FENPYROXIMATE(193)

The first draft was prepared by Dr G Ye, Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing China

EXPLANATION

Fenpyroximate is a pyrazole non-systemic selective acaricide/insecticide for the control of mites and hoppers in a wide range of crops including fruits and vegetables. It was first evaluated by JMPR in 1995 and then in 1999 and 2010 for maximum residue levels, and in 2004 and 2007 for toxicology. The currently standing recommendations of JMPR are as follows: ADI: 0–0.01 mg/kg bw (1995), ARfD: 0.02 mg/kg bw (2007), and residue definition: Fenpyroximate for compliance with the MRL and for estimation of dietary intake (both for animal and plant commodities). The residue is fat soluble (1999).

Fenpyroximate was scheduled at the 48th session of the CCPR for Periodic Re-evaluation for residues and toxicology by 2017 JMPR. The meeting received information from manufacturer on the metabolism of fenpyroximate in crops, rotational crop studies, metabolism in animals, environmental fate in soil and water, method of residue analysis, stability in stored analytical samples, use patterns, supervised residue trials, fate of residue during storage and processing, and livestock feeding studies.

IDENTITY

ISO common:	fenpyroximate
Chemical name:	
IUPAC:	tert-butyl (<i>E</i>)-alpha-(1, 3-dimethyl-5-phenoxypyrazol-4-ylmethyleneamino-oxy)- <i>p</i> toluate
CAS:	(<i>E</i>)-1, 1-dimethylethyl 4-[[[((1, 3-dimethyl-5-phenoxy-1H-pyrazol-4-yl) methylene] amino] oxy]methyl]benzoate
CAS Registry No:	134098-61-6
CIPAC No:	695
Synonyms and trade names:	NNI-850
Molecular formula : $C_{24}H_{27}N_3O_4$	
Structural fomular :	

Molecular mass:

421.5 g/mol

PHYSICAL AND CHEMICAL PROPERTIES

The information on chemical and physical properties of pure and technical material of fenpyroximate is shown in Table 1.

984

Table	1 T	The ch	iemica	l and	phy	ysical	pro	perties	of fen	pyr	oximate	pure	and	tecł	nnical	materi	al

Property	Results	Reference
Melting point	Melting range 100 to 101 °C (purity 98.6%)	Krips, H.J.,2001a (Report: PC-4037)
Boiling point	Evaporation of the test substance was observed at temperatures above 215 to 219 °C, but reaction or decomposition of the test substance started in the same temperature range. Therefore no boiling point can be evaluated. (purity 98.6%)	Krips, H.J.,2001a (Report: PC-4037)
Temperature of decomposition	Evaporation of the test substance was observed at temperatures above 215 to 219 °C, but reaction or decomposition of the test substance started in the same temperature range. (purity 98.6%)	Krips, H.J.,2001a (Report: PC-4037)
Relative density	Pure fenpyroximate at 20 °C is 1.25 g/cm ³ (purity 98.6)	Rijsbergen van, L.M., 2001 (Report PC-4033)
Appearance	Pure fenpyroximate: white powder (purity 99.6%) Technical grade fenpyroximate: white crystalline powder (purity 98.6%)	Ota, Y., 2015a (Report: PC-4141) Ota, Y., 2015b (Report: PC-4142) Krips, H.J.,2001b (Report: PC-4039)
Vapour pressure	Pure fenpyroximate at 25 °C is \leq 9.21 × 10 ⁻⁶ Pa (purity 99.6%)	Ota, Y., 2015c (Report: PC-4149)
Volatility at 20°C	Henry's law constant has been calculated from water solubility and vapour pressure data at 25 °C, and is $< 0.0168 \text{ Pa.m}^3 \text{.mol}^{-1}$.	Murata, S., 2016 (Report: PC- 4169)
Solubility in water	Buffer, pH 5: $21.4 \pm 1.6 \ \mu g/L$ Buffer, pH 7: $23.1 \pm 2.8 \ \mu g/L$ Buffer, pH 9: $29.8 \pm 4.6 \ \mu g/L$ All tests at 25 °C, No effect of pH observed. (purity 99.8%)	Hori, K. 1991 (Report: PC-4003)
Solubility in organic solvents at 25°C	Solubility at 20 °C (purity 99.6%):Toluene:199 g/LMethanol:13.4 g/LAcetone:116 g/LEthyl acetate:148 g/LHeptane:3.71 g/L	Furutani, E., 2015a (Report: PC- 4150)
Partition coefficient	Partition coefficient: log Pow 5.01 (20 °C) (purity 99.9%) Partition coefficient: log Pow 5.70 (25 °C, pH 6.4-6.5) (purity 99.6%)	Kudo, M., 2001 (Report: PC- 4009) Furutani, E., 2015b (Report: PC- 4156)
Dissociation constant	The test item does not dissociate as the UV spectra in acid, neutral and alkaline solution are identical. (purity 99.6%)	Furutani, E., 2015c (Report: PC- 4147)
Photochemical degradation	Fenpyroximate half-life of 1.5 hours (pH 7 at 25 °C, with 73 hours of a Xenon arc lamp). Fenpyroximate half-life: 13.6 hours (pH 4), 115.5 hours (pH 7) and 99 hours (pH 9) at 25 °C with illuminance of 4000 l× for periods up to 360 minutes hours.	Swanson, M.B, 1993 (Report: E-4015) Zhao, Y., Li, J., Xi, P., XU, R., Duan, Y. Yang, H., Tan, H, 2014 (Scientific paper)

Property	Results	Reference
Hydrolysis	 Fenpyroximate's half-lives at 25 °C in the dark for periods of up to 30 days: 180 days (pH 5), 226 days (pH 7) and 221 days (pH 9) Fenpyroximate's half-life at 25 °C with illuminance of 4000 lx for periods up to 360 hours: 13.6 hours (pH 4), 115.5 hours (pH7) and 99 hours (pH 9) 	Saxena, A., McCann, D., 1992 (Report: E-4013)

Formulations

Fenpyroximate is primarily available as suspension concentrates containing 51.2 g ai/L, 5.25% fenpyroximate and 53 g ai/L fenpyroximate.

METABOLISM AND ENVIRONMENTAL FATE

Radiolabel Position

Table 2 Radiolabel Position and Chemical Structure of Test Compound

Table 3 Metabolite Codes and Their Related Chemical Structures

Code Number (Synonyms)	Description	Compound found in:	Structure
M-1 (Z-isomer)	IUPAC: tert-butyl (<i>Z</i>)-α-(1,3-dimethyl-5- phenoxypyrazol-4-ylmethyleneamino-oxy)- <i>p</i> - toluate CAS: 1,1-dimethylethyl (<i>Z</i>)-4-[[[[(1,3- dimethyl-5-phenoxy-1 <i>H</i> -pyrazol-4- yl)methylene]amino]oxy]methyl]benzoate	Soil photolysis, aqueous photolysis, surface water, citrus leaves, citrus rind, apple leaves, apple fruit, grape leaves, grape fruit, snap beans, Swiss chard leaves, goat, rotated crops, rat	$H_{3}C$ $H_{2}C$ $H_{2}C$ $H_{3}C$ $H_{2}C$ $H_{3}C$ H

Code Number (Synonyms)	Description	Compound found in:	Structure
M-2	Tert-butyl (<i>E</i>)-4-{[1,3-dimethyl-5-(4- hydroxyphenoxy)pyrazol-4-yl]- methyleneaminooxymethyl}benzoate	Citrus leaves, rat	$H_{3}C$ $H_{2}C$ $H_{2}C$ $H_{3}C$ H
M-3	(<i>E</i>)-4-[(1,3-dimethyl-5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoic acid	Aerobic soil, anaerobic soil, groundwater, surface water, sediment, apple leaves, goat, rotated crops, rat	$H_{3}C$ H_{2} H_{2} H_{2} H_{2} $H_{3}C$ H_{2} H_{2} H_{2} H_{3} H_{2} H_{3} H_{3} H_{2} H_{3} $H_$
N-desmethyl M-3	(<i>E</i>)-4-[(3-methyl-5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoic acid	Goat	
N-desmethyl M-3 acid	(<i>E</i>)-4-[(3-carboxy-5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoic acid	Goat	
M-4	(Z)-4-[(1,3-dimethyl-5-phenocypyrazol-4-yl) methyleneaminooxymethyl]benzoic acid		$H_{3}C$ H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{3} H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{2} H_{3} H_{2} H_{2} H_{2} H_{3} H_{2} H_{2} H_{2} H_{3} H_{2} H_{3} H_{2} $H_{$
M-5	(<i>E</i>)-4-{[(1,3-dimethyl-5-(4- hydroxyphenoxy)pyrazol-4- yl]methyleneaminooxymethyl}benzoic acid	Goat (also present as phenoxy glucuronide), rotated crops, rat	
M-6	1,3-dimethyl-5-phenoxypyrzole-4- carbaldehyde	Apple leaves, grape leaves, rat	H ₃ C CHO N N O CH ₃
M-7	1,3-dimethyl-5-(4-hydroxyphenoxy)pyrzole-4- carbaldehyde		H ₃ C CHO N N O OH CH ₃

Code Number (Synonyms)	Description	Compound found in:	Structure
M-8	1,3-dimethyl-5-phenoxypyrazole-4-carboxylic acid	Aerobic soil, anaerobic soil, surface water, sediment, apple leaves, grape leaves, rotated crops, rat	H ₃ C COOH N N O CH ₃
M-9	3-methyl-5-phenoxypyrzole-4-carbaldehyde	Citrus leaves, apple leaves, grape leaves, rat	H ₃ C, CHO N, N, O, CHO
M-10	1,3-dimethyl-5-(4-hydroxyphenoxy)pyrzole-4- carbonitrile	Rat	
M-11	1,3-dimethyl-5-phenoxypyrazole-4-carbonitrile	Aerobic soil, anaerobic soil, aqueous photolysis, surface water, sediment, apple leaves, grape leaves, rat	
M-12	Tert-butyl (<i>E</i>)4-[(3-methyl-5- phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoate	Soil photolysis, citrus leaves, citrus rind, apple leaves, grape leaves, rotated crops, rat	$H_{3}C$ $H_{1}C$ H_{2} H_{2} H_{2} $H_{3}C$ H_{3
M-12 isomer	Tert-butyl (Z)-4-[(3-methyl-5-phenoxypyrazol- 4-yl)methyleneaminooxymethyl]benzoate	Soil photolysis	$H_{3}C$ H_{2} $H_{3}C$ H_{2} $H_{3}C$ $H_{$
M-13	(<i>E</i>)-1,3-dimethyl-5-phenoxypyrazole-4- carbaldehyde oxime	Rat, citrus leave	H_3C $C=N$ OH H_3C $C=N$ H_3C

Code Number (Synonyms)	Description	Compound found in:	Structure
M-14	3-methyl-5-(4-hydroxyphenoxy)pyrzole-4- carbaldehyde	Rat	Н ₃ С СНО
M-15	Tert-butyl 4-hydroxymethylbenzoate	Citrus leaves, rat	HO O CH ₃ CH ₃ CH ₃
M-16	4-hydroxymethylbenzoic acid	Rat	НО ОН
M-17	4-formylbenzoic acid	Citrus leaves, citrus rind, rat	ОН
M-18	Terephthalic acid	Rat	но он
M-19	(<i>E</i>)-4-[(4-tert- butoxycarbonylphenyl)methyloxyiminomethyl]-1-methyl-5-phenoxypyrazole-3-carboxylic acid	Citrus leaves, apple leaves, grape leaves	HOOC $H_2 = 0$ $CH_3 $
M-20	Tert-butyl (<i>E</i>)-4-[(3-hydroxymethyl-1-methyl- 5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoate	Citrus leaves, apple leaves, grape leaves	HOH ₂ C H $C=N$ H $C=N$ H CH_3 H
M-21	4-cyano-1-methyl-5-phenoxypyrazole-3- carboxylic acid	Goat, rat	
M-22	<i>(E)</i> -2-[4-[(1,3-dimethyl-5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoyloxy]-2- methylpropanoic acid	Goat, rat	$H_{3}C$ H_{2} H_{2} $H_{3}C$ H_{2} $H_{3}C$ H_{3
M-24	3, 4-di(hydroxymethyl)-1-methyl-5-phenoxy- 1 <i>H</i> -pyrazole	Apple leaves	HOH ₂ C, CH ₂ OH

Code Number (Synonyms)	Description	Compound found in:	Structure
MTBT	Mono-(tert-butyl) terephthalate	Soil photolysis, surface water, sediment	HO O O CH ₃ CH ₃ CH ₃
Fen-OH	2-hydroxymethyl-2-propyl (<i>E</i>)-4-[(1,3- dimethyl-5-phenoxypyrazol-4-yl)- methylenaminooxymethyl]benzoate	Goat	$H_{3}C \xrightarrow{H_{2}} O \xrightarrow{H_{2}} O \xrightarrow{CH_{3}} O \xrightarrow{CH_{2}OH} O \xrightarrow{CH_{3}} O \xrightarrow{CH_{{3}} O \xrightarrow{CH_{{3}}} O \xrightarrow{CH_{{3}}} O \xrightarrow{CH_{{3}}} O $
Metabolite 2	2-(5-(4-hydroxyphenoxy)-1-(hydroxymethyl)- 1 <i>H</i> -pyrazole-4-carbamoyl-3- carbonylamino)acetic acid	Goat	

Plant metabolism

The meeting received information on metabolism studies of fenpyroximate after foliar spray (representative use patterns) in citrus, apples, grapes (Fruit crop group), snap beans and cotton (Pulses and Oilseeds crop group) and Swiss chard (Leafy crop group) labelled either in the pyrazole or the benzyl ring.

Citrus (Crop group Citrus fruits)

In one study, 5-6 years old Satsuma mandarin tangerine (Citrus unshiu) trees (Krautter G.R., Downs J., Gibson B.S., Lawrence L.J. 1989, report No. R-4003) were treated with [pyrazole-¹⁴C] fenpyroximate (specific activity 23.02 mCi/mM, radiochemical purity > 99%, mixed with aliquots of an emulsion concentrate containing 5% fenpyroximate, at the application rate of $22.4 \pm 1.5 \text{ mg}$ [¹⁴C] fenpyroximate /tree for phase I trees (sampled at 0-28 DAT) and 33.5 ± 0.5 mg [¹⁴C] fenpyroximate /tree for phase II trees (sampled at normal harvest, 137 DAT) . 10 phase I trees received $61.9 \pm$ 4.3 μ Ci/tree and two trees were harvested at time of 0, 3, 7, 14 and 28 days after treatment. Phase II trees received 704.7 \pm 11.2 μ Ci/tree and were harvested 137 days after treatment at maturity. Radioactive residues in samples of fruits, leaves were quantified by combustion and liquid scintillation spectroscopy. Samples were transferred to the study for further identification of metabolite (Funayama S., 1990, report No. R-4005). Citrus leaves, fruit and rind were extracted with $2 \times \text{acetone/methanol}$ (1:1) and were combusted with an automatic sample combustion system for radioassay. The metabolites were analysed with two-dimensional thin-layer chromatography. Radioactive spots observed by TLC were compared with UV spots of fenpyroximate and its authentic compounds for metabolite identification. Radioactivity at the origin on TLC plates developed with solvent system C was defined as polar metabolites. The polar metabolites were extracted and analysed with enzyme hydrolysis with β -glucosidase or cellulose (Suzuki T., 1995, report no. R-4101).

The residue levels of $[^{14}C]$ fenpyroximate equivalents found in phase I leaves and rind ranged from 1.78 to 5.54 and 0.48 to 0.63 mg eq/kg. No residues were detected in phase one fruit from any

collection period where the detection limit was 0.03 mg eq/kg. The residue levels in Phase II leaves and rind were 1.37 and 0.36 mg eq/kg. Phase II fruit had a residue level of 0.004 mg eq/kg, where the detection limit was 0.004 mg eq/kg. The results are summarised in Table 4

Table 4 Residue levels in leaves, rind and fruit (pulp) of tangerine trees treated with [pyrazole-¹⁴C]-fenpyroximate

Days after treatment	Matrix	Mean residues (mg equiv/kg) ^a	Limit of detection ^b
			(mg eq/kg)
0	Leaves	5.33	0.04
	Rind	0.49	0.19
	Fruit	< 0.03	0.03
3	Leaves	5.54	0.04
	Rind	0.63	0.19
	Fruit	0.025	0.03
7	Leaves	3.37	0.04
	Rind	0.52	0.19
	Fruit	0.01	0.03
14	Leaves	2.27	0.04
	Rind	0.48	0.19
	Fruit	0.02	0.03
28	Leaves	1.78	0.04
	Rind	0.49	0.19
	Fruit	0.02	0.03
137	Leaves	1.37	0.005
	Rind	0.36	0.025
	Fruit	0.0043	0.004

^a Average calculated from 2 trees for day 0-28 (phase I study) and 3 trees for day 137 (phase II study)

^b calculated as (2x background dpm–background dpm)/specific activity/sample size (0.1g for rind, 0.3g for fruit, 0.5g for leaves)

The extracted radioactivity in citrus leaves just after $[^{14}C]$ -fenpyroximate application amounted to 99.1% of the total radioactivity and the concentration was 5.28 mg eq/kg (fenpyroximate equivalents). At day 7, 28 and 137 the extracted radioactivity in the leaves amounted to 76.6, 74.7 and 76.6% of the residual radioactivity. More than 90% of the residual radioactivity in the fruit rind was extracted.

In the leaves the level of fenpyroximate was 4.88 mg eq/kg just after application and then decreased to 0.24 mg eq/kg 137 days after application. In the fruit rind the level of fenpyroximate was 0.44 mg eq/kg just after application and then decreased to 0.12 mg eq/kg 137 days after application. Major metabolites in citrus leaves and rind were M-1 and M-12. Concentrations of M-1 and M-12 were 0.13 and 0.08 mg eq/kg in the leaves, and 0.02 and 0.06 mg eq/kg in the fruit rind at harvest, respectively.

Polar metabolite hydrolysis with β -glucosidase or cellulase revealed M-20 glucoside and several glucosides to exist in the leaves and the fruit rind. Among them, Cp-10 (4-hydroxymethyl-1-methyl-5-phenoxypyrazole-3-ylmethyl β -D-glucopyranoside, the glucose conjugate of M-24) was one of the major products both in leaves and in fruit rind. In the leaves, Cp-10 accounted for 11% (0.12 mg eq/kg) of the extracted radioactivity at harvest. The concentrations of fenpyroximate and metabolites in citrus leaves and rind after application of [¹⁴C]-fenpyroximate are summarised in Tables 5 and 6.

Table 5 Concentration of fenpyroximate and its metabolites in citrus leaves after foliar application of [pyrazole-¹⁴C]-fenpyroximate

Fenpyroximate and its	Residues (mg fenpyroximate equivalents/kg fresh weight)							
metabolites	Days after treatment (phase I study) Phase II study							
	0	3	7	14	28	137		
Fenpyroximate	4.88 (92)	3.37 (61)	1.01 (30)	0.56 (25)	0.51 (29)	0.24 (18)		
M-1	0.23 (4)	0.29 (5)	0.15 (4.5)	0.23 (10)	0.25 (14)	0.13 (9)		

Fenpyroximate and its	Residues (mg fenpyroximate equivalents/kg fresh weight)							
metabolites	Days after treatme	ent (phase I study	r)			Phase II study		
	0	3	7	14	28	137		
M-2	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01		
M-3	n.d.	< 0.06	< 0.06	< 0.06	< 0.06	< 0.01		
M-6	n.d.	< 0.06	< 0.06	< 0.06	< 0.06	0.01 (0.7)		
M-8	n.d.	< 0.06	< 0.06	< 0.06	< 0.06	< 0.01		
M-9	n.d.	0.20 (3.6)	0.13 (3.9)	0.08 (3.5)	< 0.06	< 0.01		
M-11	n.d.	< 0.06	< 0.06	< 0.06	< 0.06	< 0.01		
M-12	0.12 (2)	0.44 (7.9)	0.27 (8)	0.09 (4)	< 0.06	0.08 (5.8)		
M-13	n.d.	< 0.06	< 0.06	< 0.06	< 0.06	< 0.01		
M-14	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01		
M-19	n.d.	< 0.06	< 0.06	< 0.06	< 0.06	< 0.01		
M-20	n.d.	n.d.	n.d.	0.06 (2.6)	< 0.06	0.01 (0.7)		
Others	n.d.	0.10 (1.8)	0.60 (18)	0.10 (4.4)	0.12 (6.7)	0.03 (2.2)		
Origin	0.05 (1)	0.49 (8.8)	0.42 (12)	0.41 (18)	0.45 (25)	0.55 (40)		
Total Extracted	5.28 (99) 2)	4.89 (88.3)	2.58 (76.6)	1.53 (67.4)	1.33 (74.7)	1.05 (76.6)		
Non-extracted	0.05 (0.9)	0.65 (11.7)	0.79 (23.4)	0.74 (32.6)	0.45 (25.3)	0.32 (23.4)		
Total- ¹⁴ C	5.33	5.54	3.37	2.27	1.78	1.371		

n.d.-not detected; Values in parenthesis represent % of the total radioactivity in each sample

Table 6 Concentration of fenpyre	oximate and its	s metabolites in	n citrus fru	uit rind after	foliar application
of [pyrazole- ¹⁴ C]-fenpyroximate					

Fenpyroximate and its	Residues (mg fenpyroximate equivalents/kg fresh weight)					
metabolites	Days after treat	ment (phase I stu	dy)			Phase II study
	0	3	7	14	28	137
Fenpyroximate	0.44 (90)	0.52 (83)	0.42 (81)	0.32 (67)	0.30 (61)	0.12 (33)
M-1	0.05 (10)	0.03 (4.8)	0.02 (3.8)	0.05 (10)	0.02 (4.1)	0.02 (5.5)
M-2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M-3	n.d.	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
M-6	n.d.	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
M-8	n.d.	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
M-9	n.d.	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
M-11	n.d.	< 0.02	< 0.02	< 0.02	< 0.02	0.01 (2.8)
M-12	n.d.	< 0.02	< 0.02	< 0.02	0.02 (4.1)	0.06 (17)
M-13	n.d.	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
M-14	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01
M-19	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01
M-20	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01
Others	n.d.	0.03 (4.8)	0.02 (3.8)	0.02 (4.2)	0.06 (12)	0.02 (5.5)
Origin	n.d.	0.04 (6.3)	0.04 (7.7)	0.07 (15)	0.06 (12)	0.10 (28)
Extracted-14C	0.49 (100)	0.62 (98.4)	0.50 (96.2)	0.46 (95.8)	0.46 (93.9)	0.33 (91.9)
Unextracted-14C	0.00(0)	0.01 (1.6)	0.02 (3.8)	0.02 (4.2)	0.03 (6.1)	0.03 (8.1)
Total- ¹⁴ C	0.49	0.63	0.52	0.48	0.49	0.361

n.d.-not detected; values in parentheses represent % of total radioactive residues in each sample;

In a second study (Funayama S., 1991, report No. R-2006), 3 year old citrus trees (*Citrus unshu* variety *Okitsuwase*) were treated with [benzyl-¹⁴C]-fenpyroximate. Ten phase I trees (sampled 0–28 DAT) were sprayed 10 μ Ci of 50 mg eq/kg solution (20 mL/tree) and four phase II trees (sampled at normal harvest, 98 DAT) were sprayed 35 μ Ci of 50mg equiv/kg solution (20 mL/tree). Citrus leaves and fruits were taken from two trees at day 0, 3, 7, 14 and 28 after treatment for phase I study, and from four trees at day 98 for phase II study. The fruit was peeled and the fruit rind and edible fruit were separated. Citrus leaves and fruits extracted with acetone/methanol (1:1) and were combusted with an automatic sample combustion system for radioassay. The metabolites were analysed with two-dimensional thin-layer chromatography. Radioactive spots observed by TLC were compared with UV spots of fenpyroximate and its authentic compounds for metabolite identification. Radioactivity at the origin on TLC plates developed with solvent system C was defined as polar

metabolites. The polar metabolites were extracted and further analysed with enzyme hydrolysis (β -glucosidase or cellulase).

The radioactivity levels in citrus leaves and fruit rind was 9.80 and 1.13 mg eq/kg at day 0. Radioactivity levels in the pulps were all less than 0.01 mg eq/kg. The radioactivity in the leaves from the phase I study was 4.23 and 2.47 mg eq/kg at day 14 and 28. The radioactivity level in the leaves at day 98 had decreased to 0.86 mg eq/kg. The radioactivity level in fruit rind was 0.87 mg eq/kg at day 28 and 0.21 mg eq/kg at day 98. Detailed results are summarised in Table 7.

Table 7 Extraction of radioactivity in citrus leaves, pulp and rind after foliar application of [benzyl-¹⁴C]-fenpyroximate

Citrus samples	Average concentration (mg fenpyroximate equivalents /kg fresh weight) ^{1), 2)}					
_	Phase I study (day	vs post treatment)				Phase II study
	0	3	7	14	28	98
Leaves						
Extracted-14C	9.77 (100)	9.11 (99)	6.30 (98)	4.08 (96)	2.32 (94)	0.62 (72)
Unextracted-14C	0.03 (<1)	0.06(1)	0.10(2)	0.15 (4)	0.15 (6)	0.24 (28)
Total- ¹⁴ C	9.80	9.17	6.40	4.23	2.47	0.86
Rind						
Extracted-14C	1.12 (99)	1.24 (99)	0.98 (96)	1.05 (94)	0.76 (87)	0.17 (81)
Unextracted-14C	0.01 (1)	0.01 (1)	0.04 (4)	0.08 (6)	0.11 (13)	0.04 (19)
Total- ¹⁴ C	1.13	1.25	1.02	1.13	0.87	0.21
Pulp ³⁾						
Total- ¹⁴ C	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	$< 0.01^{4}$

^a Average calculated from n=2 for phase I study, and n=4 from phase II study

^b Values in parenthesis represent % of the total radioactivity in each sample

 $^{\rm c}$ Radioactivity in fruits were measured as $^{14}{\rm CO}_2$ by combustion

^d Average of two values only

In the leaves the level of fenpyroximate was 9.75 mg eq/kg just after application and decreased to be 1.07 mg eq/kg at day 28. At day 98 the residue level of fenpyroximate in the leaves was 0.21 mg eq/kg. In the fruit rind the level of fenpyroximate was 1.12 mg eq/kg just after application and then decreased to 0.09 mg eq/kg after 98 days.

The major metabolites in leaves and fruit rind were M-1 and M-12. M-1 level in leaves showed a maximum of 2.03 mg eq/kg at day 7 and then decreased to be 0.14 mg eq/kg at day 98. M-12 level became a maximum of 0.21 mg eq/kg at day 3 and 7 and then gradually decreased to 0.07 mg eq/kg at day 98. The fenpyroximate level was 1.12 mg eq/kg just after spray, 0.81 mg eq/kg at day 7 and 0.53 mg eq/kg at day 28. The sum of fenpyroximate, M-1 and M-12 accounted for 69% of residue radioactivity in the leaves and 83% of that in the fruit rind at day 98, respectively. Two new metabolites, M-15 and M-17 were identified in this study. They were detected maximum of 0.04 mg eq/kg at day 7 and 0.16 mg eq/kg at day 14, respectively, after fenpyroximate application, and then decreased to be less than 0.01 mg eq/kg afterward. All other metabolites found have already been identified in the [pyrazole-¹⁴C]-fenpyroximate metabolism study. Hydrolysis of polar metabolites with β -glucosidase or cellulase gave M-15 glucoside and several unknown glucosides at a level in the leaves and fruit rind of less than 0.01 mg eq/kg at day 98. The concentrations of fenpyroximate and metabolites in citrus leaves and rind after application of [¹⁴C]-fenpyroximate are summarised in Tables 8 and 9.

Table 8 Concentration of fenpyroximate and its metabolites in citrus leaves after foliar application of [benzyl-¹⁴C]-fenpyroximate

Fenpyroximate and its	Concentration (Concentration (mg fenpyroximate equivalents/kg fresh weight)					
metabolites	Phase I study (c	hase I study (days after treatment)					
	0	3	7	14	28	98	
Fenpyroximate	9.75 (100)	6.40 (70)	3.09 (48)	1.75 (41)	1.07 (43)	0.21 (24)	
M-1	0.02 (<1)	1.85 (20)	2.03 (30)	1.29 (32)	0.49 (20)	0.14 (16)	
M-2	n.d.	0.04 (<1)	0.03 (<1)	0.02 (<1)	< 0.01	< 0.01	

Fenpyroximate and its	Concentration (Concentration (mg fenpyroximate equivalents/kg fresh weight)					
metabolites	Phase I study (d	lays after treatme	nt)			Phase II study	
	0	3	7	14	28	98	
M-3	n.d.	0.02 (<1)	0.01 (<1)	0.02 (<1)	< 0.01	< 0.01	
M-12	n.d.	0.21 (2)	0.21 (3)	0.14 (3)	0.09 (4)	0.07 (8)	
M-15	n.d.	< 0.01	0.04 (<1)	0.03 (<1)	< 0.01	< 0.01	
M-16	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
M-17	n.d.	0.03 (<1)	0.14 (2)	0.16 (4)	< 0.01	< 0.01	
M-18	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
M-19	n.d.	< 0.01	0.05 (<1)	0.06(1)	< 0.01	< 0.01	
M-20	n.d.	0.07 (<1)	0.05 (<1)	0.02 (<1)	< 0.01	< 0.01	
Others	n.d.	0.33 (4)	0.38 (6)	0.29(7)	0.15 (6)	0.02 (2)	
Origin	< 0.01	0.16 (2)	0.27 (4)	0.30(7)	0.52 (21)	0.18 (21)	
Extracted-14C	9.77 (100)	9.11 (99)	6.30 (98)	4.08 (96)	2.32 (94)	0.62 (72)	
Non-extracted-14C	0.03 (<1)	0.06(1)	0.10(2)	0.15 (4)	0.15 (6)	0.24 (28)	
Total- ¹⁴ C	9.80	9.17	6.40	4.23	2.47	0.86	
n.dnot detected; values in parentheses represent % of total radioactive residues;							

Table 9 Concentration of fenpyroximate and its metabolites in citrus fruit rind after foliar application of [benzyl-¹⁴C]-fenpyroximate

Fenpyroximate and its	Concentration (mg fenpyroximate equivalents//kg fresh weight)						
metabolites	Phase I study (d	lays after treatment)			Phase II study		
	0	7	14	28	98		
Fenpyroximate	1.12 (100)	0.81 (80)	0.83 (73)	0.53 (61)	0.09 (43)		
M-1	n.d.	0.04 (4)	0.05 (4)	0.02 (2)	0.01 (5)		
M-2	-	-	-	-	< 0.01		
M-3	-	-	-	-	< 0.01		
M-12	n.d.	0.12 (12)	0.12 (11)	0.10(11)	0.04 (19)		
M-15	-	-	-	-	< 0.01		
M-16	-	-	-	-	n.d.		
M-17	n.d.	n.d.	n.d.	n.d.	< 0.01		
M-18	-	-	-	-	n.d.		
M-19	-	-	-	-	< 0.01		
M-20	-	-	-	-	< 0.01		
Others	-	-	-	-	0.01 (5)		
Origin	-	-	-	-	0.02 (10)		
Extracted-14C	1.12 (99)	0.98 (96)	1.05 (94)	0.76 (87)	0.17 (81)		
Unextracted-14C	0.01 (1)	0.04 (4)	0.08 (6)	0.11 (13)	0.04 (19)		
Total- ¹⁴ C	1.13	1.02	1.13	0.87	0.21		

n.d.-not detected; values in parentheses represent % of total radioactive residues

In a third study (Krautter G.R., Downs J., Gibson B.S., Lawrence L.J., 1988, report No. R-4004), 5 years old Dancy tangerine trees (*Citrus nobilis*) were treated with [pyrazole- 14 C]fenpyroximate (specific activity 14.6 mCi/mM, radiochemical purity 99%) at the rates of 21.2 mg [14 C]fenpyroximate/tree for phase I trees and 32.0 mg [14 C]fenpyroximate/tree for phase II trees. Phase I trees received 38.2 µCi/tree and 2 trees were harvested 0, 1, 7, 14 and 28 days post treatment. Phase II trees received 409.6 µCi/tree and 3 trees were harvested at maturity (65 days after treatment). Radioactive residues in samples of leaves, whole fruit were quantified by combustion and liquid scintillation spectroscopy. The citrus leaves and rind were extracted twice with acetone/methanol, the metabolites were identified by two dimensional TLC using authentic reference standards (Funayama S., 1991, report No. R-4007).

In Phase I trees, residue levels of 11.24–13.76 and 0.96–1.36 mg eq/kg were found in leaves and rind, respectively. No residues were detected in Phase I fruit for any collection period (LOD was 0.13 mg equiv/kg). In Phase II trees residue levels at the time of harvest were 14.263, 1.026 and 0.022 mg eq/kg in leaves, rind and fruit pulp, respectively. Results are shown in Table 10.

Matrix	Sample day					
	0	1	7	14	28	65
Leaves	13.76	12.24	12.07	13.24	11.24	14.263
Rind	0.96	0.97	1.04	1.36	1.10	1.026
Pulp	ND	ND	ND	ND	ND	0.022

Table 10 Mean residue levels in leaves, rind and fruit (pulp) of tangerine trees treated with [pyrazole-¹⁴C]-fenpyroximate, expressed as mg eq/kg

ND not detected

Extractability of radioactivity from leaves ranged 70-96% and approximately 90% from rind. Fourteen radioactive areas were identified by TLC of which 7 were identified. The major radioactive areas corresponded to fenpyroximate, M-1, and M-12; the other identified metabolites were M-3, M-6, M-8, M-9, M-11, M-13 and M-19. Results are presented in Table 11 and 12.In leaves, the level of fenpyroximate was 12.02 mg eq/kg just after application and 5.25 and 3.63 mg eq/kg after 7 and 28 days, respectively. The half-life of fenpyroximate in the leaves from Phase I was calculated to be 18.2 days. In leaves from Phase II the residue levels of fenpyroximate, M-1 and M-12 were 4.44, 1.73 and 0.41 mg eq/kg, respectively and, in total, accounted for 65% of the extracted radioactivity at day 65. Radioactive material remaining at the origin accounted for 19% extracted radioactivity and the levels of other metabolites were < 0.02 mg eq/kg. In rind at day 65 the levels of fenpyroximate, M-1, M-12 and M-3 were 0.60, 0.13, 0.04 and 0.04 mg eq/kg, respectively and were considered as the major metabolites, accounting for 87% of the extracted radioactivity. M-6 was detected at 0.02 mg eq/kg and the level of other metabolites was < 0.02 mg eq/kg.

Table 11 Extraction of radioactivity in citrus leaves and fruit rind after foliar application of [pyrazole-¹⁴C]-fenpyroximate

Citrus samples	Average concentration (mg equiv/kg fenpyroximate equivalents/fresh weight) ^{a,b}				
	Phase I study (days	post treatment)			Phase II study
	0	7	14	28	137
Leaves					
Extracted-14C	13.21 (96.0)	8.47 (70.2)	9.80 (74.0)	9.08 (80.8)	10.15 (71.2)
Unextracted-14C	0.55 (4.0)	3.60 (29.8)	3.44 (26.0)	2.16 (19.2)	4.11 (28.8)
Total-14C	13.76	12.07	13.24	11.24	14.263
Rind					
Extracted-14C	0.88 (91.8)	0.94 (90.7)	1.25 (91.9)	0.99 (89.8)	0.92 (89.1)
Unextracted-14C	0.08 (8.2)	0.10 (9.3)	0.11 (8.1)	0.11 (10.2)	0.11 (10.9)
Total- ¹⁴ C	0.96	1.04	1.36	1.10	1.026

 $^{\rm a}$ Average calculated from n=2 for phase I study, and n=3 from phase II study

^b Values in parenthesis represent % of the total radioactivity in each sample

Table 12 Concentration of fenpyroximate and its metabolites in citrus leaves after application of [pyrazole-¹⁴C]-fenpyroximate

Fenpyroximate and its	Concentration (m	Concentration (mg equiv/kg fenpyroximate equivalents/fresh weight)						
metabolites	Phase I study (day	ys post treatment)		Phase II study			
	Leaves				Leaves	Rind		
	0	7	14	28	65	65		
Fenpyroximate	12.02 (87)	5.25 (43)	4.21 (32)	3.63 (32)	4.44 (31)	0.60 (58)		
M-1	ND	1.19 (10)	1.08 (8)	1.82 (16)	1.73 (12)	0.13 (13)		
M-3	ND	< 0.08	< 0.08	< 0.08	< 0.02	0.04 (4)		
M-6	ND	< 0.08	< 0.08	< 0.08	< 0.02	0.02 (2)		
M-8	ND	< 0.08	< 0.08	< 0.08	< 0.02	< 0.02		
M-9	ND	< 0.08	< 0.08	< 0.08	< 0.02	< 0.02		
M-11	ND	ND	ND	ND	< 0.02	< 0.02		
M-12	ND	0.34 (3)	0.29 (2)	0.36 (3)	0.41 (3)	0.04 (4)		
M-13	ND	0.08 (<1)	0.10(1)	0.18 (2)	< 0.02	< 0.02		
M-19	ND	ND	ND	ND	< 0.02	< 0.02		
Others	ND	0.51 (4)	2.16 (16)	0.82(7)	1.64 (11)	0.09 (9)		

Fenpyroximate and its	Concentration (m	Concentration (mg equiv/kg fenpyroximate equivalents/fresh weight)					
metabolites	Phase I study (day	ys post treatment)		Phase II study		
	Leaves				Leaves	Rind	
	0	7	14	28	65	65	
Origin	1.19 (9)	1.10 (9)	1.96 (15)	2.27 (20)	1.93 (14)	< 0.02	
Extracted-14C	13.21 (96.0)	8.47 (70.2)	9.80 (74.0)	9.08 (80.8)	10.15 (71.2)	0.92 (89.1)	
Non-extracted-14C	0.55 (4.0) 3.60 (29.8) 3.44 (26.0) 2.16 (19.2)				4.11 (28.8)	0.11 (10.9)	
Total- ¹⁴ C	13.76	12.07	13.24	11.24	14.263	1.026	

n.d.-not detected; values in parentheses represent % of total radioactive residues

Following foliar spray application of fenpyroximate to citrus trees, radioactive residues were mainly present in the leaves and rind with residues in fruit close to or below the limit of detection. The major metabolites identified were fenpyroximate, fenpyroximate isomer M-1 and metabolite M-12 with more polar metabolites detected. Fenpyroximate is proposed to be metabolised in citrus tree by hydrolysis of ester, oxime ether cleavage, N-demethylation, oxidation or conjugation to polar metabolites. An overall metabolic pathway for citrus can be found in Figure 1.

Conjugates

Figure 1 Proposed metabolic pathway of fenpyroximate in citrus rind and leaves

Apple (crop group pome fruit)

The meeting received 2 studies on metabolism of fenpyroximate in/on apple. In the first study (Galicia H., Wyss-Benz M., 1992, report No. R-4008), [pyrazole-¹⁴C]-fenpyroximate was applied as

formulated test article (SC 5 %) once to apple trees by overtop spraying at a field rate of 7.5 g ai/100 L (application rate 500 L/ha per m crown height). Apple leaves and fruits were sampled at 0, 7, 14, 28 and 57 days after treatment. The last sampling interval represented mature apples. Samples were rinsed with acetone/water (9:1) solution and the radioactivity was determined by liquid scintillation counting (LSC). Homogenised apples were separated into juice and cake. The homogenised material was extracted with acetone/methanol (1:1), bi-distilled water and methanol and exhaustively under Soxhlet conditions with methanol. Combustion of solid residues was carried out to determine non-extracted radioactivity. The characterisation of the radioactive fractions was carried out with one dimensional thin layer chromatography on silica gel plates and on reversed phase in at least two different solvent systems and co-chromatography with reference compounds.

Residues in leaves amounted to 10.331 mg eq/kg at day 0 and decreased to 0.512 mg eq/kg leaves at harvest (day 57). The residues in apple fruits were 0.128 mg eq/kg at day 0 and 0.032 mg eq/kg at day 57. In apple leaves fenpyroximate and M-1 were the most abundant metabolites. 28 days after application, fenpyroximate and M-1 levels in leaves were 1.18 and 0.35 mg eq/kg, respectively. They decreased to 0.24 and 0.10 mg eq/kg by 57 days after application. Other minor metabolites detected at 28 days after application were: M-3, M-6, M-8, M-9, M-11, M-12, M-13, M-19, M-20 and M-24, these decreased to 0.01 mg eq/kg or less at 57 days after application. In fruit at 57 days after application, only fenpyroximate and M-1 were detected at 0.02 and 0.01 mg eq/kg, respectively. The other metabolites present in leaves were below the limit of detection (0.01 mg eq/kg) in fruit. Enzyme hydrolysis caused a slight increase in concentrations of M-8, M-9 and M-12 to 0.02-0.04 mg eq/kg in the 28 day leaf samples. There were no differences between hydrolysed and control fruit samples. A summary of ¹⁴C-residue data in leaves and in fruits is given in Table 13.

Fraction	Concentration (mg parent equivalent/kg fresh weight)							
	Sampling (days p	oost treatment)						
	0	7	14	28	57			
Apple Leaves (combined organic phased from surface washing and extraction)								
Fenpyroximate	9.875 (96)	4.238(81)	1.075(59)	1.567(59)	0.221(43)			
M-1	0.425(4)	0.369(7)	0.341(19)	0.499(19)	0.091(18))			
Unknown-1	-	0.017(<1)	0.025(1)	0.082(3)	0.024(5)			
Unknown-2	-	0.331(6)	0.084(5)	0.170(6)	0.080(16)			
Unknown-3	0.025(<1)	-	0.143(8)	-	-			
Unknown-4	-	0.124(2)	-	-	-			
Unknown-5	-	0.019(<1)	0.028(2)	0.087(3)	0.012(2)			
Unknown-6, 7, 8, 9	-	-	-	-	-			
Aqueous phase	0.005(<1)	0.084(2)	0.078(4)	0.162(6)	0.054(11)			
Total extracted	10.33(100)	5.183(100)	1.774(98)	2.566(97)	0.481(94)			
Non-extracted	0.001(0.01)	0.037(<1%)	0.035(2)	0.068(3)	0.031(6)			
Total	10.331	5.220	1.809	2.634	0.512			
Washings	9.573	4.134	1.152	1.755	0.024			
Apple Fruits (combined organic phased	from surface wash	ing and extraction	l)					
Fenpyroximate	0.119(93)	0.094(93)	0.062(77)	0.043(70)	0.015(47)			
M-1	0.007(5)	0.009(8)	0.009(11)	0.008(13)	0.005(18)			
Unknown-1	-	-	-	0.001(2)	-			
Unknown-2	-	-	-	0.004(7)	0.001(3)			
Unknown-3	-	-	0.003(4)		-			
Unknown-4, 5, 6, 7, 8	-	-	-	-	-			
Unknown-9	-	0.001(1)	-	-	-			
Aqueous phase	-	0.002(2)	0.003(4)	0.003(5)	0.005(16)			
Juice	0.001(1)	0.001(1)	0.001(1)	0.002(3)	0.003(9)			
Total extracted	0.128(100)	0.108(100)	0.081(100)	0.06(98)	0.031(97)			
Non-extracted	-	-	-	0.001(2)	0.001(3)			
Total	0.128	0.108	0.081	0.061	0.032			
Washings	0.122	0.094	0.064	0.042	< 0.001			

Table 13 Residues in apple leaves and fruits after [pyrazole-¹⁴C]-fenpyroximate application

-=not detected or below 0.001 mg parent equivalent/kg leaves or apples (fresh weight), values in parentheses represent % of total radioactive residues

Radioactive fractions having similar Rf-values at TLC were pooled to	o give the respective unknown fractions.
Unknown-1: Radioactive fractions WA3, OAC3, WL3, OL3 OAC6, WL4, OL5	Unknown-2: Radioactive fractions WA4,
Unknown-3: Radioactive fractions WA5, OAC9, WL5, OL6	Unknown-4: Radioactive fractions WL6
Unknown-5: Radioactive fractions OL4	Unknown-6: Radioactive fractions OAC4
Unknown-7: Radioactive fractions OAC5	Unknown-8: Radioactive fractions OAC7
Unknown-9: Radioactive fractions OAC8	
Abbreviations: WI_washing leaves, WA_washing apples, OI_or	ganic phase after extraction of leaves. AP-aqueous

Abbreviations: WL-washing leaves, WA-washing apples, OL-organic phase after extraction of leaves, AP-aqueous phase, OAC-organic phase from cake of apples

The identification of metabolites in washings and extracts of fruits and leaves samples harvested 28 and 57 DAT was further conducted (Nishizawa H., 1995, report No.: R-4100) by 2D-TLC and enzyme hydrolysis using beta-glucosidase. The metabolites identified were shown Table 14.

Table 14 Concentration of fenpyroximate and its metabolites in apple leaves and fruits after [[pyrazole-¹⁴C]-fenpyroximate application

Fenpyroximate and its metabolites	Concentration (mg equiv/kg fen	pyroximate equivalents/fr	uivalents/fresh weight)		
	Apple				
	Leaves		Fruit		
	28 day	57 day	57 day		
Fenpyroximate	1.18	0.24	0.02		
M-1	0.35	0.10	0.01		
M-2	n.d.	n.d.	n.d.		
M-3	0.03	n.d.	< 0.01		
M-6	0.01	n.d.	< 0.01		
M-8	0.06	n.d.	n.d.		
M-9	0.03	n.d	< 0.01		
M-10	n.d.	n.d.	n.d.		
M-11	0.04	0.01	n.d.		
M-12	0.04	n.d.	n.d.		
M-13	trace	n.d.	< 0.01		
M-14	n.d.	n.d.	n.d.		
M-19	0.07	0.01	< 0.01		
M-20	0.02	n.d.	< 0.01		
M-21	n.d.	n.d.	< 0.01		
M-24	0.01	0.01	< 0.01		
U-1	0.09	0.02	n.d.		
U-2	n.d.	n.d.	< 0.01		
Others	0.48	0.02	< 0.01		

n.d.-not detected

In the second study (Wyss-Benz M., Mamouni A., 1992a, report No. R-4009), [benzyl-¹⁴C]fenpyroximate was applied once to two apple trees by overtop spraying at a field rate of 7.5 g ai/100L (application rate 500 L/ha per m crown height). One tree separated from the others served as control. Apple leaves and fruits were sampled at 0, 7, 14, 28 and 57 days after treatment. The last sampling interval represented mature apples. Samples were rinsed with acetone/water (9:1) solution and the radioactivity was determined by liquid scintillation counting (LSC). Homogenised apples were separated into juice and cake. The homogenised material was extracted with acetone/methanol (1:1), bi-distilled water and methanol and exhaustively under Soxhlet conditions with methanol. Combustion of solid residues was carried out to determine non-extracted radioactivity. The characterisation of the radioactive fractions was carried out with one dimensional thin layer chromatography on silica gel plates and on reversed phase in at least two different solvent systems and co-chromatography with reference compounds.

Residues in leaves amounted to 12.212 mg parent equivalents/kg leaves at day 0 and decreased to 0.628 mg/kg leaves at harvest (day 57). The residues in fruits were 0.120 mg/kg at day 0 and 0.036 mg/kg apple at day 57. Residues in leaves were much higher than residues in fruits.

Fenpyroximate and its isomer M-1 were the only radioactive components detected at notable levels, numerous other minor metabolites were present at detectable levels in leaves and at levels approaching the limit of detection in fruit. A summary of ¹⁴C-residue data in leaves and in fruits is given in Table 15.

Table 15 Residues in apple leaves and fruits after [benzyl-¹⁴C]-fenpyroximate application

Fraction	Concentration (mg parent equivalent/kg fresh weight)										
	Sampling (days p	post treatment)									
	0	7	14	28	57						
Apple Leaves (combined organic phase	Apple Leaves (combined organic phased from surface washing and extraction)										
Fenpyroximate	11.371(93)	5.310(79)	1.815(70)	1.284(53)	0.219(35)						
M-1	0.511(42)	0.906(13)	0.446(17)	0.613(25)	0.161(26)						
Unknown-1	-	-	-	-	0.015(2)						
Unknown-2	-	0.405(6)	0.064(2)	0.215(9)	0.080(13)						
Unknown-3	0.314(3)	-	0.104(4)	-	-						
Unknown-4	-	-	0.020(1)	0.052(2)	0.025(4)						
Unknown-5	-	-	0.011(<1)	0.029(1)	0.012(2)						
Unknown-6	-	0.027(<1%)	0.023(1)	0.046(2)	0.017(3)						
Unknown-7	-	0.017(<1%)	0.016(1)	0.016(1)	0.017(3)						
Unknown-8	-	-	-	-	-						
Aqueous phase	0.016(<1)	0.026(<1)	0.034(1)	0.069(3)	0.049(8)						
Total extracted	12.211(100)	6.69(100)	2.533(98)	2.325(97)	0.595(95)						
Non-extracted	0.001(<1)	0.028(<1)	0.042(2)	0.082(3)	0.033(5)						
Total	12.212	6.718	2.575	2.407	0.628						
Washings	11.562	5.683	1.957	1.652	0.013						
Apple Fruits (combined organic phased	from surface was	hing and extraction	n)								
Fenpyroximate	0.109(91)	0.113(81)	0.086(78)	0.053(71)	0.017(47)						
M-1	0.005(4)	0.017(12)	0.013(12)	0.011(15)	0.007(19)						
Unknown-1	-	0.001(1)	-	-	0.001(3)						
Unknown-2	0.004(3)	0.004(3)	0.003(3)	0.003(4)	0.001(3)						
Unknown-3,4, 5, 6, 7, 8	-	-	-	-	-						
Aqueous phase	0.002(2)	0.004(3)	0.004(4)	0.003(4)	0.007(19)						
Juice	-	-	0.001(1)	0.001(1)	0.002(6)						
Total extracted	0.120(100)	0.140(100)	0.109(99)	0.074(99)	0.034(94)						
Non-extracted	-	-	0.001(1)	0.001(1)	0.002(6)						
Total	0.120	0.140	0.110	0.075	0.036						
Washings	0.115	0.120	0.085	0.050	< 0.001						

-=not detected or below 0.001 mg parent equivalent/kg leaves or apples (fresh weight); values in parentheses represent % of total radioactive residues;

Radioactive fractions having similar Rf-values at TLC were pooled to give the respective unknown fractions.

Unknown-1: Radioactive fractions WA3, OAC3, WL3

Unknown-2: Radioactive fractions WA4, OAC4, WL4, OL5

Unknown-3: Radioactive fractions WL5, OL6

Unknown-5: Radioactive fractions OL4 Unknown-7: Radioactive fractions OL8 Unknown-4: Radioactive fractions OL3 Unknown-6: Radioactive fractions OL7

Unknown-8: Radioactive fractions OAC5

Abbreviations: WL-washing leaves, WA-washing apples, OL-organic phase after extraction of leaves, AP-aqueous phase, OAC-organic phase from cake of apples

Grape

The meeting received 3 studies on metabolism of Fenpyroximate in/on grape. In one study (Wyss-Benz M., Mamouni A., 1992b, report No.: R-4010), [Pyrazole-¹⁴C]-fenpyroximate was applied as formulated test article (SC 5) once to two grapevines by hand spraying at a field rate of 7.5 g ai/100L (application rate 500 L/ha per m crown height). Leaves and grape fruit were sampled at 0, 7, 14, 28 and 57 days after treatment. The last sampling interval represented mature grapes. Samples were rinsed with acetone/water (9:1) solution and the radioactivity was determined by liquid scintillation counting (LSC). Grapes (without stem) were homogenised and separated into juice and cake by centrifugation. Aliquots of cake were combusted. Homogenised material was extracted with acetone/methanol (1:1), bi-distilled water and methanol and exhaustively under Soxhlet conditions

with methanol. One dimensional thin layer chromatography on silica gel plates and on reversed phase in at least two different solvent systems and co-chromatography with reference compounds was used to characterise the radioactive fractions. The identification of metabolites was conducted by 2D TLC. (Nishizawa H., 1995, report No.: R-4100).

Residues in leaves amounted to 6.234 mg parent equivalents/kg leaves at day 0 and decreased to 0.971 mg/kg leaves at harvest (day 57). The residues in grape fruits were 0.097 mg/kg at day 0 and 0.081 mg/kg at day 57. Juice of grapes was not extracted as ¹⁴C-residues were lower than 0.01 mg/kg grapes over the whole sampling period. At all sampling times, ¹⁴C-fenpyroximate was the main radioactive fraction and the only fraction present at day 0 (0.096 mg/kg grapes). A summary of ¹⁴C-residue data in leaves and in grape bunches is given in Table 16.

Fraction	Concentration (mg parent equivalent/kg fresh weight)								
	Sampling (days p	ost treatment)							
	0	7	14	28	57				
Grape Leaves (combined organic phased from surface washing and extraction)									
Fenpyroximate	5.750 (92)	3.125(71)	1.553(53)	1.475(50)	0.326(34)				
M-1	0.335 (5)	0.175(4)	0.124(4)	0.112(4)	0.052(5)				
Unknown-1	-	0.503(11)	0.450(15)	0.314(11)	0.144(15)				
Unknown-2	0.084 (1)	0.234(5)	0.088(3)	0.143(5)	0.058(6)				
Unknown-3	0.029 (<1)	-	0.192(7)	0.086(3)	0.027(3)				
Unknown-4	-	-	0.024(1)	0.033(1)	0.020(2)				
Unknown-5	-	0.021(<1)	0.017(1)	-	0.019(2)				
Unknown-6	-	0.045(1)	0.010(<1)	0.005(<1)	0.016(2)				
Unknown-7	-	-	0.014(<1)	0.011(<1)	0.002(<1)				
Unknown-8, 9, 10	-	-	-	-	-				
Aqueous phase	0.028(<1)	0.066(2)	0.116(4)	0.273(9)	0.137(14)				
Non-extracted	0.007(<1)	0.218(5)	0.329(11)	0.478(16)	0.169(17)				
Total	6.234	4.413	2.917	2.930	0.971				
Washings	5.626	3.582	2.130	1.874	0.348				
Grape Bunches (combined organic pha	sed from surface w	vashing and extrac	tion)						
Fenpyroximate	0.096(99)	0.140(72)	0.067(66)	0.028(55)	0.031(38)				
M-1	-	0.004(2)	0.004(4)	0.002(4)	0.004(5)				
Unknown-1	-	0.001(1)	-	0.002(4)	0.002(2)				
Unknown-2	-	-	-	-	-				
Unknown-3	-	0.015 (8)	0.010(10)	0.002(4)	0.016(20)				
Unknown-4	-	-	-	-	-				
Unknown-5	-	0.001(1)	0.001(1)	-	0.001(1)				
Unknown-6	-	-	-	-	0.001(1)				
Unknown-7	-	-	-	-	-				
Unknown-8	-	-	-	-	0.001(1)				
Unknown-9, 10	-	-	-	-	-				
Aqueous phase	0.001(1)	0.014(7)	0.011(11)	0.008(16)	0.010(12)				
Juice	-	0.005(3)	0.005(5)	0.004(8)	0.007(9)				
Non-extracted	-	0.004(2)	0.004(4)	0.003(6)	0.006(7)				
Total	0.097	0.195	0.102	0.051	0.081				
Washings	0.088	0.136	0.055	0.022	0.032				

Table 16 Residues in grape leaves and fruits after [pyrazole-¹⁴C]-fenpyroximate application

-=not detected or below 0.001 mg parent equivalent/kg leaves or grape bunches (fresh weight), values in parentheses represent % of total radioactive residues;

Radioactive fractions having similar Rf-values at TLC were pooled to give the respective unknown fractions.

Unknown-1: Radioactive fractions WG2, OS3, OL3

Unknown-3: Radioactive fractions WG3, OGC4, WL5, OL7

Unknown-5: Radioactive fractions OGC3, OS6, OL6

Unknown-7: Radioactive fractions OS10, OL9

Unknown-9: Radioactive fractions OS4

Unknown-2: Radioactive fractions OS7, WL4, OL6

Unknown-4: Radioactive fractions OS5, OL4

Unknown-6: Radioactive fractions OGC5, OL8

Unknown-8: Radioactive fractions OGC6, OS8

Unknown-10: Radioactive fractions OS9

Abbreviations: WL-washing leaves, WG-washing grape bunches, OL-organic phase after extraction of leaves, APaqueous phase, OGC-organic phase from cake of grapes, OS-organic phase from stems

The identification of metabolites in washings and extracts of fruits and leaves samples harvested 28 and 57 DAT was further conducted (Nishizawa H., 1995, report No.: R-4100) by 2D TLC and enzyme hydrolysis using beta-glucosidase. The metabolites identified were shown in the following Table. The residues of M-9, M-12 and M-19 in leaves at 57 days after application were detected at 0.01, 0.01 and 0.02 mg eq/kg, respectively. In fruit only fenpyroximate and M-1 were detected at 0.02 and 0.01 mg eq/kg, respectively. The other metabolites were below the limit of detection (0.01 mg eq/kg). Results are presented in Table 17

Table 17 Concentration of fenpyroximate and its metabolites in grape leaves and fruit after [pyrazole-¹⁴C]-fenpyroximate application

Fenpyroximate and its	Concentration (mg equiv/kg fenpyroximate equivalents/fresh weight)					
metabolites	Grapes					
	Leaves		Fruit			
	28 day	57 day	57 day			
Fenpyroximate	1.24	0.31	0.02			
M-1	0.24	0.06	0.01			
M-2	n.d.	n.d.	n.d.			
M-3	n.d.	trace	< 0.01			
M-6	0.01	trace	< 0.01			
M-8	0.01	n.d.	n.d.			
M-9	0.01	0.01	n.d.			
M-10	n.d.	n.d.	n.d.			
M-11	trace	n.d.	< 0.01			
M-12	0.02	0.01	< 0.01			
M-13	n.d.	n.d	< 0.01			
M-14	n.d.	n.d	< 0.01			
M-19	0.03	0.02	< 0.01			
M-20	0.01	trace	< 0.01			
M-21	n.d.	n.d.	< 0.01			
M-24	n.d.	trace	< 0.01			
U-1	0.01	trace	< 0.01			
U-2	trace	0.01	n.d.			
Others	0.89	0.27	0.03			

n.d.-not detected

In another study (Wyss-Benz M., Mamouni A., 1992c, report No.: R-4011), [Benzyl-¹⁴C]fenpyroximate was applied as formulated test article (SC 5 %) once to two grapevines by hand spraying at a field rate of 7.5 g ai/100L (application rate 500 L/ha per m crown height). Leaves and fruits were sampled at 0, 7, 14, 28 and 57 (maturity) days after treatment. Samples were rinsed with acetone/water (9:1) solution and the radioactivity was determined by liquid scintillation counting (LSC). Grape fruits (without stem) were homogenised and separated into juice and cake by centrifugation. The homogenised material was extracted with acetone/methanol (1:1), bi-distilled water and methanol and exhaustively under Soxhlet conditions with methanol. The radioactive fractions were characterised with one dimensional thin layer chromatography on silica gel plates and on reversed phase in at least two different solvent systems and co-chromatography with reference compounds.

