1303

IMIDACLOPRID (206)

First draft prepared by Makoto Irie, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan

EXPLANATION

Imidacloprid is a systemic insecticide which has been used widely in many crops for years. It was first evaluated by JMPR in 2001 (T) and 2002 (R). An ADI of 0-0.06 mg/kg bw and an ARfD of 0.4 mg/kg bw was established. The compound was evaluated for residues in 2006, 2008 and 2012. In 2002 the Meeting agreed that the residue definition for compliance with MRLs and for estimation of dietary intake for plant and animal commodities should be the sum of imidacloprid and its metabolites containing the 6-chloropyridinyl moiety, expressed as imidacloprid. It was listed by the 46th Session of CCPR (2014) for the evaluation of 2015 JMPR for additional MRLs.

The residue studies were submitted by the manufacturer and member countries for additional MRLs for stone fruit, olive, curly kale, soya bean, tea, goji (China) and basil (Thailand).

RESIDUE ANALYSIS

Analytical methods

Samples of cherries, plum and peach were fortified with an equimolar solution of imidacloprid, desnitro imidacloprid (WAK4140, M09), olefin imidacloprid (WAK3745, M06), 5-hydroxyl imidacloprid (WAK4103, M01) and 6-chloronicotinic acid (6-CNA, M14), and were analysed for combined residues of those compounds by GC-MS using a modification of the Bayer Method 00200-reformated, Report No 102624-R1 dated 02/23/94 (see JMPR 2002, 2006 and 2012). At the LOQ of 0.05 mg/kg (expressed as imidacloprid), the recoveries were $98\pm12\%$ for cherries, 92, 104, 115% for plum and $93\pm18\%$ for peach.

The Meeting received information on the analytical method (Method 00834) for the determination of imidacloprid residues as well as the total residue of imidacloprid (including parent and all metabolites containing the 6-chloropyridinyl moiety) in plant materials (Schöning, 2003: MR-122/03).

Imidacloprid and related metabolites are extracted with a mixture of methanol/water (3/1, v/v) in the presence of diluted sulphuric acid (10%). Oil samples are dissolved in n-hexane and the residues are extracted twice with water. For the determination of the imidacloprid, an aliquot of the extract is partitioned against cyclohexane/ethyl acetate (1/1, v/v) using a Chromabond XTR column (diatomaceous earth). The organic solution is redissolved in acetonitrile/water (2/8, v/v + 2 mL/L formic acid). Quantitation is performed by reversed phase HPLC-MS/MS. For determination of the total residue of imidacloprid, a corresponding aliquot of the extract is evaporated to the aqueous remainder and dissolved in water. Imidacloprid and all metabolites containing the 6-chloropicolyl moiety are oxidised with alkaline KMnO₄ to yield 6-CNA. Following acidification and subsequent neutralisation of the excess oxidant, the 6-CNA is extracted from the aqueous solution using *tert*-butylmethylether (MTBE). The ether phase is dried, the solvent is evaporated and the remainder dissolved in acetonitrile/water (2/8, v/v + 2 mL/L formic acid). These solutions are subjected to analysis by HPLC-MS/MS.

The recoveries for imidacloprid ranged from 83 to 112% at fortification levels of 0.01 and 1.0 mg/kg. The mean recoveries for the parent compound were between 89 and 110% with relative standard deviations (RSD) up to 11.6%. The recoveries for the total residue of imidacloprid fortified as parent compound ranged from 75 to 102% at fortification levels of 0.05 to 2.0 mg/kg. The mean recoveries for the parent compound were between 77 and 93% with RSD values up to 6.1%. The recoveries for the total residue of imidacloprid fortified as a mixture of 6-CNA and desnitro-imidacloprid (1:1, w/w) ranged from 64 to 108% at fortification levels of 0.0567 to 1.134 mg/kg parent equivalents. The mean recoveries for the metabolite mixture were between 73 and 97% with relative standard deviations up to 16%. The LOQ is 0.01 mg/kg for imidacloprid and 0.05 mg/kg for total residue of imidacloprid.

The method as modified in 00834/M001 (Schöning, 2004: MR-153/03) contains no changes in the analytical procedure compared to the original method 00834 but it incorporates an internal standard procedure to the method. Method 00834/M001 was validated for the determination of residues of imidacloprid parent compound as well as the total residue of imidacloprid (including parent and all metabolites containing the 6-chloropyridinyl moiety) in plant materials. The recoveries for imidacloprid ranged from 80 to 104% at fortification levels of 0.01 and 2.0 mg/kg (mean recoveries: 88 to 99%, RSDs: 1.5 to 7.4%). The recoveries for the total residue of imidacloprid ranged from 66 to 106% at fortification levels of 0.05 (0.0567 mg/kg as mixture of 6-CNA and desnitro metabolite (1:1, w/w) calculated as imidacloprid) to 2.0 mg/kg (mean recoveries: 75 to 101%, RSDs: 1.1 to 9.8%).

The analytical method 00834/M002 (Schöning, 2010: MR-09/169) was developed for the determination of residues of imidacloprid, 5-hydroxyl imidacloprid (WAK4103, M01) and olefin imidacloprid (WAK3745, M06) in plant materials. Imidacloprid and its metabolites are extracted from tomato (fruit), bean (bean with pod), orange (fruit), rape (seed), cereals (grain) and tobacco (green leaf and dried leaf) with methanol/water (3/1, v/v) using a blender. After filtration an aliquot of the extract was evaporated to the aqueous remainder and further the stable isotopically labelled analytes are added for tomato (fruit), bean (bean with pod), orange (fruit), rape (seed), cereals (grain) and tobacco (green leaf). Parts of the solutions are transferred into an HPLC vial and subjected to reversed phase HPLC-MS/MS in the positive ion mode without further clean-up. Recoveries were determined at fortification levels of 0.01 mg/kg (LOQ level, 0.05 mg/kg for tobacco), and 0.10 mg/kg (0.5 mg/kg for tobacco) (each compound expressed as parent equivalent). Mean recoveries for each fortification level ranged from 70 to 107% with RSD up to 12% for all matrices.

The supplemental method 00300/E007 (Schöning, 2010: MR-158/00) has no changes in the analytical procedure compared to the original method 00300. The method was validated for additional matrices of olive fruit, grape pomace and cacao bean. For imidacloprid, recoveries were determined by spiking control samples with imidacloprid at fortification levels of 0.01 and 0.20 mg/kg. The recoveries were in the range from 68 to 110%, the mean recoveries for each matrix ranged from 74 to 90% with a mean RSD ranging from 3.3 to 17.3%. For the total residue of imidacloprid, recoveries were determined by spiking control samples with imidacloprid (fortification levels of 0.05 and 0.5 mg/kg) or with a mixture of 6-CNA and desnitro imidacloprid (0.02 mg/kg each corresponding to 0.0567 mg/kg calculated as imidacloprid). The recoveries were in the range from 64 to 98%, the mean recoveries for each matrix ranged from 70 to 96% with a mean RSD ranging from 2.2 to 12%.

The results for olive are summarized in Tables 1 and 2.

Table 1 Record commodities	very results obtained for	or the determination	on of imidaclopric	l from	olive and its processed
Commodity	Fortification level N	Recovery range	Mean recovery	%	Reference

Commodity	Fortification level (mg/kg)	N	Recovery range (%)	Mean recovery (%)	% RSD	Reference Method
Olive, fruit	0.01	5	83 – 96	92	5.6	MR-122/03
	1.0	5	106 – 111	108	1.7	00834
Olive, oil	0.01 1.0	5 5	97 – 98 96 – 100	98 99	0.5 1.8	(m/z 258→175)
Olive, pomace	0.01 1.0	5 5	94 – 100 109 – 112	97 110	2.5 1.1	
Olive, fruit	0.01	5	80 – 96	88	7.4	MR-153/03
	2.0	5	96 – 99	97	1.5	00834/M001
Olive, fruit	0.01	3	78 – 104	87	17	MR-158/00
	0.20	3	87 – 93	90	3.3	00300/E007

Commodity	Fortification level	Ν	Recovery range	Mean recovery	%	Reference
	(mg/kg)		(%)	(%)	RSD	Method
Olive, fruit	0.05	5	80 - 86	83	2.9	MR-122/03
	2.0	5	78 - 80	79	1.1	00834
	0.0567*	5	75 – 91	82	7.2	(m/z 158→122
	1.134*	5	70 – 79	74	5.8	
Olive, oil	0.05	5	83 - 85	84	1.2	
	2.0	5	78 – 92	84	6.1	
	0.0567*	5	77 – 83	80	3.4	
	1.134*	5	79 – 84	82	2.5	
Olive, pomace	0.05	5	88 - 95	91	3.3	
	2.0	5	77 – 82	80	2.6	
	0.0567*	5	85 – 95	92	4.6	
	1.134*	5	86 - 94	90	3.4	
Olive, fruit	0.05	5	81 - 89	85	3.9	MR-153/03
	2.0	5	76 – 95	88	9.8	00834/M001
	0.0567*	5	80 - 97	91	7.3	
Olive, fruit	0.05	3	64 – 79	73	11	MR-158/00
	0.50	3	73 – 82	78	5.9	00300/E007
	0.0567*	3	68 – 72	70	2.9	

Table 2 Recovery results obtained for the determination of total residue of imidacloprid from olive and its processed commodities

* Mixture of 6-CNA (0.02 mg/kg) and desnitro metabolite (0.02 mg/kg), (1/1, w/w) calculated as imidacloprid

The Meeting has received information on the analytical method (NY/T 1275-2007) for the detection, quantitative analysis and confirmation of imidacloprid residues in fresh and dried goji berries (Niu, 2014: IG-01).

Imidacloprid is extracted from goji samples by homogenizing with acetonitrile. After adding sodium chloride, the sample is shaked and centrifuged. An aliquot is concentrated, and purified by solid phase extraction using amino cartridges. Imidacloprid residues were analysed by reversed-phase HPLC-UV (275 nm). The method was validated in fresh or dried goji samples. Control samples were spiked with a standard solution of imidacloprid at fortified level of 0.02, 0.05 and 0.1 mg/kg, and recoveries of imidacloprid with this method ranged from 69–87% (mean: 72–84% with RSD of 2.6–3.5%) in fresh goji samples, while recoveries ranged from 76–100% (mean: 79–100% with RSD of 0–11%) in dried goji samples. The LOQ is 0.02 mg/kg for both matrices.

Table 3 Recovery results obtained for the determination of imidacloprid residue from goji berries

Commodity	Fortification level (mg/kg)	N	Recovery range (%)	Mean recovery (%)		Reference Method
Goji, fresh	0.02 0.05 0.10	5	70 – 76 69 – 78 78 – 87	72 73 84		IG-01 Yan Niu, 2014
Goji, dried	0.02 0.05 0.10		100 70 – 100 76 – 82	100 85 79	0.0 11 3.0	

The Meeting has also received information on the analytical method (NT-001-P04-01) used for the determination of residues of imidacloprid in soya bean matrices (seed, forage, hay, meal, hull, refined oil, defatted flour and aspirated grain fractions) (Gould *et al.*, 2005: 201591).

This analytical method is based on earlier methods 00200 and 00834 and is designed to make use of the equipment and techniques available at the analytical laboratory. The total residue of imidacloprid is analysed by a common moiety method and quantified by using isotopically-labelled internal standards and HPLC-MS/MS. The method is validated by measuring the concurrent recoveries of each analyte (imidacloprid, desnitro imidacloprid, 5-hydroxy imidacloprid, olefin imidacloprid, and 6-CNA) individually in separate control samples of soya bean seed, forage, and

hay, as well as processed commodities of meal, hull, refined oil, defatted flour and aspirated grain fractions. Additionally, the method is further validated by measuring the concurrent recoveries of an imidacloprid/desnitro mixture (1:1, w/w) in these same matrices at various fortification levels. The validation was performed concurrently during the studies RANTY002 and RANTY003-1 (see Table 4).

Fortification level (mg/kg)	N	Recovery range (%)	Mean recovery (%)	% RSD	Reference
	Seed				RANTY002
0.050	1	72			Mackie, 2006
0.050	1	59			
0.050	1	67			
0.050	1	58			
0.050	1	79			
0.050	5	75 - 93	85	9.3	
0.10	5	67 – 99	82	15	
2.0	3	69 – 79	74	6.8	
]	Forage				
0.025	2	69, 92	81		
0.025	2	72, 75	74		
0.025	2	83, 87	85		
0.025	2	83, 95	89		
0.025	2	66, 81	74		
0.025	4	60 - 88	75	16	
2.0	10	74 - 90	81	7.2	
7.5	3	81 - 86	84	3.0	
10	3	74 – 78	77	3.0	
	Hay		,		
0.010	2	80, 85	83		_
0.010	2	89, 92	91		
0.010	2	77, 99	88		
0.010	2	74, 85	79		
0.010	2	78, 94	86		
0.010	4	57 - 85	75	17	_
2.0	8	72 – 95	80	9.5	
30	3	87 – 90	88	1.7	
	Seed	1	, ,		RANTY003
0.20	3	73 – 87	81		Krolski, 2006
2.0	_	79 – 88	84	5.4	_
	1	1	<u>, </u>		_
	1				4
0.20	1	76			
0.20	1	79			
0.20	1	79			
0.20	1	84			
0.20	4	64 – 74	71	6.7	
2.0	6	74 - 84	80	4.6	
	(mg/kg) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	(mg/kg) Seed 0.050 1 0.050 1 0.050 1 0.050 1 0.050 1 0.050 1 0.050 1 0.050 1 0.050 5 0.10 5 2.0 3 0.025 2 0.025 2 0.025 2 0.025 2 0.025 2 0.025 2 0.025 2 0.025 2 0.025 3 10 3 10 3 10 2 0.010 2 0.010 2 0.010 2 0.010 2 0.010 2 0.010 3 30 3 30 3 30 3 30 3	(mg/kg) (%) Seed 0.050 1 72 0.050 1 59 0.050 1 67 0.050 1 79 0.050 1 79 0.050 5 75 - 93 0.10 5 67 - 99 2.0 3 69 - 79 0.025 2 83, 87 0.025 2 83, 95 0.025 2 83, 95 0.025 2 66, 81 0.025 2 66, 81 0.025 4 60 - 88 2.0 10 74 - 90 7.5 3 81 - 86 10 3 74 - 78 Way 0.010 2 77, 99 0.010 2 78, 94 0.010 2 78, 94 0.010 2 78, 94 0.010 2 78, 94 0.010 4 57 - 8	(mg/kg) (%) (%) Seed 0.050 1 72 0.050 1 59 0.050 1 67 0.050 1 79 0.050 1 79 0.050 5 75-93 0.050 5 67-99 0.10 5 67-99 2.0 3 69-79 0.025 2 69,92 0.025 2 83,87 0.025 2 83,87 0.025 2 83,95 0.025 2 83,95 0.025 2 66,81 0.025 2 66,81 74 0.025 4 0.025 4 60-88 75 3 81-86 84 10 3 74-78 0.010 2 77,99 88 0.010 2 78,94 86 0.010	(mg/kg) (%) RSD Seed

Table 4 Recovery results obtained for the determination of imidacloprid from soya bean matrices

Analyte	Fortification level (mg/kg)	N	Recovery range (%)	Mean recovery (%)	% RSD	Reference
Imaidacloprid	0.20	1	91			
Desnitro imidacloprid	0.20	1	92			
5-hydroxy imidacloprid	0.20	1	92			
Olefin imidacloprid	0.20	1	94			
6-CNA	0.20	1	78			
Imidacloprid/desnitro	0.20	4	69 – 78	75	5.7	
imidacloprid mixture (1:1)*	2.0	6	70 - 84	77	6.5	
		Oil				
Imaidacloprid	0.20	1	87			
Desnitro imidacloprid	0.20	1	72			
5-hydroxy imidacloprid	0.20	1	84			
Olefin imidacloprid	0.20	1	82			
6-CNA	0.20	1	92			
Imidacloprid/desnitro	0.10	3	82 - 93	87	6.6	
imidacloprid mixture (1:1)*	2.0	2	71, 73	72		
		Flour				
Imaidacloprid	0.20	1	86			
Desnitro imidacloprid	0.20	1	88			
5-hydroxy imidacloprid	0.20	1	87			
Olefin imidacloprid	0.20	1	84			
6-CNA	0.20	1	79			
Imidacloprid/desnitro	0.20	4	64 – 76	71	8.1	
imidacloprid mixture (1:1)*	2.0	6	78 - 84	81	2.7	
		AGF				
Imidacloprid/desnitro	30	2	72, 79	75		
imidacloprid mixture (1:1)*	150	2	60, 74	67		

* The fortification level given is the total mg/kg of both analytes in the mixture.

The analytical method 01389 was developed for the determination of residues of imidacloprid, its 2 metabolites 5-hydroxy imidacloprid and olefin imidacloprid, and of the total residue of imidacloprid determined as 6-CNA in/on plant materials (Richter, 2014: P 3009 G). Imidacloprid and its metabolites are extracted from whole orange fruit, tomato fruit, wheat grain, dry beans, olive fruit, tea (green tea and black tea), hop cones (green and dried), tobacco (green leaves and fermented tobacco), coffee (green beans and roasted coffee), and cocoa (green beans and roasted beans) with methanol/water (3/1, v/v). For the individual analytes, an aliquot of the extract is cleaned-up with liquid/liquid SPE. For the common moiety analysis, an aliquot of the extract is made by alkaline oxidation under reflux and liquid/liquid partition. Final extracts of both branches are subjected to reversed phase HPLC-MS/MS.

The LOQ (expressed as imidacloprid equivalents) for each analyte is 0.01 mg/kg. For dried, fermented and roasted difficult matrices (dried hop cones, fermented tobacco leaves, roasted cocoa beans, roasted coffee beans, black tea) the LOQ increased to 0.05 mg/kg, because validation attempts for dried hop cones and roasted coffee beans at 0.01 mg/kg failed. For the total residue of imidacloprid, the LOQ is 0.05 mg/kg for all matrices.

