
	-F		Laboratorien GmbH, Hamburg, Germany Fed. Rep. Unpublished
DT-790-041	Anonymous	1991	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen. Dr.
			Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep.
			Unpublished
DT-790-042	Anonymous	1991	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen. Dr.
	) 0 0.0		Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep.
			Unpublished
DT-790-043	Anonymous	1991	Rueckstandsuntersuchungen mit Pflanzenschutzmitteln - Rueckstaende Hopfen. Dr.
	) 0 0.0		Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep.
			Unpublished
DT-790-044	Anonymous	1992	Residues of Dithianon in hops grown in Germany in 1991 after treatment with Delan
21 //0 011	1 mon j mo do	1772	SC 750. Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany
			Fed. Rep. Unpublished
DT-790-045	Anonymous	1992	Residues of Dithianon in hops grown in Germany in 1991 after treatment with
21 //0 010	1 mon j mo do	1772	Dithianon. Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany
			Fed. Rep. Unpublished
DT-790-046	Anonymous	1992	Residues of Dithianon in hops grown in Germany in 1991 after treatment with Delan
	) 0 0.0		SC 750. Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany
			Fed. Rep. Unpublished
DT-790-049	Bitz K.	1996	Dithianon (CL 37114) - 700 g ai/kg WG (SF 09321): Decline curve residue study in
21 //0 01/	DILLIL	1770	hops (Germany, 1995). Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.
			Rep. Unpublished
DT-790-060	Tsalta C.	2001	AC 37114 (BAS 216 F): Effects of processing on the nature of the residues due to
_ , , , , , , , , , , , , , , , , , , ,	10414 0.	2001	hydrolysis. BASF Corp. Agro Research, Princeton NJ, USA. Unpublished
DT-790-065	Pelz S.	1994	Rueckstandsuntersuchungen mit Dithianon (Aktuan 35 WP) - Rueckstaende Weinreben.
/ / 0 000			Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed. Rep.
			or interest in the content of