Following foliar spray application of radiolabelled fenpyroximate to grapes, residues were much lower in fruits than in leaves. Residues in leaves amounted to 7.492 mg parent equivalents/kg leaves at day 0 and decreased to 1.158 mg/kg leaves at harvest (day 57). The residues in grape fruits were 0.086 mg/kg bunches of grapes at day 0 and 0.060 mg/kg at day 57. Juice of grapes was not extracted as ¹⁴C-residues were lower than 0.010 mg/kg grapes over the whole sampling period. Fenpyroximate and its isomer M-1 were the only radioactive components detected at notable levels, although other minor metabolites were present at detectable levels in leaves and at levels approaching the limit of detection in fruit. At all sampling times, ¹⁴C-fenpyroximate was the main radioactive fraction. ¹⁴C-fenpyroximate as well as metabolite M-1 slightly decreased their concentrations over the sampling period. Six unknown fractions, OGC3–OGC8, appeared at various times, but remained at 0.002 mg/kg or lower. All samples of stems were extracted, and the residues were all ≤ 0.010 mg/kg.

The same pattern of metabolites was showed in leaves and grape berry. A summary of ¹⁴C-residue data in leaves and in grape bunches is given in Table18.

Table 18 Residues in grape leaves and fruits after [benzyl-14C]-fenpyroximate application

Fraction	Fraction Concentration (mg parent equivalent/kg fresh weight)					
	Sampling (days p	oost treatment)				
	0	7	14	28	57	
Grape Leaves (combined organic phase	d from surface wa	shing and extraction	on)			
Fenpyroximate	7.019(94)	2.943(72)	1.944(68)	1.492(60)	0.643(56)	
M-1	0.308(4)	0.201(5)	0.162(6)	0.109(4)	0.054(5)	
Unknown-1	-	0.203(5)	0.203(7)	0.087(4)	0.042(4)	
Unknown-2	0.156(2)	0.262(6)	0.166(6)	0.124(5)	-	
Unknown-3	-	-	0.104(4)	-	0.132(11)	
Unknown-4	-	-	0.075(3)	0.017(1)	-	
Unknown-5	-	0.046(1)	0.032(1)	0.036(1)	0.021(2)	
Unknown-6, 7	-	-	-	-	-	
Unknown-8	-	-	0.009(<1)	0.036(1)	0.006(1)	
Unknown-9	-	-	0.011(<1)	-	0.005(<1)	
Unknown-10	-	-	-	-	0.009(1)	
Aqueous phase	0.006(<1)	0.392(10)	0.242(8)	0.515(21)	0.182(16)	
Non-extracted	0.004(<1)	0.033(1)	0.028(1)	0.051(2)	0.064(6)	
Total	7.492	4.080	2.872	2.467	1.158	
Wahings	6.607	3.030	2.279	1.323	0.783	
Grape Bunches (combined organic phase	ses from surface w	ashing and extract	tion)			
Fenpyroximate	0.079(92)	0.109(76)	0.049(65)	0.053(61)	0.027(45)	
M-1	0.004(5)	0.013(9)	0.007(9)	0.016(18)	0.006(10)	
Unknown-1	-	-	-	-	0.001(2)	
Unknown-2	-	0.001(1)	0.002(3)	0.001(1)	0.002(3)	
Unknown-3	-	0.008(6)	0.004(5)	0.006(7)	0.006(10)	
Unknown-4	-	-	-	-	-	
Unknown-5	-	0.001(1)	-	-	0.001(2)	
Unknown-6	-	0.001(1)	0.001(1)	0.002(2)	-	
Unknown-7, 8, 9, 10	-	-	-	-	-	
Aqueous phase	0.001(1)	0.005(3)	0.005(7)	0.007(8)	0.006(10)	
Juice	-	0.004(3)	0.005(7)	0.006(7)	0.005(8)	
Non-extracted	-	0.001(1)	0.001(1)	0.002(2)	0.002(3)	
Total	0.086	0.144	0.075	0.087	0.060*	
Washing	0.073	0.101	0.038	0.037	0.021	

-=not detected or below 0.001 mg parent equivalent/kg leaves or grape bunches (fresh weight); values in parentheses represent % of total radioactive residues;

* - most of the radioactivity showed the same Rf value as Unknown-1

Radioactive fractions having similar Rf-values at TLC were pooled to give the respective unknown fractions.

Unknown-1: Radioactive fractions WG2, OS3, OL3 Unknown-2: Radioactive fractions OS7, WL4, OL6

Unknown-3: Radioactive fractions WG3, OGC4, WL5, OL7 Unknown-4: Radioactive fractions OS5, OL4

Unknown-5: Radioactive fractions OGC3, OS6, OL6

Unknown-7: Radioactive fractions OS10, OL9

Unknown-9: Radioactive fractions OS4

Unknown-8: Radioactive fractions OGC6, OS8 Unknown-10: Radioactive fractions OS9

Unknown-6: Radioactive fractions OGC5, OL8

Abbreviations: WL-washing leaves, WG-washing grape bunches, OL-organic phase after extraction of leaves, APaqueous phase, OGC-organic phase from cake of grapes, OS-organic phase from stems

Snap beans

The snap bean plants (*Phaseolus vulgaris*, grown outdoors) were treated with [Pyrazole-¹⁴C] - fenpyroximate at rate of 104 g/ha or [Benzyl-¹⁴C]-fenpyroximate at rate of 105 g/ha (Dohn, D. R., 2007, report No. R-4183). Snap beans were harvested seven days after application. The homogenised samples were extracted with acetonitrile: water mixtures and acetonitrile. Radioactive components in the solvent extracts were characterised by reverse phase HPLC and normal phase TLC. Metabolite identification was by co-chromatography with authentic reference standards. The total radioactive residue values in beans were 0.107 to 0.124 mg eq/kg and >9 9% of the residue was extracted with

acetonitrile: water. The primary components of the residue were fenpyroximate, accounting for 85.5 to 88.8% TRR and M-1, accounting for 4.0 to 4.7% TRR. The remaining residue consisted of minor components extracted with acetonitrile: water (< 10% TRR) and a small residue of 0.001 mg eq/kg associated with the post extracted solids. All minor unknown components detected were present at concentrations < 0.01 mg eq/kg. Results are presented in Table 19.

Table 19 Components of radioactive residues in [pyrazole-¹⁴C] fenpyroximate treated snap beans

	Pyrazole- ¹⁴ C label		Benzyl- ¹⁴ C label	
Component	mg equiv/kg	% TRR	mg equiv/kg	% TRR
Fenpyroximate	0.106	85.5	0.095	88.8
M-1	0.005	4.0	0.005	4.7
Minor extracted components	0.012 ^a	9.7	0.006	5.6
Subtotal extracted	0.123	99.2	0.106	99.1
Post-extracted solids	0001	0.8	0.001	0.9
TRR	0.124	100	0.107	100
Subtotal identified	0.111	89.5	0.100	93.5
(fenpyroximate and M-1)				

^a Multiple components. The two most abundant unknowns are both present at 0.003 mg eq/kg (2.4% TRR for each)

Swiss chard

Swiss Chard plants (35 days after the seeding) (Yoshizane T., 2014 report no. LSRC-M14-032A / R-4482) were treated once with [pyrazole-3-¹⁴C] or [benzyl-¹⁴C]-fenpyroximate at rate of 102.4 g ai/ha. The treated stems and leaves were collected at zero (just after the application), 14 and 35 days after the application, the roots were also collected at 35 days after the application. Sampled stems and leaves were rinsed with acetonitrile, and extracted with acetonitrile/distilled water (4/1, v/v) and acetonitrile/ 0.1N hydrochloric acid (4/1, v/v). Total radioactive residue (TRR) was determined as the sum of radioactivity in rinses, extracts and post extraction solid. Rinses and extracts containing significant radioactivity (> 0.05 mg eq./kg) were subjected to TLC-radioluminography to determine metabolite constituents. Identification of major metabolites including fenpyroximate was qualitatively confirmed by further analysis by HPLC.

The majority of the treated radioactivity was recovered from rinses and extracts (96.4 to 100% of TRR). Radioactive concentration in stems and leaves throughout testing duration ranged from 0.92 to 6.45 mg eq./kg for [pyrazole- 3^{-14} C] fenpyroximate and from 0.89 to 7.65 mg eq./kg for [benzyl ring $-{}^{14}$ C(U)] fenpyroximate, respectively. The most prominent residue in stems and leaves was unchanged fenpyroximate. High polar radioactivity (retaining at TLC origin) accounted for 30.7 to 48.7% TRR. RI-HPLC (radioisotope detection) analysis showed that the polar radioactivity at TLC origin consisted of several individual metabolites, each below 8.5% TRR. No M-3 was detected. M-1 and the other unknown metabolites were also detected at less than 3.8% TRR (0.04 mg/kg) as minor metabolites.

	Day 0		Day 14		Day 35	
	% TRR	mg eq./kg	% TRR	mg eq./kg	% TRR	mg eq./kg
Label	[Pyrazole 3- ¹⁴	C] fenpyroximate				
Rinse + extract	100	6.45	97.5	1.55	96.9	0.90
Rinse	81.1	5.23	15.5	0.25	11.6	0.11
Acetonitrile/DW extract	18.8	1.21	81.6	1.30	84.3	0.78
Acetonitrile/0.1N HCl	< 0.1	< 0.01	0.5	< 0.01	1.0	< 0.01
extract						
PES	< 0.1	< 0.1	2.5	0.04	3.1	0.03
Total	100	6.45	100	1.59	100	0.92
Root	NS ^a	NS	NS	NS	100	0.08
Label	[Benzyl ring-	⁴ C(U)] fenpyroxim	ate			
Rinse + extract	100	7.65	98.2	1.94	96.4	0.86
Rinse	82.7	6.32	16.3	0.32	8.8	0.08
Acetonitrile/DW extract	17.3	1.32	81.6	1.61	86.6	0.77

Table 20 Distribution of radioactivity in Swiss chard stems treated with ¹⁴C-fenpyroximate

	Day 0		Day 14		Day 35	
	% TRR	mg eq./kg	% TRR	mg eq./kg	% TRR	mg eq./kg
Acetonitrile/0.1N HCl	-	-	0.5	< 0.01	1.0	< 0.01
extract						
PES	< 0.1	< 0.01	1.8	0.03	3.6	0.04
Total	100	7.65	100	1.97	100	0.89
Root	NS	NS	NS	NS	100	0.07

^a NS not sampled; 2) not detected

Table 21	Residues	in Swiss	chard le	aves after	¹⁴ C-fenpy	roximate a	pplication

	Day 0		Day 14		Day 35				
	% TRR	mg eq./kg	% TRR	mg eq./kg	% TRR	mg eq./kg			
Label	[Pyrazole 3- ¹⁴	[Pyrazole 3- ¹⁴ C] fenpyroximate							
fenpyroximate	98.9	6.38	44.7	0.71	36.9	0.34			
M-1	1.0	0.06	3.5	0.06	3.8	0.04			
M-3	_ ^a	-	-	-		-			
Unk-1	-	-	2.4	0.04	2.7	0.02			
Unk-2	-	-	1.8	0.03	1.6	0.01			
Unk-3	-	-	2.0	0.03	2.1	0.02			
TLC -origin	< 0.1	< 0.01	42.5	0.68	48.7	0.45			
MeCN/0.1N HCl	< 0.1	< 0.01	0.5	< 0.01	1.0	< 0.01			
extract									
Unextracted	< 0.1	< 0.01	2.5	0.04	3.1	0.03			
Total	100.0	6.45	100.0	1.59	100	0.92			
Label	[Benzyl ring-1	⁴ C(U)] fenpyroxima	ate						
fenpyroximate	99.1	7.57	58.9	1.16	40.1	0.36			
M-1	0.9	0.07	3.5	0.07	2.7	0.02			
M-3	-	-	-	-	-	-			
Unk-1	-	-	2.5	0.05	1.8	0.02			
Unk-2	-	-	0.6	0.01	0.5	< 0.01			
Unk-3	-	-	1.7	0.03	1.3	0.01			
TLC -origin	< 0.1	< 0.01	30.7	0.60	48.9	0.43			
MeCN/0.1N HCl	-	-	0.5	0.01	1.0	0.01			
extract									
Unextracted	< 0.1	< 0.01	1.8	0.03	3.6	0.03			
Total	100.0	7.65	100.0	1.97	100	0.89			

^a -: not detected

Cotton

The cotton plants were treated once with [pyrazole-3-¹⁴C] fenpyroximate as a foliar spray at a rate of 194 g ai/ha (Baker F.C. *et al*, 2001, report no. 742W-1 / R-4116). The cotton forage of immature plants were harvested one week after the application. Mature plants were harvested after boll opening (30 days after application) and were separated into seed, lint and gin trash. Total radioactive residue (TRR) levels in cotton samples were determined by combustion. The cotton samples was extracted using methanol/acetone 1:1, MeOH, water or a combination of solvents including weak and strong acids and bases. Hexane extraction was useful for extracting the high level of fenpyroximate and M-1 from gin trash. Identification of radioactive components was conducted using reversed phase HPLC using UV and radio detection, with co-chromatography with certified reference standards. Certain extracts were also subject to LC/MS analysis to confirm the assignments of M-1 and fenpyroximate as major residues.

The major parts of the treated radioactivity were recovered from rinses and extracts (68-126% of TRR) in the various matrices. The proportion of radioactivity detected in post-extraction solid (PES) was <10% of TRR except in seed kernels (28% TRR) and lint/hulls (15% TRR), although the absolute levels of radioactivity in these samples was very low (0.002–0.003 mg/kg). Radioactive distribution of sprayed test substance in/on cotton is summarised in Tables 22 and 23.

Fenpyroximate and M-1 (approximately equal amounts) were the major components in the immature cotton (forage), cotton seed, and the cotton gin trash. Immature cotton (forage) contained fenpyroximate (2.533 mg eq/kg; 70.3% of TRR) and M-1 (1.151 mg eq/kg; 32.0% of TRR). Metabolites corresponding to the pre-M-8 and M-8 region (see gin trash) accounted for 0.067 mg eq/kg (1.9% of TRR), while other metabolites were all < 0.05 mg eq/kg. These included M-13 region (0.014 mg eq/kg; 0.38% of TRR), M-5 region (0.012 mg eq/kg; 0.33% of TRR) and M-12 region (0.024 mg eq/kg; 0.66% of TRR).

Cottonseed (kernel) contained only metabolites at levels below 0.01 mg eq/kg. Of these, M-1 and fenpyroximate (each 0.003 mg eq/kg and 37.5% of TRR) constituted the major residues. Other metabolites were < 0.001 mg eq/kg. Cotton lint/hulls also contained metabolites at < 0.01 mg eq/kg. A metabolite (0.007 mg eq/kg, 33.3% of TRR) with similar retention time to M-5, and another (0.007 mg eq/kg, 33.3% of TRR) with similar retention time to N-desmethyl M-3, were the major extractable residues. Lesser amounts (0.001 mg eq/kg) of M-1, fenpyroximate, M-8 metabolite region, and a polar metabolite, (solvent front, RT \sim 3.28 min) were also observed. A putative non-polar metabolite that eluted at 47.73 min (after fenpyroximate) contained 0.002 mg eq/kg. However, this metabolite was not detected during later analysis (storage stability) of cotton lint/hulls and it is considered a possible artefact.

Gin trash (subsample A) contained fenpyroximate (3.391 mg eq/kg; 36.8% of TRR) and M-1 (3.405 mg eq/kg; 37.0% of TRR). Many other metabolites were detected in gin trash extracts. These included M-8 (0.190 mg eq/kg; 2.1% of TRR) and a slightly more polar metabolite (pre- M-8, 0.315 mg eq/kg; 3.4% of TRR). Gin trash extracts were explored further in subsample C. Results confirmed a similar level of fenpyroximate (3.357 mg eq/kg; 36.5% of TRR) and M-1 (3.564 mg eq/kg; 38.7% of TRR). Many nonpolar metabolites were detected in the hexane extracts from gin trash subsample C. Of these, fractions designated as NPI - NP5 contained 0.091, 0.179, 0.155, 0.067 and 0.050 mg eq/kg. Other non-polar fractions contained < 0.05 mg eq/kg. NP 1 - NP5 all contained more than a single radiolabelled peak. Because of the high residues of M-1 isomeric with fenpyroximate metabolites. This could account for apparent pairs of radiolabelled peaks observed during reversed phase analysis.

Methanol and MeOH: Water extracts of gin trash subsample C also contained fenpyroximate (0.578 mg eq/kg) and M-1 (0.453 mg eq/kg) as well a number of non-polar peaks (including NPI [M-8 region] and NP3). However, most of the unknown residues in the Methanol/MeOH: Water were relatively polar and eluted near the solvent front (RT 2.8 min., 0.925 mg eq/kg) during reversed phase HHC. The MeOH plus MeOH: H₂O fractions (2.079 mg eq/kg) were partitioned to extract M-1 and fenpyroximate (hexane phase), mid polar metabolites (EtOAc phase) to leave a polar (aqueous) fraction. The EtOAc fraction (1.210 mg eq/kg) was subjected to normal phase TLC and 10 individual radiolabelled zones (1a, 1b and 2-9) were scraped from the plate, dated and further analysed by reverse phase HPLC. A very large number of metabolites were detected following this procedure. However, only zone la/RT 24.2 min. (0.066 mg eq/kg), zone la/RT 47.3 min. (0.074 mg eq/kg), zone la/RT 48.4 min. (0.101 mg eq/kg), zone Ib/RT 48.6 min (0.056 mg eq/kg, more than one peak), zone 3/RT 39.8 min (0.198 mg eq/kg), zone 4/RT 40.3 min (0.063 mg eq/kg), zone 7/RT 41.3 min. (0.124 mg eq/kg; M-8 region) and zone 9/RT 56.0 min. (M-l, 0.052 mg eq/kg) contained > 0.05 mg eq/kg. Attempts to identify unknown metabolites by LC/MS were not successful. Zone 5 contained a number of metabolites < 0.05 mg eq/kg, one of which migrated with similar RT to M-14. The residual aqueous polar fraction also contained several metabolites as determined by C18 SPE fractionation and HPLC. Two polar metabolites (RT 3.2 min., 0.059 mg eq/kg; RT 12 2 min., 0.071 mg eq/kg were above 0.05 mg eq/kg. Other residues were < 0.05 mg eq/kg. Separate analyses of MeOH and MeOH/water extracts of gin trash subsample C showed at least two components in addition to M-8 that could be methylated with diazomethane to form less polar products Additionally, polar (aqueous residue) extracts from gin trash could be hydrolysed (dilute acid) to produce less polar products. This is indicative of polar conjugates that are hydrolysed to less polar fenpyroximate/M-1 metabolites. Storage stability analysis of gin trash extracts showed the presence of a low level metabolite (< 0.05 mg eq/kg) corresponding to M-12.

Only 1.135 g of field gin trash was available for extraction and analysis. Low recovery of radiolabel was observed (68.5%) which was attributed to the very small sample available. Analysis of the field gin trash extracts by HPLC gave a very similar profile to the composite gin trash extract (from subsample A). This indicated that the composite sample was representative of field gin trash. The HPLC chromatogram of dried leaves extract also was very similar to that from composite and field gin trash. Dried leaves contained the highest TRR (14.629 mg eq/kg). Fenpyroximate (6.336 mg eq/kg) and its isomer M-1 (5.454 mg eq/kg) accounted for 80.6% of the RRR. In gin trash (subsample C) fenpyroximate plus M-1 accounted for 75.2% of the TRR.

The results of this study indicated that fenpyroximate and its Z stereoisomer (M-1) were the major components of the immature cotton (forage), cotton seed, and the cotton gin trash. Generally, fenpyroximate and M-1 were present in approximately equal amounts. Other metabolites such as M-5, M-12, M-14 and N-desmethyl-M-3 were identified by retention time on a single HPLC system at low level.

	Forage	;	Seed k	ernels	Lint/h	ulls	Leave	s	Gin tra	ash (field)	Gin Tr	ash A
Extract	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg
TRR	3.597 1	mg/kg	0.008	mg/kg	0.021	mg/kg	14.629	9 mg/kg	8.383	mg/kg	9.204	mg/kg
MeOH:acetone 1:1 I	62.7	62.7	47.1	0.004	47.9	0.010	23.0	3.365	25.3	2.121	36.9	3.396
MeOH:acetone 1:1 II	30.0	30.0	18.8	0.002	21.3	0.004	31.0	4.435	10.5	0.880	26.7	2.457
MeOH:acetone 1:1 III	10.5	10.5	15.9	0.001	11.0	0.002	14.9	2.180	3.1	0.260	12.1	1.114
MeOH:acetone 1:1 IV	3.5	3.5	7.4	0.001	6.8	0.001	8.4	1.229	-	-	5.0	0.460
MeOH:acetone 1:1 V	-	-	4.8	0.000	3.7	0.001	5.8	0.848	-	-	2.9	0.267
Water I	0.3	0.3	4.2	0.000	8.6	0.002	4.8	0.702	7.9	0.662	3.7	0.341
Water II	-	-	-	-	-	-	2.5	0.366			1.0	0.092
MeOH I	1.2	1.2	2.0	0.000	1.9	0.000	2.4	0.351	10.6	0.889	1.0	0.092
MeOH II	-	-	-	-	-	-	-	-	3.6	0.302	-	-
0.5N HCl	0.2	0.2	3.6	0.000	1.5	0.000	-	-	-	-	0.6	0.055
0.5M NaOH	0.4	0.4	3.8	0.000	3.7	0.000	-	-	-	-	0.9	0.083
6N HCl	0.3	0.3	-	-	-	-	-	-	-	-	1.0	0.092
3M NaOH	0.5	0.5	-	-	-	-	-	-	-	-	1.4	0.129
PES combustions ^a	0.1	0.1	28.0	0.002	15.2	0.003	10.5	1.536	7.5	0.629	1.9	0.175
Total Extracted ^b	109.6	1	107.1	1	106.4	1	92.8	1	61.0	I	93.2	1
Total Recovered ^c	109.7		126.3		114.5		103.3		68.5		95.1	

Table 22 Extraction of ra	adioactivity from cot	ton matrices treated	l with ¹⁴ C-fenpyroximate

^a Data obtained from triplicate combustion of the PES

^b Sum of all extraction steps

^c Sum of the extraction steps prior to PES combustion and the unextracted radiocarbon determined by PES combustion

Table 23 E	Extraction	of radio	activity :	from cotton	matrices	treated	with ¹	⁴ C-fenpy	vroximate
			2					1.	/

	Gin Trash B		Gin Trash C	
Extract	%	mg/kg	%	mg/kg
TRR	9.204 mg/kg		9.204 mg/kg	
Hexane I	31.1	2.862	31.3	2.881
Hexane II	23.1	2.126	21.8	2.006
Hexane III	9.6	0.884	9.4	0.845
Hexane IV	5.3	0.488	5.7	0.525
Hexane V	2.9	0.267	3.2	0.295

	Gin Trash B		Gin Trash C	
Extract	%	mg/kg	%	mg/kg
TRR	9.204 mg/kg		9.204 mg/kg	
Hexane VI	3.4	0.313	0.4	0.037
MeOH wash	-	-	13.3	1.224
MeOH:water 1:1 I (B) or 9:1 II (C)	5.2	0.479	4.5	0.414
MeOH:water 1:1 II (B) or 9:1 III (C)	6.0	0.552	2.6	0.239
MeOH:water 1:1 III (B) or 9:1 IV (C)	5.8	0.534	1.5	0.138
MeOH:water 1:1 IV (B) or 9:1 V (C)	1.5	0.138	0.7	0.064
MeOH:water 1:1 V (B) or 9:1 VI (C)	0.8	0.074	-	-
PES combustions ^a	9.2	0.847	8.1	0.746
Total Extracted ^b	94.7		94.4	
Total Recovered ^c	103.9		102.5	

^a Data obtained from triplicate combustion of the PES. ^b Sum of all extraction steps

^c Sum of the extraction steps prior to PES combustion and the unextracted radiocarbon determined by PES combustion

Matrix	% TRR (mg/kg)	Fenpyroximate	M-1 (mg/kg)	M-8 region	Other ^a
		(ing/ing)		(ing kg)	
Forage	3.597	2.533(70.4%)	1.151(32.0%)	0.067(1.9%)	< 0.05
Seed (kernel)	0.008	0.003(37.5%)	0.003(37.5%)	ND	< 0.01
Seed (lint/hulls)	0.021	0.001(4.8%)	0.001(4.8%)	0.001(4.8%)	< 0.01
Composite gin trash A ^b	9.204	3.391(36.8%)	3.405(37.0%)	0.190(2.1%)	>0.05 (5)
Composite gin trash C ^c	9.204	3.357(36.5%)	3.564(38.7%)	0.156(1.7%)	>0.05 (12) ^d
Dried leaves	14.629	6.336(43.3%)	5.454(37.3%)	0.280(1.9%)	>0.05 (7)

Table 24 Residues in cotton after ¹⁴C-fenpyroximate application

^a Refers to single unidentified metabolites. For example, < 0.05 mg/kg means individual metabolites not present above this level, or >0.05 mg/kg means at least one metabolite present above this level

^b Based on HPLC analysis of composite sample of MeOH:acetone, water, plus MeOH extracts

^c Based on HPLC analysis of composite sample of hexane extracts, plus HPLC of composite sample of MeOH and

MeOH:water extracts, plus TLC of displaced hexane phase from MeOH extract

^d 4 Non-polar, 6 mid-polar, 2 polar

Rotational crop studies

Confined rotational crop studies

The meeting received information on two confined rotational crop studies.

In a study, radish (*Raphanus sativus*, variety *Belle Glade*), lettuce (*Lactuca sativa*, variety *Green Towers*) and wheat (*Triticum aestivum L.*, variety RSI-5) were grown as rotational crops in a sandy loam soil treated with [pyrazole-3-¹⁴C] fenpyroximate at a rate of 224 g/ha (Baker, F.C., Estigoy, L., Kimmel, E.C. 2001, report No.:R-4123). Crops were sown at an interval of 30, 120 and 365 days following treatment of soil with fenpyroximate. Lettuce and radish were harvested at maturity. Wheat was sampled at the forage and hay growth stages with the remainder being grown to maturity for collection of grain, straw and chaff. Residues in lettuce were ≤ 0.002 mg eq/kg. Residues in radish root and leaves ranged from 0.001 to 0.008 mg eq/kg. Residues wheat forage and hay ranged from 0.005 to 0.047 mg eq/kg. Residues in straw and chaff taken at maturity were 0.018 to 0.106 mg eq/kg and residues in grain were 0.004 to 0.01 mg eq/kg.

Samples of radish root, radish foliage and wheat forage were extracted with neutral organic solvents. Hay, straw and wheat chaff were extracted with an aqueous/solvent mixture and acid followed by base. Wheat grain radiolabel was only partially extracted. Analysis of extracts by HPLC or TLC showed that most individual metabolite residues were < 0.01 mg eq/kg. Fenpyroximate was detected at 0.001 mg eq/kg in radish root and a metabolite (0.001 mg eq/kg) with a retention close to M-1 was observed in radish foliage, otherwise parent or its isomer M-1 did not occur as residues. Wheat forage from the 120 day plant back group contained several metabolites (all < 0.01 mg eq/kg) two of which co-eluted in the region of M-5 and M-3 reference standards. Hay extracts from all plant

back groups each contained many metabolites (all < 0.01 mg eq/kg). In the 30 day plant back group hay neutral extract one of the metabolites migrated with a similar retention to M-21; other metabolites were unidentified. Hay extracts from 120 and 365 day plant back groups contained metabolites that eluted in the region of M-8, M-5 and M-3 reference standards, in addition to several other metabolites. It was not possible to observe mid-polar reference standards co-injected with sample extracts as they were overshadowed due to a high degree of UV absorption from matrix co-extractives. Wheat chaff neutral solvent extracts also contained many metabolites at a level of < 0.01 mg eq/kg. At least four metabolites (described as mid-polar, levels 0.001 mg eq/kg to 0.004 mg eq/kg) were in a group with a retention time of approximately 30 to 36 minutes.

Samples of wheat straw from the 30, 120 and 365 day plant back intervals contained residues > 0.01 mg eq/kg. Straw from the 30 day plant back contained a polar unknown although re-analysis of a stored extract and of a subsequent storage stability study sample suggested that this residue level is probably an overestimate due to solvent or matrix effects on the sample causing early elution of less polar metabolites. Straw from the 120 day plant back contained four metabolites at >0.01 mg eq/kg. These included a polar unknown, and three mid polarity metabolites of which one had a similar retention time to M-8. Results are shown in Tables 25, 26 and 27.

Table 25 Total radioactive residues in crops grown in soil treated with [pyrazole-3-¹⁴C] fenpyroximate, expressed as mg eq/kg

Crop/part	Plant pack interval (days after treatment)						
	30	120	365				
Mature lettuce	0.001	0.001	0.002				
Radish root	0.008	0.006	0.001				
Radish foliage	0.007	0.006	0.003				
Wheat forage	0.005	0.021	0.004				
Wheat hay	0.025	0.047	0.018				
Wheat grain	0.010	0.010	0.004				
Wheat straw	0.069	0.106	0.032				
Wheat chaff	0.044	0.046	0.018				

Table 26 Tota	l extractability	of radiocarbon	expressed as	%TRR and	mg eq.	/kg
	<i>.</i>		1		0 1	$-\omega$

Crop/part	Plant pack interval (days after the	reatment)	
	30	120	365
Mature lettuce	NA	NA	NA
Radish root	78.7 (0.006)	NA	NA
Radish foliage	88.9 (0.005)	NA	NA
Wheat forage	117.2 (0.006)	106.2 (0.021)	NA
Wheat hay	96.1 (0.024)	93.9 (0.042)	100.1 (0.018)
Wheat grain	51.7 (0.004)	52.8 (0.005)	NA
Wheat straw	101.4 (0.070)	88.9 (0.094)	94.1 (0.030)
Wheat chaff	91.8 (0.04)	NA	NA

NA Not applicable-not extracted due to low residue

Table 2	7 Meta	bolite c	haracteri	sation
---------	--------	----------	-----------	--------

DAT	Sample	TRR (mg	Extract analysed	TRR in extract	Metabolite profile
		equiv/kg)		(mg equiv/kg)	
30	Radish	0.008	Neutral extract ^a	0.006	Fenpyroximate 0.001 mg eq/kg
	root				2 Components each ≤ 0.002 mg eq/kg
	Radish	0.007	Neutral extract b	0.005	3 Components each \leq 0.002 mg eq/kg
	foliage				
120	Wheat	0.021	Neutral extract ^a	0.021	6 Components 0.001-0.005 mg eq/kg
	forage				
30	Wheat	0.025	Neutral extract	0.008	1 Component 0.007 mg eq/kg
	hay		aqueous phase ^b		
			Acid extract	0.006	2 Components 0.002 & 0.003 mg eq/kg
			aqueous phase ^b		

DAT	Sample	TRR (mg equiv/kg)	Extract analysed	TRR in extract (mg equiv/kg)	Metabolite profile
			Neutral extract organic phase ^b	0.002	4 Components 0.001-0.005 mg eq/kg
			Acid extract organic phase ^b	0.001	3 Components each \leq 0.001 mg eq/kg
120	Wheat	0.047	Neutral extract ^a	0.010	M-8 0.001 mg eq/kg
	hay				M-5 0.002 mg eq/kg
					5 Components each \leq 0.002 mg eq/kg
			Acid extract ^a	0.030	M-8 0.005 mg eq/kg
					M-5 0.002 mg eq/kg
					M-3 0.001 mg eq/kg
					8 Components each \leq 0.003 mg eq/kg
365	Wheat	0.018	Neutral extract ^a	0.010	M-8 0.001 mg eq/kg
	hay				M-5 0.002 mg eq/kg
					M-3 0.001 mg eq/kg
					4 Components each 0.001 mg eq/kg
			Acid extract ^a	0.008	2 Components 0.001 & 0.004 mg eq/kg
30	Wheat	0.069	Neutral extract ^a	0.052	M-8 0.008 mg eq/kg
	straw				6 Components 0.001-0.022 mg eq/kg
120	Wheat	0.106	Neutral extract ^a	0.081	M-8 0.011 mg eq/kg
	straw				7 Components 0.002-0.028 mg eq/kg
365	Wheat	0.032	Neutral extract ^a	0.025	10 Components 0.001-0.006 mg eq/kg
	straw				
30	Wheat	0.044	Neutral extract ^a	0.029	9 Components 0.001-0.006 mg eq/kg
	chaff				

^a analysed by HPLC;

^b analysed by TLC

In second study, the uptake and metabolism of $[{}^{14}C]$ -fenpyroximate in rotational crops (radish, spinach and wheat) was studied at 30, 120 and 270 days after application of [benzyl-U- ${}^{14}C$]-fenpyroximate at application rate of 111 g ai/ha (Simmonds, M., Haynes, L., 2016, report No.: R-4513). The plants were harvested at immaturity and maturity. Total radioactive residues (TRR) in all crop matrices were very low. Only wheat hay, straw and grain from Day 31 (1st rotation) and wheat straw and grain from Day 118 (2nd rotation) had TRR values greater than 0.01 mg/kg. At 270 days (3rd rotation), TRRs in all crops were below 0.01 mg/kg.

Extractability of radioactivity from hay, grain and straw at Day 31 with neutral solvents ranged from 19.5–32.8% TRR (0.004–0.011 mg/kg). The remaining radioactivity was treated sequentially with a combined enzyme solution (cellulase/hemicellulase/ β -glucosidase) followed by dilute acid (1 M HCl) and dilute base (1 M NaOH) treatments which released a further 49.4–55.9% TRR (0.007–0.021 mg/kg). Unextracted radioactive residues accounted for 12.3–31.0% TRR (0.002–0.011 mg/kg).

Extractability of radioactivity from straw and grain at Day 118 with neutral solvents was between 17.9–23.6% TRR (0.002 mg/kg). Grain was subjected to sequential extraction with a combined enzyme solution (cellulase/hemicellulase/ β -glucosidase) followed by dilute acid (1 M HCl) and dilute base (1 M NaOH) treatments which released a further 20.8% TRR (0.002 mg.kg). The remaining non-extractable radioactivity accounted for 76.4% TRR (0.007 mg/kg) and 61.4% TRR (0.008 mg/kg) for straw and grain respectively.

Fenpyroximate, Metabolite M-1 (z-isomer) and Metabolite M-3 were tentatively identified in straw. As most radioactivity was extracted from crop matrices following enzyme, acid and base treatment, it was considered that the remaining extracted radioactivity was associated with natural products such as polysaccharides, lignin and starch. A proposed pathway of fenpyroximate metabolism in rotational crops is presented in Figure 2.

			TRR (mg/kg fenpyroximate equivalents)				
Plant Commodity	Harvest	Matrix	Time after applicati	ion (days)			
-		1	31	118	270		
Dadiah	Mature	Root	0.005	0.001	< 0.001		
Radisii	Mature	Foliage	0.007	0.002	0.001		
Spinach	Immature	Foliage	0.006	0.002	0.001		
Spinach	Mature	Foliage	0.005	0.002	0.001		
	Immature	Forage	0.009	0.002	0.001		
Wheat	Immature	Нау	0.012 ^a	0.004	0.002		
	Mature	Straw	0.037 ^a	0.009 ^a	0.006		
	Mature	Grain	0.037 ^a	0.012 ^a	0.005		

Table 28 TRR concentrations in crop after treatment of soil with [14C]-fenpyroximate

^a TRR results based on extraction/combustion

Table 29 Extraction of radioactivity from wheat grain, hay and straw after treatment of soil with [¹⁴C]-fenpyroximate

	Matrix									
Extraction	31 Day rotation					118 Day	rotation			
Extraction	Hay		Straw		Grain		Straw		Grain	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
Total Radioactive Residue (TRR)	0.012	100.0	0.037	100.0	0.037	100.0	0.009	100.0	0.012	100.0
Extracted radioactivity E1–E8	0.004	32.8	0.011	30.1	0.007	19.5	0.002	23.6	0.002	17.9
NER after E1-E8	0.008	67.2	0.026	69.9	0.029	80.5	0.007	76.4	0.010	82.1
Enzyme treatment	0.004	29.2	0.010	28.4	0.006	16.0	nr	nr	0.001	6.85
1M HCl treatment	0.001	8.59	0.004	9.80	0.001	3.41	nr	nr	0.001	8.68
1M NaOH treatment	0.002	17.2	0.007	17.7	0.011	30.0	nr	nr	0.001	5.24
Total extracted	0.010	87.8	0.032	87.0	0.025	68.9	0002	23.6	0.005	38.7
Remaining NER	0.002	12.3	0.005	14.0	0.011	31.0	0.007	76.4	0.008	61.4
Total	0.012	100.0	0.037	100.0	0.037	100.0	0.009	100.0	0.012	100.0

Table 30: Partitioning of radioactivity from wheat hay and straw concentrates after treatment of soil with $[^{14}C]$ -fenpyroximate

	Matrix						
Extraction/Fraction	Hay ^a		Straw ^b				
	% TRR	mg/kg	%TRR	mg/kg			
Extracted radioactivity E1-E4	25.5	0.002	18.8	0.007			
Ethyl acetate fraction	2.60	< 0.001	8.25	0.003			
Aqueous fraction	22.7	0.002	10.5	0.004			
TRR	-	0.009	-	0.038			

^a Overall recovery from partitioning was 85.6%, fractions not analysed further

^b Overall recovery from partitioning was 83.4%, fractions analysed further

Table 3	1 Proportions	of radioactive	components	in	organosoluble	and	aqueous	fractions	of	straw
extract c	concentrates: 3	1 day rotation (TLC system	1)						

Metabolite/reference standard			Matrix=straw					
		Rf value	Organic fraction		Aqueous fraction			
			% TRR	mg/kg	% TRR	mg/kg		
Chromatog	raphed radioactivity		8.25	0.003	10.5	0.004		
1	(Polar fraction)	0.00	1.32	0.001	nd	nd		
2	(Fenpyroximate)	0.07	1.58	0.001	nd	nd		
3	(M-1/M-12)	0.11	1.63	< 0.001	nd	nd		
4	(M-3)	0.23	0.73	< 0.001	nd	nd		

			Matrix=straw					
Metabolite/reference standard		Rf value	Organic fraction	Organic fraction		Aqueous fraction		
			% TRR	mg/kg	% TRR	mg/kg		
5		0.37	1.44	0.001	nd	nd		
6		0.51	1.44	0.001	nd	nd		
7		0.65	1.11	< 0.001	nd	nd		
8		0.79	nd	nd	10.5	0.004		
TRR				0.038		0.038		

nd: not detected

Table 32 Proportions of radioactive components in organosoluble and aqueous fractions of straw extract concentrates: 31 day rotation (TLC system 5)

Metabolite/reference standard			Matrix=straw					
		Rf value	Organic fraction	l	Aqueous fraction			
			%TRR	mg/kg	% TRR	mg/kg		
Chromat	tographed radioactivity		8.25	0.003	10.5	0.004		
M1		0.01	1.30	0.001	10.5	0.004		
M2		0.17	0.26	< 0.001	nd	nd		
M3		0.20	0.43	< 0.001	nd	nd		
M4		0.40	0.48	< 0.001	nd	nd		
M5	(M-3)	0.45	0.95	< 0.001	nd	nd		
M6		0.59	0.74	< 0.001	nd	nd		
M7	(Fenpyroximate, M-1)	0.87	4.02	0.002	nd	nd		
TRR				0.038		0.038		

nd: not detected

Table 33 Proportions of radioactive components in organosoluble and aqueous fractions of straw extract concentrates: 31 day rotation (TLC system 7/8)

		Rf value	Matrix=straw				
Metabolite	/reference standard		Organic fraction		Aqueous fraction		
			%TRR	mg/kg	% TRR	mg/kg	
Chromatog	raphed radioactivity		8.25	0.003	10.5	0.004	
Organic fra	action						
M1		0.05	1.09	< 0.001	10.5	0.004	
M2		0.26	2.49	0.001	nd	nd	
M3		0.36	1.10	< 0.001	nd	nd	
M4		0.39	1.16	< 0.001	nd	nd	
M5		0.47	2.05	0.001	nd	nd	
M6		0.55	0.35	< 0.001	nd	nd	
Aqueous fr	raction						
Zone 1		0.20-0.43	-	-	1.48	0.001	
Zone 2		0.46-0.76	-	-	5.54	0.002	
Zone 3		0.77–0.99	-	-	3.47	0.001	
TRR				0.038		0.038	

nd: not detected

Incorporation into natural products

Figure 2 Proposed metabolic pathways of fenpyroximate in rotated crops after ¹⁴C-fenpyroximate application

The confined rotational crop studies showed no potential residues of fenpyroximate and its metabolites are expected in rotational crops.

Field Rotational Crop Studies

No information on field rotational crop study was submitted

Animal metabolism

Lactating goats

Two studied on lactating goat metabolism were available for the meeting.

In a study conducted with [pyrazole-3-¹⁴C]-fenpyroximate (Jalali K., Gibson N.A. (1999a, report No R-4114), a lactating goat (Nubian/Toggenburg cross bred, approximately 2 years old, 36 kg) was orally administered by capsule twice daily for 3 consecutive days at dose of 10 ppm, corresponding to 0.5 mg/kg bodyweight/day. Milk samples were collected twice daily during the dosing period. The treated goat was sacrificed approximately 22 hours after the final dose. Total radioactive residue (TRR) levels in selected matrices were determined.

TRR levels in liver, kidney, muscle, fat and blood were 1.209, 1.100, 0.021, 0.082 and 0.026 mg eq./kg, respectively. After estimating for the total mass of blood, muscle and fat in a typical goat, total radioactivity recovered in the tissues accounted for 3.3% of the dose. In milk, TRR levels ranged from 0.004 to 0.037 ppm and total radioactivity recovered in the milk accounted for 0.2% of the administered dose.

Urinary and faecal excretion was found to be notable routes of elimination, accounting for 32.1% and 33.3% of the dose, respectively. At sacrifice 10.6% of the dose remained unexcreted in the gastrointestinal tract. Based on the amounts of radioactivity recovered in all the samples analysed, material balance for the study was 79.5% of the administered dose. Results are show in Table 34.

The milk, kidney and liver samples were extracted and most of the radiocarbon in each sample was removed. Results are show in Table 35. Extracts were analysed by HPLC, TLC and LC-MS where possible. Metabolite identification was also carried out in urine and faeces to confirm the assignments made in the tissue and milk samples. The excretion of fenpyroximate in the goat was rapid. A small trace was found in milk, muscle, fat and kidney with faeces containing a large amount of parent. Seven metabolites were identified and/or characterised in milk and tissue samples. An eighth metabolite was the Z-isomer of parent fenpyroximate, referred to as M-1, and was detected in very low amounts in one of the milk samples (56 hour sacrifice). Results are show in Table 36.

Table 34 Residue levels in milk and tissues of goat administered [pyrazole-3-¹⁴C]-fenpyroximate at a dose of 0.5 mg fenpyroximate/kg body weight/day for 3 consecutive days

Sample	Collection interval	Limit of quantification	Residue level	Percent of	Cumulative percent
		(mg eq./kg)	(mg eq./kg)	dose (%)	of dose (%)
Liver	Sacrifice	0.0005	1.209	1.7	
Kidney	Sacrifice	0.0008	1.100	0.2	
Muscle	Sacrifice	0.0008	0.021	0.7	3.3
Fat	Sacrifice	0.0008	0.082	0.6	
Blood	Sacrifice	0.0008	0.026	0.1	
Milk	0-8 h	0.0006	0.004	0.00	
	8-24 h		0.020	0.04	
	24-32 h		0.026	0.03	0.2
	32-48 h		0.028	0.06	0.2
	48-56 h		0.033	0.03	
	56h - sacrifice		0.037	0.07	
Urine	0-24 h	-	-	2.6	
	44-48 h	-	-	7.5	22.1
	48h - sacrifice	-	-	14.7	52.1
Cage wash	Sacrifice	-	-	7.3	
Faeces	0-8 h	-	-	< 0.1	
	8-24 h	-	-	4.6	
	24-32 h	-	-	3.1	
	32-48 h	-	-	7.9	33.2
	48-56 h	-	-	4.0	
	56h - sacrifice	-	-	11.6	
Cage solids	Sacrifice	-	-	2.0	
Gastrointestinal tract		-	-	10.6	10.6
Total Recovery					79.5

Table 35 Extractability and Recovery of Radiocarbon in Goat Tissues and Milk

Samula	TRR(mg eq./kg)	Percent ¹⁴ C	Percent ¹⁴ C	
Sample		Extracted ^a	Unextracted ^b	Recovered ^c
Milk0-8 Hr	0.004	ND	ND	ND
Milk8-24 Hr	0.020	91.2	2.9	94.1
Milk24-32 Hr	0.026	95.6	2.8	98.4
Milk32-48 Hr	0.028	67.2	3.2	70.4
Milk48-56 Hr	0.033	94.8	1.9	96.7
Milk56 Hr-S ^{ac}	0.030	79.6	1.2	80.8
Kidney	1.100	100.7	7.0*	107.7

Sampla	TDD (mg ag /kg)	Percent ¹⁴ C	Percent ¹⁴ C	
Sample	TRR(ing eq./kg)	Extracted ^a	Unextracted ^b	Recovered ^c
Liver	1.209	93.4	11.5*	104.9
Muscle	0.024	91.9	20.0*	111.9
Fat	0.082	94.5	6.2	100.7

ND Not done due to low TRR.

a Refers to the amount extracted with hexane, ACN and ACN-water 1:1 (liver, kidney and 32-48 hour milk).

b Refers to the amount of unextractable radiocarbon as determined by combustion of the post extraction solids (PES).

c Sum of all extraction steps prior to combustion of the PES, plus the unextracted radiocarbon as determined by combustion of the PES

* TRR in PES was in < 0.001mg eq/kg

Table 36 Metabolite levels (ppm) detected in tissues and milk of goat administered [pyrazole-3-¹⁴C]-fenpyroximate at a dose of 0.5 mg fenpyroximate/kg body weight/day for 3 consecutive days

Sample	Distribution of metabolites (expressed as mg/kg and % of TRR in parenthesis)									
(times given	Total	Fenp	$(1)^{a}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)
in hours)	radio-		M-21	M-5	N-	M-5	M-3	Fen-OH	M-22	M-1
	active				desmethyl	Glucur-				
	residue				M-3	onide				
0-8 milk	0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA
8-24 milk	0.020	0.001	0.011	0.000	0.000	0.000	0.000	0.001	0.000	0.000
		(5)	(55)					(5)		
24-32 milk	0.026	0.005	0.011	0.000	0.000	0.000	0.000	0.003	0.000	0.000
		(19)	(42)					(12)		
32-48 milk	0.028	0.003	0.010	0.000	0.000	0.000	0.000	0.002	0.000	0.000
		(11)	(36)					(7)		
48-56 milk	0.033	0.008	0.015	0.000	0.000	0.000	0.000	0.003	0.000	0.000
		(24)	(46)					(9)		
56-sac milk	0.030	0.001	0.011	0.000	0.000	0.000	0.000	0.001	0.000	0.001
		(3)	(37)					(3)		
Muscle	0.024	0.006	0.000	0.000	0.000	0.000	0.002	0.014	0.000	0.000
		(25)					(8)	(58)		
Fat	0.082	0.035	0.000	0.000	0.000	0.000	0.006	0.029	0.000	0.000
		(43)					(7)	(35)		
Kidney	1.100	0.005	0.023	0.044	0.305	0.050	0.462 ^b	0.016	0.094	0.000
-		(<1)	(2)	(4)	(28)	(5)	(42)	(2)	(9)	
Liver	1.209	0.000	0.016	0.042	0.265	0.023	0.609 ^b	0.042	0.053	0.000
			(1)	(4)	(22)	(2)	(50)	(4)	(4)	

Note: Values < 0.0005 ppm are reported as 0.000 ppm; NA –not analysed due to the low total radioactive residue level (0.004 ppm); values in parentheses represent % of total radioactive residues;

^a Metabolites identified in the study were numbered based on their HPLC retention times (shortest to longest)

^b These values were obtained from the composite kidney and liver extracts, respectively, minus the amount of Fen-OH observed for kidney and liver. The reason for this method of calculation is that the Fen-OH peak was masked by the M-3 peak

In another study conducted with [benzyl (U)-¹⁴C]-fenpyroximate (Jalali K., Gibson N.A., 1999b, report No R-4115), a lactating goat (Alpine/Nubian cross bred, approximately 3.5 years old, 41 kg) was orally administered by capsule for 3 consecutive days, at a dose rate of 10 ppm, corresponding to 0.3 mg/kg bodyweight/day. Milk samples were collected twice daily during the dosing period. The treated goat was sacrificed approximately 22 hours after the final dose. Total radioactive residue (TRR) levels in selected matrices were determined.

TRR levels in liver, kidney, muscle, fat were 1.253, 2.082, 0.024, 0.138 mg eq/kg respectively. After estimating for the total mass of blood, muscle and fat in a typical goat, total radioactivity recovered in the tissues accounted for 6.0% of the dose. In milk, TRR levels ranged from 0.008 to 0.031 ppm and total radioactivity recovered in the milk accounted for 0.1% of the administered dose.

Excretion of administered radioactivity in faeces was significant accounting for 44.7% of the dose. Urinary excretion was also found to be a significant route of elimination, accounting for 12.1% of the dose. At sacrifice 21.8% of the dose remained unexcreted in the gastrointestinal tract. Based on the amounts of radioactivity recovered in all the samples analysed, material balance for the study was 84.7% of the administered dose. Results are shown in Table 37.

The milk, kidney and liver samples were extracted and most of the radiocarbon in each sample was removed. Results are shown in Table 38. Extracts were analysed by HPLC, TLC and LC-MS where possible. Metabolite identification was also carried out in urine and faeces to confirm the assignments made in the tissue and milk samples. The excretion of fenpyroximate in the goat was rapid. A small trace was found in milk, muscle, fat and kidney, with faeces containing a large amount of parent. Seven metabolites were identified and/or characterised in milk and tissue samples. An eighth metabolite was the Z-isomer of parent fenpyroximate, referred to as M-1. Results are shown in Table 39.

Sample	Collection interval	Limit of quantification	Desidue level	Dercent of	Cumulative percent of
Sample	Confection interval	(nnm)	(nnm)	$d_{asa}(94)$	dose (%)
- ·	a 10	(ppiii)	(ppin)	uose (76)	dose (76)
Liver	Sacrifice	0.0011	1.253	2.7	
Kidney	Sacrifice	0.0012	2.082	0.7	
Muscle	Sacrifice	0.0010	0.024	1.1	6.0
Fat	Sacrifice	0.0011	0.138	1.4	
Blood	Sacrifice	0.0011	0.034	0.1	
Milk	0-8 h	0.0004	0.008	0.01	
	8-24 h		0.013	0.02	
	24-32 h		0.024	0.01	
	32-48 h		0.025	0.03	0.1
	48-56 h		0.031	0.02	7
	56h - sacrifice		0.022	0.03	7
Urine	0-24 h		0.398	1.5	
	44-48 h		0.942	3.8	12.1
	48h - sacrifice		1.312	5.8	12.1
Cage wash	Sacrifice		0.035	1.0	7
Faeces	0-8 h		0.000	0.0	
	8-24 h		1.805	3.7	7
	24-32 h		4.077	4.3	7
	32-48 h		6.429	7.5	44.7
	48-56 h		9.047	5.2	7
	56h - sacrifice		11.287	19.7	
Cage solids	Sacrifice		4.284	4.3	
Gastrointestinal tract			0.866	21.8	21.8
Total Recovery					84.7

Table 37 Residue levels found in milk and tissue samples of goat administered [benzyl-U- 14 C]-fenpyroximate at a dose of 0.3 mg fenpyroximate/kg body weight/day for 3 consecutive days

Table 38 Extractability and Recovery of Radiocarbon in Goat Tissues and Milk

Samula	TDD(mm)	Percent ¹⁴ C	Percent ¹⁴ C	
Sample	ткк(ррш)	Extracted ^a	Unextracted ^b	Recovered ^c
Milk 0-8 Hr	0.008	ND	ND	ND
Milk 8-24 Hr	0.013	136.3	9.7	146.0
Milk 24-32 Hr	0.024	104.6	9.1	113.7
Milk 32-48 Hr	0.025	87.2	6.4	93.6
Milk 48-56 Hr	0.031	84.9	5.5	90.4
Milk 56 Hr-Sac	0.022	85.9	6.1	92.0
Kidney	2.082	101.4	2.8*	104.2
Liver	1.235	106.7	4.4*	111.1
Muscle	0.027	131.7	44.9*	176.6
Fat	0.138	81.0	15.5*	96.5

ND Not done due to low TRR.

NA Not analysed.

^a Refers to the amount extracted with hexane, ACN and ACN-water 1:1 (liver and kidney).

^b Refers to the amount of unextractable radiocarbon as determined by combustion of the post extraction solids (PES).

^c Sum of all extraction steps prior to combustion of the PES, plus the unextracted radiocarbon as determined by

combustion of the PES.

* TRR in PES was in < 0.001mg eq/kg.

Milk and tissue samples were extracted and analysed by HPLC, TLC and LC-MS for content of radioactivity and characterisation of metabolites. A total of 7 metabolites were identified with an eighth metabolite, the Z-isomer of fenpyroximate (M-1) detected in the milk sample taken at sacrifice only. A summary of metabolite levels detected in tissues and milk is given in Table 39 and a proposed metabolic pathway incorporating results from both radiolabelled forms is shown in Figure 3.

Table 39 Metabolite levels (ppm) detected in tissues and milk of goat administered [benzyl-U-¹⁴C]-fenpyroximate at a dose of 0.3 mg fenpyroximate/kg body weight/day for 3 consecutive days

Sample	Distribution of metabolites (expressed as mg/kg, %TRR in parenthesis)									
(times given	Total	Fenp	$(1)^{a}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)
in hours)	radio-	_	N-	M-5	N-	M-5	M-3	Fen-OH	M-22	M-1
	active		desmethyl		desmethyl	Glucur-				
	residue		M-3 acid		M-3	onide				
0-8 milk	0.008	NA	NA	NA	NA	NA	NA	NA	NA	NA
8-24 milk	0.013	0.003	0.005	0.000	0.000	0.000	0.000	0.000	0.003	0.000
		(23)	(39)						(23)	
24-32 milk	0.024	0.006	0.000	0.000	0.000	0.000	0.000	0.002 (8)	0.006	0.000
		(25)							(25)	
32-48 milk	0.025	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.000
		(16)							(16)	
48-56 milk	0.031	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000
		(26)							(23)	
56-sac milk	0.022	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000
		(14)							(27)	
Muscle	0.027	0.002	0.000	0.000	0.000	0.000	0.000	0.009 (33)	0.020	0.000
		(7)							(74)	
Fat	0.138	0.049	0.000	0.000	0.000	0.003	0.000	0.019 (14)	0.024	0.000
		(36)				(2)			(17)	
Kidney	2.082	0.022	0.000	0.060	0.111 (5)	0.550	0.102	0.984 (47)	0.054	0.140
		(1)		(3)		(26)	(5)		(3)	(5)
Liver	1.253	0.000	0.070(6)	0.014	0.036 (3)	0.250	0.000	0.741 (59)	0.068	0.073
				(1)		(20)			(5)	(6)

Note: Values < 0.0005 ppm are reported as 0.000 ppm; values in parentheses represent % of total radioactive residues;

NA – not analysed due to the low total radioactive residue level (0.004 ppm)

^aMetabolites identified in the study were numbered based on their HPLC retention times (shortest to longest)

Following 3 consecutive daily doses of 10 ppm fenpyroximate labelled in either the pyrazole or benzyl ring (equivalent to 0.5 and 0.3 mg/kg bodyweight per day, respectively) residues in examined tissues were low, accounting for a total 3.3–6.0% of the administered dose. Of these tissues the excretory organs, liver and kidney contained the highest amount of radioactivity. Radioactivity in milk was low, accounting for 0.1–0.2% of the administered dose. The majority of radioactivity was eliminated *via* faeces accounting for 33.2% and 44.7% of the dose for the pyrazole and benzyl labels, respectively. Elimination *via* urine accounted for 32.1% and 12.1% dose for the pyrazole and benzyl labels, respectively. At sacrifice (22 hours after the last dose), 10.6 and 21.8% dose remained in the gastrointestinal tract for the pyrazole and benzyl labels, respectively. The biotransformation of fenpyroximate in lactating goats was essentially independent of radiolabelled form dosed. Unchanged fenpyroximate was present at low levels in all samples investigated, and its isomer M-1, was detected at even lower levels and only in a single milk sample (pyrazole label) and liver and kidney (benzyl label). The major routes of metabolism were *via* oxidation and subsequent cleavage of the isobutyl side chain followed by hydroxylation of the phenyl ring or N-demethylation on the pyrazole moiety.

Figure 3 Proposed metabolic pathway for fenpyroximate in the lactating goat

FATE AND BEHAVIOUR IN THE ENVIRONMENT

Studies of Fenpyroximate on degradation under aerobic condition, field dissipation, hydrolysis and photolysis were received.

