SAFLUFENACIL (251)

The first draft was prepared by Dr Michael Doherty, United States Environmental Protection Agency, Washington, DC, USA

EXPLANATION

Saflufenacil is the ISO–approved name for N'-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydro-1(2H)-pyrimidinyl)benzoyl]-*N*-isopropyl-*N*-methylsulfamide (IUPAC), for which the Chemical Abstracts Service number is 372137-35-4. Saflufenacil is a herbicide from the uracil family of active ingredients, acting as a protoporphyrinogen IX oxidase (PPO) inhibitor. Saflufenacil was first evaluated by the JMPR in 2011, and the Meeting derived an ADI of 0–0.05 mg/kg bw. An ARfD was determined to be not necessary. The 2011 Meeting determined that the residue definition for MRL compliance and estimation of dietary exposure, for both plant and animal commodities, is parent saflufenacil and that the residue is not fat-soluble.

Saflufenacil was listed by the 47th Session of the CCPR for the evaluation of additional MRLs. The 2016 Meeting received residue data reflecting use of saflufenacil on pomegranate, barley and wheat (desiccant uses), peanut and sunflower (with requested extrapolation to similar minor oilseeds), olive, sugarcane, alfalfa, and perennial grasses. In addition, the sponsor has requested that the Meeting consider extrapolating data from rapeseed (canola, evaluated at the 2011 Meeting) to similar minor oilseeds.

METABOLISM AND ENVIRONMENTAL FATE

The 2016 Meeting received a study depicting the metabolism of saflufenacil by rice (Thiaener *et al.*, 2010; Report 2010/1007833). Upland rice at BBCH growth stages 22–24 received a single, foliar application of saflufenacil, radiolabelled in either the phenyl or uracil moieties, at a nominal rate of 100 g ai/ha. Rice forage samples were collected one week after application, and rice grain and straw were harvested four to five months after application.

Plant matrices were placed into frozen storage immediately after collection. Prior to analysis, the samples were homogenized in the presence of dry ice.

Total radioactive residues (TRR) were determined by combustion and liquid scintillation counting (LSC). Following TRR determination, residues were extracted with methanol (3×) and water (2x), the extracted residues were separated from the solid material by centrifugation, and levels in extracted and unextracted were determined LSC or combustion + LSC, respectively. The post-extraction solids (PES) were incubated overnight with pectinase and then with a combination of α -amylase, β -amylase, and amyloglucosidase. The resulting solubilisation was extracted with acetonitrile/water (1/1, v/v) and, in the case of rice grain, an additional extraction was made with 2M NaOH. In addition to the extractions described above, the samples were extracted with the enforcement analytical method, BASF Method D0603/02 (see below). Residue analysis was accomplished with high-pressure liquid chromatography (HPLC) using mass spectral detection.

Total radioactive residues (TRR) in were highest in rice straw and lowest in grain (Table 1). The methanol and water extractions were able to extract the majority of residues from forage and straw, but not for rice grain. In the case of the grain, enzyme and base treatments were able to extract significantly more residues from the PES.

Matrix	DALA ^a	TRR, mg eq./kg			
		Combustion	Extracted	PES	Extracted + PES
[Phenyl-U- ¹⁴ C] label					
Forage	7	1.825	1.702	0.015	1.717
Straw	125	2.483	2.038	0.217	2.255
Total enzyme- and NaOH-so	lubilized residue i	n PES		0.166	
Grain	125	0.122	0.036	0.098	0.134
Total enzyme- and NaOH-so		0.084			

Table 1 Summary of total radioactive residues in rice following application of saflufenacil

Matrix	DALA ^a	TRR, mg eq./kg			
		Combustion	Extracted	PES	Extracted + PES
[Uracil-4- ¹⁴ C] label					
Forage	7	1.158	1.072	0.026	1.098
Straw	146	0.638	0.494	0.093	0.587
Total enzyme- and NaOH-solu	ibilized residue ir	n PES		0.042	
Grain	146	0.032	0.014	0.015	0.029
Total enzyme- and NaOH-solu		0.014			
Spelt ^b	146	0.120			

^a Days after last application

^b The spelt of rice was separated from the grain in the Uracil-4-14C label sample. The TRR was determined, but no further workup was done.

Major residues (defined as $\geq 10\%$ TRR and ≥ 0.01 mg/kg) occurred only in forage and straw, and were identified as saflufenacil (forage and straw), M800H11 (forage), M800H35 (straw), M800H02 (forage), and M800H29 (straw). In grain, saflufenacil, M800H11, and M800H35 were identified as minor residues; the highest amounts of radioactivity in grain was shown to be incorporated into carbohydrates (grain; Table 2).

Metabolite Code	Chemical Structure	Forage, m [% TRR]	g/kg	Straw, mg [% TRR]	/kg	Grain, mg [% TRR]	/kg
		Phenyl	Uracil	Phenyl	Uracil	Phenyl	Uracil
BAS 800 H	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ F & & \\ & & \\ & & \\ F & \\ & & \\ $	1.041 [57.1]	0.954 [82.4]	1.059 [42.7]	0.284 [44.5]	0.0036 [2.9]	0.0015 [4.6]
M800H01		0.014 [0.7]	n.d.	0.016 [0.6]	0.005 [0.8]	n.d.	n.d.
M800H02	F = H	0.295 [16.2]	0.051 [4.4]	0.046 [1.7]	0.006 [0.9]	n.d.	n.d.
M800H03		0.11 [0.6]	n.d.	n.d.	n.d.	n.d.	n.d.
M800H11		0.251 [13.8]	0.078 [6.8]	0.180 [7.2]	0.024 [3.8]	0.0054 [4.4]	0.0005 [1.5]
M800H29 (TFA)	F H OH	n.d.	n.d.	n.d.	0.090 [14.1]	n.d.	n.d.

Table 2 Summary of residues in rice following treatment with saflufenacil

Metabolite Code	Chemical Structure	Forage, mg/kg [% TRR]		Straw, mg/kg [% TRR]		Grain, mg/kg [% TRR]	
		Phenyl	Uracil	Phenyl	Uracil	Phenyl	Uracil
M800H35		0.0025 [0.15]	n.d.	0.256 [10.3]	n.d.	0.0033 [2.7]	n.d.
M800H10/ M800H40/ M800H39	$F \rightarrow F \rightarrow$	0.051 [2.8]	n.d.	0.114 [4.6]	0.011 [1.7]	n.d.	n.d.
Carbohydrates		n.d.	n.d.	n.d.	n.d.	0.0665 [54.4]	0.0197 [61.9]

Conclusions: The residue profile of saflufenacil and metabolites in rice commodities is substantially similar to those observed in studies reviewed by the 2011 Meeting. The results from rice do not alter the residue definitions for saflufenacil.

RESIDUE ANALYSIS

Analytical Methods

The analytical method used in the plant residue and processing studies was either the same LC-MS/MS method that was reviewed and deemed acceptable for data collection and enforcement purposes by the 2011 Meeting (BASF Method D0603/02) or a minor modification (BASF Method D0603/04) of that method to include additional ion transitions for quantification and confirmation of an additional metabolite (M800H02) in the analysis. Independent laboratory validation using wheat forage, wheat hay, wheat grain, and canola seed, each fortified at 0.01 and 0.1 mg/kg, resulted in average M800H02 recoveries ranging from 75 to 105% with a maximum relative standard deviation of 8.3%. The reported LOQ for each analyte is 0.01 mg/kg.

The analytical method used in the livestock feeding studies is the same as that reviewed and deemed acceptable for data collection and enforcement purposes by the 2011 Meeting (BASF Method L0073/01). The reported LOQ is 0.01 mg/kg for all matrices.

Stability of Residues in Stored Samples

Plant Matrices

The stability of saflufenacil, M800H35, and M800H11 in plant matrices was evaluated by the 2011 Meeting, which determined that residues of saflufenacil, M800H11, and M800H35 are stable in maize, soya bean, orange, radish root, raisin, and garbanzo bean matrices for at least 553 days (JMPR, 2011).

The 2016 Meeting received data depicting the stability of the saflufenacil metabolite M800H02 in cereal, oilseed, legume, and citrus matrices (Sears, 2016; Report 2015/7001885). Samples of homogenized matrices were fortified with M800H02 at 0.10 mg/kg and placed into frozen storage for ca 1, 3, 6, 9, 12, 18, and 24 months. Residues of M800H02 were determined using Method D0603/04.

Average concurrent recoveries were within the range of 70 to 120%, with relative standard deviations of less than 20% (Table 3).

Matrix	Storage interval, months (days)								
	0	1	3	6	9	12	18	24	
	(0)	(35)	(152)	(182)	(284)	(371)	(549)	(768)	
Orange fruit	83, 91	77,90	110, 112	86,90	84, 82	79, 87	109, 103	108, 74,	92 ± 14
-								108, 90	
Kidney bean	108, 76	n.a.	93, 110	120, 113	108, 104	188, 96	114, 108	72, 72	101 ± 16
Canola seed	81, 75	89, 81	75, 79	81, 70	81, 79	85,97	115, 112	84, 78	83 ± 15
Wheat grain	75, 82	97, 99	85, 69	72, 81	66, 79	72, 77	102, 119	78, 77	83 ± 17
Wheat forage	77, 71	118, 110	97,97	112, 102	92, 82	71, 71	106, 102	95, 79	93 ± 17
Wheat hay	95, 92	73, 84	74, 70, 71,	79, 79	106, 84	94, 106	99, 95	114, 100	90 ± 15
			97						

Table 3 Storage stability concurrent recoveries of M800H02

n.a. = not analysed

Table 4 Storage stability percent of M800H02 remaining in plant matrices ^a

Matrix	Storage d	uration, mont	hs (days)					
	0	1	3	6	9	12	18	24
	(0)	(35)	(152)	(182)	(284)	(371)	(549)	(768)
Orange fruit	83, 87	103, 88	104, 111	83, 80	83, 84	88, 86	110, 114	98, 87, 76, 72
-	[85]	[96]	[108]	[82]	[83]	[87]	[112]	[83]
Kidney bean	76, 75	n.a.	90, 94	92, 106	98, 149	76, 83	107, 117	67,90
	[76]		[92]	[99]	[124]	[80]	[112]	[78]
Canola seed	75, 79	74, 71	75, 64	63, 48	59, 64	87,95	102,90	67, 88
	[77]	[72]	[70]	[56]	[61]	[91]	[96]	[78]
Wheat grain	81, 86	93, 100	103, 86	61,67	123, 117	82, 84	101, 109	80, 113
-	[84]	[96]	[94]	[64]	[120]	[83]	[105]	[96]
Wheat forage	64, 73	101, 102	89,96	97, 87	75, 87	65, 63	103, 98	61,73
_	[68]	[102]	[92]	[92]	[81]	[64]	[100]	[67]
Wheat hay	99, 101	92, 85	85, 77, 129, 98	82, 80	75, 105	94, 103	111, 114	103, 87
	[100]	[89]	[97]	[81]	[90]	[98]	[112]	[95]

^a Averages are in brackets.

n.a. = not analysed

Conclusions: Residues of M800H02 were stable in all matrices for at least 24 months. Although the percent remaining in wheat forage was only 67% at the 24-month time point, it is within the fluctuations observed at other time points and not substantially different from the 0-day time point (68%).

Animal Matrices

The 2016 Meeting received data documenting the stability of saflufenacil in bovine muscle, liver, and milk, and in poultry egg during frozen storage. Samples of muscle, liver, and egg were homogenised in the presence of dry ice. All matrices were fortified with saflufenacil to a level of 0.1 mg/kg and place into frozen storage. Residues were analysed at ca. 0, 1, 2, 3, and 4-month storage durations using Method L0073/01. A freezer malfunction and power outage on Day 70 and lasting until Day 75 resulted in samples reaching room temperature for a brief period.

Concurrent recoveries of saflufenacil across all matrices and time points ranged from 74 to 108%, with an overall average and relative standard deviation of $91 \pm 8\%$.

Table :	5 Storag	ge stability	percent	of s	aflufe	nacil	remair	ning	in	livestock	c matrices	, a
		J J	1					ω				

Matrix	Storage duration	Storage duration, months (days)									
	0	1	2	3	4						
	(0)	(34)	(61)	(83)	(125)						
Muscle (bovine)	85, 80 [82]	86, 65 [76]	76, 62 [69]	74, 92 [83]	86, 86 [86]						
Liver (bovine)	94, 95 [94]	96, 100 [98]	86, 100 [96]	82, 93 [88]	60, 84 [72]						
Milk (bovine)	85, 91 [88]	100, 98 [99]	110, 100 [110]	90, 95 [92]	83, 89 [86]						
Egg (chicken)	86, 97 [92]	59 ^b	96, 98 [97]	84, 83 [84]	68, 83 [76]						

^a Averages are in brackets.

^b An error occurred during extraction of the one-month egg sample replicate.

Conclusions: Residues of saflufenacil are stable in livestock matrices in frozen storage for at least 125 days. The period of thawing during the 10^{th} week of the study did not negatively impact the results.

USE PATTERN

Information on the registered uses of saflufenacil for the relevant crops, along with copies of labels, were provided to the 2016 Meeting (Table 6).

Crop	Country	Formulation		Application		PHI (days)		
		g ai/L or g ai/kg	Туре	Method	g ai/ha	Water L/ha	Number	
Assorted tropical a	nd sub-tropical	fruits – edi	ble peel					
Olive	US	700	WG	Broadcast (avoid tree foliage, flowers, buds, and fruit)	25-50	100	4 (1 or 2 between post-harvest and pre-bloom)	0
Assorted tropical a	nd sub-tropica	l fruits – ine	dible pe	el	•	•	· • /	
Pomegranate	US	700	WG	Broadcast (avoid tree foliage, flowers, buds, and fruit)	50	100	4 (21-day interval)	0
Cereal grains					-	-		
Barley	Argentina	700	WG	Pre-plant broadcast	24.5	100-150	n.s.	0
Barley	Australia	700	WG	Pre-plant broadcast	12-18	80-250	n.s.	0
Barley	Canada ^a	342	SC	Pre-seed or crop pre- emergent broadcast	18-50	50-100	n.s.	60
Barley	Canada ^a	342	SC	Pre-harvest broadcast	25-50	100-200	n.s.	3
Barley	Canada ^b	700	WG	Pre-plant or pre- emergent broadcast	25-50	100-200	n.s.	n.s.
Barley (harvest aid)	US	342	SC	Pre-harvest broadcast	25-50	≥40	2; max = 50 g ai/ha/yr	3
Triticale	Canada ^a	342	SC	Pre-harvest broadcast	25-50	100-200	n.s.	3
Triticale (harvest aid)	US	342	SC	Pre-harvest Broadcast	25-50	≥40	2; max = 50 g ai/ha/yr	3
Wheat	Argentina	700	WG	Pre-plant broadcast	24.5	100-150	n.s.	0
Wheat	Australia	700	WG	Pre-plant broadcast	12-18	80-250	n.s.	0
Wheat	Brazil	700	WG	Pre-planting broadcast	24.5-49	150-300	1	n.s.
Wheat	Canada ^a	342	SC	Pre-harvest broadcast	25-50	100-200	n.s.	n.s.
Wheat	Canada ^a	342	SC	Pre-seed or crop pre- emergent broadcast	18-50	50-100	n.s.	60
Wheat	Canada ^b	700	WG	Pre-plant or pre- emergent	25-50	100-200	n.s.	n.s.
Wheat (harvest aid)	US	342	SC	Pre-harvest Broadcast	25-50	≥40	2; max = 50 g ai/ha/yr	3
Grasses for sugar of	or syrup produc	tion						
Sugarcane	Brazil	700	WG	Broadcast	49-98	200-400	1	7
Oilseeds								
Oilseed Sunflower Subgroup ⁸⁾ (harvest aid)	US	342	SC	Pre-harvest Broadcast	25-50	≥47	n.s.; max = 100 g ai/ha/yr	7
Peanut	Argentina	700	WG	Pre-plant broadcast	24.5	100-150	n.s.	0
Peanut	Nicaragua	700	WG	Crop pre-emergence broadcast	90	200-300	n.s.	n.s.
Sunflower (harvest aid)	Brazil	700	WG	Pre-harvest Broadcast	49-98	200-300	1	7
Sunflower (harvest aid)	Canada ^a	342	SC	Pre-harvest Broadcast	25-50	200	n.s.	7

Table 6 Registered Uses of Saflufenacil Submitted to the 2016 JMPR

Crop	Country	Formulati	on	Application				
		g ai/L or g ai/kg	Туре	Method	g ai/ha	Water L/ha	Number	
Sunflower (harvest aid)	US	342	SC	Pre-harvest Broadcast	25-50	≥47	2	7
Legume animal fe	eds							
Alfalfa	US	342	SC	Broadcast between cuttings, in season	25	n.s.	1 per cutting, not more than 3 per season	21
				Broadcast, dormant season	25-50	≥94	2 (14-day interval); max = 50 g ai/ha	28
Clover	Australia	700	WG	Pre-plant broadcast	12-18	80-250	n.s.	0
Straw, fodder, and	forage of cere	al grains and	l grasses	5				
Forage grasses	US	342	SC	Post-emergence broadcast	25-50	≥94	3 (14-day interval); max in- season = 50 g ai/ha	n.s.
				Broadcast, dormant season	100			

n.s. = not specified

^a Prairie Provinces and Peace River region of British Columbia only

^b Eastern Canada only

RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received data from supervised residue trials conducted on olive, pomegranate, barley, wheat, sugar cane, peanut, sunflower seed, alfalfa, and perennial forage grass.

The field trial reports included method validation data, as recoveries from spiked samples at levels reflecting those observed in the field trial samples; dates from critical events during the study, including application, harvest, storage, and analysis; as well as detailed information on the field site and treatment parameters. Analytical reports were sufficiently detailed and included example chromatograms and example calculations. Samples were analysed by the method described above.

Unless otherwise noted below, harvested commodities were maintained whole in the field and not cut or homogenized until they reached the analytical laboratory.

The field trial study designs included control plots. Measured residues from control plots were < LOQ) and are not included in the summary tables in this evaluation. When calculating average residues, values below the LOQ were assumed to be at the LOQ, and residues are denoted as being <LOQ only when all samples from a plot were <LOQ. In the summary tables, values used for making maximum residue level recommendations are underlined and highest individual values for estimating dietary intake are bolded. Trial locations that the Meeting has determined are not independent are grouped by a heavy cell border in the tables (e.g., Table 8).

Category	Crop	Table
Trop. and sub-trop. fruit – edible peel	Olive (FT 0305)	Table 7
Trop. and sub-trop. fruit – inedible peel	Pomegranate (FI 0355)	Table 8Table 8
Cereal grains	Barley (GC 0640)	Table 9
	Wheat (GC 0654)	Table 10
Grasses for sugar or syrup production	Sugar cane (GS 0659)	Table 11
Oilseeds	Peanut (SO 0697)	Table 12
	Sunflower seed (SO 0702)	Tables 13 and 14

Supervised trials for saflufenacil:

Legume animal feeds	Alfalfa (AL 1020/AL 1021)	Table 15
Straw, fodder, and forage of cereal grains and grasses	Grasses (AF 0162/AS 0162)	Tables 16 and 17
	Barley (AS 0640)	Table 18
	Wheat (AS 0654)	Table 19
	Peanuts	Table 20

Tropical and sub-tropical fruit – edible peel

Olives

Four residue trials were conducted in the US during the 2012 growing season. All trials were conducted in California. At each trial, the orchard floor beneath the olive trees received three banded applications of saflufenacil, each at ca. 50 g ai/ha on a 20-day interval. At one site, a separate plot was treated three times at ca 250 g ai/ha. Olives were hand-harvested zero days after the last application (DALA) and placed into a plastic bag. The olives within the bag were smashed with a plastic-coated hammer to open the fruits within the bag. The pits were removed and discarded. The resulting olive sample was placed into frozen storage within 3 hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Homogenisation, if needed, was done in the presence of dry ice. Two trials were conducted in Glenn, California. These trials used different varieties of olives and treatments were offset by 31 days.

Olive samples were stored frozen for 161 to 190 days. Concurrent recoveries across all three analytes and across fortifications at 0.01 and 1.0 mg/kg ranged from 70 to 115%.