Analyte	Fortification level (mg/kg)	Ν	Recovery range (%)	Mean recovery (%)	% RSD
		Green	ı tea		
Imidacloprid	0.01	5	84 - 117	100	16
	0.10	5	82 - 109	100	12
5-hydroxy imidacloprid	0.01	5	63 – 99	79	20
	0.10	5	67 – 86	76	9.3
Olefin imidacloprid	0.01	5	70 - 112	91	19
	0.10	5	77 – 101	90	12
6-chloronicotinic acid	0.05	5	70 - 82	76	5.7
	0.50	5	79 – 101	87	10
		Black	tea		
Imidacloprid	0.05	5	80 - 86	83	3.3
	0.50	5	79 – 96	86	7.9
5-hydroxy imidacloprid	0.05	5	90 - 95	93	2.5
	0.50	5	89 – 97	92	3.1
Olefin imidacloprid	0.05	5	78 – 95	89	9.2
	0.50	5	84 - 93	88	3.7
6-chloronicotinic acid	0.05	5	74 – 95	82	10
	0.50	5	69 – 84	75	8.1

Table 5 Recovery results obtained for the determination of imidacloprid from tea (green tea and black tea)

Stability of pesticide residues in stored analytical samples

The storage stability of imidacloprid and various important metabolites was tested in various plant and animal materials. Tests on animal samples were carried out to assess the stability of the total residue. For plants, tests were carried out to assess the stability of the total residue and on plants to assess the stability of residues of the active substance and of the total residue. The results indicate that imidacloprid and the tested metabolites are stable for a minimum of approximately 2 years in plants and for at least 1 year in animal commodities (see JMPR 2002, 2006, 2008 and 2012).

The Meeting has received data on the storage stability of imidacloprid, 5-hydroxy imidacloprid and olefin imidacloprid in various plant matrices for a period of 36 months (Schoening and Diehl, 2014: MR-09/182, P642094733). Samples of wheat (grain), orange (fruit), tomato (fruit), bean (seed) and rape seed were fortified with imidacloprid and its metabolites 5-hydroxy imidacloprid and olefin imidacloprid at a level of 0.1 mg/kg. The samples stored at an average temperature of -18°C or below were analysed at the nominal storage interval of 0, 30, 90, 180, 360, 540, 720, 900 and 1080 days.

At each storage interval imidacloprid and its metabolites 5-hydroxy and olefin were determined in the stored control samples and in the stored spiked samples according to the analytical method 00834/M002. Procedual recovery experiments at fortification levels of 0.10 mg/kg (0.01 mg/kg for 0 day storage interval) were also performed for each analyte at each storage interval. For all matrices the LOQ was 0.01 mg/kg for imidacloprid and its metabolite 5-hydroxy and olefin expressed as imidacloprid equivalent.

Table 6 Recovery of imidacloprid from stored fortified samples of plant matrices

Storage interval	Recovery (%) [0.10 mg/kg fortification]						
(days)	Procedual	Mean					
Wheat, grain							
0	91, 94	90, 91, 94, 95, 101	94				
38	83, 90	85, 87, 96	89				
90	88,92	88, 92, 93	91				

Storage interval	Re	covery (%) [0.10 mg/kg fortification]	
(days)	Procedual	% remaining	Mean
180	63, 80	81, 85, 102	89
361	93, 94	96, 98, 100	98
542	90, 95	99, 104, 105	103
719	77, 89	86, 87, 94	89
908	107, 110	91, 104, 129	108
1082	99, 106	94, 110, 110	105
		Drange, fruit	
0	87	82, 82, 90, 92, 93	88
35	92, 94	75, 92, 96	88
91	84, 89	95, 100, 101	99
182	106, 113	93, 100, 112	102
366*/360	97, 101	106, 112, 117	112
540	96, 106	105, 110, 114	110
721	83, 88	82, 87, 93	87
912	107, 109	90, 115, 117	107
1080	97	106, 107, 107	107
		Fomato, fruit	
0	90, 95	98, 98, 101, 102, 113	102
35	95, 100	88, 100, 100	96
90	93, 101	105, 107, 112	108
181	95, 99	106, 112, 113	110
360	94, 100	98, 105, 109	104
540	102, 105	109, 112, 116	112
720	86, 92	74, 79, 85	79
903	105, 112	108, 112, 120	113
1078	100, 108	110, 116, 124	117
		Bean, seed	
0	74, 75	89, 91, 94, 95, 96	93
34	90, 102	85, 87, 88	87
90	85, 93	81, 82, 84	82
180	95, 96	101, 105, 111	106
359	87, 92	94, 97, 97	96
540	102, 109	94, 103, 106	101
720	90, 93	87, 95, 95	92
910	92, 95	89, 100, 106	98
1077	92, 93	97, 98, 104	100
		Rape, seed	
0	79, 83	73, 90, 91, 91, 93	88
33	77, 82	73, 74, 80	76
90	84, 85	70, 75, 87	77
180	104, 107	103, 104, 111	106
361	99, 100	86, 87, 89	87
540	82, 85	59, 64, 66	64
719	85, 90	76, 89, 95	87
901	84, 85	78, 90, 95	88
1076	89, 100	82, 85, 92	86

* for procedual recoveries

Table 7 Recovery of 5-hydroxy imidacloprid from stored fortified samples of plant matrices

Storage interval	Recovery (%) [0.10 mg/kg fortification]					
(days)	Procedual	% remaining	Mean			
Wheat, grain						
0	70, 73	77, 95, 96, 96, 102	93			
38	87, 98	96, 100, 102	99			
90	90, 91	70, 80, 86	79			
180	90, 92	73, 83, 85	80			
361	97, 98	100, 105, 105	103			
542	89,96	98, 101, 102	100			

Storage interval	Recovery (%) [0.10 mg/kg fortification]						
(days)	Procedual	% remaining	Mean				
719	83,96	94, 97, 103	98				
908	103, 104	101, 102, 105	103				
1082	100, 103	102, 105, 108	105				
	(Orange, fruit					
0	79	99, 101, 103, 109, 112	105				
35	98, 104	103, 105, 109	106				
91	89, 98	98, 99, 99	99				
182	109, 114	73, 76, 89	79				
366*/360	93, 100	95, 101, 101	99				
540	95, 106	95, 99, 103	99				
721	100, 109	79, 103, 106	96				
912	97, 99	96, 103, 111	103				
1080	101	76, 92, 103	90				
]	Fomato, fruit					
0	93, 109	98, 98, 99, 102, 104	100				
35	105, 106	94, 99, 105	99				
90	99, 102	95, 99, 104	99				
181	106, 112	105, 106, 109	107				
360	97, 105	91, 93, 94	93				
540	107, 108	108, 115, 120	114				
720	93, 94	95, 98, 99	97				
903	91, 95	95, 101, 102	99				
1078	84, 91	89, 94, 101	95				
I		Bean, seed					
0	73, 73	72, 75, 80, 82, 86	79				
34	99, 100	83, 84, 85	84				
90	78, 94	83, 84, 84	84				
180	101, 103	83, 97, 99	93				
359	79, 84	93, 95, 97	95				
540	115, 117	68, 83, 97	83				
720	92, 93	91, 94, 95	93				
910	89, 91	90, 93, 103	95				
1077	107, 111	104, 108, 111	108				
		Rape, seed					
0	86, 86	86, 88, 89, 91, 96	90				
33	89, 94	78, 85, 92	85				
90	90, 93	76, 78, 78	77				
180	105, 105	96, 99, 103	99				
361	94, 98	84, 87, 92	88				
540	103, 111	77, 86, 93	85				
719	91, 91	88, 101, 103	97				
901	91, 98	77, 81, 85	81				
1076	89, 95	95, 96, 99	97				

* for procedual recoveries

Table 8 Recovery of olefin imidacloprid from stored fortified samples of plant matrices	Table 8 Recover	y of olefin imidacle	oprid from stored	fortified samples of	f plant matrices
---	-----------------	----------------------	-------------------	----------------------	------------------

Storage interval	Recovery (%) [0.10 mg/kg fortification]								
(days)	Procedual	% remaining	Mean						
	l l l l l l l l l l l l l l l l l l l	Wheat, grain							
0	108, 114	79, 80, 82, 87, 90	84						
38	77, 80	84, 85, 90	86						
90	87, 91	86, 88, 96	90						
180	90, 93	84, 85, 88	86						
361	109, 110	92, 93, 95	93						
542	90, 98	97, 105, 113	105						
719	85, 90	93, 88, 93	88						
908	103, 107	96, 99, 105	100						
1082	98, 106	105, 109, 110	108						

Storage interval	Re	ecovery (%) [0.10 mg/kg fortification]				
(days)	Procedual	% remaining	Mean			
		Orange, fruit				
0	92	86, 87, 91, 92, 95	90			
35	87, 94	87, 89, 97	91			
91	80, 87	92, 95, 98	95			
182	78, 89	60, 70, 75	68			
366*/360	104, 107	88, 92, 92	91			
540	93, 107	111, 112, 119	114			
721	89, 97	89, 92, 99	93			
912	86, 90	100, 102, 104	102			
1080	102	67, 70, 105	81			
		Fomato, fruit				
0	85, 87	90, 101, 101, 102, 103	99			
35	95, 97	90, 92, 96	93			
90	85, 87	96, 96, 97	96			
181	83, 86	85, 91, 95	90			
360	105, 117	92, 96, 105	98			
540	111, 113	93, 94, 98	95			
720	94, 96	91, 92, 93	92			
903	99, 104	108, 112, 120	113			
1078	79, 84	74, 74, 95	81			
		Bean, seed				
0	69, 73	67, 70, 82, 83, 87	78			
34	88, 96	70, 70, 71	70			
90	80, 82	76, 77, 80	78			
180	73, 76	71, 78, 81	77			
359	81, 88	66, 80, 86	77			
540	106, 108	99, 100, 104	101			
720	87, 90	81, 87, 93	87			
910	88, 89	79, 83, 101	88			
1077	98, 100	101, 102, 111	105			
		Rape, seed				
0	84, 87	67, 71, 72, 72, 76	72			
33	80, 86	79, 83, 91	84			
90	94, 109	73, 76, 97	82			
180	80, 83	65, 67, 72	68			
361	97, 101	83, 85, 90	86			
540	81, 86	74, 80, 94	83			
719	81, 86	81, 84, 86	84			
901	97, 103	83, 84, 85				
1076	70, 81	70, 77, 79 75				

* for procedual recoveries

Storage stability results indicated that residues of imidacloprid and its metabolites 5-hydroxy imidacloprid and olefin imidacloprid were stable for at least 36 months under freezer conditions at about -18°C or below in wheat (grain), orange (fruit), tomato (fruit), bean (seed) and rape seed.

The Meeting has also received data on the storage stability of imidacloprid, olefin imidacloprid and 6-CNA in basil for a period of 9 months. Samples were fortified with imidacloprid, olefin imidacloprid and 6-CNA at a level of 0.50 mg/kg. The samples stored at -20°C were analysed at the storage interval of 0, 3, 6 and 9 months.

Imidacloprid, olefin imidacloprid and 6-CNA were determined in the control samples and in the stored fortified samples according to the analytical method 01389.

Table 9 Recovery of imidacloprid and its metabolites from stored fortified samples of basil

Storage interval	Rec	Recovery (%) [0.50 mg/kg fortification]						
(months)	Procedural % remaining Mean							
	Imidacloprid							

Storage interval	Rece	overy (%) [0.50 mg/kg fortification]	
(months)	Procedural	% remaining	Mean
0	78	76, 80	78
3	80	74, 82	78
6	77	70, 91	81
9	89	72, 79	76
	Olefir	n imidacloprid	
0	79	77, 81	79
3	95	93, 96	95
6	73	76, 82	79
9	96	79, 90	85
		6-CNA	
0	83	79, 87	83
3	95	93, 95	94
6	88	79, 85	82
9	82	79, 84	81

USE PATTERN

The Meeting received labels from Italy, Japan, Spain and the USA. The authorized uses relevant to the supervised residue trials data submitted to the current Meeting are summarized in Table 10.

Table 10 Registered uses of imidacloprid relevant to the residue evaluation by the current Meeting

Crop	Country	Formu	lation	Application					PHI,
		Туре	Conc. of imidacloprid	Method	kg ai/ha	kg ai/hL	L/ha	No. max	days
Stone fruits									
Stone fruits	USA	SC	550 g/L	Soil	0.28-0.43 (max 0.43/year)			1	21
				Pre-plant, root dip	14.3 mL/38 L roo	ot dip solution	n	1	-
Stone fruits (Apricot, Nectarine, Peach)				Foliar	0.056-0.11 (max 0.34/year)		468 (G) 234 (A)	3-6	0 (7 days interval)
Stone fruits (Cherries, Plums, Plumcot, Prune)					0.056-0.11 (max 0.56/year)		468 (G) 234 (A)	5-10	7 (10 days interval)
Assorted tropical and	l sub-trop	ical frui	its – edible pe	el		·			
Olive	Italy	OD	200 g/L	Foliar		0.01-0.013		1	28
Olive	Spain	SL	200 g/L	Foliar		0.01		2	7 (30 days interval)
				Foliar (a)	0.01-0.02		50-100	4	7 (7-10 days interval)
Brassica vegetables									
Cabbages (including cauliflower, broccoli and other brassica cabbage, cabbage head, leafy brassica, kohlrabi)		OD	200 g/L	Foliar		0.01		1	14
Cabbage (cabbage head, leafy brassica)	Italy	OD	75 g/L	Foliar	0.075-0.094			1-2	7
Fruiting vegetables, o	other than	Cucurt	oits – subgrouj	p Tomatoes					

Crop	Country	Formu	lation	Application	Application				
		Туре	Conc. of imidacloprid	Method	kg ai/ha	kg ai/hL	L/ha	No. max	days
Goji berry	China	EC	50 g/L	Foliar		0.003-0.005		3	3
Pulses									
Soya bean	USA	FS	480 g/L	Seed treatment	63-125 g ai/100 kg seed		1	-	
		SC	550 g/L	Foliar	0.053 (max 0.16/year)			3	21 (7 days interval)
Herbs	•		•		1	•			•
Basil	Thailand	WG	700 g/kg	Foliar		0.021-0.042		(b)	7
Teas									
Tea	Japan	WG	500 g/kg	Foliar		0.005-0.01	2000-4000	1	7

(a) spray solution containing a hydrolysed protein mixture at 1-2%, coarse drop application to parts facing south. Use only one of the two authorized methods (spray or bait) during the growing season of one crop.(b) apply when infested

RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received information on imidacloprid supervised field trials for the following crops.

Group	Commodity	Table
Stone fruits	Cherries	Table 11
	Plum	Table 12
	Peach	Table 13
Assorted tropical and sub-tropical fruits-edible peel	Olive	Table 14–16
Leafy vegetables	Kale	Table 17
Fruiting vegetables, other than Cucurbits	Goji berry	Table 18
Pulses	Soya bean	Table 19
Herbs	Basil	Table 20
Teas	Tea	Table 21, 22
Legume animal feeds	Soya bean fodder and forage	Table 23

Imidacloprid formulations were applied by foliar treatment. Each of the field trial sites generally consisted of an untreated control plot and treated plots. Residues, application rates and spray concentrations have generally been rounded to two significant figures.

Residue values from the trials, which have been used for the estimation of maximum residue levels, STMRs and HRs are underlined.

Laboratory reports included method validation with procedural recoveries from spiking at residue levels similar to those occurring in samples from the supervised trials. Date of analyses and duration of residue sample storage were also provided. Although trials included control plots, no control data are recorded in the tables except when residues were found in samples from control plots. Residue data are not corrected for percent recovery.

Conditions of the supervised residue trials were generally well reported in detailed field reports. Most field reports provided data on the sprayers used, plot size, field sample size and sampling date.

Stone fruits

Cherries

Twelve residue trials for cherries were conducted in the USA (Dorschner, 2002: 111045). The 192 g/L SC formulation was applied five or six times as foliar spray at application rates 0.11-0.13 kg ai/ha. The total residue of imidacloprid was determined according to method 102624-R1 (based on the method 00200). The LOQ was 0.050 mg/kg.