Fate and behaviour in soil

The degradation of fenpyroximate was investigated in two Japanese soils under aerobic conditions at 25 °C in the dark for up to 112 days (Funayama S., 1990, report No. E-4005). Soils were treated with [pyrazole-3-¹⁴C] or [benzyl ring-¹⁴C(U)]fenpyroximate at a rate of 1.30 and 2.12 mg/kg. The incubation unit was attached to traps containing ascarite and drierite and a polyurethane foam bung for the trapping of carbon dioxide and organic volatiles. Samples were removed for analysis at regular intervals, and were extracted with methanol:water (4:1, v/v), followed by two extractions with acetonitrile:1 M ammonium chloride (4:1, v/v), the resulting solution was used for radioassay and identification and analysis of metabolites by 2-dimensional thin-layer co-chromatography (2d-TLC) with authentic reference standards. The soil samples after extraction were combusted for quantification of unextracted residues. Bound residue fractionation was performed on samples from the final time point. The ascarite and foam bungs were extracted for quantification of carbon dioxide and organic volatiles.

Total recovery of applied radioactivity (AR) for the whole study ranged from 81.7% to 114.2%. The mean extractability of applied radioactivity from soil 0 days after treatment (DAT) for all samples ranged from 95.1% to 103.0% AR. Extractability decreased throughout the study with mean values of 13.6% to 31.1% AR recovered at 112 DAT across all samples. Bound residue and carbon dioxide increased steadily, reaching maximum mean values of 58.3% and 64.6% AR, respectively, at the study end. Fenpyroximate degraded in aerobic soil with DT_{50} values of 34.3–49.7 days in the Ehime soil and 26.3–35.6 days in the Kanagawa soil. The DT_{50} values for samples treated with the benzyl label should be treated with caution due to the limited number of sampling intervals. Fenpyroximate accounted for 92.2% to 101.8% AR across all samples at 0 DAT, and degraded steadily in both labels and soils to 6.6% to 20.1% AR at 112 DAT. Major metabolites of M-3 and M-11 were identified, reaching maximum mean values of 10.8% and 8.8% AR, respectively.

Soil name	pН	OM (%)	Sand (%)	Silt (%)	Clay (%)	CEC (meq/ 100g)	Classification	MWHC (%)
Ehime	5.8	0.58	90.0	5.3	4.7	13.4	Sand	24.3
Kanagawa	5.5	2.52	61.2	28.8	10.0	45.8	Loam	61.8

Table 40 Characteristics of soils used in aerobic soil study

OM=organic matter, CEC=cation exchange capacity

In the Ehime and Kanagawa soils, bound residues increased to maximum mean values of 46.0% and 58.3% AR, respectively. Carbon dioxide reached maximum mean values of 64.6% and 51.2% AR in Ehime and Kanagawa soils, respectively. Generally, pyrazole samples formed higher levels of bound residue than benzyl samples and the benzyl samples formed more carbon dioxide than the pyrazole samples. In the Ehime soil, fenpyroximate degraded steadily from a maximum mean value of 101.8% AR, to 10.7–20.1% AR. M-3 and M-11 were observed as major metabolites, reaching maximum mean values of 9.1% and 8.8% AR, respectively. In the Kanagawa soil, fenpyroximate degraded steadily from a maximum mean value of 101.1% AR, to 6.6–10.9% AR. M-3 and M-11 were observed as major metabolites, reaching maximum mean values of 10.8% and 8.2 AR, respectively.

Sampling interval	Extracts		Dound	Volatiles				
(DAT)	Ethyl acetate layer	Aqueous layer	residue	Organic	Carbon dioxide	Total		
0	102.8	< 0.1	< 0.1	NA	NA	102.8		
7	98.6	0.1	1.1	< 0.1	0.2	99.9		
14	96.4	0.2	3.6	< 0.1	0.6	100.6		
28	80.8	0.5	13.7	< 0.1	2.5	97.4		
56	57.0	1.0	25.3	0.2	8.2	91.7		
84	37.9	1.1	31.9	0.2	10.6	81.71		
112	30.0	1.1	46.0	0.3	17.1	94.4		
NA=Not applicable, ¹ low recovery in both extracts (77.9 and 84.4%)								

Table 41 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Ehime soil

Table 42 Mean percent recovery of AR after treatment of [benzyl-14C] fenpyroximate to Ehime soil

Sampling interval	Extracts		Dound	Volatiles			
(DAT)	Ethyl acetate layer	Aqueous layer	residue	Organic	Carbon dioxide	Total	
0	97.8	< 0.1	< 0.1	NA	NA	97.8	
7	88.7	< 0.1	2.2	< 0.1	2.4	93.3	
28	93.2	0.2	8.0	< 0.1	11.2	112.5 ^a	
112	28.4	< 0.1	21.3	< 0.1	64.6	114.2 ^b	

 $^{\rm a}$ individual values were 111.5% and 113.5%, $^{\rm 2}$ individual values were 102.8% and 125.7%

Table 43 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Kanagawa soil

Sampling interval	Extracts		Dound	Volatiles			
(DAT)	Ethyl acetate layer	Aqueous layer	residue	Organic	Carbon dioxide	Total	
0	103.0	< 0.1	< 0.1	NA	NA	103.0	
7	92.7	< 0.1	11.8	< 0.1	0.3	104.7	
14	86.7	< 0.1	16.6	< 0.1	0.7	104.0	
28	75.1	0.2	*	0.1	1.9	*	
56	32.4 ^a	0.4 ^a	55.2 ^a	0.1 ^a	8.0 ^a	96.1 ^a	
84	16.0	0.4	56.4	< 0.1	14.3	87.0 ^b	
112	13.4	0.2	58.3	0.1	16.8	88.8 ^c	

* no values available,

^a values from one replicate only,

^b individual values were 83.4% and 90.5%,

^c individual values were 86.4% and 91.1%

Table 44 Mean percent recovery of AR after treatment of [benzyl-14C]fenpyroximate to Kanagawa soil

Sampling interval	Extracts		Dound	Volatiles			
(DAT)	Ethyl acetate layer	Aqueous layer	residue	Organic	Carbon dioxide	Total	
0	95.1	< 0.1	3.5	NA	NA	98.6	
7	93.2	< 0.1	10.0	< 0.1	1.7	104.9	
28	60.7	0.8	30.7	< 0.1	6.6	98.7	
112	13.5	0.6	41.5	< 0.1	51.2	106.7	

The distribution of applied radioactivity as fenpyroximate and its metabolites in soil is provided in Tables 45-48.
Sampling interval (DAT)	Fenpyroximate	M-3	M-11	Minor metabolites*	Origin
0	101.8	ND	ND	0.3	< 0.1
7	88.7	2.6	0.6	6.5	0.2
14	77.4	5.4	4.9	8.4	0.3
28	51.5	9.1	8.8	9.8	1.6
56	33.5	5.1	4.9	12.1	1.4
84	17.5	3.9	5.0	9.4	1.9
112	10.7	2.4	6.8	8.2	1.9

Table 45 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [pyrazole-¹⁴C]fenpyroximate to Ehime soil

ND=Not detected

*Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolites M-1, M-8 and M-12 at maximum mean values of 3.0%, 3.5% and 0.6% AR, respectively

Table 46 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Ehime soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*	Origin
0	95.5	ND	2.0	0.3
7	81.5	2.9	1.9	2.4
28	82.6	7.1	3.2	0.3
112	20.1	5.9	2.0	0.3

ND=Not detected

*Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolites M-1 and M-12 at maximum mean values of 1.5% and 0.3% AR, respectively.

Table 47 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [pyrazole-¹⁴C]fenpyroximate to Kanagawa soil

Sampling interval (DAT)	Fenpyroximate	M-3	M-11	Minor metabolites*	Origin
0	101.1	0.1	ND	1.8	< 0.1
7	81.0	0.7	6.3	4.6	0.1
14	64.5	10.8	7.1	3.9	0.2
28	51.4	5.7	8.2	9.5	0.3
56	16.9	1.9	5.2	8.0	0.5
84	7.9	0.5	3.5	3.8	0.3
112	6.6	0.1	3.1	3.3	0.3

ND=Not detected

*Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolites M-1, M-8 and M-12 at maximum mean values of 1.6%, 3.4% and 1.5% AR, respectively.

Table 48 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Kanagawa soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*	Origin
0	92.2	ND	2.8	0.1
7	89.8	1.1	2.1	0.1
28	54.5	2.6	3.4	0.2
112	10.9	1.0	1.4	0.2

ND=Not detected

*Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolites M-1 and M-12, both at a maximum mean value of 1.3% AR.

The degradation of fenpyroximate was investigated in one soil under aerobic conditions at 10 °C in the dark for up to 120 days at 45% maximum water holding capacity (MWHC) (Lewis C.J.,

2002, report No. E-4041). Soils were treated with [pyrazole-3-¹⁴C]-fenpyroximate at rate of 20 μ g/100 g soil (equivalent to 0.15 kg ai/ha). The incubation unit was attached to a series of traps for the trapping of carbon dioxide and polar and non-polar volatiles. The soil samples at regular intervals were extracted three times with methanol, followed by one extraction with acetone, two extractions with methanol:water (1:1, v/v) and finally one extraction with methanol:0.1M HCl (1:1, v/v), and analysed by HPLC. Soil samples after extraction were air dried and combusted for quantification of unextracted residues.

The mean mass balance ranged from 99.2% to 103.5% AR. Extractability decreased throughout the study period from mean values of 102.8% AR at 0 DAT to 32.1% AR at 120 DAT. The maximum mean values of bound residue and carbon dioxide formed were 52.7% and 11.7% AR, respectively, both occurring at 120 DAT. Fenpyroximate degraded steadily from 101.9% at 0 DAT to 16.3% AR remaining at 120 DAT. Two major metabolites, M-3 and M-8, were observed, reaching maximum mean values of 9.2% and 7.0% AR, respectively. DT_{50} and DT_{90} values for fenpyroximate were calculated as 23 and 159 days, respectively.

Soil name	pH (CaCl2)	OC (%)	Sand (%)	Silt (%)	Clay (%)	Classification ^a	Water holding capacity (%)
SK108672	6.2	3.5	18	57	25	Silt loam	88.1 (at pF 0)

Table 49 Soil characteristics of UK silt loam soil

^a USDA textural class, OC=organic carbon

Table 50 Mean percent recovery of AR after treatment of [¹⁴C]fenpyroximate to SK108672 soil

Sampling	Soil extracts		Pound residue	Carbon diaxida	Organic	Total
interval (DAT)	Neutral	Acidic	Bound residue	Carbon dioxide	volatiles	Total
0	102.7	0.1	0.7	NA	NA	103.5
2	98.8	0.4	2.7	ND	ND	101.9
7	84.3	1.8	14.9	0.7	ND	101.7
14	81.6	1.2	15.9	1.1	ND	99.8
30	57.5	3.1	35.3	3.5	ND	99.4
59	47.2	1.9	43.1	7.0	ND	99.2
90	35.6	3.4	50.2	10.4	ND	99.6
120	31.8	3.0	52.7	11.7	ND	99.2

NA=not applicable, ND=not detected

Table 51 Mean distribution of AR as fenpyroximate and its metabolites after treatment of $[^{14}C]$ fenpyroximate to SK108672 soil

Sampling interval (DAT)	Fenpyroximate	M-3	M-8	M-11	Minor metabolites*
0	101.9	ND	ND	ND	ND
2	96.1	1.9	0.3	0.3	ND
7	70.1	9.2	2.4	1.5	0.8
14	68.5	9.1	2.1	0.7	0.7
30	41.6	7.6	3.8	0.7	3.5
59	31.5	5.1	5.8	0.9	3.4
90	20.4	3.8	6.2	1.1	3.9
120	16.3	2.6	7.0	1.0	4.8

ND=not detected, * Sum of minor metabolites, no individual metabolite seen at ≥5% AR at consecutive time points

The degradation of fenpyroximate was investigated in one US soil under aerobic conditions at 25 °C in the dark for up to 365 days (Shepler K., 2003 report No.: E-4039). Soil samples were treated with [pyrazole-¹⁴C] or [benzyl-¹⁴C]fenpyroximate at a rate of 0.44 mg/kg for both labels. Due to addition of too much water to the pyrazole treated samples after 2 months, a second application of

both [pyrazole-¹⁴C] and [benzyl-¹⁴C]fenpyroximate was made to additional units at a rate of 0.44 and 0.45 mg/kg, respectively.

Samples and their associated traps were removed for analysis at regular intervals. The soil samples were extracted with acetonitrile: 0.01 N aqueous HCl (3:1, v/v), and were analysed by HPLC. The soil samples after extraction were combusted for quantification of unextracted residues. The overall mean mass balance for ranged from 82.6% to 102.9% AR. The mean mass balance value of 82.6% came from two replicates of 71.4% and 93.8%. Extractability of fenpyroximate decreased throughout the study from a maximum mean value of 99.8% AR at 0 DAT, to mean values of 12.2% AR at the end of the study.

Bound residues reached a maximum mean value of 55.1% AR at 182 DAT, before decreasing for the remainder of the study. The amount of carbon dioxide generated increased steadily, reaching a maximum mean value of 57.8% AR at the study end. Fenpyroximate degraded from a mean value of 98.6% AR at 0 DAT to 1.9% AR at the end of the study. The half-lives for pyrazole and benzyl dosed samples were 33.2 and 35.5 days, respectively. Metabolite M-3 was identified as a major metabolite in both the pyrazole and benzyl samples, reaching maximum mean values of 15.1%. Metabolites M-8 and M-11 were identified as major metabolites in the pyrazole samples, reaching maximum mean values of 12.1% and 5.9% AR, respectively.

Soil name	pH ^a	OM (%)	Sand (%)	Silt (%)	Clay (%)	CEC (meq/ 100g)	Classification	Moisture content at 1/3 bar (%)
Tulare County	8.6	0.8	64	30	6	10.9	Sandy loam	15.6

Table 52 Characteristics of soil used in aerobic soil study

^a measured in water, OM=organic matter, CEC=cation exchange capacity

Table 53 Percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Tulare County soil

Sampling interval (DAT)	Soil extracts	Bound residue	Carbon dioxide	Organic volatiles	Total
0 ^a	101.8	2.5	NA	NA	104.3
0^{1a}	98.1	2.5	NA	NA	100.6
0 ^b	96.3	3.3	NA	NA	99.6
3 ^a	99.2	4.1	0.0	0.0	103.3
3 ^a	96.3	3.7	0.0	0.0	100.0
7^{a}	95.5	4.5	0.0	0.0	100.0
7^{a}	94.8	4.4	0.0	0.0	99.2
14 ^a	94.2	11.5	0.1	0.0	105.8
14 ^a	94.6	9.1	0.2	0.0	103.9
14 ^b	93.6	6.8	0.1	0.0	100.5
14 ^b	92.7	6.9	0.1	0.0	99.7
21 ^a	87.1	14.6	0.6	0.0	102.3
21 ^a	90.2	10.0	0.3	0.0	100.5
30 ^b	84.4	14.9	0.6	0.0	99.9
30 ^b	85.4	14.7	0.6	0.0	100.7
32 ^a	81.1	21.1	1.3	0.0	103.5
32 ^a	80.6	20.5	1.0	0.0	102.1
60 ^a	56.5	38.2	3.6	0.0	98.3
60 ^a	61.3	35.4	4.5	0.0	101.2
61 ^b	72.7	26.2	1.7	0.0	100.6
61 ^b	64.8	33.8	2.5	0.0	101.1
90 ^b	49.8	44.6	5.9	0.0	100.3
90 ^b	55.8	40.7	4.6	0.0	101.1
182 ^b	27.1	55.2	15.7	0.0	98.0
182 ^b	26.8	55.0	16.0	0.0	97.8

Sampling interval (DAT)	Soil extracts	Bound residue	Carbon dioxide	Organic volatiles	Total
273 ^b	37.2	35.7	24.5	0.0	97.4
273 ^b	42.6	34.2	19.2	0.0	96.0
365 ^b	28.7	38.9	29.5	0.0	97.1
365 ^b	28.9	37.7	29.0	0.0	95.2

NA=not applicable,

^a first application,

^b second application

Table 54 Percent recovery of AR after treatment of [benzyl-14C]fenpyroximate to Tulare County soil

Sampling interval (DAT)	Soil extracts	Bound residue	Carbon dioxide	Organic volatiles	Total
0^{a}	100.6	2.3	NA	NA	102.9
0^{a}	100.5	2.5	NA	NA	103.0
0 ^b	98.4	3.4	NA	NA	101.8
21 ^a	82.5	13.6	4.6	0.0	100.7
21 ^a	81.8	14.2	5.3	0.0	101.3
60 ^a	39.0	31.8	17.9	0.0	88.7
60 ^a	31.8	39.1	19.7	0.0	90.6
61 ^b	64.3	23.8	12.7	0.1	100.9
61 ^b	45.7	32.8	19.7	0.0	98.2
98 ^a	19.2	39.1	38.7	0.0	97.0
98 ^a	21.8	37.4	29.4	0.0	88.6
185 ^a	11.6	37.9	44.3	0.0	93.8
185 ^a	8.8	38.7	23.9	0.0	71.43
273 ^b	17.8	26.0	52.8	0.0	96.6
273 ^b	18.8	25.4	51.6	0.0	95.8
285 ^a	6.1	32.5	58.2	0.0	96.8
285 ^a	4.6	30.1	51.5	0.0	86.2
365 ^b	13.3	25.2	56.6	0.0	95.1
365 ^b	11.0	27.8	59.0	0.0	97.8

NA=not applicable,

^a first application,

^b second application,

Fenpyroximate degraded from a mean value of 98.6% AR at 0 DAT to 1.9% AR at the end of the study. Metabolite M-3 was identified as a major metabolite in both the pyrazole and benzyl samples, reaching maximum mean values of 15.1%. Metabolites M-8 and M-11 were identified as major metabolites in the pyrazole samples, reaching maximum mean values of 12.1% and 5.9% AR, respectively. The distribution of applied radioactivity as fenpyroximate and its metabolites in soil is provided in Tables 55 and 56.

Table 55 Distribution of AR as fenpyroximate and its metabolites after treatment of $[pyrazole-^{14}C]$ fenpyroximate to Tulare County soil

Sampling interval (DAT)	Fenpyroximate	M-3	M-8	M-11	Minor metabolites*
0^{a}	101.8	0.0	0.0	0.0	0.0
0^{a}	98.1	0.0	0.0	0.0	0.0
0 ^b	94.9	0.0	0.0	0.0	1.4
3 ^a	97.4	1.8	0.0	0.0	0.0
3 ^a	94.8	1.1	0.0	0.0	0.5
7 ^a	95.5	0.0	0.0	0.0	0.0
7 ^a	89.9	0.3	0.0	0.7	0.9
14 ^a	83.6	5.7	0.8	1.4	2.8

Sampling interval (DAT)	Fenpyroximate	M-3	M-8	M-11	Minor metabolites*
14 ^a	84.6	6.2	0.4	1.4	2.0
14 ^b	87.0	3.7	0.0	0.0	2.9
14 ^b	84.9	5.0	0.0	0.0	2.8
21 ^a	73.2	7.7	2.1	1.6	2.6
21 ^a	79.0	6.6	1.5	1.3	1.8
30 ^b	73.2	6.2	2.2	1.6	1.3
30 ^b	73.8	8.3	0.9	1.7	0.8
32 ^a	61.0	11.0	3.8	2.7	1.6
32 ^a	59.0	12.3	4.0	3.1	2.1
60 ^a	23.1	14.7	10.5	5.1	0.5
60 ^a	28.2	15.4	8.5	4.9	2.4
61 ^b	49.8	10.1	5.5	3.7	1.2
61 ^b	35.6	10.4	8.2	3.8	2.9
90 ^b	13.2	13.9	11.7	5.8	2.1
90 ^b	18.9	15.5	12.4	5.9	1.2
182 ^b	2.5	2.2	9.3	3.1	1.5
182 ^b	2.3	3.3	8.0	3.6	0.5
273 ^b	2.7	4.0	4.6	4.0	7.3
273 ^b	2.6	5.7	6.5	4.6	8.9
365 ^b	2.1	3.9	2.0	1.7	7.9
365 ^b	1.6	4.0	2.1	1.6	7.8

Sum of minor metabolites, no individual metabolite seen at ≥5% AR at consecutive time points. ^a first application,

^b second application

Table 56 Distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Tulare County soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*
0 ^a	98.9	0.4	1.3
0 ^a	100.0	0.0	0.5
0 ^b	96.8	0.0	1.6
21 ^a	70.7	9.9	1.9
21 ^a	69.9	8.6	3.3
60 ^a	30.3	7.7	0.5
60 ^a	23.9	6.6	0.7
61 ^b	48.4	14.8	0.3
61 ^b	30.9	12.6	1.2
98 ^a	3.8	11.5	3.6
98 ^a	9.7	8.8	2.2
185 ^a	4.3	5.2	1.4
185 ^a	2.8	3.8	1.5
273 ^b	2.4	7.8	1.2
273 ^b	2.0	9.2	2.7
285 ^a	1.8	2.8	0.2
285 ^a	1.6	2.4	0.0
365 ^b	2.9	5.9	2.6
365 ^b	1.5	5.6	2.3

Sum of minor metabolites, no individual metabolite seen at ≥5% AR at consecutive time points.

^a first application,

^b second application

The degradation of fenpyroximate was investigated in three European soils and one US soil under aerobic conditions at 20 °C in the dark for up to 219 days (Roohi A., 2016, report No. E-4052). Soils were treated with [¹⁴C-benzyl] or [¹⁴C-pyrazole]-fenpyroximate at a rate of 61.0 and 62.0 μ g/100 g soil, respectively (equivalent to a nominal field rate of 0.224 kg as/ha). The vessels were attached to a series of traps and incubated at 20 ± 2 °C in the dark and moistened, carbon dioxide free air was passed over the samples.

Duplicate soil samples and their associated traps from each label were removed for analysis at regular intervals. The soil samples were extracted three times with acetonitrile:0.01 M HCl(3:1, v/v), followed by two extractions with acetonitrile:1 M ammonium chloride (4:1, v/v), and analysed by HPLC. Selected samples were also analysed by LC-MS for confirmation of fenpyroximate and metabolites. Once extracted, soil samples were combusted for quantification of unextracted residues. Soil samples from 70 DAT were further characterised by bound residue fractionation. The trapping of carbon dioxide in the KOH solutions was confirmed via barium chloride precipitation.

The overall mean recovery of applied radioactivity ranged from 75.59% to 101.86%. Where low mass balance occurred the recovery of volatiles was lower than at preceding time points, suggesting loss of applied radioactivity was due to carbon dioxide. Extractability of applied radioactivity varied significantly across the four soils with 9.78% to 91.93% AR in the extracts at the end of the study. Unextracted residue and total volatiles increased to maximum mean values of 53.61% and 49.23% AR, respectively.

Fenpyroximate degraded at varying rates across all soils. In the Speyer 2.2 soil, fenpyroximate degraded slowly with 66.92% to 69.63% AR remaining at 120 DAT. Degradation of fenpyroximate was quicker in the other soils with 6.95% to 30.31% AR remaining at 120 DAT and 5.50% to 29.17% AR remaining at 219 DAT. The DT_{50} and DT_{90} values for fenpyroximate ranged from 23.2 to 254 days and 134 to 844 days, respectively. Metabolite M-3 was identified as a major metabolite in both the pyrazole and benzyl samples, reaching a maximum mean value of 28.72% AR. Metabolites M-8 and M-11 were identified as major metabolites in the pyrazole samples, reaching maximum mean values of 15.90% and 9.55% AR, respectively.

Soil name	pH ^a	OC (%)	Sand ^b (%)	Silt ^b (%)	Clay ^b (%)	CEC (meq/ 100g)	Classification ^b	MWHC (%)
Speyer 2.2	5.7	1.6	82	10	8	7.3	Loamy sand	55.9
Speyer 5M	7.3	1.1	56	28	16	10.3	Sandy loam	50.2
Speyer 6S	7.0	1.7	32	22	46	22.5	Clay	47.6
Iowa	6.0	1.7	14	71	15	12.1	Silt loam	64.4

Table 57 Characteristics of soils used in aerobic soil study

^a measured in CaCl₂,

^b USDA textural classification,

OC=organic carbon,

CEC=cation exchange capacity

Table 58 Mean percent recovery of AR after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 2.2 soil

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	96.23 ^a	1.87	NA	98.09
7	96.85	0.74	0.37	97.96
14	95.18	1.34	1.42	97.94
29	94.09	2.70	3.97	100.76
70	88.96	4.53	5.74	99.23
120	83.36	6.51	9.57	99.44

^a Value in report is 98.50% which appears to be an error. Value calculated from the two replicates (96.69 and 95.76%), NA=not applicable

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	98.24	3.32	NA	101.56
7	90.20	6.63	2.06	98.89
14	85.38	7.36	5.69	98.43
29	59.27	19.64	18.90	97.82
70	28.42	26.46	36.70	91.58
120	14.30	29.66	49.23	93.19
170	17.00	32.73	40.60	90.33
219	9.78	30.83	34.98	75.59*

Table 59 Mean percent recovery of AR after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 5M soil

NA=not applicable,

* low mass balance may be due to loss of volatiles

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	92.49	8.36	NA	100.85
7	82.43	11.59	0.72	94.75
14	74.98	19.48	1.79	96.25
29	70.43	18.87	6.53	95.83
70	59.63	17.14	16.65	93.42
120	44.58	22.10	28.32	95.00
170	29.04	25.37	37.03	91.44
219	23.07	28.86	40.79	92.72

Table 60 Mean percent recovery of AR after treatment of [benzyl-14C]fenpyroximate to Speyer 6S soil

NA=not applicable

Table of Mean percent recovery of the area realment of [benzy]- Chenpytoxinate to fow a sol

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	96.82	3.41	NA	100.23
7	87.13	6.60	2.68	96.41
14	82.68	8.94	4.84	96.46
29	60.61	22.48	14.85	97.94
70	55.65	21.41	20.15	97.21
120	48.25	18.91	29.60	96.76
170	33.77	27.38	27.97	89.12
219	48.65	28.63	23.53	100.81

NA=not applicable

Table 62 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 2.2 soil

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	98.75	1.85	NA	100.59
7	99.20	0.51	0.04	99.76
14	96.90	1.16	0.09	98.15
29	99.22	1.65	0.23	101.10
70	94.29	4.77	1.16	100.22
120	91.93	6.71	2.07	100.72

NA=not applicable

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	98.77	2.06	NA	100.82
7	96.25	5.46	0.15	101.86
14	92.71	6.67	0.40	99.79
29	83.58	14.73	1.33	99.65
70	52.35	34.80	8.81	95.95
120	29.96	46.65	18.69	95.30
170	17.64	53.61	23.11	94.36
219	15.57	51.16	28.89	95.62

Table 63 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 5M soil

NA=not applicable

Table 64 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 6S soil

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	94.00	6.88	NA	100.88
7	91.93	4.74	0.04	96.70
14	89.08	6.09	0.17	95.34
29	81.22	15.40	0.79	97.41
70	68.36	24.12	4.67	97.15
120	48.36	35.45	13.75	97.55
170	36.37	42.21	12.01	90.59
219	35.77	45.52	17.14	98.43

NA=not applicable

	Table 65 Mean	percent recovery	of AR after	r treatment of	[pyrazole- ¹	⁴ C]fenpyroz	ximate to	Iowa soil
--	---------------	------------------	-------------	----------------	-------------------------	-------------------------	-----------	-----------

Sampling interval (DAT)	Soil extracts	Unextracted residue	Total volatiles	Total
0	94.93	5.28	NA	100.21
7	93.94	5.42	0.38	99.74
14	93.27	6.07	1.04	100.38
29	83.53	12.82	2.29	98.64
70	71.31	18.62	8.22	98.15
120	73.19	16.52	11.04	100.75
170	55.85	28.01	14.10	97.96
219	61.03	29.15	13.65	103.84

NA=not applicable

The distribution of applied radioactivity as fenpyroximate and its metabolites in soil is provided in Tables 66 to 73.

Table 66 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl- 14 C]fenpyroximate to Speyer 2.2 soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*
0	92.78	0.33	2.99
7	92.23	1.23	3.12
14	88.94	2.33	2.67
29	86.50	4.97	2.52
70	78.55	7.58	2.54
120	66.92	11.68	4.76

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 3.12% AR.

Table 67 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 5M soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*
0	95.63	0.00	2.61
7	74.76	13.19	2.02
14	55.18	28.72	1.45
29	35.03	22.39	1.3
70	16.10	11.70	0.63
120	6.95	5.78	0.55
170	7.60	7.85	0.36
219	5.50	3.30	0.00

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 2.61% AR.

Table 68 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 6S soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*
0	89.24	0.32	2.84
7	75.74	3.79	2.46
14	67.83	5.67	1.92
29	57.31	11.30	1.12
70	38.68	18.80	1.40
120	26.00	14.96	0.20
170	16.56	9.63	0.71
219	12.70	8.29	0.00

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 2.84% AR.

Table 69 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Iowa soil

Sampling interval (DAT)	Fenpyroximate	M-3	Minor metabolites*
0	94.19	0.11	2.54
7	77.76	8.06	2.58
14	68.04	13.46	1.45
29	46.84	12.43	1.05
70	37.11	16.54	1.55
120	27.18	19.58	1.50
170	18.43	12.03	3.32
219	29.17	15.22	4.25

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 2.54% AR.

Table 70 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 2.2 soil

Sampling interval	Fenpyroximate	M-3	M-8	M-11	Minor
(DAT)					metabolites*
0	95.70	0.00	0.00	0.00	3.04
7	92.70	1.76	0.39	0.78	2.69
14	91.20	2.43	0.00	0.68	2.33

Sampling interval (DAT)	Fenpyroximate	M-3	M-8	M-11	Minor metabolites*
29	90.49	2.94	1.34	1.48	2.79
70	77.55	8.11	2.35	3.23	2.79
120	69.63	10.00	3.87	3.75	4.82

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 3.04% AR.

Table 71 Mean distribution of AR a	s fenpyroximate a	and its metabolites a	fter treatment of [pyrazole-
¹⁴ C]fenpyroximate to Speyer 5M soi	l		

Sampling interval	Fenpyroximate	M-3	M-8	M-11	Minor
(DAT)					metabolites*
0	94.78	0.00	0.00	0.00	3.07
7	77.38	13.45	0.76	1.39	2.44
14	68.05	16.67	2.35	2.37	1.91
29	51.62	10.11	11.03	5.44	4.92
70	19.41	2.71	15.26	8.32	6.07
120	10.13	1.36	7.73	5.78	4.73
170	7.73	1.05	1.10	4.95	2.81
219	7.06	0.32	1.20	3.32	2.25

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 3.07% AR.

Table 72 Mean distribution	of AR as fe	npyroximate	and its	metabolites	after	treatment	of [pyrazole-
¹⁴ C]fenpyroximate to Speyer	: 6S soil						

Sampling interval (DAT)	Fenpyroximate	M-3	M-8	M-11	Minor metabolites*
0	88.62	0.76	0.00	0.00	4.56
7	72.87	4.53	0.09	0.50	2.07
14	77.77	8.13	0.02	0.38	1.94
29	65.43	9.99	1.49	2.04	2.25
70	38.52	15.03	4.56	5.53	4.10
120	21.19	6.42	8.50	5.42	5.86
170	15.66	4.48	3.61	4.87	7.74
219	18.29	5.61	3.76	4.55	2.51

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-1 at a maximum mean value of 2.45% AR.

Table 73 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [pyrazole-¹⁴C]fenpyroximate to Iowa soil

Sampling interval (DAT)	Fenpyroximate	M-3	M-8	M-11	Minor metabolites*
0	91.29	0.20	0.00	0.00	3.44
7	80.41	8.74	1.11	2.04	3.60
14	72.75	12.86	1.96	2.35	3.00
29	54.65	15.30	5.16	4.37	3.83
70	31.64	9.54	13.90	8.73	6.82
120	30.31	9.21	15.90	9.53	7.80
170	23.76	7.42	4.83	9.55	10.29
219	20.68	9.72	13.90	9.09	7.63

* Sum of minor metabolites, no individual metabolite seen at ≥5% AR at consecutive time points. Includes metabolite M-

1 at a maximum mean value of 3.08% AR.

Soil photolysis

The photodegradation of fenpyroximate was investigated in one German soil under continuous irradiation with simulated natural sunlight and aerobic conditions at 20 °C (Doble M.L., 2016, report No.: E-4053). Soil samples in photolysis dishes were treated with [pyrazole-¹⁴C] or [benzyl-¹⁴C]fenpyroximate at a nominal rate of 13.8 μ g/vessel (equivalent to 224 g ai/ha). The treated samples were incubated at 20 °C under continuous irradiation or in the dark. The soil samples at regular intervals were extracted twice with acetonitirile:0.01 M HCl (3:1, v/v) (extracts 1 and 2) and a further two times with acetonitrile:0.1M NH₄Cl (8:2, v/v), and analysed by LSC and HPLC. The soil samples after extraction were air-dried and combusted for quantification of unextracted residues. Degradation kinetics were investigated following SFO, FOMC and DFOP kinetics in the CAKE 2.0 software.

The mean total recovery of applied radioactivity ranged from 89.31% to 102.136% AR. Extractability remained high throughout the study, with mean values of >89% AR, in all samples with one exception (85.9% AR) where there was a loss on processing of one replicate, resulting in individual extraction recoveries of 97.96% and 72.84% AR. Unextracted residues and carbon dioxide accounted for maximum mean values of 5.34% and 3.55% AR, respectively.

Fenpyroximate degraded quickly under irradiated conditions, from mean values of 96.32–99.84% AR at 0 DAT, to 59.49–56.19% AR by the end of the study. Major metabolites M-1, M-12, M-12 isomer and MTBT were observed in irradiated samples, reaching maximum mean values of 17.22%, 5.46%, 5.10% and 8.26% AR, respectively.

In dark conditions fenpyroximate degraded more slowly, with 72.99–74.99% AR remaining at the end of the study. The only major metabolite observed in the dark samples was M-3, reaching a maximum mean value of 14.21% AR.

Soil name	pH ^a	OC (%)	Sand ^b (%)	Silt ^b (%)	Clay ^b (%)	Classification ^b	MWHC (%)
Spever 5M	7.3	1.1	55	29	16	Sandy loam	41.87

Table 74 Characteristics of soil used in aerobic soil study

^a measured in 0.01 M CaCl₂,

^b USDA textural classification,

OC=organic carbon

Table 75 Mean percent recovery of AR after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 5M soil (irradiated)

Incubation time (days)	Incubation time (hours ^a)	Incubation time (days ^b)	Soil extracts	Volatile traps	Unextracted residue	Total
0 ^c	0	0	98.59	NA	0.00	98.59
2	45	2.4	96.01	0.00	0.21	96.22
6	138	7.4	97.65	0.04	0.46	98.15
13	303	16.2	92.51	1.09	1.30	94.90
20	468	25.1	94.01	1.38	1.76	97.14
24	568	30.4	95.34	0.82	1.58	97.74

^a actual incubation time,

^b days equivalent to natural sunlight conditions at 30-50 °N,

^c zero day samples used for both irradiated and dark control,

NA=not applicable

Incubation time (days)	Incubation time (hours ^a)	Soil extracts	Volatile traps	Unextracted residue	Total
0 ^b	0	98.59	NA	0.00	98.59
2	45	91.02	0.00	0.07	91.09
6	138	97.00	0.23	0.41	97.64
13	303	93.26	1.22	1.29	95.77
20	468	90.19	2.51	2.63	95.32
24	568	89.25	3.55	2.83	95.63

Table 76 Mean percent recovery of AR after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 5M soil (dark control)

^a actual incubation time,

^b zero day samples used for both irradiated and dark control,

NA=not applicable

Table 77 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 5M soil (irradiated)

Incubation time (days)	Incubation time (hours a)	Incubation time (days b)	Soil extracts	Volatile traps	Unextracted residue	Total
0c	0	0	102.16	NA	0.00	102.16
2	44	1.9	98.08	0.19	0.22	98.49
7	164	7.0	97.67	0.61	0.60	98.88
14	329	14.0	99.94	0.80	0.98	101.72
21	495	21.1	85.40	1.82	2.10	89.31*
30	710	30.2	95.40	1.27	5.34	102.00

^a actual incubation time,

^b days equivalent to natural sunlight conditions at 30-50 °N,

^c zero day samples used for both irradiated and dark control,

* low mass balance in one replicate (76.48) due to partial loss of sample,

NA=not applicable

Table 78 Mean percent recovery of AR after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 5M soil (dark control)

Incubation time (days)	Incubation time (hours ^a)	Soil extracts	Volatile traps	Unextracted residue	Total
0 ^b	0	102.16	NA	0.00	102.16
2	44	99.18	0.00	0.17	99.34
7	164	101.88	0.02	0.70	102.59
14	329	99.48	0.06	0.93	100.48
21	495	96.27	0.12	2.60	98.99
30	710	97.98	0.62	5.08	103.67

^a actual incubation time,

^b zero day samples used for both irradiated and dark control,

NA=not applicable

The mean distribution of applied radioactivity as fenpyroximate and its metabolites in soil is provided in Tables 79-82.

DAT	Fenpyroximate	M-1	M-3	M-12	M-12 isomer	MTBT	Minor metabolites*
0	96.32	0.74	-	-	-	0.16	0.75
2	85.96	5.33	-	0.78	0.53	2.04	0.68
6	79.88	10.12	0.23	1.23	1.25	3.13	1.05
13	61.28	16.76	1.71	0.91	1.17	7.00	2.18
20	63.83	17.44	1.45	0.55	0.90	5.89	2.54
24	59.49	17.22	1.70	1.79	2.14	8.26	2.48

Table 79 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 5M soil (irradiated)

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points.

Table 80 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [benzyl-¹⁴C]fenpyroximate to Speyer 5M soil (dark control)

DAT	Fenpyroximate	M-1	M-3	MTBT	Minor metabolites*
0	96.32	0.74	0.00	0.16	0.88
2	88.26	0.86	-	1.11	0.23
6	91.49	1.05	1.90	1.82	0.02
13	83.64	0.83	5.76	1.34	0.41
20	76.98	0.81	8.94	0.90	0.64
24	74.99	0.69	10.34	0.81	0.29

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points.

Table 81 Mean distribution of AR as fenpyroximate and its metabolites after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 5M soil (irradiated)

DAT	Fenpyroximate	M-1	M-3	M-12	M-12 isomer	Minor metabolites*
0	99.84	0.79	-	-	-	1.00
2	89.90	4.45	-	0.47	0.32	2.17
7	82.68	8.38	1.01	0.47	0.60	3.67
14	76.05	12.09	1.01	1.68	1.19	6.56
21	57.96	11.93	2.51	2.70	2.40	6.09
30	56.19	14.00	1.58	5.46	5.10	11.34

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. . Includes metabolites M-8 and M-11 at a maximum mean values of 2.98% and 2.51% AR, respectively.

Table 82: Mean distribution of AR as fenpyroximate and its metabolites after treatment of [pyrazole-¹⁴C]fenpyroximate to Speyer 5M soil (dark control)

DAT	Fenpyroximate	M-1	M-3	M-12	M-12 isomer	Minor metabolites*
0	99.84	0.79	-	-	-	1.00
2	95.30	1.07	0.04	0.26	0.14	1.62
7	95.35	0.74	2.67	0.17	0.03	1.91
14	88.10	0.64	5.60	-	0.45	3.39
21	80.15	0.84	9.90	0.53	-	3.64
30	72.79	0.93	14.21	0.22	-	7.77

* Sum of minor metabolites, no individual metabolite seen at \geq 5% AR at consecutive time points. Includes metabolite M-8 at a maximum mean value of 3.93% AR.

A summary of the DT₅₀ and DT₉₀ values is provided in table 83.

Sample type	Label	Kinetic model	χ2 err	Confidence measure	Visual assessment	DT ₅₀ (hours)	DT ₉₀ (hours)
Darls control	Benzyl	SFO	2.08	7.20 x 10 ⁻⁵	Good	1690	5630
Dark control	Pyrazole	SFO	1.44	7.75 x 10 ⁻⁸	Good	1620	5380
Irradiated	Benzyl	SFO	5.0	7.86 x 10 ⁻⁶	Good	797	2650
	Pyrazole	SFO	3.6	4.05 x 10 ⁻⁶	Good	816	2710

Table 83 Summary of kinetic values after treatment of [benzyl-¹⁴C] or [pyrazole-¹⁴C]fenpyroximate to Speyer 5M soil

The DT_{50} and DT_{90} values were calculated in terms of actual hours under the suntest. For the irradiated samples, these values have been converted into equivalent days of natural sunlight at 30–50 °N, giving DT_{50} values of 42.7 and 34.7 days for the benzyl and pyrazole samples, respectively. The DT_{90} equivalent day values were 142 and 115 days for the benzyl and pyrazole samples, respectively. Fenpyroximate degraded quickly under irradiated conditions to major metabolites M-1, M-12, M-12 isomer and MTBT. In the dark, fenpyroximate degraded more slowly and M-3 was the only major metabolite observed.

The rate of degradation of fenpyroximate was investigated in three field soils under aerobic conditions at 20 °C in the dark for up to 100 days (Römbke, J., Möllerfeld J., 1992, report No.: E-4008). Soils were treated with [pyrazole-¹⁴C]-fenpyroximate at a rate of 20 μ g/100 g soil (equivalent to 150 g ai/ha). Samples were incubated under aerobic conditions at 20 °C in the dark. Samples were not connected to volatile traps. The soils samples at regular intervals were extracted once with methanol:water (1:1, v/v), once with methanol and once with acetone, and analysed by two-dimensional TLC. The soil samples after extraction were combusted for quantification of unextracted residues. The DT₅₀ and DT₉₀ values for each soil were calculated from these data, using a PC programme developed by V. Laska (Bayer AG).

The amount of applied radioactivity recovered in the soil extracts decreased from 84.0-89.7% at 0 DAT to 11.9-29.4% at 100 DAT. Bound residues increased from 9.1-16.2% AR at 0 DAT, to 13.7-34.5% AR at 100 DAT. There was no provision for the trapping of volatiles throughout the study, however significant amounts of carbon dioxide were generated in a previous study (up to 17.1% AR, Funayama (1990)), therefore it was concluded that the low mass balance is largely due to generation of carbon dioxide. Also the vapour pressure for fenpyroximate is low ($0.75 \times 10-5$, taken from DAR 2005), indicating volatility of fenpyroximate from the soil surface is unlikely.

Extractability at 0 DAT was good (84.0–89.7%), indicating that the extraction method is reasonably robust for the extraction of fenpyroximate. Extractability throughout the study appears to follow a similar pattern as previously seen in Funayama (1990), therefore this study has been deemed acceptable for the calculation of the rate of degradation of fenpyroximate. Fenpyroximate degraded steadily, with 8.8–22.9% AR remaining at 100 DAT. M-3 was identified as a major metabolite, reaching a maximum of 8.9% AR in one soil The DT_{50} values were calculated as 16.9, 10.1 and 21.3 days for field soil I, II and III, respectively. The DT_{90} values were calculated as 186.4, 111.9 and >100 days for field soil I, II and III, respectively. These values have been superseded by a new full FOCUS kinetics assessment (Graham 2016, Report no. E-4058).

Soil name	pH (KCl)	OC (%)	Sand (%)	Silt (%)	Clay (%)	Classification	MWHC (%)
Field Soil I	6.9	3.97	20.2	49.5	30.3	Clay loam	55.9
Field soil II	6.3	3.97	11.2	65.7	23.1	Silt loam	54.1
Field soil III	5.9	2.83	30.6	49.7	19.7	Sandy loam	52.8

Table 84 Characteristics of soils used in aerobic soil study

OC=organic carbon, MWHC=maximum water holding capacity

Sampling interval (DAT)	Extract	Residue	Total
0	84.3	14.4	98.7
2	62.8	9.8	72.6
4	63.7	12.1	75.7
8	62.4	15.8	78.1
16	52.9	16.2	69.1
32	38.4	29.9	68.3
64	20.7	24.3	45.0
100	24.3	28.5	52.8

Table 85 Mean distribution of AR after treatment of pyrazole-¹⁴C-fenpyroximate to Field Soil I

Table 86 Mean distribution of AR after treatment of pyrazole-¹⁴C-fenpyroximate to Field Soil II

Sampling interval (DAT)	Extract	Residue	Total
0	88.5	9.6	98.3
2	61.3	8.3	69.6
4	59.9	6.9	66.8
8	62.7	10.8	73.4
16	54.6	12.6	67.1
32	30.8	21.0	51.7
64	16.6	22.0	38.6
100	12.3	23.5	35.8

Table 87 Mean distribution of AR after treatment of pyrazole-¹⁴C-fenpyroximate to Field Soil III

Sampling interval (DAT)	Extract	Residue	Total
0	88.2	10.5	98.7
2	59.7	6.7	66.4
4	60.7	7.1	67.8
8	61.6	9.4	71.0
16	62.4	14.6	77.0
32	43.4	19.5	62.9
64	31.9	23.0	54.9
100	27.5	28.8	56.3

Fenpyroximate degraded steadily, with mean values of 9.9%–19.6% AR remaining at 100 DAT. M-3 was identified as a major metabolite, reaching a maximum mean value of 8.0% AR in Field soil I at 32 DAT. M-3 was also seen in Field soil II and III, however it did not reach levels >5% AR. Metabolites M-1, M-6, M-8 and M-11 were seen in each soil, but did not reach levels exceeding 5% AR.

Table 88 Mean distribution of AR as fenpyroximate and its metabolites after treatment of pyrazole- $^{14}\mathrm{C}\textsc{-}\mathrm{fenpyroximate}$ to Field Soil I

Sampling interval (DAT)	Fenpyroximate	M-1	M-3	M-6	M-8	M-11
0	83.4	0.9	0.0	0.0	0.0	0.0
2	59.0	1.4	2.2	0.0	0.0	0.3
4	58.2	1.6	3.3	0.1	0.2	0.4
8	27.9	1.4	4.5	0.1	0.2	0.4
16	41.4	1.5	7.9	0.3	0.2	0.3
32	25.2	1.1	8.0	0.6	0.1	1.1
64	16.7	0.7	1.8	0.2	0.0	0.5
100	18.5	0.4	3.1	0.3	0.2	0.7

Sampling interval (DAT)	Fenpyroximate	M-1	M-3	M-6	M-8	M-11
0	86.9	1.7	0.0	0.0	0.0	0.0
2	58.9	1.0	0.7	0.0	0.1	0.6
4	56.2	1.9	1.3	0.0	0.1	0.3
8	57.1	1.5	2.8	0.2	0.3	0.6
16	46.4	0.8	5.3	0.3	0.4	0.8
32	23.9	1.0	3.0	0.4	0.2	1.6
64	*	*	*	*	*	*
100	9.9	0.4	0.5	0.0	0.1	0.7

Table 89 Mean distribution of AR as fenpyroximate and its metabolites after treatment of pyrazole-¹⁴C-fenpyroximate to Field Soil II

* samples erroneously destroyed and could not be measured

Table 90 Mean distribution of AR as fenpyroximate and its metabolites after treatment of pyrazole-¹⁴C-fenpyroximate to Field Soil III

Sampling interval (DAT)	Fenpyroximate	M-1	M-3	M-6	M-8	M-11
0	86.8	1.5	0.0	0.0	0.0	0.0
2	58.0	1.2	0.5	0.0	0.0	0.0
4	58.0	1.6	0.7	0.0	0.0	0.4
8	59.4	1.5	0.5	0.0	0.0	0.2
16	57.6	1.4	2.1	0.0	0.2	0.9
32	34.8	1.3	4.9	0.4	0.2	1.3
64	21.9 ^a	1.0 ^a	4.4 ^a	0.2 ^a	0.2 ^a	2.4 ^a
100	19.6	0.4	3.3	0.2	0.1	2.3

^a one sample erroneously destroyed and could not be measured, values from one replicate

The rate of degradation of fenpyroximate was investigated in one German loamy sand soil (Römbke, J., Brodesser J., 1992, report No.: E-4020). 100 g Soil samples in glass containers were treated with fenpyroximate at a rate of 20 μ g/100 g soil (equivalent to 150 g ai/ha), and incubated under aerobic conditions at 20 °C in the dark. The soil samples at 0, 2, 4, 8, 16, 32, 64 and 100 DAT were extracted three times by shaking with acetone:water (2:1, v/v), and were analysed by HPLC with UV detection using two reversed phase columns and a column switching procedure. The DT₅₀ and DT₉₀ values have been calculated as 159.0 and >200 days, respectively, according to methods recommended by the BBA.

Table 91 Characteristics of soil used in aerobic soil study

Soil name	pH (KCl)	OC (%)	Sand (%)	Silt (%)	Clay (%)	Classification	MWHC (%)
Standard 2.2*	5.6	2.29	82.0	13.0	5.1	Loamy sand	44.3

OC=organic carbon, MWHC=maximum water holding capacity

Table	92 Dete	rminatio	on of fe	enpyroximate	after app	plication t	to Standard	Soil	2.2

DAT	Analysed concentration (mg/kg)	Average concentration (mg/kg)	% nominal concentration (average)
0	0.123, 0.207, 0.150, 0.233	0.178	89
2	0.207, 0.212, 0.197, 0.197	0.203	102
4	0.201, 0.178, 0.166, 0.197	0.186	93
8	0.185, 0.193, 0.167, 0.179	0.181	91
16	0.139, 0.143, 0.193, 0.179	0.164	82
32	0.148, 0.303, 0.183, 0.220	0.214	107
64	0.153, 0.097, 0.093, 0.196	0.135	68

DAT	Analysed concentration (mg/kg)	Average concentration (mg/kg)	% nominal concentration (average)
100	0.131, 0.130, 0.100, 0.131	0.123	62

Kinetic assessment of data from six studies with 12 aerobic soils (eight European, two Japanese and two US soils) in the laboratory (report No. E-4005, E-4008, E-4020, E-4041, E-4039 and E-4052) were analysed using the CAKE version 3.2 (2016) software package according to guidance provided by FOCUS (2011) (Graham R., 2016, report No. E-4058). DT_{50} and DT_{90} values were calculated for comparison with relevant study triggers and persistence criteria. DT_{50} values were normalised to 20 °C and pF 2 soil moisture content for selection of suitable modelling endpoints. The fenyproximate persistence/trigger DT_{50} values ranged from 6.64 to 238 days and DT_{90} values ranged from 88.1 to 863 days. The fenpyroximate modelling DT_{50} values (at 20 °C and pF2) ranged from 12.9 days to 238 days, with a geometric mean of 51.2 days).

Table 93 Evaluation of persistence/trigger endpoints for fenpyroximate from laboratory studies

Soil	Kinetic model	$\chi^2 err$	Confidence measure	Visual assessment	DT ₅₀ (d)	DT ₉₀ (d)
	SFO	5.1	k: p=1.77 × 10 ⁻⁵	Good	39.9	132
Ehime	FOMC	5.51	A^{a} β^{a}	Good	34.1	114
	SFO	6.73	k: $p=1.62 \times 10^{-7}$	Good	26.5	88.1
Kanagawa	FOMC	7.27	α^{nd} β^{nd}	Good	22.5	74.7
	SFO	19.7	k: $p=4.70 \times 10^{-4}$	Poor	20.6	68.5
Field soil I	FOMC	9.78	A^b β^a	Good	6.64	630
	DFOP	9.19	k1: p=0.2823 k2: p=5.68 × 10 ⁻⁵	Good	10.4	93.2
	SFO	16.9	k: $p=7.58 \times 10^{-4}$	Poor	17.8	59
Field soil II	FOMC	13.1	α^{b} β^{a}	Good	7.28	554
	DFOP	6.6	k1: p=nd k2: p= 2.18×10^{-4}	Good	10.9	78.7
	SFO	17.7	k: p=0.001133	Poor	35.5	118
Field soil III	FOMC	13.7	α^{b} β^{a}	Intermediate	9.47	>1000
	DFOP	7.51	k1: p=0.493 k2: p= 6.32×10^{-5}	Good	17.9	137
	SFO	8.77	k: p=0.002488	Poor	171	568
Standard 2.2	FOMC	9.49	α^a β^a	Poor	198	1.23×10^3
Standard 2.2	SFO*	4.26	k: p=9.87 × 10 ⁻⁵	Good	150	498
	FOMC*	4.1	α^a β^a	Good	250	>10 000
	SFO	10.7	k: p=4.44 x 10 ⁻⁴	Good	33.3	111
SK108672	FOMC	5.59	α^{b} β^{a}	Excellent	21.6	236
	DFOP	6.01	k1: p=0.08685 k2: p=0.0259	Excellent	21.6	154
	SFO	10.4	k: $p=3.16 \times 10^{-26}$	Good	38.2	127
Tulare County	FOMC	10.7	$\frac{\alpha^2}{\beta^2}$	Good	30.1	100
	SFO	1.62	k: $p=1.33 \times 10^{-13}$	Excellent	238	789
Speyer 2.2	FOMC	1.6	α^a β^a	Excellent	372	>10 000
	SFO	9.39	k: $p=3.71 \times 10^{-14}$	Good	26.1	86.6
Speyer 5M	FOMC	2.1	α ^b β ^b	Excellent	21.1	126
	DFOP	3.56	k1: $p=5.73 \times 10^{-6}$ k2: $p=0.04769$	Excellent	21.6	131

Soil	Kinetic model	$\chi^2 err$	Confidence measure	Visual assessment	DT ₅₀ (d)	DT ₉₀ (d)
	SFO	9.67	k: $p=7.06 \times 10^{-15}$	Intermediate	63.2	210
Speyer 6S	FOMC	6.55	α^{b} β^{b}	Excellent	46.2	371
1 5	DFOP	4.36	k1: p=0.4768 k2: p=9.25 × 10 ⁻¹⁸	Excellent	49.6	221
	SFO	15.1	k: p=8.55 x 10 ⁻¹¹	Intermediate	70.2	233
Iowa	FOMC	3.82	α^{a1} β^{b}	Excellent	33	863
	DFOP	3.63	k1: p=4.96 × 10 ⁻⁸ k2: p=0.01478	Excellent	30.7	603

^a 95th percentile confidence interval includes zero,

 $^{\rm b}\,95^{\rm th}$ percentile confidence interval does not include zero

nd=not determined;

DFOP: distribution-free one-pass model;

FOMC: first-order multi-compartment model;

SFO: single first order.

Table 94 Evaluation of modelling endpoints for fenpyroximate from laboratory studies

Soil	Kinetic model	$\chi^2 err$	Confidence measure	Visual assessment	DT ₅₀ (d)	DT ₉₀ (d)	$DT_{50 MOD}(d)$
Ehime	SFO	5.1	k: p=1.77 × 10 ⁻⁵	Good	39.9	132	39.9
Kanagawa	SFO	6.73	k: $p=1.62 \times 10^{-7}$	Good	26.5	88.1	26.5
	SFO	19.7	k: p=4.70 × 10 ⁻⁴	Poor	20.6	68.5	-
Field soil I	DFOP	9.19	k1: p=0.2823 k2: p=5.68 × 10 ⁻⁵	Good	10.4	93.2	35.7 °
	HS	16.5	k1: p=0.001373 k2: p=0.02998	Good	8.48	131	-
	SFO	16.9	k: p=7.58 × 10 ⁻⁴	Poor	17.8	59	-
Field soil II	FOMC	13.1	α^{b} β^{a}	Good	7.28	554	167 ^d
	SFO	17.7	k: p=0.001133	Poor	35.5	118	-
Field soil III	DFOP	7.51	k1: p=0.493 k2: p=6.32 × 10 ⁻⁵	Good	17.9	137	51.4 °
	HS	7.5	k1: p=0.4999 k2: p=1.26 × 10 ⁻⁴	Intermediate	17.8	137	-
Standard 2.2	SFO	8.77	k: p=0.002488	Poor	171	568	-
Standard 2.2	SFO*	4.26	k: p=9.87 × 10 ⁻⁵	Good	150	498	150
SK108672	SFO	10.7	k: $p=4.44 \times 10^{-4}$	Good	33.3	111	33.3
Tulare County	SFO	10.4	k: p=3.16 × 10 ⁻²⁶	Good	38.2	127	38.2
Speyer 2.2	SFO	1.62	k: $p=1.33 \times 10^{-13}$	Excellent	238	789	238
Speyer 5M	SFO	9.39	k: $p=3.71 \times 10^{-14}$	Good	26.1	86.6	26.1
Speyer 6S	SFO	9.67	k: $p=7.06 \times 10^{-15}$	Intermediate	63.2	210	63.2
Iowa	SFO	15.1	k: $p=8.55 \times 10^{-11}$	Intermediate	70.2	233	70.2

^a 95th percentile confidence interval includes zero,

^b 95th percentile confidence interval does not include zero,

^d DT₉₀ / 3.32;

DFOP: distribution-free one-pass model;

FOMC: first-order multi-compartment model;

SFO: single first order;

HS: hockey-stick.

A summary of the best-fit persistence/trigger endpoints is shown in Table 95. The DT_{50} values of fenpyroximate ranged from 6.64 to 238 days and DT_{90} values ranged from 88.1 to 863 days.

^c Overall days,

A summary of the modelling endpoints is shown in Table 96. The DT_{50} values (at 20 °C and pF2) ranged from 12.9 days to 238 days, with a geometric mean of 51.2 days.