Trial No.	Crop	Application			Matrix	DALA	Residues (mg	g/kg)	
Location	(Variety)					(days)	[Mean]		
Year		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35
Critical GAP US	Olive	4	50	100		0			
12-CA04	Olive	1 ()	49	283	Fruit	0	< 0.010,	< 0.010,	< 0.010,
Parlier, California 2012	(Arbequina clone I-18)				(w/o pit)		< 0.010 [< 0.010]	< 0.010 [< 0.010]	< 0.010 [< 0.010]
		1 (20)	49	284					
		1 (21)	50	281					
12-CA04	Olive	1 ()	246	282	Fruit	0	< 0.010,	< 0.010,	< 0.010,
Parlier, California 2012	(Arbequina clone I-18)				(w/o pit)		< 0.010 [< 0.010]	< 0.010 [< 0.010]	< 0.010 [< 0.010]
		1 (20)	254	293			. ,		
		1 (21)	250	282					
12-CA05 Exeter, California 2012	Olive (Manzinillo)	1 ()	50	146	Fruit (w/o pit)	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 (21)	49	141				. ,	
		1 (21)	49	141					
12-CA06 Glenn, California 2012	Olive (Arbequina)	1 ()	50	306	Fruit (w/o pit)	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 (21)	50	305					
		1 (21)	52	314					
12-CA07	Olive	1 ()	54	169	Fruit	0	< 0.010,	< 0.010,	< 0.010,
Glen, California 2012	(Arbosana)				(w/o pit)		< 0.010 [< 0.010]	< 0.010 [< 0.010]	< 0.010 [< 0.010]
		1 (21)	52	163					
		1 (20)	52	165					

Table 7 Results of saflufenacil residue trials in olive in the US (Report 2013/7002536)

Tropical and sub-tropical fruit – inedible peel

Pomegranate

Four residue trials were conducted in the US during the 2013 growing season. All trials were conducted in California. At each trial, the orchard floor beneath the pomegranate trees/shrubs received four banded applications of saflufenacil, each at ca. 50 g ai/ha, with ca. 200 days between Applications 1 and 2, and ca. 21 days between Applications 2, 3, and 4. Pomegranates were harvested zero days after the last application (DALA), quartered in the field, and the retained quarters were placed into a plastic bag. The samples were placed into frozen storage within 2.75 hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Homogenisation was done in the presence of dry ice. Two trials were conducted in Parlier, California. The treatments for these trials were offset by 7 days and used spray rates that differed by ca. 2-fold.

Pomegranate samples were stored frozen for 20 to 33 days. Concurrent recoveries across all three analytes and across fortifications at 0.01 and 1.0 mg/kg ranged from 90 to 100%, except for M800H35 fortified at 0.01 mg/kg, for which the recovery was 68%.

Trial No. Location Year	Crop (Variety)	Application N		Matrix	DALA (days)	Residues (mg/kg) [Mean]			
		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35
Critical GAP US	Pomegranate	4	50	100		0			
13-CA02 Parlier, California 2013	Pomegranate (Wonderful)	1 ()	49	142	Fruit	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 (201)	49	139					
		1 (21)	50	140					
		1 (20)	50	140					
13-CA03 Parlier, California 2013	Pomegranate (Wonderful)	1 ()	50	285	Fruit	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 (201)	51	339					
		1 (21)	50	297					
		1 (21)	52	309					
13-CA04 Davis, California 2013	Pomegranate (Wonderful)	1 ()	49	299	Fruit	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 (197)	50	335					
		1 (21)	52	347					
		1 (20)	52	348					
13-CA05 Yuba City, California 2013	Pomegranate (Wonderful)	1 ()	49	157	Fruit	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 (177)	51	165					
		1 (21)	51	165					
		1 (20)	50	161					

Table 8 Results of saflufenacil residue trials in pomegranate in the US (Report 2014/7002080)

Cereal grains

Barley

Sixteen residue trials were conducted in Canada and the US during the 2012 growing season (Norris, 2013; Report 2013/7001464). At each trial, barley received one broadcast applications of saflufenacil

at ca. 50 g ai/ha. Barley grain and straw were harvested three days after application. The samples were placed into frozen storage within 24 hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Homogenisation was done in an ultracentrifuge mill with liquid nitrogen cooling.

Barley samples were stored frozen for 187 to 300 days. Residues of saflufenacil, M800H11, M800H35, and M800H02 were analysed using Methods D0603/02 and D0603/04. Concurrent recoveries from barley grain across all four analytes and across fortifications at 0.01 and 1.0 mg/kg ranged from 83 to 111%.

Table 9 Results of saflufenacil residue trials conducted in 2012 for barley grain in the US and Canada (Report 2013/7001464)

Trial No. Country	Crop (Variety)	Application	l	Matrix	DALA (days)	Residues (mg/kg)		
Location	(() (())))				(((())))	[]			
		g ai/ha	L/ha			Saflufenacil	H11	H35	H02
Critical GAP US	Barley	1 at 50	100		3				
120050	Barley	50	167	Grain	3	0.10, 0.14 [0.12]	< 0.010,	< 0.010,	< 0.010,
US	(not specified)						< 0.010	< 0.010	< 0.010
Wayne, NY	-						[< 0.010]	[< 0.010]	[< 0.010]
120051 US	Barley (Robust)	539	177	Grain	0	Residues not rep	orted due to	the 10X mi	sapplication
Guthrie, IA					1	-			
					1				
					3				
					5				
120052	Devlas	50	110	Curin	/	0.40.0.26 [0.29]	< 0.010	< 0.010	< 0.010
120052 C A	(Conlon)	50	119	Grain	3	0.40, 0.36 [<u>0.38</u>]	< 0.010,	< 0.010,	< 0.010,
CA Portage la Prairie MB	(Collion)						< 0.010	< 0.010	< 0.010
120053	Barley	50	177	Grain	3	0 35 0 26 [0 30]	< 0.010	< 0.010	< 0.010
US	(Lacev)	50	1//	Oram	5	0.55, 0.20 [0.50]	< 0.010,	< 0.010,	< 0.010,
Hall, NE	(Eucey)						[< 0.010]	[< 0.010]	[< 0.010]
120054	Barley	81	232	Grain	3	0.04, 0.04 [0.04]	< 0.010.	< 0.010.	< 0.010.
US	(Pinnacle)	01		or and	2	010 1, 010 1 [010 1]	< 0.010	< 0.010	< 0.010
Foster, ND	()						[< 0.010]	[< 0.010]	[< 0.010]
120055	Barley	51	102	Grain	3	0.23, 0.29 [0.26]	< 0.010,	< 0.010,	< 0.010,
CA	(Copeland)						< 0.010	< 0.010	< 0.010
Dundurn, SK							[< 0.010]	[< 0.010]	[< 0.010]
120056	Barley	51	154	Grain	3	0.25, 0.30 [0.28]	< 0.010,	< 0.010,	< 0.010,
CA	(CDC Earl)						< 0.010	< 0.010	< 0.010
Taber, AB							[< 0.010]	[< 0.010]	[< 0.010]
120057	Barley	48	164	Grain	3	0.40, 0.38 [<u>0.39</u>]	< 0.010,	< 0.010,	< 0.010,
US	(Goldeneye)						< 0.010	< 0.010	< 0.010
Cache, UT	-			~ .	-		[< 0.010]	[< 0.010]	[< 0.010]
120058	Barley	51	145	Grain	3	0.56, 0.53 [<u>0.54</u>]	< 0.010,	< 0.010,	< 0.010,
US V: CA	(Volunteer)						< 0.010	< 0.010	< 0.010
Kings, CA	D 1	51	1/0	с ·	0	0.25	[< 0.010]	[< 0.010]	[< 0.010]
120059	Barley (Statabaad)	51	168	Grain	0	0.25	< 0.01	< 0.01	< 0.01
US Power ID	(Statenood)								
i owei, iD					1	0.24	< 0.01	< 0.01	< 0.01
					3	0.24 0.24 0.25 [0.24]	< 0.01	< 0.01	< 0.01
					5	0.24, 0.25 [0.24]	< 0.010,	< 0.010,	< 0.010,
							[< 0.010]	[< 0.010]	[< 0.010]
					5	0.40	< 0.01	< 0.01	< 0.01
					7	0.37	< 0.01	< 0.01	< 0.01
120060	Barley	52	105	Grain	3	0.06, 0.09 [0.08]	< 0.010.	< 0.010.	< 0.010.
CA	(Coalition)					, <u></u>]	< 0.010	< 0.010	< 0.010
Strathcona, AB	Í		1				[< 0.010]	[< 0.010]	[< 0.010]
120061	Barley	52	105	Grain	3	0.31, 0.32 [0.32]	< 0.010,	< 0.010,	< 0.010,
CA	(Xena)		1				< 0.010	< 0.010	< 0.010
Sturgeon, AB							[< 0.010]	[< 0.010]	[< 0.010]

Trial No.	Crop	Application		Matrix	DALA	LA Residues (mg/kg)				
Country	(Variety)				(days)	[Mean]				
Location										
		g ai/ha	L/ha			Saflufenacil	H11	H35	H02	
120062	Barley	51	101	Grain	3	0.31, 0.36 [0.34]	< 0.010,	< 0.010,	< 0.010,	
CA	(Copeland)						< 0.010	< 0.010	< 0.010	
Aberdeen, SK							[< 0.010]	[< 0.010]	[< 0.010]	
120063	Barley	50	100	Grain	3	0.34, 0.41 [0.38]	< 0.010,	< 0.010,	< 0.010,	
CA	(CDC Cowboy)						< 0.010	< 0.010	< 0.010	
Waldheim, SK							[< 0.010]	[< 0.010]	[< 0.010]	
120064	Barley	50	120	Grain	3	0.45, 0.50 [0.48]	< 0.010,	< 0.010,	< 0.010,	
CA	(Newdale)						< 0.010	< 0.010	< 0.010	
Rosedale, MB							[< 0.010]	[< 0.010]	[< 0.010]	
120065	Barley	50	119	Grain	3	0.28, 0.31 [0.30]	< 0.010,	< 0.010,	< 0.010,	
CA	(Newdale)						< 0.010	< 0.010	< 0.010	
Elton, MB							[< 0.010]	[< 0.010]	[< 0.010]	

Wheat

Twenty-five residue trials were conducted in Canada and the US during the 2012 growing season (Devine and Cenni, 2013; Report 2013/7001462). At each trial, wheat received one broadcast applications of saflufenacil, formulated as a wettable granule, at ca. 50 g ai/ha. At four locations, an additional plot was established and treated with a suspension concentrate formulation of saflufenacil as a single application at ca. 50 g ai/ha. Wheat grain and straw were harvested three days after application (except for one trial which was harvested 2 days after application due to expectation of heavy rain on Day 3). The samples were placed into frozen storage within 4 hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Homogenisation was done in an ultracentrifuge mill with liquid nitrogen cooling.

Wheat grain samples were stored frozen for 30 to 297 days. Residues of saflufenacil, M800H11, M800H35, and M800H02 were analysed using Methods D0603/02 and D0603/04. Concurrent recoveries from wheat grain across all four analytes and across fortifications at 0.01 and 1.0 mg/kg ranged from 69 to 110%. Relative standard deviations ranged from 8 to 19%.

Trial No. Country Location	Crop (Variety)	Application	l	Matrix	DALA (days)	Residues (mg/kg) [Mean]			
		g ai/ha	L/ha			Saflufenacil	H11	H35	H02
Critical GAP US	Wheat	1 at 50	100		3				
R120025 US Tallassee, AL	Wheat (AGS 2060)	50	131	Grain	3	0.02, 0.02 [<u>0.02]</u>	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R120026 US Fisk, MO	Wheat (Beretta)	50	187	Grain	3	< 0.01, < 0.01 [<u>< 0.01</u>]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R120027 US Gardner, ND	Wheat (Barlow)	51	140	Grain	0	0.04, 0.05 [0.045]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
					1	0.02, 0.03 [0.025]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
					3	0.01, < 0.01 [0.01]	< 0.010, < 0.010 [< 0.010]	<0.010, <0.010 [<0.010]	<0.010, <0.010 [<0.010]
					5	0.02, 0.03 [0.025]	< 0.010, < 0.010 < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.01	< 0.010, < 0.010 < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.010) < (0.01	< 0.010, < 0.010 [< 0.010]
	1		1	1	/	1007 00710071	< 0.010	< 0.010	< 0.010

Table 10 Results of saflufenacil residue trials conducted in 2012 for wheat grain in the US and Canada (Report 2013/7001462)

Trial No. Country Location	Crop (Variety)	Application N		Matrix	DALA (days)	Residues (mg/kg) [Mean]			
Location		g ai/ha	L/ha			Saflufenacil	H11 F	135	H02
		8	2,110				< 0.010	< 0.010	< 0.010
							[< 0.010] [< 0.010]	[< 0.010]
R120028	Wheat	50	136	Grain	0	0.12, 0.11 [0.12]	< 0.010, <	< 0.010,	< 0.010,
US Olatha KS	(Santa Fe)						< 0.010 \cdot	< 0.010	< 0.010
Olatile, KS					1	0.05, 0.06 [0.055]	< 0.010	< 0.010	< 0.010
					-	0.000, 0.000 [0.0000]	< 0.010	< 0.010	< 0.010
							[< 0.010] [< 0.010]	[< 0.010]
					3	0.08, 0.08 [<u>0.08]</u>	< 0.010, <	< 0.010,	< 0.010, < 0.010
							< 0.010	< 0.010 < 0.0101	< 0.010 [< 0.010]
					5	0.03, 0.04 [0.035]	< 0.010, <	< 0.010,	< 0.010,
							< 0.010	< 0.010	< 0.010
					-	0.04.0.04.50.047	[< 0.010] [< 0.010]	[< 0.010]
					1	0.04, 0.04 [0.04]	< 0.010, < 0.010	< 0.010,	< 0.010, < 0.010
							[< 0.010]	< 0.010	< 0.010 [< 0.010]
R120029	Wheat	51	140	Grain	3	0.03, 0.03 [<u>0.03</u>]	< 0.010, <	< 0.010,	< 0.010,
US	(Brick Hard red spring)						< 0.010	< 0.010	< 0.010
Atlantic, IA	Wheet	50	120	Croin	2	0.22 0.20 [0.22]	[< 0.010]	< 0.010	[< 0.010]
CA	(Falcon)	30	120	Grain	3	0.23, 0.20 [0.22]	< 0.010, < 0.010, < 0.010	< 0.010, < 0.010	< 0.010, < 0.010
Poplar Point, MB	(1 410011)						[< 0.010]	< 0.010]	[< 0.010]
R120031	Wheat	49	124	Grain	3	0.01, 0.01 [<u>0.01]</u>	< 0.010, <	< 0.010,	< 0.010,
US Fast Bernard, TV	(Magnolia)						< 0.010	< 0.010	< 0.010
R120032	Wheat	50	140	Grain	3	0.03, 0.03 [0.03]	< 0.010	< 0.010	< 0.010
US	(Faller)				-		< 0.010	< 0.010	< 0.010
Carrington, ND							[< 0.010] [< 0.010]	[< 0.010]
R120033	Wheat (Faller)	50	140	Grain	3	0.03, 0.01 [<u>0.02</u>]	< 0.010, < 0.010	< 0.010,	< 0.010, < 0.010
OS Oberon, ND	(Faller)						< 0.010	< 0.010 < 0.010	< 0.010 [< 0.010]
R120034	Wheat	51	142	Grain	3	0.01, < 0.01 [<u>0.01</u>]	< 0.010, <	< 0.010,	< 0.010,
US	(Faller)						< 0.010	< 0.010	< 0.010
Eldridge, ND R120035	Wheat	50	170	Grain	3	0.03.0.03[0.03]	[< 0.010]	< 0.010	[< 0.010]
US	(Cert. 3Traverse)	50	1/)	Olam	5	0.05, 0.05 [<u>0.05</u>]	< 0.010,	< 0.010,	< 0.010,
Grand Island, NE	· · · ·						[< 0.010] [< 0.010]	[< 0.010]
R120036	Wheat	49	100	Grain	3	0.06, 0.05 [<u>0.06]</u>	< 0.010, <	< 0.010,	< 0.010,
CA Watrous SK	(Bellatrex)						< 0.010 \cdot	< 0.010 < 0.0101	< 0.010 [< 0.010]
R120037	Wheat	48	150	Grain	3	0.02, 0.02 [0.02]	< 0.010	< 0.010	< 0.010,
CA	(AC Superb)					· []	< 0.010	< 0.010	< 0.010
Taber, AB	TT 71	-	00	a .	2	0.00.0.00.00.001	[< 0.010] [< 0.010]	[< 0.010]
R120038	Wheat $(TAM 111)$	50	99	Grain	3	0.02, 0.02 [<u>0.02]</u>	< 0.010, < 0.010	< 0.010, < 0.010	< 0.010, < 0.010
Plainview, TX							< 0.010 [< 0.010] [·	< 0.010	< 0.010 [< 0.010]
R120039	Wheat	49	102	Grain	3	0.34, 0.66 [<u>0.50]</u>	< 0.010, <	< 0.010,	< 0.010,
US	(TAM 111)						< 0.010	< 0.010	< 0.010
Olton, TX P120040	Wheat	50	167	Grain	2	0.02.0.01.[0.02]	[< 0.010]	< 0.010	[< 0.010]
US	(Everest)	50	107	Olalli	5	0.02, 0.01 [0.02]	< 0.010,	< 0.010, < 0.010	< 0.010, < 0.010
Larned, KS	· · · ·						[< 0.010] [< 0.010]	[< 0.010]
R120041	Wheat	50	168	Grain	3	0.02, 0.03 [<u>0.02]</u>	< 0.010, <	< 0.010,	< 0.010,
US Ietmore KS	(TAM 112)						< 0.010 \cdot	< 0.010	< 0.010
R120042	Wheat	51	140	Grain	3	0.05, 0.16 [0.10]	< 0.010	< 0.010]	< 0.010]
US	(Stephens)					,	< 0.010	< 0.010	< 0.010
Ephrata, WA		- 0	4 - 4	. ·	-		[< 0.010] [< 0.010]	[< 0.010]
K120043	Wheat	50	150	Grain	3	0.03, 0.03 [<u>0.03]</u>	< 0.010, <	< 0.010, < 0.010	< 0.010, < 0.010
Kipp, AB	(AC Carbelly)						[< 0.010]	< 0.010	[< 0.010]

Trial No.	Crop	Application		Matrix	DALA	Residues (mg/kg)			
Country	(Variety)				(days)	[Mean]			
Location							-		-
		g ai/ha	L/ha			Saflufenacil	H11	H35	H02
R120044	Wheat	52	150	Grain	3	0.06, 0.05 [<u>0.06</u>]	< 0.010,	< 0.010,	< 0.010,
CA	(Infinity)						< 0.010	< 0.010	< 0.010
Rosthern, SK							[< 0.010]	[< 0.010]	[< 0.010]
R120045	Wheat	51	163	Grain	3	0.04, 0.05 [<u>0.04</u>]	< 0.010,	< 0.010,	< 0.010,
CA	(Unity)						< 0.010	< 0.010	< 0.010
Minto, MB							[< 0.010]	[< 0.010]	[< 0.010]
R120046	Wheat	52	166	Grain	3	0.02, 0.19 [<u>0.10</u>]	< 0.010,	< 0.010,	< 0.010,
CA	(Buteo)						< 0.010	< 0.010	< 0.010
Elgin, MB							[< 0.010]	[< 0.010]	[< 0.010]
R120047	Wheat	51	100	Grain	3	< 0.01, < 0.01 [< 0.01]	< 0.010,	< 0.010,	< 0.010,
CA	(Harvest)						< 0.010	< 0.010	< 0.010
Josephburg, AB							[< 0.010]	[< 0.010]	[< 0.010]
R120048	Wheat	50	100	Grain	3	0.02, 0.03 [<u>0.02</u>]	< 0.010,	< 0.010,	< 0.010,
CA	(Infinity)						< 0.010	< 0.010	< 0.010
Wakaw, SK							[< 0.010]	[< 0.010]	[< 0.010]
R120049	Wheat	49	120	Grain	3	0.08, 0.11 [<u>0.10</u>]	< 0.010,	< 0.010,	< 0.010,
CA	(Falcon)						< 0.010	< 0.010	< 0.010
Brandon, MB							[< 0.010]	[< 0.010]	[< 0.010]

Grasses for sugar or syrup production

Sugar cane (GS 0659)

The Meeting received two studies depicting residues in sugar cane following application of saflufenacil (Jones and Souza, 2008; Report 2009/1069193 and Guimaraes, 2011; Report 2012/3002347). Both sets of trials were conducted in Brazil and consisted of a single desiccant application at ca. 98 g ai/ha seven days prior to harvest. Five trials were conducted during the 2008 growing season (2009/1069193) and four trials were conducted during the 2010 growing season (2012/3002347). For both studies, samples were placed into frozen storage immediately after harvest, and remained frozen during transportation to the analytical facility and prior to analysis. Samples were homogenized by crushing in the presence of dry ice.

Cane samples were stored frozen for ca. 30 to 250 days. Residues of saflufenacil, M800H11, and M800H35 were analysed using a method based on BASF Method D0603/02. Concurrent recoveries from sugar cane stalks across all three analytes and across fortifications at 0.01 and 1.0 mg/kg ranged from 70 to 96%. Relative standard deviations ranged from 1.7 to 3.8%.