Cherries			Appli	cation		DALA	Residues,	Ref
country, year	Form	kg ai/ha	water,	Treatment	no.	Days	mg/kg	
(variety)		U	L/ha			-		
GAP, USA	SC	Max 0.56	kg ai/ha /	year		7		
USA, 1999	SC	0.11	1031	100% petal fall	5	6	2.4, <u>2.5</u>	111045
Bridgeton/NJ		0.11	1040	Fruiting	_		Mean 2.5	IR-4 PR. 07202
(Montmorency		0.11	1025	Green fruit				Dorschner, 2002
tart cherry)		0.11	1022	First red fruit				2002
99-NJ17		0.11	1027	Ripening fruit				
USA, 1999	SC	0.11	953	Immature fruit	5	0	1.2, 1.2	Sampling to
Fennville/MI	20	0.11	931	Immature fruit	5	3	1.0, 1.1	analysis: 189-
(Montmorency		0.11	944	Immature fruit		7	1.0, 1.1	250 days
tart cherry)		0.11	939	Immature fruit			Mean 1.1	5
99-MI09 ^a		0.11	935	Immature fruit		14	0.94, 1.0	
USA, 1999	SC	0.11	934	Immature fruit	5	7	1.2, 1.5	
Fennville/MI	50	0.11	955	Immature fruit	5	,	Mean <u>1.4</u>	
(Montmorency		0.11	937	Immature fruit			<u></u>	
tart cherry)		0.11	957	Immature fruit				
99-MI10 ^b		0.11	942	Immature fruit				
USA, 1999	SC	0.11	936	Immature fruit	5	7	0.88, 0.93	
Fennville/MI	be	0.11	950	Immature fruit	5	/	Mean 0.90	
(Montmorency		0.11	943	Immature fruit			Wiedii 0.90	
tart cherry)		0.11	931	Immature fruit				
99-MI11°		0.11	941	Immature fruit				
USA, 1999	SC	0.11	555	Pea-sized fruit	5	7	0.33, 0.34	
Traverse City/MI	sc	0.11	584	14-mm fruit	5	/	0.33, 0.34 Mean 0.34	
(Emperor Francis		0.12	564	14-min fruit			Wieali 0.54	
sweet cherry)		0.11	563	16-mm fruit				
99-MI12 ^d		0.11	584	22-mm fruit				
USA, 1999	SC	0.12	579	22-IIIII IIuit	5	7	0.39, 0.43	
Traverse City/MI	SC	0.12	562	- 14-mm fruit	5	/	Mean 0.43	
(Hedelfingen		0.11	564	14-mm fruit			Wiedii <u>0.41</u>	
sweet cherry)		0.11	578	22-mm fruit				
99-MI13 ^e		0.12	579	24-25-mm fruit				
USA, 1999	SC	0.12	618	Bloom	5	8	0.24, 0.24	
Grandview/WA	sc	0.11	1149	Fruiting	5	0	Mean 0.24	
(Bing sweet		0.11	1041	Small fruit			Wieali <u>0.24</u>	
cherry)		0.11	1041	Fruiting				
99-WA19		0.11	1094	Fruiting				
USA, 1999	SC	0.11	930	Late bloom	6	7	0.55, 0.60	
Buhl/ID	DC	0.12	943	Fruiting	0	,	Mean <u>0.57</u>	
(Bing sweet		0.13	943 938	Fruiting			Wiean <u>0.57</u>	
(blig sweet cherry)		0.13	938 943	Fruiting				
99-ID07		0.13	943	Fruiting				
<i>))</i> -1 1 <i>)</i> (<i>)</i>		0.13	940 946	Fruiting				
USA, 1999	SC	0.13	940	Bloom	6	7	0.62, 0.63	
Caldwell/ID	sc	0.11	913 924	Part bloom	0	/	0.62, 0.63 Mean <u>0.63</u>	
(Lambert sweet		0.11	924 928	Fruiting			Wieall <u>0.05</u>	
(Lambert sweet cherry)		0.11	928 935	Fruiting				
99-ID08		0.12	935 931	Fruiting				
77-IDU8			931 933					
LICA 1000	80	0.12		Maturing Emitting	=	7	0.25.0.26	
USA, 1999	SC	0.11	1890	Fruiting	5	7	0.35, 0.36	
Hood River/OR		0.11	1777	Fruiting			Mean <u>0.36</u>	
(Bing sweet		0.11	1833	A few turning pink		I		

Table 11 Imidacloprid residues on cherries from supervised trials in USA

Cherries			Appli	cation	DALA	Residues,	Ref	
country, year	Form	kg ai/ha	water,	Treatment	no.	Days	mg/kg	
(variety)			L/ha					
cherry)		0.11	1813	Fruit ripening				
99-OR02		0.11	1828	Red fruit				
USA, 1999	SC	0.11	946	99% petal fall	5	7	0.22, 0.28	
Stockton/CA		0.11	936	Fruiting			Mean 0.25	
(Bing sweet		0.11	944	Fruiting				
cherry)		0.11	932	Immature fruit				
99-CA115 ^f		0.11	933	Immature fruit				
USA, 1999	SC	0.11	939	99% petal fall	5	7	0.45, 0.62	
Stockton/CA		0.11	926	Fruiting			Mean 0.53	
(Dawson sweet		0.11	931	Fruiting				
cherry)		0.12	949	Immature fruit				
99-CA116 ^g		0.11	935	Immature fruit				

^a Application date: 19 May–29 June 1999, Trial site: Trevor Nochols Research Complex, 124th Ave., Fennville

^b Application date: 26 May–2 July 1999, Trial site: Trevor Nochols Research Complex, 124th Ave., Fennville

^c Application date: 25 May - 5 July 1999, Trial site: Trevor Nochols Research Complex, 124th Ave., Fennville

^d Application date: 21 May–1 July 1999,

Trial site: NW Michigan Horticultural Research Station, 6686 S. Center Highway, Traverse City

^e Application date: 1 June – 12 July 1999, Trial site: NW Michigan Horticultural Research Station, 6686 S. Center Highway, Traverse City

^f Application date: 16 April – 20 May 1999, Trial site: 7700 Cherokee Lane, Stockton

^g Application date: 16 April – 20 May 1999, Trial site: 7700 Cherokee Lane, Stockton

Plum

Eight residue trials were conducted in the USA on plums according to the US GAP (Dorschner, 2002: 111044). The 192 g/L SC formulation was applied 5 times at the rate of 0.11 kg ai/ha with an application interval of 8-12 days. The total residue of imidacloprid were quantified with method 102624-R1 (based on the method 00200) at an LOQ of 0.05 mg/kg.

Table 12 Imidaclop	rid residues on	plums from su	pervised trials in USA

Plum			Appli	cation		DALA	Residues,	Ref
country, year	Form	kg ai/ha	water,	Treatment	no.	Days	mg/kg ^a	
(variety)			L/ha				0 0	
GAP, USA	SC	Max 0.56	/year			7		
USA, 1999	SC	0.11	738	Fruiting	5	7	0.64, <u>0.70</u>	111044
Bridgeton/NJ		0.11	727	Green sizing fruit			Mean 0.67	IR-4 PR. 07279
(Superior plum)		0.11	724	Fruiting				Dorschner, 2002
99-NJ16		0.11	726	Fruiting				
		0.11	736	Fruit enlarging				
USA, 1999	SC	0.11	922	Immature fruit	5	7	0.38, 0.46	Sampling to
Fennville/MI		0.11	939	Immature fruit			Mean 0.42	analysis: 75-235
(Ealy Golden		0.11	942	Immature fruit				days
plum)		0.11	917	Immature fruit				
99-MI08		0.11	927	Immature fruit				
USA, 1999	SC	0.11	1024	Green fruit	5	6	0.089, 0.10	
Gervais/OR		0.11	974	Green fruit			Mean <u>0.095</u>	
(Brooks plum)		0.11	987	Fruit growth				
99-OR21		0.11	964	Ripening fruit				
		0.11	971	Fruit maturing				
USA, 1999	SC	0.12	770	Growing fruit, green	5	7	0.077, 0.086	
Gervais/OR		0.11	756	Fruit growth			Mean <u>0.082</u>	
(Brooks plum)		0.11	766	Fruit growth				
99-OR22		0.11	747	Beginning to ripen				
		0.11	746	Fruit ripening				
USA, 1999	SC	0.11	924	Fruiting	5	7	0.16, 0.27	
Buhl/ID		0.11	936	Fruiting			Mean <u>0.22</u>	
(Simca Rosa		0.11	938	Fruiting				

Plum			Appli	cation		DALA	Residues,	Ref
country, year	Form	kg ai/ha	water,	Treatment	no.	Days	mg/kg ^a	
(variety)			L/ha					
plum)		0.11	933	Fruiting				
99-ID05		0.11	933	Fruiting				
USA, 1999	SC	0.11	929	Fruiting	5	7	0.32, 0.35	
Caldwell/ID		0.11	940	Fruiting			Mean 0.34	
(Empress plum)		0.11	929	Fruiting				
99-ID06		0.11	940	Fruiting				
		0.11	930	Fruiting				
USA, 1999	SC	0.11	1403	Small green prunes	5	0	0.44, 0.52	
Kerman/CA		0.11	1417	Fruit 0.5-1 inch		3	0.44, 0.46	
(French prunes)		0.11	1430	Fruit 1-1.5 inch		6	0.30, 0.41	
99-CA79		0.11	1398	Coloring prunes			Mean 0.36	
		0.11	1395	Fruiting		13	0.39, 0.39	
							Mean 0.39	
USA, 1999	SC	0.11	1409	Fruit 0.75-1 inch	5	7	0.12, 0.19	
Chowchilla/CA		0.11	1415	Fruit 1.5-2 inch			Mean 0.15	
(Fortune plums)		0.11	1401	Fruit 1.5-2.5 inch				
99-CA80		0.11	1407	Coloring fruit				
		0.11	1416	Fruiting				

^a Portion analysed: Fruit without pit and stem

Peach

Sixteen side-by-side residue trials were conducted in the USA on peaches according to the US GAP (Harbin & Woodard, 2000: 109238). The 192 g/L SC formulation was applied 3 times at the rate of 0.11 kg ai/ha with application intervals of 7 days. Two different application scenarios (concentrated and dilute spraying) were tested within the same location. The total residue of imidacloprid were quantified with method 102624-R1 (based on the method 00200) at an LOQ of 0.05 mg/kg.

Table 13 Imidacloprid residues on peaches from supervised trials in USA

Peach			A	pplication				DALA	Resi	idues,	Ref
country, year	Form	kg	kg a	i/hL	L/	ha	no.	Days	mg	/kg ^a	
(variety)		ai/ha	dil	conc	dil	conc			dil	conc	
GAP, USA	SC	Max 0	.34 /year					0			
USA, 1998	SC	0.11	0.0030	0.023	3714	485	3	0	0.10	0.094	109238
Fresno/CA		0.11	0.0029	0.023	3770	485		7	0.099	0.058	Harbin &
(Red top)		0.11	0.0027	0.028	4022	391		14	0.066	0.074	Woodard,
FCA-PO001-98D								21	0.059	0.051	2000
USA, 1998	SC	0.11	0.0047	0.018	2338	615	3	0	0.34	0.25	I
Tulare/CA		0.11	0.0048	0.018	2271	628					
(Carson)		0.11	0.0047	0.019	2324	575					Sampling
BAY-PO002-98H											to
USA, 1998	SC	0.11	0.0042	0.016	2605	684	3	0	0.25	0.15	analysis:
Porterville/CA		0.11	0.0052	0.020	2118	561					378-414
(Red sun)		0.11	0.0042	0.020	2598	549					days
BAY-PO003-98H											
USA, 1998	SC	0.11	0.0056	0.020	1962	541	3	0	0.36	0.37	1
Gridley/CA		0.11	0.0052	0.019	2104	574					
(Lodell 19440 ex		0.11	0.0052	0.020	2106	542					
erly)											
BAY-PO004-98H											
USA, 1998	SC	0.11	0.0047	0.020	2327	543	3	0	0.48	0.77	1
Colony/OK		0.11	0.0045	0.019	2418	572					
(Glohaven)		0.11	0.0041	0.017	2715	633					
BAY-PO005-98H											
USA, 1998	SC	0.11	0.0032	0.018	3391	618	3	0	0.38	0.33	1
Centralia/IL		0.11	0.0033	0.018	3328	613					
(Crest haven		0.11	0.0033	0.018	3374	595					
BAY-PO006-98H											

Peach			Ap	plication			DALA	Resi	dues,	Ref	
country, year	Form	kg	kg ai	/hL	L/	L/ha		Days	mg	/kg ^a	
(variety)		ai/ha	dil	conc	dil	conc			dil	conc	
USA, 1998	SC	0.11	0.0047	0.020	2334	540	3	0	0.38	0.32	
Morven/GA		0.11	0.0045	0.021	2430	525					
(Gold prince)		0.11	0.0046	0.018	2372	601					
BAY-PO007-98H											
USA, 1998	SC	0.11	0.0034	0.018	3224	623	3	0	0.28	0.19	
Hereford/PA		0.11	0.0034	0.018	3222	603					
(Glohaven)		0.11	0.0034	0.018	3237	615					
BAY-PO008-98H											

^a Portion analysed: Fruit

Assorted tropical and sub-tropical fruits-edible peel & Oilseed

Olives

Eight trials on olives were conducted in Spain, Portugal, Italy and Greece (Schöning & Berkum, 2009: RA-2032/07, Schöning, Reneke & Krusell, 2011: 08-2001). The 200 g/L OD formulation was applied 5 times as a low pressure bait application with 0.020 kg ai/ha, corresponding to a concentration of 0.02 kg ai/hL and a spray volume of 100 L/ha. Only the south side (25% of the whole trees) was treated but samples were taken randomly from the whole trees. The application rate was related to the size of the plot and not just to the area actually treated. At each application the additive Buminal (hydrolyzed protein) was used (1.5%). The application intervals were 9 to 13 days.

All trials were analysed for imidacloprid parent compound and the total residue of imidacloprid according to method 00834/M001. Additionally, the samples taken in 2008 were analysed for imidacloprid parent compound and the metabolites 5-hydroxy imidacloprid and olefin imidacloprid according to method 00834/M002 (not be shown in Table 5).

Olive			Appli	cation			DALA	Residues, mg/kg		Ref
country, year (variety)	Form	kg ai/ha	kg ai/hL	L/ha	Growth	no.	Days ^b	Parent	Total	
	CI		ui/IIL		stage ^a		7			
GAP, Spain	SL	0.01-		50-		4	7			
		0.02		100						
Spain, 2007	OD	0.02	0.02	100	81-85	5	-0	0.27	0.47	RA-2032/07
Cataluña							0	0.45	0.64	Schöning &
(Morrut)							4	-	0.56	Berkum, 2009
R2007 0408/9							7	0.40	0.71	
Portugal, 2007	OD	0.02	0.02	100	81-88	5	-0	0.33	0.81	
Ribatejo e Oeste							0	0.70	1.3	Sampling to
(Galega)							7	0.40	<u>1.1</u>	analysis: 63-
R2007 0409/7										141 days
Italy, 2007	OD	0.02	0.02	100	78-80	5	-0	0.03	0.15	
Sicilia							0	0.04	0.14	
(Nocellara Etnea)							3	-	0.17	
R2007 0439/9							7	0.03	0.14	
Italy, 2007	OD	0.02	0.02	100	75-80	5	-0	0.13	0.33	
Puglia							0	0.30	0.57	
(Corato)							7	0.30	0.63	
R2007 0440/2										
Spain, 2008	OD	0.02	0.02	100-	80-88	5	-0	0.04	0.12	08-2001
Cataluña				114			0	0.17	0.24	Schöning,
(Vera)							4	0.07	0.12	Reineke &
08-2001-01							8	0.05	<u>0.11</u>	Krusell, 2011
Italy, 2008	OD	0.02	0.02	100	80-85	5	-0	< 0.01	< 0.05	
Sicilia							0	0.04	0.06	
(Bella di Spagna)							3	0.02	< 0.05	Sampling to
08-2001-02							7	0.02	<u>< 0.05</u>	analysis: 484-

Table 14 Imidacloprid residues on olives from supervised trials in Southern Europe

Olive			Appli	cation			DALA	Residue	s, mg/kg	Ref
country, year (variety)	Form	kg ai/ha	kg ai/hL	L/ha	Growth stage ^a	no.	Days ^b	Parent	Total	
Portugal, 2008 Ribatejo e Oeste (Galega) 08-2001-03	OD	0.02	0.02	100	79-88	5	0 7	0.37 0.42	0.45 <u>0.49</u>	534 days
Greece, 2008 Katerini (Megaron) 08-2001-04	OD	0.02	0.02	100	76-81	5	0 7	0.22 0.11	0.34 <u>0.22</u>	

^a Code of BBCH scale

^b -0: the date before last treatment

Eight trials on olives were conducted in Spain, Italy, Portugal and Greece (Anderson & Eberhardt, 2002: RA-2065/00, Schöning, 2002: RA-2034/01). The 200 g/L SL formulation was applied twice as a spray application with 0.10 kg ai/ha, corresponding to a concentration of 0.0125 kg ai/hL and a spray volume of 800 L/ha. The application intervals were 28 to 32 days.

Fruits taken at day 0 at and the PHI of 28 days after the last application were analysed for parent compound whereas fruits of all sampling dates were analysed for the total residue of imidacloprid. Both analytes were either analysed according to method 00300/E007 or method 00834.

Table 15 Imidacloprid	residues on oliv	ves from supervised	trials in Southern Euro	pe
1		1		1. L

Olive			Appli	cation			DALA	Residue	s, mg/kg	Ref
country, year	Form	kg	kg	L/ha	Growth	no.	Days	Parent	Total	
(variety)		ai/ha	ai/hL		stage*					
GAP, Spain	SL		0.01			2	28			
Spain, 2000	SL	0.10	0.013	800	81	2	0	0.12	0.25	RA-2065/00
(Vera)		0.10	0.013	800	85		6		0.27	Anderson &
R2000 0073/1							11		0.28	Eberhardt,
							21		0.29	2002
							28	0.02	0.25	
							35		0.22	
Italy, 2000	SL	0.10	0.013	800	87	2	0	0.10	0.11	Sampling to
(Nocellara Etnea)		0.093	0.013	743	87/88		7		0.11	analysis: 243-
R2000 0313/7							14		0.08	354 days
							22		< 0.05	
							28	< 0.01	0.05	
							35		0.05	
Portugal, 2000	SL	0.10	0.013	800	No data	2	0	0.18	0.60	
(Blanqueta)		0.10	0.013	800	82		6		0.36	
R2000 0314/5							14		0.19	
							21	0.02	0.16	
							28 35	0.03	0.21 0.07	
Greece, 2000	SL	0.10	0.013	800	79	2	0	0.32	0.07	
	SL	0.10	0.013	800	85	2	0	0.52	0.59	
(Manaki) R2000 0315/3		0.10	0.015	800	65		14		0.71	
K2000 0313/3							21		0.51	
							28	0.14	0.07	
							35	0.14	0.43	
Spain, 2001	SL	0.11	0.013	904	79	2	0	0.14	0.28	RA-2034/01
(Vera)		0.10	0.013	800	79-81	1	6	0.09	0.26	Schöning,
R2001 0090/6		5.10	5.015	500			14	0.05	0.26	2002
							19	5.00	0.26	
							27	0.02	0.22	
							35		0.24	Sampling to
Italy, 2001	SL	0.10	0.013	800	78	2	0	0.14	0.22	analysis: 134-
(Nocellara Etnea)		0.10	0.013	800	78-80		7	0.04	0.14	195 days
R2001 0091/4							14	0.02	0.12	-

Olive			Appli	cation			DALA	Residue	s, mg/kg	Ref
country, year	Form	kg	kg	L/ha	Growth	no.	Days	Parent	Total	
(variety)		ai/ha	ai/hL		stage*					
							20		0.11	
							28	0.01	0.15	
							35		0.13	
Portugal, 2001	SL	0.10	0.013	800	75/76	2	0	0.31	0.39	
(Picual)		0.10	0.013	800	79/80		7	0.11	0.22	
R2001 0092/2							14	0.09	0.19	
							21		0.10	
							28	0.06	0.16	
							35		0.16	
Greece, 2001	SL	0.10	0.013	800	79	2	0	0.22	0.29	
(Manaki)		0.10	0.013	800	82		8	0.01	0.08	
R2001 0093/0							15	< 0.01	0.06	
							22		0.05	
							28	< 0.01	0.06	
							35		0.06	

* Code of BBCH scale

Eight trials on olives were conducted in Italy, Spain, Portugal and Greece (Schöning & Krusell, 2011: 09-2087, Schöning & Bauer, 2011: 10-2151). The 200 g/L OD formulation was applied once as a spray application with 0.15 kg ai/ha, corresponding to a concentration of 0.0125–0.0188 kg ai/hL and a spray volume of 800–1200 L/ha.