Soil (USDA)	pН	Temp. (°C)	Moisture content (% MWHC)	DT ₅₀ (days)	DT ₉₀ (days)	$\chi^2 \operatorname{error}(\%)$	Kinetics
Ehime (sand ^a)	5.8 ^c	25	15.1 ^f	39.9	132	5.1	SFO
Kanagawa (sandy loam ^a)	5.5°	25	50.7 ^f	26.5	88.1	6.73	SFO
Field soil I (clay loam ^b)	6.9 ^d	20	40	6.64	630	9.78	FOMC
Field soil II (silt loam ^b)	6.3 ^d	20	40	7.28	554	13.1	FOMC
Field soil III (loam ^b)	5.9 ^d	20	40	17.9 ^g	137	7.51	DFOP
Standard 2.2 (loamy sand ^b)	5.6 ^d	20	40	150	498	4.26	SFO
SK 108672 (silt loam)	6.8 ^e	10	45	21.6	236	5.59	FOMC
Tulare County (sandy loam)	8.6 ^e	25	11.7 ^f	38.2	127	10.4	SFO
Speyer 2.2 (loamy sand)	5.4 ^e	20	pF2	238	789	1.62	SFO
Speyer 5M (sandy loam)	7.1 ^e	20	pF2	21.1	126	2.1	FOMC
Speyer 6S (clay)	6.5 ^e	20	pF2	46.2	371	6.55	FOMC
Iowa (silt loam)	5.7 ^e	20	pF2	33	863	3.82	FOMC
		Worst-case	e	238	863		
		pH depend	lence	No			

Table 95 Summary of persistence/trigger endpoints for fenpyroximate from laboratory studies

^a Classification estimated from values for sand, silt and clay stated in report, assuming particle size, according to USDA guidance,

^b converted to USDA classification,

^c medium measured in not stated,

^d measured in KCl,

^e measured in H₂O,

^f actual soil moisture content (%),

^g overall days,

MWHC=maximum water holding capacity

Table 96	Summary	of modelling	endpoints	(corrected	to p	oF2	and	20	°C)	for	fenpyr	oximate	from
laboratory	studies												

Soil (USDA)	pH (water)	Temp (°C)	Moisture content (% MWHC)	DT ₅₀ (days)	DT ₉₀ (days)	Modelling DT ₅₀ at pF2 and 20 °C (days)	χ^2 error (%)	Kinetics
Ehime (sand ^a)	5.8 ^c	25	15.1 ^f	39.9	132	62.6	5.1	SFO
Kanagawa (sandy loam ^a)	5.5°	25	50.7 ^f	26.5	88.1	41.6	6.73	SFO
Field soil I (clay loam ^b)	6.9 ^d	20	40	35.7 ^g	93.2	30.5	9.19	DFOP
Field soil II (silt loam ^b)	6.3 ^d	20	40	167 ^h	554	146.7	13.3	FOMC
Field soil III (loam ^b)	5.9 ^d	20	40	51.4 ^g	137	45.6	7.51	DFOP
Standard 2.2 (loamy sand ^b)	5.6 ^d	20	40	150	498	150.0	4.26	SFO
SK 108672 (silt loam)	6.8 ^e	10	45	33.3	111	12.9	10.7	SFO
Tulare County (sandy loam)	8.6 ^e	25	11.7 ^f	38.2	127	42.7	10.4	SFO
Speyer 2.2 (loamy sand)	5.4 ^d	20	pF2	238	789	238	1.62	SFO
Speyer 5M (sandy loam)	7.1 ^d	20	pF2	26.1	86.6	26.1	9.39	SFO
Speyer 6S (clay)	6.5 ⁴	20	pF2	63.2	210	63.2	9.67	SFO

Soil (USDA)	pH (water)	Temp (°C)	Moisture content (% MWHC)	DT ₅₀ (days)	DT ₉₀ (days)	Modelling DT ₅₀ at pF2 and 20 °C (days)	χ^2 error (%)	Kinetics
Iowa (silt loam)	5.7 ^d	20	pF2	70.2	233	70.2	15.1	SFO
		Geometr	ic mean			51.2 ⁱ		
		pH depe	ndence	No				

^a Classification estimated from values for sand, silt and clay stated in report, assuming particle size according to USDA guidance,

^b converted to USDA classification,

^c medium measured in not stated,

^d measured in KCl,

^e measured in H₂O,

^f actual soil moisture content (%),

^g slow phase,

^h DT₉₀ / 3.32,

ⁱ Standard 2.2 and Speyer 2.2 are the same soil. The geometric mean DT_{50} value for these soils was calculated first and included as a single value in the overall geometric mean calculation,

MWHC=maximum water holding capacity

Bound residue, carbon dioxide and minor metabolites

Figure 4 Proposed metabolic pathway for Fenpyroximate in soil

Environmental fate in water

The hydrolysis of fenpyroximate was studied in sterile aqueous solution buffered at pH 5, 7 and 9 for thirty days at 25 °C (Saxena A., McCann D., 1992, E-4013). Sterilised aqueous solutions buffered at pH 5, 7 and 9 were fortified with [pyrazole-¹⁴C]-fenpyroximate in acetonitrile at concentrations of 9.5 ng/mL (ppb) buffer solution. The sample containers were maintained in a dark at 25 °C \pm 1 °C.

Duplicate samples for each pH were collected at 0, 1, 2, 4, 7, 14, 21 and 30 DAT, and were extracted by partitioning with ethyl acetate (the pH 9 samples were acidified prior to extraction) and analysed by HPLC with selected samples analysed by 2d-TLC.

The total mean radioactivity recovered by extraction relative to the applied radioactivity ranged from 90.4% to 99.7% AR, with one exception (pH 7, day 30) where a mean value of 116.0% AR was reported. Fenpyroximate degraded from mean relative values of 100% at 0 DAT, to 88.5%, 92.5% and 88.6% at pH 5, 7 and 9, respectively. The principal hydrolysis product observed at each pH was M-3 which did not exceed 10.1% of the total radioactivity in any of the samples. M-1 was only observed at pH 5 and pH 9 and represented a maximum of approximately 7% of the injected radioactivity. Radiolabelled fenpyroximate degradation was very slow at each pH studied. The half-life for the hydrolytic degradation of [pyrazole-¹⁴C]-fenpyroximate was calculated to be 180 days for pH 5 (correlation coefficient r^2 =0.9671), 226 days for pH 7 (r^2 =0.9344) and 221 days for pH 9 (r^2 =0.6586).

Day	Mean mass balance (%) ^a					
	pH 5 buffer solutions	pH 7 buffer solutions	pH 9 buffer solutions			
0	95.8	99.2	98.9			
1	97.8	98.0	97.3			
2	98.0	94.3	98.3			
4	99.7	97.5	99.4			
7	95.3	90.4	95.8			
14	96.8	95.0	94.9			
21	96.6	95.1	98.3			
30	94.4	116.0	98.8			

Table 97 Mean recovery of AR after treatment of [¹⁴C]fenpyroximate to sterile buffer solutions

^a Mean of two samples; mass balance calculated relative to the applied radioactivity on day 0

The principal hydrolysis product observed at each pH was M-3 and did not exceed 10.1% of the total radioactivity on any of the samples. M-1 was only observed at pH 5 and pH 9 and represented a maximum of approximately 7% of the injected radioactivity. The composition of hydrolysis samples during the course of the study are summarised in Tables 98–100.

Table 98 Percentage composition of fenpyroximate and its hydrolysis products for pH 5 buffer solution

Dov	pH 5 buffer						
Day	Fenpyroximate ^a (%)	M-1 ^a (%)	M-3 ^a (%)				
0	100.0	-	-				
1	100.0	-	-				
2	100.0	-	-				
4	98.46	1.55	-				
7	97.79	2.22	-				
14	95.85	1.67	2.69				
21	93.91	1.76	7.02				
30	88.47	4.54	8.49				

^a Mean of two samples; percent of injected radioactivity

Dav	pH 7 buffer						
Day	Fenpyroximate ^a (%)	M-1 ^a (%)	$M-3^{a}(\%)$				
0	100	-	-				
1	100	-	-				
2	100	-	-				
4	100	-	-				
7	100	-	-				
14	95.67	-	4.33				
21	93.33	-	6.67				
30	92.45	-	7.56				

Table 99 Percentage composition of fenpyroximate and its hydrolysis products for pH 7 buffer solution

^a Mean of two samples; percent of injected radioactivity

Table 100 Percentage composition of fenpyroximate and its hydrolysis products for pH 9 buffer solution

Dav	pH 9 buffer						
Day	Fenpyroximate ^a (%)	M-1 ^a (%)	M-3 ^a (%)				
0	100	-	-				
1	97.1	2.90	-				
2	100	-	-				
4	93.75	4.51	1.75				
7	96.66	3.35	-				
14	95.14	2.18	2.69				
21	88.63	4.35	7.02				
30	91.52	-	8.49				

^a Mean of two samples; percent of injected radioactivity

RESIDUE ANALYSIS

The meeting received the information on validation of analysis method for determination of residues of fenpyroximate and its metabolites in plant matrices, animal matrices and soil.

Analytical methods

The commonly used methods are summarised below:

Method No.	Matrix	Analyte	LOQ (mg/kg)	Method principle
Plant matrices				
RES/RAM/004 RES-0029	Apple Rape seed Bean Wheat Orange Sugar beet hops	fenpyroximate M-1	0.01 0.01	Extracted with acetonitrile Purified with SPE, PSA LC-MS/MS analysis

Method No.	Matrix	Analyte	LOQ (mg/kg)	Method principle
DFG S19	Apple (mash, cidar) grapes (cidar, wine) orange cucumber/courgette tomato strawberry eggplant pear melon hops (dregs, yeast, beer) bean plum peach paprika cotton	fenpyroximate M-1	0.01	Extracted with acetone cleaned with GPC GC-N-FID analysis
Method P-14.045.02 Hoechst method AL 015/90-0	tomato	fenpyroximate M-1	0.05 0.05	Extracted with acetonitrile Partitioned with n-hexane and acetronitrile cleaned with silica gel column HPLC-UV analysis
RES/RAM/005 EN15662:2008	Apple (juice, pomace, sauce) Grape (raisin, juice, wine) Tomato (juice, puree) Strawberry (jam) Bean Malt Hop (beer)	fenpyroximate M-1 M-3	0.01 0.01 0.01	Extracted with acetonitrile Purified with PSE, PSAwith n-hexane and acetronitrile HPLC-MS/MS analysis
Animal matrices				-
QuEChERS method	musle kidney liver fat milk egg	fenpyroximate M-3	0.005 0.005	Extracted with acetonitrile Partitioned with n-hexane HPLC-MS/MS analysis
Soil				
RES-000601	soil	fenpyroximate	0.01	Extracted with methanol, acetone HPLC-MS/MS analysis

Method for plant matrices

Monitoring Method RES/RAM/004 (RES-00029)

The QuEChERS method (RES-00029, RES/RAM/004) for the determination of residues of fenpyroximate and M-1 in crop matrices by LC-MS/MS was validated (Watson, G, 2016a, report No. A-4088). 10 g sample of high moisture crops was extracted with acetonitrile (10 mL acetonitrile, 2 minutes vortex extraction), or 5 g sample of low moisture crops was extracted with acetonitrile (6.5 mL water and 10 mL acetonitrile, 2 minutes vortex extraction), or 1 g sample of difficult matrices such as hops was extracted with water and acetonitrile (approximately 9 mL water and 10 mL acetonitrile, 2 minutes vortex extraction), followed by liquid-liquid partition with magnesium sulphate, sodium chloride and sodium citrate. After centrifugation, an aliquot of the acetonitrile phase (8 mL) was transferred to a centrifuge tube and stored overnight in a freezer. Extracts were removed from frozen storage and immediately centrifuged at 3000 rpm for 1 minute. Purification of an aliquot of the acetonitrile extract by dispersive SPE with primary/secondary amine (PSA) is prior to dilution and then determination.

All samples were measured using LC-MS/MS employing an Ascentis Express C18 column, $2.7 \mu m$ particle size and monitoring at two MRM transitions for each analyte (all matrices except hops). For hops a second column was used for confirmation, Phenomenex, Kinetex Biphenyl column,

 $2.6 \,\mu\text{m}$ particle size. Quantification of extracts was performed using external calibration standards over the range 0.1 to 10.0 ng/mL for all crops except 0.1 to 5.0 ng/mL in sugar beet roots and 0.15 to 10 ng/mL for hops. For all crops, matrix matched standards were used. Results are determined as fenpyroximate or M-1 and expressed as mg/kg. The method was validated for linearity, specificity precision and accuracy. The lowest level tested (LOQ) was 0.01 mg/kg fenpyroximate or M-1 in all crop matrices.

Table 101 Recovery results from method validation of fenpyroximate using the analytical method RES/RAM/004 in crops

Matrix	Analyte	Fortification level	Pange and (Mean)	PSD (%)	Comments
Iviauix	Analyte	(ma/ka) $(n-x)$	recovery (%)	K3D (70)	Comments
		$(\operatorname{III}_{g/Kg}), (\operatorname{II}_{X})$		1.60/	
Apple (high water)	fenpyroximate	0.01 (n=5)	103 to 106%	1.6%	MRM1 422→366
			(Mean 104%)		
Apple (high water)	fenpyroximate	0.1 (n=5)	101 to 104%	1.2%	MRM1 422→366
			(Mean 102%)		
Apple (high water)	fenpyroximate	Overall (n=10)	101 to 106%	1.8%	MRM1 422→366
			(Mean 103%)		
Apple (high water)	fenpyroximate	0.01 (n=5)	100 to 107%	3.0%	MRM2 422→135
			(Mean 103%)		
Apple (high water)	fenpvroximate	0.1 (n=5)	100 to 106%	2.1%	MRM2 422→135
11 (0)	1.5	× ,	(Mean 102%)		
Apple (high water)	fennvroximate	Overall (n=10)	100 to 107%	2.5%	MRM2 422→135
rippie (ingli (indi)	1011p J Tollinate		(Mean 103%)	21070	
Oilseed rape seed	fennyroximate	0.01 (n=5)	78 to 80%	0.8%	MRM1 422→366
(high oil)	lenpyloximate	0.01 (11 3)	(Mean 70%)	0.070	WIRWII 422 / 500
(lingh oll) Oileand mma soud	formationate	0.1(n-5)	(101Call 7)70)	1 50/	MDM1 422 >266
(high gil)	Tenpyroximate	0.1 (n-3)	$(M_{acm}, 770/)$	1.370	WIKIMI 422→500
(nign on)	C	(0, 11, (-10))	(Mean 77%)	1.70/	MDM1 400 200
Oilseed rape seed	fenpyroximate	Overall (n=10)	/6 to 80%	1./%	MRM1 422→366
(high oil)			(Mean 78%)		
Oilseed rape seed	fenpyroximate	0.01 (n=5)	78 to 87%	4.9%	MRM2 422→135
(high oil)			(Mean 82%)		
Oilseed rape seed	fenpyroximate	0.1 (n=5)	76 to 79%	1.7%	MRM2 422→135
(high oil)			(Mean 78%)		
Oilseed rape seed	fenpyroximate	Overall (n=10)	76 to 87%	4.5%	MRM2 422→135
(high oil)			(Mean 80%)		
Dried beans (dry	fenpyroximate	0.01 (n=5)	94 to 98%	1.5%	MRM1 422→366
matrix)	1.5	× ,	(Mean 96%)		
Dried beans (dry	fennyroximate	0.1 (n=5)	95 to 98%	1.5%	MRM1 422→366
matrix)	TempyTemmare	011 (li 0)	(Mean 96%)	110 / 0	
Dried beans (dry	fennyroximate	Overall (n=10)	94 to 98%	1.4%	MRM1 422→366
matrix)	lenpyloximate	Overall (li 10)	(Mean 96%)	1.470	WIRWII 422 7500
Dried beans (dry	fennurovimate	0.01(n-5)	07 to 101%	1 5%	MPM2 422-135
Difect Dealis (ury	Tenpytoximate	0.01 (II-3)	97 to 10170	1.370	
$D_{\rm min} d h = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	£	0.1(-5)	(101call 9970)	1 40/	MDM2 422 125
Dried beans (dry	lenpyroximate	0.1 (n=5)	901099%	1.4%	$MKM2 422 \rightarrow 155$
matrix)		0 11 (10)	(Mean 103%)	1.70/	100 100 100
Dried beans (dry	fenpyroximate	Overall (n=10)	96 to 101%	1.7%	MRM2 422 \rightarrow 135
matrix)			(Mean 98%)		
Wheat grain (dry,	fenpyroximate	0.01 (n=5)	96 to 99%	2.0%	MRM1 422→366
high starch)			(Mean 98%)		
Wheat grain (dry,	fenpyroximate	0.1 (n=5)	95 to 98%	1.1%	MRM1 422→366
high starch)			(Mean 96%)		
Wheat grain (dry,	fenpyroximate	Overall (n=10)	95 to 99%	1.8%	MRM1 422→366
high starch)			(Mean 97%)		
Wheat grain (dry,	fenpyroximate	0.01 (n=5)	93 to 102%	4.1%	MRM2 422→135
high starch)			(Mean 99%)		
Wheat grain (dry,	fenpyroximate	0.1 (n=5)	95 to 97%	0.7%	MRM2 422→135
high starch)	1.5		(Mean 96%)		
Wheat grain (drv.	fenpyroximate	Overall (n=10)	93 to 102%	3.2%	MRM2 422→135
high starch)			(Mean 97%)	2.2.0	
Oranges (high acid)	fennyrovimate	0.01 (n=5)	107 to 110%	1.2%	MRM1 422-366
Granges (ingli aciu)	ionpyroximate	0.01 (II <i>3)</i>	(Mean 100%)	1.270	101111111111111111111111111111111111111
Oranges (high said)	fannurovimata	0.1(n-5)	104 to 1070/	1 /10/-	MDM1 422
Granges (nigh acid)	renpyroximate	0.1 (II-3)	104 10 10/70 (Maan $1060/$)	1.470	IVINIVI1 422→300
	I		(Ivicali 10070)		

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(IIIg/Kg), (II=X)	Tecovery (76)	1.00/	
Oranges (high acid)	tenpyroximate	Overall (n=10)	104 to 110%	1.8%	MRM1 422→366
			(Mean 107%)		
Oranges (high acid)	fenpyroximate	0.01 (n=5)	106 to 108%	0.4%	MRM2 422→135
			(Mean 107%)		
Oranges (high acid)	fenpyroximate	0.1 (n=5)	104 to 108%	1.6%	MRM2 422→135
			(Mean 106%)		
Oranges (high acid)	fenpyroximate	Overall (n=10)	104 to 108%	1.1%	MRM2 422→135
			(Mean 107%)		
Sugar beet roots (high	fenpyroximate	0.01 (n=5)	104 to 108%	2.0%	MRM1 422→366
water)			(Mean 106%)		
Sugar beet roots (high	fenpyroximate	0.1 (n=5)	104 to 107%	1.4%	MRM1 422→366
water)			(Mean 105%)		
Sugar beet roots (high	fenpyroximate	Overall (n=10)	104 to 108%	1.6%	MRM1 422→366
water)			(Mean 105%)		
Sugar beet roots (high	fenpyroximate	0.01 (n=5)	104 to 109%	1.9%	MRM2 422→135
water)			(Mean 107%)		
Sugar beet roots (high	fenpyroximate	0.1 (n=5)	102 to 108%	2.3%	MRM2 422→135
water)			(Mean 105%)		
Sugar beet roots (high	fenpyroximate	Overall (n=10)	102 to 109%	2.2%	MRM2 422→135
water)			(Mean 106%)		
Sugar beet tops (high	fenpyroximate	0.01 (n=5)	100 to 104%	1.4%	MRM1 422→366
water)			(Mean 101%)		
Sugar beet tops (high	fenpyroximate	0.1 (n=5)	99 to 102%	1.5%	MRM1 422→366
water)			(Mean 100%)		
Sugar beet tops (high	fenpyroximate	Overall (n=10)	99 to 104%	1.5%	MRM1 422→366
water)			(Mean 101%)		
Sugar beet tops (high	fenpyroximate	0.01 (n=5)	99 to 111%	5.1%	MRM2 422→135
water)			(Mean 106%)		
Sugar beet tops (high	fenpyroximate	0.1 (n=5)	98 to 103%	1.8%	MRM2 422→135
water)			(Mean 101%)		
Sugar beet tops (high	fenpyroximate	Overall (n=10)	98 to 103%	1.8%	MRM2 422→135
water)			(Mean 101%)		
Hops (difficult	fenpyroximate	0.01 (n=5)	82 to 96%	6.3%	MRM 422→366
matrix)			(Mean 90%)		Column 1
Hops (difficult	fenpyroximate	0.1 (n=5)	88 to 97%	4.8%	MRM 422→366
matrix)			(Mean 92%)		Column 1
Hops (difficult	fenpyroximate	Overall (n=10)	82 to 97%	5.4%	MRM 422→366
matrix)			(Mean 91%)		Column 1
Hops (difficult	fenpyroximate	0.01 (n=5)	87 to 95%	3.5%	MRM 422→366
matrix)			(Mean 92%)		Column 2
Hops (difficult	fenpyroximate	0.1 (n=5)	88 to 95%	2.9%	MRM 422→366
matrix)			(Mean 92%)		Column 2
Hops (difficult	fenpyroximate	Overall (n=10)	87 to 95%	3.0%	MRM 422→366
matrix)			(Mean 92%)		Column 2

Table	102	Recovery	results	from	method	validation	of	M-1	using	the	analytical	method
RES/R	.AM/(004 in crops	5									

Matrix	Analyte	Fortification level	Range and (Mean) recovery	RSD (%)	Comments
		(mg/kg), (n=x)	(%)		
Apple (high water)	M-1	0.01 (n=5)	99 to 104%	2.0%	MRM1 422→366
			(Mean 102%)		
Apple (high water)	M-1	0.1 (n=5)	99 to 103% (Mean 101%)	1.3%	MRM1 422→366
Apple (high water)	M-1	Overall (n=10)	99 to 104% (Mean 102%)	1.8%	MRM1 422→366
Apple (high water)	M-1	0.01 (n=5)	98 to 107% (Mean 104%)	3.7%	MRM2 422→135
Apple (high water)	M-1	0.1 (n=5)	100 to 104% (Mean 101%)	1.5%	MRM2 422→135
Apple (high water)	M-1	Overall (n=10)	98 to 107% (Mean 102%)	3.1%	MRM2 422→135
Oilseed rape seed	M-1	0.01 (n=5)	79 to 83% (Mean 82%)	2.1%	MRM1 422→366
(high oil)					
Oilseed rape seed	M-1	0.1 (n=5)	77 to 80% (Mean 79%)	1.5%	MRM1 422→366
(high oil)					

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Oilseed rape seed (high oil)	M-1	Overall (n=10)	77 to 83% (Mean 80%	2.5%	MRM1 422→366
Oilseed rape seed (high oil)	M-1	0.01 (n=5)	82 to 91% (Mean 86%)	4.1%	MRM2 422→135
Oilseed rape seed (high oil)	M-1	0.1 (n=5)	78 to 81% (Mean 79%)	1.8%	MRM2 422→135
Oilseed rape seed (high oil)	M-1	Overall (n=10)	78 to 91% (Mean 83%)	5.7%	MRM2 422→135
Dried beans (dry matrix)	M-1	0.01 (n=5)	93 to 97% (Mean 96%)	1.5%	MRM1 422→366
Dried beans (dry matrix)	M-1	0.1 (n=5)	94 to 98% (Mean 96%)	1.6%	MRM1 422→366
Dried beans (dry matrix)	M-1	Overall (n=10)	93 to 98% (Mean 96%)	1.5%	MRM1 422→366
Dried beans (dry matrix)	M-1	0.01 (n=5)	88 to 100% (Mean 94%)	5.6%	MRM2 422→135
Dried beans (dry matrix)	M-1	0.1 (n=5)	94 to 96% (Mean 95%)	1.0%	MRM2 422→135
Dried beans (dry matrix)	M-1	Overall (n=10)	88 to 100% (Mean 95%)	3.8%	MRM2 422→135
Wheat grain (dry, high starch)	M-1	0.01 (n=5)	99 to 103% (Mean 101%)	1.7%	MRM1 422→366
Wheat grain (dry, high starch)	M-1	0.1 (n=5)	95 to 101% (Mean 98%)	2.4%	MRM1 422→366
Wheat grain (dry, high starch)	M-1	Overall (n=10)	95 to 103% (Mean 99%)	2.5%	MRM1 422→366
Wheat grain (dry, high starch)	M-1	0.01 (n=5)	98 to 105% (Mean 101%)	2.5%	MRM2 422→135
Wheat grain (dry, high starch)	M-1	0.1 (n=5)	93 to 97% (Mean 95%)	1.9%	MRM2 422→135
Wheat grain (dry, high starch)	M-1	Overall (n=10)	93 to 105% (Mean 98%)	3.7%	MRM2 422→135
Oranges (high acid)	M-1	0.01 (n=5)	108 to 112% (Mean 110%)	1.3%	MRM1 422→366
Oranges (high acid)	M-1	0.1 (n=5)	106 to 111% (Mean 108%)	1.8%	MRM1 422→366
Oranges (high acid)	M-1	Overall (n=10)	106 to 112% (Mean 109%)	1.7%	MRM1 422→366
Oranges (high acid)	M-1	0.01 (n=5)	107 to 113% (Mean 110%)	1.9%	MRM2 422→135
Oranges (high acid)	M-1	0.1 (n=5)	105 to 111% (Mean 108%)	2.0%	MRM2 422→135
Oranges (high acid)	M-1	Overall (n=10)	105 to 113% (Mean 109%)	2.2%	MRM2 422→135
Sugar beet roots (high water)	M-1	0.01 (n=5)	103 to 107% (Mean 105%)	1.3%	MRM1 422→366
Sugar beet roots (high water)	M-1	0.1 (n=5)	104 to 106% (Mean 105%)	0.9%	MRM1 422→366
Sugar beet roots (high water)	M-1	Overall (n=10)	103 to 107% (Mean 105%)	1.1%	MRM1 422→366
Sugar beet roots (high water)	M-1	0.01 (n=5)	103 to 111% (Mean 105%)	3.9%	MRM2 422→135
Sugar beet roots (high water)	M-1	0.1 (n=5)	106 to 108% (Mean 106%)	0.8%	MRM2 422→135
Sugar beet roots (high water)	M-1	Overall (n=10)	103 to 111% (Mean 106%)	2.7%	MRM2 422→135
Sugar beet tops (high water)	M-1	0.01 (n=5)	100 to 102% (Mean 101%)	1.1%	MRM1 422→366
Sugar beet tops (high water)	M-1	0.1 (n=5)	99 to 103% (Mean 101%)	1.7%	MRM1 422→366
Sugar beet tops (high water)	M-1	Overall (n=10)	99 to 103% (Mean 101%)	1.3%	MRM1 422→366
Sugar beet tops (high	M-1	0.01 (n=5)	104 to 118%	5.5%	MRM2 422→135

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
water)			(Mean 108%)		
Sugar beet tops (high	M-1	0.1 (n=5)	98 to 105%	2.4%	MRM2 422→135
water)			(Mean 101%)		
Sugar beet tops (high	M-1	Overall (n=10)	98 to 118%	5.7%	MRM2 422→135
water)			(Mean 105%)		
Hops (difficult	M-1	0.01 (n=5)	88 to 100%	5.0%	MRM 422→366
matrix)			(Mean 94%)		Column 1
Hops (difficult	M-1	0.1 (n=5)	96 to 100%	2.3%	MRM 422→366
matrix)			(Mean 98%)		Column 1
Hops (difficult	M-1	Overall (n=10)	88 to 100%	4.2%	MRM 422→366
matrix)			(Mean 96%)		Column 1
Hops (difficult	M-1	0.01 (n=5)	93 to 103%	1.5%	MRM 422→366
matrix)			(Mean 102%)		Column 2
Hops (difficult	M-1	0.1 (n=5)	95 to 99%	1.9%	MRM 422→366
matrix)			(Mean 96%)		Column 2
Hops (difficult	M-1	Overall (n=10)	93 to 103%	3.3%	MRM 422→366
matrix)			(Mean 99%)		Column 2

Table 10	3 Ch	aracteristics	for	the	analytical	method	used	for	validation	of	fenpyroximate	and	M-1
residues	in cro	ps											

	Fenpyroximate	M-1
Specificity (all crops)	blank value < 30% LOQ	blank value < 30% LOQ
	Product ion MS scan presented	Product ion MS scan presented
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=≥ 0.999 for all crops except r=> 0.997 for hops on C18 column 7 data points Matrix matched used Both MRM1 and MRM2 were reported for all crops except hops. For hops linearity for both columns was reported	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=>0.998 7 data points in all crops except 6 data points in sugar beet roots Matrix matched used Both MRM1 and MRM2 were reported for all crops except hops. For hops linearity for both columns was reported
Calibration range	0.1 to 10.0 ng/mL for all crops except 0.15 to 10 ng/mL for hops Corresponding calibration range 0.0025 to 0.25 mg/kg fenpyroximate in high moisture, high acid, dried and high oil matrices. Corresponding calibration range 0.003 to 0.2 mg/kg fenpyroximate in difficult matrices (hops).	0.1 to 10.0 ng/mL all crops except 0.1 to 5.0 ng/mL in sugar beet roots and 0.15 to 10 ng/mL for hops Corresponding calibration range 0.0025 to 0.25 mg/kg M-1 in high moisture (except sugar beet roots), high acid, dried and high oil matrices. Corresponding calibration range 0.0025 to 0.125 mg/kg M-1 in sugar beet roots. Corresponding calibration range 0.0025 to 0.125 mg/kg M-1 in sugar beet roots. Corresponding calibration range 0.003 to 0.2 mg/kg M-1 in difficult matrices (hops).
Assessment of matrix effects is presented	Yes, significant only in hops but matrix matched standards used for all crops	Yes, significant only in hops but matrix matched standards used for all crops
Limit of determination/quantification	LOQ=0.01 mg/kg in all crops	LOQ=0.01 mg/kg in all crops
Comment	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in all matrix types.	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in all matrix types.

The method (RES/RAM/004 based on QuEChERS) was further validated by Independent Laboratory successfully in different matrices of plant origin (Gasso-Brown, D., 2016a, report No. A-4089; 2016b, report No. S16-06628) for linearity, specificity precision and accuracy. The LOQ was 0.01 mg/kg for fenpyroximate or M-1 in all crop matrices

Table 104 Recovery results from independent method validation of fenpyroximate using the analytical method RES/RAM/004 in crops

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
Iviaulix	Analyte	(ma/ka) $(n-x)$	recovery (%)	KSD (70)	Comments
A	£	(111g/Kg), (11-X)	105 to 1100/	4.60/	MDM1 422
Apple (nigh water)	Tenpyroximate	0.01 (n=3)	$(M_{con} 114\%)$	4.070	WIKIWI1 422→300
Anala (high water)	formationate	0.1(n-5)	(1/1)	2 40/	MDM1 422 >266
Apple (nigh water)	Tenpyroximate	0.1 (n-3)	9410105%	3.470	WIKIWI1 422→300
Anala (high water)	formationate	$O_{\text{transl}}(n=10)$	(1/100)	Q 20/	MDM1 422 >266
Apple (nigh water)	Tenpyroximate	Overall (n-10)	941011970	0.370	WIKIWI1 422→300
Apple (high water)	formuravimata	0.01(n-5)	104 to 120%	5 20/	MDM2 422 125
Apple (llight water)	TenpyToximate	0.01 (II=3)	(Mean 114%)	5.570	
Apple (high water)	fennyroximate	0.1 (n=5)	94 to 102%	2.9%	MRM2 422→135
rippie (ingli water)	TenpyTeninate	0.1 (li 3)	(Mean 98%)	2.970	
Apple (high water)	fennyroximate	Overall (n=10)	94 to 120%	9.1%	MRM2 422→135
rippie (ingli (indli)	1011p J Ionninue		(Mean 106%)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101111111111111111111111111111111111111
Oilseed rape seed	fenpvroximate	0.01 (n=5)	59 to 91%	18.7%	MRM1 422→366
(high oil)	1.5		(Mean 75%)		
Oilseed rape seed	fenpvroximate	0.1 (n=5)	78 to 98%	8.8%	MRM1 422→366
(high oil)	1.5	- (-)	(Mean 86%)		
Oilseed rape seed	fenpyroximate	Overall (n=10)	59 to 98%	14.9%	MRM1 422→366
(high oil)	1.5	, , , , , , , , , , , , , , , , , , ,	(Mean 80%		
Oilseed rape seed	fenpyroximate	0.01 (n=5)	56 to 114%	28.7%	MRM2 422→135
(high oil)	15	~ /	(Mean 80%)		
Oilseed rape seed	fenpyroximate	0.1 (n=5)	78 to 103%	11.0%	MRM2 422→135
(high oil)	1.5	`	(Mean 87%)		
Oilseed rape seed	fenpyroximate	Overall (n=10)	56 to 114%	20.3%	MRM2 422→135
(high oil)			(Mean 84%)		
Dried beans (dry	fenpyroximate	0.01 (n=5)	85 to 97%	5.3%	MRM1 422→366
matrix)			(Mean 92%)		
Dried beans (dry	fenpyroximate	0.1 (n=5)	91 to 108%	6.8%	MRM1 422→366
matrix)			(Mean 102%)		
Dried beans (dry	fenpyroximate	Overall (n=10)	85 to 108%	7.9%	MRM1 422→366
matrix)			(Mean 97%)		
Dried beans (dry	fenpyroximate	0.01 (n=5)	84 to 100%	6.9%	MRM2 422→135
matrix)			(Mean 95%)		
Dried beans (dry	fenpyroximate	0.1 (n=5)	89 to 106%	7.0%	MRM2 422→135
matrix)			(Mean 101%)		
Dried beans (dry	fenpyroximate	Overall (n=10)	84 to 106%	7.2%	MRM2 422→135
matrix)			(Mean 98%)		
Sugar beet roots	fenpyroximate	0.01 (n=5)	101 to 110%	3.8%	MRM1 422→366
(high water)			(Mean 104%)		
Sugar beet roots	fenpyroximate	0.1 (n=5)	105 to 117%	4.8%	MRM1 422→366
(high water)			(Mean 109%)		
Sugar beet roots	fenpyroximate	Overall (n=10)	101 to 117%	4.8%	MRM1 422→366
(high water)			(Mean 107%)		
Sugar beet roots	tenpyroximate	0.01 (n=5)	97 to 116%	7.0%	MRM2 422→135
(high water)			(Mean 108%)		
Sugar beet roots	tenpyroximate	0.1 (n=5)	102 to 122%	6.8%	MRM2 422→135
(high water)			(Mean 110%)	6.50/	
Sugar beet roots	tenpyroximate	Overall (n=10)	97 to 122%	6.5%	MRM2 422→135
(high water)			(Mean 109%)	1	

Table 105 Recovery results from independent method validation of M-1 using the analytical method RES/RAM/004 in crops

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(mg/kg), (n=x)	recovery (%)		
Apple (high water)	M-1	0.01 (n=5)	109 to 122%	4.3%	MRM1 422→366
			(Mean 117%)		
Apple (high water)	M-1	0.1 (n=5)	96 to 106%	4.4%	MRM1 422→366
			(Mean 100%)		
Apple (high water)	M-1	Overall (n=10)	96 to 122%	8.9%	MRM1 422→366

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(mg/kg), (n=x)	recovery (%)		
			(Mean 109%)		
Apple (high water)	M-1	0.01 (n=5)	113 to 123%	3.3%	MRM2 422→135
			(Mean 117%)		
Apple (high water)	M-1	0.1 (n=5)	96 to 106%	4.9%	MRM2 422→135
			(Mean 100%)		
Apple (high water)	M-1	Overall (n=10)	96 to 123%	8.9%	MRM2 422→135
			(Mean 109%)		
Oilseed rape seed	M-1	0.01 (n=5)	67 to 95%	15.6%	MRM1 422→366
(high oil)			(Mean 79%)		
Oilseed rape seed	M-1	0.1 (n=5)	89 to 101%	5.9%	MRM1 422→366
(high oil)			(Mean 94%)		
Oilseed rape seed	M-1	Overall (n=10)	67 to 101%	13.7%	MRM1 422→366
(high oil)			(Mean 86%		
Oilseed rape seed	M-1	0.01 (n=5)	48 to 99%	25.4%	MRM2 422→135
(high oil)			(Mean 82%)		
Oilseed rape seed	M-1	0.1 (n=5)	89 to 103%	6.5%	MRM2 422→135
(high oil)			(Mean 94%)		
Oilseed rape seed	M-1	Overall (n=10)	48 to 103%	18.0%	MRM2 422→135
(high oil)			(Mean 88%		
Dried beans (dry	M-1	0.01 (n=5)	92 to 109%	7.0%	MRM1 422→366
matrix)			(Mean 100%)		
Dried beans (dry	M-1	0.1 (n=5)	93 to 112%	7.1%	MRM1 422→366
matrix)			(Mean 105%)		
Dried beans (dry	M-1	Overall (n=10)	92 to 112%	7.1%	MRM1 422→366
matrix)			(Mean 103%)		
Dried beans (dry	M-1	0.01 (n=5)	86 to 100%	5.8%	MRM2 422→135
matrix)			(Mean 94%)		
Dried beans (dry	M-1	0.1 (n=5)	91 to 111%	7.8%	MRM2 422→135
matrix)			(Mean 105%)		
Dried beans (dry	M-1	Overall (n=10)	86 to 111%	8.9%	MRM2 422→135
matrix)			(Mean 9%)		
Sugar beet roots	M-1	0.01 (n=5)	100 to 107%	2.8%	MRM1 422→366
(high water)			(Mean 105%)		
Sugar beet roots	M-1	$0.1 (n=5)^{a}$	106 to 117%	4.1%	MRM1 422→366
(high water)			(Mean 111%)		
Sugar beet roots	M-1	Overall (n=10)	100 to 117%	4.5%	MRM1 422→366
(high water)			(Mean 108%)		
Sugar beet roots	M-1	0.01 (n=5)	95 to 104%	3.4%	MRM2 422→135
(high water)			(Mean 99%)		
Sugar beet roots	M-1	$0.1 (n=5)^{b}$	105 to 119%	5.2%	MRM2 422→135
(high water)			(Mean 112%)		
Sugar beet roots	M-1	Overall (n=10)	95 to 119%	8.9%	MRM2 422→135
(high water)			(Mean 99%)		

^a Includes one result from a mean of three injections (110%, 109%, 107%) after rejection via Dixon test of the original

recovery at 135% obtained at first injection ^b Includes one result from a mean of three injections (110%, 109%, 104%) after rejection via Dixon test of the original recovery at 142% obtained at first injection

Table 106 Characte	ristics for	the analytical	method us	sed for	independent	validation of	of fenpyro	ximate
and M-1 residues in	i crops							

	Fenpyroximate	M-1
Specificity (all crops)	blank value < 30% LOQ Product ion MS scan presented	blank value < 30% LOQ Product ion MS scan presented
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented linear, 1/x weighting applied r=> 0.994 (1 run), generally >0.995 7 data points Matrix matched used	typical calibration data presented typical calibration line equation presented linear, 1/x weighting applied r=>0.996 7 data points Matrix matched used

	Fenpyroximate	M-1
	Both MRM1 and MRM2 were reported for all crops	Both MRM1 and MRM2 were reported for all crops
Calibration range	0.1 to 10.0 ng/mL for all crops Corresponding calibration range 0.0025 to 0.25 mg/kg fenpyroximate	0.1 to 10.0 ng/mL for all crops Corresponding calibration range 0.0025 to 0.25 mg/kg M-1
Assessment of matrix effects is presented	Yes, not significant but matrix matched standards used for all crops	Yes, not significant but matrix matched standards used for all crops
Limit of determination/quantification	LOQ=0.01 mg/kg in all crops	LOQ=0.01 mg/kg in all crops
Comment	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in all matrix types.	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in all matrix types.

Table 107 Recovery results from independent method validation of fenpyroximate using the analytical method RES/RAM/004 in hops

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(mg/kg), (n=x)	recovery (%)		
Dried hops	fenpyroximate	0.01 (n=4)	80 to 83%	1.8 %	MRM1 422→366
			(Mean 81%)		Column 1
Dried hops	fenpyroximate	0.1 (n=5)	79 to 84%	2.4%	MRM1 422→366
_			(Mean 81%)		Column 1
Dried hops	fenpyroximate	Overall (n=9)	79 to 84%	2.4%	MRM1 422→366
_			(Mean 81%)		Column 1
Dried hops	fenpyroximate	0.01 (n=4)	87 to 102%	7.9%	MRM2 422→366
_			(Mean 93%)		Column 2
Dried hops	fenpyroximate	0.1 (n=5)	78 to 87%	4.4%	MRM2 422→366
-			(Mean 81%)		Column 2
Dried hops	fenpyroximate	Overall (n=9)	78 to 102%	9.3%	MRM2 422→366
_			(Mean 86%)		Column 2

Table 108 Recovery results from independent method validation of M-1 using the analytical method RES/RAM/004 in hops

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Dried hops	M-1	0.01 (n=5)	74 to 93% (Mean 83%)	10.5 %	MRM1 422→366 Column 1
Dried hops	M-1	0.1 (n=5)	84 to 89% (Mean 85%)	2.4%	$\frac{\text{MRM1 422} \rightarrow 366}{\text{Column 1}}$
Dried hops	M-1	Overall (n=10)	74 to 93% (Mean 84%)	7.3%	MRM1 422→366 Column 1
Dried hops	M-1	0.01 (n=5)	80 to 102% (Mean 87%)	10.2%	MRM2 422 \rightarrow 366 Column 2
Dried hops	M-1	0.1 (n=5)	85 to 93% (Mean 88%)	3.5%	MRM2 422 \rightarrow 366 Column 2
Dried hops	M-1	Overall (n=10)	80 to 102% (Mean 87%)	7.2%	MRM2 422 \rightarrow 366 Column 2

Table 109 Characteristics for the analytical method used for independent validation of fenpyroximate and M-1 residues in hops

	Fenpyroximate	M-1
Specificity	blank value < 30% LOQ	blank value < 30% LOQ
	Product ion MS scan presented	Product ion MS scan presented
Calibration (type, number of data	typical calibration data presented	typical calibration data presented
points)	typical calibration line equation presented	typical calibration line equation presented
	linear, 1/x weighting applied	linear, 1/x weighting applied

	Fenpyroximate	M-1
	r=>0.99	r=>0.99
	7 data points	7 data points
	Matrix matched used	Matrix matched used
	Both columns data were reported	Both columns data were reported
Calibration range	0.15 to 10.0 ng/mL	0.15 to 10.0 ng/mL
	Corresponding calibration range 0.003 to	Corresponding calibration range 0.003 to
	0.20 mg/kg fenpyroximate	0.20 mg/kg M-1
Assessment of matrix effects is	Yes, not significant on the C18 column but	Yes, significant on both columns, matrix
presented	significant on the Biphenyl column, matrix	matched standards used
	matched standards used	
Limit of determination/quantification	LOQ=0.01 mg/kg in all crops	LOQ=0.01 mg/kg in all crops
Comment	Acceptable against SANCO/825/00 rev 8.1	Acceptable against SANCO/825/00 rev 8.1
	criteria. Method suitable for monitoring in	criteria. Method suitable for monitoring in
	all matrix types.	all matrix types.

2. Analytical methods for data generation

GC method for fenpyroximate and M-1

GLC method for determination of fenpyroximate and its metabolite in fruit was validated (Anonymous, 1989a, report No. A-4001). Fenpyroximate and its Z-isomer were extracted with methanol. The extract was filtered and concentrated by rotary evaporated at below 40 °C. The evaporation residue was diluted with 10% sodium chloride aqueous solution and then partitioned three times with n-hexane. The n-hexane phase was partitioned three times with acetonitrile. The acetonitrile phase was rotary evaporated to dryness at below 40 °C and then reconstituted in n-hexane: ethyl acetate (9:1) for column chromatography. The extract was cleaned up on a silica gel/alumina column followed by analysis using GC-FTD with a fused silica capillary column. The method was validated for linearity and accuracy with three 0.2 mg/kg fortifications for orange peel and tea, and three 0.1 mg/kg fortifications for orange pulp, apple and strawberry.

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Number of replicates
Fenpyroximate			
Orange peel	0.2	93	3
Orange pulp	0.1	92	3
Apple	0.1	105	3
Strawberry	0.1	91	3
Теа	0.2	78	3
Z-Isomer (M-1)			
Orange peel	0.2	87	3
Orange pulp	0.1	81	3
Apple	0.1	88	3
Strawberry	0.1	78	3
Tea	0.2	85	3

Table 110 Summary of results for fenpyroximate and its Z-isomer (M-1)

Table 111	Characteristics	for the anal	lytical method	used for fenpy	roximate and M-	1 residues in crops
			2			

	Fenpyroximate	M-1
Calibration range	0.1 to 1.0 μg/mL	0.1 to 1.0 μg/mL
Limit of determination/quantification	LOQ=0.2 mg/kg orange peel and tea, 0.1 mg/kg orange pulp, apple and strawberry	LOQ=0.2 mg/kg orange peel and tea, 0.1 mg/kg orange pulp, apple and strawberry
Comment	Acceptable with mean recoveries between 70-120%	Acceptable with mean recoveries between 70-120%

HPLC method for fenpyroximate and M-1

HPLC method for determination of residues of fenpyroximate and its metabolites in fruit was developed and validated (Anonymous, 1989b, report No. A-4002). Fenpyroximate, its Z-isomer and desmethyl fenpyroximate were extracted with acetonitrile. The extract was filtered and concentrated by rotary evaporated at below 40 °C. The evaporation residue was diluted with 10% sodium chloride aqueous solution and then partitioned three times with n-hexane. The n-hexane phase was partitioned three times with acetonitrile. The acetonitrile phase was rotary evaporated to dryness at below 40 °C and then reconstituted in n-hexane:ethyl acetate (9:1) for column chromatography. The extract was cleaned up on a silica gel/alumina column and then a C_{18} SPE cartridge, followed by analysis using by reverse-phase HPLC-UV with a C_{18} column. The method was validated for linearity and accuracy with three 0.1 mg/kg fortifications for orange pulp and grapes.

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Number of replicates	
Fenpyroximate				
Orange pulp	0.1	96	3	
Grapes	0.1	103	3	
Z-Isomer (M-1)				
Orange pulp	0.1	98	3	
Grapes	0.1	90	3	
Demethyl fenpyroximate				
Orange pulp	0.1	88	3	
Grapes	0.1	78	3	

Table 112 Summary of results for fenpyroximate, its Z-isomer (M-1) and demethyl fenpyroximate

Table 113 Characteristics for the analytical method used for fenpyroximate, M-1 and desmethyl fenpyroximate residues in crops

	Fenpyroximate	M-1	Demethyl fenpyroximate
Calibration range	0.05 to 1 µg/mL	0.05 to 1 µg/mL	0.05 to 1 µg/mL
Limit of	LOQ=0.1 mg/kg in orange	LOQ=0.1 mg/kg in orange	LOQ=0.1 mg/kg in orange
determination/quantification	pulp and grapes	pulp and grapes	pulp and grapes
Comment	Acceptable giving mean recoveries of between 70-	Acceptable giving mean recoveries of between 70-	Acceptable giving mean recoveries of between 70-
	120%.	120%.	120%.

GC/HPLC method for fenpyroximate, M-1and desmethyl fenpyroximate

GLC/HPLC method for determination of residues of fenpyroximate and its metabolites in fruits and vegetables was developed and validated (Anonymous, 1989c, report No. A-4003). Fenpyroximate, its Z-isomer and demethyl fenpyroximate were extracted with acetonitrile. The extract was filtered and concentrated by rotary evaporated at below 40 °C. The extract was cleaned-up on a C_{18} SPE cartridge and then a silica gel/alumina column. For fenpyroximate and its Z isomer, further clean-up was performed on a silica SPE cartridge and, if necessary, a second C_{18} SPE cartridge, followed by analysis using GC-NPD with a fused silica capillary column. For demethyl fenpyroximate, further clean-up was performed on a silica SPE cartridge and, if necessary, a second C_{18} SPE cartridge, followed by analysis using normal-phase HPLC-UV with a silica column. The method was validated for linearity and accuracy with green pepper.

Table 114 Summary of results for fenpyroximate, its Z-isomer and desmethyl fenpyroximate

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Number of replicates
Fenpyroximate			
Green pepper	0.1	109	3
Z-Isomer			
Green pepper	0.1	99	3

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Number of replicates
Demethyl fenpyroximate			
Green pepper	0.1	80	3

Table 115 Characteristics for the analytical method used for fenpyroximate, M-1 and desmethyl fenpyroximate residues in crops

	Fenpyroximate	M-1	Demethyl fenpyroximate
Calibration range	0.05 to 1 µg/mL	0.05 to 1 µg/mL	0.05 to 1 µg/mL
Limit of determination/quantification	LOQ=0.1 mg/kg in peppers	LOQ=0.1 mg/kg in peppers	LOQ=0.1 mg/kg in peppers
Comment	Acceptable giving mean recoveries of between 70-120%.	Acceptable giving mean recoveries of between 70-120%.	Acceptable giving mean recoveries of between 70-120%.

Method DFG S 19 for fenpyroximate and M-1

The method DFG S 19 for determination of residues of fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) was validated with vine (grape, cider, wine) (Specht W., 1991a, report No. A-4007), apple (fruit, mash, cider) (Specht W., 1991b, report No. A-4008), orange (pulp and peel) (Specht W., 1992a, report No. A-4010), cucumber (Specht W., 1992b, report No. A-4011), tomato (Weber H., 1992c, report No. A-4012), strawberry (Specht W., 1992d, report No. A-4013), eggplant (Specht W., 1992e, report No. A-4014), pear (Specht W., 1992f, report No. A-4015), paprika (Specht W., 1992g, report No.: A-4016), peach (Specht W., 1992h, report No. A-4017), melon (pulp and peel) (Specht W., 1992i, report No.: A-4018), hop (dregs, yeast, beer) (Specht W., 1992j, report No. A-4019), dwarf bean (leaves) (Weber H., 1993a, report No. A-4020), apple (fruit) (Weber H., 1993b, report No. A-4026), plum (fruit) (Specht W., 1992k, report No. A-4046), and matric with high water content (apple) (Klimmek S. and Klimmek A. 2007, report No. A-4068). Fenpyroximate and its metabolite M-1 were extracted with acetone. Water is added beforehand in an amount that takes full account of the natural water content of the sample so that during extraction the acetone: water ratio remains constant at 2:1 v/v. The extract is saturated with sodium chloride and diluted with dichloromethane. The evaporation residue of the organic phase is cleaned up by GPC using a mixture of cyclohexane and ethyl acetate as eluant. Further clean up on a silica gel column is followed by analysis using GC-N-FID.

Modification to the original method is necessary for the analysis of wine samples. To 100 g wine, 200 mL acetone and 100 mL dichloromethane are added. After mixing 10 mL of a saturated sodium potassium solution and 600 mL water are added and completely mixed. After separation of the organic phase the extraction stop is repeated with 50 mL dichloromethane. The combined organic phases are dried, concentrated and cleaned up as described above.

Modification to the original method is necessary for the analysis of beer samples. Beer is diluted with an aqueous solution of sodium chloride and extracted three times with dichloromethane. The organic phases are combined and cleaned up as described above.

Report	Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
Fenpyroximate	e					
A-4007	Grapes	0.050	116	114-117	NA	2
		0.50	93	84-102	NA	2
		1.98	74	70-77	NA	2
	Cider	0.050	84	81-86	NA	2
		0.50	71	70-71	NA	2

Table 116 Summary of results for fenpyroximate and M-1

1052

Fenpyroximate

Report	Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
	Wine	0.050	97	87-106	NA	2
		0.50	81	74-88	NA	2
A-4008	Apple	0.050	89	88-89	NA	2
	(fruit)	0.50	81	81-81	NA	2
		4.80	85	83-87	NA	2
	Mash	0.050	110	102-118	NA	2
		0.5	91	87-94	NA	2
	Cider	0.050	94	88-99	NA	2
		0.50	82	76-88	NA	2
A-4010	Orange	0.05	120	119-121	NA	2
	(pulp)	0.50	114	107-121	NA	2
		5.0	119	118-120	NA	2
	Orange	0.05	116	114-117	NA	2
	(peel)	0.48	108	100-116	NA	2
		5.0	108	95-120	NA	2
A-4011	Cucumber	0.01	120	117-122	NA	2
		0.05	116	113-119	NA	2
		0.50	108	104-111	NA	2
		5.0	108	106-109	NA	2
A-4012	Tomato	0.01	114	103-125	NA	2
		0.05	117	113-120	NA	2
		0.50	106	98-114	NA	2
		5.0	91	81-101	NA	2
A-4013	Strawberry	0.01	112	109-115	NA	2
		0.10	99	96-102	NA	2
		1.0	109	107-111	NA	2
A-4014	Egg plant	0.01	111	109-112	NA	2
		0.10	90	90-90	NA	2
		1.0	108	107-109	NA	2
A-4015	Pear	0.01	111	107-115	NA	2
		0.10	117	113-120	NA	2
		1.0	118	114-121	NA	2
A-4016	Paprika	0.01	108	107-109	NA	2
		0.10	117	115-118	NA	2
		1.0	107	95-119	NA	2
A-4017	Peach	0.01	118	116-120	NA	2
		0.10	105	102-107	NA	2
		1.0	104	101-106	NA	2
A-4018	Melon	0.01	104	103-104	NA	2
	(pulp)	0.10	104	95-112	NA	2
		1.0	107	104-109	NA	2
	Melon	0.01	95	93-97	NA	2
	(peel)	0.10	89	86-92	NA	2
		1.0	111	109-112	NA	2
A-4019	Hops	0.10	119	117-120	NA	2
	(dregs)	1.0	112	103-121	NA	2
	Hops	0.10	105	95-114	NA	2
	(yeast)	1.0	89	85-93	NA	2
	Hops	0.01	94	86-102	NA	2
	(beer)	0.10	89	77-101	NA	2
A-4020	Dwarf beans	0.10	117	115-118	NA	2
	(leaves)	1.0	100	92-107	NA	2
		20	99	92-105	NA	2
A-4026	Apple	0.01	100	100-100	NA	2
A-4046	Plum	0.050	85	83-87	NA	2
		0.50	91	88-93	NA	2

Report	Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
		1.98	84	83-84	NA	2
A-4068	Apple	0.005	104	86-126	11.7	10
	11	0.050	102	93-110	6.7	10
M-1						
A-4007	Grapes	0.049	80	70-90	NA	2
	1	0.49	88	82-93	NA	2
		1.97	86	84-87	NA	2
	Cider	0.049	89	87-91	NA	2
	0.001	0.49	85	83-86	NA	2
	Wine	0.049	93	90-95	NA	2
		0.49	95	91-98	NA	2
A-4008	Apple	0.050	91	87-95	NA	2
11 1000	(fruit)	0.50	87	84-90	NA	2
	()	4 75	87	82-91	NA	2
	Mash	0.050	83	76-89	NA	2
	IVIGSI	0.50	87	86-87	NΔ	2
	Cider	0.050	86	83.88	NA	2
	Cluci	0.050	70	68-72	NA	2
A 4010	Orange	0.05	88	74 102	NA	2
A-4010	(nuln)	0.03	00 97	×0.02	NA	2
	(barb)	0.48 5.0	01	00.02	NA	2
	Oren aa	0.05	91	90-92 74.08	NA	2
	(neel)	0.03	04	74-98	INA NA	2
	(peer)	0.47	92	09-94	NA	2
A 4011	0 1	5.0	100	90-109	INA	2
A-4011	Cucumber	0.01	90	87-92	NA	2
		0.05	/9	//-80	NA	2
		0.50	/8	//-89	NA	2
4. 4010		5.0	96	93-99	NA	2
A-4012	Tomato	0.01	94	8/-101	NA	2
		0.05	86	85-87	NA	2
		0.50	81	75-87	NA	2
		5.0	84	77-91	NA	2
A-4013	Strawberry	0.01	83	78-88	NA	2
		0.10	83	82-84	NA	2
		1.0	84	79-88	NA	2
A-4014	Egg plant	0.01	104	104-104	NA	2
		0.10	75	74-75	NA	2
		1.0	106	106-106	NA	2
A-4015	Pear	0.01	85	82-87	NA	2
		0.10	84	80-88	NA	2
		1.0	98	98-98	NA	2
A-4016	Paprika	0.01	108	106-110	NA	2
		0.10	116	115-116	NA	2
		1.0	100	91-109	NA	2
A-4017	Peach	0.01	107	107-107	NA	2
		0.10	85	84-85	NA	2
		1.0	101	98-103	NA	2
A-4018	Melon	0.01	96	95-97	NA	2
	(pulp)	0.10	104	98-109	NA	2
		1.0	95	92-98	NA	2
	Melon	0.01	91	89-92	NA	2
	(peel)	0.10	89	88-90	NA	2
		1.0	99	98-99	NA	2
A-4019	Hops	0.10	79	76-82	NA	2
	(dregs)	1.0	79	70-87	NA	2
	Hops	0.10	83	80-85	NA	2
	1		1	1	1	

Report	Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
	(yeast)	1.0	76	75-76	NA	2
	Hops	0.01	96	90-102	NA	2
	(beer)	0.10	94	81-106	NA	2
A-4020	Dwarf beans	0.10	97	96-98	NA	2
	(leaves)	1.0	93	82-103	NA	2
		20	89	81-96	NA	2
A-4026	Apple	0.01	99	95-102	NA	2
A-4046	Plum	0.049	86	82-90	NA	2
		0.49	84	83-85	NA	2
		1.97	85	81-88	NA	2
A-4068	Apple	0.005	103	90-118	8.1	10
		0.05	108	101-115	3.8	10

Table 117	Characteristics	for the analytical	method used for fenpy	roximate and M-1	residues in crops
		2	12		1

Fenpyroximate		M-1
Specificity	Control chromatograms show no interferences	Control chromatograms show no interferences
Calibration range	Nominal calibration ranges are Report A-4007: 0.24-2.4 µg/mL Report A-4008, A-4013, A-4014, A-4015, A-4016, A-4017, A-4018, A-4020: 0.12- 1.2 µg/mL Report A-4010: 0.07-2.9 µg/mL Report A-4011, A-4012: 0.13-2.9 µg/mL Report A-4019: 0.06-0.68 µg/mL Report A-4026: 0.12 µg/mL Report A-4046: 0.12-0.24 µg/mL Report A-4046: 0.5-100 ng/mL, caibration curve presented R≥0.9996, assessment of matrix effects presented	Nominal calibration ranges are Report A-4007: 0.24-2.4 µg/mL Report A-4008, A-4013, A-4014, A-4015, A-4016, A-4017, A-4018, A-4020: 0.12- 1.2 µg/mL Report A-4010: 0.07-2.9 µg/mL Report A-4011, A-4012: 0.13-2.9 µg/mL Report A-4019: 0.06-0.55 µg/mL Report A-4026: 0.12 µg/mL Report A-4046: 0.12-0.24 µg/mL Report A-4046: 0.5-100 ng/mL, caibration curve presented R≥0.9996, assessment of matrix effects presented
Limit of determination/quantification	LOQ grapes, cider, wine, apple mash, cider, orange pulp and plum= 0.05 mg/kg LOQ in cucumber, tomato. Strawberry, egg plant, pear, paprika, peach, melon pulp, melon peel, hops beer=0.01 mg/kg LOQ in hops dregs, hops yeast and dwarf beans=0.10 mg/kg LOQ in apples 0.005 mg/kg	LOQ grapes, cider, wine, apple mash, cider, orange pulp and plum= 0.05 mg/kg LOQ in cucumber, tomato. Strawberry, egg plant, pear, paprika, peach, melon pulp, melon peel, hops beer =0.01 mg/kg LOQ in hops dregs, hops yeast and dwarf beans=0.10 mg/kg LOQ in apples 0.005 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable against giving mean recoveries of between 70-120%

The method for determination of residues of fenpyroximate in/on apple raw agricultural commodities was validated in apple for linearity, specificity, precision and accuracy (Rose J.E., 2001, report No.: A-4119). Fenpyroximate and it metabolites M-1 were extracted with acetone. Water is added beforehand in an amount that takes full account of the natural water content of the sample so that during extraction the acetone: water ratio remains constant at 2:1 v/v. The extract is saturated with sodium chloride and diluted with dichloromethane. The evaporation residue of the organic phase is cleaned up by GPC. Further clean up on a silica gel column is followed by analysis using GC-NPD.