Table	11	Results	of sa	aflufe	nacil	residue	trials	in suga	r cane	from	Brazil	1
								0				

							•		
Report ID	Crop	Applicatio	n		Matrix	DALA	Residues (mg/k	g)	
Trial No.	(Variety)					(days)	[Mean]		
Location									
Year									
		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35
Critical GAP	Sugar cane	1	98	200-400		7			
Brazil	-								
2009/1069193	Sugar cane	1	98	200	Stalks	0	< 0.01	< 0.01	< 0.01
G080116	(Cana-de-acúar)								
Santo Antonio de Posse/SP 2008									
						7	< 0.01	< 0.01	< 0.01
						10	< 0.01	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
						21	< 0.01	< 0.01	< 0.01
2009/1069193	Sugar cane	1	98	200	Stalks	0	< 0.01	< 0.01	< 0.01
G080117	(Cana-de-acúar)								

Report ID Trial No. Location Year	Crop (Variety)	Applicatio	n		Matrix	DALA (days)	Residues (mg/l [Mean]	kg)	
		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35
Piracicaba/SP 2008									
						7	< 0.01	< 0.01	< 0.01
						10	< 0.01	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
						21	< 0.01	< 0.01	< 0.01
2009/1069193 G080118 Artur Nogueira/SP 2008	Sugar cane (Cana-de-acúar)	1	98	200	Stalks	7	<u>< 0.01</u>	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
2009/1069193 G080119 Mogi Mirim/SP 2008	Sugar cane (Cana-de-acúar)	1	98	200	Stalks	7	<u>< 0.01</u>	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
2009/1069193 G080198 Uberländia/MG 2008	Sugar cane (not reported)	1	98	200	Stalks	7	<u><0.01</u>	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
2012/3002347 Santo Antonio de Posse/SP 2010	Sugar cane (SP801816)	1	98	200	Stalks	1	< 0.01	< 0.01	< 0.01
						7	< 0.01	< 0.01	< 0.01
						10	< 0.01	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
2012/3002347 Senador Canedo/GO 2010	Sugar cane (RB 867515)	1	98	200	Stalks	0	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01
2010						7	0.02	< 0.01	< 0.01
						10	< 0.01	< 0.01	< 0.01
						14	< 0.01	< 0.01	< 0.01
						21	< 0.01	< 0.01	< 0.01
2012/3002347 Jaboticabal/SP 2010	Sugar cane (IAC 862480)	1	98	200	Stalks	7	<u>< 0.01</u>	< 0.01	< 0.01
2012/3002347 Bandeirantes/PR 2010	Sugar cane (RB 72454)	1	98	200	Stalks	7	<u><0.01</u>	< 0.01	< 0.01

Oilseeds

Peanut

Eight residue trials were conducted in Argentina, Brazil, the US, and Uruguay during the 2009-2011 growing seasons (Jones and Costa, 2011; Report 2011/7008962). At each trial, peanuts received two applications of saflufenacil. The first was at-planting (pre-emergent) treatment at 50 g ai/ha, and the second was as a pre-harvest desiccant treatment at 100 g ai/ha, seven days before harvest. Additional plots at the US sites received treatment at a 3-fold exaggerated rate. Peanut nutmeat samples were placed into frozen storage immediately after collection from the field, and remained frozen during transportation to the analytical facility and prior to analysis. Nutmeat samples were homogenized in a mill in the presence of dry ice.

Peanut nutmeat samples were stored frozen for a maximum of 467 days. Residues of saflufenacil, M800H11, and M800H35 were analysed using Method D0603/02. Concurrent recoveries from nutmeat across all three analytes and across fortifications at 0.01, 0.1, and 1.0 mg/kg ranged from 71 to 123%. Relative standard deviations ranged from 5 to 13%.

Table 12 Results of saflufenacil residue trials in peanut nutmeat (Report 2011/7006245)

Trial No. Country Location Year	Crop (Variety)	Application			Matrix	DALA (days)	Residues (mg [Mean]	t/kg)	
		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35
Critical GAP Nicaragua	Peanut	1	90	200-300		Not specified			
R090523 US Montezuma, GA 2010	Peanut (Georgia 02C)	1 () 1 (137)	46 100	201 200	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 () 1 (137)	138 300	201 200		7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090524 US Jeffersonville, GA 2010	Peanut (Georgia DoG)	1 () 1 (122)	47 99	200 198	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
		1 () 1 (122)	142 297	200 198		7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090525 Brazil São Paulo 2010	Peanut (Runner IAC 886)	1 () 1 (129)	52 98	206 196	Nutmeat	0	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
						3	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
						7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
						10	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
						14	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090527 Brazil São Paulo 2010	Peanut (Runner 38/42)	1 () 1 (115)	51 97	256 243	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090526 Brazil Mato Grosso do Sul 2009	Peanut (Runner)	1 () 1 (118)	53 92	211 185	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090528 Brazil Paraná 2010	Peanut (Runner IAC 886)	1 () 1 (124)	50 102	252 254	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090529 Uruguay Mercedes-Soriano 2010	Peanut (Runner IAC 886)	1 () 1 (115)	52 97	211 193	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]
R090530 Argentina San Pedro 2010	Peanut (ASEM 485INTA/ Runner)	1 () 1 (131)	54 101	218 202	Nutmeat	7	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]	< 0.010, < 0.010 [< 0.010]

Sunflower seed

Three field trials were conducted in the US during the 210 growing season (Riley and Belcher, 2011; Report 2011/7001273). At each location, two plots of sunflower received two, late season applications of saflufenacil, as a desiccant treatment, at 50 g ai/ha seven days apart. Application was made with saflufenacil formulated as a wettable granule to one treated plot and as a suspension concentrate at the second treated plot. Sunflower seeds were harvested seven and 14 days after application. The samples were placed into frozen storage within three hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Homogenisation was done in an ultracentrifuge mill with liquid nitrogen cooling.

Sunflower seed samples were stored frozen for up to 221 days. Residues of saflufenacil, M800H11, and M800H35 were analysed using Method D0603/02. Concurrent recoveries from sunflower seeds are shown in Table 13.

Analyte	Fortification, mg/kg	Percent Recovery	Mean \pm Rel. Std. Dev.
Saflufenacil	0.01	71, 70	
	0.131	102, 85	90 ± 25
	1.0	124	
M800H11	0.01	89, 90	
	0.118	96, 101	100 ± 15
	1.0	126	
M800H35	0.01	89, 75	
	0.128	91, 80	91 ± 19
	1.0	120	

Table 13 Concurrent recovery results for saflufenacil residues in sunflower seeds

Table 14 Results of saflufenacil residue trials in sunflower in the	he US (Report 2011/7001273)
---	-----------------------------

Trial No. Location	Crop (Variety)	Application			Matrix	DALA	Residues (mg	g/kg)	
Year	(variety)					(uays)	[Ivicali]		
		No.	g ai/ha	L/ha			Saflufenacil	H11	H35
		(interval, days)	_						
Critical GAP Brazil	Sunflower	1	98	200-300		7			
GAP	Sunflower	2(7)	50	≥47		7			
CA/US									
R100192	Sunflower	[WG]			Seed	7	0.144,	0.030,	< 0.01,
Bagley, IA	(Sun King)	1 ()	50	200			0.140	0.025	< 0.01
2010		1(7)	50	200			[0.14]	[0.028]	[< 0.01]
		[SC]			Seed	7	0.088,	< 0.01,	< 0.01,
		1 ()	50	200			0.140	< 0.01	< 0.01
		1(7)	50	200			[0.11]	[< 0.01]	[< 0.01]
R100193	Sunflower	[WG]			Seed	7	0.027,	< 0.01,	< 0.01,
Benson County, ND	(Mycogen	1 ()	50	190			0.028	< 0.01	< 0.01
2010	Clearfield 8N386)	1(7)	50	190			[0.028]	[< 0.01]	[< 0.01]
		[SC]			Seed	7	0.029,	< 0.01,	< 0.01,
		1 ()	50	190			0.031	< 0.01	< 0.01
		1(7)	50	190			[0.030]	[< 0.01]	[< 0.01]
R100194	Sunflower	[WG]			Seed	7	0.093,	< 0.01,	< 0.01,
Grand Island, NE	(Confection)	1 ()	50	190			0.060	< 0.01	< 0.01
2010		1(7)	50	190			[0.077]	[< 0.01]	[< 0.01]
		[SC]			Seed	7	0.131,	< 0.01,	< 0.01,
		1 ()	50	190			0.107	< 0.01	< 0.01
		1(7)	50	190			[0.12]	[< 0.01]	[< 0.01]

Legume animal feeds

Alfalfa

Twelve residue trials were conducted in the US during the 2013 growing season (Jordan, 2014; Report 2013/7002889). At each trial, alfalfa received either one broadcast applications of saflufenacil at ca. 50 g ai/ha during winter dormancy, just prior to green-up, or a sequential treatment consisting of one broadcast application at ca. 50 g ai/ha just prior to green-up plus a second application at ca. 25 g ai/ha immediately after the first cutting. Three cuttings of forage and hay (dried to a moisture content of 10-20%) were harvested under the first treatment regime and four cuttings were harvested under the second regime. Under both regimes, the first cutting was made at the late bud to early bloom stage and subsequent cuttings were made at the next early bloom stage. The samples were placed into frozen storage within 24 hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Samples were homogenized in the presence of dry ice prior to analysis.

Alfalfa forage samples were stored frozen for up to 223 days, and hay samples for up to 264 days. Residues of saflufenacil, M800H11, M800H35, and M800H02 were analysed using Methods D0603/02 and D0603/04. Average concurrent recoveries from forage across all four analytes and across fortifications at 0.025 and 2.5 mg/kg ranged from 84 to 114%. Relative standard deviations ranged from 8.1 to 18%.

Residues of saflufenacil, M800H11, M800H35, and M800H02 were < 0.025 in all samples of alfalfa forage. Results for alfalfa hay are shown in Table 15.

Trial No.	Crop	Application			Matrix	DALA	Residues (m	ig/kg)		
Location	(Variety)	**				(days)	[Mean]	0 0/		
						[%				
				-		Moisture]		-		-
		No.	g ai/ha	L/ha			Saflufenaci	H11	H35	H02
		(interval,					1			
		days)								
Critical GAP	Alfalfa	1 (dormant)	50			21				
US		2 (in season)	25, per							
			cutting							
Forage - all tri	als					See Hay	< 0.025,	< 0.025,	< 0.025,	< 0.025,
						entries	< 0.025	< 0.025	< 0.025	< 0.025
				-	-		[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130002	Alfalfa	1 (dormant)	50	190	Hay	80	< 0.025,	< 0.025,	< 0.025,	< 0.025,
Ephrata, WA	(Mutiny)					[15]	< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						121	< 0.025,	< 0.025,	< 0.025,	< 0.025,
						[15]	< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						149	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	50	190	Hay	80 ^a	< 0.025,	< 0.025,	< 0.025,	< 0.025,
		1 (in season)	25	192			< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						39	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						67	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						102	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130003	Alfalfa	1 (dormant)	51	191	Hay	48	< 0.025,	< 0.025,	< 0.025,	< 0.025,

Table 15 Results of saflufenacil residue trials conducted in 2013 for alfalfa hay in the US (Report 2013/7002889)

Trial No.	Crop	Application			Matrix	DALA	DALA Residues (mg/kg)			
Location	(Variety)					(days)	[Mean]	0 0,		
						[%				
			• 4	- 11	_	Moisture]	~ ~ ~ `		770 5	
		No.	g ai/ha	L/ha			Saflutenaci	HII	H35	H02
		(interval,					1			
		days)				5.4.73				
Orland, CA	(Genoa)					[16]	< 0.025	< 0.025	< 0.025	< 0.025
						02	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						05 [33]	< 0.023, < 0.025	< 0.023, < 0.025	< 0.025,	< 0.023, < 0.025
						[55]	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						128	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	51	191	Hay	48 ^a	< 0.025,	< 0.025,	< 0.025,	< 0.025,
		1 (in season)	25	192			< 0.025	< 0.025	< 0.025	< 0.025
						25	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						25	0.025,	0.027, < 0.025	< 0.025,	< 0.025, < 0.025
							[0.026]	[0.026]	[< 0.025]	[< 0.025]
						70	< 0.025.	< 0.025,	< 0.025.	< 0.025.
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						99	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
D120004	A 1C 1C	1(1)	50	100	TT	(2	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
K130004 Thatabar A7	Alfalia (Devolution	1 (dormant)	52	198	Нау	63 [17]	< 0.025,	< 0.025,	< 0.025,	< 0.025, < 0.025
Thatcher, AZ						[1/]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]
)					117	< 0.025	< 0.025	< 0.025	< 0.025
						[14]	< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						152	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
		1 (1)	50	100		(0.3	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	52 25	198	Hay	63 "	< 0.025,	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025
		i (in season)	23	190			< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.025 [< 0.025]
						54	< 0.025	< 0.025	< 0.025	< 0.025
						51	< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						89	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						131	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025
							< 0.023	< 0.023	< 0.023	< 0.025 [< 0.025]
R130005	Alfalfa	1 (dormant)	51	197	Hav	28	0.038	0.025	< 0.025	< 0.025
Yuma, AZ	(Pinal 9)	r (uormani)	51	177	may	[20]	0.030,	0.020,	< 0.025	< 0.025
,	< ,						[0.035]	[0.030]	[< 0.025]	[< 0.025]
						50	< 0.025,	< 0.025,	< 0.025,	< 0.025,
						[14]	< 0.025	< 0.025	< 0.025	< 0.025
						-	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						78	< 0.025,	< 0.025,	< 0.025,	< 0.025, < 0.025
							< 0.025 [< 0.025]	< 0.025 [< 0.025]	< 0.025 [< 0.025]	< 0.025 [< 0.025]
		1 (dormant)	50	190	Hav	28 ^a	0.036	< 0.025	< 0.025	< 0.025
		1 (in season)	24	191	1149		0.032	< 0.025	< 0.025	< 0.025
							[0.034]	[< 0.025]	[< 0.025]	[< 0.025]
						21	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
						10	[<u>< 0.025</u>]	[< 0.025]	[< 0.025]	[< 0.025]
						49	< 0.025,	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025
	1	1	1	1	1	1	~ 0.023	~ 0.023	< 0.0∠J	< 0.0∠J

Location (Variety) (interval, days) Image: series of the	Trial No.	Crop	Application			Matrix	DALA	Residues (m	g/kg)		
No. (interval, days) g ainha (days) L'ha (interval, days) No. (interval, days) Interval, (interval, days) Interval, (interval, days) </td <td>Location</td> <td>(Variety)</td> <td></td> <td></td> <td></td> <td></td> <td>(days)</td> <td>[Mean]</td> <td></td> <td></td> <td></td>	Location	(Variety)					(days)	[Mean]			
No. (interval, days) grain Lina (interval, days) Moisturg Huitemai I H11 H35 H02 R13006 Affulfin (interval, days) No. (interval, days) I							[%				
No. (interval, days) ariha (days) Da (interval, days) Da (interval, days) Da (interval, days) Safutcensei (interval, days) H1 H3S H02 R130006 Alfalfa (Regen) I				1		_	Moisture]		1	1	1
R130006 Alfalfa Resense I (dormant) 51 192 Hay 77 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025			No.	g ai/ha	L/ha			Saflufenaci	H11	H35	H02
(days) (dormant) 51 192 Hay (= 0.025)			(interval,					1			
R130006 Alfalfa 1 (dormant) 51 152 Hay 77 <0.025			days)								
R130006 Alfalfa Nordh Rose, Alfalfa (Regen) 1 (dormant) 51 192 Hay 77 <0.025, (<0.025)							=-	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130006 North Rose, NY Alfalfa (Regen) 1 (dormant) 51 192 Hay F 77 <0.023 <0.0025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025							73	< 0.025, < 0.025	< 0.025,	< 0.025,	< 0.025,
R130006 North Rose, Nyr Alfalfa (Regen) I (dormant) 51 192 Hay Haw 77 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.025</td> <td>< 0.025</td> <td>< 0.025</td> <td>0.031</td>								< 0.025	< 0.025	< 0.025	0.031
Norman, Norman, Norman, Norman, Regen) Indiminant Production Product	P120006	A lfalfa	1 (dormant)	51	102	Uav	77	[< 0.025]	[< 0.025]	[< 0.025]	[0.028]
NY Observed Constant C	North Rose	(Regen)	i (domant)	51	192	пау	[58]	< 0.025, < 0.025	< 0.025, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025
R130007 Ruitedge, GA Alfalfa (425 RR) 1 (dormant) 51 286 Hay 73 <0.025	NY	(Regen)					[50]	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130007 Alfalfa 1 (dormant) 51 286 Hay 71* <0.025	- · -						110	< 0.025.	< 0.025.	< 0.025.	< 0.025.
R130007, GA, Alfalfa, Rutledge, GA, Rutledge, Rutledge, GA, Rutledge, Rutledge, GA, Rutledge, Rutledge, GA, Rutled							[39]	< 0.025	< 0.025	< 0.025	< 0.025
R130007 Ruledge, GA Alfalfa (425 RR) 1 (dormant) 1 (dormant) 51 51 192 192 Hay Field 71* (-0.025) <0.025, (-0.025) <0.0								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130007 Alfalfa Rufledge, GA Alfalfa (425 RR) 1 (dormant) 51 25 26 Hay 71* <0.025							142	< 0.025,	< 0.025,	< 0.025,	< 0.025,
R130007 Alfaifa 1 (dormant) 51 25 192 Hay 73* <0.025,								< 0.025	< 0.025	< 0.025	< 0.025
R130007 Alfalfa 1 (dormant) 51 195 Hay 77" <0.025,							3	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130007 Rulledge, GA Alfalfa (425 RR) 1 (dormant) 51 286 Hay 73 < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.			l (dormant)	51	195	Hay	77 "	< 0.025,	< 0.025,	< 0.025,	< 0.025,
R130007 Alfalfa Richland, IA I (dormant) 51 286 Hay 73 < 0.025, (0.025) < 0.025, (0.0			1 (in season)	25	192			< 0.025	< 0.025	< 0.025	< 0.025
R130007 Alfalfa (425 RR) 1 (dormant) 51 286 Hay 73 < 0.025, (-0.025) < < < 0.025, (-0.025) < < < < < < > 0.025, (-0.025) < < < < < < < < < < < < < < < < < < > 0.025, (-0.025) < < < < < < < < < < < < < < < < < < <							26	[< 0.025]	[< 0.023]	[< 0.025]	[< 0.023]
R130007 Alfalfa 1 (dormant) \$1 286 Hay 73 <0.025							20	< 0.025, < 0.025	0.027, < 0.025	< 0.025,	< 0.023, < 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[0.026]	[< 0.025]	[< 0.025]
R13007 Alfalfa 1 (dormant) 51 286 Hay 73 <0.025							58	< 0.025.	< 0.025,	< 0.025,	< 0.025.
R130007 Alfalfa (425 RR) 1 (dormant) 51 286 Hay 73 < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025, < 0.025,								< 0.025	< 0.025	< 0.025	< 0.025
R130007 Rutledge, GA Alfalfa (425 RR) I (dormant) 51 286 Hay F 73 <0.025, (0.025)								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130007 Rutledge, GA Alfalfa (425 RR) I (dormant) 51 286 Hay 73 (17) <0.025 (-0.025)							90	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	510005	. 10.10			2 07			[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R130007	Altalta	l (dormant)	51	286	Hay	73	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rulledge, GA	(423 KK)					[1/]	< 0.025 [< 0.025]	< 0.025 [< 0.025]	< 0.025	< 0.025 [< 0.025]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							105	< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							[24]	< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							161	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.			[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			l (dormant)	51	286	Hay	73 ª	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 (in season)	25	270			< 0.025 [< 0.025]	< 0.025	< 0.025	< 0.025 [< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							28	< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							20	< 0.025	< 0.025	< 0.025	< 0.025, < 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							84	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R130008	Alfalfa	1 (dormant)	50	180	Hay	56	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Richland, IA	(Green					[33]	< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Valley 30-						[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{bmatrix} 1 & 0 & 0.025, 0.02$		00)					95	< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							[13]	< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $							136	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$\begin{bmatrix} 1 \text{ (dormant)} \\ 1 \text{ (in season)} \\ 24 \end{bmatrix} \begin{bmatrix} 24 \\ 24 \end{bmatrix} \begin{bmatrix} 180 \\ 169 \\ 169 \end{bmatrix} \begin{bmatrix} 48 \\ 26 \\ 169 \\ 169 \end{bmatrix} \begin{bmatrix} 56^a \\ 26 \\ 20025 \\ 2$			1 (1	-	100		2	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{bmatrix} 1 \text{ (in season)} & 24 & 109 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$			l (dormant)	50	180	Hay	56 °	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025	< 0.025, < 0.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 (in season)	24	109			> 0.025	< 0.025 [< 0.025]	> 0.025	< 0.025 [< 0.025]
$\begin{vmatrix} 37 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025 \\ < 0.025$							34	< 0.025	< 0.025	< 0.025	< 0.025
							~ '	< 0.025	< 0.025	< 0.025	< 0.025