The samples were analysed for imidacloprid parent compound and the metabolites 5-hydroxy imidacloprid and olefin imidacloprid according to method 00834/M002 as well as for the total residue of imidacloprid according to method 00834/M001.

Olive			Appli	cation			DALA	Residue	s, mg/kg	Ref
country, year (variety)	Form	kg ai/ha	kg ai/hL	L/ha	Growth stage ^a	no.	Days ^b	Parent	Total	
GAP, Italy	OD		0.01- 0.013			1	28			
Italy, 2009 (Nocellara Etnea) 09-2087-01	OD	0.15	0.015	1000	78	1	-0 0 7 14 28 35	< 0.01 0.33 0.16 0.06 < 0.01 < 0.01	< 0.05 0.31 0.29 0.30 0.23 0.28	09-2087 Schöning & Krusell, 2011 Sampling to
Spain, 2009 (Arbequina) 09-2087-02	OD	0.15	0.015	1000	85	1	-0 0 7 13 28 35	< 0.01 1.02 0.44 0.27 0.14 0.10	< 0.05 0.93 0.79 0.74 0.75 0.77	analysis: 266- 428 days
Portugal, 2009 (Cobrançosa) 09-2087-03	OD	0.15	0.019	800	80	1	0 28	0.70 0.51	0.51 0.81	
Italy, 2009 (Nocellara Etnea) 09-2087-04	OD	0.15	0.013	1200	81	1	0 28	0.32 0.01	0.29 0.23	
Italy, 2010 (Bella di Spagna) 10-2151-01	OD	0.15	0.015	1000	78	1	0 7 14 28 35	0.21 0.16 0.07 < 0.01 < 0.01	0.16 0.18 0.13 0.26 0.20	10-2151 Schöning & Bauer, 2011
Spain, 2010 (Arbequina) 10-2151-02	OD	0.15	0.019	800	81	1	0 8 14	0.40 0.20 0.16	0.16 0.35 0.38	Sampling to analysis: 79- 129 days

Table 16 Imidacloprid residues on olives from supervised trials in Southern Europe

Olive			Appli	cation			DALA	Residue	s, mg/kg	Ref
country, year	Form	kg	kg	L/ha	Growth	no.	Days ^b	Parent	Total	
(variety)		ai/ha	ai/hL		stage ^a					
							28	0.04	0.41	
							35	0.04	0.43	
Portugal, 2010	OD	0.15	0.019	800	81	1	0	0.77	0.68	
(Cobrançosa)							30	0.43	0.61	
09-2087-03										
Greece, 2010	OD	0.15	0.019	800	79	1	0	0.34	0.24	
(Amphisses)							28	< 0.01	0.12	
10-2151-04										

^a Code of BBCH scale

^b -0: The date before last treatment

Leafy vegetables (including Brassica leafy vegetables)

Kale

Four trials were conducted on curly kale in Spain and Italy (Schmeer, Krusell & Bauer, 2010: 08-2029, Ballesteros, 2011: 09-2002). The OD formulation containing 75 g/L imidacloprid and 10 g/L deltamethrin was applied twice as a spray application with 0.094 kg ai/ha, corresponding to a concentration of 0.012–0.016 kg ai/hL and a spray volume of 600–800 L/ha. The application interval was 13–18 days.

The samples were analysed for the parent imidacloprid and its metabolites 5-hydroxy imidacloprid and olefin imidacloprid according to method 00834/M002. The total residue of imidacloprid was determined as 6-CNA common moiety according to method 00834/M001.

Kale			Appli	cation			DALA	Residue	s, mg/kg	Ref
country, year	Form	kg	Kg	L/ha	Growth	no.	Days ^b	Parent	Total	
(variety)		ai/ha	ai/hL		stage ^a					
GAP, Italy	OD	0.075-				2	7			
		0.094								
Spain, 2008	OD	0.094	0.016	600	47	2	-0	< 0.01	0.46	08-2029
(Reflex F1)		0.094	0.012	800	49		0	2.9	3.7	Schmeer,
08-2029-01							3	0.46	1.8	Krusell &
							6	0.09	<u>1.1</u>	Bauer, 2010
							13	0.02	0.82	
Italy, 2008	OD	0.094	0.012	800	42	2	-0	0.03	0.34	
(Nero di Toscana)		0.094	0.012	800	46		0	2.5	3.3	Sampling to
08-2029-02							3	0.64	2.2	analysis: 307-
							7	0.20	1.5	596 days
							14	0.10	0.99	
Spain, 2009	OD	0.094	0.016	600	42	2	-0	0.16	0.93	09-2002
(Reflex F1)		0.094	0.016	600	45		0	2.9	4.1	Ballesteros,
09-2002-01							3	0.99	2.8	2011
							7	0.34	2.0	
							15	0.04	1.1	
Italy, 2009	OD	0.094	0.012	800	41	2	-0	0.02	0.36	Sampling to
(Nero di Toscana)		0.094	0.012	800	43		0	1.5	2.3	analysis: 85-
09-2002-02							3	0.50	1.0	198 days
							6	0.31	1.0	
							14	0.09	0.64	

Table 17 Imidacloprid residues on curly kale from supervised trials in Spain and Italy

Portion analysed: Leaf

^a Code of BBCH scale

^b0: The date before last treatment

Fruiting vegetables, other than Cucurbits-subgroup Tomatoes

Goji berry

Six trials were conducted on goji in China, using the EC formulation containing 50 g/L imidacloprid. The EC formulation was applied with three foliar applications at a concentration of 0.005 kg ai/hL. The application interval was 10 days.

After fresh goji were collected from field trial, 5 g potassium carbonate (0.5% of the weight of fresh goji sample) was added per 1000 g sample, then well mixed and stood for 30 min. The sample was dried in sunshine or under blast drying under 45-50°C. The water content of goji is 70-80%. So the weight of dried goji is about 20-30% of that before drying.

The analytical method NY/T 1275-2007 & GB/T 23201-2008 was used to determine the residue of imidacloprid on goji. The LOQ was 0.02 mg/kg.

Goji		Application	-	DALA	Portion	Residues, mg/kg*	Ref
country, year (variety)	Form	kg ai/hL	no.	Days	analysed	Imidacloprid	
GAP, China	EC	0.003-0.005	3	3		Innauciopria	
China, 2010 Yinchuan/ Ningxia Hui (Ningqi No. 1) NX-01	EC	0.005	3	1 2 3 5 7 10 14	Fresh fruits	$\begin{array}{c} 0.078,0.099,0.11\ (0.096)\\ 0.052,0.054,0.082\ (0.063)\\ 0.021,0.032,0.067\ (0.040)\\ <0.02,<0.02,<0.02\\ (<0.02)\\ <0.02,<0.02,<0.02\\ (<0.02)\\ <0.02,<0.02,<0.02\\ (<0.02)\\ <0.02,<0.02,<0.02\end{array}$	R-IG-03 Niu, 2014 Sampling to analysis: 131- 150 days
				5 7 10 14	Dried fruits	$\begin{array}{c} (< 0.02) \\ < 0.02, < 0.02, < 0.02 \\ (< 0.02) \\ \hline \\ < 0.02, 0.023, 0.038 \ (0.027) \\ 0.059, 0.062 \ (0.061) \\ 0.054, 0.055 \ (0.055) \\ 0.027, (0.026) \\ \hline \end{array}$	-
China, 2010 Zhongning/ Ningxia Hui (Ningqi No. 1) NX-02	EC	0.005	3	14 1 2 3 5 7 10 14 21	Fresh fruits	$\begin{array}{c} 0.025,0.027,0.027(0.026)\\ \hline 0.32,0.34,0.69(0.45)\\ 0.54,0.64,0.69(0.62)\\ 0.36,0.43,0.47(0.42)\\ 0.033,0.035,0.036(0.035)\\ 0.029,0.030,0.030(0.030)\\ 0.051,0.055,0.058(0.055)\\ <0.02,<0.02,0.024(0.021)\\ <0.02,<0.02,<0.02\\ (<0.02)\\ \end{array}$	R-IG-04 Niu, 2014 Sampling to analysis: 129- 149 days
				5 7 10 14	Dried fruits	$\begin{array}{c} 0.063, 0.092, 0.10 \ (0.085) \\ < 0.02, 0.025, 0.034 \ (0.026) \\ < 0.02, < 0.02, < 0.02 \\ (< 0.02) \\ < 0.02, < 0.02, 0.024 \ (0.021) \end{array}$	
China, 2010 Bayannaoer/ Inner Mongolia (Ningqi No. 1) IM-01	EC	0.005	3	1 2 3 5 7 10 14 21	Fresh fruits	$\begin{array}{c} 0.77, 0.84, 0.99 \ (0.87) \\ 0.57, 0.61, 0.67 \ (0.62) \\ 0.57, 0.59, 0.78 \ (0.65) \\ 0.36, 0.39, 0.41 \ (0.39) \\ 0.28, 0.31, 0.35 \ (0.31) \\ 0.25, 0.26, 0.26 \ (0.26) \\ 0.072, 0.094, 0.12 \ (0.095) \\ < 0.02, < 0.02, < 0.02 \\ (< 0.02) \end{array}$	R-IG-05 Zhang, 2014 Sampling to analysis: 130- 150 days
				5 7 10 14	Dried fruits	0.42, 0.64 (0.53) 0.49, 0.54 (0.52) 0.29, 0.30, 0.36 (0.32) 0.24, 0.31 (0.28)	

Table 18 Imidacloprid residues on goji from supervised trials in China

Goji		Application		DALA	Portion	Residues, mg/kg*	Ref
country, year	Form	kg ai/hL	no.	Days	analysed		
(variety)						Imidacloprid	
China, 2010	EC	0.005	3	1	Fresh	0.38, 0.44, 0.85 (0.56)	R-IG-06
Baiyin/ Gansu				2	fruits	0.25, 0.45, 0.47 (0.39)	Liu, 2014
(Ningqi No. 1)				3		0.26, 0.32, 0.48 (0.35)	
GS-01				5		0.17, 0.19, 0.20 (0.19)	
				7		0.10, 0.22 (0.16)	Sampling to
				10		0.054, 0.066, 0.13 (0.083)	analysis: 124-
				14		0.012, 0.030 (0.021)	144 days
				21		< 0.02, < 0.02, < 0.02	
						(< 0.02)	
				5	Dried	0.10, 0.11, 0.14 (0.12)	
				7	fruits	0.049, 0.050, 0.17 (0.090)	
				10		< 0.02, 0.029, 0.040 (0.030)	
				14		< 0.02, < 0.02, 0.026 (0.022)	
China, 2010	EC	0.005	3	1	Fresh	0.29, 0.34, 0.41 (0.35)	R-IG-07
Xinjiang Uygur				2	fruits	0.30, 0.31, 0.41 (0.34)	Gou, 2014
(Ningqi No. 1)				3		0.30, 0.31, 0.39 (0.33)	
XJ-01				5		0.24, 0.28, 0.31 (0.28)	
				7		0.28, 0.30, 0.37 (0.32)	Sampling to
				10		0.22, 0.27, 0.30 (0.26)	analysis: 122-
				14		0.25, 0.27, 0.28 (0.27)	142 days
				21		0.020, 0.14, 0.14 (0.10)	-
				5	Dried	0.044, 0.047, 0.086 (0.059)	
				7	fruits	0.059, 0.14, 0.17 (0.12)	
				10		0.054, 0.075, 0.076 (0.068)	
				14		0.051, 0.068, 0.070 (0.063)	
China, 2010	EC	0.005	3	1	Fresh	0.40, 0.47, 0.51 (0.46)	R-IG-08
Haixi, Qinghai				2	fruits	0.17, 0.37, 0.56 (0.37)	Gou, 2014
(Ningqi No. 1)				3		0.23, 0.30, 0.44 (0.32)	
QH-01				5		0.16, 0.21, 0.25 (0.21)	
				7		0.17, 0.17, 0.17 (0.17)	Sampling to
				10		0.13, 0.17, 0.20 (0.17)	analysis:
				14		0.27, 0.44 (0.36)	
				21		0.083, 0.18, 0.39 (0.22)	
				5	Dried	0.74, 0.74, 0.78 (0.75)	
				7	fruits	0.22, 0.46, 0.46 (0.38)	
				10		0.62, 0.63 (0.63)	
				14		0.28, 0.28, 0.29 (0.28)	

* Average in parentheses

Pulses

Soya bean (dry)

Twenty-one field residue trials were carried out with imidacloprid in soya beans in the USA and Canada using the 480 g/L SC formulation (Mackie, 2006: RANTY002). Soya bean seeds were treated at a rate of 0.125 kg ai/100 kg seed. The growing soya bean plants were subsequently treated with three foliar applications at a target rate of 0.053 kg ai/ha for a total seasonal application of 0.16 kg ai/ha. In each of the 21 residue trials, the treated plot was divided in two sub-plots A and B; from sub-plot A, forage and hay was harvested, and from sub-plot B, soya bean seeds. The application intervals, once foliar treatment was initiated, generally ranged between 5 and 7 days.

The analytical method NT-001-P04-01 (common moiety method) was used to determine the total residue of imidacloprid in soya bean seeds.

Table 19 Imidacloprid residues on soya bean seeds from supervised trials in USA and Canada

Soya bean seed		App	olication		DALA	Residues, mg/kg*	Ref
country, year	Form	kg ai/ha	Seeding density	no.	Days		
(variety)			water, L/ha			Total imidacloprid	
GAP, USA	SC	63-125 g ai/	/100 kg seed	1	21		

Soya bean seed		Ap	olication		DALA	Residues, mg/kg*	Ref
country, year	Form	kg ai/ha	Seeding density	no.	Days		
(variety)			water, L/ha			Total imidacloprid	
		0.053		3			
		Max 0.16 kg	g ai/ha /year				
USA, 2004	SC	0.070	56.3 kg/ha	1	7	0.035, 0.036 (0.035)	RANTY002
Tifton/GA		0.053	141	3	14	0.022, 0.031 (0.027)	Mackie, 2006
(DK 5386)		0.053	141		21	0.047, 0.054 (0.050)	
NT001-04D		0.053	140		28 34	0.037, 0.039 (0.038) 0.042, 0.043 (0.042)	Sampling to
USA, 2004	SC	0.082	65.9 kg/ha	1	19	0.042, 0.043 (0.042) 0.17, 0.25 (0.21)	analysis:
Bumpass/VA	~ -	0.052	162	3		,	max 450 days
(Pioneer 9492RR)		0.053	163				
NT002-04H		0.053	163				
USA, 2004	SC	0.091	72.5 kg/ha	1	20	0.35, 0.41 (<u>0.38</u>)	
Leland/MS (Pioneer 9492RR)		0.054 0.052	151 151	3			
NT003-04H		0.052	157				
USA, 2004	SC	0.098	78.5 kg/ha	1	21	0.64, 0.71 (0.67)	
Proctor/AR		0.054	140	3		<u> </u>	
(DK 5386)		0.054	140				
NT004-04H		0.053	139				
USA, 2004	SC	0.087	69.4 kg/ha	1	21	0.32, 0.43 (<u>0.38</u>)	
Newport/AR (DK 5386)		0.053	185	3			
(DK 5586) NT005-04H		0.054 0.054	189 188				
USA, 2004	SC	0.034	79.9 kg/ha	1	8	0.039, 0.041 (0.040)	-
Stilwell/KS	be	0.055	153	3	14	0.038, 0.042 (0.040)	
(Pioneer 93B68)		0.056	153		20	0.024, 0.030 (0.027)	
NT006-04D		0.053	145		27	0.030, 0.031 (0.031)	
110 4 2004		0.000	70.01.4	1	34	0.033, 0.037 (0.035)	
USA, 2004 Seymour/IL	SC	0.090	72.2 kg/ha 132	1	19	0.17, 0.19 (<u>0.18</u>)	
(Pioneer 93B68)		0.054	132	5			
NT007-04H		0.054	132				
USA, 2004	SC	0.093	74.2 kg/ha	1	20	0.066, 0.15 (<u>0.11</u>)	
Springfield/NE		0.054	139	3	1		
(S2802-4)		0.053	140				
NT008-04H	S.C.	0.053	133	1	21	0.19.0.20.(0.10)	
USA, 2005 Sabin/MN	SC	0.098	76.9 kg/ha 153	1 3	21	0.18, 0.20 (<u>0.19</u>)	
(Northrup King)		0.055	158	5			
NT009-04HA		0.054	152				
USA, 2004	SC	0.092	74.0 kg/ha	1	20	0.40, 0.46 (<u>0.43</u>)	
Carlock/IL		0.053	121	3			
(S2802-4) NT010-04H		0.052 0.055	119 124				
USA, 2004	SC	0.055	124 122 kg/ha	1	19	0.45, 0.52 (0.48)	-
Bagley/IA	SC	0.053	122 kg/nd 130	3	17	(0.+3, 0.52)	
(S2802-4)		0.051	132				
NT011-04H		0.051	134				ļ
USA, 2004	SC	0.084	67.3 kg/ha	1	19	0.61, 0.65 (<u>0.63</u>)	
Marysville/OH		0.053	140	3			
(S2802-4) NT012-04H		0.053 0.053	141 140				
USA, 2004	SC	0.090	71.6 kg/ha	1	21	0.94, 2.0 (<u>1.5</u>)	
Dumfries/MN	~~	0.054	176	3		······································	
(Pioneer 92B13)		0.055	179				
NT013-04H		0.053	178				ļ
USA, 2004	SC	0.071	57.2 kg/ha	1	20	0.56, 0.65 (<u>0.61</u>)	
Northwood/ND		0.052	185	3			
(S02-G2) NT014-04H		0.052 0.053	186 187				
USA, 2004	SC	0.033	73.8 kg/ha	1	21	0.73, 0.73 (0.73)	
CD11, 2007	1.50	0.072	1 / 5.0 Kg/11d		21	0.13, 0.13 (0.13)	1