Table 118 Summary of results for fenpyroximate and M1

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates	
Fenpyroximate/M1		_	_			
Apple	0.01	116	112-120	3	3	
Matrix	Fortification level (mg/kg)Mean recovery (%)		Recovery range(%)	RSD (%)	Number of replicates	
--------	--	----	-------------------	---------	----------------------	--
	0.1	77	66-83	12	3	
	0.5	75	74-77	3	3	

Table 119 Characteristics for the analytical method used for fenpyroximate and M-1residues in crops

	Fenpyroximate/M-1		
Specificity	Control chromatograms show no significant interferences		
Calibration range	0.1-2 μ g/mL, r ² value typically 0.99 or better		
Limit of determination/quantification	LOQ 0.01 mg/kg		
Comment	Acceptable giving mean recoveries of between 70-120%		

The DFG S19 method for the Determination of Fenpyroximate and its Metabolite (M-1) was further validated for linearity, specificity, precision and accuracy by Independent Laboratory in Apple, Grape and Cotton Samples / Matrices (Kretschmer S., 2001 report No. A-4040).

Table 120 Summary of results for fenpyroximate and M-1

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
Apple	0.01	90	72-105	17	5
	0.10	84	78-95	9	5
Grapes	0.05	82	70-94	14	5
	0.50	99	87-107	8	5
Cotton seed	0.01	95	90-100	5	5
	0.10	94	85-103	9	4
Cotton seed oil	0.05	92	84-100	7	5
	0.5	93	85-116	6	5

Table 121 Characteristics for the analytical method used for fenpyroximate and M-1 residues in crops

	Fenpyroximate and M1
Specificity	Control chromatograms show no significant interferences
Calibration range	0.02-2.0 or 5.0 ng/µL depending on matrix with $r^2 > 0.99$
Limit of determination/quantification	LOQ 0.01 mg/kg for apple and 0.05 mg/kg for grapes, cotton seed and cotton seed oil.
Comment	Acceptable giving mean recoveries of between 70-120%

Another Independent Laboratory Validation of the DFG S19 multi-residue method for the analysis of fenpyroximate and its M-1 metabolite was conducted in pears (Brown D., 2006b, report No.: A-4065) for linearity, specificity, precision and accuracy. Fenpyroximate and it metabolites M-1 were extracted with acetone. Water is added beforehand in an amount that takes full account of the natural water content of the sample so that during extraction the acetone:water ratio remains constant at 2:1 v/v. The extract is saturated with sodium chloride and partitioned with dichloromethane. The evaporation residue of the organic phase is cleaned up by GPC using a mixture of cyclohexane and ethyl acetate as eluant. Further clean up on a silica gel column is followed by analysis using GC-NPD.

Table 122 Summary of results for fenpyroximate and M-1

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
Fenpyroximate					
Pears	0.05	83	76-87	5.6	5

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
	0.5	100	98-101	1.5	5
M-1		_		_	
Pears	0.05	100	99-100	0.6	5
	0.5	103	100-108	2.9	5

Table 123 Characteristics for the analytical method used for fenpyroximate residues in crops

	Fenpyroximate	M-1
Specificity	Control chromatograms show no significant interferences	Control chromatograms show no significant interferences
Calibration range	0-5.0 μ g/mL, r ² value typically 0.99 or better	0-5.0 μ g/mL, r ² value typically 0.99 or better
Limit of determination/quantification	LOQ 0.05 mg/kg	LOQ 0.05 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable giving mean recoveries of between 70-120%

Method P-14.045.02 for fenpyroximate and M-1

Method P-14.045.02 based on Hoechst method AL 015/90-0 for the determination of the residues of fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) was validated in tomato (fruit) (Specht W., 1991c, report No. A-4009). Fenpyroximate and it metabolites M-1 were extracted with acetonitrile. The extract is cleaned up by partitioning between n-hexane and water, followed by partitioning between n-hexane and acetonitrile. Further clean up on a silica gel column is followed by analysis using HPLC with UV photometric analysis. The method was validated for linearity, specificity and accuracy in tomatoes. Results are summarised below.

Table 124 Summary	of results for fenpyroximate and M-	1

Matrix	Fortification level	Mean recovery	Recovery range	RSD (%)	Number of
	(mg/kg)	(%)	(%)		replicates
Fenpyroximate					
Tomato	0.053	62.6	60.9-64.3	NA	2
	0.51	76.5	72.0-81.0	NA	2
	5.10	69.0	67.1-70.9	NA	2
M-1					
Tomato	0.049	74.8	73.3-76.2	NA	2
	0.53	83.8	81.0-86.5	NA	2
	5.32	77.9	74.8-81.0	NA	2

Table	125	Characteristics	for	the	analytical	method	used	for	fenpyroximate	and	M-1	residues	in
tomate	es												

	Fenpyroximate	M-1
Specificity	Control chromatograms show no	Control chromatograms show no
	interferences	interferences
Calibration range	Nominal calibration ranges are	Nominal calibration ranges are
	0.5-5 μg/mL	0.5-5 μg/mL
Limit of determination/quantification	LOQ 0.05 mg/kg	LOQ 0.05 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable against giving mean recoveries of between 70-120%

HPLC-MS method for fenpyroximate and M-1

HPLC-MS method for the determination of fenpyroximate residues in dried hops, grapes and oranges (pulp and peel) was validated (Todd M.A., 1999, report No.: A-4036). Fenpyroximate was extracted

from grapes, orange pulp and orange peel with acetone: water followed by liquid/liquid partition and clean-up by SPE. The method for hops involved extraction into ethyl acetate, a solvent change to methanol, and liquid/liquid partition into 2,2,4-trimethyl pentane prior to further clean-up using a C18 SPE cartridge. For all matrices quantitation was using HPLC-MS. The method was validated for linearity, specificity, precision and accuracy.

Matrix	Fortification level (ng/g)	Mean recovery	Recovery range(%)	RSD (%)	Number of replicates			
Fenpyroximate								
Dried hops	50	91	82-96	8.4	3			
_	250	91	87-94	4.0	3			
	1000	90	89-91	1.1	3			
Grapes	10	81	78-87	6.1	3			
	50	86	80-94	8.6	3			
	500	102	97-106	4.4	3			
Orange pulp	10	92	80-100	11.7	3			
	50	98	93-100	4.1	3			
	500	92	86-97	6.0	3			
Orange peel	50	84	81-88	4.2	3			
	250	86	85-86	0.7	3			
	1000	90	88-92	2.3	3			

Table 126 Summary of results for fenpyroximate (m/z 422)

Table 127 Characteristics for the analytical method used for fenpyroximate and M-1 residues in tomatoes

	Fenpyroximate
Specificity	Control chromatograms show no significant interferences
Calibration range	1-100 ng/mL with $r^2 > 0.99$
Limit of determination/quantification	LOQ 50 ng/g for orange peel and dried hops and 10 ng/g for grapes and orange pulp
Comment	Acceptable giving mean recoveries of between 70-120%

HPLC-MS/MS method for fenpyroximate and M-1

HPLC-MS/MS method for the determination of fenpyroximate in plants was validated for linearity, specificity, precision and accuracy in apple, grape, orange and cotton (Bacher R., 2005, report No. A-4062). The method was based on the modular multi-residue enforcement method L 00.00-34 of the Official Collection of test methods (DFG S19) with some modifications. Extraction module C1 was used for two plant materials (apple, grape). The extraction module E 3 was applied to acidic material (whole orange). Adjustment of total water content (100 g), pH adjustment using sodium hydrogen carbonate (for oranges only), subsequent extraction with water/acetone (1/2 v/v); partition into organic phase by addition of sodium chloride and ethyl acetate/cyclohexane (1/1 v/v). Extraction module E 7 for cotton seed (oily/fatty material: Extraction with acetonitrile/acetone (225:25 v/v), addition of synthetic calcium silicate (Calflo E). Clean-up using gel permeation chromatography module GPC (for cotton seeds only), LC/MS/MS determination.

Matrix	Fortification level	Mean recovery	Recovery range(%)	RSD (%)	Number of
	(mg/kg)	(%)			replicates
Apple	0.025	98	96-101	2	5
	0.25	99	90-108	6	5
Grapes	0.025	102	95-108	5	5
	0.25	99	93-107	5	5
Cotton seed	0.025	93	86-101	8	5

Table 128 Summary of results for fenpyroximate $m/z 422 \rightarrow 366$

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
	0.25	92	89-101	6	5
Whole orange	0.025	91	86-97	6	5
	0.25	91	86-92	4	5

Table 129 Summary of results for fenpyroximate $m/z 422 \rightarrow 135$

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
Apple	0.025	97	91-101	4	5
	0.25	99	88-112	9	5
Grapes	0.025	102	94-106	5	5
	0.25	100	93-110	7	5
Cotton seed	0.025	95	88-102	7	5
	0.25	95	90-104	6	5
Whole orange	0.025	93	86-101	7	5
	0.25	92	86-98	5	5

Table 130 Characteristics for the analytical method used for fenpyroximate residues in crops

	Fenpyroximate
Specificity	Control chromatograms show no significant interferences
Calibration range	0.20-20.0 ng/mL with $r^2 > 0.99$ for both transitions
Limit of determination/quantification	LOQ 0.0025 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%

Another LC-MS/MS analytical method for determination of residues of fenpyroximate and its M-1 metabolite was validated for linearity, specificity, precision and accuracy in apples, strawberries, peaches, pears, plums, beans, cucumbers, peppers and tomatoes (Brown D., 2006a, report No. A-4064). Fenpyroximate and it metabolite M-1 were extracted by maceration with ethyl acetate. Following centrifugation of the mixture, an aliquot was taken together with a drop of octanol and evaporated to dryness. The residue was then re-dissolved in methanol and analysed using LC-MS/MS.

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
Fenpyroximate					
Apple	0.01	93	91-96	2.1	5
	0.1	92	83-97	5.9	5
Strawberry	0.01	94	89-97	3.4	5
	0.1	93	91-96	2.1	5
Peaches	0.01	103	100-104	2.2	3
	0.1	97	93-101	4.1	3
Pear	0.01	95	92-98	3.2	3
	0.1	93	90-96	3.2	3
Plum	0.01	103	100-106	3.0	3
	0.1	97	97-98	0.6	3
Bean	0.01	84	83-85	1.4	3
	0.1	85	84-87	1.8	3
Cucumber	0.01	93	92-94	1.2	3
	0.1	90	89-91	1.3	3
Pepper	0.01	88	86-91	3.0	3
	0.1	91	88-93	3.2	3
Tomato	0.01	93	87-99	6.5	3

Table 131 Summary of results for fenpyroximate and M-1

Matrix	Fortification level	Mean recovery (%)	Recovery range	RSD (%)	Number of
	(mg/kg)		(%)		replicates
	0.1	92	90-95	3.1	3
M-1			·		
Apple	0.01	96	94-100	2.4	5
	0.1	94	88-98	4.2	5
Strawberry	0.01	98	96-100	1.9	5
-	0.1	90	88-93	2.6	5
Peaches	0.01	89	88-90	1.1	3
	0.1	82	77-85	5.1	3
Pear	0.01	94	92-95	1.6	3
	0.1	90	86-94	4.4	3
Plum	0.01	92	89-97	4.9	3
	0.1	85	84-86	1.2	3
Bean	0.01	86	82-89	4.1	3
	0.1	86	84-88	2.3	3
Cucumber	0.01	90	90-91	0.6	3
	0.1	88	87-88	0.7	3
Pepper	0.01	84	83-85	1.4	3
	0.1	88	84-90	3.7	3
Tomato	0.01	90	87-94	4.2	3
	0.1	86	85-87	1.2	3

Table 132 Characteristics for the analytical method used for fenpyroximate residues in crops

	Fenpyroximate	M-1
Specificity	Control chromatograms show no significant interferences	Control chromatograms show no significant interferences
Calibration range	0.01 to 100 μ g/mL, r ² value typically 0.99 or better	0.01 to 100 μ g/mL, r ² value typically 0.99 or better
Limit of determination/quantification	LOQ 0.01 mg/kg	LOQ 0.01 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable giving mean recoveries of between 70-120%

The Independent laboratory validation of methodology for the determination of residues of fenpyroximate and its metabolite M1 was conducted for linearity, specificity, precision and accuracy in apples and tomatoes (Todd M.A., 2003, report No.: A-4050). A sub-sample (20 g) of matrix is weighed into a polyethylene bottle. Control samples are fortified at this stage, if required. Samples are extracted with ethyl acetate (50 to 100 mL) and anhydrous sodium sulphate (20 g) by homogenisation for 2 minutes. All samples are then centrifuged for 2 minutes to separate phases. An aliquot (5 mL) of the supernatant is transferred to a clean glass scintillation vial with 1 drop of octanol and taken to dryness in a water bath at approximately 40 °C under a stream of air or nitrogen. The residue is reconstituted in methanol (1 mL) with the aid of sonication and vortex mixing. Quantification is performed by LC-MS/MS.

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
Fenpyroximate					
Apples	0.01	96	94-99	2.3	5
	0.1	95	93-98	2.4	5
	1.0	96	92-99	3.5	5
Tomatoes	0.01	95	91-98	3.0	5
	0.1	98	96-101	1.8	5
	1.0	101	97-105	3.2	5

Table 133: Summary of results for fenpyroximate

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
M-1					
Apples	0.01	91	80-98	7.3	5
	0.1	92	89-94	2.1	5
	1.0	95	90-100	3.9	5
Tomatoes	0.01	95	92-97	2.2	5
	0.1	94	93-96	1.5	5
	1.0	94	90-97	2.9	5

Table 134 Summary of results for M-1

Table 135 Characteristics for the analytical method used for fenpyroximate and M-1 residues in crops

	Fenpyroximate	M-1
Specificity	Control chromatograms show no significant interferences	Control chromatograms show no significant interferences
Calibration range	0-0.5 μ g/mL with r ² > 0.99	0-0.5 μ g/mL with r ² > 0.99
Limit of determination/quantification	LOQ 0.01 mg/kg	LOQ 0.01 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable giving mean recoveries of between 70-120%

HPLC-MS/MS method for determination of residues of fenpyroximate in sugar beet was validated for linearity, specificity, precision and accuracy (Ihara T., 2013, report No. A-4081). Specimens obtained were combined with 50 mL acetone/methanol (1/1, v/v) and vigorously shaken for 10 min and then supernatant was decanted. Remained precipitate was then extracted again with 20 mL acetone/methanol (1/1 v/v). Combined supernatant was filtrated under suctioning. Using the glass wool filter paper, the extract was filtrated and obtained filter cake was washed with acetone/methanol (1/1, v/v). Combined filtrates were filled up to 100 mL with acetone/methanol (1/1, v/v). An aliquot (10 mL, 2 g sample equivalent) of extract was evaporated after adding 2 mL of distilled water. The aqueous residue was loaded to a SPE cartridge column (Bond Elut C18(500 mg/3 mL)), which was conditioned by 3 mL of methanol and distilled water. The inner side of the flask was rinsed with 2.5 mL of acetonitrile (twice). The eluate was evaporated after addition of 2 mL of distilled water. The residue was filled up to 10 mL with acetonitrile /distilled water (1/1, v/v). The samples were analysed with LC-MS/MS.

Table 13	6 Summary	of results	for fenpy	roximate	and M-1
	• · · · · · · · · · · · · · · · · · · ·				

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
Fenpyroximate m/z	2 422.2→366.20				
Sugar beet leaf	0.01	81.2	77.00-83.24	3.06	5
	0.1	89.8	87.09-92.78	2.29	5
Sugar beet root	0.01	89.0	87.37-92.30	2.19	
	0.1	96.7	94.55-98.17	1.49	
Fenpyroximate m/z	2 422.2→135.10	_		_	
Sugar beet leaf	0.01	73.4	70.73-79.22	4.55	5
	0.1	81.6	79.59-85.15	2.67	5
Sugar beet root	0.01	78.8	70.60-90.57	9.23	5
	0.1	94.6	93.39-96.56	1.53	5
M-1 m/z 422.2→36	6.20				
Sugar beet leaf	0.01	87.0	83.55-88.86	2.79	5
	0.1	90.5	86.52-93.27	2.82	5
Sugar beet root	0.01	88.5	87.01-91.25 2.16		5
	0.1	103.4	99.93-106.33	2.30	5

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range(%)	RSD (%)	Number of replicates
M-1 m/z 422.2→135	5.10				
Sugar beet leaf	0.01	89.6	83.48-96.26	5.10	5
	0.1	89.3	85.57-93.30	3.43	5
Sugar beet root	0.01	88.0	81.01-97.98	8.52	5
	0.1	98.5	97.43-99.55	0.80	5

Table 137 Characteristics for the analytical method used for fenpyroximate and M-1 residues in crops

	Fenpyroximate	M-1	
Specificity	Control chromatograms show no	Control chromatograms show no	
	significant interferences	significant interferences	
Calibration range	0.30-30 ng/mL, r ² value typically 0.95 or	$0.30-30 \text{ ng/mL}, r^2$ value typically 0.95 or	
	better	better	
Limit of determination/quantification	LOQ 0.01 mg/kg	LOQ 0.01 mg/kg	
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable giving mean recoveries of between 70-120%	

The HPLC-MS/MS method for Determination of fenpyroximate residue on coffee beans was validated for linearity, specificity, precision and accuracy (Matos D., 2015, report No.: A-4084). Homogenise the sample with methanol in vortex and centrifuge it. Transfer an aliquot to a vial, filtering it. Analyse using LC-MS/MS.

Table 138: Summary of results for fenpyroximate

Matrix	Fortification level Mean rec (mg/kg) (%)		Recovery range (%)	RSD (%)	Number of replicates
Fenpyroximate					
Coffee beans	0.01	107	94-115	6	6
	0.1	99	95-107	4	6

Table 139	Characteristics	for the anal	vtical method	used for fenny	rovimate and	M_1residues i	n crons
1 auto 1 3 9	Characteristics	tor the anal	lytical method	i useu ioi ienpy	ioximate and	i M-mesidues i	in crops

	Fenpyroximate	M-1
Specificity	Control chromatograms show no significant interferences	Control chromatograms show no significant interferences
Calibration range	0.5-12.5 ng/mL, r ² value typically 0.99 or better	0.5-12.5 ng/mL, r ² value typically 0.99 or better
Limit of determination/quantification	LOQ 0.01 mg/kg	LOQ 0.01 mg/kg
Comment	Acceptable giving mean recoveries of between 70-120%	Acceptable giving mean recoveries of between 70-120%

RES/RAM/005 method (QuEChERS, EN 15662:2008) for fenpyroximate, M-1 and M-3

QuEChERS (EN 15662:2008) method with LC-MS/MS (RES/RAM/005) for the determination of residues of fenpyroximate, M-1 and M-3 in processing matrices were validated in for linearity, specificity precision and accuracy (Watson G., 2016b, report No. A-4094).

Residues of fenpyroximate, M-1 or M-3 in high moisture and high acid matrices (10 g sample weight) are determined by an initial direct extraction with acetonitrile (10 mL acetonitrile, 1 minute vortex extraction). Extracts were centrifuged for 5 minutes and the supernatant transferred to a glass vial. The remaining solids are extracted with 1% formic acid in acetonitrile and 1% formic acid in water (5 mL of each, 1 minute vortex extraction) and the two extracts are combined. [Note: for liquid matrices such as fruit juices, wine and beer the extractions steps are omitted]. Addition of magnesium

sulphate, sodium chloride and sodium citrate allows for liquid-liquid phase partition followed by subsequent centrifugation. Samples are transferred to a centrifuge tube and stored a freezer (minimum 2 hours). Extracts were removed from frozen storage and immediately centrifuged at 3000 rpm for 1 minute. Purification of an aliquot of the acetonitrile extract by dispersive SPE with primary/secondary amine (PSA) is prior to dilution and then determination (extract concentration 0.04 g/mL).

Residues of fenpyroximate, M-1 or M-3 in low moisture matrices (5 g sample weight) are determined after addition of water by an initial direct extraction with acetonitrile (water to adjust total to 10 mL and 10 mL acetonitrile, 1 minute vortex extraction). Extracts were centrifuged for 5 minutes and the supernatant transferred to a glass vial. The remaining solids are extracted with 1% formic acid in acetonitrile and 1% formic acid in water (5 mL of each, 1 minute vortex extraction) and the two extracts are combined. Addition of magnesium sulphate, sodium chloride and sodium citrate allows for liquid-liquid phase partition followed by subsequent centrifugation. Samples are transferred to a centrifuge tube and stored a freezer (minimum 2 hours). Extracts were removed from frozen storage and immediately centrifuged at 3000 rpm for 1 minute. Purification of an aliquot of the acetonitrile extract by dispersive SPE with primary/secondary amine (PSA) is prior to dilution and then determination (extract concentration 0.04 g/mL).

Residues of fenpyroximate, M-1 or M-3 in difficult matrices such as apple dry pomace (1 g sample weight) are determined after addition of water by an initial direct extraction with acetonitrile (water to adjust total to 10 mL and 10 mL acetonitrile, 1 minute vortex extraction). Extracts were centrifuged for 5 minutes and the supernatant transferred to a glass vial. The remaining solids are extracted with 1% formic acid in acetonitrile and 1% formic acid in water (5 mL of each, 1 minute vortex extraction) and the two extracts are combined. Addition of magnesium sulphate, sodium chloride and sodium citrate allows for liquid-liquid phase partition followed by subsequent centrifugation. Samples are transferred to a centrifuge tube and stored a freezer (minimum 2 hours). Extracts were removed from frozen storage and immediately centrifuged at 3000 rpm for 1 minute. Purification of an aliquot of the acetonitrile extract by dispersive SPE with primary/secondary amine (PSA) is prior to dilution and then determination (extract concentration 0.04 g/mL).

Residues of fenpyroximate, M-1 or M-3 in difficult matrices such as hops (2 g sample weight) are determined after addition of water by an initial direct extraction with acetonitrile (water to adjust total to 20 mL and 20 mL acetonitrile, 1 minute manual shaking). Extracts were centrifuged for 5 minutes and the supernatant transferred to a glass vial. The remaining solids are extracted with 1% formic acid in acetonitrile and 1% formic acid in water (10 mL of each, 1 minute manual shaking) and the two extracts are combined. Extracts were centrifuged for 5 minutes and an aliquot (30 mL) transferred to a tube with hexane (15 mL). The remaining extract in the tube is retained for determination of fenpyroximate and M-1. After manual shaking the hexane layer is removed and discarded. For both sets of extracts, addition of magnesium sulphate, sodium chloride and sodium citrate allows for liquid-liquid phase partition followed by subsequent centrifugation. Samples are transferred to a centrifuge tube and stored a freezer (minimum 2 hours). Extracts were removed from frozen storage and immediately centrifuged at 3000 rpm for 1 minute. Purification of an aliquot of the acetonitrile extracts by dispersive SPE with primary/secondary amine (PSA) is prior to dilution and then determination (extract concentration 0.04 g/mL). The extracts without the hexane partition purification step were quantified for fenpyroximate and M1. The extracts with the hexane partition purification step were quantified for M3.

All samples were measured using LC-MS/MS employing an Ascentis Express C18 column, 2.7 μ m particle size or a Develosil, RP Aqueous column 3 μ m particle size. Analysis employed monitoring at two MRM transitions for all analytes (all matrices except hops). For hops a second column was used for confirmation, Phenomenex, Kinetex Biphenyl column, 2.6 μ m particle size. Quantification of extracts was performed using external calibration standards over the range 0.1 to 10.0 ng/mL or 0.1 to 5.0 ng/mL. For all processed crop commodities, matrix matched standards were used.

The lowest level tested (LOQ) was 0.01 mg/kg fenpyroximate, M-1 or M-3 in all processed crop matrices.

RES/RAM/0	05 in processed c	rop commodities	ation of tenpyroxin	nate using t	ne anaryticar metri
Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Apple juice	fenpyroximate	0.01 (n=5)	106 to 112% (Mean 108%)	2.3%	MRM1 422→366
Apple juice	fenpyroximate	0.1 (n=5)	102 to 106% (Mean 105%)	1.8%	MRM1 422→366
Apple juice	fenpyroximate	Overall (n=10)	102 to 112% (Mean 106%)	2.7%	MRM1 422→366
Apple juice	fenpyroximate	0.01 (n=5)	106 to 113% (Mean 110%)	2.5%	MRM2 422→135
Apple juice	fenpyroximate	0.1 (n=5)	105 to 108% (Mean 106%)	1.1%	MRM2 422→135

			(Mean 108%)		
Apple juice	fenpyroximate	0.1 (n=5)	102 to 106%	1.8%	MRM1 422→366
Apple juice	fenpyroximate	Overall (n=10)	102 to 112%	2.7%	MRM1 422→366
			(Mean 106%)		
Apple juice	fenpyroximate	0.01 (n=5)	106 to 113%	2.5%	MRM2 422→135
A 1 ' '	C	0.1 (5)		1 10/	MDM2 422 125
Apple juice	fenpyroximate	0.1 (n=5)	105 to 108% (Mean 106%)	1.1%	MRM2 422 \rightarrow 135
Apple juice	fennvroximate	Overall (n=10)	105 to 113%	2 4%	MRM2 422→135
r ippie jaiee	1011p J 101111100	0 (1 10)	(Mean 108%)		1111112 122 100
Apple dry pomace	fennurovimate	0.01(n-5)	87 to 105%	7 70/2	MPM1 422-366
Apple dry pollace	Tenpyroximate	0.01 (II-5)	(Mean 93%)	/.//0	WIKIVI1 422→500
Apple dry pomace	fenpyroximate	0.1 (n=5)	93 to 100%	3.0%	MRM1 422→366
- 11			(Mean 96%)		
Apple dry pomace	fenpyroximate	Overall (n=10)	87 to 105%	5.6%	MRM1 422→366
			(Mean 95%		
Apple dry pomace	fenpyroximate	0.01 (n=5)	94 to 101%	2.8%	MRM2 422→135
11 51	15		(Mean 97%)		
Apple dry pomace	fennvroximate	0.1 (n=5)	96 to 98%	0.6%	$MRM2 422 \rightarrow 135$
ripple dry pollidee	TenpyToximute	0.1 (li 3)	(Mean 97%)	0.070	
Annla data anno ao	formationato	$O_{\text{transl}}(n=10)$	$0.4 \pm 1019/$	1.00/	MDM2 422 125
Apple dry poinace	Tenpyroximate	Overall (n=10)	941010170	1.970	$MRM2 422 \rightarrow 133$
			(Mean 9/%)	2.201	
Apple sauce	fenpyroximate	0.01 (n=5)	101 to 110%	3.2%	MRM1 422→366
A 1	C	0.1 (5)	(Near 10378)	0.10/	N(D) (1 400 - 2()
Apple sauce	tenpyroximate	0.1 (n=5)	102 to 10/%	2.1%	MRM1 422→366
			(Mean 105%)	2 60 /	
Apple sauce	fenpyroximate	Overall (n=10)	101 to 110%	2.6%	MRM1 422→366
			(Mean 105%)		
Apple sauce	fenpyroximate	0.01 (n=5)	104 to 109%	1.7%	MRM2 422→135
			(Mean 106%)		
Apple sauce	fenpyroximate	0.1 (n=5)	105 to 107%	0.9%	MRM2 422→135
			(Mean 106%)		
Apple sauce	fenpyroximate	Overall (n=10)	104 to 109%	1.2%	MRM2 422→135
		. ,	(Mean 106%)		
Dried apples	fenpyroximate	0.01 (n=5)	101 to 107%	2.5%	MRM1 422→366
11	15		(Mean 102%)	-	
Dried apples	fennyroximate	0.1 (n=5)	98 to 103%	2.1%	$MRM1 422 \rightarrow 366$
Dilea appies	Tempyrominate	0.1 (11 5)	(Mean 100%)	2.170	111111122 5000
Dried apples	fennurovimate	Overall $(n-10)$	08 to 107%	2 5%	MPM1 422-366
Direct apples	Tenpytoximate	Overall (II=10)	$(M_{een} 101\%)$	2.370	WIXWI 422-300
Duiad annia	formationate	0.01 (m-5)	77 to 050/	7 50/	MDM2 422 125
Difed apples	Tenpytoximate	0.01 (II-3)	$(M_{22}, 800/)$	1.370	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
Duisdenules	£	0.1 (5)	(Mean 89%)	2.90/	MDM2 422
Dried apples	Tenpyroximate	0.1 (n=5)	100 10 10/%	2.8%	MRM2 422 \rightarrow 135
D 1 1			(Mean 103%)	0.10/	
Dried apples	fenpyroximate	Overall (n=10)	77 to 107%	9.1%	MRM2 422→135
			(Mean 96%)		
Raisins	fenpyroximate	0.01 (n=5)	97 to 100%	1.0%	MRM1 422→366
			(Mean 98%)		
Raisins	fenpyroximate	0.1 (n=5)	96 to 103%	2.4%	MRM1 422→366
			(Mean 100%)		
Raisins	fenpyroximate	Overall (n=10)	96 to 103%	1.9%	MRM1 422→366
			(Mean 99%)		
Raisins	fennyroximate	0.01 (n=5)	97 to 101%	3 4%	MRM2 422→135
1410110	Tempyroximate	5.01 (II <i>5)</i>	$(M_{ean} 100\%)$	5.770	
Daising	form	0.1(n-5)	05 to 1020/	2 10/	MDM2 422 125
Raisins	renpyroximate	0.1 (II-3)	95 10 105% (Maam 1000/)	5.1%	IVIKIVIZ 422→133
D · ·		0 11 (10)	(Iviean 100%)	2 10/	
Kaisins	tenpyroximate	Overall (n=10)	95 to 103%	3.1%	MKM2 422→135
			(Mean 100%)		

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Grape juice	fenpyroximate	0.01 (n=5)	108 to 113% (Mean 110%)	1.6%	MRM1 422→366
Grape juice	fenpyroximate	0.1 (n=5)	102 to 106% (Mean 104%)	1.9%	MRM1 422→366
Grape juice	fenpyroximate	Overall (n=10)	102 to 113% (Mean 107%)	3.3%	MRM1 422→366
Grape juice	fenpyroximate	0.01 (n=5)	105 to 110% (Mean 107%)	1.7%	MRM2 422→135
Grape juice	fenpyroximate	0.1 (n=5)	101 to 109% (Mean 106%)	2.9%	MRM2 422→135
Grape juice	fenpyroximate	Overall (n=10)	101 to 110% (Mean 107%)	2.3%	MRM2 422→135
Wine	fenpyroximate	0.01 (n=5)	97 to 101% (Mean 99%)	1.5%	MRM1 422→366
Wine	fenpyroximate	0.1 (n=5)	93 to 99% (Mean 97%)	2.5%	MRM1 422→366
Wine	fenpyroximate	Overall (n=10)	93 to 101% (Mean 98%)	2.3%	MRM1 422→366
Wine	fenpyroximate	0.01 (n=5)	100 to 105% (Mean 101%)	2.2%	MRM2 422→135
Wine	fenpyroximate	0.1 (n=5)	95 to 100% (Mean 97%)	2.1%	MRM2 422→135
Wine	fenpyroximate	Overall (n=10)	95 to 105% (Mean 99%)	2.8%	MRM2 422→135
Tomato juice	fenpyroximate	0.01 (n=5)	94 to 100% (Mean 96%)	2.8%	MRM1 422→366
Tomato juice	fenpyroximate	0.1 (n=5)	5) 88 to 98% (Mean 93%)		MRM1 422→366
Tomato juice	fenpyroximate	Overall (n=10)	88 to 100% (Mean 95%)	3.4%	MRM1 422→366
Tomato juice	fenpyroximate	0.01 (n=5)	96 to 105% (Mean 100%)	3.6%	MRM2 422→135
Tomato juice	fenpyroximate	0.1 (n=5)	91 to 97% (Mean 95%)	2.2%	MRM2 422→135
Tomato juice	fenpyroximate	Overall (n=10)	91 to 105% (Mean 97%)	3.9%	MRM2 422→135
Canned tomatoes	fenpyroximate	0.01 (n=5)	99 to 107% (Mean 103%)	3.0%	MRM1 422→366
Canned tomatoes	fenpyroximate	0.1 (n=5)	100 to 105% (Mean 102%)	1.9%	MRM1 422→366
Canned tomatoes	fenpyroximate	Overall (n=10)	99 to 107% (Mean 103%)	2.4%	MRM1 422→366
Canned tomatoes	fenpyroximate	0.01 (n=5)	100 to 115% (Mean 108%)	5.6%	MRM2 422→135
Canned tomatoes	fenpyroximate	0.1 (n=5)	100 to 106% (Mean 103%)	2.4%	MRM2 422→135
Canned tomatoes	fenpyroximate	Overall (n=10)	100 to 115% (Mean 105%)	4.9%	MRM2 422→135
Tomato puree	fenpyroximate	0.01 (n=5)	108 to 111% (Mean 110%)	1.5%	MRM1 422→366
Tomato puree	fenpyroximate	0.1 (n=5)	102 to 108% (Mean 106%)	2.1%	MRM1 422→366
Tomato puree	fenpyroximate	Overall (n=10)	102 to 111% (Mean 108%)	2.4%	MRM1 422→366
Tomato puree	fenpyroximate	0.01 (n=5)	103 to 113% (Mean 106%)	4.0%	MRM2 422→135
Tomato puree	fenpyroximate	0.1 (n=5)	102 to 111% (Mean 107%)	3.7%	MRM2 422→135
Tomato puree	fenpyroximate	Overall (n=10)	102 to 113% (Mean 106%)	3.7%	MRM2 422→135
Canned strawberry	fenpyroximate	0.01 (n=5)	101 to 107% (Mean 104%)	2.1%	MRM1 422→366
Canned strawberry	fenpyroximate	0.1 (n=5)	96 to 106%	3.8%	MRM1 422→366

Matrix	Matrix Analyte		Range and (Mean) recovery (%)	RSD (%)	Comments	
			(Mean 101%)			
Canned strawberry	fenpyroximate	Overall (n=10)	96 to 107% (Mean 103%)	3.5%	MRM1 422→366	
Canned strawberry	fenpyroximate	0.01 (n=5)	94 to 110% (Mean 105%)	6.4%	MRM2 422→135	
Canned strawberry	fenpyroximate	0.1 (n=5)	99 to 106% (Mean 102%)	3.1%	MRM2 422→135	
Canned strawberry	fenpyroximate	Overall (n=10)	94 to 110% (Mean 103%)	5.0%	MRM2 422→135	
Strawberry jam	fenpyroximate	0.01 (n=5)	96 to 102% (Mean 99%)	2.2%	MRM1 422→366	
Strawberry jam	fenpyroximate	0.1 (n=5)	93 to 99% (Mean 95%)	2.5%	MRM1 422→366	
Strawberry jam	fenpyroximate	Overall (n=10)	93 to 102% (Mean 97%)	3.2%	MRM1 422→366	
Strawberry jam	fenpyroximate	0.01 (n=5)	95 to 105% (Mean 100%)	3.7%	MRM2 422→135	
Strawberry jam	fenpyroximate	0.1 (n=5)	92 to 97% (Mean 94%)	2.6%	MRM2 422→135	
Strawberry jam	fenpyroximate	Overall (n=10)	92 to 105% (Mean 97%)	4.3%	MRM2 422→135	
Cooked beans	fenpyroximate	0.01 (n=5)	98 to 104% (Mean 101%)	2.5%	MRM1 422→366	
Cooked beans	fenpyroximate	0.1 (n=5)	94 to 101% (Mean 97%)	3.2%	MRM1 422→366	
Cooked beans	fenpyroximate	Overall (n=10)	94 to 104% (Mean 99%)	3.5%	MRM1 422→366	
Cooked beans	fenpyroximate	0.01 (n=5)	104 to 106% (Mean 105%)	0.8%	MRM2 422→135	
Cooked beans	fenpyroximate	0.1 (n=5)	91 to 100% (Mean 96%)	3.5%	MRM2 422→135	
Cooked beans	fenpyroximate	Overall (n=10)	91 to 106% 5.3 (Mean 101%)		MRM2 422→135	
Canned beans	fenpyroximate	0.01 (n=5)	93 to 103% (Mean 98%)	4.1%	MRM1 422→366	
Canned beans	fenpyroximate	0.1 (n=5)	91 to 98% (Mean 96%)	3.0%	MRM1 422→366	
Canned beans	fenpyroximate	Overall (n=10)	91 to 103% (Mean 97%)	3.5%	MRM1 422→366	
Canned beans	fenpyroximate	0.01 (n=5)	97 to 106% (Mean 100%)	3.8%	MRM2 422→135	
Canned beans	fenpyroximate	0.1 (n=5)	92 to 102% (Mean 98%)	3.9%	MRM2 422→135	
Canned beans	fenpyroximate	Overall (n=10)	92 to 106% (Mean 99%)	3.8%	MRM2 422→135	
Malt	fenpyroximate	0.01 (n=5)	94 to 97% (Mean 95%)	1.3%	MRM1 422→366	
Malt	fenpyroximate	0.1 (n=5)	85 to 96% (Mean 92%)	4.9%	MRM1 422→366	
Malt	fenpyroximate	Overall (n=10)	85 to 97% (Mean 93%)	3.7%	MRM1 422→366	
Malt	fenpyroximate	0.01 (n=5)	91 to 97% (Mean 94%)	2.7%	MRM2 422→135	
Malt	fenpyroximate	0.1 (n=5)	85 to 93% (Mean 91%)	3.7%	MRM2 422→135	
Malt	fenpyroximate	Overall (n=10)	85 to 97% (Mean 93%)	3.4%	MRM2 422→135	
Cleaned hops	fenpyroximate	0.01 (n=5)	99 to 114% (Mean 109%)	5.8%	MRM 422→366 Column 1	
Cleaned hops	fenpyroximate	0.1 (n=5)	91 to 107% (Mean 99%)	6.1%	MRM 422→366 Column 1	
Cleaned hops	fenpyroximate	Overall (n=10)	91 to 114% (Mean 104%)	7.7%	MRM 422→366 Column 1	

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Cleaned hops	fenpyroximate	0.01 (n=5)	94 to 113%	7.1%	MRM 422→366
			(Mean 106%)		Column 2
Cleaned hops	fenpyroximate	0.1 (n=5)	97 to 108%	4.3%	MRM 422→366
_			(Mean 101%)		Column 2
Cleaned hops	fenpyroximate	Overall (n=10)	94 to 113%	6.1%	MRM 422→366
_			(Mean 103%)		Column 2
Beer	fenpyroximate	0.01 (n=5)	95 to 104%	3.3%	MRM1 422→366
			(Mean 100%)		
Beer	fenpyroximate	0.1 (n=5)	97 to 101%	1.5%	MRM1 422→366
			(Mean 99%)		
Beer	fenpyroximate	Overall (n=10)	95 to 104%	2.5%	MRM1 422→366
			(Mean 99%)		
Beer	fenpyroximate	0.01 (n=5)	101 to 105%	1.5%	MRM2 422→135
			(Mean 103%)		
Beer	fenpyroximate	0.1 (n=5)	102 to 104%	0.7%	MRM2 422→135
			(Mean 103%)		
Beer	fenpyroximate	Overall (n=10)	101 to 105%	1.1%	MRM2 422→135
			(Mean 103%)		

Table	141	Recovery	results	from	method	validation	of	M-1	using	the	analytical	method
RES/R	AM/(005 in proce	essed cro	p com	modities							

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
Annla inica	M 1	(111g/Kg), (11-K)	101 to 1049/	1.20/	MDM1 422 >266
Apple Juice	1 V1- 1	0.01 (n-3)	101 10 104%	1.270	WIRM11 422→300
Annla inica	M 1	0.1(n-5)	(Mean 10576)	1.60/	MDM1 422
Apple Juice	101-1	0.1 (n=3)	9910105%	1.070	WIRM11 422→300
Apple inice	M 1	$O_{\rm Varall}(n=10)$	(Mean 10176)	1 50/	MDM1 422 \266
Apple Juice	101-1	Overall (II-10)	991010470	1.370	WIKIWI1 422→300
Apple jujee	M 1	0.01 (n-5)	(Nicall 10270)	2 10/	MDM2 422 125
Apple Julee	1 v1- 1	0.01 (II=5)	(Mean 104%)	5.170	
Apple juice	M-1	0.1 (n=5)	101 to 103%	0.9%	MRM2 422→135
r ppro Janoo		0.11 (li 0)	(Mean 101%)	0.0770	1111112 122 100
Apple juice	M-1	Overall (n=10)	99 to 107%	2.7%	MRM2.422→135
r ppro Janoo			(Mean 103%)		10111112 122 100
Apple dry pomace	M-1	0.01 (n=5)	94 to 109%	6.0%	MRM1 422→366
			(Mean 100%)		
Apple dry pomace	M-1	0.1 (n=5)	99 to 103%	1.9%	MRM1 422→366
11 51			(Mean 101%)	-	
Apple dry pomace	M-1	Overall (n=10)	94 to 109%	4.2%	MRM1 422→366
11 91		· · · · ·	(Mean 100%)		
Apple dry pomace	M-1	0.01 (n=5)	95 to 113%	7.9%	MRM2 422→135
			(Mean 103%)		
Apple dry pomace	M-1	0.1 (n=5)	101 to 104%	1.6%	MRM2 422→135
			(Mean 102%)		
Apple dry pomace	M-1	Overall (n=10)	95 to 113%	5.4%	MRM2 422→135
			(Mean 103%)		
Apple sauce	M-1	0.01 (n=5)	103 to 110%	3.0%	MRM1 422→366
			(Mean 106%)		
Apple sauce	M-1	0.1 (n=5)	103 to 107%	1.4%	MRM1 422→366
			(Mean 106%)		
Apple sauce	M-1	Overall (n=10)	103 to 110%	2.6%	MRM1 422→366
			(Mean 106%)		
Apple sauce	M-1	0.01 (n=5)	107 to 109%	0.8%	MRM2 422→135
			(Mean 108%)		
Apple sauce	M-1	0.1 (n=5)	102 to 105%	1.1%	MRM2 422→135
			(Mean 103%)		
Apple sauce	M-1	Overall (n=10)	102 to 109%	2.6%	MRM2 422→135
			(Mean 106%)		
Dried apples	M-1	0.01 (n=5)	97 to 106%	3.2%	MRM1 422→366
			(Mean 101%)		

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Dried apples	M-1	0.1 (n=5)	101 to 104% (Mean 102%)	1.5%	MRM1 422→366
Dried apples	M-1	Overall (n=10)	97 to 106% (Mean 102%)	2.5%	MRM1 422→366
Dried apples	M-1	0.01 (n=5)	86 to 104% (Mean 96%)	7.7%	MRM2 422→135
Dried apples	M-1	0.1 (n=5)	98 to 105% (Mean 101%)	2.5%	MRM2 422→135
Dried apples	M-1	Overall (n=10)	86 to 104% (Mean 98%)	6.0%	MRM2 422→135
Raisins	M-1	0.01 (n=5)	92 to 101% (Mean 98%)	4.1%	MRM1 422→366
Raisins	M-1	0.1 (n=5)	97 to 103% (Mean 100%)	2.3%	MRM1 422→366
Raisins	M-1	Overall (n=10)	92 to 103% (Mean 99%)	3.5%	MRM1 422→366
Raisins	M-1	0.01 (n=5)	95 to 102% (Mean 98%)	3.2%	MRM2 422→135
Raisins	M-1	0.1 (n=5)	96 to 102% (Mean 100%)	2.1%	MRM2 422→135
Raisins	M-1	Overall (n=10)	95 to 102% (Mean 99%)	2.6%	MRM2 422→135
Grape juice	M-1	0.01 (n=5)	107 to 112% (Mean 109%)	1.9%	MRM1 422→366
Grape juice	M-1	0.1 (n=5)	103 to 107% (Mean 105%)	1.5%	MRM1 422→366
Grape juice	M-1	Overall (n=10)	103 to 112% (Mean 107%)	2.6%	MRM1 422→366
Grape juice	M-1	0.01 (n=5)	103 to 112% (Mean 109%)	4.2%	MRM2 422→135
Grape juice	M-1	0.1 (n=5)	106 to 107% (Mean 106%)	0.5%	MRM2 422→135
Grape juice	M-1	Overall (n=10)	103 to 112% (Mean 108%)	3.1%	MRM2 422→135
Wine	M-1	0.01 (n=5)	98 to 100% (Mean 99%)	1.0%	MRM1 422→366
Wine	M-1	0.1 (n=5)	92 to 99% (Mean 96%)	3.1%	MRM1 422→366
Wine	M-1	Overall (n=10)	92 to 100% (Mean 97%)	2.6%	MRM1 422→366
Wine	M-1	0.01 (n=5)	98 to 105% (Mean 102%)	2.4%	MRM2 422→135
Wine	M-1	0.1 (n=5)	93 to 97% (Mean 95%)	1.7%	MRM2 422→135
Wine	M-1	Overall (n=10)	93 to 105% (Mean 99%)	4.0%	MRM2 422→135
Tomato juice	M-1	0.01 (n=5)	91 to 98% (Mean 94%)	2.8%	MRM1 422→366
Tomato juice	M-1	0.1 (n=5)	91 to 98% (Mean 93%)	3.1%	MRM1 422→366
Tomato juice	M-1	Overall (n=10)	91 to 98% (Mean 94%)	2.9%	MRM1 422→366
Tomato juice	M-1	0.01 (n=5)	89 to 98% (Mean 94%)	4.3%	MRM2 422→135
Tomato juice	M-1	0.1 (n=5)	94 to 99% (Mean 96%)	2.2%	MRM2 422→135
Tomato juice	M-1	Overall (n=10)	89 to 99% (Mean 95%)	3.3%	MRM2 422→135
Canned tomatoes	M-1	0.01 (n=5)	96 to 109% (Mean 103%)	5.2%	MRM1 422→366
Canned tomatoes	M-1	0.1 (n=5)	100 to 104% (Mean 102%)	1.2%	MRM1 422→366
Canned tomatoes	M-1	Overall (n=10)	96 to 109%	3.6%	MRM1 422→366

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
			(Mean 103%)		
Canned tomatoes	M-1	0.01 (n=5)	104 to 112% (Mean 106%)	3.1%	MRM2 422→135
Canned tomatoes	M-1	0.1 (n=5)	99 to 102% (Mean 100%)	1.3%	MRM2 422→135
Canned tomatoes	M-1	Overall (n=10)	99 to 112% (Mean 103%)	4.1%	MRM2 422→135
Tomato puree	M-1	0.01 (n=5)	101 to 108% (Mean 105%)	3.2%	MRM1 422→366
Tomato puree	M-1	0.1 (n=5)	102 to 107% (Mean 105%)	1.5%	MRM1 422→366
Tomato puree	M-1	Overall (n=10)	101 to 108% (Mean 105%)	2.4%	MRM1 422→366
Tomato puree	M-1	0.01 (n=5)	106 to 114% (Mean 108%)	3.2%	MRM2 422→135
Tomato puree	M-1	0.1 (n=5)	103 to 107% (Mean 105%)	1.8%	MRM2 422→135
Tomato puree	M-1	Overall (n=10)	103 to 114% (Mean 106%)	3.2%	MRM2 422→135
Canned strawberry	M-1	0.01 (n=5)	100 to 105% (Mean 103%)	1.9%	MRM1 422→366
Canned strawberry	M-1	0.1 (n=5)	97 to 102% (Mean 99%)	2.2%	MRM1 422→366
Canned strawberry	M-1	Overall (n=10)	97 to 105% (Mean 101%)	2.9%	MRM1 422→366
Canned strawberry	M-1	0.01 (n=5)	99 to 110% (Mean 104%)	4.0%	MRM2 422→135
Canned strawberry	M-1	0.1 (n=5)	96 to 103% (Mean 100%)	2.7%	MRM2 422→135
Canned strawberry	M-1	Overall (n=10)	96 to 110% (Mean 102%)	3.8%	MRM2 422→135
Strawberry jam	M-1	0.01 (n=5)	94 to 103% (Mean 99%)	3.2%	MRM1 422→366
Strawberry jam	M-1	0.1 (n=5)	92 to 96% (Mean 94%)	1.7%	MRM1 422→366
Strawberry jam	M-1	Overall (n=10)	92 to 103% (Mean 96%)	4.0%	MRM1 422→366
Strawberry jam	M-1	0.01 (n=5)	96 to 107% (Mean 101%)	5.2%	MRM2 422→135
Strawberry jam	M-1	0.1 (n=5)	92 to 95% (Mean 93%)	1.7%	MRM2 422→135
Strawberry jam	M-1	Overall (n=10)	92 to 107% (Mean 97%)	6.0%	MRM2 422→135
Cooked beans	M-1	0.01 (n=5)	94 to 106% (Mean 97%)	5.1%	MRM1 422→366
Cooked beans	M-1	0.1 (n=5)	92 to 98% (Mean 96%)	2.4%	MRM1 422→366
Cooked beans	M-1	Overall (n=10)	92 to 106% (Mean 97%)	3.9%	MRM1 422→366
Cooked beans	M-1	0.01 (n=5)	94 to 102% (Mean 99%)	3.1%	MRM2 422→135
Cooked beans	M-1	0.1 (n=5)	91 to 98% (Mean 95%)	2.5%	MRM2 422→135
Cooked beans	M-1	Overall (n=10)	91 to 102% (Mean 97%)	3.4%	MRM2 422→135
Canned beans	M-1	0.01 (n=5)	91 to 100% (Mean 96%)	4.4%	MRM1 422→366
Canned beans	M-1	0.1 (n=5)	92 to 100% (Mean 97%)	3.6%	MRM1 422→366
Canned beans	M-1	Overall (n=10)	91 to 100% (Mean 97%)	3.9%	MRM1 422→366
Canned beans	M-1	0.01 (n=5)	93 to 99% (Mean 97%)	2.9%	MRM2 422→135

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Canned beans	M-1	0.1 (n=5)	92 to 104% (Mean 99%)	5.4%	MRM2 422→135
Canned beans	M-1	Overall (n=10)	92 to 104% (Mean 98%)	4.2%	MRM2 422→135
Malt	M-1	0.01 (n=5)	92 to 95% (Mean 94%)	1.6%	MRM1 422→366
Malt	M-1	0.1 (n=5)	90 to 96% (Mean 93%)	3.0%	MRM1 422→366
Malt	M-1	Overall (n=10)	90 to 96% (Mean 93%)	2.3%	MRM1 422→366
Malt	M-1	0.01 (n=5)	92 to 95% (Mean 94%)	1.2%	MRM2 422→135
Malt	M-1	0.1 (n=5)	88 to 94% (Mean 92%)	2.6%	MRM2 422→135
Malt	M-1	Overall (n=10)	88 to 95% (Mean 93%)	2.2%	MRM2 422→135
Cleaned hops	M-1	0.01 (n=5)	92 to 130% (Mean 110%)	12.4%	MRM 422→366 Column 1
Cleaned hops	M-1	0.1 (n=4)	104 to 113% (Mean 107%)	3.9%	MRM 422→366 Column 1
Cleaned hops	M-1	Overall (n=9)	92 to 130% (Mean 109%)	9.3%	MRM 422→366 Column 1
Cleaned hops	M-1	0.01 (n=5)	93 to 107% (Mean 102%)	5.6%	$\begin{array}{c} \text{MRM 422} \rightarrow 366\\ \text{Column 2} \end{array}$
Cleaned hops	M-1	0.1 (n=5)	99 to 116% (Mean 108%)	6.8%	MRM $422 \rightarrow 366$ Column 2
Cleaned hops	M-1	Overall (n=10)	93 to 116% (Mean 105%)	6.7%	$\begin{array}{c} \text{MRM } 422 \rightarrow 366\\ \text{Column } 2 \end{array}$
Beer	M-1	0.01 (n=5)	97 to 102% (Mean 100%)	2.4%	MRM1 422→366
Beer	M-1	0.1 (n=5)	98 to 102% (Mean 100%)	1.6%	MRM1 422→366
Beer	M-1	Overall (n=10)	97 to 102% (Mean 100%)	1.9%	MRM1 422→366
Beer	M-1	0.01 (n=5)	99 to 103% (Mean 100%)	1.5%	MRM2 422→135
Beer	M-1	0.1 (n=5)	98 to 103% (Mean 100%)	2.2%	MRM2 422→135
Beer	M-1	Overall (n=10)	98 to 103% (Mean 100%)	1.8%	MRM2 422→135

Table 142 Recovery results from method validation of M-3 using the analytical method RES/RAM/005 in processed crop commodities

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Apple juice	M-3	0.01 (n=5)	94 to 103% (Mean 98%)	3.6%	MRM1 422→366
Apple juice	M-3	0.1 (n=5)	95 to 102% (Mean 99%)	2.6%	MRM1 422→366
Apple juice	M-3	Overall (n=10)	94 to 103% (Mean 98%)	2.9%	MRM1 422→366
Apple juice	M-3	0.01 (n=5)	93 to 106% (Mean 101%)	5.3%	MRM2 422→135
Apple juice	M-3	0.1 (n=5)	96 to 100% (Mean 98%)	2.0%	MRM2 422→135
Apple juice	M-3	Overall (n=10)	93 to 106% (Mean 100%)	4.2%	MRM2 422→135
Apple dry pomace	M-3	0.01 (n=5)	96 to 108% (Mean 100%)	4.9%	MRM1 422→366
Apple dry pomace	M-3	0.1 (n=5)	98 to 106% (Mean 102%)	2.9%	MRM1 422→366

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Apple dry pomace	M-3	Overall (n=10)	96 to 108% (Mean 101%	3.9%	MRM1 422→366
Apple dry pomace	M-3	0.01 (n=5)	91 to 109% (Mean 98%)	7.1%	MRM2 422→135
Apple dry pomace	M-3	0.1 (n=5)	97 to 104% (Mean 101%)	2.7%	MRM2 422→135
Apple dry pomace	M-3	Overall (n=10)	91 to 109% (Mean 99%)	5.2%	MRM2 422→135
Apple sauce	M-3	0.01 (n=5)	102 to 109% (Mean 105%)	2.5%	MRM1 422→366
Apple sauce	M-3	0.1 (n=5)	105 to 109% (Mean 107%)	1.8%	MRM1 422→366
Apple sauce	M-3	Overall (n=10)	102 to 109% (Mean 106%)	2.3%	MRM1 422→366
Apple sauce	M-3	0.01 (n=5)	101 to 113% (Mean 106%)	5.2%	MRM2 422→135
Apple sauce	M-3	0.1 (n=5)	104 to 108% (Mean 106%)	1.5%	MRM2 422→135
Apple sauce	M-3	Overall (n=10)	101 to 113% (Mean 106%)	3.6%	MRM2 422→135
Dried apples	M-3	0.01 (n=5)	95 to 102% (Mean 100%)	2.7%	MRM1 422→366
Dried apples	M-3	0.1 (n=5)	93 to 100% (Mean 96%)	2.9%	MRM1 422→366
Dried apples	M-3	Overall (n=10)	93 to 102% (Mean 98%)	3.2%	MRM1 422→366
Dried apples	M-3	0.01 (n=5)	(Mean 98%) 89 to 103% (Mean 96%)	5.7%	MRM2 422→135
Dried apples	M-3	0.1 (n=5)	(Mean 96%) 95 to 101%	2.4%	MRM2 422→135
Dried apples	M-3	Overall (n=10)	(Mean 96%) 89 to 103%	4.1%	MRM2 422→135
Raisins	M-3	0.01 (n=5)	(Mean 96%) 93 to 101%	2.6%	MRM1 422→366
Raisins	M-3	0.1 (n=5)	(Mean 97%) 91 to 98%	2.7%	MRM1 422→366
Raisins	M-3	Overall (n=10)	(Mean 94%) 91 to 101%	2.9%	MRM1 422→366
Raisins	M-3	0.01 (n=5)	(Mean 96%) 96 to 100%	1.8%	MRM2 422→135
Raisins	M-3	0.1 (n=5)	(Mean 97%) 95 to 100%	1.8%	MRM2 422→135
Raisins	M-3	Overall (n=10)	(Mean 98%) 95 to 100%	1.7%	MRM2 422→135
Grape juice	M-3	0.01 (n=5)	(Mean 98%) 104 to 108%	1.7%	MRM1 422→366
Grape juice	M-3	0.1 (n=5)	(Mean 105%) 102 to 104%	1.6%	MRM1 422→366
Grape juice	M-3	Overall (n=10)	(Mean 103%) 102 to 108%	2.0%	MRM1 422→366
Grape juice	M-3	0.01 (n=5)	(Mean 104%) 103 to 109%	2.2%	MRM2 422→135
Grape juice	M-3	0.1 (n=5)	(Mean 106%) 102 to 107%	2.1%	MRM2 422→135
Grape juice	M-3	Overall (n=10)	(Mean 105%) 102 to 109%	2.1%	MRM2 422→135
Wine	M-3	0.01 (n=5)	(Mean 105%) 96 to 98%	1.2%	MRM1 422→366
Wine	M-3	0.1 (n=5)	(Mean 97%) 93 to 98%	2.1%	MRM1 422→366
Wine	M-3	Overall (n=10)	(Mean 95%) 93 to 98%	1.8%	MRM1 422→366
Wine	M-3	0.01 (n=5)	(Mean 96%) 98 to 106%	2.7%	MRM2 422→135