Location (Variety) Production gain Location (dwys) (Masa) (Masa) (Masa) (Masa) No. (interval, days) gain L/ha Image: Subscript (Second) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 100000	Trial No.	Crop	Application			Matrix	DALA	Residues (m	g/kg)		
No. (interval, days) gaina (asys) J.ha (asys) Bardshaw, Marking (interval, days) Safutarenal (interval, days) J.ha (interval, days)	Location	(Variety)	r ippirourion				(days)	[Mean]			
Image: stand in the s		(• ••••••					[%	[]			
No. (interval, days) gaina (always) Lina (interval, days) Lina (interval, days) Safutimesi (interval, days) H11 H35 H02 R130009 Alfalfa Bradshaw, NE Alfalfa (formani) I I Image: Safutimesi (interval, days)							Moisture				
Image Image <th< td=""><td></td><td></td><td>No.</td><td>g ai/ha</td><td>L/ha</td><td></td><td></td><td>Saflufenaci</td><td>H11</td><td>H35</td><td>H02</td></th<>			No.	g ai/ha	L/ha			Saflufenaci	H11	H35	H02
Idorsyn Idorsyn Image			(interval	0				1			-
R130009 Alfalfa I (dormant) 50 195 Hay 76 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025			(interver,								
R130009 Alfalfa 1 (dormant) 50 195 Hay 75 <0.025			uays)					[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130009 Alfalía 1 (dormant) 50 195 Hay 76 <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.023, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025							75	[< 0.023]	[< 0.025] < 0.025	< 0.025	[< 0.023]
R130009 Alfalfa 1 (dormant) 50 210 <0.025							/5	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025	< 0.025, < 0.025
R130009 Alfialfa 1 (dormant) 50 195 Hay 76 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.023</td> <td>< 0.023</td> <td>< 0.023</td> <td>< 0.023</td>								< 0.023	< 0.023	< 0.023	< 0.023
R130009 Alfalfa 1 (dormant) \$0 195 Hay 76 <0.025							112	[< 0.025]	[< 0.025]	< 0.025	< 0.025
R130009 Alfalfa I (dormant) S0 P35 Hay 76 <0.023 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025							112	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025
R130009 Bradshaw, NE Bradshaw, NE SV48) Alfalfa I (dormant) 1 (dormant) 50 195 Hay Ne P 76 (2025) <0.0025 (2025)								< 0.025	< 0.025	< 0.025	< 0.023
R130010 Bradshaw, NE (Pioneer S5V48) r (domain) SV (With any NE (Pioneer S5V48) r (domain) NE SV48) S r (b) NE Ne Ne Ne Ne Ne Ne Ne Ne r (b) Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne r (b) Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne r (b) Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne r (b) Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne	R130009	Alfalfa	1 (dormant)	50	195	Hav	76	< 0.025	< 0.025	< 0.025	< 0.025
Addian, ND Alfalfa 1 (dormant) 50 194 Hay 76* <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <td>Bradshaw NE</td> <td>(Pioneer</td> <td>i (domiant)</td> <td>50</td> <td>175</td> <td>Tidy</td> <td>[25]</td> <td>< 0.025, < 0.025</td> <td>< 0.025,</td> <td>< 0.025, < 0.025</td> <td>< 0.025, < 0.025</td>	Bradshaw NE	(Pioneer	i (domiant)	50	175	Tidy	[25]	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025	< 0.025, < 0.025
R130010 Alfalfa I (dormant) 50 214 Hay 62 <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025	Diadona (1, 1)	55V48)					[20]	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130010 Alfalfa 1 (dormant) 50 194 Hay 76* <0.025		000)					112	< 0.025.	< 0.025	< 0.025	< 0.025
R130010 Alfalfa NU Alfalfa I (dormant) 50 194 Hay 76* <0.025							[22]	< 0.025	< 0.025	< 0.025	< 0.025
R130010 Alfalfa 1 (dormant) 50 194 Hay 76* <0.025							r1	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130010 Alfalfa (W, 363) 1 (dormant) 50 194 Hay 76 * <0.025;							144	< 0.025.	< 0.025,	< 0.025,	< 0.025,
R130010 Alfalfa H(dormant) 50 194 Hay For any and any and any and any and any								< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130010 Alfalfa I (ormant) 51 214 Hay 62 <0.025			1 (dormant)	50	194	Hay	76 ^a	< 0.025,	< 0.025,	< 0.025,	< 0.025,
R130010 Alfalfa (WL 363) I (dormant) 51 214 Hay 62 <0.025,			1 (in season)	25	199	-		< 0.025	< 0.025	< 0.025	< 0.025
R130010 Alfalfa 1 (dormant) 50 211 Hay 62 ^a <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130010 Alfalfa 1 (dormant) 51 214 Hay 62 <0.025							21	< 0.025,	< 0.025,	< 0.025,	< 0.025,
R130010 Alfalfa 1 (dormant) 51 214 Hay 62 <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025								< 0.025	< 0.025	< 0.025	< 0.025
R130010 Alfalfa I (dormant) 51 214 Hay 62 <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130010 Alfalfa 1 (dormant) 51 214 Hay 62 <0.025							53	< 0.025,	< 0.025,	< 0.025,	< 0.025,
R130010 Alfalfa 1 (dormant) 51 214 Hay 62 <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025								< 0.025	< 0.025	< 0.025	< 0.025
R130010 Alfalfa (WL 363) HQ) 51 214 Hay 62 (2.0025) <0.025, (2.0025)								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130010 Alfalfa St. John, KS I (dormant) 51 214 Hay 62 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <							81	< 0.025,	< 0.025,	< 0.025,	< 0.025,
R130010 Alfalfa 1 (dormant) 51 214 Hay 62 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025								< 0.025	< 0.025	< 0.025	< 0.025
R130010 Alfalfa (WL 363) I (dormant) 51 214 Hay 62 < 0.025,	D120010	4.10.10	1 (1)	51	014	**	(2)	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
St. John, KS (WL 363 HQ)	R130010	Alfalfa	l (dormant)	51	214	Нау	62	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	St. John, KS	(WL 363					[22]	< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		пQ)					00	[< 0.023]	[< 0.023]	[< 0.025]	[< 0.025]
R130011 Alfalfa 1 (dormant) 52 147 Hay 35 <0.025							90 [2.4]	< 0.023, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							[34]	< 0.023 [< 0.025]	< 0.023	< 0.023 [< 0.025]	< 0.025
R130011 Alfalfa 1 (dormant) 52 147 Hay 62° <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.025, <0.02							114	< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							111	< 0.025,	< 0.025,	< 0.025,	< 0.025, < 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130011 Alfalfa 1 (dormant) 52 147 Hay 35 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025			1 (dormant)	50	211	Hav	62 ^a	< 0.025.	< 0.025.	< 0.025.	< 0.025.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 (in season)	25	210	5		< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			· · · ·					[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							27	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							51	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							83	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D120011	4.10.10	1.71		1.4-			[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{bmatrix} 16 \\ reported \end{bmatrix} \begin{bmatrix} 16 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 0.025 \\ 0.025 \end{bmatrix} = \begin{bmatrix}$	K130011	Altalta	l (dormant)	52	147	Нау	35	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{bmatrix} < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 $	Adrian, ND	(Not					[10]	< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{bmatrix} 02 & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & < 0.025, & <$		reported)					62	[<u>> 0.025]</u>	[<u>> 0.025]</u>	[<u>> 0.025]</u>	[<u>> 0.025</u>]
$\begin{bmatrix} 18 \\ 60.025 \\ \hline \\ $							02 [18]	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							[10]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.025 [< 0.025]
$ \begin{vmatrix} 10^{7} & < 0.025, \\ < 0.025 & < 0.025, \\ < 0.025 & < 0.025, \\ < 0.025 & < 0.025, \\ < 0.025 & < 0.025, \\ < 0.025 & < 0.025, \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 & \\ < 0.025 $							109	< 0.025	< 0.025	< 0.025	< 0.025
[< 0.025] $[< 0.025]$ $[< 0.025]$ $[< 0.025]$ $[< 0.025]$ $[< 0.025]$							107	< 0.025	< 0.025	< 0.025	< 0.025
								[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]

Trial No.	Crop	Application			Matrix	DALA	Residues (m	ıg/kg)		
Location	(Variety)					(days)	[Mean]	0 0,		
						[%				
			1	1	_	Moisture]		1	1	1
		No.	g ai/ha	L/ha			Saflufenaci	H11	H35	H02
		(interval,					1			
		days)								
		1 (dormant)	50	144	Hay	35 ^a	< 0.025,	< 0.025,	< 0.025,	< 0.025,
		1 (in season)	25	151			< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						27	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
						74	(< 0.025]	< 0.025	< 0.025	[< 0.025]
						/ 4	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						118	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130012	Alfalfa	1 (dormant)	52	183	Hay	61	< 0.025,	< 0.025,	< 0.025,	< 0.025,
Smithfield,	(Not					[14]	< 0.025	< 0.025	< 0.025	< 0.025
UT	reported)					00	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						98	< 0.025,	< 0.025,	< 0.025,	< 0.025,
						[10]	< 0.025	< 0.025	< 0.025	< 0.025 [< 0.025]
						140	< 0.025	< 0.025	< 0.025	[< 0.025]
						140	< 0.025, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025	< 0.025, < 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	51	181	Hay	61 ^a	< 0.025,	< 0.025,	< 0.025,	< 0.025,
		1 (in season)	24	175			< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						27	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
						(0)	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						69	< 0.025,	< 0.025,	< 0.025,	< 0.025, < 0.025
							< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.025 [< 0.025]
						115	< 0.025	< 0.025	< 0.025	< 0.025
						110	< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R130013	Alfalfa	1 (dormant)	51	180	Hay	70	< 0.025,	< 0.025,	< 0.025,	< 0.025,
American	(Liberator,					[17]	< 0.025	< 0.025	< 0.025	< 0.025
Falls, ID	Roundup						[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
	Ready)					105	10.005	10.005	10.005	10.005
						105	< 0.025,	< 0.025,	< 0.025,	< 0.025, < 0.025
						[12]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.025 [< 0.025]
						141	< 0.025	< 0.025	< 0.025	< 0.025
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	52	184	Hay	70 ^a	< 0.025,	< 0.025,	< 0.025,	< 0.025,
		1 (in season)	24	169			< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						28	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
						64	$[\le 0.025]$	[<u>< 0.025</u>] < 0.025	[<u>< 0.025]</u>	[≦ 0.025] < 0.025
						04	< 0.025, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
						112	< 0.025.	< 0.025.	< 0.025.	< 0.025.
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]

^a Elapsed time after the first application

Straw, fodder, and forage of cereal grains and grasses

Grasses

Sixteen residue trials were conducted in the US and Canada during the 2012 growing season (Schreier, 2013; Report 2013/7001466). At each trial, forage grass received one broadcast applications of saflufenacil at ca. 100 g ai/ha during dormancy, just prior to green-up, and one broadcast application at ca. 50 g ai/ha at the boot growth stage. Applications were with a soluble concentrate formulation of saflufenacil. At four locations, an additional plot was established and treated with the same regimen using a wettable granule formulation. Forage and hay samples were collected prior to the second application and immediately after the second application. At four trials, samples of straw and seed screenings were also collected. Two trials were conducted in York, Nebraska. These trials used different varieties of grasses, and the in-season treatments were temporally offset by 15 days. The samples were placed into frozen storage within 3 hours of collection, and remained frozen during transportation to the analytical facility and prior to analysis. Samples were homogenized using either a floor chopper in the presence of dry ice or an ultracentrifuge mill with liquid nitrogen cooling prior to analysis.

Grass samples were stored frozen for up to 332 days. Residues of saflufenacil, M800H11, M800H35, and M800H02 were analysed using Methods D0603/02 and D0603/04. Average concurrent recoveries from forage, hay, and seed screenings, across all four analytes, and across fortifications ranging from 0.025 to 25 mg/kg ranged from 85 to 115%. Relative standard deviations ranged from 1 to 25%. For grass straw, concurrent recoveries are summarized in Table 16.

Analyte	Fortification, mg/kg	Percent Recovery	Mean \pm Rel. Std. Dev.
Saflufenacil	0.025	101, 98	
	2.5	129	118 ± 14
	25	126	
M800H11	0.025	81, 109	
	2.5	120	104 ± 13
	25	98	
M800H35	0.025	82, 112	
	2.5	130	113 ± 15
	25	112	

Table 16 Concurrent recovery results for saflufenacil residues in forage grass straw

Table 17 Results of saflufenacil residue trials conducted in 2013 for forage grasses (Report 2013/7001466)

Trial No.	Crop	Application			Matrix	DAL	Residues (mg/kg)		
Country	(Variety)					А	[Mean]			
Location						(days				
			-	-)				
		No.	g ai/ha	L/ha			Saflufena	H11	H35	H02
		(interval, days)					cil			
Critical GAP	Perennial forage	1 (dormant)	100	≥94		n.s.				
US	grasses	1 (in season)	50							
R120002	Bermuda	1 (dormant)	100	224	Forage	71	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
US	(Trift 85)						< 0.025	< 0.025	< 0.025	< 0.025
Chula, GA							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
					Hay	71	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	100	224	Forage	0	2.16,	0.040,	< 0.025,	0.121,
		1 (71)	50	222			2.94	0.040	< 0.025	0.100
							[2.6]	[0.040]	[< 0.025]	[0.110]
					Hay	0	3.91,	0.070,	< 0.025,	0.144,
							4.55	0.090	< 0.025	0.138
							[<u>4.2</u>]	[0.080]	[< 0.025]	[0.141]
					Seed	47	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
					screen.		< 0.025	< 0.025	< 0.025	< 0.025

Trial No. Country Location	Crop (Variety)	Application			Matrix	DAL A (days	Residues ([Mean]	mg/kg)		
		No. (interval. davs)	g ai/ha	L/ha	-)	Saflufena cil	H11	Н35	H02
		(,					[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
					Straw	47	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	0.030	< 0.025	< 0.025
D 1 0 0 0 0	D 1	1 (1)		100	-	60	[<u><0.025</u>]	[0.028]	[< 0.025]	[< 0.025]
R120003	Bermuda (Common)	l (dormant)	99	199	Forage	60	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	<< 0.025,
US Lebanon OK	(Common)						< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023	< 0.023 [< 0.025]
Leoanon, OK					Hav	60	< 0.025	< 0.025	< 0.025	<< 0.025
							< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	99	199	Forage	0	4.24,	0.070,	< 0.025,	0.095,
		1 (60)	50	205			4.15	0.080	< 0.025	0.123
					How	0	[<u>4.2]</u> 6.35	[0.075]	[< 0.025]	[0.109]
					TTay	0	0.33, 6.22	0.140, 0.290	< 0.023, < 0.025	0.170, 0.225
							[6.3]	[0.215]	[< 0.025]	[0.198]
					Seed	23	0.050,	0.110,	< 0.025,	< 0.025,
					screen.		0.040	0.110	0.040	< 0.025
					~		[<u>0.045]</u>	[0.110]	[0.033]	[< 0.025]
					Straw	23	0.050,	0.210,	0.050, < 0.025	< 0.025, < 0.025
							0.030	0.100	< 0.025 [0.038]	< 0.023 [< 0.025]
R120004	Bermuda	1 (dormant)	99	198	Forage	89	< 0.025.	< 0.025.	< 0.025.	<< 0.025
US	(Common/ Coastal)	- ()			8-		< 0.025	< 0.025	< 0.025	< 0.025
Pilot Point,							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
TX									0 0 0 7	0.005
					Нау	89	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	<< 0.025,
							< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]
		1 (dormant)	99	198	Forage	0	3.15.	0.070.	< 0.025	0.126.
		1 (89)	52	210	0	-	4.70	0.050	< 0.025	0.130
							[<u>3.9]</u>	[0.060]	[< 0.025]	[0.128]
					Hay	0	12.2,	0.340,	< 0.025,	0.289,
							8.42 [10]	0.240	< 0.025	0.233
					Seed	22	0.420	0 120	[< 0.023] 0.070	< 0.025
					screen.		0.370	0.120,	0.090	< 0.025
							[<u>0.40]</u>	[0.120]	[0.080]	[< 0.025]
					Straw	22	0.470,	0.090,	0.120,	< 0.025,
							0.520	0.120	0.160	< 0.025
P120005	Domaildo	1 (domant)	100	207	Foraça	56	[0.50]	[0.105]	[0.140]	[< 0.025]
US	(Coastal)	i (doimain)	100	207	rotage	50	< 0.023, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025	< 0.023, < 0.025
Groom, TX	(Coustail)						[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
,					Hay	56	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
		1 (1)	100	a • -	-		[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	100	207	Forage	0	3.41,	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025
		1 (30)	50	130			[3.6]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]
					Hay	0	2.72,	< 0.025,	< 0.025,	< 0.025,
							4.59	< 0.025	< 0.025	< 0.025
							[<u>3.7]</u>	[< 0.025]	[< 0.025]	[< 0.025]
					Seed	45	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
					screen.		< 0.025	< 0.025	< 0.025	< 0.025
					Straw	45	< 0.025	[> 0.023]	[> 0.025]	[> 0.023]
					Suuw	15	< 0.025	< 0.025	< 0.025	< 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
R120006	Bluegrass	1 (dormant)	104	195	Forage	63	< 0.025,	< 0.025,	< 0.025,	<< 0.025,

County Location Variety (interval, days) safuterne (interval, days) Main (interval, days)	Trial No.	Crop	Application			Matrix	DAL	Residues (mg/kg)		
Location No. (interval, days) g a/ha L/La Subscription H11 H35 H02 US York, NE (not reported) g a/ha L/La Subscription Subscription </td <td>Country</td> <td>(Variety)</td> <td></td> <td></td> <td></td> <td></td> <td>А</td> <td>[Mean]</td> <td></td> <td></td> <td></td>	Country	(Variety)					А	[Mean]			
No. (micrval, days) g aha Lha P Safurcan H11 H35 H02 (al) US York, NE (not reported) (not reported) (a) (a) <t< td=""><td>Location</td><td></td><td></td><td></td><td></td><td></td><td>(days</td><td></td><td></td><td></td><td></td></t<>	Location						(days				
No. (mitronal, days) ganha (mitronal, days) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>)</td> <td></td> <td></td> <td></td> <td></td>)				
US York, NE (mot reported) (mot repor			No.	g ai/ha	L/ha			Saflufena	H11	H35	H02
US (not reported) Image: model of the second of the secon	110	4 1	(interval, days)					C1l			
Tork, Ne Fescue 1 (dormann) 104 195 Forage 0.12,1 0.023,1 0.02		(not reported)						< 0.025	< 0.025	< 0.025	< 0.025
R120010 Fescue 1 (dormant) 104 195 Forage 0.021, 5, 50.02	Y OFK, INE					Have	62	[< 0.025] < 0.025	[< 0.025]	< 0.025	[< 0.025]
R120010 Fescue I (dormant) 104 195 Forage 0 194, 104, 104, 104, 104, 104, 104, 104, 10						нау	03	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025	<< 0.025,
R120010 Fescue 1 (dormant) 99 186 Forage 0 100201 200201 20025 10486, 1 (dormant) 10 195 Forage 0 121 0060 <0025								< 0.023 [< 0.025]	< 0.023	< 0.023 [< 0.025]	< 0.023 [< 0.025]
R120010 Fescue (not reported) 1 (dormant) 90 186 Image of the secue (not reported) 1 (dormant) 90 186 Image of the secue (not reported) 1 (dormant) 100 116 0.140, (1.6) 0.000, (1.6) 0.0025, (1.6) 0.240, (1.6) 0.140, (1.6) 0.140, (1.6) 0.140, (1.6) 0.140, (1.6) 0.140, (1.6) 0.140, (1.6) 0.025, (1.6)			1 (dormant)	104	195	Forage	0	1.94.	0.070.	< 0.025	0.486.
R120010 Fescue 1 (dormant) 99 186 Forage 1 1.143 1.040, <0.025			1 (63)	49	186	1 oruge	Ŭ	1.21	0.060	< 0.025	0.460
R120010 York, NE Fescue (not reported) 1 (dormant) 99 186 (normant) 1000 (normant) 1.61 (normant) 1.60 (normant) 1.61 (normant) 1.60 (normant) 1.61 (normant) 1.61 (normant) 1.61 (normant) 1.61 (normant) 1.61 (normant) 1.61 (normant) 1.61 (normant) 1.60 (normant)			()	-				[1.6]	[0.065]	[< 0.025]	[0.473]
R120010 Fescue 1 (dormant) 99 186 Forage 1.63 0.025 0.025 0.025 R120010 Fescue 1 (dormant) 99 186 Forage 1.63 0.025							1	1.61,	0.140,	< 0.025,	0.240,
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025, 0.02								1.51	0.180	< 0.025	0.344
R120010 Fescue (not reported) 1 (dormant) 99 186 Forage 6 0.030 0.0025 0.0212, 0.0380 0.0025 0.0140, 0.0380 0.0025 0.008, 0.0080 1 1 1 1 1 0.030, 0.0380 0.025 0.0025, 0.028, 0.0028 0.0025, 0.025 0.0025, 0.0025 0.0025								[1.6]	[0.160]	[< 0.025]	[0.292]
R120010 US York, NE Fescue (not reported) York, NE 1 (dormant) 99 1 (48) 186 99 Forage Forage Forage 1 (dormant) 99 1 (48) 186 99 Forage Forage 1 (dormant) 99 1 (48) 186 99 Forage Forage 1 (dormant) 99 1 (48) 186 90 Forage Forage 1 (dormant) 100 142 90 199 186 90.000 Forage 1 (2.3) 1.90							3	0.030,	0.390,	< 0.025,	0.212,
R120010 Fescue (not reported) 1 (dormant) 99 186 Forage (not reported) 1 (dormant) 99 186 Forage (not reported) 1 (dormant) 99 186 Forage (not reported) 1 (dormant) 1 (dormant) 100 142 Forage (not reported) 1 (dormant) 100 142								0.030	0.380	< 0.025	0.181
R120010 Fescue (not reported) 1 (dormant) 99 186 1 (dormant) Forage 99 187 1 (dormant) Forage 1 (dormant) 100 187 123 Forage 123 10000 10000 10000 10000 10000 R120017 Fescue (not reported) 1 (dormant) 99 186 1 (dormant) Forage 148 Forage 123 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000 1000000000000 10000000000000000000000 1000000000000000000000000000000000000							~	[0.030]	[0.385]	[< 0.025]	[0.196]
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025							Э	0.040,	0.340,	< 0.025,	0.058,
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025								0.080	0.410	< 0.023 [< 0.025]	0.084 [0.071]
R120010 Fescue I (dormant) 99 186 Forage 0 0.025 (-0.025) (7	< 0.025	0 200	< 0.025	< 0.071
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							<i>'</i>	< 0.025,	0.330	< 0.025,	< 0.025
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025								[< 0.025]	[0.265]	[< 0.025]	[< 0.025]
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025						Hay	0	7.99,	1.52,	< 0.025,	< 0.025,
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025								5.85	0.890	< 0.025	< 0.025
R120010 Fescue 1 1 6.11, 0 810, 0 <0.025, 0.775								[<u>6.9]</u>	[1.20]	[< 0.025]	[< 0.025]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1	6.11,	0.810,	< 0.025,	1.24,
R120010 Fescue 1 (dormant) 99 186 Forage 48 <0.025								3.18	1.29	< 0.025	0.775
R120010 US York, NE Fescue (not reported) Parkersburg, IN 1 (dormant) 99 1 (dormant) 186 1 (dormant) Forage 1 (dormant) 48 1 (dormant) Forage 1 (dormant) 48 1 (dormant) 100 187 1 (dormant) 186 187 1 (dormant) Forage 1 (dormant) 48 187 1 (dormant) Forage 1 (dormant) 199 187 1 (dormant) 187 187 187 Forage 1 (dormant) 199 188 187 199 188 187 199 188 187 199 188 187 199 189 188 187 199 189 187 199 189 187 199 189 187 199 180 199 199 199 199 199 199 199 199 199 19								[4.6]	[1.05]	[< 0.025]	[1.01]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							3	0.100,	1.56,	< 0.025,	0.077,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								0.140	2.44	0.040	0.238
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5	$\begin{bmatrix} 0.12 \end{bmatrix}$	2.00	0.040	0.126
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5	0.220, 0.370	2.34, 2.39	0.040, < 0.025	0.120, 0.164
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								[0.30]	[2.37]	[0.033]	[0.145]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							7	0.150.	1.63.	< 0.025.	0.059.
Image: constraint of the series of								0.200	1.86	< 0.025	0.060
R120010 US York, NE Fescue (not reported) 1 (dormant) 99 186 No Forage (-0.025) 48 (-0.025) <0.025, (-0.025) <0.025, (-								[0.18]	[1.74]	[< 0.025]	[0.060]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R120010	Fescue	1 (dormant)	99	186	Forage	48	< 0.025,	< 0.025,	< 0.025,	< 0.025,
York, NE York, NE $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	US	(not reported)						< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	York, NE						10	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Hay	48	0.060,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								0.040	< 0.025	< 0.025	< 0.025
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1 (dormant)	00	196	Forman	0	1.00	[< 0.025]	[< 0.025]	[< 0.025]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 (48)	50	187	rorage	U	1. <i>33</i> , 2.66	< 0.023,	< 0.023,	0.025, 0.045
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 (07)	50	10/			[2.3]	[< 0.025]	[< 0.025]	[0.035]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						Hav	0	4.21.	0.640.	< 0.025.	0.603.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	ľ	3.40	0.560	< 0.025	0.423
$ \begin{array}{c} R120007 \\ US \\ Parkersburg, \\ IN \\ \end{array} \begin{array}{c} Bluegrass \\ (not reported) \\ N \\ \end{array} \begin{array}{c} 1 \ (dormant) \\ IN \\ \end{array} \begin{array}{c} 1 \ (dormant) \\ IN \\ \end{array} \begin{array}{c} 100 \\ I \ (dormant) \\ IN \\ \end{array} \begin{array}{c} 142 \\ In \\ I$								[3.8]	[0.600]	[< 0.025]	[0.513]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R120007	Bluegrass	1 (dormant)	100	142	Forage	61	0.030,	< 0.025,	< 0.025,	< 0.025,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	US	(not reported)						< 0.025	< 0.025	< 0.025	< 0.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parkersburg,							[0.028]	[< 0.025]	[< 0.025]	[< 0.025]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IN						(1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Нау	61	< 0.025,	< 0.025,	< 0.025,	< 0.025,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.025	< 0.025	< 0.025	< 0.025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 (dormant)	100	1/12	Forage	0	[<u>< 0.025]</u> 2.22	< 0.025	< 0.025	0.158
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 (00111ant)	50	142	rotage	0	2.22,	< 0.023,	< 0.025, < 0.025	0.150,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1 (01)	50	170			[2.2]	[< 0.025]	[< 0.025]	[0.154]
$ \begin{bmatrix} 1 & 1 \\ 5 & 5 \\ 6 \\ 1 \\ 4 \\ 8 \end{bmatrix} \begin{bmatrix} 0.225 \\ 0.270 \\ 0.025 \\ 0.495 \\ 0.495 \\ 0.245 \end{bmatrix} \begin{bmatrix} 0.025 \\ 0.495 \\ 0.421 \end{bmatrix} $						Hav	0	3.96.	0.220.	< 0.025.	0.347.
[4.8] [0.245] [< 0.025] [0.421]						,		5.56	0.270	< 0.025	0.495
								[<u>4.8</u>]	[0.245]	[< 0.025]	[0.421]