Soya bean seed		Apj	olication		DALA	Residues, mg/kg*	Ref
country, year	Form	kg ai/ha	Seeding density	no.	Days		
(variety)			water, L/ha			Total imidacloprid	
Gardner/ND		0.052	182	3			
(Pioneer 90B51)		0.053	181				
NT015-04H		0.053	161				
USA, 2004	SC	0.094	74.9 kg/ha	1	32	0.025, 0.029 (0.027)	
New Holland/OH		0.053	148	3			
(Pioneer 93B68)		0.054	153				
NT016-04H		0.054	150				
USA, 2004	SC	0.085	68.3 kg/ha	1	21	1.4, 1.6 (<u>1.5</u>)	
Kirksville/MO		0.053	165	3			
(Pioneer 93B68)		0.052	170				
NT017-04H		0.054	178				
USA, 2004	SC	0.11	83.9 kg/ha	1	21	0.57, 0.67 (<u>0.62</u>)	
Ellendale/MN		0.054	154	3			
(Pioneer 92B13)		0.055	156				
NT018-04H		0.054	160				
USA, 2004	SC	0.087	69.3 kg/ha	1	21	0.039, 0.065 (<u>0.052</u>)	
Carlyle/IL		0.053	92	3			
(Pioneer 93B68)		0.053	137				
NT019-04H		0.052	93				
USA, 2004	SC	0.094	75.2 kg/ha	1	25	0.034, 0.069 (<u>0.052</u>)	
Rockwood/ON		0.053	94	3			
(S02-G2)		0.053	95				
NT020-04H		0.053	97				
USA, 2004	SC	0.094	75.2 kg/ha	1	25	0.093, 0.096 (<u>0.094</u>)	
Bright/ON		0.054	92	3			
(Pioneer 90B51)		0.053	101				
NT021-04H		0.053	89				

* Average in parentheses

Herbs

Basil

Four field residue trials were carried out with imidacloprid in basil in Thailand using the 700 g/kg WG formulation. The growing basil plants were treated with two foliar applications at a target concentration of 0.042 kg ai/hL. The application intervals were 7 or 8 days.

The on-line multi residue methods applied for the determination of imidacloprid residues was based on extraction with a mixture of acetone, dichloromethane and sodium chloride water solution. The concentrated extract is cleaned up on silica gel column and detection with HPLC-MS/MS (Steinwandter, 1985). The LOQ for imidacloprid was 0.01 mg/kg. The total residue of imidacloprid (6-CNA common moiety analysis) was determined according to method 01389. The LOQ for total imidacloprid was 0.05 mg/kg.

Table 20 Imidacloprid residues on basil from supervised trials in Thailand ^a

Basil		Appli	cation		DALA	Residues, 1	ng/kg*	Ref.
country, year	Form	kg	kg	no.	Days	Imidacloprid	Total imidacloprid	
(variety)		ai/ha	ai/hL					
GAP, Thailand	WG		0.021-		7			
			0.042					
Thailand, 2014	WG	0.34	0.042	2	0	16, 24, 26 (22)	16, 28, 38 (27)	Imida- basil-1
Nakornpratom					1	8.4, 14, 22 (15)	16, 25, 40 (27)	Chaiyanboon,
(White Holy					3	4.7, 5.0, 5.4 (5.0)	4.2, 4.8, 5.8 (4.9)	2014
basil)					5	1.5, 2.8, 3.0 (2.4)	2.8, 3.5, 5.1 (3.8)	
					7	0.94, 1.1, 1.4 (1.1)	2.5, 4.3, 5.3 (4.0)	Sampling to
					10	0.34, 0.41, 0.55 (0.43)	3.3, 5.6, 6.5 (<u>5.1</u>)	analysis: 268-
					14	0.04, 0.07, 0.20 (0.10)	3.3, 3.8, 3.8 (3.6)	284 days
Thailand, 2014	WG	0.32	0.042	2	0	31, 46, 49 (42)	40, 49, 50 (46)	Imida-basil-2

Basil		Appli	cation		DALA	Residues, 1	ng/kg*	Ref.
country, year	Form	kg	kg	no.	Days	Imidacloprid	Total imidacloprid	
(variety)		ai/ha	ai/hL					
Saraburi					1	10, 11, 12 (11)	19, 21, 21 (20)	Thongsam,
(Red Holy basil)					3	1.1, 2.8, 3.4 (2.4)	23, 23, 25 (23)	2014
					5	1.2, 1.2, 1.3 (1.2)	8.1, 10, 13 (11)	
					7	0.41, 0.43, 0.49 (0.44)	6.1, 6.2, <u>7.3</u> (<u>6.5</u>)	Sampling to
					10	0.15, 0.21, 0.21 (0.19)	4.4, 4.5, 4.8 (4.6)	analysis: 256-
					14	< 0.01,< 0.01, 0.03	2.7, 3.4, 3.6 (3.2)	271 days
						(0.017)		
Thailand, 2014	WG	0.32	0.042	2	0	24, 24, 25 (24)	23, 25, 29 (26)	Imida-basil-3
Nakhonpathom					1	13, 15, 15 (14)	18, 19, 20 (19)	Pongpinyo
(Sweet basil)					3	4.1, 4.3, 4.8 (4.4)	8.4, 8.7, 9.7 (8.9)	2014
					5	2.1, 2.2, 2.3 (2.2)	7.3, 7.3, 8.3 (7.6)	
					7	0.98, 1.1, 1.2 (1.1)	4.2, 4.7, 5.7 (<u>4.9</u>)	Sampling to
					10	0.29, 0.32, 0.37 (0.33)	2.4, 2.5, 2.9 (2.6)	analysis: 215-
					14	0.17, 0.18, 0.26 (0.20)	0.95, 1.2, 1.9 (1.3)	232 days
Thailand, 2014	WG	0.26	0.042	2	0	18, 19, 21 (19)	21, 24, 30 (25)	Imida-basil-4
Supanburi					1	3.9, 4.1, 4.1 (4.0)	10, 11, 14 (12)	Phaikaew
(Sweet basil)					3	1.5, 1.7, 1.7 (1.6)	6.0, 6.1, 6.4 (6.1)	2014
					5	$0.64, 0.70, 0.74 \ (0.69)$	4.7, 6.0, 6.2 (5.6)	
					7	0.19, 0.22, 0.23 (0.21)	3.9, 4.5, 4.7 (<u>4.3</u>)	Sampling to
					10	0.06, 0.07, 0.07 (0.07)	1.8, 1.9, 2.3 (2.0)	analysis: 264-
					14	0.02, 0.03, 0.06 (0.04)	0.42, 0.54, 0.96	280 days
							(0.64)	

^a Portion analysed: whole commodity

* Average in parentheses

Tea, Green, Black

A total of eight trials (four decline and four harvest trials) were conducted at four different trial locations during the dry season (Manikandan, 2015: RANTN021). Four trials were conducted in spring and the other remaining four trials in autumn. Imidacloprid 700 g/kg WG formulation was applied in a spray application once at 0.40 kg ai/ha. In decline trials tea shoots (two to three leaves and a bud) were harvested 0, 3, 7 and 10 days after the application. In three of them duplicate composite samples were taken and in one decline trial only single samples were taken. In harvest trials, tea shoots were harvested immediately after the application and 7 days thereafter. In all the decline and harvest trials a portion of the tea shoots harvested 7 days after application was used to manufacture green and black tea.

For green tea production, tea shoots comprising of two to three leaves and bud harvested from experimental plots were subjected for steaming for about 10 min. Then the leaves were allowed to cool down to room temperature and subjected to CTC (Crush, Tear and Curl) manufacturing process. The tea leaves were dried for about 20 min in a fluidized bed drier, and cooled to ambient temperature.

For black tea production, the tea leaves were spread to a thickness of about 6.4 cm in a miniature withering trough and allowed to wither for 15-16 hours. The withered leaves were put into a rolling machine and rolled. The rolled leaves were then passed through a CTC machine. Afterwards, the tea was fermented at a humidity of 90%. The fermented tea was dried in a fluid bed drier. The dried tea was allowed to cool at ambient conditions.

All samples were analysed for imidacloprid parent compound and its metabolites and the total residue of imidacloprid according to method 01389. The LOQ was 0.01 mg/kg for imidacloprid in fresh and green tea leaves and 0.05 mg/kg in black tea. The LOQ of the total residue of imidacloprid was 0.05 mg/kg in all sample materials.

Table 21 Imidacloprid residues on tea (fresh leaves) from supervised trials in India

Tea Application DALA Residues, mg/kg* Ref

country, year	Form	kg ai/ha	kg ai/hL	L/ha	no.	Days	Parent	Total	
(variety) GAP, Japan	WG	al/na	0.005- 0.01	2000- 4000	1	7			
India, 2013 Gudalur (Assam Jat/ Seedling tea) S1	WG	0.40	0.089	450	1	0 3 7 10	54, 58 (56) 0.77, 0.99 (0.88) 0.40, 0.52 (0.46) 0.32, 0.37 (0.35)	53, 59 (56) 1.3, 1.4 (1.4) 0.70, 0.82 (0.76) 0.58, 0.65 (0.62)	Sampling to analysis: 207- 370 days
India, 2012 Meppadi (Assam Jat/ Seedling tea) S2	WG	0.40	0.089	450	1	0 3 7 10	43, 46 (45) 7.7, 8.6 (8.2) 0.93, 1.1 (1.0) 0.95, 1.0 (0.98)	48, 51 (50) 12, 13 (13) 2.7, 2.8 (2.8) 2.8, 2.8 (2.8)	Sampling to analysis: 189- 298 days
India, 2012 Coonoor (Assam Jat/ UPASI-9) S3	WG	0.40	0.089 0.27	450 450	1 1	0 7 0 7	21 c:0.038 1.5 116 4.4, 4.5 (4.5)	25 2.3 151 7.1, 7.2 (7.2)	Sampling to analysis: 175- 291 days
India, 2013 Valparai (Assam Jat/ Seedling tea) S4	WG	0.40	0.089	450 450	1	0 7 0 7	39 0.64 124 1.4, 1.4 (1.4)	48 1.2 155 2.6, 3.2 (2.9)	Sampling to analysis: 175- 281 days
India, 2012 Valparai (Assam Jat/ Mixed seedling tea) N1	WG	0.40	0.089	450	1	0 3 7 10	46, 51 (49) c:0.040, 0.26 7.2, 7.4 (7.3) 2.8, 4.2 (3.5) c:0.20 2.8, 3.1 (3.0)	51, 56 (54) c:0.29 10, 11 (11) 4.3, 6.1 (5.2) c:0.36 4.0, 4.0 (4.0)	Sampling to analysis: 39- 96 days
India, 2011 Coonoor (Assam Jat/ UPASI-9) N2	WG	0.40	0.089	450	1	0 3 7 10	7.5 0.88 0.77 0.57	7.9 0.92 0.87 0.76	Sampling to analysis: 46- 100 days
India, 2010 Meppadi (Assam Jat/ Seedling tea) N3	WG	0.40	0.089	450	1	0 7	54 0.48	59 1.0	Sampling to analysis: 56- 102 days
India, 2011 Gudalur (Assam Jat/ TRI-2024) N4	WG	0.40	0.089	450	1	0 7	31 1.4	32 2.4	Sampling to analysis: 54- 101 days

* Average in parentheses

c: control sample

Table 22 Imidacloprid residues on tea (Green tea and Black tea) from supervised trials in India

Теа			Application	n		DALA	а	Residues	, mg/kg*	Ref
country, year (variety)	Form	kg ai/ha	kg ai/hL	L/ha	no.	Days		Parent	Total	
		al/IIa								
GAP, Japan	WG		0.005-	2000-4000	1	7				Samplin
			0.01							g to
										analysis
India, 2013	WG	0.40	0.089	450	1	7	G	1.7, 1.7 (1.7)	2.7, 3.1 (2.9)	269-
Gudalur								c:0.011, 0.013		310
(Assam Jat/										days
Seedling tea)							В	1.3, 1.6 (1.5)	3.1, 3.4 (3.3)	264-
S1									· · · · · ·	313
										days
India, 2012	WG	0.40	0.089	450	1	7	G	4.7, 4.8 (4.8)	11, 12 (12)	253-
Meppadi								c:0.018, 0.023	c:0.40	294

Теа			Applicati	on		DALA	а	Residue	es, mg/kg*	Ref
country, year (variety)	Form	kg ai/ha	kg ai/hL	L/ha	no.	Days		Parent	Total	
(Assam Jat/ Seedling tea)										days
S2							В	5.1, 5.1 (5.1)	12, 12 (<u>12</u>)	248- 297 days
India, 2012 Coonoor (Assam Jat/	WG	0.40	0.089	450	1	7	G	5.4 c:0.13	11 c:0.18	236- 283 days
UPASI-9) S3							В	4.0 c:0.13	<u>12</u> c:0.47	231- 286 days
		1.2	0.27	450	1	7	G	16, 16 (16)	34, 34 (34)	Guys
							В	13, 14 (14)	33, 35 (34)	
India, 2013 Valparai (Assam Jat/	WG	0.40	0.089	450	1	7	G	2.0 c:0.012	<u>5.5</u> c:0.099	236- 280 days
Seedling tea) S4							В	2.2 c:0.54	5.1 c:0.96	231- 280 days
		1.2	0.27	450	1	7	G	4.8, 4.8 (4.8)	12, 12 (12)	
							В	4.1, 4.9 (4.5)	13, 13 (13)	
India, 2012 Valparai	WG	0.40	0.089	450	1	7	G	16, 16 (16) c:0.77, 0.90	22, 23 (23) c:0.91, 1.1	56-100 days
(Assam Jat/ Mixed seedling tea) N1							В	15, 15 (15) c:0.33, 0.51	27, 29 (<u>28)</u> c:0.70, 0.86	62-103 days
India, 2011 Coonoor	WG	0.40	0.089	450	1	7	G	2.8 c:0.12	<u>3.0</u> c:0.21	64-107 days
(Assam Jat/ UPASI-9) N2							В	1.8	2.7	70-110 days
India, 2010 Meppadi	WG	0.40	0.089	450	1	7	G	1.0 c:0.056	<u>2.9</u> c:0.14	68-111 days
(Assam Jat/ Seedling tea) N3							В	0.90	2.7	72-112 days
India, 2011 Gudalur	WG	0.40	0.089	450	1	7	G	5.2 c:0.031	<u>7.3</u> c:0.077	65-108 days
(Assam Jat/ TRI-2024) N4							В	2.7 c:0.070	5.1 c:0.19	71-111 days

* Average in parentheses

^a commodity, G: green tea, B: black tea

c: control sample

Legume animal feeds

Soya bean fodder and forage (green)

Twenty-one field residue trials were carried out with imidacloprid in soya beans in the USA and Canada using the 480 g/L SC formulation (Mackie, 2006: RANTY002). Soya bean seeds were treated at a rate of 0.125 kg ai/100 kg seed. The growing soya bean plants were subsequently treated with three foliar applications at a target rate of 0.053 kg ai/ha for a total seasonal application of 0.16 kg ai/ha. Sample materials were forage and hay. In each of the 21 residue trials, the treated plot was divided in two sub-plots A and B; from sub-plot A, forage and hay was harvested, and from sub-

plot B, soya bean seeds. The application intervals, once foliar treatment was initiated, generally ranged between 5 and 7 days.

The analytical method NT-001-P04-01 (common moiety method) was used to determine the total residue of imidacloprid in soya bean forage and hay.