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(iiig/kg), (ii=k)	(Maar 1029/)		
Wine	M 2	0.1(n-5)	(Mean 102%)	2 404	MDM2 422 125
wine	IVI-5	0.1 (II-3)	94 10 99% (Mean 97%)	2.470	MIKWIZ 422→155
Wine	M-3	Overall (n=10)	94 to 106%	3.5%	MRM2 422→135
vv nie	111 5		(Mean 99%)	5.570	WIKWIZ 122 / 155
Tomato juice	M-3	0.01 (n=5)	87 to 95%	3.4%	MRM1 422→366
5	-		(Mean 91%)	-	
Tomato juice	M-3	0.1 (n=5)	91 to 101%	4.3%	MRM1 422→366
			(Mean 93%)		
Tomato juice	M-3	Overall (n=10)	87 to 101%	3.9%	MRM1 422→366
			(Mean 92%)		
Tomato juice	M-3	0.01 (n=5)	89 to 94%	2.6%	MRM2 422→135
	16.2		(Mean 92%)	4.20/	100 100 100
Tomato juice	M-3	0.1 (n=5)	91 to 101%	4.3%	MRM2 422 \rightarrow 135
T	M 2	O	(Mean 95%)	2.950/	MDM2 422 125
Tomato juice	IVI-3	Overall (n=10)	89 to 101%	3.83%	MRM2 422 \rightarrow 155
Canned tomatoes	M-3	0.01 (n=5)	97 to 103%	2 3%	MRM1 422→366
Canned tomatoes	141-5	0.01 (11 5)	(Mean 100%)	2.370	WIRWIT 422 7500
Canned tomatoes	M-3	0.1 (n=5)	95 to 98%	1.8%	MRM1 422→366
		0.1 (li c)	(Mean 97%)	11070	
Canned tomatoes	M-3	Overall (n=10)	95 to 103%	2.6%	MRM1 422→366
			(Mean 98%)		
Canned tomatoes	M-3	0.01 (n=5)	96 to 104%	3.3%	MRM2 422→135
			(Mean 100%)		
Canned tomatoes	M-3	0.1 (n=5)	96 to 99%	1.7%	MRM2 422→135
			(Mean 98%)		
Canned tomatoes	M-3	Overall (n=10)	96 to 104%	2.9%	MRM2 422→135
			(Mean 99%)		
Tomato puree	M-3	0.01 (n=5)	102 to 106%	2.3%	MRM1 422→366
	14.2		(Mean 103%)	2.40/	
Tomato puree	M-3	0.1 (n=5)	102 to 108%	2.4%	MRM1 422→366
Tomata nuraa	M 2	$O_{\rm vorall}(n=10)$	(102 to 103%)	2 20/	MDM1 422 \266
Tomato puree	141-5	Overall (II-10)	(Mean 104%)	2.370	WIKWI1 422→300
Tomato puree	M-3	0.01 (n=5)	99 to 106%	2.9%	MRM2 422→135
Tomato puree		0.01 (11 5)	(Mean 103%)	2.970	
Tomato puree	M-3	0.1 (n=5)	102 to 111%	2.9%	MRM2 422→135
1	-	- (-)	(Mean 107%)	-	
Tomato puree	M-3	Overall (n=10)	99 to 111%	3.4%	MRM2 422→135
-			(Mean 105%)		
Canned strawberry	M-3	0.01 (n=5)	101 to 108%	2.5%	MRM1 422→366
			(Mean 103%)		
Canned strawberry	M-3	0.1 (n=5)	101 to 105%	1.7%	MRM1 422→366
			(Mean 103%)		
Canned strawberry	M-3	Overall (n=10)	101 to 108%	2.0%	MRM1 422→366
0 1 4 1	14.2	0.01 (5)	(Mean 103%)	4.20/	N(D) (2 422 125
Canned strawberry	IVI-3	0.01 (n=5)	9/t0 10/%	4.2%	MKM2 422 \rightarrow 135
Conned strouberry	M 3	0.1(n-5)	(101201110170)	2.8%	MDM2 422-125
Callied Strawberry	141-5	0.1 (II-5)	(Mean 101%)	2.870	WIKWIZ 422 /155
Canned strawberry	M-3	Overall (n=10)	97 to 107%	3.4%	MRM2.422→135
cullica sua comp			(Mean 101%)	01110	
Strawberry jam	M-3	0.01 (n=5)	85 to 97%	5.7%	MRM1 422→366
		. ,	(Mean 90%)		
Strawberry jam	M-3	0.1 (n=5)	84 to 93%	4.5%	MRM1 422→366
			(Mean 89%)		
Strawberry jam	M-3	Overall (n=10)	84 to 97%	4.%	MRM1 422→366
			(Mean 89%)		
Strawberry jam	M-3	0.01 (n=5)	83 to 99%	6.5%	MRM2 422→135
G 1	11.2		(Mean 92%)	4.107	
Strawberry jam	M-3	0.1 (n=5)	84 to 92%	4.1%	MRM2 422→135
			(Niean 8/%)		

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Strawberry jam	M-3	Overall (n=10)	83 to 99% (Mean 90%)	5.8%	MRM2 422→135
Cooked beans	M-3	0.01 (n=5)	85 to 96% (Mean 90%)	5.3%	MRM1 422→366
Cooked beans	M-3	0.1 (n=5)	88 to 94% (Mean 91%)	3.2%	MRM1 422→366
Cooked beans	M-3	Overall (n=10)	85 to 96% (Mean 91%)	4.2%	MRM1 422→366
Cooked beans	M-3	0.01 (n=5)	89 to 91% (Mean 91%)	1.1%	MRM2 422→135
Cooked beans	M-3	0.1 (n=5)	94 to 98% (Mean 96%)	1.9%	MRM2 422→135
Cooked beans	M-3	Overall (n=10)	89 to 98% (Mean 93%)	3.2%	MRM2 422→135
Canned beans	M-3	0.01 (n=5)	91 to 97% (Mean 94%)	2.9%	MRM1 422→366
Canned beans	M-3	0.1 (n=5)	92 to 100% (Mean 96%)	3.9%	MRM1 422→366
Canned beans	M-3	Overall (n=10)	91 to 100% (Mean 95%)	3.4%	MRM1 422→366
Canned beans	M-3	0.01 (n=5)	87 to 99% (Mean 93%)	4.9%	MRM2 422→135
Canned beans	M-3	0.1 (n=5)	91 to 100% (Mean 95%)	4.3%	MRM2 422→135
Canned beans	M-3	Overall (n=10)	87 to 100% (Mean 94%)	4.5%	MRM2 422→135
Malt	M-3	0.01 (n=5)	88 to 95% (Mean 92%)	3.3%	MRM1 422→366
Malt	M-3	0.1 (n=5)	87 to 94% (Mean 91%)	3.0%	MRM1 422→366
Malt	M-3	Overall (n=10)	87 to 95% (Mean 91%)	3.0%	MRM1 422→366
Malt	M-3	0.01 (n=5)	88 to 94% (Mean 91%)	2.2%	MRM2 422→135
Malt	M-3	0.1 (n=5)	85 to 93% (Mean 91%)	3.5%	MRM2 422→135
Malt	M-3	Overall (n=10)	85 to 94% (Mean 91%)	2.8%	MRM2 422→135
Cleaned hops	M-3	0.01 (n=5)	81 to 96% (Mean 90%)	6.3%	MRM 422→366 Column 1
Cleaned hops	M-3	0.1 (n=5)	74 to 81% (Mean 78%)	4.6%	MRM 422→366 Column 1
Cleaned hops	M-3	Overall (n=10)	74 to 96% (Mean 84%)	9.3%	MRM 422→366 Column 1
Cleaned hops	M-3	0.01 (n=5)	83 to 103% (Mean 93%)	8.2%	MRM 422→366 Column 2
Cleaned hops	M-3	0.1 (n=5)	76 to 85% (Mean 80%)	3.7%	MRM 422→366 Column 2
Cleaned hops	M-3	Overall (n=10)	76 to 103% (Mean 87%)	10.1%	MRM 422→366 Column 2
Beer	M-3	0.01 (n=5)	92 to 97% (Mean 94%)	2.3%	MRM1 422→366
Beer	M-3	0.1 (n=5)	96 to 99% (Mean 97%)	1.2%	MRM1 422→366
Beer	M-3	Overall (n=10)	92 to 99% (Mean 95%)	2.4%	MRM1 422→366
Beer	M-3	0.01 (n=5)	90 to 100% (Mean 94%)	3.8%	MRM2 422→135
Beer	M-3	0.1 (n=5)	96 to 100% (Mean 98%)	1.1%	MRM2 422→135
Beer	M-3	Overall (n=10)	90 to 100% (Mean 96%)	3.3%	MRM2 422→135

	Fenpyroximate	M-1	M-3
Specificity (all crops)	blank value < 30% LOQ Product ion MS scan presented	blank value < 30% LOQ Product ion MS scan presented	blank value < 30% LOQ Product ion MS scan presented
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=≥0.996 6 or 7 data points Matrix matched used Both MRM1 and MRM2 were reported for all crops except hops. For hops linearity for both columns was reported	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=≥0.996 6 or 7 data points Matrix matched used Both MRM1 and MRM2 were reported for all crops except hops. For hops linearity for both columns was reported	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=≥0.998 6 or 7 data points Matrix matched used Both MRM1 and MRM2 were reported for all crops except hops. For hops linearity for both columns was reported
Calibration range	0.1 to 10.0 ng/mL or 0.1 to 5 ng/mL for all matrices Corresponding calibration range 0.0025 to 0.25 mg/kg or 0.0025 to 0.125 mg/kg fenpyroximate	0.1 to 10.0 ng/mL or 0.1 to 5 ng/mL for all matrices Corresponding calibration range 0.0025 to 0.25 mg/kg or 0.0025 to 0.125 mg/kg M-1	0.1 to 10.0 ng/mL or 0.1 to 5 ng/mL for all matrices Corresponding calibration range 0.0025 to 0.25 mg/kg or 0.0025 to 0.125 mg/kg M-3
Assessment of matrix effects is presented	Yes, significant in some commodities but matrix matched standards used for all matrices	Yes, significant in some commodities but matrix matched standards used for all matrices	Yes, significant in some commodities but matrix matched standards used for all matrices
Limit of determination/quantification	LOQ=0.01 mg/kg in all matrices	LOQ=0.01 mg/kg in all matrices	LOQ=0.01 mg/kg in all matrices
Comment	Acceptable against SANCO/3029/99 rev. 4 and SANCO/825/00 rev 8.1 criteria. Method suitable for data generation in processed	Acceptable against SANCO/3029/99 rev. 4 and SANCO/825/00 rev 8.1 criteria. Method suitable for data generation in processed	Acceptable against SANCO/3029/99 rev. 4 and SANCO/825/00 rev 8.1 criteria. Method suitable for data generation in processed

Table 143 Characteristics for the analytical method used for validation of fenpyroximate, M-1 and M-3 residues in processed crop commodities

The method RES/RAM/005 based on QuEChERS was successfully validated in all processed crop matrix types and is compliant with SANCO/3029/99 rev. 4 and SANCO/825/00 rev. 8.1. The method is appropriate for measuring concentrations of fenpyroximate or its metabolites M-1 and M-3 in processed crop commodities for data generation risk assessment purposes.

commodities

commodities

GC-MS method

commodities

DFG S19 method by GC-MS (Fenpyroximate/Crops/DB/01/2) for determination of residues of fenpyroximate and M-1 in strawberries (field and protected) was validated for linearity, specificity, precision and accuracy (Oxspring S., 2003a, report No.: R-4162; Oxspring S., 2003b, report No.: R-4163). Residues of fenpyroximate or M-1 in high acid crops (100 g sample weight) are determined by direct extraction with acetone (200 mL) and water (100 mL–the expected water volume in 100 g of crop) by maceration for 3 minutes. Samples are filtered and a known volume (200 mL) is transferred to a separating funnel. Sodium chloride (20 g) is added and the extracts are partitioned with dichloromethane (100 mL) with the layers allowed to separate. The upper organic layer is collected and dried over anhydrous sodium sulphate and then reduced to dryness under rotary evaporation. The extract is then dissolved in cyclohexane:ethyl acetate (10 mL, 1:1 v/v) and purified using gel permeation chromatography, collecting the eluant fraction known to contain any fenpyroximate or M-1. Extracts are taken to dryness under rotary evaporation and adjusted to a final volume with ethyl

acetate (5 mL) prior to determination using GC-MS employing a DB-1 12 m \times 0.2 mm i.d. capillary column, 0.3 μ m df film thickness. Two selected ions are monitored for quantification or possible confirmation. The lowest level tested (LOQ) was 0.01 mg/kg fenpyroximate or M-1 in strawberries.

Table 144 Recovery results from method validation of fenpyroximate using the analytical method Fenpyroximate/Crops/DB/01/2 in strawberries

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments
Strawberry (high acid)	fenpyroximate	0.01 (n=4)	97 to 110% (Mean 93%)	2.1%	R-4162
Strawberry (high acid)	fenpyroximate	0.01 (n=2)	76 to 109% (mean=93%)	NA	R-4163
Strawberry (high acid)	fenpyroximate	Combined data 0.01 (n=6)	76 to 110% (Mean 101%)	13%	R-4162 R-4163
Strawberry (high acid)	fenpyroximate	0.05 (n=1)	75%	NA	R-4162
Strawberry (high acid)	fenpyroximate	0.1 (n=1)	93%	NA	R-4162
Strawberry (high acid)	fenpyroximate	0.2 (n=1)	107%	NA	R-4162
Strawberry (high acid)	fenpyroximate	0.2 (n=1)	72%	NA	R-4163
Strawberry (high acid)	fenpyroximate	0.5 (n=1)	122%	NA	R-4162
Strawberry (high acid)	fenpyroximate	Overall (n=11)	72 to 122%	17%	R-4162
			(Mean 98%)		R-4163

Table 145 Recovery results from method validation of M-1 using the analytical method Fenpyroximate/Crops/DB/01/2 in strawberries

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(Ing/Kg); (II X)	ieeovery (70)		
Strawberry (high acid)	M-1	0.01 (n=4)	82 to 110%	12%	R-4162
			(Mean 95%)		
Strawberry (high acid)	M-1	0.01 (n=2)	74 to 75%	NA	R-4163
			(mean=75%)		
Strawberry (high acid)	M-1	Combined data	74 to 110%	16%	R-4162
		0.01 (n=6)	(Mean 88%)		R-4163
Strawberry (high acid)	M-1	0.05 (n=1)	78%	NA	R-4162
Strawberry (high acid)	M-1	0.1 (n=1)	85%	NA	R-4162
Strawberry (high acid)	M-1	0.2 (n=1)	121%	NA	R-4162
Strawberry (high acid)	M-1	0.2 (n=1)	71%	NA	R-4163
Strawberry (high acid)	M-1	0.5 (n=1)	136%	NA	R-4162
Strawberry (high acid)	M-1	Overall (n=11)	71 to 136%	23%	R-4162
			(Mean 93%)		R-4163

Table 146 Characteristics for the analytical method used for validation of fenpyroximate and M-1 residues in strawberries

	Fenpyroximate	M-1
Specificity (all crops)	blank value < 30% LOQ	blank value < 30% LOQ
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented linear, no weighting applied r ² =>0.997 for strawberry 4 or 5 data points Matrix matched used	typical calibration data presented typical calibration line equation presented linear, no weighting applied r^2 =>0.997 for strawberry 4 or 5 data points Matrix matched used
Calibration range	0.025 to 1.0 μ g/mL (R-4162) Corresponding calibration range 0.00375 to 0.15 mg/kg fenpyroximate. 0.025 to 0.5 μ g/mL (R-4163) Corresponding calibration range 0.00375 to 0.075 mg/kg fenpyroximate.	0.025 to 1.0 μ g/mL (R-4162) Corresponding calibration range 0.00375 to 0.15 mg/kg M-1. 0.025 to 0.5 μ g/mL (R-4163) Corresponding calibration range 0.00375 to 0.075 mg/kg M-1.

	Fenpyroximate	M-1
Assessment of matrix effects is presented	No, matrix matched standards used for strawberry	No, matrix matched standards used for strawberry
Limit of determination/quantification	LOQ=0.01 mg/kg in strawberry	LOQ=0.01 mg/kg in strawberry
Comment	Generally acceptable against SANCO/3029/99 rev. 4 criteria. Method suitable for data generation in high acid matrix types.	Generally acceptable against SANCO/3029/99 rev. 4 criteria. Method suitable for data generation in high acid matrix types.

The method Fenpyroximate/Crops/DB/01/2 based on DFG S19 was validated in strawberry matrix and is generally compliant with SANCO/3029/99 rev. 4. The method is appropriate for measuring concentrations of fenpyroximate or its metabolite M-1 in food of plant origin with high acid content for risk assessment purposes.

Methods for food of animal origin

The enforcement monitoring method

QuEChERS method by HPLC-MS/MS for determination of residues of fenpyroximate and its metabolite M-3 in dairy products was validated for linearity, specificity precision and accuracy (Ihara T., 2016a, report No.: A-4082).

Residues of fenpyroximate or M-3 in muscle, liver, kidney or eggs (10 g sample weight) are determined by direct extraction with acetonitrile : water (40 mL, 4:1, 30 seconds homogenisation). After centrifugation and transfer of the solvent to a separating funnel, the solid remaining is further extracted with acetonitrile : water (40 mL, 4:1, 1 minute shaking). After centrifugation, the solvent extracts are combined in the separating funnel with addition of sodium chloride. The combined extract is shaken and the layers allowed to separate so that the upper acetonitrile layer can be collected and the volume adjusted with acetonitrile (final volume 100 mL). An aliquot of the acetonitrile extract (20 mL, 2 g sample equivalent) is partitioned with hexane (20 mL) to remove any fat and the lower acetonitrile later is evaporated with addition of water (1 mL). Methanol and water (1 mL of each) is added to the extract prior to clean-up.

Residues of fenpyroximate or M-3 in fat (10 g sample weight) are determined by direct extraction with acetonitrile (40 mL, 30 seconds homogenisation). After centrifugation and transfer of the solvent to a separating funnel, the solid remaining is further extracted with acetonitrile (40 mL, 1 minute shaking). After centrifugation, the solvent extracts are combined in the separating funnel with addition of sodium chloride. The combined extract is shaken and the layers allowed to separate so that the upper acetonitrile layer can be collected and the volume adjusted with acetonitrile (final volume 100 mL). An aliquot of the acetonitrile extract (20 mL, 2 g sample equivalent) is partitioned with hexane (20 mL) to remove any fat and the lower acetonitrile later is evaporated with addition of water (1 mL). Methanol and water (1 mL of each) is added to the extract prior to clean-up.

Residues of fenpyroximate or M-3 in milk (20 g sample weight) are determined by direct extraction with acetonitrile (10 mL, 1 minute shaking). After centrifugation and transfer of the solvent to a separating funnel, the solid remaining is further extracted with acetonitrile (50 mL, 1 minute shaking). After centrifugation, the solvent extracts are combined in the separating funnel with addition of sodium chloride. The combined extract is shaken and the layers allowed to separate so that the upper acetonitrile layer can be collected and the volume adjusted with acetonitrile (final volume 200 mL). An aliquot of the acetonitrile extract (20 mL, 2 g sample equivalent) is partitioned with hexane (20 mL) to remove any fat and the lower acetonitrile later is evaporated with addition of water (1 mL). Methanol and water (1 mL of each) is added to the extract prior to clean-up.

All extracts are cleaned up by means of a C18 SPE tube (BondElut, 500 mg phase) with the final eluted extract containing any fenpyroximate or M-3 adjusted to a volume of 5 mL in acetonitrile : water, 1:1 (sample concentration 0.4 g/mL equivalent).

All samples were measured using LC-MS/MS employing a Cadenza CD-18 column, 3 μ m particle size and monitoring at two MRM transitions for each analyte. Quantification of extracts was performed using external calibration standards over the range 0.3 to 30.0 ng/mL for all matrices and for both analytes. For analysis of fenpyroximate in all matrices, matrix matched standards were used. For analysis of M-3 in all matrices, solvent standards were used.

The lowest level tested (LOQ) was 0.005 mg/kg fenpyroximate or M-3 in all matrices.

Table 147 Recovery results from method validation of fenpyroximate using the analytical method in food of animal origin

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(mg/kg), (n=x)	recovery (%)		
Milk	fenpyroximate	0.005 (n=5)	73.6 to 81.1%	4.2%	MRM1 422→135
2 611	2		(Mean /8.4%)	4.407	
Milk	fenpyroximate	0.05 (n=4)	73.5 to $75.4%$	1.1%	MRM1 422→135
N C11	<u> </u>		(Niean /4./%)	6.50/	N (D) (2 422 107
Milk	fenpyroximate	0.005 (n=5)	/2.4 to 85./%	6.5%	MRM2 422 \rightarrow 107
Mille	formurovimato	0.05(n-4)	(101Cdff / 7.470)	1.60/	MPM2 422 \107
IVIIIK	Tenpyroximate	0.03 (II-4)	(Mean 73.4%)	1.070	$\frac{1}{107}$
Egg	fenpyroximate	0.005 (n=5)	63.5 to 87.7%	11.8%	MRM1 422→135
-88			(Mean 77.5%)		
Egg	fenpyroximate	0.05 (n=5)	88.4 to 115.5%	10.0%	MRM1 422→135
		· · /	(Mean 100.2%)		
Egg	fenpyroximate	0.005 (n=5)	65.1 to 83.7%	10.5%	MRM2 422→107
			(Mean 74.7%)		
Egg	fenpyroximate	0.05 (n=5)	92.7 to 113.2%	7.6%	MRM2 422→107
			(Mean 100.8%)		
Muscle	fenpyroximate	0.005 (n=5)	73.4 to 90.0%	8.2%	MRM1 422→135
			(Mean 80.4%)		
Muscle	fenpyroximate	0.05 (n=5)	76.7 to 92.5%	6.7%	MRM1 422→135
		· · /	(Mean 84.0%)		
Muscle	fenpyroximate	0.005 (n=5)	72.5 to 81.0%	4.3%	MRM2 422→107
	12		(Mean 75.5%)		
Muscle	fenpyroximate	0.05 (n=5)	76.1 to 87.7%	5.6%	MRM2 422→107
		· /	(Mean 83.4%)		
Fat	fenpyroximate	0.005 (n=5)	65.5 to 90.8%	12.6%	MRM1 422→135
			(Mean 74.9%)		
Fat	fenpyroximate	0.05 (n=5)	61.3 to 75.7%	8.9%	MRM1 422→135
			(Mean 70.8%)		
Fat	fenpyroximate	0.005 (n=5)	74.7 to 93.3%	8.5%	MRM2 422→107
			(Mean 85.0%)		
Fat	fenpyroximate	0.05 (n=5)	60.6 to 79.9%	9.9%	MRM2 422→107
			(Mean 70.9%)		
Liver	fenpyroximate	0.005 (n=5)	77.5 to 93.0%	8.4%	MRM1 422→135
			(Mean 84.3%)		
Liver	fenpyroximate	0.05 (n=5)	117.3 to 122.3%	1.6%	MRM1 422→135
			(Mean 119.7%)		
Liver	fenpyroximate	0.005 (n=5)	75.7 to 86.7%	5.8%	MRM2 422→107
			(Mean 81.3%)		
Liver	fenpyroximate	0.05 (n=5)	117.5 to 121.5%	1.3%	MRM2 422→107
			(Mean 119.7%)		
Kidney	fenpyroximate	0.005 (n=5)	66.6 to 72.8%	3.3%	MRM1 422→135
			(Mean 70.2%)		
Kidney	fenpyroximate	0.05 (n=5)	80.4 to 101.0%	10.6%	MRM1 422→135
			(Mean 85.0%)		
Kidney	fenpyroximate	0.005 (n=5)	66.9 to 73.5%	3.8%	MRM2 422→107
			(Mean 71.6%)		
Kidney	fenpyroximate	0.05 (n=5)	77.6 to 100.0%	10.8%	MRM2 422→107
			(Mean 84.2%)		

1077

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(mg/kg), (n=x)	recovery (%)		
Milk	M-3	0.005 (n=5)	84.0 to 94.2%	4.8%	MRM1 366→231
			(Mean 87.1%)		
Milk	M-3	0.05 (n=5)	87.9 to 91.1%	1.5%	MRM1 366→231
			(Mean 89.6%)		
Milk	M-3	0.005 (n=5)	82.7 to 90.8%	4.1%	MRM2 366→215
			(Mean 87.3%)		
Milk	M-3	0.05 (n=5)	89.4 to 93.0%	1.5%	MRM2 366→215
			(Mean 91.5%)		
Egg	M-3	0.005 (n=5)	65.6 to 83.7%	9.7%	MRM1 366→231
			(Mean 72.6%)		
Egg	M-3	0.05 (n=5)	86.9 to 94.2%	3.0%	MRM1 366→231
-			(Mean 91.2%)	1.50/	
Egg	M-3	0.005 (n=5)	70.0 to 72.9%	1.5%	MRM2 366 \rightarrow 215
Г	14.2	0.05 (5)	(Mean /1.5%)	1.70/	N(D) (2.2((
Egg	M-3	0.05 (n=5)	89.9 to $94.0%$	1./%	MRM2 300 \rightarrow 215
M 1	14.2	0.005 ((Niean 92.1%)	2.00/	MDM1 2((2)
Muscle	M-3	0.005 (n=5)	//./ to 81.4%	2.0%	MRM1 300→231
Musala	M 2	0.05(m-5)	(101ean / 9.1%)	2 10/	MDM1 266 221
Muscle	101-5	0.03 (II-3)	$(M_{200}, 87, 49/)$	5.170	MKM1 500→251
Musala	M 2	0.005 (m-5)	$(1016d11 \ 8 \ 7.470)$	4 40/	MDM2 266 \215
Muscle	101-5	0.003 (n=3)	$(M_{000}, 80, 69/)$	4.470	$\frac{1}{1000} \rightarrow 213$
Musala	M 2	0.05 (m-5)	$(1010011 \ 80.076)$	2 70/	MDM2 266 \215
Wiuscie	141-3	0.05 (II-5)	(Mean 86.0%)	5.770	WIKWIZ 500→215
Fat	M_3	0.005 (n=5)	77.7 to 88.2%	1 5%	MRM1 366-231
Tat	141-5	0.003 (n=3)	(Mean 83.2%)	ч.570	WIRWII 500 7251
Fat	M-3	0.05 (n=5)	83 8 to 86 4%	1.4%	MRM1 366→231
1 ut	111 5	0.05 (11 5)	(Mean 784.9%)	1.170	MICMI 500 7251
Fat	M-3	0.005 (n=5)	70.2 to 90.0%	9.2%	MRM2 366 \rightarrow 215
1			(Mean 79.1%)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Fat	M-3	0.05 (n=5)	79.6 to 85.9%	3.0%	MRM2 366 \rightarrow 215
			(Mean 83.2%)		
Liver	M-3	0.005 (n=5)	82.0 to 90.4%	4.9%	MRM1 366→231
			(Mean 86.9%)		
Liver	M-3	0.05 (n=5)	86.6 to 90.0%	1.8%	MRM1 366→231
			(Mean 87.7%)		
Liver	M-3	0.005 (n=5)	72.3 to 84.7%	6.2%	MRM2 366→215
			(Mean 80.7%)		
Liver	M-3	0.05 (n=5)	86.7 to 90.6%	1.9%	MRM2 366→215
			(Mean 88.4%)		
Kidney	M-3	0.005 (n=5)	75.7 to 81.2%	2.8%	MRM1 366→231
			(Mean 79.3%)		
Kidney	M-3	0.05 (n=5)	86.3 to 91.7%	2.3%	MRM1 366→231
			(Mean 88.7%)		
Kidney	M-3	0.005 (n=5)	75.9 to 79.2%	1.7%	MRM2 366→215
			(Mean 77.1%)		
Kidney	M-3	0.05 (n=5)	88.5 to 92.9%	1.8%	MRM2 366→215
			(Mean 91.1%)		

Table 148 Recovery results from method validation of M-3 using the analytical method in food of animal origin

Table 149 Characteristics for the analytical method used for validation of fenpyroximate and M-3 residues in food of animal origin

	Fenpyroximate	M-3
Specificity (all matrices)	blank value < 30% LOQ Product ion MS scan presented	blank value < 30% LOQ Product ion MS scan presented
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented	typical calibration data presented typical calibration line equation presented

	Fenpyroximate	M-3
	linear, no weighting applied r=≥0.997 5 data points Matrix matched used Both MRM1 and MRM2 were reported for all matrices	linear, no weighting applied r=>0.999 5 data points Non-matrix matched used (solvent) Both MRM1 and MRM2 were reported
Calibration range	0.3 to 30.0 ng/mL for all matrices Corresponding calibration range 0.00075 to 0.075 mg/kg fenpyroximate in all matrices.	0.3 to 30.0 ng/mL for all matrices Corresponding calibration range 0.00075 to 0.075 mg/kg M-3 in all matrices.
Assessment of matrix effects is presented	Yes, significant in all matrices. Matrix matched standards used	Yes, not significant in any matrices. Non- matrix matched (solvent) standards used
Limit of determination/quantification	LOQ=0.005 mg/kg in all matrices	LOQ=0.005 mg/kg in all matrices
Comment	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in food of animal origin.	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in food of animal origin.

A QuEChERS based method was successfully validated in all food of animal origin matrix types and is compliant with SANCO/825/00 rev. 8.1. The method is appropriate for measuring concentrations of fenpyroximate or its metabolite M-3 in food of animal origin for monitoring purposes.

The Independent Laboratory Validation of the method for determination of fenpyroximate and its metabolite M-3: was studied linearity, specificity precision and accuracy with bovine muscle and milk (Nagata T., 2016, report No.: A-4099). Residues of fenpyroximate or M-3 in muscle (10 g sample weight) are determined by direct extraction with acetonitrile : water (40 mL, 4:1, 30 seconds homogenisation). After centrifugation and transfer of the solvent to a separating funnel, the solid remaining is further extracted with acetonitrile : water (40 mL, 4:1, 1 minute shaking). After centrifugation, the solvent extracts are combined in the separating funnel with addition of sodium chloride. The combined extract is shaken and the layers allowed to separate so that the upper acetonitrile layer can be collected and the volume adjusted with acetonitrile (final volume 100 mL). An aliquot of the acetonitrile extract (20 mL, 2 g sample equivalent) is partitioned with hexane (20 mL) to remove any fat and the lower acetonitrile later is evaporated with addition of water (1 mL). Methanol and water (1 mL of each) is added to the extract prior to clean-up.

Residues of fenpyroximate or M-3 in milk (20 g sample weight) are determined by direct extraction with acetonitrile (10 mL, 1 minute shaking). After centrifugation and transfer of the solvent to a separating funnel, the solid remaining is further extracted with acetonitrile (50 mL, 1 minute shaking). After centrifugation, the solvent extracts are combined in the separating funnel with addition of sodium chloride. The combined extract is shaken and the layers allowed to separate so that the upper acetonitrile layer can be collected and the volume adjusted with acetonitrile (final volume 200 mL). An aliquot of the acetonitrile extract (20 mL, 2 g sample equivalent) is partitioned with hexane (20 mL) to remove any fat and the lower acetonitrile later is evaporated with addition of water (1 mL). Methanol and water (1 mL of each) is added to the extract prior to clean-up.

All extracts are cleaned up by means of a C18 SPE tube (BondElut, 500 mg phase) with the final eluted extract containing any fenpyroximate or M-3 adjusted to a volume of 5 mL in acetonitrile : water, 1:1 (sample concentration 0.4 g/mL equivalent).

All samples were measured using LC-MS/MS employing an L-column2 ODS, 5 μ m particle size and monitoring at two MRM transitions for each analyte. Quantification of extracts was performed using external calibration standards over the range 1.5 to 150 pg (equivalent to 0.3 to 30.0 ng/mL) for both matrices and for both analytes. For analysis of fenpyroximate and M-3 in both matrices, matrix matched standards were used. The lowest level tested (LOQ) was 0.005 mg/kg fenpyroximate or M-3 in all matrices.

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments	
Milk	fenpyroximate	0.005 (n=5)	89 to 94% (Mean 91%)	2%	MRM1 422→135	
Milk	fenpyroximate	0.05 (n=5	80 to 83% (Mean 82%)	2%	MRM1 422→135	
Milk	fenpyroximate	0.005 (n=5)	79 to 90% 5% (Mean 84%)		MRM2 422→107	
Milk	fenpyroximate	0.05 (n=5)	78 to 84% (Mean 82%)	3%	MRM2 422→107	
Muscle	fenpyroximate	0.005 (n=5)	78 to 87% (Mean 82%)	4%	MRM1 422→135	
Muscle	fenpyroximate	0.05 (n=5)	72 to 82% 5% (Mean 77%)		MRM1 422→135	
Muscle	fenpyroximate	0.005 (n=5)	72 to 84% 6% (Mean 80%)		MRM2 422→107	
Muscle	fenpyroximate	0.05 (n=5)	72 to 83% (Mean 77%)	6%	MRM2 422→107	

Table 150 Recovery results from method validation of fenpyroximate using the analytical method in food of animal origin

Table	151	Recovery	results	from	method	validation	of M-3	using	the	analytical	method	in	food	of
anima	l orig	gin												

Matrix	Analyte	Fortification level (mg/kg), (n=x)	Range and (Mean) recovery (%)	RSD (%)	Comments		
Milk	M-3	0.005 (n=5)	84 to 93% (Mean 88%)	5%	MRM1 365.9→231		
Milk	M-3	0.05 (n=5)	95 to 98% (Mean 97%)	1%	MRM1 365.9→231		
Milk	M-3	0.005 (n=5)	86 to 92% 3% (Mean 89%)		MRM2 365.9→215		
Milk	M-3	0.05 (n=5)	94 to 97% (Mean 96%)	2%	MRM2 365.9→215		
Muscle	M-3	0.005 (n=5)	87 to 92% (Mean 90%)	2%	MRM1 365.9→231		
Muscle	M-3	0.05 (n=5)	91 to 94% (Mean 93%)	1%	MRM1 365.9→231		
Muscle	M-3	0.005 (n=5)	83 to 88% (Mean 86%)	2%	MRM2 365.9→215		
Muscle	M-3	0.05 (n=5)	91 to 99% (Mean 95%)	3%	MRM2 365.9→215		

Table 152: Characteristics	for the	analytical	method	used	for	validation	of	fenpyroximate	and	M-3
residues in food of animal c	origin									

	Fenpyroximate	M-3
Specificity (all crops)	blank value < 30% LOQ Product ion MS scan presented	blank value < 30% LOQ Product ion MS scan presented
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=≥0.999 5 data points Matrix matched used Both MRM1 and MRM2 were reported for all matrices	typical calibration data presented typical calibration line equation presented linear, no weighting applied r=>0.999 5 data points Matrix matched used Both MRM1 and MRM2 were reported
Calibration range	1.5 to 150 pg (equivalent to 0.3 to 30.0 ng/mL) for both matrices	1.5 to 150 pg (equivalent to 0.3 to 30.0 ng/mL) for both matrices

	Fenpyroximate	M-3
	Corresponding calibration range 0.00075 to 0.075 mg/kg fenpyroximate in all matrices.	Corresponding calibration range 0.00075 to 0.075 mg/kg M-3 in all matrices.
Assessment of matrix effects is presented	Yes, significant in bovine muscle, not significant in milk. Matrix matched standards used	Yes, not significant in any matrices. Matrix matched standards used
Limit of determination/quantification	LOQ=0.005 mg/kg in all matrices	LOQ=0.005 mg/kg in all matrices
Comment	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in food of animal origin.	Acceptable against SANCO/825/00 rev 8.1 criteria. Method suitable for monitoring in food of animal origin.

A QuEChERS based method was successfully independently validated in all food of animal origin matrix types and is compliant with SANCO/825/00 rev. 8.1. The method is appropriate for measuring concentrations of fenpyroximate or its metabolite M-3 in food of animal origin for monitoring purposes.

Methods for data generation

Validation and radiovalidation of the analytical residue method for the determination of fenpyroximate and its metabolites in cow and goat tissues and milk was conducted (Baker F.C., Bautista A.V. and Bacher R., 1999, report No. A-4039)

Milk extraction method:

The milk was extracted with acetone: water (2:1, v/v) and add the supernatant to the round bottom flask. Acidify the combined extracts with concentrated HCl and rotary evaporate to remove all the acetone. Transfer the aqueous solution to a separating funnel and wash the flask with ethyl acetate and add to the separating funnel. Partition the solution and collect the ethyl acetate (upper) layer. Repeat the partition a further two times, each time combining the ethyl acetate layers. If necessary, add NaCl to the solution to reduce any emulsion/interphase. Partition the combined ethyl acetate fractions three times with aqueous sodium carbonate.

To the ethyl acetate extract add anhydrous sodium sulfate. Pour the ethyl acetate phase through anhydrous sodium sulfate into a round bottom flask. Wash the separating funnel and sodium sulfate with ethyl acetate and combine with previously dried fraction. Rotary evaporate to dryness. Using diethyl ether, transfer the residue into a test tube. Evaporate to oil in a warm water bath. Extract the oil four times with acetonitrile, transfer the extracts to a clean test tube. Evaporate to dryness and dissolve the residue in hexane: Et_2O (9:1, v/v). Extract with SPE. Rinse the cartridge with hexane: Et_2O (9:1, v/v) and discard the eluate. Elute the cartridge with diethyl ether into a test tube, then evaporate the solvent under nitrogen. Dissolve the residue in methanol and add aqueous potassium hydroxide and mix thoroughly.

Place the test tube in a water bath at 60 °C for two hours. Evaporate the solution to remove the methanol, then add water. Partition the solution twice with hexane, discarding the hexane fractions. Acidify the solution to ~pH lusing concentrated HCl. Partition three times with diethyl ether and transfer the ether to a clean test tube. Add 0.1% acetic acid in methanol and excess diazomethane in ether to the solution and allow to stand for 10 minutes. Evaporate to dryness and dissolve the residue in hexane:Et₂O (9:1, v/v). Extract the solution by SPE and elute the cartridge with hexane:Et₂O (9:1, v/v). Evaporate the solution to dryness and dissolve the residue in acetone for GC analysis.

Muscle extraction method

The muscle was extracted with acetone:water (2:1, v/v) 2 times. Transfer the extract to a separating funnel, rinse the flask with ethyl acetate and add to the separating funnel. Partition the solution three

times, each time collecting the ethyl acetate layer. If required add NaCl during the partitioning to help break up any emulsions. Partition the ethyl acetate fraction with aqueous sodium carbonate.

Pour the ethyl acetate phase through anhydrous sodium sulfate into a round bottom flask. Wash the separating funnel with sodium sulfate and ethyl acetate and combine with previously dried fraction. Rotary evaporate to dryness. Using diethyl ether, transfer the residue into a test tube and evaporate under nitrogen to oil. Extract the oil four times with acetonitrile and transfer to a clean test tube. Evaporate to dryness and dissolve the residue in hexane:Et₂O (9:1, v/v). Extract with SPE and elute the cartridge with hexane:Et₂O (9:1, v/v) into a test tube and evaporate to dryness. Dissolve the residue in methanol, add aqueous potassium hydroxide and mix thoroughly.

Place the test tube in a water bath at 60 °C for two hours. Evaporate the solution to remove all the methanol, then add water. Partition the solution twice with hexane, discarding the hexane fractions. Acidify the solution to ~pH lusing concentrated HCl. Partition three times with diethyl ether and transfer the ether to a clean test tube. Add excess diazomethane in ether to the solution and allow to stand for 10 minutes. Evaporate to dryness and dissolve the residue in hexane:Et₂O (9:1, v/v). Extract the solution by SPE and elute the cartridge with hexane:Et₂O (9:1, v/v). Evaporate the solution to dryness and dissolve the residue in acetone for GC analysis.

Fat extraction method:

The fat was extracted twice with acetonitrile. Combine the supernatants in a round bottom flask and then evaporated to dryness. Transfer the residue into a separating funnel using rinses of hexane. Partition the solution twice with aqueous sodium carbonate or 0.1 M ammonium hydroxide and collect the aqueous layers. If an interphase layer forms, add NaCl as necessary to clarify.

Collect the hexane fraction into a flask and rinse the separating funnel with hexane, also adding to the flask. Evaporate the solution to dryness and transfer the residue to a centrifuge tube using diethyl ether. Evaporate the solution to dryness, leaving an oily residue. Dissolve the residue in hexane:ether (9:1, v/v) and extract by SPE. Rinse the flask with hexane:ether (9:1, v/v) and pass the solution through the SPE cartridge. Elute the cartridge with ether and collected into a test tube. Evaporate the solution to dryness and dissolve the residue in methanol.

Add aqueous potassium hydroxide to the solution, mix thoroughly and then place in a water bath at 60 °C for two hours. Evaporate the solution to remove the methanol and add water. Partition the solution twice with hexane, discarding the hexane fractions. Acidify the aqueous solution with concentrated HCl. Partition with diethyl ether and transfer the ether to a new test tube. Concentrate the ether to a smaller volume and add 0.1% acetic acid in methanol, followed by diazomethane in ether. Mix the solution and allow to sit for 10 minutes, then evaporated to dryness. Dissolve the residue in acetone for GC analysis.

Liver or kidney extraction method:

The liver or kidney were extracted twice with acetonitrile:water (8:2, v/v) and transfer an aliquot of the extract into a separating funnel. Acidify the aliquot with concentrated acetic acid and add NaCl. Shake the samples to separate the phases and collect the acetonitrile (upper) phase. Extract the aqueous (lower) phase with acetonitrile. Pool the two acetonitrile phases and concentrate to dryness.

Dissolve the residue in ethyl acetate and add $NaCl:Na_2SO_4$ (1:1, w/w) and cyclohexane. Filter the extract through a syringe membrane. Inject 5 mL of the solution into GPC and collect a fraction from 19-32 minutes. Evaporate the GPC eluate to dryness.

Dissolve the residue in diethyl ether, add diazomethane in diethyl ether and leave the solution to react at ambient temperature for one hour. Evaporate the solution to dryness under nitrogen dissolve the residue in acetonitrile (final extract). Analyse the final extract by LC/MS.

A radiovalidation study was conducted to demonstrate the effectiveness of the 'cold' residue method when applied to incurred $[^{14}C]$ residues of fenpyroximate in goat milk and tissues. Goat milk and tissue samples were extracted by the methods described above and analysed by HPLC.

The method for cow milk was validated with two low level fortification samples (0.005 mg/kg), two mid-level fortifications (0.010 mg/kg) and two high level fortifications (0.100 mg/kg).

The method for cow muscle and fat was validated with two low level fortifications (0.01 mg/kg), two mid-level fortifications (0.05 mg/kg) and two high level fortifications (0.500 mg/kg).

The method for cow liver and kidney was validated with three low level fortifications (0.01 mg/kg), three mid-level fortifications (0.05 mg/kg) and three high level fortifications (0.500 mg/kg).

The method for goat milk, muscle and fat was validated with one control and two fortifications at 0.05 mg/kg and the method for goat liver and kidney was validated with one control and three fortifications at 0.05 mg/kg.

The average recoveries were within the acceptable range of 70% to 120% with the exception of the highest fortification level for cows milk, with an average recovery was 64%, cow fat, with an average recovery of 137% and goat muscle, with an average recovery of 66%. In a separate validation set the method was validated for 0.100 mg/kg fenpyroximate, with an average recovery of 118%. However the method was not validated for 0.010 mg/kg fenpyroximate in that analytical set.

The LOQ was 0.05 mg/kg in milk and 0.010 mg/kg in tissues (liver, kidney, muscle and fat).

Recovery data for fenpyroximate from cows and goats are presented in Table 153.

Matrix	Fortification level	Mean recovery	Recovery range	RSD (%)	Number of
	(mg/kg)	(%)	(%)		replicates
Cow					
Milk	0.005	113	92-134	NA	2
	0.010	71	65-77	NA	2
	0.100	64	58-69	NA	2
Muscle	0.010	99	90-108	NA	2
	0.050	93	91-94	NA	2
	0.500	95	80-109	NA	2
Fat	0.010	137	117-156	NA	2
	0.050	83	69-96	NA	2
	0.500	79	64-93	NA	2
Liver	0.01	119	113-127	6.2	3
	0.05	99	98-101	1.5	3
	0.50	103	99-109	3.5	3
Kidney	0.01	118	118-118	0	3
	0.05	103	98-108	4.9	3
	0.50	101	91-106	8.3	3
Goat			•		
Milk	0.050	78	66-89	NA	2
Muscle	0.050	66	50-82	NA	2
Fat	0.050	71	69-72	NA	2
Liver	0.050	92	90-93	NA	2
Kidney	0.050	85	78-89	7.5	3

Table 153 Summary of results for fenpyroximate

Methods for soil

Method for enforcement

An enforcement monitoring method for determination of residues of fenpyroximate in soil by LC-MS/MS (RES-000601) was validated with two soil types ((loamy sand, LUFA Speyer soils type 2.2 and clayey loam, 6S) for linearity, specificity precision and accuracy (Brown D., 2016, report No. A-

4092). 25g soil samples are extracted with methanol (50 mL, 20 minutes mechanical shaking). Centrifugation allows the removal of the organic extract with filtering to avoid particulates. The remaining soil is sequentially extraction by shaking with methanol (2×50 mL), acetone (50 mL), methanol : water (1:1, v/v, 50 mL) and methanol : 0.1M hydrochloric acid (1:1, v/v, 50 mL) and the organic phases are combined and mixed. The volume is adjusted to 500 mL with water. An aliquot is removed for determination.

All samples were measured using LC-MS/MS employing an Ascentis Express C18 column, 2.7 μ m particle size and monitoring at two MRM transitions. Quantification of extracts was performed using external calibration standards over the range 0.15 to 12.5 ng/mL. Matrix matched standards were used.

The lowest level tested (LOQ) was 0.01 mg/kg fenpyroximate in soil.

Table 154 Recovery results from method validation of fenpyroximate using the analytical method in soil

Matrix	Analyte	Fortification level	Range and (Mean)	RSD (%)	Comments
		(mg/kg), (n=x)	recovery (%)		
Soil	fenpyroximate	0.01 (n=5)	97.7 to 101.2%	1.3%	MRM1 422→366
(clayey loam)			(Mean 99.4%)		
Soil	fenpyroximate	0.1 (n=5)	100.6 to 103.3%	1.0%	MRM1 422→366
(clayey loam)			(Mean 102.0%)		
Soil	fenpyroximate	Overall (n=10)	97.7 to 103.3%	1.7%	MRM1 422→366
(clayey loam)			(Mean 100.7%)		
Soil	fenpyroximate	0.01 (n=5)	95.2 to 102.9%	2.9%	MRM2 422→135
(clayey loam)			(Mean 98.4%)		
Soil	fenpyroximate	0.1 (n=5)	100.7 to 104.4%	1.7%	MRM2 422→135
(clayey loam)			(Mean 102.5%)		
Soil	fenpyroximate	Overall (n=10)	95.2 to 104.4%	3.1%	MRM2 422→135
(clayey loam)			(Mean 100.5%)		
Soil	fenpyroximate	0.01 (n=5)	96.0 to 97.4%	0.6%	MRM1 422→366
(loamy sand)			(Mean 96.7%)		
Soil	fenpyroximate	0.1 (n=5)	97.6 to 100.1%	1.0%	MRM1 422→366
(loamy sand)			(Mean 99.0%)		
Soil	fenpyroximate	Overall (n=10)	96.0 to 100.1%	1.5%	MRM1 422→366
(loamy sand)			(Mean 97.8%)		
Soil	fenpyroximate	0.01 (n=5)	94.3 to 99.3%	3.0%	MRM2 422→135
(loamy sand)			(Mean 96.3%)		
Soil	fenpyroximate	0.1 (n=5)	97.4 to 100.6%	1.3%	MRM2 422→135
(loamy sand)			(Mean 98.7%)		
Soil	fenpyroximate	Overall (n=10)	94.3 to 100.6%	2.5%	MRM2 422→135
(loamy sand)			(Mean 97.5%)		

Table 155 Characteristics for the analytical method used for validation of fenpyroximate residues in soil

	Fenpyroximate
Specificity	blank value < 30% LOQ Product ion MS scan presented
Calibration (type, number of data points)	typical calibration data presented typical calibration line equation presented linear, 1/x weighting applied r=>0.998 6 data points Matrix matched used
Calibration range	0.15 to 12.5 ng/mL Corresponding calibration range 0.003 to 0.25 mg/kg fenpyroximate in soil
Assessment of matrix effects is presented	Yes, not significant but matrix matched standards used for validation
Limit of determination/quantification	LOQ=0.01 mg/kg in soil

	Fenpyroximate
Comment	Acceptable against SANCO/825/00 rev. 8.1 criteria. Method suitable for monitoring in soil

The method was successfully validated in two soil types and is compliant with SANCO/825/00 rev. 8.1. The method is appropriate for measuring concentrations of fenpyroximate in soil for monitoring purposes with an LOQ of 0.01 mg/kg.

Methods for data generation

Method for determination of the fenpyroximate degradation in soil was validated for linearity, specificity, accuracy and precision (Römbke J. and Brodesser J., 1992, report No. E-4020). Fenpyroximate was extracted from soil with acetone:water (2:1) by shaking the sample. The extract was filtered and the organic solvent was evaporated. The remaining aqueous solution was extracted with ethyl acetate using a stirring procedure. The organic phase was evaporated to dryness and the extract was dissolved in hexane:ethyl acetate (9:1), which was applied to a silica cartridge. The analyte was eluted with hexane:ethyl acetate (4:1) and the eluate was evaporated to dryness. The extract was dissolved in acetonitrile. The analyte was determined by HPLC using a column switching method with RP-18 column of different selectivity. The analyte was detected by UV detection. The recoveries of method were 70-120% over the concentration range 0.01 to 0.2 mg/kg.

Matrix	Fortification level (mg/kg)	Mean recovery (%)	Recovery range (%)	RSD (%)	Number of replicates
Fenpyroximate					
Soil	0.002	54	50-57*	5	2
	0.01	79	77-81	3	2
	0.02	77	65-89	17	2
	0.2	87	85-88	2	2

Table 156 Summary of results for fenpyroximate

* The integration of these two samples was problematic due to matrix effects

Table	157	Characteristics	for the	e analytical	method	used	for	validation	of	fenpyroximate	residues	in
soil												

	Fenpyroximate
Specificity	blank value < 30% LOQ Product ion MS scan presented
Calibration range	2.5 to 100 ng (6 calibration levels)
Limit of determination/quantification	LOQ=0.002 mg/kg in soil
Comment	Acceptable recoveries of between 70-120%

Stability of residues in stored analytical sample

Plant matrices

Hops

Storage stability of fenpyroximate (HOE 094552) and M-1 (HOE 112573) in hop (dried cones) was conducted (Weber H., 1995, report No. A-4022). 24 samples for each test substance were fortified with fenpyroximate or M-1 at 9.60 and 9.68 mg/kg, respectively and were analysed at 1 day, 3, 6, 12, 18 and 24 months after storage at \leq -18 °C. Two storage stability samples were analysed for residues of fenpyroximate and M-1 on each date of analysis. Fortified samples used for recovery determination

were prepared at a rate of 10 mg/kg. Sample analysis was performed using GC-TID. No significant decrease of fenpyroximate was observed in the storage stability samples up to a storage period of 24 months at \leq -18 °C in the dark. Concerning M-1, isomerisation to fenpyroximate up to a rate of 40% was observed in both M-1 fortified samples for recovery and in storage stability samples of M-1. No significant decrease of the sum of M-1 and fenpyroximate was observed in the storage stability samples up to a storage period of 24 months at \leq -18 °C in the dark.

Table 158 Recovery of fenpyroximate in hop (dried cones) during storage stability analysis over a period of up to 24 months

Storage duration	Sample variant	Fortification	Residues of	Residues of	Recovery of fennyrovimate	Mean (%)
		(mg/kg)	(mg/kg)	(mg/kg)	(%)	
1 day	Recovery	10.00	8.3	n.d.	82	-
	Storage stability	9.60	8.1	n.d.	84	07.0
			10.5	n.d.	110	97.0
3 months	Recovery	10.00	9.5	n.d.	95	-
	Storage stability	9.60	7.6	n.d.	80	015
			8.6	n.d.	89	- 84.3
6 months	Recovery	10.00	10.4	n.d.	104	-
	Storage stability	9.60	9.2	n.d.	96	07.0
			9.4	n.d.	98	97.0
12 months	Recovery	10.00	8.7	n.d.	87	-
	Storage stability	9.60	8.2	n.d.	85	<u> </u>
			8.8	n.d.	91	88.0
18 months	Recovery	10.00	12.1	n.d.	120	-
	Storage stability	9.60	7.7	n.d.	80	01.0
			9.8	n.d.	102	91.0
24 months	Recovery	10.00	10.5	n.d.	105	-
	Storage stability	9.60	11.1	n.d.	116	109.5
			9.7	n.d.	101	108.5

n.d.-not determinable (limit of determination for fenpyroximate and M-1=1 mg/kg)

Table 159 Recovery of M-1 in hop (dried cones) during storage stability analysis over a period of up to 24 months

Storage duration	Sample variant	Fortificat- ion level (mg/kg)	Residues of fenpyroxi-mate (mg/kg)	Residues of M-1 (mg/kg)	Recovery of M-1 (%)	Mean (%)	Recovery (sum of Fenp.+M-1) (%)	Mean (%)
1 day	Recovery	10.00	3.5	8.5	84	-	119	-
	Storage	9.68	2.6	6.7	69	745	96	104.0
	stability		3.1	7.7	80	/4.5	112	104.0
3 months	Recovery	10.00	1.2	6.4	64	-	76	-
	Storage	9.68	1.4	8.4	86	00 5	100	106.5
	stability		2.1	8.8	91	00.3	113	100.5
6 months	Recovery	10.00	1.8	9.2	91	-	109	-
	Storage	9.68	1.3	7.3	76	77 5	89	05.0
	stability		2.1	7.6	79	11.5	101	95.0
12 months	Recovery	10.00	4.2	6.7	66	-	108	-
	Storage	9.68	4.5	5.7	58	60.0	104	105.0
	stability		4.3	6.0	62	00.0	106	105.0
18 months	Recovery	10.00	1.8	9.5	96	-	114	-
	Storage	9.68	2.2	8.3	86	80.5	108	109
	stability		1.5	9.0	93	09.5	108	108
24 months	Recovery	10.00	2.8	7.9	80	-	108	-
	Storage	9.68	4.3	6.1	63	66.0	107	104.5
	stability		3.2	6.7	69	00.0	102	104.5

n.d.-not determinable (limit of determination for fenpyroximate and M-1=1 mg/kg)

Apple

The storage stability of fenpyroximate and metabolite M-1 was investigated in apples (Specht W., 1992, report No. R-4136). 200 g of homogenised apples fortified either with a fenpyroximate or M-1 solution were stored for 90, 180, 360 and 540 days at -20 °C. Sample analysis was performed using HPLC with an UV-detector. The residues of fenpyroximate on day 90, 180, 360 and 540 amounted to 75%, 67%, 93% and 102%, respectively, of the value of day 0. Residues of M-1 on day 90, 180, 360 and 450 were found to be 76%, 69%, 113% and 62%, respectively, of the value of day 0. As the determination on day 360 was considered to be an outlier, a slight degradation of M-1 during the 540 days of storage was observed.

Table 160 Storage stability of fenpyroximate and its metabolite M-1 in apples during storage over a period of up to 540 days

Storage duration	Fortification level	Residues of fenpyroximate	Residues of fenpyroximate	Residues of M-1
(days)	(mg/kg)	(mg/kg)	(% day 0)	(mg/kg)
Fenpyroximate				
0	0.125	0.107	-	< 0.01
		0.120	-	n.d.
90	0.125	0.081	75	n.d.
		0.091		n.d.
180	0.125	0.070	67	n.d.
		0.077		n.d.
360	0.125	0.105	93	< 0.01
		0.105		n.d.
540	0.125	0.117	102	0.02
		0.110		< 0.01
Metabolite M-1			•	
0	0.117	< 0.01	-	0.095
		< 0.01		0.099
90	0.117	< 0.01	76	0.064
		0.01		0.083
180	0.117	0.01	69	0.063
		0.01		0.070
360	0.117	0.01	113*	0.112
		0.01		0.112
540	0.117	< 0.01	62	0.063
		< 0.01	1	0.060

n.d.-not detectable (limit of determination for fenpyroximate and M-1 < 0.01 mg/kg)

* considered to be an outlier

The mean procedural recoveries were within the acceptable range of 70–110%,

Storage stability of [pyrazole-¹⁴C]-fenpyroximate (NNI-850) in apples was investigated as a part of metabolism study (Wyss-Benz M., 1994a, report No. A-4023). The apples were stored for approximately three years at about -20 °C. The radioactive components in washings and cake were characterised by normal and reverse phase TLC.

Due to the fact that different subsamples were compared it was not surprising to find slightly different residue levels, i.e. 0.020 mg parent equivalents/kg apples (fresh weight) in the analysis of the stability test after 3 years storage, compared to 0.031 mg/kg found in the first analysis. However, relative residue levels found, expressed in percent of the respective sample in contrast to the absolute ones, were found to be similar in both projects. Results of the analyses are summarised in Table 161.