Trial No. Country Location	Crop (Variety)	Application			Matrix	DAL A (days	Residues ([Mean]	mg/kg)		
		No. (interval, days)	g ai/ha	L/ha)	Saflufena cil	H11	H35	H02
R120008 US Germansville , PA	Bluegrass (Unique, Midnight, Blacksburg)	1 (dormant)	102	244	Forage	44	< 0.025, < 0.025 [< 0.025]	0.060, 0.060 [0.060]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]
					Нау	44	0.030, < 0.025 [0.028]	0.170, 0.130 [0.150]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]
		1 (dormant) 1 (44)	102 53	244 237	Forage	0	1.67, 2.01 [<u>1.8]</u>	0.060, 0.070 [0.065]	< 0.025, < 0.025 [< 0.025]	0.239, 0.216 [0.227]
					Нау	0	2.81, 3.49 [<u>3.2]</u>	1.63, 1.31 [1.47]	< 0.025, < 0.025 [< 0.025]	2.08, 1.98 [2.03]
R120009 US Pocatello, ID	Bluegrass (Everest, New Destiny, Midnight, Langara)	1 (dormant)	100	168	Forage	72	<0.025, <0.025 [<0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	<< 0.025, < 0.025 [< 0.025]
	6, 6,				Нау	72	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	<< 0.025, < 0.025 [< 0.025]
		1 (dormant) 1 (72)	100 52	168 177	Forage	0	1.46, 1.40 [<u>1.4]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	0.081, 0.132 [0.107]
				107	Hay	0	2.78, 2.19 [<u>2.5]</u>	1.74, 2.09 [1.92]	< 0.025, < 0.025 [< 0.025]	0.870, 0.813 [0.841]
R120011 US Yuba City,	(Scotts tall)	l (dormant)	100	187	Forage	56	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	<< 0.025, < 0.025 [< 0.025]
ĊĂ					Нау	56	0.070, < 0.025 [0.048]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]
		1 (dormant) 1 (56)	100 50	187 187	Forage	0	7.01, 7.15 [7.1]	0.210, 0.250 [0.230]	<0.025, <0.025 [<0.025]	0.269, 0.274 [0.272]
						1	0.460, 0.650 [0.56]	0.340, 0.420 [0.380]	< 0.025, < 0.025 [< 0.025]	0.141, 0.136 [0.138]
						3	0.230, 0.100 [0.16]	0.470, 0.190 [0.330]	< 0.025, < 0.025 [< 0.025]	0.038, 0.033 [0.036]
						5	0.170, 0.110 [0.14]	0.290, 0.230 [0.260]	< 0.025, < 0.025 [< 0.025]	0.032, 0.039 [0.036]
						7	0.090, 0.150 [0.12]	0.240, 0.390 [0.315]	< 0.025, < 0.025 [< 0.025]	0.040, 0.037 [0.039]
					Нау	0	11.4, 14.2 [<u>13]</u>	0.140, 0.180 [0.160]	< 0.025, < 0.025 [< 0.025]	0.359, 0.344 [0.352]
						1	0.570, 0.560 [0.56]	0.530, 0.460 [0.495]	< 0.025, < 0.025 [< 0.025]	0.358, 0.335 [0.347]
						3	0.270, 0.280 [0.28]	0.580, 0.450 [0.515]	< 0.025, < 0.025 [< 0.025]	0.097, 0.078 [0.088]
						5	0.200, 0.420 [0.31]	0.370, 0.540 [0.455]	< 0.025, < 0.025 [< 0.025]	0.045, 0.099 [0.072]

Trial No. Country Location	Crop (Variety)	Application			Matrix	DAL A (days	Residues ([Mean]	mg/kg)		
		No. (interval, days)	g ai/ha	L/ha	-)	Saflufena cil	H11	H35	H02
						7	0.290, 0.270 [0.28]	0.380, 0.550 [0.465]	< 0.025, < 0.025	0.065, 0.090 [0.078]
R120012 US	Fescue (5-way turf fescue	1 (dormant)	101	201	Forage	29	0.160, 0.190	0.030, 0.030	< 0.025 < 0.025 < 0.025 < 0.025	< 0.025, < 0.025 < 0.025 < 0.025 <
Carlyle, IL	mix)				Hay	29	1.08, 0.680	0.100, 0.070	< 0.025 < 0.025 < 0.025	< 0.025 < 0.025 < 0.025
		1 (dormant) 1 (29)	101 51	201 195	Forage	0	[0.88] 3.07, 2.24	0.040, 0.030	<0.025 <0.025 <0.025	0.110, 0.091
					Hay	0	[2.7] 4.54, 6.30	[0.035] 0.560, 0.590	<pre>[< 0.025] < 0.025, < 0.025</pre>	[0.100] 0.265, 0.249
		1 (dormant) (WG Form.)	101	201	Forage	29	[5.4] 0.08, 0.11	[0.575] < 0.025, < 0.025	[< 0.025] < 0.025, < 0.025	[0.257]
					Hay	29	[0.095] 0.620, 0.470	[< 0.025] 0.100, 0.050	[< 0.025] < 0.025, < 0.025	
		1 (dormant) 1 (29) (WG	101 51	201 194	Forage	0	[0.54] 3.45, 4.45	[0.075] 0.040, 0.050	[< 0.025] < 0.025, < 0.025	
		Form.)			Hay	0	[<u>4.0]</u> 10.4, 0.18	[0.040] 0.820, 1.34	[< 0.025] < 0.025, < 0.025	
R120013	Fescue	1 (dormant)	100	185	Forage	68	<u>[9.8]</u> < 0.025,	[1.08] < 0.025, < 0.025	<0.025 [< 0.025] < 0.025, < 0.025	<< 0.025,
Hastings, NE	(not reported)				Hay	68	< 0.025 [< 0.025] < 0.025,	< 0.025 [< 0.025] < 0.025,	< 0.025 [< 0.025] < 0.025,	< 0.025 [< 0.025] < 0.025,
		1 (dormant)	100	185	Forage	0	< 0.025 [< 0.025] 3.11,	0.040 [0.033] < 0.025,	< 0.025 [< 0.025] < 0.025,	< 0.025 [< 0.025] 0.052,
		1 (68)	50	186	Hay	0	3.28 [3.2] 3.98,	< 0.025 [< 0.025] 0.210,	< 0.025 [< 0.025] < 0.025,	0.044 [0.048] 0.184,
		1 (dormant)	99	185	Forage	68	4.52 [4.2] < 0.025.	0.260 [0.235] < 0.025.	< 0.025 [< 0.025] < 0.025.	0.166 [0.175] << 0.025.
		(WG Form.)		100	How	68	< 0.025 [< 0.025] < 0.025]	< 0.025 [< 0.025] < 0.025]	< 0.025 [< 0.025] < 0.025]	< 0.025 [< 0.025]
		1 (1)	00	105	Tiay	00	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]
		1 (dormant) 1 (68) (WG Form.)	99 50	185 187	Forage	0	3.35, 3.29 [<u>3.3]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	
					Hay	0	7.04, 4.08 [<u>5.6]</u>	0.37, 0.24 [3.05]	< 0.025, < 0.025 [< 0.025]	
R120014 CA Crystal City, MB	Bromegrass (Fleet)	1 (dormant)	102	153	Forage	47	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	<< 0.025, < 0.025 [< 0.025]
					Hay	47	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	<< 0.025, < 0.025 [< 0.025]
		1 (dormant) 1 (47)	102 51	153 154	Forage	0	2.40, 7.52	< 0.025, < 0.025	< 0.025, < 0.025	0.026, < 0.025

Trial No. Country Location	Crop (Variety)	Application			Matrix	DAL A (days	Residues ([Mean]	mg/kg)		
		No. (interval, days)	g ai/ha	L/ha	_)	Saflufena cil	H11	H35	H02
							[5.0]	[< 0.025]	[< 0.025]	[0.026]
					Hay	0	3.52,	0.770,	< 0.025,	0.525,
							2.62	0.690	< 0.025	0.580
							[3.1]	[0.730]	[< 0.025]	[0.552]
		1 (dormant)	102	154	Forage	47	< 0.025, < 0.025	< 0.025,	< 0.025, < 0.025	
		(woronn.)					< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023	
					Hav	47	< 0.025	< 0.025	< 0.025	
					5		< 0.025	< 0.025	< 0.025	
							[< 0.025]	[< 0.025]	[< 0.025]	
		1 (dormant)	102	154	Forage	0	3.02,	< 0.025,	< 0.025,	
		1 (47) (WG	50	152			12.0	< 0.025	< 0.025	
		rom.)			Hav	0	[<u>7.5]</u> 4 53	[< 0.023] 0.25	< 0.023	
					Thuy	Ŭ	5.57	0.23,	< 0.025	
							[<u>5.0]</u>	[0.29]	[< 0.025]	
R120015	Bromegrass	1 (dormant)	96	145	Forage	49	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
CA	(Armada)						< 0.025	< 0.025	< 0.025	< 0.025
Kenton, MB					Hav	10	[< 0.025]	< 0.025	< 0.025	[< 0.025]
					IIay	ر ۲	< 0.040,	< 0.025,	< 0.025	< 0.025, < 0.025
							[0.033]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	96	145	Forage	0	5.70,	< 0.025,	< 0.025,	0.056,
		1 (49)	50	151			8.54	< 0.025	< 0.025	0.085
					TT	0	$\left[\frac{7.1}{4}\right]$	[< 0.025]	[< 0.025]	[0.071]
					нау	0	0.44, 11.4	0.710, 436	< 0.025, < 0.025	0.761,
							[8.9]	[2.54]	[< 0.025]	[0.832]
R120016	Bromegrass	1 (dormant)	100	186	Forage	36	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
CA	(Meadow)						< 0.025	< 0.025	< 0.025	< 0.025
Melfort, SK					TT	26	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
					нау	36	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025	<< 0.025, < 0.025
							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant)	100	186	Forage	0	3.76,	< 0.025,	< 0.025,	< 0.025,
		1 (36)	51	192			3.81	< 0.025	< 0.025	< 0.025
						0	[<u>3.8]</u>	[< 0.025]	[< 0.025]	[< 0.025]
					Нау	0	4.06, 4.07	0.980,	< 0.025, < 0.025	0.595, 0.593
							[4.1]	[0.990]	[< 0.025]	[0.594]
R120017	Bromegrass	1 (dormant)	102	190	Forage	43	< 0.025,	< 0.025,	< 0.025,	<< 0.025,
CA	(Big Foot)						< 0.025	< 0.025	< 0.025	< 0.025
Bon Accord, AB							[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
					Hay	43	< 0.025,	< 0.025,	< 0.025,	< 0.025,
							< 0.025	< 0.025	< 0.025	< 0.025
		1 (1)	102	100	Г	0	[< 0.025]	[< 0.025]	[< 0.025]	[< 0.025]
		1 (dormant) 1 (43)	102 51	190	Forage	0	2.82,	< 0.025, < 0.025	< 0.025, < 0.025	< 0.025, < 0.025
		1 (43)	51	192			[3.4]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.023 [< 0.025]
					Hay	0	6.83,	0.910,	< 0.025,	0.615,
					-		6.75	1.32	< 0.025	0.723
			100	100	-	10	[<u>6.8]</u>	[1.12]	[< 0.025]	[0.669]
		l (dormant)	100	188	Forage	43	< 0.025, 0.050	< 0.025, < 0.025	< 0.025, < 0.025	
		(woronii.)					[0.033]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	
					Hay	43	< 0.025,	< 0.025,	< 0.025,	
					-		< 0.025	< 0.025	< 0.025	
		1.(1	100	100		0	[< 0.025]	[< 0.025]	[< 0.025]	
I	l	1 (dormant)	100	188	Forage	0	3.77,	< 0.025,	< 0.025,	<u> </u>

Trial No. Country Location	Crop (Variety)	Application 1		Matrix	DAL A (days)	Residues ([Mean]	mg/kg)			
		No. (interval, days)	g ai/ha	L/ha		·	Saflufena cil	H11	H35	H02
		1 (43) (WG Form.)	52	195			3.37 [<u>3.6]</u>	< 0.025 [< 0.025]	< 0.025 [< 0.025]	
					Нау	0	6.11, 6.22 [6.2]	0.60, 1.11 [0.86]	< 0.025, < 0.025 [< 0.025]	

Barley straw and fodder, dry

Residue trials in barley (Report 2013/7001464) are described above. Concurrent recoveries from barley straw across all four analytes and across fortifications at 0.025 to 25 mg/kg ranged from 82 to 115%.

Table 18 Results of saflufenacil residue trials for barley straw in the US and Canada (Report 2013/7001464)

Trial No. Country Location Year	Crop (Variety)	Application		Application Matrix		DALA (days)	Residues (mg/kg) [Mean]				
		g ai/ha	L/ha			Saflufenacil	H11	H35	H02		
Critical GAP US	Barley	1 at 50	100		3						
120050 US Wayne, NY 2012	Barley (not specified)	50	167	Straw	3	0.90, 0.72 [<u>0.81]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120051 US Guthrie, IA 2012	Barley (Robust)	539	177	Straw	0 1 3 5 7	Residues not 1 misapplication	reported due 1	to the 10X			
120052 CA Portage la Prairie, MB 2012	Barley (Conlon)	50	119	Straw	3	5.45, 5.97 [<u>5.7]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120053 US Hall, NE 2012	Barley (Lacey)	50	177	Straw	3	0.98, 0.81 [<u>0.90]</u>	0.03, < 0.025 [0.028]	0.028, < 0.025 [0.026]	0.0275, < 0.025 [0.026]		
120054 US Foster, ND 2012	Barley (Pinnacle)	81	232	Straw	3	0.11, 0.08 [0.10]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120055 CA Dundurn, SK 2012	Barley (Copeland)	51	102	Straw	3	4.74, 6.70 [<u>5.7]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120056 CA Taber, AB 2012	Barley (CDC Earl)	51	154	Straw	3	0.86, 0.85 [<u>0.86]</u>	< <u>0.025</u> , < 0.025 [< 0.025]	< <u>0.025</u> , < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120057 US Cache, UT	Barley (Goldeneye)	48	164	Straw	3	1.39, 1.53 [<u>1.5]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		

Trial No. Country Location Year	Crop (Variety)	Application		Matrix	Matrix DALA (days)		Residues (mg/kg) [Mean]				
		g ai/ha	L/ha			Saflufenacil	H11	H35	H02		
2012											
120058 US Kings, CA 2012	Barley (Voluneer)	51	145	Straw	3	2.55, 2.38 [<u>2.5]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120059 US Power, ID 2012	Barley (Statehood)	51	168	Straw	0		< 0.025	< 0.025	< 0.025		
					1		< 0.025	< 0.025	< 0.025		
					3	1.79, 1.44 [<u>1.6]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
					5		< 0.025	< 0.025	< 0.025		
					7		< 0.025	< 0.025	< 0.025		
120060 CA Strathcona, AB 2012	Barley (Coalition)	52	105	Straw	3	0.10, 0.15 [<u>0.12]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120061 CA Sturgeon, AB 2012	Barley (Xena)	52	105	Straw	3	2.50, 2.31 [<u>2.4]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120062 CA Aberdeen, SK 2012	Barley (Copeland)	51	101	Straw	3	6.53, 6.69 [<u>6.6]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120063 CA Waldheim, SK 2012	Barley (CDC Cowboy)	50	100	Straw	3	3.55, 4.59 [<u>4.1]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120064 CA Rosedale, MB 2012	Barley (Newdale)	50	120	Straw	3	5.27, 3.91 [<u>4.6]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		
120065 CA Elton, MB 2012	Barley (Newdale)	50	119	Straw	3	2.58, 1.93 [<u>2.3]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]		

Wheat straw and fodder, dry

Residue trials in wheat (Report 2013/7001462) are described above. Concurrent recoveries from wheat straw across all four analytes and across fortifications at 0.025 to 10 mg/kg ranged from 74 to 116%.