Table 23 Imidacloprid residues on soya bean forage and hay from supervised trials in USA and Canada

Soya bean		А	pplication		DALA	Portion	Residues, mg/kg	Ref
forage/hay	Form	kg	Seeding density	no.	Days	analysed	*	
country, year		ai/ha						
(variety)		ui, iiu	water, L/ha					
GAP, USA	SC	63-125	g ai/100 kg seed	1	0			
		0.053		3				
		Max 0.1	6 kg ai/ha /year					
USA, 2004	SC	0.067	53.8 kg/ha	1	0	Forage	3.5, 4.2 (3.9)	RANTY002
Tifton/GA		0.053	140	3	1	U	1.7, 1.8 (1.7)	Mackie,
(DK 5386)		0.053	143	-	3		1.4, 1.5 (1.5)	2006
NT001-04D		0.053	138		7		0.89, 1.1 (1.0)	
		0.0000	100		10		0.86, 0.90 (0.88)	
					0	Hay	9.2, 9.7 (<u>9.4</u>)	Sampling to
					1		4.3, 4.4 (4.4)	analysis:
					3		4.1, 5.1 (4.6)	max 325
					7		3.2, 4.0 (3.6)	days for
					10		1.9, 2.2 (2.0)	forage, max
USA, 2004	SC	0.082	65.9 kg/ha	1	0	Forage	1.5, 1.8 (<u>1.6</u>)	336 days for
Bumpass/VA		0.055	135	3	1			hay
(Pioneer 9492RR)		0.054	134			Hay	8.0, 11 (<u>9.6</u>)	
NT002-04H		0.055	135					
USA, 2004	SC	0.064	51.0 kg/ha	1	0	Forage	4.2, 4.6 (<u>4.4</u>)	
Leland/MS		0.053	151	3		Ũ		
(Pioneer 9492RR)		0.056	147			Hay	17, 24 (<u>21</u>)	
NT003-04H		0.053	148					
USA, 2004	SC	0.098	78.5 kg/ha	1	0	Forage	2.5, 3.0 (<u>2.7</u>)	
Proctor/AR		0.055	42	3				
(DK 5386)		0.052	136			Hay	5.4, 6.0 (<u>5.7</u>)	
NT004-04H		0.052	140					
USA, 2004	SC	0.087	69.4 kg/ha	1	0	Forage	3.5, 4.2 (<u>3.8</u>)	
Newport/AR		0.054	186	3				
(DK 5386)		0.053	185			Hay	21, 21 (<u>21</u>)	
NT005-04H		0.055	190					
USA, 2004	SC	0.11	86.1 kg/ha	1	0	Forage	1.1, 1.2 (<u>1.1</u>)	
Stilwell/KS		0.056	149	3	1		0.79, 1.4 (1.1)	
(Pioneer 93B68)		0.056	143		3		0.90, 0.94 (0.92)	
NT006-04D		0.051	134		7		0.62, 0.78 (0.70)	
					10		0.61, 0.78 (0.69)	
					0	Hay	3.5, 4.3 (3.9)	
					1		3.0, 3.6 (3.3)	
					3		3.4, 4.7 (<u>4.0</u>)	
					7		1.7, 2.0 (1.8)	
USA 2004	SC	0.090	71.1 kg/k-	1	10	Eore	2.8, 3.0 (2.9)	
USA, 2004 Saymour/II	SC	0.089	71.1 kg/ha	1	0	Forage	2.3, 2.8 (<u>2.6</u>)	
Seymour/IL (Pioneer 93B68)		0.055	129	3		Hav	0004(02)	
(Ploneer 93B68) NT007-04H		0.055	128			Hay	9.0, 9.4 (<u>9.2</u>)	
	SC	0.054	128	1	0	Foress		
USA, 2004 Springfield/NE	SC	0.093	74.2 kg/ha	1	U	Forage	1.9, 2.3 (<u>2.1</u>)	
(S2802-4)		0.053 0.053	134 135	5		Hay	6.1, 6.9 (<u>6.5</u>)	
(S2802-4) NT008-04H		0.053	135	1		IIdy	0.1, 0.7 (0.3)	
	SC			1	0	Eore	1710(19)	
USA, 2005 Sabin/MN	SC	0.096	76.9 kg/ha	1	0	Forage	1.7, 1.9 (<u>1.8</u>)	
(Northrup King)		0.055	163 154	3		Hav	3853 (15)	
(Northrup King) NT009-04HA		0.053 0.053	154 149			Hay	3.8, 5.3 (<u>4.5</u>)	
111007-04NA		0.033	147	<u> </u>	1	1		

Soya bean		A	pplication		DALA	Portion	Residues, mg/kg	Ref
forage/hay	Form	kg	Seeding density	no.	Days	analysed	*	
country, year		ai/ha	water, L/ha			5		
(variety)			water, L/IIa					
USA, 2004	SC	0.092	74.0 kg/ha	1	0	Forage	3.2, 3.3 (<u>3.2</u>)	
Carlock/IL		0.055	121	3		0		
(S2802-4)		0.053	118	_		Hay	12, 15 (<u>14</u>)	
NT010-04H		0.054	119			5		
USA, 2004	SC	0.15	122 kg/ha	1	0	Forage	1.9, 2.3 (<u>2.1</u>)	
Bagley/IA	SC	0.051	122 Kg/IIa 106	3	Ū	rorage	(1.), 2.0 (2.1)	
(S2802-4)		0.051	155	5		Hay	8.3, 10 (<u>9.1</u>)	
NT011-04H		0.052	156			Thay	$(0.5, 10, (\underline{).1})$	
USA, 2004	SC	0.032	67.3 kg/ha	1	0	Forage	4.1, 8.9 (<u>6.5</u>)	
Marysville/OH	sc			3	0	Forage	4.1, 8.9 (<u>0.5</u>)	
(S2802-4)		0.053 0.053	160 141	3		Hay	5.8, 16 (11)	
						пау	5.6, 10 (<u>11</u>)	
NT012-04H	0.0	0.053	141	1	0	Б		
USA, 2004	SC	0.090	71.6 kg/ha	1	0	Forage	2.3, 2.5 (<u>2.4</u>)	
Dumfries/MN		0.053	174	3		Have	15 15 (15)	
(Pioneer 92B13)		0.054	176			Hay	15, 15 (<u>15</u>)	
NT013-04H		0.053	175	1	0		2.5.4.5.(4.1)	
USA, 2004	SC	0.071	57.2 kg/ha	1	0	Forage	3.7, 4.5 (<u>4.1</u>)	
Northwood/ND		0.052	140	3				
(S02-G2)		0.052	140			Hay	8.2, 8.9 (<u>8.5</u>)	
NT014-04H		0.052	139					
USA, 2004	SC	0.092	73.8 kg/ha	1	0	Forage	4.3, 4.8 (<u>4.6</u>)	
Gardner/ND		0.054	200	3				
(Pioneer 90B51)		0.053	171			Hay	21, 24 (<u>22</u>)	
NT015-04H		0.054	172					
USA, 2004	SC	0.094	74.9 kg/ha	1	0	Forage	3.2, 3.8 (<u>3.5</u>)	
New Holland/OH		0.054	145	3		-		
(Pioneer 93B68)		0.054	145			Hay	5.7, 9.3 (<u>7.5</u>)	
NT016-04H		0.053	146					
USA, 2004	SC	0.085	68.3 kg/ha	1	0	Forage	3.0, 4.0 (<u>3.5</u>)	
Kirksville/MO		0.051	149	3				
(Pioneer 93B68)		0.052	169			Hay	11, 14 (<u>13</u>)	
NT017-04H		0.053	173			5		
USA, 2004	SC	0.11	83.9 kg/ha	1	0	Forage	3.3, 4.3 (<u>3.8</u>)	
Ellendale/MN		0.054	152	3		1 orage	5.5, т .5 (<u>5.6</u>)	
(Pioneer 92B13)		0.054	132	5		Hay	9.5, 10 (<u>9.9</u>)	
NT018-04H		0.054	147			11,	,, io (<u>)</u>)	
USA, 2004	SC	0.033	69.3 kg/ha	1	0	Forage	3.5, 5.0 (4.2)	
Carlyle/IL		0.087	145	3		rorage	5.5, 5.0 (<u>4.2</u>)	
(Pioneer 93B68)		0.054	120	5		Hay	12, 14 (<u>13</u>)	
NT019-04H		0.052	150			Inay	12, 17 (13)	
	50			1	0	Erm	28.22 (20)	
USA, 2004	SC	0.094	75.2 kg/ha	1	0	Forage	2.8, 3.2 (<u>3.0</u>)	
Rockwood/ON		0.054	101	3		II	15 20 (19)	
(S02-G2)		0.053	108			Hay	15, 20 (<u>18</u>)	
NT020-04H	<u> </u>	0.053	104					
USA, 2004	SC	0.094	75.2 kg/ha	1	0	Forage	2.7, 3.4 (<u>3.1</u>)	
Bright/ON		0.053	105	3				
(Pioneer 90B51)		0.054	113			Hay	14, 16 (<u>15</u>)	
NT021-04H		0.055	107					

* Average in parentheses

FATE OF RESIDUES IN STORAGE AND PROCESSING

In Processing

The Meeting has received information on the fate of imidacloprid residues during the processing of plum, olive, soya bean seeds and tea. Processing factors have been calculated for imidacloprid residues in olive, soya bean seeds and tea.

The processing trials for cherry and peach were submitted in 2002.

Plum

The trial was conducted in the USA on plums according to the US GAP (Dorschner, 2002: 111044). The 192 g/L SC formulation was applied 5 times at the rate of 0.11 kg ai/ha with an application interval of 8-12 days. The plums were taken to a commercial drier and dried for 25.5 hours. The total residue of imidacloprid were quantified with method 102624-R1 (based on the method 00200) at an LOQ of 0.05 mg/kg.

country, year	Application		DALA	Commodity	Residues, mg/	kg	
(variety)	kg ai/ha	water, L/ha	no.	Days		Total	
						mg/kg	PF
USA, 1999	0.11	1395-1430	5	6	Fruit (RAC)	0.30, 0.41 mean 0.36	
Kerman/CA					Dried (prunes)	1.0, 1.1 mean 1.1	3.1
(French prunes) 99-CA79							

Table 24 Imidacloprid residues	in processed	commodities o	of plum from	supervised trials

Portion analysed: Fruit without pit and stem

Olive

Processing studies for olive were conducted in Germany to determine the concentration of residues of imidacloprid in/on olive fruits and processing products of olive (Schöning and Eberhardt, 2002: RA-3034/01, Schoening, *et al.*, 2003: RA-3155/02). The SL formulation containing 200 g/L of imidacloprid was sprayed twice to olive trees with an application rate of 0.10–0.11 kg ai/ha, corresponding to a concentration of 0.013 kg ai/hL and a spray volume of 800–904 L/ha. The olives were harvested after two spray applications of the SL formulation in Spain, Italy, Greece and Portugal (RA-2034/01 and RA-2155/02). Samples in 2001 were taken from the treated and the control plots on day 6 or 7 after the last treatment, while in 2002, at day 28 or 30. The samples from the treated plots were processed. Imidacloprid and the total residue of imidacloprid were analysed according to methods 00300/E007, 00300/E010 and 00834. The LOQ was 0.01 mg/kg for imidacloprid. For the total residue of imidacloprid the LOQ was 0.2 mg/kg for press cake and 0.05 mg/kg for all other sample materials.

Preparation of washed olives, washing water, press cake, separation water and crude oil

The olives were washed in standing water, one part of the olives was weighed and stored deep-frozen. The remaining part of the washed olives was crushed into olive pulp using a cutter. After addition of NaCl (1%, w/w), the olive pulp was pressed to obtain press cake and a water/oil emulsion. A sample of press cake was taken. The water/oil emulsion was separated into crude oil and separation water using a centrifuge; both fractions were taken for analysis.

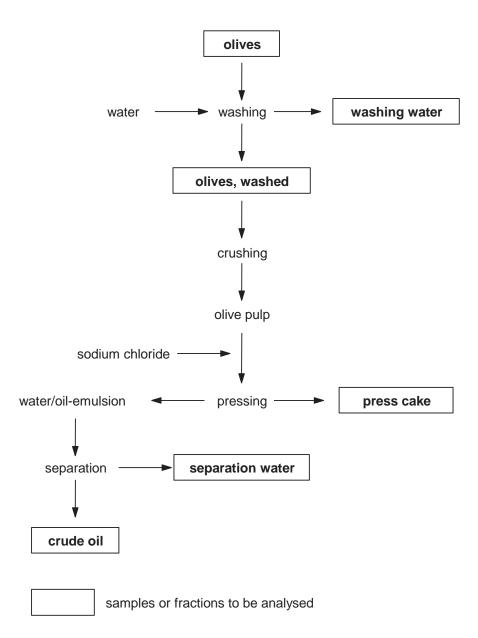


Figure 1 Flow chart of the preparation of washed olive, washing water, press cake, separation water and crude oil

Preparation of refined oil

The crude oil was preclarified by heating, removal of precipitated compounds and one part of the oil was taken for analysis. The remaining part of the preclarified oil was neutralized. After neutralisation, one part of the neutralised crude oil was taken for analysis.

The subsequent processes (bleaching, filtration and steaming) were all carried out in a vacuum. A sample of refined oil was taken for analysis

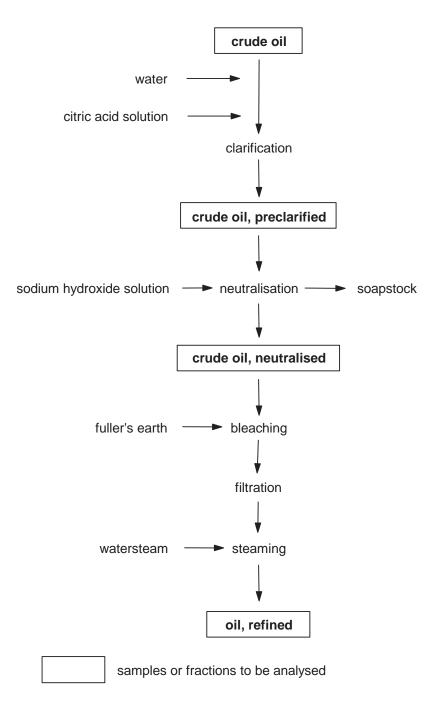


Figure 2 Flow chart of the preparation of refined oil

Table 25 Imidacloprid residues in processed commodities of olive from supervised trials

country, year		Applic	ation		DALA	Commodity		Residues	s, mg/kg	
(variety)	kg	kg	water,	no.	Days		Pai	ent	To	tal
	ai/ha	ai/hL	L/ha				mg/kg	PF	mg/kg	PF
Spain, 2001	0.11	0.013	904	2	6	Fruit (RAC)	0.09		0.26	
(Vera)	0.10	0.013	800			Fruit, washed	0.048	0.53	0.18	0.69
R2001 0090/6						Press cake	0.13	1.4	0.21	0.81
						Crude oil	0.01	0.1	< 0.05	< 0.1
						Washing water	< 0.01	< 0.1	< 0.05	9
						Separation water	0.04	0.44	0.13	< 0.1
						-				9
										0.50

country, year		Applic	ation		DALA	Commodity		Residues	s, mg/kg	
(variety)	kg	kg	water,	no.	Days		Par	-	To	
	ai/ha	ai/hL	L/ha				mg/kg	PF	mg/kg	PF
Italy, 2001 (Nocellara Etnea) R2001 0091/4	0.10	0.013 0.013	800 800	2	7	Fruit (RAC) Fruit, washed Press cake Crude oil, preclarified Crude oil, neutralized Refined oil Washing water Separation water	$\begin{array}{c} 0.04\\ 0.03\\ 0.04\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01\\ 0.01 \end{array}$	$\begin{array}{c} 0.75 \\ 1.0 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ 0.25 \end{array}$	$\begin{array}{l} 0.14\\ 0.09\\ < 0.2\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ \end{array}$	$\begin{array}{c} 0.64 \\ < 1.4 \\ < 0.3 \\ 6 \\ < 0.3 \\ 6 \\ < 0.3 \\ 6 \\ < 0.3 \\ 6 \\ < 0.3 \\ 6 \\ < 0.3 \\ 6 \\ < 0.3 \\ 6 \end{array}$
Portugal, 2001 (Picual) R2001 0092/2	0.10	0.013 0.013	800 800	2	7	Fruit (RAC) Fruit, washed Press cake Crude oil Crude oil, preclarified Crude oil, neutralized Refined oil Washing water Separation water	$\begin{array}{c} 0.11\\ 0.10\\ 0.14\\ 0.02\\ 0.01\\ < 0.01\\ < 0.01\\ < 0.01\\ 0.06 \end{array}$	$\begin{array}{c} 0.91 \\ 1.3 \\ 0.18 \\ 0.091 \\ < 0.09 \\ < 0.09 \\ < 0.09 \\ 0.55 \end{array}$	$\begin{array}{c} 0.22\\ 0.19\\ 0.24\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ < 0.05\\ 0.08\\ \end{array}$	$\begin{array}{c} 0 \\ 0.86 \\ 1.1 \\ < 0.2 \\ 3 \\ < 0.2 \\ 3 \\ < 0.2 \\ 3 \\ < 0.2 \\ 3 \\ < 0.2 \\ 3 \\ 0.36 \end{array}$
Portugal, 2002 (Cobrancosa) R2002 0697/6	0.10 0.10	0.013 0.013	800 800	2	28	Fruit (RAC) Fruit, washed Press cake Crude oil Crude oil, preclarified Crude oil, neutralized Refined oil Washing water Separation water	$\begin{array}{c} 0.02\\ 0.03\\ 0.04\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01\\ 0.02 \end{array}$	$\begin{array}{c} 1.5\\ 2.0\\ < 0.5\\ < 0.5\\ < 0.5\\ < 0.5\\ < 0.5\\ 1.0 \end{array}$	$\begin{array}{c} 0.05 \\ < 0.05 \\ 0.06 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.05 \\ 0.05 \end{array}$	<1.0 1.2 <1.0 <1.0 <1.0 <1.0 <1.0 1.0 1.0
Greece, 2002 (Megaritiki) R2002 0698/4	0.10	0.013	800 800	2	30	Fruit (RAC) Fruit, washed Press cake Crude oil Crude oil, preclarified Crude oil, neutralized Refined oil Washing water Separation water	$\begin{array}{c} 0.18\\ 0.14\\ 0.18\\ 0.03\\ 0.02\\ < 0.01\\ < 0.01\\ < 0.01\\ 0.12 \end{array}$	$\begin{array}{c} 0.78 \\ 1.0 \\ 0.17 \\ 0.11 \\ < 0.06 \\ < 0.06 \\ < 0.06 \\ 0.67 \end{array}$	$\begin{array}{c} 0.76\\ 0.67\\ 0.62\\ 0.09\\ 0.07\\ < 0.05\\ < 0.05\\ < 0.05\\ 0.77\end{array}$	$\begin{array}{c} 0.88\\ 0.82\\ 0.12\\ 0.092\\ < 0.0\\ 7\\ < 0.0\\ 7\\ < 0.0\\ 7\\ 1.0 \end{array}$

Soya bean seeds

A field trial was conducted to measure the magnitude of imidacloprid residue on soya beans treated with three foliar applications of the SC formulation containing 480 g/L of imidacloprid at a target rate of 0.263 kg ai/ha/application with 7 days between applications. Each application was made at a concentrated spray volume, 160–170 L/ha. The treatment rate is equivalent to a $5\times$ the maximum recommended label use rate on soya beans. Single control and treated samples of soya bean seed were collected at normal commercial harvest (BBCH 89), corresponding to a 20-day PHI. Soya bean seed was processed into the commodities of meal, hulls, refined oil, and defatted flour. Aspirated grain

fractions were also collected. Processing was performed using procedures which simulated commercial processing practices (Krolski, 2006: RANTY003).