Table 161 Comparison of residue levels of [Pyrazole-¹⁴C]-fenpyroximate found in apples analysed in the course of a metabolism study and again analysed after three years of storage at -20 $^{\circ}$ C

Fraction	Metabolism study		Stability test	
	mg/kg ^a	% ^b	mg/kg ^a	% ^b
Cake				
Extracted + Washing				

Fraction	Metabolism study		Stability test	
	mg/kg ^a	% ^b	mg/kg ^a	% ^b
Fenpyroximate	0.015	48.2	0.010	50.7
M1	0.005	16.1	0.003	15.2
Unknown fraction WA3	< 0.001 °		< 0.001 °	
Unknown fraction WA4	< 0.001 °		< 0.001 °	
Unknown fraction in the organic phase	0.002	6.4	0.001	5.1
OAC 5+6				
Aqueous phase	0.005	16.1	0.003	15.2
Non-Extracted	0.001	3.6	0.001	3.7
Juice	0.003	9.6	0.002	10.1
Total ¹⁴ C-residues	0.031	100.0	0.020	100.0

^a Values given in mg fenpyroximate equivalent per kg apples (fresh weight)

^b % of total ¹⁴C-residues

^c limit of detection=0.001 mg/kg

[Pyrazole-¹⁴C]-fenpyroximate and its metabolic fractions, analysed in apples in the course of a metabolism study, were found to be stable over a time period of approximately three years when samples were stored frozen at approximately -20 $^{\circ}$ C.

Grapes

Storage stability of [pyrazole-¹⁴C]-fenpyroximate (NNI-850) in grapes (Wyss-Benz M., 1994b, report No.: A-4024) was investigated as part of metabolism study (Wyss-Benz & Mamouni (1992b),. The grapes were stored for approximately three years at about -20 °C. The radioactive components in washings and cake were characterised by normal and reverse phase TLC.

Due to the fact that different subsamples were compared it was not surprising to find slightly different residue levels, i.e. 0.045 mg parent equivalents/kg grapes (fresh weight) in the analysis of the stability test after 3 years storage, compared to 0.070 mg/kg found in the first analysis. In both studies the same pattern of metabolites was seen, but they were different in the residue levels obtained in the washing.

Table 162 Comparison of residue levels of [Pyrazole-¹⁴C]-fenpyroximate found in grapes analysed in the course of a metabolism study and again analysed after three years of storage at -20 $^{\circ}$ C

Fraction	Metabolism stud	y	Stability test	
	mg/kg ^a	% ^b	mg/kg ^a	% ^b
Cake				
Extracted + Washing				
Fenpyroximate	0.030	42.9	0.013	28.8
M1	0.004	5.7	0.003	6.6
Unknown fraction WG2	0.002	2.9	0.008	17.7
Unknown fraction WG3	0.015	21.4	0.003	6.6
Unknown fraction in the organic phase OGC 4	0.001	1.4	0.002	4.4
Unknown fraction in the organic phase OGC 5	0.001	1.4	< 0.001	1.1
Unknown fraction in the organic phase OGC 6	0.001	1.4	< 0.001	1.1
Aqueous phase	0.006	8.6	0.005	11.1
Non-Extracted	0.003	4.2	0.004	9.2
Juice	0.007	10.0	0.006	13.3
Total ¹⁴ C-residues	0.070	100.0	0.045	100.0

^a Values given in mg fenpyroximate equivalent per kg grapes (fresh weight)

^b % of total ¹⁴C-residues

Limit of detection=0.001 mg/kg

[Pyrazole-¹⁴C]-fenpyroximate and its metabolic fractions, analysed in grapes in the course of a metabolism study, were found to be stable over a time period of approximately three years when

samples were stored frozen at about -20 °C, but the surface activity was found to have changed slightly.

A reduction in the residue of fenpyroximate was observed after 3 years of storage under deep frozen conditions of >30%. Assuming a constant rate of decline in residue with time, stability of fenpyroximate is indicated for 1 year. The residue of M-1 in stored grapes was observed to be comparable at the 0 and 3 year time points.

Pome Fruit, Cotton & Grapes

The stability of Fenpyroximate in pome fruit (high water), cotton (high oil) and grapes (high acid) was summarized in US-EPA Memorandum (Kramer, G.F., 2003, report No.: R-4114 (45649901); R-4115 (45649902); R-4116 (45649903); A-4039 (45649904); A-4040 (45649905); R-4113 (45649906); R-4123 (45649913); R-4154 (45775501)). Several of the magnitude of the residue studies contained concurrent storage stability data. These data and the actual storage intervals are summarised in Table 163.

Matrix (RAC)	Actual Storage Duration (days)	Limits of Demonstrated Storage Stability (days)	Reference (MRID#)
Apples	36-68	None	R-4119 (45649907)
Grapes	116-190	268	R-4121 (45649908)
Cotton, undelinted seed	126-173	168	R-4117 (45649909)
Cotton, gin by-products	141-180	175	R-4117 (45649909)
Apple juice	238	None	R-4220 (45649910)
Apple wet pomace	238	None	R-4220 (45649910)
Cottonseed oil	105	112	R-4118 (45649912)
Cottonseed meal	103	104	R-4118 (45649912)
Cottonseed hulls	138	146	R-4118 (45649912)
Grape juice	158	NS	R-4122 (45649911)
Grape wet pomace	151	177	R-4122 (45649911)
Raisins	174	195	R-4122 (45649911)
Pears	14-95	100	R-4122 (45649911)

Table 163 summary of stability of stored samples of pome fruit, cotton and grapes

NS=Not stable

The combined residues of fenpyroximate and M-1 were found to be stable in all commodities tested except grape juice, in which a decline of >80% was observed during the course of the study.

Lettuce, sunflower, orange and potato

Storage stability of fenpyroximate and M1 metabolite under deep frozen conditions was investigated in lettuce (high water), sunflower (high oil), orange (high acid) and potato (high starch) (Gasso-Brown, D., 2017, Report No. R-4525). Samples fortified with fenpyroximate and M-1 at 0.1 mg/kg were stored in the freezer($\leq -18 \text{ °C}$) and analysed using EAS method 'Fenpyroximate/crops/AJW/1' for residues of fenpyroximate and M-1 at intervals of 3, 6, 9, 12 and 18 months. Recovery of fenpyroximate and M-1 from the spiked samples stored under frozen conditions are <30%, indicating adequate stability of residues under the conditions tested. Refer to Tables 164-165 for the results for fenpyroximate and M-1 respectively.

T 11	1 (1	T / ·		· 1 ·1· /	1 .	C	C	• ,	•	C	
Lable	164	Inferim	storage	stability	data	tor	tenny	roximate	1n 2	a range of	crons
1 4010	101	1110011111	storage	Stubility	aata	101	renpj	Tommute			Crops

Сгор	Storage period (months)	Residue (mg/kg)	Mean % Remain
Lettuce (high water)		0.0975	
	0	0.0973	97
		0.0966	
	3	0.0803	
		0.0797	80
		0.0802	

Сгор	Storage period (months)	Residue (mg/kg)	Mean % Remain
		0.0892	
	6	0.0803	85
		0.086	
		0.0862	
	9	0.0931	91
		0.0943	
	12	-	-
	18	-	-
		0.093	
	0	0.0879	90
		0.0894	
		0.0977	
	3	0.093	96
		0.0978	
		0.1025	
Sunflower (high oil)	6	0.0888	96
		0.0956	
		0.0767	
	9	0.0651	70
	,	0.0673	
	12	-	_
	12	-	-
	10	0 1022	-
	0	0.1012	101
	0	0.1002	101
		0.0736	
	3 6	0.0736	75
		0.0750	75
		0.0772	
Orange (high acid)		0.1103	112
		0.115	112
	9	0.1058	
		0.0896	99
		0.0911	88
	12	0.0926	
	12	-	-
	18	-	-
	0 3	0.0968	02
		0.0897	93
		0.0912	
		0.0851	05
Potato (high starch)		0.0832	85
		0.0863	
	6	0.1027	
		0.1059	103
		0.1013	
	9	0.0917	
		0.0901	93
		0.0963	
	12	-	-
	18	-	-

Table 165: Interim storage stability data for M-1 in a range of crops

Crop	Storage period (months)	Residue (mg/kg)	Mean % Remain
Lettuce (high water)	0	0.1025	83
		0.0753	
		0.0713	
	3	0.0776	78
		0.0785	
		0.0798	02
	6	0.0858	82
		0.0770	
	0	0.0834	96
	9	0.0806	80
		0.0885	
	12	-	
	12		
Sunflower (high oil)	0	0.0076	02
Sumower (mgn on)	0	0.0970	33
		0.0941	
	3	0.0941	96
	5	0.0941	50
		0.0991	
	6	0.1009	93
		0.0859	
		0.0922	
	9	0.0773	72
		0.0668	
		0.0723	
	12	-	-
	18	-	-
Orange (high acid)	0	0.1009	103
		0.0991	
		0.1099	
	3	0.0734	73
		0.0723	
		0.0751	
	6	0.1176	113
		0.1136	
	0	0.1060	02
	9	0.0884	92
		0.0929	
	12	0.0948	
	12		
	18	-	-
Potato (high starch)	0	0.1103	97
		0.0843	
	2	0.0913	82
	3	0.0819	82
		0.0836	
	6	0.1000	100
	~	0.1025	
		0.0977	
	9	0.0915	92
		0.0892	
		0.0969	
	12	-	-
	18	-	-

The available results confirm acceptable stability of fenpyroximate and M-1 in crops representative of high water, high acid, high oil and high starch crop groups. Method performance data demonstrate acceptable method performance.
Overall Conclusions for Storage Stability in Crops

A summary of the available storage stability data and the periods for which stability has been demonstrated in different matrix types is included below. Note that for lettuce, orange, sunflower and potato, the submitted results are from an ongoing study and data from later storage times out to 18 months will be available.

Crop Matrix Type	Crops tested	Max storage stability period (months)
High water content	Apple	36 (Fen + M-1)
	Apple	18 (Fen + M-1)
	Lettuce	9 (Fen + M-1; interim)
High acid content	Grape	12 (Fen), 36 (M-1)
	Orange	9 (Fen + M-1; interim)
High oil content	Hops	24 (fen + M-1)
	Sunflower	9 (Fen + M-1; interim)
High protein content	-	-
High starch content.	Potato	9 (Fen + M-1; interim)

Table 166 Summary of storage stability in crops

Animal commodities

The stored stability in animal commodities was provided in US-EPA Memorandum (Kramer, G.F., 2003, report No.: S-4027). These data and the actual storage intervals are summarised in Table 167.

Matrix (RAC)	Actual Storage Duration (days)	Limits of Demonstrated Storage	Reference (MRID#)
		Stability (days)	
Milk	73-79	79*	R-4113 (45649906)
Muscle	51-56	56#	R-4113 (45649906)
Fat	49-54	54#	R-4113 (45649906)
Liver	53	53^	R-4113 (45649906)
Kidney	55	53^	R-4113 (45649906)

Table 167 Summary storage stability in animal commodities

* Fenpyroximate, Fen-ON, M-21

Fenpyroximate, Fen-OH, M-3

^ Fenpyroximate, N-desmethyl-M-3, M-3, M-22

The combined residues of fenpyroximate and M-1 were found to be stable in all commodities tested. Thus there are no storage stability issues or corrections which need to be applied to any of the magnitude of residue studies.

USE PATTERN

Fenpyroximate has been registered many countries to control mites in many crops. The information available to the Meeting on registered uses is summarized in table.

Crop	Country	Formula	tion	Applicatio	n				PHI	remarks
		g	type	Method	Rate (g	g	Water	No	(days)	
		a.s./L			ai/ha)	ai./hL	(L/ha)			
Citrus fruit (Group 001)									
Citrus	Japan	50	SC	Foliar	-	2.5–5	2 000–7	2	14	
				spray			000			
	USA	50	EC	Foliar	117–234	12.5-	935–1,870	2	14	
				spray		25				
	Brazil	50	SC	Foliar	50-120	5	1 000-	3	15	
				spray			2,400			
	Chile	50	SC	Foliar	-	2.5		1	14	

Table 168 Registered uses of fenpyroximate

Fenpyroximate

Crop	Country	Formula	tion	Applicatio	n		PHI	remarks		
		g	type	Method	Rate (g	g	Water	No	(days)	
		a.s./L			ai/ha)	ai./hL	(L/ha)			
				spray						
	Greece	53.4	SC	Foliar	80–159	4-5.3	2 000-3	1	14	
	Deutropal	52	SC	spray	52 00	52.0	1000	1	14	
	Portugal	55	SC	spray	53-80	5.3-8	1000	1	14	
	Spain	50	SC	Foliar	51.2-	5.1-	1 000–2	1	14	
				spray	102.4	10.2	000			
Pome truit (C	Austria	51.3	SC	Folior	20.4	51	400 1 600	1	14	1
Appies	Austria	51.5	sc	spray	20.4– 81.6	5.1	400–1,000	1	14	
	Australia	50	SC	Foliar spray	38-88	2.5–5.9	1,500	1		
	Japan	50	SC	Foliar	-	2.5–5	2 000–7	1	14	
	Brazil	50	SC	spray Foliar	50	5	000	1	15	
	Diazii	50	50	spray	50	5	1 000	1	15	
	Portugal	53	SC	Foliar spray	53-80	5.3-8	1 000	1	14	
	Greece	53.4	SC	Foliar	40–106	4–5	1 000–2	1	7	
	D 1 1	-		spray			000		_	
	Belgium	50	SC	Foliar spray	76.5	5.1	1,500	1		
	France	50	SC	Foliar	40–120	8	500-1,500	1	21	
	Germany	51.2	SC	spray Foliar	38.4	8	500-1,500	1	21	
	Daland	50	50	spray	50 75	7 15	500 750	2	7	
	Poland	50	SC	spray	30-75	/-15	500-750	2	/	
	Slovakia	50	SC	Foliar	50-62.5	5.1-	600-1 000	1	21	
Pears	Japan	50	SC	spray Foliar	-	0.25 2.5–5	2 000–7	1	7	
		50	EC	spray Foliar	117	12.5	000	1	14	
	USA	50	EC	spray	117	12.5	950	1	14	
	Portugal	53	SC	Foliar	53-80	5.3-8	1 000	1	14	
	Belgium	50	SC	Foliar	76.5	5	1,500	1	7	
	Germany	51.2	SC	spray Foliar	38.4-115	7.68	500-1.500	1	21	
		0112	50	spray	2011 112	,	200 1,200	-		
	Hungary	50	SC	Foliar sprav	35–50	4–5	400-2 000	1	4	
	Poland	50	SC	Foliar	50	7–10	500-750	1	7	
				spray						
Stone fruits (Group 003)	50	EC	E 1	117	1		2	7	
Cherries	USA	50	EU	spray	11/	-	-	2	/	
Peaches and	USA	50	EC	Foliar	117	-	-	2	7	
apricots	Europe	50	SC	spray Foliar	102.4	6.4	1600	1	14	
	(NEU)			spray	-					
	(Francs)	50	SC	Folior	51 2 76 9	10 12 5	1.000	1	14	
	Spann	50	50	spray	51.2-70.0	10-12.3	1,600	1		
	France	50	SC	Foliar	102.4	6.4	1600	1	14	
Plums	USA	50	EC	Foliar	117	-	-	2	7	
	Furone	513	SC	spray Foliar	38 4_ 115	7.68	500-	1	21	
	(Germany)	51.5	50	spray	50. 1 -115	7.00	1,500	1	21	
Small fruits (O	Group 004)									

Crop	Country	Formula	tion	Application					PHI	remarks
		g a.s./L	type	Method	Rate (g ai/ha)	g ai./hL	Water (L/ha)	No	(days)	
Grapes	USA	50	EC	Foliar sprav	117	25	468	2	14	
	Europe (NEU) (Germany)	51.3	SC	Foliar spray	123	7.7– 30.8	400– 1,600	1	35	From EU Art 12 (2016)
	Europe (SEU) (Spain)	53	SC	Foliar spray	50	5.1	1 000- 1500	1	28	From EU Art 12 (2016)
	Japan	50	SC	Foliar spray	-	2.5-5	2 000–7 000	1	14	
Raspberries	USA	50	EC	Foliar spray	117	50	234	2	1	
	Europe (Austria)	51.2	SC	Foliar spray	76.5	-	-	1	14	From EU Art 12 (2016)
Strawberries	USA	50	EC	Foliar spray	117	50	234	2	1	
	Europe (Germany, Austria)	51.2	SC	Foliar spray	102	10.2	1 000	1	7	From EU Art 12 (2016)
Assorted fruit	s inedible peel	(Group 0	06)							- -
Avocados	USA	50	EC	Foliar spray	117	25	468	2	1	
Papaya	Brazil	50	SC	Foliar spray	40	3.75–5	800	3	3	
Fruiting veget	ables edible pe	el (Group	011)							
Cucumber/co urgette	USA	50	EC	Foliar spray	117	31.2	374	2	1	
	Germany	51.2	SC	Foliar spray	46–92	7.68	600– 1,200	1	3	
	Poland	50	SC	Foliar spray	15-100	0.75–33	300–2 000	2	3	
	Italy	51.3	SC	Foliar spray	-	7.7– 10.3	-	1	14	
	Europe (NEU) (Germany)	50	SC	Foliar spray	46–92	7.68	600– 1,200	1	3	From EU Art 12 (2016)
	Japan	50	SC	Foliar spray	-	2.5	1,500–3 000	3	1	
Fruiting veget	ables inedible	peel (Grou	up 011)							-
Melon	USA	50	EC	Foliar spray	117	62.5	187	2	3	
	Japan	50	SC	Foliar spray	-	2.5-5	1,500–3 000	3	1	
Cantaloupe	USA	50	EC	Foliar spray	117	62.5	187	2	3	
	Japan	50	SC	Foliar spray		2.5-5	1,500–3 000	3	1	
Watermelon	USA	50	EC	Foliar spray	117	62.5	187	2	3	
	Japan	50	SC	Foliar spray	-	2.5-5	1,500–3 000	3	1	
Fruiting veget	ables other that	an cucurbi	its (Grou	ıp 012)						
Peppers	USA	50	EC	Foliar spray	117	62.5	187	2	1	
	Italy	51.3	SC	Foliar spray	61.6–103	7.7– 10.3	800–1 000	1	14	
	Romania	50	SC	Foliar spray	51	5.1	1 000	1	1	
	Europe (Italy)	51.2	SC	Foliar spray	102	-	-	1	14	From EU Art 12 (2016)
Tomatoes	USA	50	EC	Foliar	117	62.5	187	2	1	

Crop	Country Formulation Application								PHI	remarks
-		g	type	Method	Rate (g	g	Water	No	(days)	
		a.s./L			ai/ha)	ai./hL	(L/ha)			
				spray						
	Poland	50	SC	Spray	15-100	0.75–33	300–2 000	2	3	
	Romania	50	SC	Foliar spray	51	5.1	1 000	2	1	
	Italy	51.3	SC	Spray	61.6–103	7.7– 10.3	800–1 000	1	14	
	Spain	50	SC	Foliar spray	51-102	5.1– 10.2	1 000	1	3	
	Europe (south) (Spain)	50	SC	Foliar spray	76.8	7.68	1 000	1	7	From EU Art 12 (2016)
	Japan	50	SC	Foliar spray	-	2.5–5	1,500–3 000	3	1	
Sweet corn	USA	50	EC	Foliar spray	117	125	93.6	2	14	
	Europe	51.2	SC	Foliar spray	50	-	-	1	28	
Legume veget	ables (Group ()14)	•				•			
Beans	USA	50	EC	Foliar spray	117	42	280	2	1	
	Spain	50	SC	Foliar spray	102	5.1– 10.2	1 000	1	7	
Root and tube	er vegetables (Group 016)	11.2			•	1		1
Potatoes	USA	50	EC	Foliar spray	117	31.2	187	2	7	
Cereal grains	(Group 020)	1		-12		1		1	1	
Maize	USA	50	EC	Foliar spray	117	125	93.6	2	14	
	Europe	51.2	SC	Foliar sprav	50	-	-	1	28	
Nuts and seed	s (Group 022 a	and Group	024)	1 5				1		
Tree nuts	ÙSA	50	EC	Foliar spray	88–234	<6	-	2	14	
Coffee beans	Brazil	50	SC	Foliar sprav	50-100	-	-	2	15	
Herbs (Group	027)			11.2			•	1		1
Hops	Europe	51.3	SC	Foliar	76.8-	7.68	1 000-	1	21	
-	(Austria)	50	FG	spray	268.8	-	3,500	1	1.4	
	Japan	50	EC	spray	-	3	2 000-7	1	14	
Teas (Group 0	66)	•	•		•	•	•		•	•
Tea	Japan	50	SC	Foliar spray	-	1.7–5	2 000–10 000	2	7	
	India	50	SC	Foliar spray	25	-	-	1	7	

RESIDUES RESULTING FROM SUPERVISED TRIALS

Supervised trials have been conducted to support MRLs for fenpyroximate used as a pre-harvest applied acaricide in a wide range of fruit, root vegetable, cereals, oilseeds and other crops. The results of these supervised trials are summarized in the following table:

Table 169 summary of supervised tirals

Class	Commodity	Table
Citrus fruits	Lemon	170, 171
	Grapefruit	172

Fenpyroximate

10	95
----	----

Class	Commodity	Table
	Orange	173, 174, 175
	Mandarin	176, 177
	Chinese Citron	178
	Natsudaidai	179
	Tangor	180
	Yuzu orange	181
Pome fruits	Apple	182-186
	Pear	187
Stone Fruits	Cherries	188
	Peach	189
	apricot	190
	Plum	191
Berries and other small fruits	Grapes	191-195
	Raspberry	196
	Strawberry	5197, 198, 199
Assorted tropical and sub-tropical	Avocado	200
fruits-inedible peel	Рарауа	201
Fruiting vegetables,	Cucumber	202
Cucurbits, edible peel	Courgette	203
Fruiting vegetables,	Melon	204
Cucurbits, inedible peel	Cantaloupe	205
	Watermelon	206
Fruiting vegetables other than	Pepper	207
Cucurbits	Tomato	208, 209
	Sweet corn	210
Legume vegetables	Fresh beans with pods	210
Root and tuber vegetables	Potato	211
Cereal grain	Maize	212, 213
Nuts and seeds	Almond	214
	Walnut	215
	Pecan	216
Coffee	Coffee	217
Herbs	Hops	218
Teas	Tea	219
Animal feed	Bean forage	220
	Maize forage and stover	221
	Maize silage	222
	Almond hull	223

Fenpyroximate

In many trials, especially those conducted in the USA, duplicate or multiple field samples from replicate plots were taken at each sampling period and were analysed separately, individuals and mean of these analytical results was presented. When residues were not quantifiable they are shown as below the LOQ (e.g. < 0.01 mg/kg). In some instances, residues have been determined to be below the limit of detection (LOD), in which case the notation 'ND' (Not Detected) is used. Residues, application rates and spray concentrations have generally been rounded to two significant figures or, for residues near the LOQ, to one significant figure so as not to represent spuriously high precision. Control data are not reported in the summary tables unless residues in control samples exceeded the LOQ. Results have not been corrected for concurrent method recoveries unless indicated. Data used in estimation of MRL, HR and STMR values are underlined in the residue trials summary tables. Where higher residue values occurred at longer PHIs than the GAP, these higher values have been underlined and used in the estimation.

Citrus fruits

Lemon

Table 170 Residues in Lemons (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% SC or EC

Lemons	Application			DALA		Residues (mg	y/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha) (GPA)	No	(days)	Commod ity	Fenpyroxim ate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
Trial: AZ Maricopa, AZ, USA, 1994-1995 (Limonera)	235.2 + 246.4 14 day interval	4440 4710	2	14	Whole fruit	0.171,0.132 0.152	< 0.008, < 0.008	0.179,0.140 <u>0.160</u>	Report: R-4107 Study: AA940422 (EC)
Trial: CA1 Tulare, CA, USA, 1994-1995 (Pryor)	246.4 + 257.6 14 day interval	4794 4913	2	14	Whole fruit	0.116,0.228 <u>0.172</u>	< 0.008, < 0.008	0.124,0.230 <u>0.180</u>	Report: R-4107 Study: AA940422 (EC)
Trial: CA2 Kern, CA, USA, 1994-1995 (Lisbon)	246.4 + 257.6 14 day interval	4654 4704	2	14	Whole fruit	0.142,0.214 <u>0.178</u>	< 0.008, < 0.008	0.150,0.222 <u>0.186</u>	Report: R-4107 Study: AA940422 (EC)
Trial: 01-418-07 Porterville, CA, USA, 2001 (Prior)	448.1	2092	1	14	Whole fruit	ND, 0.092, 0. 0.097 (sum of fenpyroximat	Report: R-4156 Study: GR01- 418 (EC)		
Trial: 01-418-08 Stuart, FL, USA, 2001 (Bearss)	448.1	1474	1	14	Whole fruit	ND, 0.139, 0. 0.124 (sum of fenpyroximat	.109 f e + M-1)		Report: R-4156 Study: GR01- 418 (EC)
Trial: 860.1500- 08-520-01C-07 Porterville, CA	224 + 225.1 14 day interval	1468 1405	2	14	Fruit	0.010	0.167	0.177	Report: R-4446 Study: 1872W (EC)
USA, 2009 (Pryor)	230.7+ 222.9 14 day interval	1468 1405	2	14	Fruit	0.017	0.179	<u>0.196</u>	Report: R-4446 Study: 1872W (SC)
Trial: TCI-13- 374-19	231.1 + 228.5 14 day interval	729 711	2	3	Fruit	0.251,0.314 0.283	0.0550,0.0732 0.064	0.306,0.3872 0.347	Report: R-4484 Study: TCI-13-
USA, 2013 (Bearss)	225 + 226 14 day interval	1412 1421	2	3	Fruit	0.211,0.202 0.207	0.0584,0.0511 0.055	0.2694,0.2531 0.262	374 (EC)

Lemons	Application		DALA		Residues (mg					
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha) (GPA)	No	(days)	Commod ity	Fenpyroxim ate	M-1 Sum of fenpyroximat e and M-1		Reference & Comments	
Trial: TCI-13- 374-20 Fillmore, CA, USA, 2013 (Allen/Mac)	226.3 + 224 13 day interval	720 711	2	3	Fruit	0.348,0.300 0.324	0.0750,0.0725 0.074	0.423,0.3725 0.398	Report: R-4484 Study: TCI-13- 374 (EC)	
Trial: TCI-13- 374-21 Somis, CA, USA, 2013 (Eureka)	221.8 + 222.9 14 day interval	2992 2992	2	3	Fruit	0.306,0.302 0.304	0.0624,0.0622 0.062	0.3684,0.3642 0.366	Report: R-4484 Study: TCI-13- 374 (EC)	
Trial: TCI-13- 374-22 Porterville, CA, USA, 2013 (Pryor)	224 + 225.1 14 day interval	795 795	2	3	Fruit	0.316,0.278 0.297	0.0468,0.0443 0.046	0.3628,0.3222 0.343	Report: R-4484 Study: TCI-13- 374 (EC)	
Trial: TCI-13- 374-23 Richgrove, CA, USA, 2013 (Lisbon)	222.9 + 224 14 day interval	1898 1898	2	3	Fruit	0.284,0.215 0.250	0.0215,0.0176 0.020	0.3055,0.2326 0.27	Report: R-4484 Study: TCI-13- 374 (EC)	

Table 171 Residues in Lemons (outdoor trails) from supervised trials in EU involving foliar applications of Fenpyroximate 5% SC $\,$

Lemons	Application			DALA		Residues (mg/kg)				
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments	
Trial: - Lamezia Terme, Italy, 1990 (Ineapucciato)	120	1600 1600	2	21 95 145 21 95 145 21 95 145	Fruit peel Fruit peel Juice Juice Juice Whole fruit* Whole fruit* Whole fruit*	$\begin{array}{c} 0.18\\ 0.12\\ 0.13\\ 0.04\\ < 0.01\\ < 0.01\\ 0.082\\ 0.043\\ 0.046 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.01 < 0.01 < 0.01 0.022 0.022 0.022	$\begin{array}{c} 0.23 \\ 0.17 \\ 0.18 \\ 0.05 \\ < 0.02 \\ < 0.02 \\ 0.104 \\ 0.065 \\ 0.068 \end{array}$	Report: R- 4080 Study: A50252	
Trial: - Lamezia Terme,Italy, 1990 (S. Teresa)	120	1600 1600	2	21 95 145 21 95 145 21 95 145	Fruit peel Fruit peel Juice Juice Juice Whole fruit* Whole fruit* Whole fruit*	$\begin{array}{c} 0.16\\ 0.09\\ 0.10\\ 0.02\\ < 0.01\\ < 0.01\\ 0.062\\ 0.034\\ 0.037 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 0.022 0.0	$\begin{array}{c} 0.21 \\ 0.14 \\ 0.15 \\ 0.03 \\ < 0.02 \\ < 0.02 \\ 0.084 \\ 0.056 \\ 0.059 \end{array}$	Report: R- 4081 Study: A50253	
Trial: - Palicoro, Italy, 1990 (Monachello)	240	1600 1600	2	21 81 132 21 81 132 21 81 132 132	Fruit peel Fruit peel Juice Juice Juice Whole fruit* Whole fruit* Whole fruit*	$\begin{array}{c} 0.45\\ 0.47\\ 0.22\\ 0.03\\ < 0.01\\ < 0.01\\ 0.156\\ 0.148\\ 0.073 \end{array}$	<0.05 <0.05 <0.05 <0.01 <0.01 <0.01 0.022 0.022 0.022	0.50 0.52 0.27 0.04 < 0.02 < 0.02 0.178 0.17 0.095	Report: R- 4082 Study: A50254	

Lemons	Application			DALA		Residues (mg/kg)			
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
Trial: - Lamezia Terme, Italy, 1990 (Ineapucciato)	240	1600 1600	2	21 95 145 21 95 145 21 95 145	Fruit peel Fruit peel Juice Juice Juice Whole fruit* Whole fruit* Whole fruit*	0.28 0.37 0.19 0.04 < 0.01 < 0.01 0.112 0.118 0.064	< 0.05 < 0.05 < 0.05 < 0.01 < 0.01 < 0.01 0.022 0.022 0.022 0.022	$\begin{array}{c} 0.33 \\ 0.42 \\ 0.24 \\ 0.05 \\ < 0.02 \\ < 0.02 \\ 0.134 \\ 0.14 \\ 0.086 \end{array}$	Report: R- 4083 Study: A50255
Trial: - Lamezia Terme, Italy, 1990 (S. Teresa)	240	1600 1600	2	21 95 145 21 95 145 21 95 145	Fruit peel Fruit peel Juice Juice Whole fruit* Whole fruit*	$\begin{array}{c} 0.29\\ 0.32\\ 0.27\\ 0.01\\ < 0.01\\ < 0.01\\ 0.094\\ 0.103\\ 0.088 \end{array}$	< 0.05 < 0.05 < 0.05 - < 0.01 < 0.01 0.022 0.022 0.022	$\begin{array}{c} 0.34\\ 0.37\\ 0.32\\ 0.01\\ < 0.02\\ < 0.02\\ 0.116\\ 0.125\\ 0.11\\ \end{array}$	Report: R- 4084 Study: A50256

Grapefruit

Table 172 Residues in Grapefruits (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% SC or 5% EC

Grapefruits	Application			DALA		Residues (mg/kg)			
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha) (GPA)	No.	(days)	Commodity	Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Reference & Comments
Trial: 860.1500- 08-520-01D-05 Hoines City, FL	222.9 + 226.3 14 day interval	772 770	2	14	Fruit	0.017	0.053	0.07	Report: R-4446 Study: 1872W (EC)
USA, 2009 (Ruby Red)	224 + 225.1 14 day interval	772 770	2	14	Fruit	<u>< 0.01</u>	0.076	0.077	Report: R-4446 Study: 1872W (SC)
Trial: CA5 Tulare, FL, USA, 1994-1995 (Mello Gold)	246.4 + 246.4 14 day interval	4692 4723	2	14	Whole fruit	0.057, 0.088 0 <u>.073</u>	< 0.008	<u>0.065, 0.096</u> 	Report: R-4107 Study: AA940422 (SC)
Trial: FL3 Palm Beach, FL, USA, 1994-1995 (White Marsh)	246.4 + 246.4 14 day interval	4621 4621	2	14	Whole fruit	0.015, 0.019 <u>0.017</u>	< 0.008, < 0.008	0.023,0.027 0.025	Report: R-4107 Study: AA940422 (SC)
Trial: TX1 Willacy, TX, USA, 1994-1995 (White Marsh)	246.4 + 246.4 14 day interval	4719 4704	2	14	Whole fruit	0.039, 0.039 <u>0.039</u>	< 0.008	0.047,0.047 0.047	Report: R-4107 Study: AA940422 (SC)
Trial: 01-418-09 Loxahatchee, FL, USA, 2001 (White Marsh)	448.1	1298	1	14	Whole fruit	ND, 0.166, 0.18 0.176(sum of fe	36 enpyroxim	ate + M-1)	Report: R-4156 Study: GR01-418 (EC)
Trial: 01-418-10 Myakka City, FL, USA, 2001 (Ruby Red)	448.1	2254	1	14	Whole fruit	ND, 0.085, 0.11 0.102(sum of fe	18 enpyroxim	ate + M-1)	Report: R-4156 Study: GR01-418 (EC)

Grapefruits	Application			DALA		Residues (mg/kg)				
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha) (GPA)	No.	(days)	Commodity	Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Reference & Comments	
Trial: 01-418-11 Yuma, AZ, USA, 2001 (Rio Red)	459.3	1257	1	14	Whole fruit	ND, 0.065, 0.05 0.058(sum of fe	51 enpyroxim	ate + M-1)	Report: R-4156 Study: GR01-418 (EC)	
Trial: TCI-13- 374-13 Clermont, FL USA, 2013	226.3 + 225.1 13 day interval	720 711	2	3	Fruit	0.258, 0.149 0.204	0.0514, 0.0334	0.3094, 0.1754 0.246	Report: R-4484 Study: TCI-13- 374 (EC)	
(Ray)						0.201	0.042	0.2.10	(EC)	
Trial: TCI-13- 374-14 Oviedo, FL, USA,	219.5 + 224 13 day	1384 1412	2	3	Fruit	0.180, 0.125	0.0531, 0.0331	0.2331, 0.1581	Report: R-4484 Study: TCI-13-	
2013 (Ray)	interval	1412				0.153	0.043	0.196	(EC)	
Trial: TCI-13- 374-15 Holopaw, FL,	226.3 + 228.5 12 day	720	2	3	Fruit	0.275, 0.201	0.0474, 0.0309	0.3224, 0.2319	Report: R-4484 Study: TCI-13-	
USA, 2013 (White Marsh)	interval	720				0.238	0.039	0.277	(EC)	
Trial: TCI-13-	225.1 + 227.4 12 day	720 729	2	3	Fruit	0.0526, 0.0554	< 0.01	0.0527, 0.0555	Report: R-4484	
374-16 Raymondville,	interval					0.054		0.055	Study: TCI-13- 374	
TX, USA, 2013 (Rio Red)	227.4 + 227.4 12 day	2403	2	3	Fruit	0.104, 0.0996	0.0120, 0.0118	0.116, 0.1114	(EC)	
	interval	2403	_	0		0.102	0.012	0.114		
Trial: TCI-13- 374-17 Starthmore, CA,	227.4 + 224 14 day	1954	2	4	Fruit	0.151, 0.151	0.0247, 0.0288	0.1757, 0.1798	Report: R-4484 Study: TCI-13-	
USA, 2013 (Melogold)	interval	1907				0.151	0.027	0.178	374 (EC)	
Trial: TCI-13- 374-18 Porterville, CA,	225.1 + 225.1 14 day	729	2	2	Fruit	0.168, 0.0975	0.0167, < 0.01	0.1847, 0.1075	Report: R-4484 Study: TCI-13-	
USA, 2013 (Melogold)	interval	/11			Fruit 0.133		0.013	0.146	374 (EC)	

Oranges

Table 173 Residues in Oranges (outdoor trails) from supervised trials in EU and USA involving foliar applications (once) of Fenpyroximate 5% SC or 5% EC

Trial Location (Q ai/ha) Water (L/ha) No. (L/ha) No. (L/ha) No. (dwys) Represent (a) Mol male Mol male Mol male Mol male Comments (male Comments (male Trial: Palea Epidavros Argolida, Greece, 1992 154.5 3000 1 0 Pulp < 0.01 < 0.02 Report: R- 4144 Valencia) 16 Pulp < 0.01 < 0.02 Study: on to 354913 1992 Control 0.01 < 0.02 Study: on to 354913 < 0.01 < 0.02 Study: on to 354913 Valencia) 2 Pulp < 0.01 < 0.01 < 0.02 Study: on to 3549 Valencia) 2 Pulp < 0.01 < 0.01 < 0.02 Study: on to 3549 Valencia) 9 Pecil 0.37 < 0.01 0.14 2 Pulp 0.18 < 0.01 0.14 3 0 0 Whole fruit* 0.04 0.01 192 3000 1	Oranges	Application			DALA	Commodity	Residues (m	ng/kg)		Reference &
Location (Quinty year) (L/ha) nate nate Yales Epidavros Argolida, Greece, (Valety) 154.5 3000 1 0 Pulp <0.01	Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1		Comments
Country year (Variety) Isd. 5 3000 1 0 Pulap < 0.01 < 0.02 Report: R- 4144 Palca Epidavnos Aragolida, Greece, 1992 154.5 3000 1 0 Pulap < 0.01	Location	(g ai/ha)	(L/ha)		· • /		mate			
(Variety) Ist.5 300 1 0 Pulp < 0.01 < 0.02 Report: R- 4144 Palea Epidavros Argolida, Greece, 1992 154.5 3000 1 0 Pulp < 0.01	Country,year	ũ ,	` ´ ´							
Trial: Palea Frjadvros Argolida, Greece, [992] 154.5 3000 1 0 Pulp <0.01 <0.02 <0.02 Attaly Attaly not to 2 [192] Pulp <0.01	(Variety)									
Palea Epidavrose Argolida, Greece, 1992 Palea Margolida, Greece, 1992 Palea	Trial:	154.5	3000	1	0	Pulp	< 0.01	< 0.01	< 0.02	Report: R-
Argolida, Greece, 1992. 9 Puip < 0.01	Palea Epidavros				2	Pulp	< 0.01	< 0.01	< 0.02	4144
1952 16 Puip < 0.01	Argolida, Greece,				9	Pulp	< 0.01	< 0.01	< 0.02	Study:
(Yalencia) 22 Puip < 0.01	1992				16	Pulp	< 0.01	< 0.01	< 0.02	A50413
rial: 309 3000 1 28 Pulp <0.01	(Valencia)				22	Pulp	< 0.01	< 0.01	< 0.02	Study not to
Image: second state 0 Peel 0.35 < 0.01					28	Pulp	< 0.01	< 0.01	< 0.02	GLP
initial initinitial initinitinitial initinitial initial initial initial initial					0	Peel	0.35	< 0.01	0.36	* calculated
intermediate 9 Peel 0.3 < 0.01					2	Peel	0.37	< 0.01	0.38	value
iiiii: iiii: iii: iii: ii:: ii:: ii:: ii:: ii:: ii:: ii:: ii:: ii:: i::					9	Peel	0.3	< 0.01	0.31	
Image: second state in the second state in					16	Peel	0.26	< 0.01	0.27	
Image: space of the system of the s					22	Peel	0.13	< 0.01	0.14	
Image: second state in the image: second state in th					28	Peel	0.18	< 0.01	0.19	
Image: second state in the image: second state in th					0	Whole fruit*	0.112	< 0.01	0.122	
Image: Section of the sectio					2	Whole fruit*	0.118	< 0.01	0.128	
Image: second state Image: second state Image: second state					9	Whole fruit*	0.097	< 0.01	0.107	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					16	Whole fruit*	0.085	< 0.01	0.095	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					22	Whole fruit*	0.046	< 0.01	0.056	
Trial: 309 3000 1 0 Pulp < 0.01 < 0.01 < 0.02 Report: R- 4145 Palea Epidavos Argolida, Greece, 1992 9 Pulp < 0.01					28	Whole fruit*	0.061	< 0.01	0.071	
Palea Epidavros 2 Pulp < 0.01	Trial:	309	3000	1	0	Pulp	< 0.01	< 0.01	< 0.02	Report: R-
Argolida, Greece, 1992 9 Pulp < 0.01	Palea Epidavros				2	Pulp	< 0.01	< 0.01	< 0.02	4145
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Argolida, Greece,				9	Pulp	< 0.01	< 0.01	< 0.02	Study:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1992				16	Pulp	< 0.01	< 0.01	< 0.02	A50414
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					22	Pulp	< 0.01	< 0.01	< 0.02	Study not to
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					28	Pulp	< 0.01	< 0.01	< 0.02	GLP
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$					0	Peel	0.31	< 0.01	0.32	* calculated
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$					2	Peel	0.28	< 0.01	0.29	value
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					9	Peel	0.19	< 0.01	0.20	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					16	Peel	0.24	< 0.01	0.25	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					22	Peel	0.19	< 0.01	0.20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					28	Peel	0.23	< 0.01	0.24	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0	Whole fruit*	0.100	< 0.01	0.110	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					2	Whole fruit*	0.091	< 0.01	0.101	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					9	Whole fruit*	0.064	< 0.01	0.074	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					16	Whole fruit*	0.079	< 0.01	0.089	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					22	Whole fruit*	0.064	< 0.01	0.074	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					28	Whole fruit*	0.076	< 0.01	0.086	
							0.247	< 0.01	0.257	
01 Miro 14 Peel 0.18 - 0.18 4108 Lepe, Spain, 1998 145 2007 1 14 Whole fruit 0.05 - 0.05 Study: (Salustiano) 145 2007 1 14 Pulp <0.01	Trial: NNH/092-	144	2001	1	14	Pulp	< 0.01	-	< 0.01	Report: R-
Lepe, Spain, 1998 (Salustiano)14Whole fruit 0.05 - 0.05 Study: (Sulustiano)145 Kendo2007 Kendo114Pulp < 0.01 - < 0.01 NHH092/983Trial: NNH/092- 02 Cantillana, Spain, 19981442006 1114Pulp PeelND-NDReport: R-02 (Valencia Late)1442004 144114Pulp Peel0.16-0.164108(Valencia Late)1442004 144114Pulp Peel-0.04Study:1998 (Valencia Late)1012000 30130Pulp PulpND-NDReport: R-03 Miro1012000 30130Pulp PulpND-NDReport: R-03 (Statnia-1012000 30130Pulp S0ND-NDNH092/983Italy, 1998 (Tarocco Comune)1012000130Pulp S0ND-NDNHH092/983Italy, 1998 (Tarocco Comune)1012000130Pulp S0ND-NDNHH092/983101 (Tarocco Comune)1012000130PulpND-NDNHH092/983101 (Tarocco Comune)1012000130PulpND-NDNHH092/983101 (Tarocco Comune)1012000130PulpND </td <td>01</td> <td>Miro</td> <td></td> <td></td> <td>14</td> <td>Peel</td> <td>0.18</td> <td>-</td> <td>0.18</td> <td>4108</td>	01	Miro			14	Peel	0.18	-	0.18	4108
	Lepe, Spain, 1998				14	Whole fruit	0.05	-	0.05	Study:
Kendo14Peel 0.16 - 0.16 2/4Trial: NNH/092- 021442006114PulpND-NDReport: R-02Miro14Peel 0.16 - 0.16 4108Cantillana, Spain, 19981442004114PulpND-0.04Study: 19981442004114Pulp< 0.01	(Salustiano)	145	2007	1	14	Pulp	< 0.01	-	< 0.01	NHH092/983
Trial: NNH/092- 021442006114PulpND-NDReport: R-02Miro14Peel0.16-0.164108Cantillana, Spain, 19981442004114Pulp<0.01		Kendo			14	Peel	0.16	-	0.16	274
Irial: NNH/092- 02Miro2006II4PulpND-NDReport: R- 410802MiroI4Peel0.16-0.164108Cantillana, Spain, 19981442004II4Pulp<0.01	T: 1) DUL(002	1.4.4	2007	1	14	Whole fruit	0.05	-	0.05	D (D
02 Miro 14 Peel 0.16 - 0.16 4108 Cantillana, Spain, 14 Whole fruit 0.04 - 0.04 Study: 1998 144 2004 1 14 Pulp < 0.01	1 rial: NNH/092-	144	2006	1	14	Puip	ND 0.16	-	ND 0.16	Keport: K-
Califinata, Span, 19981442004114Pulp< 0.04-0.04Study.19981442004114Pulp< 0.01	02 Contillono Spoin	MIIO			14	Vibala fruit	0.10	-	0.10	4100 Studie
1998 144 2004 1 14 Pulp < 0.01 $ < 0.01$ $< 1011092/983$ (Valencia Late) Kendo 14 Peel 0.18 - 0.18 274 Trial: NNH/092- 101 2000 1 30 Pulp ND - ND Report: R- 03 Miro 30 Peel 0.13 - 0.13 4108 Catania- 30 Whole fruit 0.04 - 0.04 Study: Misterbianco, 101 2000 1 30 Pulp ND - ND NHH092/983 Italy, 1998 Kendo 30 Peel 0.12 - 0.12 274 (Tarocco Comune) 30 Whole fruit 0.04 - 0.04 -	1008	144	2004	1	14	Whole Hult	0.04	-	0.04	Suudy. NHH002/083
Image: Constraint of the sector of	(Valencia Late)	144 Kanda	2004	1	14	r uip Dool	< 0.01	-	< 0.01 0.18	274
Trial: NNH/092- 101 2000 1 30 Pulp ND - ND Report: R- 03 Miro 30 Peel 0.13 - 0.13 4108 Catania- 30 Whole fruit 0.04 - 0.04 Study: Misterbianco, 101 2000 1 30 Pulp ND - ND NHH092/983 Italy, 1998 Kendo 30 Peel 0.12 - 0.12 274	(Valencia Late)	Kelluo			14 1/	Whole fruit	0.18	_	0.18	274
Mino 101 2000 1 30 Peel 0.13 - 0.13 4108 Catania- 30 Whole fruit 0.04 - 0.04 Study: Misterbianco, 101 2000 1 30 Pulp ND - ND NHH092/983 Italy, 1998 Kendo 30 Peel 0.12 - 0.12 274	Trial NNH/002	101	2000	1	30	Puln	ND	-	ND	Report: R-
Catania- International Internation International International </td <td>03</td> <td>Miro</td> <td>2000</td> <td>1</td> <td>30</td> <td>Peel</td> <td>0.13</td> <td>_</td> <td>0.13</td> <td>4108</td>	03	Miro	2000	1	30	Peel	0.13	_	0.13	4108
Misterbianco, 101 2000 1 30 Pulp ND - ND NHH092/983 Italy, 1998 Kendo 30 Peel 0.12 - 0.12 274 (Tarocco Comune) 30 Whole fruit 0.04 - 0.04 -	Catania_	141110			30	Whole fruit	0.04	_	0.04	Study
Italy, 1998Kendo 30 Peel 0.12 $ 0.12$ 274 (Tarocco Comune) 30 Whole fruit 0.04 $ 0.04$	Misterbianco	101	2000	1	30	Puln	ND	-	ND	NHH092/983
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Italy, 1998	Kendo	2000	1	30	Peel	0.12	_	0.12	2.74
	(Tarocco Comune)				30	Whole fruit	0.04	-	0.04	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Initial Location Country,year (Variety) (L/ha) Initial (L/ha) Initia (L/ha) Initial (L/ha)
$ \begin{array}{c ccccc} Country, year \\ (Variety) \\ \hline Trial: NNH/092- \\ 04 \\ Palagonia, Italy, \\ 1998 \\ (Tarocco Comune) \\ Kendo \\ \hline Kendo \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
(Variety) IOI 2000 I 31 Pulp < 0.01 - < 0.01 Report: R 04 Miro 31 Peel 0.13 - 0.13 4108 Palagonia, Italy, 101 2000 1 31 Pulp < 0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
04Miro 31 Peel 0.13 0.13 4108 Palagonia, Italy, 1998 101 2000 1 31 Pulp 0.04 $ 0.04$ Study: 1998 101 2000 1 31 Pulp < 0.01 $ < 0.01$ NHH092/ $(Tarocco Comune)$ Kendo 31 Pulp < 0.01 $ < 0.01$ NHH092/ 31 Whole fruit 0.04 $ 0.04$ < 0.01
Palagonia, Italy, Image 31 Whole fruit 0.04 - 0.04 Study: 1998 101 2000 1 31 Pulp < 0.01
1998 101 2000 1 31 Pulp < 0.01 - < 0.01 NHH092/ (Tarocco Comune) Kendo 31 Peel 0.11 - 0.11 274 31 Whole fruit 0.04 - 0.04 - 0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
31 Whole fruit 0.04 - 0.04
Trial: SO9-02401- 106.3 1557 1 0 Pulp < 0.01 < 0.01 < 0.02 Report: R
01 3 Pulp $< 0.01 < 0.02 4430$
Villanueva 7 Pulp < 0.01 < 0.02 Study: SC
Castellon, 10 Pulp < 0.01 < 0.02 02401
Valencia, Spain, 14 Pulp < 0.01 < 0.02 * calculat
2009 0 Peel 0.10 < 0.01 0.11 value
(Citrus sinensis) 3 Peel 0.14 < 0.01 0.15
7 Peel 0.11 <0.01 0.12
10 Peel 0.14 <0.01 0.15
14 Peel 0.11 <0.01 0.12
0 Whole fruit* 0.037 < 0.01 0.047
3 Whole fruit* 0.049 < 0.01 0.059
7 Whole fruit* 0.040 < 0.01 0.050
10 Whole fruit* 0.049 < 0.01 0.059
14 Whole fruit* 0.040 < 0.01 0.050
Trial: SO9-02401- 103.5 1516 1 0 Pulp 0.01 <0.01 Report: R
02 0 0 Peel < 0.01 < 0.02 4430
Picassent, 14 Pulp 0.29 < 0.01 0.30 Study: SC
Valencia, Spain, 14 Peel 0.20 < 0.01 0.21 02401
2010 14 Whole fruit* 0.094 < 0.01 0.104 * calculat
(Citrus sinensis)14Whole fruit* 0.067 < 0.01 0.077 value
Trial: SO9-02401- 105.8 1551 1 0 Pulp 0.01 < 0.01 0.02 Report: R
04 14 Pulp < 0.01 < 0.02 4430
Fondi, Latina, 0 Peel 0.20 < 0.01 0.21 Study: SC
Italy, 2009 14 Peel 0.12 < 0.01 0.13 02401
(Citrus sinensis) 0 Whole fruit* 0.067 < 0.01 0.077 $*$ calculat
14 Whole fruit* 0.043 < 0.01 0.053 value
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Fondi, Latina, 7 Pulp < 0.01 < 0.02 Study: SC
$\begin{bmatrix} 10 \\ -2000 \end{bmatrix} = \begin{bmatrix} 10 \\ -2000 \end{bmatrix} = \begin{bmatrix} 2000 \\ -2000 $
$\begin{bmatrix} \text{Citrus sinensis} \end{bmatrix} = \begin{bmatrix} 14 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 Peel $0.29 < 0.01 0.30$
7 Peel $0.20 < 0.01 = 0.12$
10 Pect $0.13 < 0.01$ 0.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14 Whole fruit* 0.058 < 0.01 = 0.050 = 0.010 = 0.050 = 0.0
IT INTOLETUR 0.000 0.01 0.000 Trial: \$10.02525_03.87 1375 1 0 Puln < 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 14 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 14 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 14 \\ 0.02 \\ 0.01 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.$
Sevilla Snain 14 Peel 0.17 < 0.01 0.24 Study. S1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(Navelina) 14 Whole fruit 0.05 < 0.01 0.06

Oranges	Application			DALA	Commodity	Residues (m	ig/kg)		Reference &
Trial	Rate	Water	No.	(davs)		Fenpyroxi	M-1		Comments
Location	(g ai/ha)	(L/ha)		() /		mate			
Country,year	ie ,	` ´							
(Variety)									
Trial: S10-02525-	98.13	1438	1	0	Pulp	< 0.01	< 0.01	< 0.02	Report: R-
02				3	Pulp	< 0.01	< 0.01	< 0.02	4450
Alcacer, Valencia,				7	Pulp	< 0.01	< 0.01	< 0.02	Study: S10-
Spain, 2010				10	Pulp	< 0.01	< 0.01	< 0.02	02525
(Navelate)				14	Pulp	< 0.01	< 0.01	< 0.02	
				0	Peel	0.24	< 0.01	0.25	
				3	Peel	0.18	< 0.01	0.19	
				7	Peel	0.16	< 0.01	0.17	
				10	Peel	0.15	< 0.01	0.16	
				14	Peel	0.21	< 0.01	0.22	
				0	Whole fruit	0.07	< 0.01	0.08	
				3	Whole fruit	0.05	< 0.01	0.06	
				/	Whole fruit	0.05	< 0.01	0.06	
				10	Whole fruit	0.03	< 0.01	0.00	
Trial: \$10,02525	102.61	1519	1	0	Whole Irult	0.00 < 0.01	< 0.01	0.07	Doport: D
03	105.01	1510	1	14	Puln	< 0.01	< 0.01	< 0.02	4450
Klamata				0	Peel	0.25	< 0.01	0.26	Study S10
Messinia Greece				14	Peel	0.09	< 0.01	0.10	02525
2010				0	Whole fruit	0.07	< 0.01	0.08	02020
(Navel)				14	Whole fruit	0.03	< 0.01	0.04	
Trial: S10-02525-	100.84	1477	1	0	Pulp	< 0.01	< 0.01	< 0.02	Report: R-
04				3	Pulp	< 0.01	< 0.01	< 0.02	4450
Piperitsa,				7	Pulp	< 0.01	< 0.01	< 0.02	Study: S10-
Messinia, Greece,				10	Pulp	< 0.01	< 0.01	< 0.02	02525
2010				14	Pulp	< 0.01	< 0.01	< 0.02	
(Navelina)				0	Peel	0.21	< 0.01	0.22	
				3	Peel	0.19	< 0.01	0.20	
				7	Peel	0.14	< 0.01	0.15	
				10	Peel	0.12	< 0.01	0.13	
				14	Peel	0.05	< 0.01	0.06	
				0	Whole fruit	0.07	< 0.01	0.08	
				3	Whole fruit	0.06	< 0.01	0.07	
				/	Whole fruit	0.04	< 0.01	0.05	
				10	Whole fruit	0.04	< 0.01	0.03	
Trial: 01 118 01	110 1	1600	1	0	Whole fruit	0.02 ND 0 154 0	< 0.01	0.03	Doport: D
Oviedo FL USA	440.1	1090	1	0 7	Whole fruit	ND 0 152 0	158 0155		A156
2001				14	Whole fruit	ND 0 146 0	109 0 128		Study:
(Navel				21	Whole frui	ND 0 133 0	112 0 123		GR01-418
				21	t	(sum of fent	vroximate +	M-1)	(EC)
Trial: 01-418-02	448.1	2251	1	14	Whole fruit	ND.0.133.0	113: 0.123	,	Report: R-
Myakka City, FL,						(sum of fent	yroximate +	M-1)	4156
USA, 2001	896.2	2254	1	0	Unwashed	ND,0.165,	0.165	,	Study:
(Pineapple)				0	fruit	ND,0.195,	0.195		GR01-418
				0	Washed fruit	ND, <loq,< td=""><td>< 0.02</td><td></td><td>(EC)</td></loq,<>	< 0.02		(EC)
				0	Juice	1.229,1.478	, 1.354		
				0	Dry pulp	ND,1.042,1	.132, 1.087		
					Oil	(sum offenp	yroximate +]	M-1)	
Trial: 01-418-03	436.9	2167	1	14	Whole fruit	ND,0.093,0.	.163,		Report: R-
Myakka City, FL,						0.128 (sum	offenpyroxim	ate + M-1)	4156
USA, 2001									Study:
(Navel)									GR01-418
T : 1 01 410 04	440.12	1.410	1	1.4	N71 1 C 1	0.212.0.211			(EC)
1rial: 01-418-04	448.12	1412	1	14	Whole fruit	0.313,0.311	· · · ·	-4- 134 1	Report: R-
Uviedo, FL, USA,						0.312(sum c)	of tenpyroxim	ate + M-1)	4130 Studen
2001 (Hamlin)									GP01 419
(mannin)									(FC)
	l	<u> </u>		<u> </u>		<u> </u>			

Oranges	Application			DALA	Commodity	Residues (m		Reference &	
Trial	Rate	Water	No.	(days)	-	Fenpyroxi	M-1		Comments
Location	(g ai/ha)	(L/ha)				mate			
Country,year									
(Variety)									
Trial: 01-418-05	448.12	1296	1	14	Whole fruit	ND,0.282,0.	.308		Report: R-
Loxahatchee, FL,						0.295(sum c	of fenpyroxim	ate + M-1)	4156
USA, 2001									Study:
(Hamlin)									GR01-418
									(EC)
Trial: 01-418-06	448.1	2367	1	14	Whole fruit	0.092,0.067			Report: R-
Taymondville,						0.080 (sum	of fenpyroxin	nate + M-1)	4156
TX, USA, 2001									Study:
(N-33)									GR01-418
									(EC)

Table 174 Residues in Oranges (outdoor trails) from supervised trials in EU and Brazil involving foliar applications (twice) of Fenpyroximate 5% SC $\,$

Oranges	Application			DALA	Commodity	Residues (m	ng/kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: Palagiano, Italy, 1990 (Naveline)	77 + 77 31d interval	1000 1000	2	21 64 113 21 64 113	Pulp Pulp Peel Peel Peel Whole fruit* Whole fruit* Whole fruit* * calculated value	0.05 < 0.05 < 0.05 < 0.05 0.38 = 0.39 = 0.35 = 0.149 = 0.152 = 0.14	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	$\begin{array}{l} 0.10 \\ < 0.10 \\ < 0.10 \\ 0.43 \\ 0.44 \\ 0.40 \\ 0.199 \\ 0.202 \\ 0.19 \end{array}$	Report: R- 4143 Study: A50245 Study not to GLP
Trial: Moncada, Spain, 1989 (Valenica Late)	149 + 160 34 day interval	5800 6200	2	1 7 13 30 44 65	Fruit Fruit Fruit Fruit Fruit Fruit	0.29 0.22 0.15 0.15 0.12 0.10	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.34 0.27 0.20 0.20 0.17 0.15	Report: R- 4029 Study: A48148 Study not to GLP
Trial: Moncada, Spain, 1989 (Valenica Late)	299 + 319 34 day interval	5800 6200	2	1 7 13 30 44 65	Fruit Fruit Fruit Fruit Fruit Fruit	0.46 0.41 0.25 0.23 0.20 0.21	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.51 0.46 0.30 0.28 0.25 0.26	Report: R- 4030 Study: A48149 Study not to GLP
Trial: Cosmopolis, Brazil, 1989-1990 (Pera Rio)	179 + 179 30 day interval	3570 3570	2	16 29 16 29 16 29	Pulp Pulp Peel Peel Whole fruit* Whole fruit* * calculated value	< 0.05 < 0.05 0.38 0.18 0.149 0.089	< 0.05 < 0.05 0.08 0.05 0.059 0.059	< 0.10 < 0.10 0.46 0.23 0.208 0.139	Report: R- 4073 Study: A45494 Study not to GLP
Trial: Cosmopolis, Brazil, 1989-1990 (Pera Rio)	357 + 357 30 day interval	3570 3570	2	16 29 16 29 16 29	Pulp Pulp Peel Peel Whole fruit* Whole fruit* * calculated value	0.08 < 0.05 0.79 0.59 0.293 0.212	< 0.05 < 0.05 0.215 0.13 0.010 0.074	0.13 < 0.10 1.005 0.72 0.303 0.286	Report: R- 4074 Study: A45495 Study not to GLP