Table 19 Results of saflufenacil residue trials conducted in 2013 for wheat straw in the US and Canada (Report 2013/7001462)

Trial No. Country	Crop (Variety)	Application		Matrix	DALA (days)	Residues (mg/kg) [Mean]			
Location	· · · ·				/				
		g ai/ha	L/ha			Saflufena cil	H11	H35	H02
Critical GAP US	Wheat	1 at 50	100		3				
R120025 US Tallassee, AL	Wheat (AGS 2060)	0.050	131	Straw	3	0.19, 0.25 [<u>0.22]</u>	< 0.025, < 0.025 [< 0.025]	< 0.025, < 0.025 [< 0.025]	< 0.01, < 0.01 [< 0.01]
R120026	Wheat	0.050	187	Straw	3	2.16, 2.54	< 0.025,	< 0.025,	< 0.01,

Trial No. Country Location	Crop (Variety)	Application	on	Matrix DALA (days)	DALA (days)	LA Residues (mg/kg) (Mean]				
Location		g ai/ha	L/ha			Saflufena cil	H11	H35	H02	
US Eiste MO	(Beretta)					[<u>2.4</u>]	< 0.025	< 0.025	< 0.01	
$\frac{F1SK}{P120027}$	Wheat	0.051	140	Strong	0	2 40 1 42	< 0.025	< 0.025	[< 0.01]	
K120027 US	(Barlow)	0.031	140	Straw	0	2.49, 1.42	< 0.025, < 0.025	< 0.025, < 0.025	< 0.01, < 0.01	
Gardner ND	(Darlow)					[2.0]	< 0.025 [< 0.025]	< 0.025 [< 0.025]	< 0.01	
Surditer, TE					1	1.87.2.04	< 0.025	< 0.025	< 0.01	
					-	[2.0]	< 0.025	< 0.025	< 0.01	
							[< 0.025]	[< 0.025]	[< 0.01]	
					3	1.35, 2.44	< 0.025,	< 0.025,	< 0.01,	
						[<u>1.9</u>]	< 0.025	< 0.025	< 0.01	
					-		[< 0.025]	[< 0.025]	[< 0.01]	
					5	1.51, 1.55	< 0.025,	< 0.025,	< 0.01,	
						[1.3]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	< 0.01	
					7	1.93, 1.65	< 0.025,	< 0.025,	< 0.01.	
						[1.8]	< 0.025	< 0.025	< 0.01	
							[< 0.025]	[< 0.025]	[< 0.01]	
R120028	Wheat	0.050	136	Straw	0	2.78, 2.25	< 0.025,	< 0.025,	< 0.01,	
US	(Santa Fe)					[2.5]	< 0.025	< 0.025	< 0.01	
Olathe, KS					1	2 02 2 25	[< 0.025]	[< 0.025] < 0.025	[< 0.01]	
					1	5.02, 2.25	< 0.023, < 0.025	< 0.023, < 0.025	< 0.01, 0.01 [0.01]	
						[2.0]	[< 0.025]	[< 0.025]	[0.01]	
					3	2.33, 2.47	< 0.025,	< 0.025,	< 0.01,	
						[2.4]	< 0.025	< 0.025	< 0.01	
							[< 0.025]	[< 0.025]	[< 0.01]	
					5	2.26, 2.50	< 0.025,	< 0.025,	< 0.01, < 0.01	
						[2.4]	< 0.025 [< 0.025]	< 0.025 [< 0.025]	< 0.01 [< 0.01]	
					7	1.08, 2.27	< 0.025	< 0.025	< 0.01	
						[1.7]	< 0.025	< 0.025	< 0.01	
					_		[< 0.025]	[< 0.025]	[< 0.01]	
R120029	Wheat	0.051	140	Straw	3	1.35, 1.41	< 0.025,	< 0.025,	< 0.01, < 0.01	
US Atlantic IA	(Brick Hard					[<u>1.4</u>]	< 0.025 [< 0.025]	< 0.025 [< 0.025]	< 0.01 [< 0.01]	
R120030	Wheat	0.050	120	Straw	3	236 215	< 0.025	< 0.025	< 0.01	
CA	(Falcon)	01020			5	[2.3]	< 0.025	< 0.025	< 0.01	
Poplar Point, MB	, ,						[< 0.025]	[< 0.025]	[< 0.01]	
R120031	Wheat	0.049	124	Straw	3	3.45, 3.38	< 0.025,	< 0.025,	< 0.01,	
US	(Magnolia)					[<u>3.4]</u>	< 0.025	< 0.025	< 0.01	
East Bernard, 1X	Wheat	0.050	140	Strong	2	0.72.0.02	[< 0.025]	[< 0.025] < 0.025	[< 0.01]	
US	(Faller)	0.050	140	Suaw	5	0.72, 0.93	< 0.025, < 0.025	< 0.023, < 0.025	[0.02], 0.02	
Carrington, ND	(1 41101)					[0102]	[< 0.025]	[< 0.025]	[0:02]	
R120033	Wheat	0.050	140	Straw	3	0.98, 0.82	< 0.025,	< 0.025,	< 0.01,	
US	(Faller)					[<u>0.90]</u>	< 0.025	< 0.025	< 0.01	
Oberon, ND	XX 71	0.051	1.40	G.	2	0.00.0.00	[< 0.025]	[< 0.025]	[< 0.01]	
R120034	Wheat (Ealler)	0.051	142	Straw	3	0.33, 0.36	0.03, 0.03	< 0.025,	0.08, 0.08	
Eldridge, ND	(Faller)					[<u>0.34</u>]	[0.03]	< 0.023 [< 0.025]	[0.08]	
R120035	Wheat	0.050	179	Straw	3	1.21, 1.39	< 0.025,	< 0.025,	0.03, 0.03	
US	(Cert.					[<u>1.3</u>]	< 0.025	< 0.025	[0.03]	
Grand Island, NE	3Traverse)	0.040	100	<u>a</u> .		0.00.1.0.6	[< 0.025]	[< 0.025]		
K120036	Wheat (Bellotrow)	0.049	100	Straw	3	0.32, 1.36	< 0.025,	< 0.025, < 0.025	0.02, 0.02	
CA Watrous, SK	(Denauex)					[<u>0.04</u>]	< 0.023 [< 0.025]	< 0.023 [< 0.025]	[0.02]	
R120037	Wheat	0.048	150	Straw	3	2.55, 2.74	< 0.025,	< 0.025,	< 0.01, 0.01	
CA	(AC Superb)					[2.6]	< 0.025	< 0.025	[0.01]	
Taber, AB							[< 0.025]	[< 0.025]		
R120038	Wheat	0.050	99	Straw	3	0.25, 0.18	< 0.025,	< 0.025,	< 0.01,	
05	(1AM 111)					[<u>0.22]</u>	< 0.025	< 0.025	< 0.01	

Trial No. Country Location	Crop (Variety)	Applicatio	on	Matrix	DALA (days)	Residues (mg/kg) [Mean]			
		g ai/ha	L/ha			Saflufena cil	H11	H35	H02
Plainview, TX							[< 0.025]	[< 0.025]	[< 0.01]
R120039	Wheat	0.049	102	Straw	3	2.44, 1.33	0.03,	< 0.025,	0.02, 0.01
US	(TAM 111)					[<u>1.9</u>]	< 0.025	< 0.025	[0.02]
Olton, TX							[0.03]	[< 0.025]	
R120040	Wheat	0.050	167	Straw	3	1.48, 0.36	< 0.025,	< 0.025,	< 0.01,
US	(Everest)					[<u>0.92</u>]	< 0.025	< 0.025	< 0.01
Larned, KS							[< 0.025]	[< 0.025]	[< 0.01]
R120041	Wheat	0.050	168	Straw	3	2.47, 3.49	< 0.025,	< 0.025,	< 0.01, 0.02
US	(TAM 112)					[<u>3.0]</u>	< 0.025	< 0.025	[0.02]
Jetmore, KS					_		[< 0.025]	[< 0.025]	
R120042	Wheat	0.051	140	Straw	3	1.08, 1.14	< 0.025,	< 0.025,	< 0.01,
US	(Stephens)					[<u>1.1]</u>	< 0.025	< 0.025	< 0.01
Ephrata, WA				-			[< 0.025]	[< 0.025]	[< 0.01]
R120043	Wheat	0.050	150	Straw	3	1.86, 1.76	< 0.025,	< 0.025,	< 0.01,
CA	(AC					<u>[1.8]</u>	< 0.025	< 0.025	< 0.01
Kipp, AB	Carberry)	0.050	1.50	<u>a</u> .		1 00 0 00	[< 0.025]	[< 0.025]	[< 0.01]
R120044	Wheat	0.052	150	Straw	3	1.93, 2.28	< 0.025,	< 0.025,	< 0.01,
CA D d GV	(Infinity)					[<u>2.1]</u>	< 0.025	< 0.025	< 0.01
Rosthern, SK	XX 71 /	0.051	1(2	<u>C</u> .	2	1 20 1 57	[< 0.025]	[< 0.025]	[< 0.01]
R120045	Wheat	0.051	163	Straw	3	1.30, 1.57	< 0.025,	< 0.025,	0.05, 0.03
CA Mi (MD	(Unity)					[<u>1.4</u>]	< 0.025	< 0.025	[0.04]
Minto, MB	33.71	0.050	177	C.	2	2 00 1 01	[< 0.025]	[< 0.025]	10.01
R120046	Wheat	0.052	166	Straw	3	2.09, 1.81	< 0.025,	< 0.025,	< 0.01,
	(Buteo)					[<u>2.0]</u>	< 0.025	< 0.025	< 0.01
Elgin, MB	33.71 4	0.051	100	<u>C</u> (2	0.00.0.05	[< 0.025]	[< 0.025]	[< 0.01]
R120047	wheat	0.051	100	Straw	3	0.08, 0.05	< 0.025,	< 0.025,	< 0.01,
CA Lesenhleene AD	(Harvest)					[<u>0.065</u>]	< 0.025	< 0.025	< 0.01
Discriburg, AD	W71+	0.050	100	C4	2	255 276	< 0.025	< 0.025	[< 0.01]
K120048	(Infinity)	0.050	100	Suaw	5	2.33, 3.76	< 0.023, < 0.025	> 0.023,	0.01, 0.02
UA Wakaw SK	(mininy)					[<u>J.4]</u>	< 0.023	< 0.023	[0.02]
WANAW, SN D120040	Wheat	0.040	120	Strow	3	251 242	[> 0.025]	[< 0.025]	< 0.01
CA	(Falcon)	0.049	120	Suaw	5	2.31, 2.42 [2 5]	< 0.023,	< 0.025,	< 0.01, < 0.01
Brandon MB						[<u>4]</u>	< 0.025	< 0.025	< 0.01
Dianaon, MD							[~ 0.045]	[~ 0.025]	[\ 0.01]

Peanut hay

Residue trials in peanut (Report 2011/7006245) are described above. Average concurrent recoveries from peanut hay across all three analytes and across fortifications at 0.01 to 10 mg/kg ranged from 75 to 108%, with a maximum relative standard deviation of 17%.

Table 20 Results of saflufenacil residue trials in peanut hay (Report 2011/7006245)

Trial No.	Crop	Application			Matrix	DALA	Residues (mg/k	(g)	
Country	(Variety)					(days)	[Mean]		
Location									
Year									
		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35
Critical GAP	Peanut	1	90	200-		Not			
Nicaragua				300		specified			
R090523	Peanut	1 ()	46	201	Hay	7	n.s.	n.s.	n.s.
US	(Georgia 02C)	1 (137)	100	200	-				
Montezuma, GA									
2010									
		1 ()	138	201		7	n.s.	n.s.	n.s.
		1 (137)	300	200					

Trial No. Country Location Year	Crop (Variety)	Application			Matrix	DALA (days)	Residues (mg/kg) [Mean]			
		No. (interval, days)	g ai/ha	L/ha			Saflufenacil	H11	H35	
R090524 US Jeffersonville, GA 2010	Peanut (Georgia DoG)	1 () 1 (122)	47 99	200 198	Hay	7	n.s.	n.s.	n.s.	
		1 () 1 (122)	142 297	200 198		7	n.s.	n.s.	n.s.	
R090525 Brazil São Paulo 2010	Peanut (Runner IAC 886)	1 () 1 (129)	52 98	206 196	Нау	0	3.29, 3.27 [3.3]	0.04, 0.02 [0.03]	< 0.01, < 0.01 [< 0.01]	
						3	5.47, 6.29 [5.9]	0.17, 0.16 [0.16]	< 0.01, < 0.01 [< 0.01]	
						6	6.55, 6.63 [6.6]	0.27, 0.14 [0.20]	< 0.01, < 0.01 [< 0.01]	
						10	4.05, 4.90 [4.5]	0.10, 0.10 [0.10]	< 0.01, < 0.01 [< 0.01]	
						12	5.14, 5.30 [5.2]	0.17, 0.17 [0.17]	< 0.01, < 0.01 [< 0.01]	
R090527 Brazil São Paulo 2010	Peanut (Runner 38/42)	1 () 1 (115)	51 97	256 243	Нау	7	0.75, 1.06 0.90]	0.10, 0.10 [0.10]	< 0.01, < 0.01 [< 0.01]	
R090526 Brazil Mato Grosso do Sul 2009	Peanut (Runner)	1 () 1 (118)	53 92	211 185	Hay	7	0.14, 0.17 [0.16]	0.07, 0.10 [0.08]	< 0.01, < 0.01 [< 0.01]	
R090528 Brazil Paraná 2010	Peanut (Runner IAC 886)	1 () 1 (124)	50 102	252 254	Hay	7	5.10, 5.04 [5.1]	0.71, 0.66 [0.68]	< 0.01, < 0.01 [< 0.01]	
R090529 Uruguay Mercedes-Soriano 2010	Peanut (Runner IAC 886)	1 () 1 (115)	52 97	211 193	Нау	7	0.08, 0.13 [0.11]	0.22, 0.32 [0.27]	< 0.01, < 0.01 [< 0.01]	
R090530 Argentina San Pedro 2010	Peanut (ASEM 485INTA/ Runner)	1 () 1 (131)	54 101	218 202	Нау	7	0.10, 0.13 [0.12]	0.12, 0.18 [0.15]	< 0.01, < 0.01 [< 0.01]	

n.s. = no sample

FATE OF RESIDUES IN STORAGE AND PROCESSING

A high-temperature hydrolysis study was reviewed by the 2011 Meeting, which concluded that saflufenacil is stable under conditions representative of pasteurization, baking, and sterilization. The 2016 Meeting received data showing residues of saflufenacil in raw commodities and processed commodities of barley, wheat, sugar cane, and peanut.

Barley

Four field trials were conducted in the US in 2012 for purposes of examining residues of saflufenacil in processed commodities of barley (Greenland, 2013; Report 2013/7001465). Barley received one

application of saflufenacil at 250g ai/ha ca. three days before harvest at maturity. The application rate reflects a five-fold exaggeration over the critical GAP. Harvested grain was shipped either under ambient conditions (ND and MN sites) or frozen (NE sites) to the processing facility. The grain samples were placed into frozen storage at the processing facility and processed, using simulated commercial practices, into pearled barley, bran (unprocessed), flour, brewing malt, malt culms, spent grain, spent hops, spent yeast, and beer. The processed commodities were placed into frozen storage immediately after processing, and remained frozen during transport to the analytical facility and prior to analysis for residues. Residues of saflufenacil, M800H11, M800H35, and M800H02 were determined using Method D0603/04.

Barley grain and processed commodities were stored for a maximum of 198 days prior to extraction. Concurrent recoveries are presented in Table 21.

Matrix	Fortification level, mg/kg	Recovery, %						
		Saflufenacil	M800H11	M800H35	M800H02			
Grain	0.01	93, 89	78	74	70			
	1.0	85		102	84			
	10	76						
Pearled barley	0.01	84	70	72	131			
	1.0	82	95	73	68			
Bran (unprocessed)	0.01	96, 100	83	90	91			
	1.0	80	84	75	89			
	10	115						
Flour	0.01	89	78	79	86			
	1.0	90	79	87	78			
Brewing malt	0.01	93	90	73	71			
-	1.0	98	72	81	87			
Malt culms	0.01	108, 86	75	71	84			
	1.0	81, 104	74	87	81			
Spent grain	0.01	78	118, 98	80, 105	69, 122			
	1.0	70	78, 72	77, 77	101, 88			
Spent hops	0.01	92	76	74	82			
	1.0	83	65	62	73			
Spent yeast	0.01	109, 87	72	65	81			
	1.0	74, 69	78	72	65			
Beer	0.01	69	66	70	77			
	1.0	65	71	75	74			

Table 21 Concurrent recovery	of saflufenacil	residues in ba	arley grain and	processed commodities
------------------------------	-----------------	----------------	-----------------	-----------------------

Table 22 Residues of sa	aflufenacil in barley	processed commodities ((Report 2013/7001465)
	2		

Trial Location	Matrix	Residue ^a , mg/kg		Processing factor		
		Saflufenacil	M800H11	Total	Saflufenacil	Total
120072 Cass, ND	Grains	0.51	< 0.01	0.53		
	Pearled barley	0.14	< 0.01	0.16	0.28	0.30
	Bran (unprocessed)	1.60	< 0.01	1.62	3.1	3.1
	Flour	0.11	< 0.01	0.13	0.22	0.24
	Brewing malt	0.08	0.02	0.11	0.16	0.21
	Malt culms	0.05	0.03	0.09	0.098	0.17
	Spent grain	0.02	< 0.01	0.04	0.039	0.075
	Spent hops	0.04	< 0.01	0.06	0.078	0.11
	Spent yeast	0.07	< 0.01	0.09	0.14	0.17
	Beer	0.05	< 0.01	0.07	0.098	0.13
120073 Norman, MN	Grains	1.56	< 0.01	1.58		
	Pearled barley	0.10	< 0.01	0.12	0.064	0.076
	Bran (unprocessed)	2.46	< 0.01	2.48	1.6	1.6
	Flour	0.09	< 0.01	0.11	0.058	0.070
	Brewing malt	0.02	< 0.01	0.04	0.013	0.025

Trial Location	rial Matrix Location		5		Processing facto	Processing factor		
		Saflufenacil	M800H11	Total	Saflufenacil	Total		
	Malt culms	0.02	< 0.01	0.04	0.013	0.025		
	Spent grain	< 0.01	< 0.01	< 0.03	< 0.006	< 0.019		
	Spent hops	< 0.01	< 0.01	< 0.03	< 0.006	< 0.019		
	Spent yeast	0.02	< 0.01	0.04	0.013	0.025		
	Beer	< 0.01	< 0.01	< 0.03	< 0.006	< 0.019		
120074 York, NE	Grains	1.07	< 0.01	1.09				
	Pearled barley	0.09	< 0.01	0.11	0.084	0.10		
	Bran (unprocessed)	2.93	< 0.01	2.95	2.7	2.7		
	Flour	0.09	< 0.01	0.11	0.084	0.10		
	Brewing malt	0.03	< 0.01	0.05	0.028	0.046		
	Malt culms	0.02	< 0.01	0.04	0.019	0.037		
	Spent grain	< 0.01	< 0.01	< 0.03	< 0.009	< 0.028		
	Spent hops	0.01	< 0.01	0.03	< 0.009	0.028		
	Spent yeast	0.03	< 0.01	0.05	0.028	0.046		
	Beer	< 0.01	< 0.01	< 0.03	< 0.009	< 0.028		
120075 Hall, NE	Grains	1.18	< 0.01	1.20				
	Pearled barley	0.12	< 0.01	0.14	0.10	0.12		
	Bran (unprocessed)	4.13	< 0.01	4.15	3.5	3.5		
	Flour	0.13	< 0.01	0.15	0.11	0.12		
	Brewing malt	0.05	< 0.01	0.07	0.042	0.058		
	Malt culms	0.06	< 0.01	0.08	0.051	0.067		
	Spent grain	< 0.01	< 0.01	< 0.03	< 0.008	< 0.025		
	Spent hops	0.02	< 0.01	0.04	0.017	0.033		
	Spent yeast	0.04	< 0.01	0.06	0.034	0.050		
	Beer	< 0.01	< 0.01	< 0.03	< 0.008	< 0.025		

^a Residues of M800H35 and M800H02 were < 0.01 mg/kg in all samples. Total values assume residues of 0.01 mg/kg for results reported as < 0.01 mg/kg, and do not include M800H02.

Wheat

Two field trials were conducted in the US in wheat during the 2012 growing season (Norris, 2013; Report 2013/7001463). At each trial, wheat received a single broadcast application of saflufenacil at 50 g ai/ha. In addition, a second plot was established at each trial where wheat received a single application of saflufenacil at 250 g ai/ha. Grain was harvested from each plot three days after application and immediately frozen. Grain samples were shipped, frozen, to the analytical laboratory and to the processing facility. At the processing facility, grain from the 1X plots was processed into aspirated grain fractions, and grain from the $5\times$ plots was processed into bran (unprocessed), flour, germ, gluten, gluten feed meal, middlings, shorts, starch, and whole-grain bread. All samples were maintained frozen, except during processing, from harvest to analysis. Residues of saflufenacil M800H11, M800H35, and M800H02 were determined using Method D0603/04.

Wheat grain and processed commodities were stored frozen for a maximum of 282 days. Concurrent recoveries are presented in Table 23.