The total imidacloprid residue was quantitated as 6-chloronicotinic acid (6-CNA) by HPLC-MS/MS using isotopically labeled internal standards (method NT-001-P04-01). Method validation and concurrent recoveries were performed to demonstrate acceptable method performance. The LOQ for the total residue of imidacloprid was 0.05 mg/kg in soya bean seed, 0.10 mg/kg in soya bean refined oil, 0.20 mg/kg in soya bean meal, hulls, and defatted flour, and 30 mg/kg in soya bean aspirated grain fractions.

Preparation of aspirated grain fractions

After determining the moisture content of soya bean (RAC), the samples were dried to a moisture content of 10–13%. The samples were then placed in a dust generation room and moved in the system. Aspiration was used to remove light impurities. The light impurities were classified by sieving.

Preparation of hull, meal, defatted flour and refined oil

Soya beans were fed to a disc mill to crack the hull and liberate the kernel. After hulling, the material was passed through an aspirator to separate hull and kernel. The kernel material was flaked and heated. After expansion, the collets were dried and promptly taken for solvent extraction. The material was washed several times with hexane. Then the defatted flakes were ground and screened to produce defatted flour and the crude oil was heated for hexane removal and afterwards alkali refined. The refined oil was bleached and deodorised.

Figure 3 Flow chart for soya bean processing

country, year	Application				DALA	Commodity	Total imi	lacloprid
(variety)	kg ai/ha	water, L/ha	GS (BBCH)	no.	Days		Residues	s, mg/kg
		L/IIa	(BBCII)				mg/kg	PF
USA, 2004	0.263	160	89	3	20	seed	0.42	
Leland/MS	0.263	170				meal	0.36	0.86
(Pioneer 9492PR)	0.263	162				hulls	0.31	0.72
NT022-04P						refined oil	< 0.10	< 0.24
						defatted flour	0.34	0.80
						aspirated grain fractions	68	160

Table 26 Imidacloprid residues in processed commodities of soya bean seeds from supervised trials

Tea

Two processing trials were performed in southern India with the imidacloprid 700 g/kg WG formulation. The formulation was applied once at a triple rate of 1.2 kg ai/ha. Tea shoots (two to three leaves and a bud) harvested 7 days after the application were used to manufacture green and black tea. Green and black tea was further processed into infusion using household practices whereas the preparation of instant tea simulated the industrial practice (Manikandan, 2014: RANTN021).

Preparation of infusion

100 g of green or black tea were infused into 5 L of boiling water for approximately 10 min. Infusion solution (liquid part) was separated with a sieve from wastes (infused tea). Wastes were weighed and discarded.

Preparation of instant tea

Two 0.5 L infusion solution subspecimens were collected and deep-frozen (below -18 $^{\circ}$ C). The Brix degree of the infusion solution was measured. The dry matter of solution determined by its Brix degree was increased with an addition of food additive to obtain between 8 to 9%. The pH of this preparation was measured and corrected with an addition of citric acid to obtain between a pH of 3.0 to 3.2. Afterwards the solution was placed in a vacuum chamber, where the water frozen in the solution was evaporated through sublimation.

All samples were analysed for imidacloprid parent compound and its metabolites and the total residue of imidacloprid according to method 01389. The LOQ was 0.01 mg/kg for imidacloprid in processed commodities (green and black tea infusion and instant green and black tea). The LOQ of the total residue of imidacloprid was 0.05 mg/kg in all sample materials.

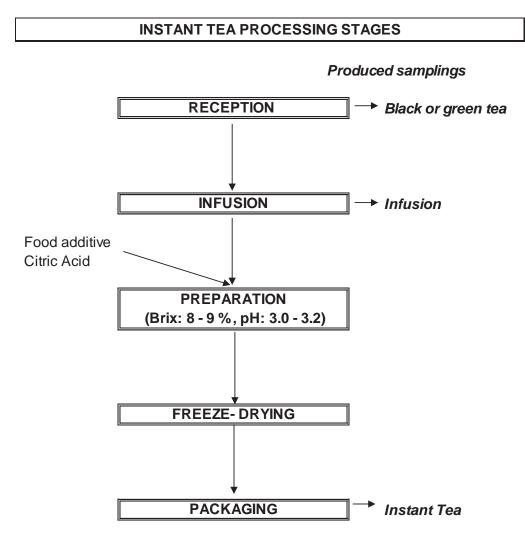


Figure 4 Flow chart for tea processing

Table 27 Imidacloprid residues in processed commodities of tea from supervised trials

country, year		Applic	ation		DALA	Commodity	Residues, mg/kg			
(variety)	kg	kg	L/ha	no.	Days		Pare	ent	То	tal
	ai/ha	ai/hL					mg/kg	PF	mg/kg	PF
India, 2012	1.2	0.27	450	1	7	Green tea	16		34	
Coonoor						Infusion green tea	0.41	0.026	0.81	0.024
(Assam Jat/						Instant green tea	3.6	0.23	8.0	0.24
UPASI-9)						Black tea	14		34	
S3						Infusion black tea	0.34	0.024	0.57	0.017
						Instant black tea	3.0	0.21	6.4	0.19
India, 2013	1.2	0.27	450	1	7	Green tea	4.8		12	
Valparai						Infusion green tea	0.12	0.025	0.30	0.025
(Assam Jat/						Instant green tea	1.1	0.23	3.0	0.25
Seedling tea)						Black tea	4.5		13	
S4						Infusion black tea	0.13	0.029	0.30	0.023
						Instant black tea	1.3	0.29	3.6	0.28

APPRAISAL

Imidacloprid is a systemic insecticide which has been used widely in many crops for years. It was first evaluated by JMPR in 2001 (T) and 2002 (R). An ADI of 0–0.06 mg/kg bw and an ARfD of

0.4 mg/kg bw were established. The compound was evaluated for residues in 2006, 2008 and 2012. In 2002 the Meeting agreed that the residue definition for compliance with MRLs and for estimation of dietary intake for plant and animal commodities should be the sum of imidacloprid and its metabolites containing the 6-chloropyridinyl moiety, expressed as imidacloprid. It was listed by the Forty-sixth Session of CCPR (2014) for the evaluation of 2015 JMPR for additional MRLs.

The residue studies were submitted by the manufacturer and member countries for additional MRLs for stone fruit, olive, curly kale, soya bean, tea, goji berry (China) and basil (Thailand).

Methods of analysis

The Meeting received information on analytical methods used for the determination of imidacloprid residues in samples derived from supervised trials on olive, kale and soya bean (dry). Samples were fortified with imidacloprid and its metabolites desnitro-imidacloprid and 6-chloronicotinic acid. Imadacloprid and all metabolites containing 6-chloropyridinyl moiety were oxidised with alkaline KMnO₄ to yield 6-chloronicotinic acid. The 6-chloronicotinic acid was extracted from the aqueous solution using *tert*-butylmethylether (MTBE) and analysed by HPLC-MS/MS. The LOQ was 0.05 mg/kg (expressed in parent equivalents) for the commodities mentioned above.

The analytical method was developed for the determination of residues of imidacloprid, its 2 metabolites 5-hydroxy imidacloprid and olefin imidacloprid, and for the total residue of imidacloprid determined as 6-chloronicotinic acid in tea. Imidacloprid and its metabolites were extracted from tea (green tea and black tea) with methanol/water (3/1, v/v). For the individual analytes, an aliquot of the extracts was cleaned-up with liquid/liquid SPE. For the common moiety analysis, an aliquot of the extracts was made by alkaline oxidation under reflux and liquid/liquid partition. Final extracts of both branches were subjected to reversed phase HPLC-MS/MS. The LOQ (expressed as imidacloprid equivalents) for the total residue of imidacloprid was 0.05 mg/kg.

The Meeting received information on the analytical method for the determination of imidacloprid residues in fresh and dried goji berries. Imidacloprid was extracted from goji berries with acetonitrile. After adding sodium chloride, an aliquot was concentrated and purified by solid phase extraction using amino cartridges. Imidacloprid residues were analysed by reversed-phase HPLC-UV (275 nm). The LOQ was 0.02 mg/kg for both matrices.

The Meeting received data on the storage stability of imidacloprid, 5-hydroxy imidacloprid and olefin imidacloprid in various plant matrices. Storage stability results indicated that residues of imidacloprid and its metabolites 5-hydroxy imidacloprid and olefin imidacloprid were stable for at least 36 months under freezer conditions at about -18 °C or below in wheat (grain), orange (fruit), tomato (fruit), bean (seed) and rape seed.

Residues resulting from supervised residue trials on crops

The Meeting received supervised trial data for the foliar application of imidacloprid on cherries, plum, peach, olive, kale, goji berry, soya bean, basil and tea. Residue trial data was made available from Canada, China, India, Southern Europe, Thailand and the USA.

Labels were available from China, Italy, Japan, Spain, Thailand and the USA describing the registered uses of imidacloprid.

Stone fruits

The 2002 JMPR evaluated residue supervised trials data for imidacloprid on sweet cherries, plums, peaches and nectarines conducted in southern Europe. New residue data were submitted to the current Meeting for cherries, plums and peaches.

Cherries

Data were available from supervised trials on cherries in the USA.

The GAP of the USA is foliar applications of 0.056-0.11 kg ai/ha at a maximum rate of 0.56 kg ai/ha per year with a PHI of 7 days.

Imidacloprid residues in whole fruits of cherries from independent trials in the USA matching GAP were (n=8): 0.24, 0.36, 0.41, 0.53, 0.57, 0.63, 1.4 and 2.5 mg/kg.

Based on the residues for cherries from trials in the USA, the Meeting estimated a maximum residue level of 4 mg/kg, an STMR value of 0.55 mg/kg and an HR value of 2.5 mg/kg for the cherries subgroup. The Meeting withdrew the previous recommendation for Cherry, Sweet.

Plums

Data were available from supervised trials on plums in the USA.

The GAP of the USA is foliar applications of 0.056–0.11 kg ai/ha at a maximum rate of 0.56 kg ai/ha per year with a PHI of 7 days.

Imidacloprid residues in fruits without stone of plums from independent trials in the USA matching GAP were (n=8): 0.082, 0.095, 0.15, 0.22, 0.34, 0.39, 0.42 and 0.67 mg/kg.

Since the weight of stone does not significantly affect the residue level in plum fruits, the Meeting agreed to use the residues in the edible portion of plums to estimate a maximum residue level.

Based on the residues in the edible portion of plums from trials in the USA, the Meeting estimated a maximum residue level of 1.5 mg/kg, an STMR value of 0.28 mg/kg and an HR value of 0.70 mg/kg (based on a highest residue of duplicate samples) for imidacloprid in the plums (including prunes) subgroup, to replace the previous recommendation for plums (including prunes).

Peaches

Data were available from supervised trials on peaches in the USA.

The GAP in the USA is foliar applications of 0.056-0.11 kg ai/ha at a maximum rate of 0.34 kg ai/ha per year with a PHI of 0 days.

Imidacloprid residues in whole fruit peaches from trials in the USA, matching GAP, were (n=8): 0.10, 0.25, 0.28, 0.34, 0.37, 0.38 (2) and 0.77 mg/kg.

Based on the residues for peaches from trials in the USA, the Meeting estimated a maximum residue level of 1.5 mg/kg, an STMR value of 0.355 mg/kg and an HR value of 0.77 mg/kg for imidacloprid in the Peaches (including nectarine and apricots) subgroup. The Meeting withdrew the previous recommendations for peach, nectarine and apricot.

Olives

Data were available from supervised trials on olives from Southern Europe.

The GAP of Italy is for a foliar application at a maximum concentration of 0.013 kg ai/hL, with a PHI of 28 days. Imidacloprid residues in olives, from trials in Southern Europe matching GAP, were (n=8): 0.12, 0.23, 0.26, 0.28, 0.43, 0.61, 0.77 and 0.81 mg/kg.

The GAP of Spain is a maximum of four foliar applications at a maximum rate of 0.02 kg ai/ha with a PHI of 7 days. Imidacloprid residues in olive from independent trials in Southern Europe matching GAP were (n=8): < 0.05, 0.11, 0.14, 0.22, 0.49, 0.63, 0.71 and 1.1 mg/kg.

Based on the residues for olive from trials with the highest residue levels matching Spanish GAP, the Meeting estimated a maximum residue level of 2 mg/kg, an STMR value of 0.355 mg/kg and an HR value of 1.1 mg/kg for imidacloprid in olives.

Kale

Data were available from supervised trials on <u>curly kale</u> in Italy and Spain.

The GAP of Italy is a maximum two foliar applications at a maximum rate of 0.094 kg ai/ha with a PHI of 7 days.

Imidacloprid residues in curly kale from independent trials in Italy and Spain matching GAP were (n=4): 1.0, 1.1, 1.5 and 2.0 mg/kg.

Based on the residues for curly kale from trials in Italy and Spain, the Meeting estimated a maximum residue level of 5 mg/kg, an STMR value of 1.3 mg/kg and an HR value of 2.0 mg/kg for imidacloprid in kale.

Goji berry

The GAP of China is a maximum three foliar applications at a maximum concentration of 0.005 kg ai/hL with a PHI of 3 days. Six trials were conducted on goji berries in China in 2010 with foliar treatment by 3×0.005 kg ai/hL. Samples were taken at 1–21 days after the last treatment. The data were submitted as separate trials but the analyte was parent imidacloprid only.

As the residue definition of imidacloprid is the sum of imidacloprid and its metabolites containing the 6-chloropyridinyl moiety, expressed as imidacloprid, the Meeting could not estimate a maximum residue level for imidacloprid in goji berry.

Soya bean (dry)

Data were available from supervised trials on soya bean in the USA.

The GAP on soya bean of the USA is seed treatment at a maximum rate of 0.125 kg ai/100 kg seed, and/or maximum three foliar applications at a maximum rate of 0.053 kg ai/ha with a PHI of 21 days.

Imidacloprid residues in soya bean seeds from independent trials in the USA matching GAP were (n=20): 0.035, 0.050, 0.052 (2), 0.094, 0.11, 0.18, 0.19, 0.21, <u>0.38</u> (2), 0.43, 0.48, 0.61, 0.62, 0.63, 0.67, 0.73 and 1.5 (2) mg/kg.

Based on the residues for soya bean from trials in the USA, the Meeting estimated a maximum residue level of 3 mg/kg and an STMR value of 0.38 mg/kg for imidacloprid in soya bean seed (dry).

Basil

Data were available from supervised trials on <u>basil</u> in Thailand.

The GAP of Thailand is foliar applications when the crop is infested at a maximum concentration of 0.042 kg ai/hL with a PHI of 7 days.

Imidacloprid residues in fresh basil from independent trials in Thailand matching GAP were (n=4): 4.3, 4.9, 5.1 and 6.5 mg/kg.

Based on the residues for basil from trials in Thailand, the Meeting estimated a maximum residue level of 20 mg/kg, an STMR value of 5.0 mg/kg and an HR value of 7.3 mg/kg (based on a highest residue of replicate samples) for imidacloprid in basil.

Tea, Green, Black

Data were available from supervised trials on tea in India.

The GAP on tea of Japan is a foliar application at a maximum concentration of 0.01 kg ai/hL with a PHI of 7 days.

Imidacloprid residues in green tea from independent trials in India matching Japanese GAP were (n=8): 2.9 (2), 3.0, 5.5, 7.3, 11, 12 and 23 mg/kg.

Imidacloprid residues in black tea from independent trials in India matching Japanese GAP were (n=8): 2.7 (2), 3.3, 5.1 (2), 12 (2) and 28 mg/kg.

The samples of green tea and black tea were produced from fresh tea leaves harvested 7 days after application at the same plot.

The Meeting recognized that the residue populations from trials on green tea and black tea were not different according to statistical tests (Mann-Whitney U-test). The Meeting agreed to use highest residues of green tea and black tea samples in each trial to estimate a maximum residue level for tea, green and black.

The residues in green tea and black tea were in rank order (n=8): 2.9, 3.0, 3.3, 5.5, 7.3, 12 (2) and 28 mg/kg.

Based on the residues for green tea and black tea from trials in India, the Meeting estimated a maximum residue level of 50 mg/kg and an STMR value of 6.4 mg/kg for imidacloprid in tea, green and black.

Animal feedstuffs

Soya bean fodder and forage (green)

Data were available from supervised trials on soya bean in the USA.

The GAP on soya bean in the USA is seed treatment at a maximum rate of 0.125 kg ai/100 kg seed, and/or maximum three foliar applications at a maximum rate of 0.053 kg ai/ha for forage grass for hay.

Imidacloprid residues in soya bean forage from independent trials in the USA matching GAP were (n=21): 1.1, 1.6, 1.8, 2.1 (2), 2.4, 2.6, 2.7, 3.0, 3.1, 3.2, 3.5 (2), 3.8 (2), 3.9, 4.1, 4.2, 4.4, 4.6 and 6.5 mg/kg.