Table 23 C	oncurrent	recovery (of saf	lufenacil	residue	s in v	wheat	orain	and	processed	commodities
1 4010 25 0	oneunent	lecovery	or sur	Iurenuen	restaues	5 111	whicut	Siamo	unu	processed	commountes

Matrix	Fortification level, mg/kg	Recovery, %	Recovery, %					
		Saflufenacil	M800H11	M800H35	M800H02			
Grain	0.01	92	73	89	84			
	1.0				75			
	10	83						
Aspirated grain fractions	0.025	111,85	87, 88	99, 74	99			
	2.5	70	91	93				
	10	85	79	94				
Bran (unprocessed)	0.01	85	81	68, 83	75, 81			
	1.0	79	102	84, 98	69, 72			

Matrix	Fortification level, mg/kg	Recovery, %	Recovery, %				
		Saflufenacil	M800H11	M800H35	M800H02		
Flour	0.01	83, 82	99	67, 100	100		
	1.0	62, 84	91	71,86	91		
Germ	0.01	67, 94	79, 87	94, 83	65, 83		
	1.0	73, 76	71, 74	68, 71	67,90		
Gluten	0.01	108	65	72	83		
	1.0	98	72	73	80		
Gluten feed meal	0.025	109	88	93	84		
	2.5	110	75	87	92		
Middlings	0.01	86	95	79	92		
	1.0	87	68	83	82		
Shorts	0.01	96, 107	67	72	81, 67, 110		
	1.0	67,95	88	80	62, 67, 79		
Starch	0.01	73, 80	77, 93	72	96, 83		
	1.0	73, 101	68,95	80	69,72		
Whole grain bread	0.01	85	66, 70	85	91		
	1.0	81	68, 81	89	71		

Table 24 Residues of saflufenacil in wheat	processed commodities (H	Report 2013/7001463)
--	--------------------------	----------------------

Trial Location	Matrix	Residue ^a , mg/kg	5		Processing fac	Processing factor		
		Saflufenacil	M800H11	Total	Saflufenacil	Total		
R120023 Jefferson, IA	Grain (50 g ai/ha)	< 0.01	< 0.01	< 0.03				
	Aspirated grain fraction	0.29	< 0.025	0.36	n.c.	n.c.		
	Grain (250 g ai/ha)	0.12	< 0.01	0.14				
	Bran (unprocessed)	0.18	< 0.01	0.20	1.50	1.43		
	Flour	0.01	< 0.01	0.03	0.083	0.21		
	Germ	0.17	< 0.01	0.19	1.42	1.36		
	Gluten	0.06	< 0.01	0.08	0.50	0.57		
	Gluten Feed Meal	0.06	< 0.025	0.11	0.50	0.79		
	Middlings	0.09	< 0.01	0.11	0.75	0.79		
	Shorts	0.12	< 0.01	0.14	1.00	1.00		
	Starch	< 0.01	< 0.01	< 0.03	< 0.08	<0.21		
	Whole grain bread	0.06	< 0.01	0.08	0.50	0.57		
R120024 Foster, ND	Grain (50 g ai/ha)	0.03	< 0.01	0.05				
	Aspirated grain fraction	7.35	0.08	7.46	245	149		
	Grain (250 g ai/ha)	0.21	< 0.01	0.23				
	Bran (unprocessed)	0.21	< 0.01	0.23	1.00	1.00		
	Flour	0.05	< 0.01	0.07	0.24	0.30		
	Germ	0.17	< 0.01	0.19	0.81	0.83		
	Gluten	0.16	< 0.01	0.18	0.76	0.78		
	Gluten Feed Meal	0.09	< 0.025	0.14	0.43	0.61		
	Middlings	0.04	< 0.01	0.06	0.19	0.26		
	Shorts	< 0.01	< 0.01	< 0.03	< 0.050	< 0.13		
	Starch	< 0.01	< 0.01	< 0.03	< 0.050	< 0.13		
	Whole grain bread	0.06	< 0.01	0.08	0.29	0.35		

^a Residues of M800H35 and M800H02 were \leq LOQ (≤ 0.01 or ≤ 0.025 mg/kg; see Table 23 for lowest limits of method validation) in all samples. Total values assume residues at the LOQ for results reported as \leq LOQ, and do not include M800H02.

n.c. = not calculated due to non-quantifiable residues in the raw agricultural commodity.

Sugar cane

Two field trials were conducted in Brazil in sugar cane during the 2009 growing season (Jones, 2010; Report 2010/1220995). At each trial, sugar cane received a single broadcast application of saflufenacil at 490 g ai/ha while it was between the BBCH growth stages 47 and 49. Sugar cane stalks were harvested from each plot seven days after application and shipped to the processing facility. At the

processing facility, the stalks were processed into bagasse, very-high polarization (VHP) sugar, VHP molasses, white sugar, and white molasses. Following processing, all samples were frozen and shipped to the analytical facility for analysis. Residues of saflufenacil M800H11, and M800H35 were determined using a variation of Method D0603/02.

Samples were stored for a maximum of 333 days. Concurrent recoveries from fortified control samples of stalks, molasses, and bagasse ranged from 70 to 120%, with relative standard deviations of less than 16%. For sugar, concurrent recoveries of saflufenacil ranged from 105 to 131%, with a relative standard deviation of 5.7%. Recoveries of M800H11 and M800H35 from sugar ranged from 81 to 117%, with a maximum relative standard deviation of 11%.

Trial	Matrix	Residue ^a , mg/kg	Residue ^a , mg/kg		
Location					
		Saflufenacil	Total	Saflufenacil	Total
G080442	Stalks	0.02	0.04		
	Bagasse	0.05	0.07	2.5	1.8
	VHP sugar	0.03	0.05	1.5	1.2
	VHP molasses	0.06	0.08	3.0	2.0
	White sugar	0.01	0.03	0.5	0.75
	White molasses	0.06	0.08	3.0	2.0
G080443	Stalks	< 0.01	< 0.03	n.c.	n.c.
	Bagasse	0.01	0.03	n.c.	n.c.
	VHP sugar	< 0.01	< 0.03	n.c.	n.c.
	VHP molasses	0.01	0.03	n.c.	n.c.
	White sugar	< 0.01	< 0.03	n.c.	n.c.
	White molasses	0.01	0.03	n.c.	n.c.

Table 25 Residues of saflufenacil in sugar cane processed commodities (Report 2010/1220995)

^a Residues of M800H11 and M800H35 were < 0.01 in all samples. Total values assume residues at the LOQ for results reported as <LOQ.

n.c. = not calculated due to non-quantifiable residues in the raw agricultural commodity.

Peanut

In the peanut trials described above, peanuts from exaggerated rate trials were processed into meal, crude oil, refined oil, peanut butter, processed nutmeat, and dry roasted peanuts using commercial processing procedures (Report 2011/7006245). Peanuts destined for processing were stored under ambient conditions for one day after harvest, until receipt at the processing facility, where they were placed into frozen storage. Residues of saflufenacil, M800H11, and M800H35 were determined using Method D0603/02.

Peanut samples were stored frozen for a maximum of 467 days. Concurrent recoveries from all matrices ranged from 71 to 117%, with relative standard deviations ranging from 7 to 29%.

No quantifiable residues were found in any samples from the processing study; therefore, processing factors could not be calculated.

RESIDUES IN ANIMAL COMMODITIES

The Meeting received feeding studies conducted with lactating dairy cattle and laying hens.

In the <u>cattle</u> feeding study (Weich, 2013; Report 2013/7002229), lactating Holstein cows were dosed for 28 consecutive days via gelatine capsule using a balling gun at levels equivalent to ca. 0, 5, 17.8, or 62.5 ppm in their feed (dry-weight basis). Three cows were used for each of the lowest three dose levels, and six cows were used for the 62.5-ppm dose level. Milk was collected twice daily and composited (evening milking with the next morning milking). Extra milk samples were collected for analysis of residues in cream and whey. All milk samples were held frozen prior to transport to the analytical facility.

After administration of the final dose, the animals were slaughtered, except for three from the 62.5-ppm group which were used to determine depuration of residues. Samples of liver, both kidneys, fat (omental, perirenal, and subcutaneous), and muscle (loin, round, and flank) were collected and weighed. After collection, the liver, kidney, and muscle samples were chopped and frozen. Frozen tissue samples were homogenized in the presence of dry ice and then shipped, frozen, along with the milk samples to the analytical facility.

Residues of saflufenacil were determined by Method L0073/01. Average recoveries across all matrices ranged from 78 to 115% with a maximum relative standard deviation of 21%. Analyses were completed within 115 days of collection for milk, 105 days for liver, 63 days for kidney, 54 days for muscle, and 110 days for fat. Residues were < 0.01 mg/L in all whole milk, skim milk, milk fat (with the exception of one milk fat sample from the 62.35-ppm dose group bearing residues at 0.0119 mg/L), omental fat, subcutaneous fat, and muscle samples. Residues in perirenal fat, kidney and liver are summarized in Table 26.

Tissue	Feeding level, ppm	Residues, mg/kg			
		Range	Mean		
Milk	0-62.5	< 0.01 (3)	< 0.01		
Muscle	0-62.5	< 0.01 (3)	< 0.01		
Fat (omental)	0-62.5	< 0.01 (3)	< 0.01		
Fat (subcutaneous)	0-62.5	< 0.01 (3)	< 0.01		
Fat (perirenal)	0	< 0.01 (3)	< 0.01		
	5	< 0.01 (3)	< 0.01		
	17.8	0.0318, 0.0343, 0.0514	0.039		
	62.5	< 0.01, 0.0224, 0.0268	0.019		
	62.5 (3 days post dose termination)	< 0.01	< 0.01		
	62.5 (7 days post dose termination)	< 0.01	< 0.01		
	62.5 (10 days post dose termination)	< 0.01	< 0.01		
Kidney	0	< 0.01(3)	< 0.01		
	5	0.0674, 0.0838, 0.0902	0.081		
	17.8	0.217, 0.266, 0.287	0.26		
	62.5	0.333, 0.472, 0.811	0.54		
	62.5 (3 days post dose termination)	0.0887	0.089		
	62.5 (7 days post dose termination)	0.0235	0.024		
	62.5 (10 days post dose termination)	0.0243	0.024		
Liver	0	0.0144, 0.0227, 0.0299	0.022		
	5	13.5, 15.7, 16.4	15		
	17.8	22.8, 35.8, 56.5	38		
	62.5	36.8, 41.4, 45.6	41		
	62.5 (3 days post dose termination)	21.5	22		
	62.5 (7 days post dose termination)	3.61	3.6		
	62.5 (10 days post dose termination)	4.77	4.8		

Table 26 Residues in cattle tissues following	ing 28	days	of dosing	with	saflufenacil
---	--------	------	-----------	------	--------------

In the <u>hen</u> feeding study (Cai, 2013; Report 2013/7001530), white leghorn hens were dosed for 28 consecutive days via gelatine capsule at levels equivalent to ca. 0, 0.98, 9.82, or 49.11 ppm in their feed (dry-weight basis). Twelve hens were used for each of the dose groups. Eggs were collected twice daily and composited (evening collection with the next morning's collection). After compositing, egg samples were held frozen prior to transport to the analytical facility.

Within 24 hours of the final dose, the animals were slaughtered, except for birds selected to determine depuration of residues. Samples of liver, fat (abdominal and subcutaneous), and muscle (thigh and breast) were collected and weighed. After collection, the liver, kidney, and muscle samples were chopped and frozen. Frozen tissue samples were homogenized in the presence of dry ice and then shipped, frozen, along with the egg samples to the analytical facility.

Residues of saflufenacil were determined by Method 029778-0. Average recoveries across all matrices ranged from 83 to 93% with a maximum relative standard deviation of 8%. Analyses were completed within 30 days for all samples. Residues were < 0.01 mg/kg in all control and 49.11-ppm

samples for eggs, fat, and muscle; residues in those matrices from the other dose groups were not analysed. Residues in liver were < 0.01 mg/kg in all control and 9.82-ppm samples; residues in liver from the 0.98-ppm dose group were not analysed. Residues in liver samples from the 49.11 ppm dose group ranged from < 0.01 to 0.0189 mg/kg (mean = 0.016 mg/kg).

APPRAISAL

Saflufenacil is a herbicide belonging to the uracil family of compounds. The biochemical mode of action is a protoporphyrinogen IX oxidase (PPO) inhibitor. Saflufenacil was evaluated as a new compound by the 2011 JMPR. The 2011 Meeting determined that the residue definition for MRL compliance and estimation of dietary exposure for both plant and animal commodities is parent saflufenacil, and that the residue is not fat soluble. The 2011 Meeting also derived an ADI of 0-0.05 mg/kg bw and determined that an ARfD is not necessary.

Saflufenacil was listed by the 47th Session of the CCPR for the evaluation of additional MRLs. The 2016 Meeting received residue data reflecting use of saflufenacil on pomegranate, dessicant uses on barley and wheat, peanut, sunflower, olive, sugarcane, alfalfa, and perennial grasses. In addition, the Meeting received a metabolism study for rice.

Plant metabolism

In a study depicting the metabolism of saflufenacil in <u>rice</u>, upland (dry land) rice (BBCH 22–24) was treated with a single, foliar application of saflufenacil, radiolabelled in either the phenyl or uracil moieties, at a rate of 100 g ai/ha. A sample of rice forage was collected one week after application, and samples of rice grain and straw were collected four to five months after application. Major residues (defined as $\geq 10\%$ TRR and ≥ 0.01 mg/kg) occurred only in forage and straw, and were identified as saflufenacil (ca. 60–80% TRR, ca. 1 mg/kg in forage; ca. 44% TRR, 0.3–1 mg/kg in straw), M800H11 (14% TRR, 0.25 mg/kg in forage (phenyl-label only)), M800H35 (10% TRR, 0.26 mg/kg in straw(phenyl-label only)), M800H02 (16% TRR 0.3 mg/kg in forage (phenyl-label only)). In grain, radioactivity was associated primarily with carbohydrates (54–62% TRR, 0.02–0.07 mg eq./kg).

As with studies reviewed by the 2011 Meeting, the metabolism study in rice shows that saflufenacil is the predominant residue in matrices where it was found. The metabolism study in rice supports the original conclusion that the residue definition for both compliance and dietary intake is saflufenacil.

Methods of analysis

Analytical methods used for analysis of saflufenacil trials being evaluated by the current Meeting were found to be acceptable by the 2011 Meeting. The reported limit of quantification (LOQ) is based on the lowest limit of method validation and is either 0.01 mg/kg or 0.025 mg/kg, depending on the matrix.

Stability of pesticide residues in stored analytical samples

The stability of saflufenacil, M800H35, and M800H11 in plant matrices was evaluated by the 2011 Meeting, which determined that residues of saflufenacil, M800H11, and M800H35 are stable in maize, soya bean, orange, radish root, raisin, and chickpea matrices for at least 553 days (JMPR, 2011).

The 2016 Meeting received storage stability data for the saflufenacil metabolite M800H02 in cereal, oilseed, legume, and citrus matrices. The data indicate that M800H02 is stable in orange fruit, kidney bean, canola seed, wheat grain, wheat forage, and wheat hay for at least 768 days. In addition,

the 2016 Meeting received storage stability data for saflufenacil in bovine muscle, liver, and milk, and in poultry egg. The data demonstrate that saflufenacil is stable in those matrices for at least 125 days.

Results of supervised residue trials on crops

The Meeting received data from supervised residue trials conducted on olive, pomegranate, barley, wheat, sugar cane, peanut, sunflower seed, alfalfa, and perennial forage grass. Field trials were conducted in Brazil, Canada, and the US. All residue results are supported by adequate method and storage stability data, and reflect independent trials unless otherwise noted.

Olives

For <u>olives</u>, the critical GAP is from the registration in the US (four applications at 50 g ai/ha with a 0day PHI). The Meeting notes that the label directs the applicator to avoid treating tree foliage, flowers, buds, and fruit. Four field trials are available reflecting residues resulting from three applications, each at 50 g a.i/ha and harvest zero days after the last application (DALA). The Meeting determined that a fourth application would be unlikely to significantly impact residues since it would be made early in the growing season and saflufenacil has a relatively short field half-life. The Meeting noted that olives were harvested by hand and pitted in the field prior to being frozen. Given that residues of saflufenacil are stable to hydrolysis at pH \leq 7 (JMPR 2011) and that no degradation of residues was observed in homogenised, frozen storage stability samples, the current Meeting determined that the field pitting is unlikely to have had a negative impact on the suitability of the trials.

Mean field trial residues of saflufenacil in pitted olives from independent field trials matching the critical GAP (n = 4) were: < 0.01 (4) mg/kg. Furthermore, residues from a single trial conducted at a five-fold exaggerated application rate were also < 0.01 mg/kg.

Olives are considered a major commodity, generally requiring a minimum of six trials to support a recommendation by the Meeting. Furthermore, hand harvesting of the olives precludes contamination from residues on the ground that would be expected to occur based on the use pattern (ground-directed spray, 0-day PHI) and mechanical harvesting techniques that are frequently used. As the trials are unlikely to reflect residues that would be expected following common agricultural practices for olive, the Meeting decided to not make a recommendation for olives.

Pomegranate

For <u>pomegranate</u>, the critical GAP is from the registration in the US (four applications at 50 g ai/ha on a 21-day interval with a 0-day PHI). The Meeting notes that the label directs the applicator to avoid treating tree foliage, flowers, buds, and fruit. Four field trials are available reflecting residues resulting from four applications, each at 50 g ai/ha and harvest 0 DALA. The Meeting noted that pomegranates were quartered in the field prior to being frozen. Given that residues of saflufenacil are stable to hydrolysis at pH \leq 7 (JMPR 2011) and that no degradation of residues was observed in homogenised storage stability samples, the field quartering is unlikely to have had a negative impact on the suitability of the trials. Furthermore, the Meeting determined that the two trials conducted in Parlier, California are not independent; therefore, only data from only three independent trials are available.

Mean field trial residues of saflufenacil in pomegranate from independent field trials matching the critical GAP (n = 3) were: < 0.01 (3) mg/kg.

The Meeting noted that saflufenacil is a herbicide that is not translocated, that residues would not be expected from the use under consideration, and that all of the available trials had nonquantifiable residues, the Meeting determined that the available data are sufficient. The Meeting estimated a maximum residue level for pomegranate of 0.01^* mg/kg and an STMR of 0.

Barley

For <u>barley</u>, the critical GAP is from registration in the US as a harvest aid (one application at 50 g ai/ha with a 3-day PHI). Fifteen field trials are available reflecting residues resulting from one application at 50 g ai/ha and harvest 3 DALA.

Mean field trial residues of saflufenacil in barley grain from independent field trials matching the critical GAP (n = 14) were: 0.08, 0.12, 0.26, 0.28, 0.30, 0.30, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.48, and 0.54 mg/kg.

The Meeting estimated a maximum residue level for barley grain of 1 mg/kg and an STMR of 0.33 mg/kg.

Wheat

For <u>wheat</u>, the critical GAP is from a registration in the US as a harvest aid (one application at 50 g ai/ha with a 3-day PHI). Twenty-five field trials are available, reflecting residues resulting from one application at 50 g ai/ha and harvest 3 DALA.

Mean field trial residues of saflufenacil in wheat grain from independent field trials matching the critical GAP (n = 25) were: < 0.01 (2), 0.01 (2), 0.02 (7), 0.03 (5), 0.04, 0.06 (2), 0.08, 0.1 (3), 0.22, and 0.50 mg/kg.

The Meeting estimated a maximum residue level for wheat grain of 0.7 mg/kg and an STMR of 0.03 mg/kg. Noting that the GAP in the US includes use on triticale, the Meeting decided to extrapolate the recommendation to triticale.

Sugar cane

For <u>sugar cane</u>, the critical GAP is from registrations in Brazil as a harvest aid (one application at 98 g ai/ha with a 7-day PHI). Nine field trials are available reflecting residues resulting from one application at 98 g ai/ha and harvest 7 DALA.

Mean field trial residues of saflufenacil in sugar cane stalks from independent field trials matching the critical GAP (n = 9) were: < 0.01 (8), and 0.02 mg/kg.

The Meeting estimated a maximum residue level for sugar cane of 0.03 mg/kg, an STMR of 0.01 mg/kg and a highest residue of 0.02 mg/kg.

Peanut

For <u>peanut</u>, the critical GAP is from registrations in Nicaragua (one crop pre-emergence application at 90 g ai/ha).

Mean independent field trial residues of saflufenacil in peanut nutmeat following a single application at 50 g ai/ha with harvest seven days later (n = 8) were: < 0.01 (8) mg/kg.

The meeting concluded that the use pattern used in the field trials is likely to lead to higher residues than the label GAP due to the much shorter time between application and harvest. As all of the residues in the trials were < LOQ, the Meeting decided to make a recommendation for residues in peanut nutmeat.

The Meeting estimated a maximum residue level for peanut nutmeat of 0.01^* mg/kg and an STMR of 0 mg/kg.

Sunflower

The GAP for sunflower in Canada and the US is up to two applications on a 7-day interval at up to 50 g ai/ha, with a 7-day PHI. An additional GAP exists in Brazil (one application up to 98 g ai/ha, 7-day PHI). The 2011 Meeting evaluated eight saflufenacil residue trials on sunflower matching the US GAP (residues ranging from 0.056 to 0.44 mg/kg) and four trials matching the Brazil GAP (residues ranging from < 0.01 to 0.07 mg/kg). The 2011 Meeting noted that there was no GAP corresponding to

the Brazil trials. Comparison of the US and Brazil data showed the Canadian/US GAP to be more critical. The current Meeting received three additional field trials on sunflower matching the GAP in Canada and the US as a harvest aid (two applications at 50 g ai/ha with a 7-day PHI).

Mean field trial residues of saflufenacil in sunflower seed from the newly submitted independent field trials matching the GAP (n = 3) were: 0.03, 0.12, and 0.14 mg/kg.

The Meeting recognised that residues found in the newly submitted supervised field trials are covered by the existing MRL, and confirms its previous recommendation for sunflower (maximum residue = 0.7 mg/kg, STMR = 0.12 mg/kg).

Alfalfa

For <u>alfalfa</u>, the critical GAP is from registrations in the US as broadcast applications during the dormant season (not to exceed 50 g ai/ha) and between cuttings (one application per cutting at 25 g ai/ha with a 21-day PHI). Twelve field trials are available reflecting residues resulting from one application at 50 g ai/ha during the dormant period, just prior to green-up and a second application at 25 g ai/ha immediately after the first cutting. Multiple cuttings were harvested, ranging from 21 to 161 DALA. Of those, eight trials had harvest approximating the label PHI (i.e., 21–28 DALA).

Mean field trial residues of saflufenacil in alfalfa forage from independent field trials matching the critical GAP (n = 8) were: < 0.025 (8) mg/kg. Residues were also < 0.025 mg/kg at all other cuttings, regardless of the DALA.

For alfalfa forage the Meeting estimated median and highest residues of 0.025 mg/kg.

Mean field trial residues of saflufenacil in alfalfa fodder (fresh) from independent field trials matching the critical GAP (n = 8) were: < 0.025 (7), and 0.026 mg/kg.

The Meeting estimated a maximum residue level for alfalfa fodder (dry) of 0.06 mg/kg, a median residue of 0.025 mg/kg (fresh), and a highest residue of 0.026 mg/kg (fresh).

Forage grass

For <u>forage grasses</u>, the critical GAP is from registration in the US as a post-crop emergence broadcast application (applications any time during the dormant phase, not to exceed 100 g ai/ha, followed by applications in season, on a 14-day interval, not to exceed 50 g ai/ha; neither a PHI nor a pre-grazing interval (PGI) is specified). Sixteen field trials are available reflecting residues resulting from one application at 100 g ai/ha during the dormant period, just prior to green-up and a second application at 50 g ai/ha at the boot growth stage.

Mean field trial residues of saflufenacil in grass forage from independent field trials matching the critical GAP (n = 16) were: 1.4, 1.6, 1.8, 2.2, 2.3, 2.6, 3.3, 3.6 (2), 3.8, 3.9, 4.0, 4.2, 7.1 (2), and 7.5 mg/kg.

For grass forage (fresh) the Meeting estimated a median residue of 3.6 mg/kg and a highest residue of 7.5 mg/kg.

Hay or fodder (dry) of grasses

Mean field trial residues of saflufenacil in grass hay (as received) from independent field trials matching the critical GAP noted above (n = 16) were: 2.5, 3.2, 3.7, 3.8, 4.1, 4.2, 4.8, 5.0, 5.6, 6.3, 6.8, 6.9, 8.9, 9.8, 10, and 13 mg/kg.

The Meeting estimated a maximum residue level for grass hay (dry) of 30 mg/kg based on a dry matter content of 88%.

For grass hay (as received), the Meeting estimated a median residue of 5.3 and a highest residue of 13 mg/kg.

Barley straw

For <u>barley</u>, the critical GAP is from registrations in Canada and the US as a harvest aid (one application at 50 g ai/ha with a 3-day PHI). Fifteen field trials are available reflecting residues resulting from one application at 50 g ai/ha and harvest 3 DALA.

Mean field trial residues of saflufenacil in barley straw (as received) from independent field trials matching the critical GAP (n = 15) were: 0.10, 0.12, 0.81, 0.86, 0.90, 1.5, 1.6, <u>2.3</u>, 2.4, 2.5, 4.1, 4.6, 5.7 (2), and 6.6 mg/kg.

Wheat straw

For <u>wheat</u>, the critical GAP is from registrations in Canada and the US as a harvest aid (one application at 50 g ai/ha with a 3-day PHI). Twenty-five field trials are available, reflecting residues resulting from one application at 50 g ai/ha and harvest 3 DALA.

Mean field trial residues of saflufenacil in wheat straw (as received) from independent field trials matching the critical GAP (n = 25) were: 0.07, 0.22 (2), 0.34, 0.82, 0.84, 0.90, 0.92, 1.1, 1.3, 1.4 (2), <u>1.8</u>, 1.9 (2), 2.0, 2.1, 2.3, 2.4 (2), 2.5, 2.6, 3.0, 3.2, and 3.4 mg/kg.

Noting that it is difficult to discern cereal straws from one another, and that there is no evidence for a difference in the residue populations between straw from barley and hay (Kruskal-Wallis test), the Meeting decided to combine the residues (as received; n = 40): 0.07, 0.10, 0.12, 0.22 (2), 0.34, 0.81, 0.82, 0.84, 0.86, 0.90 (2), 0.92, 1.1, 1.3, 1.4 (2), 1.5, 1.6, <u>1.8, 1.9</u> (2), 2.0, 2.1, 2.3 (2), 2.4 (3), 2.5 (2), 2.6, 3.0, 3.2, 3.4, 4.1, 4.6, 5.7 (2), and 6.6 mg/kg.

Based on a dry matter content of 89%, the Meeting estimated a maximum residue level for straw of barley and wheat (dry) of 10 mg/kg.

For barley and wheat straw (as received), the Meeting estimated a median residue of 1.85 mg/kg, and a highest residue of 6.6 mg/kg.

As the GAP in the US includes use on triticale, the Meeting decided to extrapolate the estimates to triticale straw.

Peanut hay

For <u>peanuts</u>, the critical GAP is from registrations in Nicaragua (one crop pre-emergence application at 90 g ai/ha). Eight field trials are available reflecting residues resulting from a single application at 50 g ai/ha with harvest seven days later.

No data are available from trials matching GAP; therefore, the Meeting is not making a recommendation for peanut hay.

Fate of residues during processing

Residues after processing

The Meeting received data depicting the concentration/dilution of residues during processing of barley, wheat, sugar cane, and peanuts. For all crops, processed commodities were derived using simulated commercial practices. The resulting processing factors and STMR-P estimates are summarized below.

Raw agricultural	Processed commodity	Processing factors [median/best estimate] ^a	MRL,	STMR-
commodity			mg/kg	P, mg/kg
Barley grain MRL = 1 STMR = 0.33	Pearled barley	0.28, 0.064, 0.084, 0.10 [0.092]		0.03
511vii(0.55	Bran (unprocessed)	3.1, 1.6, 2.7, 3.5 [2.9]	3	0.96
	Flour	0.22, 0.058, 0.084, 0.11 [0.097]		0.032
	Spent grain	0.039, < 0.006, < 0.009, < 0.008 [0.039]		0.013
	Beer	0.098, < 0.006, < 0.009, < 0.008 [0.098]		0.032

Raw agricultural commodity	Processed commodity	Processing factors [median/best estimate] ^a	MRL, mg/kg	STMR- P, mg/kg
Wheat grain MRL = 0.7 STMR = 0.03	Aspirated grain fraction	245 [245]		7.4
	Flour	0.083, 0.24 [0.16]		0.0048
	Gluten feed meal	0.50, 0.43 [0.46]		0.014
	Shorts	1.0, < 0.05 [1.0]		0.03
	Whole grain bread	0.50, 0.29 [0.40]		0.012
Sugar cane stalk MRL = 0.03 STMR = 0.01	Bagasse	2.5 [2.5]		0.025
	Molasses	3.0 [3]	1	0.03

^a Only finite factors were used to derive the mean processing factor. If no finite factor is available, then the highest factor was used to derive the STMR-P.

Residues in animal commodities

The 2011 Meeting evaluated a cattle feeding study for saflufenacil (feeding levels were 0.15 ppm, 0.48 ppm, and 1.7 ppm), and estimated dietary burdens based on saflufenacil residues in animal feed items from tree nuts, cotton, pulses, cereals, and sunflower. The current Meeting received new feeding studies conducted with lactating cattle and laying hens dosed at higher levels.

In the new cattle feeding study, lactating cows were dosed for 28 days at levels equivalent to ca. 5, 17.8, and 62.5 ppm in the feed. The study is supported by adequate analytical methods and storage stability data. Residues of saflufenacil were < 0.01 mg/kg in all samples from the control group and from all dosing levels in milk, muscle, omental fat, and subcutaneous fat. For other matrices, mean (and maximum) residues of saflufenacil at the 5, 17.8, and 62.5 ppm dose levels, respectively, were:

Perirenal fat = < 0.01 (< 0.01), 0.039, (0.051), and 0.019 (0.027) mg/kg;

Kidney = 0.081 (0.090), 0.26 (0.29), and 0.54 (0.81) mg/kg; and

Liver = 15 (16), 38 (56), and 41 (45) mg/kg.

Residues in kidney increased linearly over the dosing levels used in the study. The levels in perirenal fat and liver indicate that uptake into those commodities reached saturation between the mid- and high-dose levels.

In the new poultry feeding study, laying hens were dosed for 28 days at levels equivalent to ca. 0.98, 9.8, and 49 ppm in the feed. The study is supported by adequate analytical methods and storage stability data. Residues of saflufenacil were < 0.01 mg/kg in all control samples and from samples of eggs, fat, and muscle from the 49 ppm feeding level. Analyses were not conducted for those matrices at lower feeding levels. Residues in liver were < 0.01 mg/kg from the 9.8 ppm dose group; samples from the 0.98 ppm dose group were not analysed. The mean and maximum residues in liver from the 49 ppm dose group were 0.016 and 0.019 mg/kg, respectively.

Estimated maximum and mean dietary burdens of livestock

Dietary burden estimates from the 2011 Meeting have been recalculated by the 2016 Meeting to include contributions from barley, wheat, sugar cane, alfalfa, and forage grasses. Estimated dietary burdens for Australia, the EU, Japan, and Canada/US are summarized below. The livestock diets are listed in Annex 6.

Australia EU Japan Canada/US Livestock Max Mean Max Mean Max Mean Max Mean Cattle (beef) 14 7.4 7.0 2.9 30 15 3.1 1.5 Cattle (dairy) 30 14 18 8.8 12 5.2 14 6.7

Livestock Dietary Burdens (ppm of dry matter diet) for saflufenacil.

	Australia		EU		Japan		Canada/US	
Livestock	Max	Mean	Max	Mean	Max	Mean	Max	Mean
Poultry (broiler)	0.083	0.083	0.28	0.28	0.043	0.043	0.31	0.31
Poultry (layer)	0.083	0.083	3.3	1.8	0.060	0.060	0.31	0.31

The bold values, above, reflect the highest burdens for both MRL estimation (maximum diet) and STMR estimation (mean diet).

Animal commodities residue level estimation

Anticipated residues resulting from the dietary burdens and based on the new feeding studies are summarized below.

Saflufenacil feeding study	Feed level (ppm)	Residues	Feed level (ppm)	Residues (mg/kg)			
	for milk residues	(mg/kg) in milk	for tissue residues				
				Muscle	Liver	Kidney	Fat ^C
MRL beef or dairy cattle							
Feeding study A	17.8	< 0.01	17.8	< 0.01	56.5	0.29	0.051
	62.5	< 0.01	62.5	< 0.01	45.6	0.81	0.027
Dietary burden and high residue	30	< 0.01	30	< 0.01	54	0.43	0.044
STMR beef or dairy cattle	•			•	•		
Feeding study ^B	5	< 0.01	5	< 0.01	15	0.081	< 0.01
	17.8	< 0.01	17.8	< 0.01	38	0.26	0.039
Dietary burden and residue estimate	14	< 0.01	14	< 0.01	31	0.21	0.03

^A Highest residues for tissues and mean residues for milk

^B Mean residues for tissues and mean residues for milk

^C Based on residue in perirenal fat

The 2011 Meeting recommended maximum residue levels of 0.3 mg/kg in mammalian edible offal and 0.01 mg/kg in each of mammalian fats (except milk fats), meat (from mammals other than marine mammals), and milks. The 2016 Meeting confirms its previous recommendations of 0.01 mg/kg for meat (from mammals other than marine mammals) and 0.01 mg/kg for milks.

The Meeting estimated new maximum residue levels for edible offal, mammalian except marine mammals of 60 mg/kg and for mammalian fats (except milk fats) of 0.05 mg/kg. The Meeting withdrew its previous recommendations for these commodities.

Furthermore, the Meeting estimated STMRs of 31 mg/kg for mammalian edible offal and 0.03 mg/kg for mammalian fat.

In the poultry feeding study, residues in samples from the 49-ppm feeding level were < 0.01 in eggs, fat, and muscle; and < 0.01 to 0.019 mg/kg (mean = 0.016 mg/kg) in liver. Based on an estimated maximum dietary burden for poultry of 3.3 ppm, the Meeting estimated maximum residue levels and STMRs of 0.01* mg/kg and 0 mg/kg, respectively, for poultry meats, fats, and eggs. The Meeting estimated a maximum residue level and STMR of 0.01* mg/kg and 0.01 mg/kg, respectively, for edible offal of poultry.

RECOMMENDATIONS

On the basis of the data from supervised trials, the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant and animal commodities: *saflufenacil*.

The residue is not fat soluble.

		MRL, mg/kg			
CCN	Crop/Commodity	New	Previous	STMR	Highest Residue
FI 0355	Pomegranate	0.01*		0	
GC 0640	Barley	1		0.33	
CM 0640	Barley bran (unprocessed)	3		0.96	
GC 0653	Triticale	0.7		0.03	
GC 0654	Wheat, grain	0.7		0.03	
GS 0659	Sugar cane	0.03		0.01	0.02
DM 0659	Sugar cane molasses	1		0.03	
SO 0697	Peanut	0.01*		0	
SO 0702	Sunflower seed	0.7	0.7	0.12	
AL 1020	Alfalfa fodder, dry	0.06		0.025 (ar)	0.025 (ar)
AS 0162	Hay or fodder (dry) of grasses	30		5.3 (ar)	
AS 0640	Barley, straw and fodder, dry	10		1.85 (ar)	
AS 0653	Triticale, straw and fodder, dry	10		1.85 (ar)	
AS 0654	Wheat, straw and fodder, dry	10		1.85 (ar)	
MO 0105	Edible offal (Mammalian)	60	0.3	31	
MF 0100	Mammalian fats (except milk fats)	0.05	0.01	0.01	
MM 0095	Meat (from mammals other than marine	0.01	0.01	0.01	
	mammals)				
ML 0106	Milks	0.01	0.01	0.01	
PE 0112	Eggs	0.01*		0	
PF 0111	Poultry fats	0.01*		0	
PM 0110	Poultry meat	0.01*		0	
PO 0111	Poultry, edible offal of	0.01*		0.01	

For calculating dietary exposure and animal dietary burdens

CCN	Commodity	STMR/Median residue	HR/Highest residue
		mg/kg	mg/kg
AL 1021	Alfalfa forage (green)	0.025	0.025
	Bagasse	0.025	
	Barley, pearled	0.03	
	Barley, bran	0.96	
	Barley, flour	0.032	
	Barely, beer	0.032	
	Barley, malt	0.019	
	Grass forage, fresh	3.6	7.5
	Sugar cane, white sugar	0.005	
DM 0659	Sugar cane, molasses	0.03	
CF 0654	Wheat bran, unprocessed	0.038	
CF 1211	Wheat flour	0.0048	
CF 1210	Wheat germ	0.033	
CP 1212	Wheat, whole-grain bread	0.012	

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The International Estimated Daily Intakes (IEDIs) of saflufenacil were calculated for the 17 GEMS/Food cluster diets using STMRs/STMR-Ps estimated by the current and previous Meetings. The ADI is 0-0.05 mg/kg bw and the calculated IEDIs were 2-20% of the maximum ADI (0.05 mg/kg bw). The Meeting concluded that the long-term exposure to residues of saflufenacil, when used in ways that have been considered by the JMPR, are unlikely to present a public health concern.

Short-term dietary exposure

The 2011 Meeting determined that establishment of an acute reference dose is not necessary for saflufenacil. The Meeting therefore concluded that the short-term dietary exposure to residues of

saflufenacil, resulting from uses that have been considered by the JMPR, is unlikely to present a public health concern.

Report	Author	Year	Title
2009/1069193	Jones, B. and Souza,	2008	Study of Saflufenacil residues in sugarcane (oarlocks), after treatment
	C.		with BAS 800 01 H, under field conditions in Brazil BASF SA,
			Guaratingueta, Brazil
2010/1007833	Thiaener, J. et al.	2010	Metabolism of 14C-BAS 800H in rice. BASF SE, Limburgerhof,
	,		Germany Fed.Rep.
2010/1220995	Jones, B.	2010	Study of residues of Saflufenacil in sugarcane (stalks and processed
2010/1220//0		2010	fractions) after treatment with BAS 800.01 H under field conditions in
			Brazil BASE SA Guaratingueta Brazil
2011/7001293	Riley M.F. and	2011	Saflufenacil: Magnitude of the residue following application of BAS 800
2011//0012/5	Releber T I	2011	00 H and BAS 800 01 H to sunflowers Eurofins Agrossience Services
	Detenter, 1.1.		Inc. Forsyth GA_US
2011/7006245	Gabl I	2012	Determination of residues of Saflufenacil after two applications of BAS
2011//000243	Geni, J.	2012	800.01 H in pegnuts (outdoor) at 8 sites in the United States, Brozil
			Unique and Argonting 2000 2011 Eurofing do Provil Indejetube Provil
2011/7002062	Isuan David Casta	2011	Druguay, and Argentina 2009-2011 Euronnis do Brasil, indatatuda, Brazil
2011//008962	Jones, B. and Costa,	2011	Determination of residues of Salutenacif after two applications of BAS
	E.		800 01 H in peanuis (outdoor) at 8 sites in the United States, Brazil,
			Uruguay, and Argentina 2009-2011 - Report of analytical phase BASF
2012/2002245	a :	0011	SA, Guaratingueta, Brazil
2012/3002347	Guimaraes, S.	2011	Residue study of Saflufenacil in sugarcane (stalks) after treatment with
			BAS 800 01 H under field conditions in Brazil BASF SA, Guaratingueta,
			Brazil
2012/7004761	Li, F.	2012	Independent laboratory validation of BASF analytical method L0073/01
			titled: Method for the determination of BAS 800 H in animal matrices
			using poultry egg matrix JRF America, Audubon PA, US
2013/7001462	Devine, J.M. and	2013	Magnitude of Saflufenacil residues in wheat grain and straw following a
	Cenni, M.		late season application as a desiccant SynTech Research Inc., Sanger CA,
			US
2013/7001464	Norris, F.A.	2013	The magnitude of Saflufenacil residues in barley grain and straw
			following a late season application as a desiccant American Agricultural
			Services Inc., Cary NC, US
2013/7001465	Greenland, R.G.	2013	The magnitude of Saflufenacil residues in barley processed fractions
			following a late season application as a desiccant Stewart Agricultural
			Research Services Inc., Clarence MO, US
2013/7001466	Schreier, T.	2013	Magnitude of residues of Saflufenacil in/on perennial forage grass
			following applications of BAS 800 04 H SC and BAS 800 00 H WG SGS
			North America Inc., Sycamore GA, US
2013/7001530	Cai, L.	2013	Magnitude of the residues in eggs and tissues of laying hens following
			oral administration of Saflufenacil herbicide Ricerca Biosciences LLC,
			Concord OH, US
2013/7001837	Shi, Y. and Rogers, P.	2013	Validation of analytical method D0603/04 [M800H02 (Reg. No
			4118416) only]: Residue method for determination of BAS 800 H
			(Saflufenacil, Reg No 4054449) and its metabolites M800H02 (Reg. No
			4118416), M800H11 (Reg. No 5303307) and M800H35 (Reg. No
			5303308) residues in plant matrices using LC/MS/MS. Alliance Pharma
			Inc., Malvern PA, US
2013/7001861	Robaugh, D.A.	2013	Independent laboratory validation of analytical method number D0603/04
	8		[M800H02 (Reg. No 4118416) only: Residue method for determination
			of BAS 800 H Saflufenacil, Reg. No 4054449) and its metabolites
			M800H02 (Reg. No 4118416), M800H11 (Reg. No 5303307) and
			M800H35 (Reg. No 5303308) residues in plant matrices using
			LC/MS/MS Pyxant Labs Inc., Colorado Springs CO, US
2013/7002226	Weich EI	2013	Final report amendment no 1 - Magnitude of the residues in milk and
2013//002220	Welch, E.I.	2015	tissues of lactating dairy cows following oral administration of
			Saflufenacil herhicide Southwest Bio-I abs Inc. Las Cruces NM LIS
2013/7002229	Weich F.I	2013	Magnitude of the residues in milk and tissues of lactating dairy cowe
2013/1002223		2013	following oral administration of Saflufenacil herbicide (Including
			amendment no. 1) Southwest Bio-Labs Inc. Las Cruces NM US
2013/7002526	Leonard R C	2013	Saflufengoil: Magnitude of residue on alive ID / Droject Handquerters
2015//002550	Loonaiu, K.C.	2015	Sanarenaen. Magintude of residue of onve in-4 rioject ricadquarters,

Report	Author	Year	Title
			Princeton NJ, US
2013/7002889	Jordan, J.M.	2014	Magnitude of the residue of Saflufenacil in alfalfa forage and hay
			following application of BAS 800 04 H BASF Crop Protection, Research
			Triangle Park NC, US
2014/7002080	Leonard, R.C.	2014	Saflufenacil: Magnitude of the residue on pomegranate IR-4 Project
			Headquarters, Princeton NJ, US
2014/7002934	Gordon, B.	2014	Freezer storage stability of Saflufenacil (BAS 800 H) in animal matrices
			BASF Crop Protection, Research Triangle Park NC, US
3012/7001463	Norris, F.A.	2013	The magnitude of Saflufenacil residues in wheat processed fractions
			following a late season application as a desiccant American Agricultural
			Services Inc., Cary NC, US