Based on the trials for soya bean forage from trials in the USA, the Meeting estimated a median residue value and a highest residue value for imidacloprid in soya bean forage of 3.2 and 6.5 mg/kg, respectively as received basis.

Imidacloprid residues in soya bean hay from independent trials in the USA matching GAP were (n=21): 4.0, 4.5, 5.7, 6.5, 7.5, 8.5, 9.1, 9.2, 9.4, 9.6, 9.9, 11, 13 (2), 14, 15 (2), 18, 21 (2) and 22 mg/kg.

Based on the residues in soya bean hay from trials in the USA, the Meeting estimated a median residue value of 9.9 mg/kg, a highest residue value of 22 mg/kg on an as received basis and after correction for an average 85% dry matter content, estimated a maximum residue level of 50 mg/kg for imidacloprid in soya bean hay.

Fate of residues during processing

Residues in processed commodities

The fate of imidacloprid residues has been examined in plum, olive, soya bean seeds and tea processing studies. Estimated processing factors and the derived STMR-Ps are summarized in the Table below.

Raw agricultural	Processed	Calculated processing	PF (Mean or	RAC	STMR-P	RAC HR	HR-P
commodity (RAC)	commodity	factors*	best estimate)	STMR	(mg/kg)	(mg/kg)	(mg/kg)
				(mg/kg)			
Cherry	Canned fruit	< 0.56, < 0.56, < 0.63	< 0.60	0.55	< 0.33	2.5	<1.5
		< 0.63					
Plum	Dried (prunes)	3.1	3.1	0.28	0.87	0.70	2.2
Peach	Canned fruit	< 0.38	< 0.38	0.32	< 0.12	0.77	< 0.092
	Jam	< 0.38	< 0.38		< 0.12		
Olive	Crude oil	< 0.19, < 0.36,	0.12	0.36	0.04		
		< 0.23, < 1.0, 0.12					
Soya bean seeds	Refined oil	< 0.24	< 0.24	0.38	< 0.09		

Processing factors, STMR-P for food and feed

Raw agricultural commodity (RAC)	Processed commodity	Calculated processing factors*	PF (Mean or best estimate)	RAC STMR (mg/kg)	STMR-P (mg/kg)	RAC HR (mg/kg)	HR-P (mg/kg)
	Meal	0.86	0.86		0.33		
	Aspirated grain fractions	160	160		61		
	Hulls	0.72	0.72		0.27		
Green tea	Infusion	0.024, 0.025	0.025	6.4	0.16		
	Instant	0.24, 0.25	0.25		1.6		
Black tea	Infusion	0.017, 0.023	0.02	6.4	0.13		
	Instant	0.19, 0.28	0.24		1.5		

* Each value represents a separate study. The factor is the ratio of the residue in processed commodity divided by the residue in the RAC.

The Meeting estimated a maximum residue level of 5 mg/kg ($1.5 \times 3.1 = 4.65$ mg/kg) for dried plums.

Residue in animal commodities

The 2015 JMPR evaluated residues of imidacloprid in soya bean (dry), which is listed in the OECD feeding table. The Meeting noted that the estimation did not result in a significant change of the dietary burdens of farm animals. The previous recommendations of maximum residue level for animal commodities were maintained.

RECOMMENDATIONS

On the basis of the data from supervised trials, the Meeting concluded that the residue levels listed in Annex 1 are suitable for estimating maximum residue limits and for IEDI and IESTI assessment.

Definition of the residue for plant and animal commodities (for compliance with the MRL and for estimation of dietary intake): *Sum of imidacloprid and its metabolites containing the 6-chloropyridinyl moiety, expressed as imidacloprid*

CCN	Commodity	Recommended	1	Recommended	HR or
		Maximum	residue level	Maximum	HR-P
		(mg/kg)		residue level	mg/kg
		New	Previous	(mg/kg)	
FS 0240	Apricot	W	0.5		
HH 0722	Basil	20		5.0	7.3
FS 0013	Cherries	4		0.55	2.5
FS 0244	Cherry, Sweet	W	0.5		
DF 0014	Prunes	5		0.87	2.2
VL 0480	Kale	5		1.3	2.0
FS 0247	Nectarine	W	0.5		
SO 0305	Olives for oil production	2		0.355	1.1
FS 0247	Peach	W	0.5		
FS 2001	Peaches (including nectarines and apricots)	1.5		0.355	0.77
FS 0014	Plums (including Prunes)	1.5	0.2	0.28	0.7
VD 0541	Soya bean (dry)	3		0.38	
AL 0541	Soya bean fodder	50		9.9	22
FT 0305	Table olives	2		0.355	1.1
DT 1114	Tea, Green, Black (black, fermented and dried)	50		6.4	
	Apricot, canned			0.12	0.092
	Apricot jam			0.12	
	Cherries, canned			0.33	1.5
	Nectarine, canned			0.12	0.092

CCN	Commodity	Recommende	d	Recommended	HR or
		Maximum	residue level	Maximum	HR-P
		(mg/kg)		residue level	mg/kg
		New	Previous	(mg/kg)	
	Nectarine, jam			0.12	
OC 0305	Olive oil, virgin oil			0.04	
	Peaches, canned			0.12	0.092
	Peaches, jam			0.12	
OR 0541	Soya bean oil, refined			0.09	
	Tea, infusion			0.16	
	Tea instant			1.6	
AL 1265	Soya bean forage (green)			3.2	6.5
	Soya bean asp gr fn ^a			61	
AB 0541	Soya bean hulls			0.27	
AB 1265	Soya bean meal			0.33	

^a aspirated grain fractions

DIETARY RISK ASSESSMENT

Long-term intake

The International Estimated Daily Intakes (IEDIs) of imidacloprid were calculated for the 17 GEMS/Food cluster diets using STMRs/STMR-Ps estimated by the 2002, 2006, 2008, 2012 and current Meeting (Annex 3). The ADI is 0–0.06 mg/kg bw and the calculated IEDIs were 2–5% of the maximum ADI (0.06 mg/kg bw). The Meeting concluded that the long-term intake of residues of imidacloprid, resulting from the uses considered by the current JMPR, were unlikely to present a public health concern.

Short-term intake

The International Estimated Short-Term Intakes (IESTI) of imidacloprid were calculated for food commodities and their processed commodities using HRs/HR-Ps or STMRs/STMR-Ps estimated by the current Meeting (Annex 4). The ARfD is 0.4 mg/kg bw and the calculated IESTIs were a maximum of 10% of the ARfD. The Meeting concluded that the short-term intake of residues of imidacloprid, when used in ways that have been considered by the JMPR, is unlikely to present a public health concern.

REFERENCES

Code	Author	Year	Title, Institution, Report reference
MR-122/03	Schoening R.	2003	Analytical method 00834 for the determination of residues of
			imidacloprid and total residue of imidacloprid in/on cereals, olive and
			cacao including processing products of olive and cacao by HPLC-
			MS/MS. Bayer AG, Monheim, Germany. Bayer CropScience AG,
			Method No.: 00834, Edition Number: M-110450-02-1, Report No.:
			MR-122/03. Unpublished.
MR-153/03	Schoening R.,	2004	Modification M001 of the analytical method 00834 for the
	Koester. P		determination of residues of imidacloprid and total residue of
			imidacloprid in/on plant materials by HPLC-MS/MS. Bayer AG,
			Monheim, Germany. Bayer CropScience AG, Method No.:
			00834/M001, Edition Number: M-122169-01-1, Report No.: MR-
			153/03. Unpublished.
MR-09/169	Schoening R.	2010	Modification M002 of the analytical method 00834 for the
			determination of residues of imidacloprid and its metabolites
			NTN33893-5-hydroxy and NTN33893-olefine in/on plant materials by
			HPLC-MS/MS. Bayer AG, Monheim, Germany. Bayer CropScience
			AG, Method No.: 00834/M002, Edition Number: M-365933-01-1,

1343	
------	--

Code	Author	Year	Title, Institution, Report reference
MR-158/00	Schoening R.	2010	Report No.: MR-09/169. Unpublished. Supplement E007 of the residue analytical method 00300 for the determination of imidacloprid residues in plant materials. Bayer AG, Leverkusen, Germany. Bayer CropScience AG, Method No.: 00300/E007, Edition Number: M-031619-01-1, Report No.: MR-
201591	Gould T. J., Beedle E. C., Brungardt J. N., Timberlake B. C.	2005	158/00. Unpublished. An analytical method for the determination of residues of Imidacloprid in soybean matrices using LC/MS/MS. Bayer CropScience LP, Stilwell, KS, USA. Bayer CropScience. Method No.: NT-001-P04-01,
RANTY002	Mackie S. J. W.	2006	Edition Number: M 278059-01-1, Report No.: 201591. Unpublished. TRIMAX 4F - Magnitude of the residue on soybeans. Bayer CropScience LP, Stilwell, KS, USA. Bayer CropScience. Edition
RANTY003	Krolski M. E.	2006	Number: M-268969-01-2, Report No.: RANTY002. Unpublished. TRIMAX 4F - Magnitude of the residue on soybean processed commodities and aspirated grain fractions. Bayer CropScience LP, Stilwell, KS, USA, GLP Technologies, Navasota, TX, USA. Bayer CropScience. Edition Number: M-267827-01-2, Report No.:
P 3009 G.	Richter S.	2014	RANTY003. Unpublished. Validation of BCS analytical method 01389 for the determination of residues of imidacloprid and its metabolites and of total residue of imidacloprid in plant materials by LC/MS/MS. PTRL Europe GmbH, Ulm, Germany. Bayer CropScience AG, Method No.: 01389, Edition
MR-09/182 (P642094733)	Schoening R., Diehl P.	2014	Number: M-491524-01-1, Report No.: P 3009 G. Unpublished. Storage stability of imidacloprid and its 5-hydroxy and olefine metabolite in/on plant matrices for 36 months. Bayer CropScience AG, Monheim, Germany, Bayer CropScience, Study Number MR-09/182 (P642094733) Edition Number: M-453906-02-1. Unpublished.
111045	Dorschner K. W.	2002	Imidacloprid: Magnitude of the residue on cherry. Rutgers, The state University of New Jersey, North Brunswick, NJ, USA, Public Data, Report No. 111045, Edition Number: M-065819-01-1. Unpublished.
109238	Harbin A. M.	2000	Provado 1.6F - Magnitude of the residue on peaches. Bayer Corporation, Sitwell, KS, USA. Bayer CropScience AG, Report No.: 109238, Edition Number: M 039540-01-1. Unpublished.
111044	Dorschner K.	2002	Imidacloprid: Magnitude of the residue on plum. Rutgers, The State University of New Jersey, North Brunswick, NJ, USA. Public Data, Report No.: 111044, Edition Number: M 065776-01-2. Unpublished.
RA-2032/07	Schoening R., van Berkum S.	2009	Determination of the residues of imidacloprid in/on olive after spraying of Confidor (200 OD) in the field in Spain, Portugal and Italy. Bayer CropScience AG, Monheim, Germany. Report No.: RA-2032/07, Edition Number: M-327512-01-1. Unpublished.
08-2001	Schoening R., Reineke A., Krusell L.	2011	Determination of the residues of imidacloprid in/on olive after spraying of Imidacloprid OD 200 in the field in Greece, Italy, Portugal and Spain Bayer CropScience AG, Monheim, Germany. Report No.: 08- 2001, Edition Number: M-402853-01-1. Unpublished.
RA-2065/00	Anderson C., Eberhardt R.	2002	Determination of Residues of Imidacloprid in/on Olive Following Spray Application of Confidor 200 SL in the Field in Spain, Italy, Portugal and Greece. Bayer CropScience AG, Monheim, Germany. Report No.: RA-2065/00, Edition Number: M-073275-01-1. Unpublished.
RA-2034/01	Schoening R.	2002	Determination of Residues of Imidacloprid in/on Olive Following Spray Application of Confidor 200 SL in the Field in Spain, Italy, Portugal and Greece. Bayer CropScience AG, Monheim, Germany. Report No.: RA-2034/01, Edition Number: M-074395-01-1. Unpublished.
09-2087	Schoening R., Krusell L.	2011	Determination of the residues of imidacloprid in/on olive after spraying of Imidacloprid OD 200 in the field in Italy, Portugal and Spain. Bayer CropScience AG, Monheim, Germany. Bayer CropScience. Report
10-2151	Schoening R., Bauer J.	2011	No.: 09-2087, Edition Number: M-404531-01-1. Unpublished. Determination of the residues of imidacloprid in/on olive after spray application of Imidacloprid OD 200 in the field in Italy, Spain, Portugal and Greece. Bayer CropScience AG, Monheim, Germany. Bayer CropScience. Report No.: 10-2151, Edition Number: M-414115-01-1. Unpublished.
08-2029	Schmeer K., Krusell L., Bauer J.	2010	Determination of the residues of deltamethrin and imidacloprid in/on kale, curly after spraying of imidacloprid & deltamethrin in the field in Italy and Spain. Bayer CropScience AG, Monheim, Germany. Report

Code	Author	Year	Title, Institution, Report reference
09-2002	Ballesteros C.	2011	No.: 08-2029, Edition Number: M 393251-01-1. Unpublished. Determination of the residues of deltamethrin and imidacloprid in/on kale, curly after spraying of imidacloprid & deltamethrin in the field i
			Italy and Spain. Bayer CropScience AG, Monheim, Germany. Report No.: 09-2002, Edition Number: M-413003-01-1. Unpublished.
IG-01	Yan Niu	2014	Validation of Residue Analytical Method for the Determination of Imidacloprid in Goji by HPLC-UV. Supervision and Testing Center f Lycium Quality, Ministry of Agriculture. Institute for Control of
R-IG-03	Yan Niu	2014	Agrochemicals, MOA, P. R. China. Study No.: IG-01. Unpublished. Determination of the Residues if Imidacloprid on Goji after spraying 5% Imidacloprid EC in field in Yinchuan, Hui Autonomous Region, R. China. Institute for Control of Agrochemicals, Ministry of Agriculture, P. R. China. Report No.: R-IG-03, Trial No.: FTIG-NX-
R-IG-04	Yan Niu	2014	 01. Unpublished. Determination of the Residues if Imidacloprid on Goji after spraying 5% Imidacloprid EC in field in Ningxia, Hui Autonomous Region, P. R. China. Institute for Control of Agrochemicals, Ministry of Agriculture, P. R. China. Report No.: R-IG-04, Trial No.: FTIG-NX-
R-IG-05	Fengfeng Zhang	2014	 02. Unpublished. Determination of the Residues if Imidacloprid on Goji after spraying 5% Imidacloprid EC in field in Inner Mongolia Autonomous Region, R. China. Institute for Control of Agrochemicals, Ministry of Agriculture, P. R. China. Report No.: R-IG-05, Trial No.: FTIG-IM-0 Unpublished.
R-IG-06	Yuanbai Liu	2014	Determination of the Residues if Imidacloprid on Goji after spraying 5% Imidacloprid EC in field in Gansu Province, P. R. China. Institute for Control of Agrochemicals, Ministry of Agriculture, P. R. China. Report No.: R-IG-06, Trial No.: FTIG-GS-01. Unpublished.
R-IG-07	Chunlin Gou	2014	Determination of the Residues if Imidacloprid on Goji after spraying 5% Imidacloprid EC in field in Xinjiang Uygur Autonomous Region P. R. China. Institute for Control of Agrochemicals, Ministry of Agriculture, P. R. China. Report No.: R-IG-07, Trial No.: FTIG-XJ-0 Unpublished.
R-IG-08	Chunlin Gou	2014	Determination of the Residues if Imidacloprid on Goji after spraying 5% Imidacloprid EC in field in Qinghai Province, P. R. China. Institu for Control of Agrochemicals, Ministry of Agriculture, P. R. China. Report No.: R-IG-08, Trial No.: FTIG-QH-01. Unpublished.
Imida-basil-1	Panida Chaiyanboon	2014	Report on pesticide residue trial. Agricultural Toxic Substances Division, Department of Agriculture, Thailand. Trial No.: Imida-basi 1. Unpublished.
Imida-basil-2	Chanita Thongsam	2014	Report on pesticide residue trial. Agricultural Toxic Substances Division, Department of Agriculture, Thailand. Trial No.: Imida-basi 2. Unpublished.
Imida-basil-3	Prachathipat Pongpinyo	2014	Report on pesticide residue trial. Agricultural Toxic Substances Division, Department of Agriculture, Thailand. Trial No.: Imida-basi 3. Unpublished.
Imida-basil-4	Yongyuth Phaikaew	2014	Report on pesticide residue trial. Pesticide Residue Research Sub- group, Pesticide Research Group, Department of Agriculture, Thailan Trial No.: Imida-basil-4. Unpublished.
RANTN021	Manikandan K. N.	2015	Determination of Residues of Imidacloprid and its Metabolites in Tea following one application of Imidacloprid WG 70A W in India durin 2014. Bayer CropScience AG. Report No.: RANTN021, Edition Number: M-517619-01-1, Unpublished.

Number: M-517619-01-1. Unpublished. Determination of residues of Imidacloprid in/on olive and olive RA-3034/01 Schoening R., 2002 Eberhardt R. processing products following spray application of Confidor 200 SL in the field in Spain, Italy and Portugal. Bayer CropScience AG, Monheim, Germany. Bayer Cropscience. Report No.: RA-3034/01, Edition Number: M-074405-01-1. Unpublished. 2003 RA-3155/02 Schoening R., Determination of residues of Imidacloprid in/on olive and olive Koester P., processing products (washed fruit, washing water, wet press cake, Hoffmann M. separation water, crude oil, preclarified crude oil, neutralised crude oil and refined oil) following spray application of Confidor 200 SL to olive trees in Greece and Portugal. Bayer CropScience AG, Monheim, Germany. Bayer CropScience. Report No.: RA-3155/02, Edition Number: M-110091-01-1. Unpublished.