Oranges	Application			DALA	Commodity	Residues (m	g/kg)		Reference &
Trial	Rate	Water	No.	(days)	-	Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)		× • •		mate		fenpyroximat	
Country,year	°,	、 <i>,</i>						e and M-1	
(Variety)									
Trial:	77 + 77	1000	2	21	Pulp	< 0.05	< 0.05	< 0.10	Report: R-
Palagiano, Italy,	31 day	1000		63	Pulp	< 0.05	< 0.05	< 0.10	4075
1990	interval			105	Pulp	< 0.05	< 0.05	< 0.10	Study:
(Washington				21	Peel	0.30	< 0.05	0.35	A50246
Navel)				63	Peel	0.26	< 0.05	0.31	Study not to
				105	Peel	0.36	< 0.05	0.41	GLP
				21	Whole fruit*	0.125	< 0.05	0.175	
				63	Whole fruit*	0.113	< 0.05	0.163	
				105	Whole fruit*	0.143	< 0.05	0.193	
					* calculated				
					value				
Trial:	77 + 77	1000	2	21	Pulp	0.06	< 0.05	0.11	Report: R-
Palagiano, Italy,	31 dav	1000		63	Pulp	< 0.05	< 0.05	< 0.10	4076.
1990	interval			84	Pulp	< 0.05	< 0.05	< 0.10	Study:
(Naveline)				21	Peel	0.54	< 0.05	0.59	A50247
()				63	Peel	0.53	< 0.05	0.58	Study not to
				84	Peel	0.40	< 0.05	0.45	GLP
				21	Whole fruit*	0.204	< 0.05	0.254	
				63	Whole fruit*	0.194	< 0.05	0.244	
				84	Whole fruit*	0.158	< 0.05	0.208	
					* calculated				
					value				
Trial:	155 + 155	1000	2	21	Pulp	0.08	< 0.05	0.13	Report: R-
Palagiano, Italy,	31 day	1000		64	Pulp	< 0.05	< 0.05	< 0.10	4077
1990	interval			113	Pulp	< 0.05	< 0.05	< 0.10	Study:
(Naveline)				21	Peel	0.73	0.05	0.78	A50248
()				64	Peel	0.77	< 0.05	0.82	Study not to
				113	Peel	0.62	< 0.05	0.67	GLP
				21	Whole fruit*	0.275	0.05	0.325	
				64	Whole fruit*	0.266	< 0.05	0.316	
				113	Whole fruit*	0.221	< 0.05	0.271	
					* calculated				
					value				
Trial:	155 + 155	1000	2	21	Pulp	< 0.05	< 0.05	< 0.10	Report: R-
Palagiano, Italy,	31 day	1000		63	Pulp	< 0.05	< 0.05	< 0.10	4078
1990	interval			105	Pulp	< 0.05	< 0.05	< 0.10	Study:
(Washington				21	Peel	0.96	< 0.05	1.01	A50249
Navel)				63	Peel	0.57	< 0.05	0.62	Study not to
				105	Peel	0.71	< 0.05	0.76	GLP
				21	Whole fruit*	0.323	< 0.05	0.373	
				63	Whole fruit*	0.206	< 0.05	0.256	
				105	Whole fruit*	0.248	< 0.05	0.298	
					* calculated				
					value				
Trial:	155 + 155	1000	2	21	Pulp	0.08	< 0.05	0.13	Report: R-
Palagiano, Italy,	31 day	1000		63	Pulp	< 0.05	< 0.05	< 0.10	4079
1990	interval			84	Pulp	< 0.05	< 0.05	< 0.10	Study:
(Naveline)				21	Peel	0.83	< 0.05	0.88	A50250
				63	Peel	0.75	< 0.05	0.80	Study not to
				84	Peel	0.72	< 0.05	0.77	GLP
				21	Whole fruit*	0.305	< 0.05	0.355	
				63	Whole fruit*	0.260	< 0.05	0.310	
				84	Whole fruit*	0.251	< 0.05	0.301	
					* calculated				
					value				

Table	175	Residues	in	Oranges	(outdoor	trails)	from	supervised	trials	in	USA	involving	foliar
applica	ations	s (twice) o	f Fe	enpyroxin	nate 5% S	C or 5%	% EC						

Oranges	Application			DALA		Residues (m	g/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
Trial: CA3 Kern, CA, USA, 1994-1995	246.4 + 246.4 14 day	4820 4728	2	14	Whole fruit	0.124, 0.170 <u>0.147</u>	< 0.008	0.132,0.178, 0 <u>.156</u>	Report: R- 4107 Study:
(Atwoods)	interval	1720			Juice	< 0.008	< 0.008	< 0.008	AA940422 (SC)
	246.4 + 246.4 14 day interval	4648 4756	2	14	Whole fruit	0.246, 0.279	< 0.008	<u>0.254, 0.287</u> 0.271	Report: R-
Irial: CA4 Tulare, CA, USA, 1994-1995 (Navel)	504.1 + 492.9 14 day interval 2x rate	4739 4765	2	14	Fruit Juice Molasses Oil	0.263 0.452,0.387 ,0.420 < 0.008 0.032 30.9	< 0.008 < 0.008 < 0.008 < 0.008	0.460,0.395, 0.428 < 0.016 0.040 30.908	4107 Study: AA940422 (SC)
Trial: FL1 Palm Beach, FL, USA, 1994-1995 (Hamlin)	246.4 + 257.6 14 day interval	4621 4893	2	14	Whole fruit	0.044, 0.084 <u>0.066</u> < 0.008,	< 0.008 < 0.008	0.052,0.092 0 <u>.074</u> < 0.016	Report: R- 4107 Study: AA940422
<u>`</u>	224 + 246 14 day interval	4466 4616	2	14	Whole fruit	0.0695, 0.186 <u>0.128</u>	< 0.08	0 <u>.</u> 0775, 0.194 <u>0.136</u>	
Trial: FL2 Palm Beach, FL, USA, 1994-1995 (Hamlin)	504.1 + 504.1 14 day interval	4860 4752	2	14	Whole fruit Juice Molasses	0.246,0.467 , 0.357 < 0.008	0.0160.021 0.019 < 0.008 < 0.008	0.264,0.489,0 .386 < 0.016 0.017	Report: R- 4107 Study: AA940422
					Dried Pulp	0.009 4.67 1.69	0.220 0.146	4.89 1.836	
Trial: 860.1500- 08-520-01B-04 Groveland El	222.9 + 224.1 14 day interval	794 781	2	14	Fruit	0.063	0.026	0.089	Report: R- 4446, Study: 1872W (EC)
USA, 2009 (Hamlin)	221.8 + 220.6 14 day interval	794 781	2	14	Fruit	<u>0.132</u>	0.015	0. <u>147</u>	Report: R- 4446, Study: 1872W (SC)
Trial: 860.1500- 08-520-01B-06	225.1 + 225.1 14 day interval	772 770	2	14	Fruit	0.039	0.122	0.161	Report: R- 4446, Study: 1872W (EC)
(Hamlin)	224 + 221.8 14 day interval	772 770	2	14	Fruit	<u>0.018</u>	0.173	<u>0.191</u>	Report: R- 4446 Study: 1872W (SC)
Trial: 860.1500- 08-520-01C-07 Porterville, CA, USA, 2009 (Atwood Navel)	217.3 + 224 14 day interval	1277 1294	2	14	Fruit	< 0.01	0.080	0.080	Report: R- 4446, Study: 1872W (EC)

Oranges	Application			DALA		Residues (m	ıg/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
	221.8 + 224.06 14 day interval	1277 1294	2	14	Fruit	<u>0.039</u>	0.137	0. <u>176</u>	Report: R- 4446 Study: 1872W (SC)
Trial: 860.1500- 08-520-01B-09 Delano, CA, USA	225.1 + 227.4 14 day interval	1366 1387	2	14	Fruit	0.010	0.064	0.074	Report: R- 4446, Study: 1872W (EC)
2009 (Late Lane Navel)	225.1 + 226.3 14 day interval	1366 1387	2	14	Fruit	<u>0.011</u>	0.078	0. <u>089</u>	Report: R- 4446 Study: 1872W (SC)
Trial: TCI-13-374- 01 Clermont, FL, USA, 2013	224 + 228.5 14 day interval	701 720	2	3	Fruit	0.170, 0.146 0.158	0.0467, 0.0363 0.042	0.2167, 0.1823 0.2	Report: R- 4484 Study: TCI- 13-374
(Valencia) Trial: TCI-13-374- 02 Chuluota, FL, USA, 2013 (Valencia)	225.1 + 226.3 14 day interval	1412 1412	2	2	Fruit	0.213, 0.180 0.197	0.0349, 0.0289 0.032	0.2479, 0.2089 0.229	(EC) Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 03 Clermont, FL, USA, 2013 (Hamlin)	227.4 + 228.5 13 day interval	711 711	2	3	Fruit	0.247, 0.269 0.258	0.0434, 0.0491 0.046	0.2904, 0.3181 0.304	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 04 Chuluota,,FL, USA, 2013 (Hamlin)	220.6 + 225.1 13 day interval	1384 1412	2	3	Fruit	0.403, 0.383 0.393	0.0761, 0.0748 0.075	0.4791, 0.4578 0.468	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 05 Oviedo, FL, USA, 2013 (Navel)	233 + 224 13 day interval	729 701	2	3	Fruit	0.0822, 0.0693 0.076	0.0288, 0.0191 0.024	0.111, 0.0884 0.1	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 06 Winter Garden, FL, USA, 2013 (Midwest)	225.1 + 225.1 13 day interval	1412 1412	2	3	Fruit	0.323, 0.289 0.306	0.0887, 0.0728 0.081	0.4117, 0.3618 0.387	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 07 Holopaw, FL, USA, 2013 (Hamlin)	226.3 + 225.1 13 day interval	701 701	2	3	Fruit	0.389, 0.250 0.320	0.0798, 0.0635 0.072	0.4688, 0.3135 0.392	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 08 Oak Hill, FL, USA, 2013 (Hamlin)	230.7 + 228.5 13 day interval	1440 1421	2	3	Fruit	0.409, 0.424 0.417	0.0515, 0.0473 0.049	0.4605, 0.4713 0.466	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 09 Raymondville, TX, USA, 2013	227.4 + 229.6 12 day interval	720 739	2	3	Fruit	0.0578, 0.0541 0.056	0.0129, 0.0115 0.012	0.0707, 0.0656 0.068	Report: R- 4484 Study: TCI- 13-374

Oranges	Application			DALA		Residues (m	ig/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
(N-33 Naval)	227.4 + 228.5 12 day interval	2403 2412	2	3	Fruit	0.100, 0.0946 0.097	0.0171, 0.0129 0.024	0.1171, 0.1075 0.121	(EC)
Trial: TCI-13-374- 10 Porterville, CA, USA, 2013 (Newhall Navel on Trifoliate Rootstock)	222.9 + 226.3 14 day interval	711 711	2	3	Fruit	0.183, 0.146 0.165	0.0297, 0.0267 0.028	0.2127, 0.1727 0.193	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 11 Porterville, CA, USA, 2014 (Washington)	224 + 222.9 14 day interval	1861 1879	2	3	Fruit	0.177, 0.207 0.192	0.0234, 0.0254 0.024	0.2004, 0.2324 0.216	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 12 Richgrove, CA, USA, 2013 (Valencia)	222.9 + 220.6 14 day interval	701 701	2	3	Fruit	0.127, 0.198 0.163	0.0233, 0.0489 0.036	0.1503, 0.2469 0.199	Report: R- 4484 Study: TCI- 13-374 (EC)
Trial: TCI-13-374- 24 Porterville, CA, USA, 2013 (Cara Cara)	224 + 221.8 14 day interval	888 870	2	3	Fruit	0.155, 0.126 0.141	0.0346, 0.0270 0.031	0.1896, 0.153 0.172	Report: R- 4484 Study: TCI- 13-374 (EC)

Mandarin

Table 176 Residues in Mandarin (protected trails) from supervised trials in Japan involving foliar applications of Fenpyroximate 5% SC

Mandarin	Application			DALA	Commodity	Residues (mg/kg)			Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximat	
Country,year								e	
(Variety)									
Trial: Aichi	250	500	1	7	Flesh	0.006	< 0.005	0.011	Report: R-
Japan, 1988		L/10a		14	Flesh	< 0.005	< 0.005	< 0.010	4056
(Satsuma				21	Flesh	0.009	< 0.005	0.014	Study:
Mandarin)				30	Flesh	0.008	< 0.005	0.013	Study not to
				44	Flesh	0.007	< 0.005	0.012	GLP
				7	Peel	0.150	< 0.005	0.155	*Calculated
				14	Peel	0.143	< 0.005	0.148	value
				21	Peel	0.074	< 0.005	0.079	
				30	Peel	0.171	< 0.005	0.176	
				44	Peel	0.194	< 0.005	0.199	
				7	Whole Fruit*	0.028	< 0.005	0.033	
				14	Whole Fruit*	0.026	< 0.005	0.031	
				21	Whole Fruit*	0.019	< 0.005	0.024	
				30	Whole Fruit*	0.037	< 0.005	0.042	
				44	Whole Fruit*	0.040	< 0.005	0.045	

Mandarin	Application			DALA	Commodity	Residues (m	g/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximat	
Country,year								e	
(Variety)									
Trial: Oita	500	1000	1	7	Flesh	0.026	< 0.005	0.031	Report: R-
Japan, 1988		L/10a		14	Flesh	0.021	< 0.005	0.026	4056
(Satsuma				21	Flesh	0.016	< 0.005	0.021	Study:
Mandarin)				30	Flesh	0.011	< 0.005	0.016	Study not to
				45 7	Flesh	< 0.005	< 0.005	< 0.010	GLP *C-11-t1
				14	Peel	0.977	0.025	1	Valculated
				14 21	Peel	0.973	0.044	0.707	value
				30	Peel	0.673	0.040	0.702	
				45	Peel	0.702	0.043	0.745	
				7	Whole Fruit*	0.199	< 0.005	0.204	
				14	Whole Fruit*	0.209	0.009	0.218	
				21	Whole Fruit*	0.149	0.007	0.156	
				30	Whole Fruit*	0.122	0.007	0.129	
				45	Whole Fruit*	0.130	0.008	0.138	
Trial Aichi	250	500	1	7	Flesh	0.008	-	0.008	Report: R-
Japan, 1988		L/10a		14	Flesh	0.008	-	0.008	4240
(Satsuma				21	Flesh	0.006	-	0.006	Study
Mandarın)				30	Flesh	0.015	-	0.015	NN021-03
				44 7	Flesh	0.009	-	0.009	Study not to
				14	Whole Fruit*	0.0492	< 0.005	0.0497	ULP Referalso to
				21	Whole Fruit*	0.0392	< 0.005	0.0397	$5 \ 1 \ 3/07 \ 10$
				30	Whole Fruit*	0.0596	< 0.005	0.0646	*Calculated
				44	Whole Fruit*	0.0454	< 0.005	0.0504	values
Trial Oita	500	1000	1	7	Flesh	0.024	-	0.024	Report: R-
Japan, 1988		L/10a		14	Flesh	0.010	-	0.010	4240
(Satsuma				21	Flesh	0.010	-	0.010	Study
Mandarin)				30	Flesh	0.015	-	0.015	NN021-03
				44	Flesh	0.008	-	0.008	Study not to
				7	Whole Fruit*	0.1698	< 0.005	0.1748	GLP
				14	Whole Fruit*	0.1236	< 0.005	0.1286	Refer also to
				21	Whole Fruit*	0.1648	< 0.005	0.1698	5.1.3/07-10
				30 44	Whole Fruit*	0.1162	< 0.005	0.1212	*Calculated
Trial Aichi	250	500	1	44 7	Flesh	0.0934	< 0.005	< 0.0984	Report: R.
Japan 1988	250	L/10a	1	14	Flesh	_	< 0.005	< 0.005	4241
(Satsuma		L/10u		21	Flesh	-	< 0.005	< 0.005	Study
Mandarin)				30	Flesh	-	< 0.005	< 0.005	NN021-04
,				44	Flesh	-	< 0.005	< 0.005	Study not to
									GLP
									Refer also to
									5.1.3/07-10
Trial Oita	500	1000	1	7	Flesh	-	< 0.005	< 0.005	Report: R-
Japan, 1988		L/10a		14	Flesh	-	< 0.005	< 0.005	4241
(Satsuma				21	Flesh Flesh	-	< 0.005	< 0.005	Study
Mandarin)				30 44	Flesh	-	< 0.005	< 0.005	NN021-04 Study pot to
				44	riesh	-	< 0.005	< 0.005	GLP
									Refer also to
									5.1.3/07-10
Trial Aichi	250	500	1	7	Peel	0.214	-	0.214	Report: R-
Japan, 1988		L/10a		14	Peel	0.164	-	0.164	4243
(Satsuma				21	Peel	0.174	-	0.174	Study
Mandarin)				30	Peel	0.238	-	0.238	NN021-07
				44	Peel	0.191	-	0.191	Study not to
									GLP
									Refer also to
									5.1.3/07-10

Mandarin	Application			DALA	Commodity Residues (mg/kg)			Reference &	
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximat	
Country,year								e	
(Variety)									
Trial Oita	500	1000	1	7	Peel	0.753	-	0.753	Report: R-
Japan, 1988		L/10a		14	Peel	0.578	-	0.578	4243
(Satsuma				21	Peel	0.784	-	0.784	Study
Mandarin)				30	Peel	0.521	-	0.521	NN021-07
				45	Peel	0.435	-	0.435	Study not to GLP
									Refer also to 5.1.3/07-10
Trial Aichi	250	500	1	7	Peel	-	0.020	0.020	Report: R-
Japan, 1988		L/10a		14	Peel	-	0.024	0.024	4244
(Satsuma				21	Peel	-	0.028	0.028	Study
Mandarin)				30	Peel	-	0.024	0.024	NN021-
				44	Peel	-	0.014	0.014	08Study not
									to GLP
									Refer also to
									5.1.3/07-10
Trial Oita	500	1000	1	7	Peel	-	0.056	0.056	Report: R-
Japan, 1988		L/10a		14	Peel	-	0.047	0.047	4244
(Satsuma				21	Peel	-	0.082	0.082	Study
Mandarin)				30	Peel	-	0.062	0.062	NN021-
				45	Peel	-	0.076	0.076	08Study not
									to GLP
									Refer also to
									5.1.3/07-10

Table 177 Residues in Mandarin (protected trails) from supervised trials in EU involving foliar applications of Fenpyroximate 5% SC

Mandarin	Application			DALA		Residues (m	ng/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
Trial SO9-02402- 01 Beniganim, Valencia, Spain, 2009-2010 (Mandarin)	97.6	1429	1	0 0 3 3 7 7 10 10 14 14	Pulp Peel Pulp Pulp Peel Pulp Peel Pulp Peel	$\begin{array}{c} 0.02 \\ 0.41 \\ 0.01 \\ 0.36 \\ 0.01 \\ 0.33 \\ 0.01 \\ 0.26 \\ < 0.01 \\ 0.22 \end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.	$\begin{array}{c} 0.030\\ 0.042\\ 0.02\\ 0.37\\ 0.014\\ 0.34\\ 0.02\\ 0.27\\ < 0.02\\ 0.23 \end{array}$	R-4431, S09- 02402 Study S09- 02402
Trial SO9-02402- 02 Picassent, Valencia, Spain, 2009-2010 (Mandarin)	106.3	1557	1	0 0 14 14	Pulp Peel Pulp Peel	0.02 0.28 0.02 0.29	< 0.01 < 0.01 < 0.01 0.01	0.03 0.29 0.03 0.30	R-4431, S09- 02402 Study S09- 02402
Trial SO9-02402- 04 Fondi, Italy, 2009- 2010 (Mandarin)	108.5	1589	1	0 0 14 14	Pulp Peel Pulp Peel	0.03 0.58 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.59 < 0.02 < 0.02	R-4431, S09- 02402 Study S09- 02402

Mandarin	Application			DALA		Residues (n	ng/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Reference & Comments
Trial SO9-02402- 05 Fondi, Italy, 2009- 2010 (Mandarin)	98.1	1438	1	0 0 3 3 7 7 10 10 14 14	Pulp Peel Pulp Peel Pulp Peel Pulp Peel Peel	$\begin{array}{c} 0.02\\ 0.37\\ 0.01\\ 0.44\\ < 0.01\\ 0.19\\ < 0.01\\ 0.17\\ < 0.01\\ 0.15 \end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.	$\begin{array}{c} 0.03 \\ 0.38 \\ 0.02 \\ 0.45 \\ < 0.02 \\ 0.20 \\ < 0.02 \\ 0.18 \\ < 0.02 \\ 0.16 \end{array}$	R-4431, S09- 02402 Study S09- 02402
Trial S10-02526- 01 El Viso del Alcor, Sevilla, Spain, 2009-2010 (Mandarin)	101.56	1488	1	0 14	Peel Pulp Whole fruit Peel Pulp Whole frui	0.01 < 0.01 0.34 0.20 0.10 0.05	< 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01	0.02 < 0.02 0.35 0.21 0.11 0.06	R-4451, S10- 02526 Study S10- 02526
Trial S10-02526- 02 Picassent, Horta Sud, Spain, 2009- 2010 (Mandarin)	102.28	1498	1	0 3 7 10 14 0 3 7 10 14 0 3 7 10 14 0 3 7 10 14 0 14 0 14 0 14 14 0 14 14 0 14 10 14 14 10 14 14 10 14 14 14 14 14 14 14 14 14 14	Pulp Peel Whole fruit	$\begin{array}{c} 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.24 \\ 0.13 \\ 0.12 \\ 0.18 \\ 0.19 \\ 0.07 \\ 0.03 \\ 0.05 \\ 0.05 \end{array}$	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.01 \\ 0.01 \\ $	$\begin{array}{c} 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ 0.25 \\ 0.14 \\ 0.13 \\ 0.2 \\ 0.22 \\ 0.08 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.06 \\ \end{array}$	R-4451, S10- 02526 Study S10- 02526
Trial S10-02526- 03 Aris, Messinia, Greece, 2009- 2010 (Mandarin)	101.83	1492	1	0 14	Pulp Peel Whole fruit Pulp Peel Whole fruit	< 0.01 < 0.01 0.19 0.02 0.06 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 0.20 0.03 0.07 0.02	R-4451, S10- 02526 Study S10- 02526
Trial S10-02526- 04 Kalamata, Messinia, Greece, 2009-2010 (Mandarin)	102.19	1497	1	0 3 7 10 14 0 3 7 10 14 0 3 7 10 14 0 3 7 10 14 0 14 0 14 0 14 14 0 14 14 0 14 10 14 14 10 14 14 10 14 14 14 10 14 14 10 14 14 14 10 14 14 10 14 14 10 14 14 10 10 14 10 10 14 10 10 14 10 10 10 10 10 10 10 10 10 10	Pulp Peel Whole fruit	$\begin{array}{c} 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.20 \\ 0.11 \\ 0.14 \\ 0.07 \\ 0.02 \\ 0.08 \\ 0.03 \\ 0.05 \\ 0.02 \\ 0.01 \end{array}$		$\overline{0.02}$ < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.21 0.12 0.15 0.08 0.03 0.09 0.04 0.06 0.03 0.02	R-4451, S10- 02526 Study S10- 02526

Chinese citron

Table 178 Residues in Chinese citron (outdoor trails) from supervised trials in Japan involving foliar applications of Fenpyroximate 5% SC

Chinese citron	Application			DALA		Residues (mg/k	g)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	Commodity	Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Reference & Comments
Trial (location): Wakayama Japan, 1988 (Kawanonatsudaidai)	250	500 L/10a	1	14 21 30 45 14 21 30 45 14 21 30 45	Flesh Flesh Flesh Peel Peel Peel Whole fruit Whole fruit Whole fruit	0.005 < 0.005 < 0.005 < 0.005 0.12 0.40 0.16 0.20 0.039 0.111 0.047 0.053		0.005 < 0.005 < 0.005 < 0.005 0.12 0.40 0.16 0.20 0.039 0.111 0.047 0.053	Report: R- 4246 Study: NN022-01
Trial (location): Miyazaki Japan, 1988 (Kawanonatsudaidai)	250	500 L/10a	1	14 21 30 45 14 21 30 45 14 21 30 45 14 21 30 45 14 21 30 45 30 45	Flesh Flesh Flesh Peel Peel Peel Whole fruit Whole fruit Whole fruit	< 0.005 < 0.005 < 0.005 < 0.005 0.16 0.10 0.14 0.10 0.043 0.026 0.038 0.030	-	< 0.005 < 0.005 < 0.005 < 0.005 0.16 0.10 0.14 0.10 0.043 0.026 0.038 0.030	Report: R- 4246 Study: NN022-01
Trial (location): Wakayama Japan, 1988 (Kawanonatsudaidai)	250	500 L/10a	1	14 21 30 44 14 21 30 44 14 21 30 44	Flesh Flesh Flesh Peel Peel Peel Whole fruit Whole fruit Whole fruit	- - - - - - -	< 0.005 < 0.005 < 0.005 < 0.01 < 0.01 0.02 0.02 < 0.005 < 0.005 0.005 0.005	< 0.005 < 0.005 < 0.005 < 0.005 < 0.01 < 0.01 0.02 0.02 < 0.005 < 0.005 0.005 0.005	Report: R- 4247 Study: NN022-02
Trial (location): Miyazaki Japan, 1988 (Kawanonatsudaidai)	250	500 L/10a	1	14 21 30 45 14 21 30 45 14 21 30 45	Flesh Flesh Flesh Peel Peel Peel Peel Whole fruit Whole fruit Whole fruit	- - - - - - - - -	<0.005 <0.005 <0.005 <0.005 <0.01 <0.01 <0.01 <0.01 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005	 < 0.005 < 0.005 < 0.005 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 	Report: R- 4247 Study: NN022-02
Trial (location): Wakayama Japan, 1988 (Kawanonatsudaidai)	250	500 L/10a	1	14 21 30 45	Peel Peel Peel Peel	0.12 0.40 0.16 0.20	- - -	0.12 0.40 0.16 0.20	Report: R- 4249 Study: NN022-05
Trial (location): Miyazaki Japan, 1988 (Kawanonatsudaidai)	250	500 L/10a	1	14 21 30 45	Peel Peel Peel Peel	0.16 0.10 0.14 0.10	- - -	0.16 0.10 0.14 0.10	Report: R- 4249 Study: NN022-05

Chinese citron	Application			DALA		Residues (mg/k	g)		
Trial							8/	Sum of	_
Location	Rate	Water			Commodity			fennyroximate	Reference &
Country year	(g ai/ha)	(L/ha)	No.	(days)	commodity	Fenpyroximate	M-1	and M-1	Comments
(Variety)	(g ul/liu)	(L/IIII)							
(valiety) Trial (location):				14	Deal		< 0.01	< 0.01	Donort: D
1 rial (location):		500		14	Peel Deel	-	< 0.01	< 0.01	4250
wakayama	250	500 L/10	1	21	Peel	-	0.01	0.01	4250
Japan, 1988		L/10a		30	Peel	-	0.02	0.02	Study:
(Kawanonatsudaidai)				45	Peel	-	0.02	0.02	NN022-06
Trial (location):				14	Peel	-	< 0.01	< 0.01	Report: R-
Miyazaki	250	500	1	21	Peel	-	< 0.01	< 0.01	4250
Japan, 1988		L/10a	•	30	Peel	-	0.01	0.01	Study:
(Kawanonatsudaidai)				45	Peel	-	0.01	0.01	NN022-06
Trial (location):				14	Peel	0.34	-	0.34	Report: R-
Wakayama	250	500	1	21	Peel	0.32	-	0.32	4252
Japan, 1988	230	L/10a	1	30	Peel	0.28	-	0.28	Study:
(Kawanonatsudaidai)				45	Peel	0.26	-	0.26	NN022-07
Trial (location):				14	Peel	0.14	-	0.14	Report: R-
Miyazaki		500		21	Peel	0.25	-	0.25	42.52
Japan 1988	250	L/10a	1	30	Peel	0.06	_	0.06	Study:
(Kawanonatsudaidai)		L/10u		45	Peel	0.24	_	0.00	NN022-07
(Rawanonaisudaidar)				14	Peel	0.24	-	< 0.04	Poport: D
Walvavama		500		1 4 21	Peel Deel	-	< 0.04	< 0.04	A252
wakayama	250	300 I /10-	1	21	Peel Deel	-	< 0.04	< 0.04	4233
Japan, 1988		L/10a		30	Peel	-	< 0.04	< 0.04	Study:
(Kawanonatsudaidai)				45	Peel	-	< 0.04	< 0.04	NN022-08
Trial (location):				14	Peel	-	< 0.04	< 0.04	Report: R-
Miyazaki	250	500	1	21	Peel	-	< 0.04	< 0.04	4253
Japan, 1988	200	L/10a	1	30	Peel	-	< 0.04	< 0.04	Study:
(Kawanonatsudaidai)				45	Peel	-	< 0.04	< 0.04	NN022-08
				14	Flesh	< 0.005	-	< 0.005	
				21	Flesh	< 0.005	-	< 0.005	
				30	Flesh	< 0.005	-	< 0.005	
				45	Flesh	< 0.005	-	< 0.005	
Trial (location):				14	Peel	0.34	-	0.34	Report: R-
Wakayama		500		21	Peel	0.32	-	0.32	42.56
Japan, 1988	250	L/10a	1	30	Peel	0.28	-	0.28	Study:
(Kawanonatsudaidai)		2.104		45	Peel	0.26	_	0.26	NN022-03
(Ruwanonaisadalaan)				14	Whole fruit	0.09	_	0.09	111022 05
				21	Whole fruit	0.09		0.09	
				20	Whole fruit	0.09	-	0.09	
				30 45	Whole fruit	0.08	-	0.08	
				43		0.07	-	0.07	
				14	Flesh	< 0.005	-	< 0.005	
				21	Flesh	< 0.005	-	< 0.005	
				30	Flesh	< 0.005	-	< 0.005	
				45	Flesh	< 0.005	-	< 0.005	
Trial (location):				14	Peel	0.14	-	0.14	Report: R-
Miyazaki	250	500	1	21	Peel	0.25	-	0.25	4256
Japan, 1988	200	L/10a	1	30	Peel	0.06	-	0.06	Study:
(Kawanonatsudaidai)				45	Peel	0.24	-	0.24	NN022-03
				14	Whole fruit	0.04	-	0.04	
				21	Whole fruit	0.06	-	0.06	
				30	Whole fruit	0.02	-	0.02	
				45	Whole fruit	0.07	-	0.07	
Trial (location):			ſ	14	Flesh	-	< 0.005	< 0.005	Report: R-
Wakayama	250	500	1	21	Flesh	-	< 0.005	< 0.005	4257
Japan, 1988	250	L/10a	1	30	Flesh	-	< 0.005	< 0.005	Study:
(Kawanonatsudaidai)				45	Flesh	-	< 0.005	< 0.005	NN022-04
Trial (location).				14	Flesh	-	< 0.005	< 0.005	Report: R-
Miyazaki		500		21	Flesh	-	< 0.005	< 0.005	4257
Japan 1988	250	$L/10_{2}$	1	30	Flesh	-	< 0.005	< 0.005	Study
(Kawanonatsudaidai)		L/10a		45	Flesh		< 0.005	< 0.005	NN022-04
(isawanonaisuualual)	l		I	-TJ	1 10311	-	~ 0.000	× 0.00J	1111022-04

Natsudaidai

Table 179 Residues in Natsudaidai (outdoor trails) from supervised trials in Japan involving foliar applications of Fenpyroximate 5% SC

Natsudaidai	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial (location): Wakayama Japan, 1988 (Kawano natsudaidai)	250	5000	1	14 21 30 45 14 21 30 45 14 21 30 45 14 21 30 45 14 21 30 45	Flesh Flesh Flesh Peel Peel Peel Whole fruit* Whole fruit* Whole fruit*	$\begin{array}{c} 0.005 \\ < 0.005 \\ 0.005 \\ < 0.005 \\ 0.12 \\ 0.40 \\ 0.16 \\ 0.20 \\ 0.040 \\ 0.124 \\ 0.052 \\ 0.064 \end{array}$	< 0.005 < 0.005 < 0.005 < 0.005 < 0.01 0.01 0.02 0.02 0.007 0.007 0.010 0.010	$\begin{array}{c} 0.010 \\ < 0.010 \\ 0.010 \\ < 0.010 \\ 0.13 \\ 0.42 \\ 0.18 \\ 0.22 \\ 0.047 \\ 0.131 \\ 0.062 \\ 0.074 \end{array}$	Report: R- 4057 Study: -
Trial (location): Miyazaki Japan, 1988 (Amanatsu)	250	5000	1	14 21 30 45 14 21 30 45 14 21 30 45	Flesh Flesh Flesh Peel Peel Peel Whole fruit* Whole fruit* Whole fruit*	< 0.005 < 0.005 < 0.005 < 0.005 0.16 0.10 0.14 0.052 0.034 0.046 0.034	< 0.005 < 0.005 < 0.005 < 0.005 < 0.01 < 0.01 0.01 0.007 0.007 0.007 0.007	< 0.010 < 0.010 < 0.010 < 0.010 0.17 0.11 0.15 0.11 0.059 0.041 0.053 0.041	Report: R- 4057 Study: -

Tangor

Table 180 Residues in Tangor tree (outdoor trails) from supervised trials in EU involving foliar applications of Fenpyroximate 5% SC

Tangor tree	Application			DALA	Commodity	Residues (mg/kg)			Reference &
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)						fenpyroximate	
Country,year								and M-1	
(Variety)									
Trial: -	100	1600	1	28	Pulp	0.01	< 0.01	0.02	Report: R-
Massafra, Italy,				28	Fruit peel	0.35	0.02	0.37	4085
1991				28	Whole fruit*	0.112	0.013	0.125	Study:
(common tangor)									A50291
Trial: -	200	1600	1	28	Pulp	0.03	< 0.01	0.04	Report: R-
Massafra, Italy,				28	Fruit peel	0.78	0.03	0.81	4086
1991				28	Whole fruit*	0.255	0.016	0.271	Study:
(common tangor)									A50292
Trial: _	100	1600	1	28	Pulp	< 0.01	< 0.01	< 0.02	Report: R_
Poucoro Italy	100	1000	1	28	Fruit neel	0.42	< 0.01	0.02	4087
1991				28	Whole fruit*	0.42	0.010	0.43	Study
(common tangor)				20	whole if all	0.155	0.010	0.145	A 50293
(common ungor)									1100295
Trial: -	200	1600	1	28	Pulp	0.03	< 0.01	0.04	Report: R-
Poucoro, Italy,				28	Fruit peel	0.86	< 0.01	0.87	4088
1991				28	Whole fruit*	0.279	0.010	0.289	Study:
(common tangor)									A50294

Tangor tree	Application			DALA	Commodity	Residues (mg/k	g)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
(Variety) Trial: - Mctaponto, Italy, 1991 (common tangor)	100	1600	1	0 5 10 14 25 28 0 5 10 14 25 25 10 10 14 25 28 10 10 14 25 25 10 14 25 25 10 10 14 25 25 10 10 14 25 25 10 10 14 25 25 10 10 10 14 25 25 10 10 10 10 10 10 10 10 10 10	Pulp Pulp Pulp Pulp Pulp Fruit peel Fruit peel Fruit peel Fruit peel Fruit peel Fruit peel Whole fruit* Whole fruit* Whole fruit*	$\begin{array}{c} 0.03\\ 0.02\\ < 0.01\\ < 0.01\\ 0.02\\ < 0.01\\ 0.52\\ 0.50\\ 0.36\\ 0.34\\ 0.24\\ 0.13\\ 0.177\\ 0.164\\ 0.115\\ 0.109\\ 0.086\end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.013 0.010 0.010 0.010	$\begin{array}{c} 0.04\\ 0.03\\ < 0.02\\ < 0.02\\ 0.03\\ < 0.02\\ 0.54\\ 0.52\\ 0.37\\ 0.35\\ 0.25\\ 0.14\\ 0.19\\ 0.177\\ 0.125\\ 0.119\\ 0.096\end{array}$	Report: R- 4089 Study: A50295
Trial: - Mctaponto, Italy, 1991 (common tangor)	200	1600	1	28 0 5 10 14 25 28 10 10 14 25 28 10 14 25 28 10 14 25 28 10 14 25 28 10 10 14 25 28 10 10 14 25 28 10 14 25 28 10 14 25 28 10 14 25 28 10 10 14 25 28 10 10 14 25 28 10 10 14 25 28 10 10 10 10 10 10 10 10 10 10	Whole fruit* Pulp Pulp Pulp Pulp Pulp Fruit peel Fruit peel Fruit peel Fruit peel Fruit peel Fruit peel Whole fruit* Whole fruit* Whole fruit* Whole fruit*	0.046 0.05 0.06 0.03 0.02 0.01 0.45 0.63 0.57 0.83 0.59 0.59 0.170 0.231 0.192 0.270 0.191 0.184	$\begin{array}{r} 0.010 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.016 \\ 0.016 \\ 0.016 \end{array}$	0.056 0.06 0.07 0.04 0.03 0.02 0.46 0.64 0.61 0.86 0.62 0.62 0.62 0.18 0.241 0.211 0.286 0.207 0.2	Report: R- 4090 Study: A50296

Yuzu orange

Table 181 Residues in Yuzu Oranges (outdoor trails) from supervised trials in Japan involving foliar applications of Fenpyroximate 5% SC

Yuzu Oranges	Application			DALA	Commodity	Residues (1	ng/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximate	
Country,year								and M-1	
(Variety)									
Trial: Oita	250		1	14	Fruit	0.06	-	0.06	Report: R-4352
Japan, 1990				14	Fruit	0.04	-	0.04	Study: NN029-
(Citrus junos)				28	Fruit	0.02	-	0.02	01
· • • ·				28	Fruit	0.02	-	0.02	Study not to
				56	Fruit	0.01	-	0.01	GLP
				98	Fruit	< 0.01	-	< 0.01	Refer also to
									5.1.2/17

Yuzu Oranges	Application			DALA	Commodity	Residues (n	ng/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximate	
Country,year								and M-1	
(Variety)									
Trial: Oita	250	500	1	14	Fruit	-	0.01	0.01	Report: R-4353
Japan, 1990		L/10a		14	Fruit	-	< 0.01	< 0.01	Study: NN029-
(Citrus junos)				28	Fruit	-	< 0.01	< 0.01	02
				28	Fruit	-	< 0.01	< 0.01	Study not to
				56	Fruit	-	< 0.01	< 0.01	GLP
				98	Fruit	-	< 0.01	< 0.01	Refer also to
									5.1.2/16
Trial: Oita	250	500	1	14	Fruit	< 0.05	< 0.01	< 0.06	Report: R-4354
Prefectural		L/10a		28	Fruit	0.04	< 0.01	0.05	Study: NN029-
Japan, 1990				88	Fruit	< 0.01	< 0.01	< 0.02	03
(Citrus junos)				14	Fruit	0.04	< 0.01	0.05	Study not to
				28	Fruit	0.03	< 0.01	0.04	GLP
				56	Fruit	0.01	< 0.01	0.02	

Pome fruits

Apple

Table 182 Residues in Apples (outdoor trails) from supervised trials in EU involving foliar applications (once) of Fenpyroximate 5% SC

Apples	Application			DALA	Commodity	Residues (n	ng/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximat	
Country,year								e and M-1	
(Variety)									
Trial:-BR 9113	90		1	0	Fruit	0.14	-	0.14	Report: R-
Belgium, 1991				1	Fruit	0.09	-	0.09	4042e
-				3	Fruit	0.12	< 0.02	0.14	Study:- RE-
				7	Fruit	0.12	< 0.02	0.14	9205-Н
				14	Fruit	0.10	< 0.02	0.12	
				21	Fruit	0.08	-	0.08	
				28	Fruit	0.05	-	0.05	
	180		1	0	Fruit	0.17	-	0.17	
				1	Fruit	0.15	-	0.15	
				3	Fruit	0.21	< 0.02	0.23	
				7	Fruit	0.19	< 0.02	0.21	
				14	Fruit	0.17	< 0.02	0.19	
				21	Fruit	0.14	-	0.14	
				28	Fruit	0.18	-	0.18	
Trial: S 210.91	80	1000	1	30	Fruit	0.03	-	0.03	Report: R-
Grossdeuvre,				50	Fruit	0.03	-	0.03	4047f
France, 1991				75	Fruit	< 0.02	-	< 0.02	Study:- RE-
(Golden)				106	Fruit	< 0.02	-	< 0.02	9117-Н
				120	Fruit	< 0.02	-	< 0.02	(EC)
				144	Fruit	< 0.02	-	< 0.02	
Trial:- 0101	112.5	1500	1	0	Fruit	0.13	< 0.05	0.18	Report: R-
Winsen-Hoopte,				7	Fruit	0.14	< 0.05	0.19	4072e,
Germany, 1990				14	Fruit	0.11	< 0.05	0.16	ER90DEU81
(Gloster)				28	Fruit	0.08	< 0.05	0.13	2, A47895,
				42	Fruit	0.06	< 0.05	0.11	A49849
				56	Fruit	< 0.05	< 0.05	< 0.10	Study:-
				70	Fruit	< 0.05	< 0.05	< 0.10	
				84	Fruit	< 0.05	< 0.05	< 0.10	
				91	Fruit	< 0.05	< 0.05	< 0.10	

Apples	Application			DALA	Commodity	Residues (m	ng/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)		Ì,		mate		fenpyroximat	
Country,year								e and M-1	
(Variety)									
Trial:- 0401	64	854	1	0	Fruit	0.15	< 0.05	0.20	Report: R-
Höchst, Germany,				7	Fruit	0.11	< 0.05	0.16	4072e,
1990				14	Fruit	0.16	< 0.05	0.21	ER90DEU81
(Idared)				28	Fruit	0.12	< 0.05	0.17	2, A49849
				42	Fruit	0.09	< 0.05	0.14	Study:-
				56	Fruit	0.06	< 0.05	0.11	
				70	Fruit	< 0.05	< 0.05	< 0.10	
				82	Fruit	< 0.05	< 0.05	< 0.10	
T.::-1.	75	1500	1	93	Fruit	< 0.05	< 0.05	< 0.10	Danaste D1
I rial:-	/5	1500	1	0	Fruit	0.04	< 0.01	0.05	4007a
These lte				3 7	Fruit	0.03	< 0.01	0.06	40976,
Graaca 1002				14	Fruit	0.04	< 0.01	0.05	AJ0032 Study:
(Imperial)				21	Fruit	0.04	< 0.01	0.05	Study
(imperiar)				30	Fruit	0.02	< 0.01	0.04	GLP
Trial - UKPVB1	5 g ai/hL		1	14	Whole fruit	0.02	< 0.01	0.03	Report: R-
Staplehurst Kent	Spray to		1	1.	whole fruit	0.05	0.01	0.01	4099e
UK. 1993	runoff								A53347
(Cox)									Study:
()									RESID/94/20
Trial:- UKPVB2	5 g ai/hL		1	14	Whole fruit	0.01	< 0.01	0.02	Report: R-
Gorefield, Cambs.,	Spray to								4099e,
UK, 1993	runoff								A53347
(Bramley)									Study:
									RESID/94/20
Trial:- UKPVB3	5 g ai/hL		1	14	Whole fruit	0.07	< 0.01	0.08	Report: R-
Alresford, Essex.,	Spray to								4099e,
UK, 1993	runoff								A53347
(Cox)									Study:
	- 14-								RESID/94/20
Irial:- UKPVB4	5 g ai/hL		I	14	Whole fruit	0.07	< 0.01	0.08	Report: R-
Harrietsham,	Spray to								4099e,
Kent.,	runom								A5334/
(Cox)									Sludy: DESID/04/20
(C0X)	5 a ai/hI		1	14	Whale finit	0.02	< 0.01	0.04	RESID/94/20
J.2.1/10 Demort: D. 4000a	S g al/IIL		1	14	whole iruit	0.05	< 0.01	0.04	4000a
A 53347	spray to								4099C, A 53347
Study:	Tunom								Study:
RESID/94/20									RESID/94/20
Trial - UKPVB5									RESID/ 7 1/20
Ridgewell, Essex									
UK. 1993									
(Cox)									
Trial:- S09-2263-	115.7	502	1	0	Fruit	0.17	< 0.01	0.18	Report:
01				21	Fruit	0.07	< 0.01	0.08	R4429e
Blumberg-									Study: S09-
Elisenau,									02263
Brandenburg,									
Germany, 2009									
(Jonagored)					-				
Trial:- S09-2263-	126.0	875	1	0	Fruit	0.14	< 0.01	0.15	Report:
03				20	Fruit	0.07	< 0.01	0.08	R4429e
Bages, Lyienèes									Study: S09-
Chientales,									02263
France, 2009									
(բոյլ)									

Trial Location (Country year (Variety) Rue (L/a) Num (L/a) Num (L/a) Num (L/a) Num (L/a) Num (L/a) Sum (r) M-1 (r) Sum of (r) Comments (r) Trails-509-2263- 04 12.5.5 1089 1 0 Fruit 0.11 <0.01 0.12 R4256 Calatomo, Aragon, Spain, 2009 11.5.2 800 1 0 Fruit 0.08 <0.01 0.09 R2267 Colleurs, Aragon, Spain, 2009 11.5.2 800 1 0 Fruit 0.03 <0.01 0.09 R2port: R4259c Colleurs, Aragon, Stacks, France, 2009 11.1.2 965 1 3 Fruit 0.07 <0.01 0.08 R429c Garades 7 Fruit 0.04 <0.01 0.05 Sudy: S00- 20263 Grades 9 1 0 Fruit 0.06 <0.01 0.05 Sudy: S00- 20263 Grades 115.7 602 1 0 Fruit 0.06 <0.01 0.06 R429c	Apples	Application			DALA	Commodity	Residues (m	g/kg)		Reference &
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
	Location	(g ai/ha)	(L/ha)				mate		fenpyroximat	
(Variety) 12.5 1089 1 0 Fruit 0.13 < 0.01 0.14 Report: Galaron, Angon, 12.5 1089 1 0 Fruit 0.11 < 0.01	Country,year								e and M-1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Variety)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S09-2263-	125.5	1089	1	0	Fruit	0.13	< 0.01	0.14	Report:
Calatorso, Aragon, Sprin, 2009 14 Fruit 0.08 < 0.01 0.13 Study: S09- (Starking) 14 Fruit 0.08 < 0.01 0.09 S263 (Sorking) 21 Fruit 0.08 < 0.01 0.09 Report: Study: S09- S05 (Sorking) 21 Fruit 0.08 < 0.01 0.09 Report: Study: S09- S05 (Sorking) 21 Fruit 0.03 < 0.01 0.04 Report: Study: S09- S05 (Sorking) 21 Fruit 0.03 < 0.01 0.04 Study: S09- S05 (Sorking) 21 Fruit 0.03 < 0.01 0.08 Report: Study: S09- S05 (Sorking) 21 Fruit 0.03 < 0.01 0.08 Report: Study: S09- S05 (Sorking) 21 Fruit 0.04 < 0.01 0.08 Report: Study: S09- S05 (Sorking) 21 Fruit 0.04 < 0.01 0.08 Report: Study: S09- S05 (Sorking) 21 Fruit 0.04 < 0.01 0.08 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.05 < 0.01 0.06 Report: S09- S05 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.07 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.06 < 0.01 0.08 (Sorking) 2263 (Sorking) 21 Fruit 0.06 < 0.01 0.09 (Sorking) 20 (Sorking) 21 (Sorking) 20 (Sorking) 20 (Sorking) 20 (Sorking) 2	04				3	Fruit	0.11	< 0.01	0.12	R4429e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Calatorao, Aragon,				7	Fruit	0.12	< 0.01	$\frac{0.13}{0.02}$	Study: S09-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Spain, 2009				14	Fruit	0.08	< 0.01	0.09	02263
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Starking)	1150	000	1	21	Fruit	0.08	< 0.01	0.09	D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S09-2263-	115.2	800	1	0	Fruit	0.08	< 0.01	0.09	Report:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05 C1 :11 A				21	Fruit	0.03	< 0.01	0.04	R4429e
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chilleurs Aux									Study: 509-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Erance 2000									02203
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Golden)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$T_{rig1} = S00_{2263}$	111.2	965	1	0	Fruit	0.07	< 0.01	0.08	Report:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	06	111.2	705	1	3	Fruit	0.07	< 0.01	0.08	R4429e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Innenheim				7	Fruit	0.07	< 0.01	0.05	Study: S09-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Alsace.				14	Fruit	0.06	< 0.01	0.07	02263
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	France, 2009				21	Fruit	0.05	< 0.01	0.06	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Braeburn)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S09-2263-	115.7	602	1	0	Fruit	0.05	< 0.01	0.06	Report:
	07				21	Fruit	0.05	< 0.01	0.06	R4429e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Moissac, Tarn et									Study: S09-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Garonne,									02263
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	France, 2009									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Braeburn)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S09-2263-	108.9	945	1	0	Fruit	0.06	< 0.01	0.07	Report:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	08				3	Fruit	0.09	< 0.01	0.10	R4429e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Barboles,				7	Fruit	0.11	< 0.01	0.12	Study: S09-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Spain, 2009				14	Fruit	0.07	< 0.01	0.08	02263
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Golden)	11(0	706	1	21	Fruit	0.05	< 0.01	0.06	D (
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S09-2263-	116.2	706	1	0	Fruit	0.08	< 0.01	0.09	Report:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	09 Engingen Deden				3 7	Fruit	0.09	< 0.01	0.10	K4429e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Engingen, Baden				/	Fruit	0.00	< 0.01	0.07	Study: 509-
	Germany 2009				21	Fruit	0.07*	< 0.01	0.08*	* Control
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Fuii)				21	Truit	0.07	0.01	0.00	contained
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(I uji)									0.06 mg/kg
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S11-03148-	112.5	1000	1	21	Fruit	0.03	< 0.01	0.04	Report:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	01	-								R4472e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Altlandsberg,									Study: S11-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Brandenburg,									03148
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany, 2011									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Idared)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S11-03148-	111.9	995	1	0	Fruit	0.07	< 0.01	0.08	Report:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02				3	Fruit	0.14	< 0.01	0.15	R4472e
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hechthausen,				7	Fruit	0.09	< 0.01	$\frac{0.10}{0.07}$	Study: S11-
Germany, 2011 (Jonagored) 21 Fruit 0.04 < 0.01 0.05 Trial:- S11-03148- 03116.0722121Fruit 0.12 < 0.01 0.13 Report: R4472e Study: S11- 03148Vallères, Indre-et- Loire, France, 2011 (Pink lady)722121Fruit 0.12 < 0.01 0.13 Report: R4472e Study: S11- 03148Trial:- S11-03148- 04 Innenheim, Alsace, France, 2011 (Braeburn)112.06971 0 Fruit 7 0.09 < 0.01 0.10 Report: R4472e Study: S11- 03148	Niedersachsen,				14	Fruit	0.06	< 0.01	0.07	03148
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Germany, 2011				21	Fruit	0.04	< 0.01	0.05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Jonagored)	116.0	700	1	21	F '4	0.12	< 0.01	0.12	D (
Vallères, Indre-et-Loire, France, 2011 Image: Constraint of the second sec	1 mai:- 511-03148-	110.0	122	1	21	rruit	0.12	< 0.01	0.13	Report:
Values, indecer Loire, France, 2011 (Pink lady)Study: S11- 03148 Trial:- S11-03148- 04 Innenheim, Alsace, France, 2011 (Braeburn)112.069710Fruit 3 0.09< 0.01	Vallères Indra at									K44/20 Study: \$11
France, 2011 (Pink lady) 697 10Fruit 3 0.09 < 0.01 0.10 Report: 0.11 04 	Vancies, mare-el-									03148
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	France 2011									07170
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Pink ladv)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trial:- S11-03148-	112.0	697	1	0	Fruit	0.09	< 0.01	0.10	Report:
Innenheim, Alsace, France, 2011 (Braeburn)7Fruit Pruit 0.10 0.10 0.12 0.10 0.11 0.11 Study: S11- 0.12 21Fruit 0.10 0.10 0.01 0.11 0.12 0.12 0.3148	04	1.12.0	571	1	3	Fruit	0.11	< 0.01	0.12	R4472e
Alsace, France, 2011 (Braeburn)14 21 Fruit 0.11 0.10 < 0.01 < 0.01 0.12 0.11 0.3148	Innenheim,				7	Fruit	0.10	< 0.01	0.11	Study: S11-
France, 2011 (Braeburn) 21 Fruit 0.10 < 0.01 0.11	Alsace,				14	Fruit	0.11	< 0.01	0.12	03148
(Braeburn)	France, 2011				21	Fruit	0.10	< 0.01	0.11	
	(Braeburn)									

Apples	Application			DALA	Commodity	Residues (m	ig/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)	1.01	(any 5)		mate		fenpyroximat	
Country.year	(8)	()						e and M-1	
(Variety)								• •••••	
Trial:- \$11-03149-	121.0	1079	1	21	Fruit	0.05	< 0.01	0.06	Report:
01	121.0	1075	1	21	1 Tult	0.05	. 0.01	0.00	R4473e
Plasencia de Jalòn									Study: S11
Spain 2011									031/0
(Golden)									05147
Trial: \$11_031/0_	110.0	077	1	0	Fruit	0.09	< 0.01	0.10	Report:
111a1 511-051+9-	110.0)//	1	3	Fruit	0.09	< 0.01	0.10	R4473e
02 Calatorao				7	Fruit	0.00	< 0.01	0.09	Study: S11_
Spain 2011				14	Fruit	0.06	< 0.01	0.07	03149
(Fuii)				21	Fruit	0.00	< 0.01	0.07	05147
(1 uj1) Trial: \$11.03140	110.0	8/15	1	21	Fruit	0.04	< 0.01	0.03	Penart:
111a1 511-05149-	119.0	045	1	21	Tun	0.03	< 0.01	0.04	Report. P/173-
05 Drosero Della									K44/50 Study: S11
C_{rocco} 2011									02140
(Gronny Smith)									03149
Trial, S11 02140	111.0	097	1	0	Emit	0.08	< 0.01	0.00	Domonte
111a1 511-05149-	111.0	907	1	2	Fiult	0.08	< 0.01	0.09	Report.
04 Dudnia Emilia				3 7	Fruit	0.09	< 0.01	0.10	K44/50
Buurio, Emina-				/	Fruit	0.08	< 0.01	0.09	Study: 511-
Komagna,				14	Fruit	0.03	< 0.01	0.00	05149
$(E_{11}; 2011)$				21	Fruit	0.04	< 0.01	0.05	
(FUJI) Tui-1	110.7	1400	1	40	E	0.01	< 0.01	0.02	Dana at D
1 rial:	119.7	1490	1	42 5(Fruit	0.01	< 0.01	0.02	ALOS
AF/11088/INN/4				56	Fruit	0.01	< 0.01	0.02	4185
Golzdori, Lower									Study:
Saxony, Germany,									
2006									
Apple (El-tar)									
(Elstar)	110.4	1407	1	0	F '4	0.00	< 0.01	0.10	D (D
Jork, Genraem,	119.4	148/	1	0	Fruit	0.09	< 0.01	0.10	Keport: K-
Lower Saxony,				14	Fruit	0.09	< 0.01	0.10	4185
Germany, 2006				21	Fruit	0.06	< 0.01	0.07	Study:
Apple				42	Fruit	0.04	< 0.01	0.05	
(Gloser)	70.4	1476	1	<u> 20</u>	Fruit	0.04	< 0.01	0.05	
Irial:	/2.4	14/6	1	0	Fruit	0.04	< 0.01	0.05	Report: R-
AD/6100/NN/3				3	Fruit	0.02	< 0.01	0.03	4161
Malalbergo, Emila				/	Fruit	0.02	< 0.01	0.03	Study:
Romagna, Italy,				10	Fruit	0.01	< 0.01	0.02	
2001				14	Fruit	< 0.01	< 0.01	< 0.02	
Apple									
(Fuji)	70.1	1401	1	10	F '	0.01	10.01	0.02	D (D
I rial: $A D / (100/M D) / 4$	/0.1	1401	1	10	Fruit	0.01	< 0.01	0.02	Report: R-
AD/6100/NN/4				14	Fruit	0.02	< 0.01	0.03	4161
I intoria, Emila									Study:
Romagna, Italy,									
2001									
Apple									
(Double Red)		1025	1	40	P	0.02	. 0.01	0.02	D . D
Irial:	83.2	1035	1	42	Fruit	0.02	< 0.01	0.03	Report: R-
AF/11088/NN/1				56	Fruit	0.01	< 0.01	0.02	4185
Sigloy, N-France,									Study:
2006									
Apple									
(Canada)	70.0	000	1	0	E. S	0.04	.0.01	0.05	D
Trial:	79.8	993	1	0	Fruit	0.04	< 0.01	0.05	Report: R-
AF/11088/NN/2				14	Fruit	0.05	< 0.01	0.06	4185
Chilleurs-aux-				21	Fruit	0.04	< 0.01	0.05	Study:
Bois, N-France,				42	Fruit	0.03	< 0.01	0.04	l
2006				56	Fruit	0.02	< 0.01	0.03	
Apple									
(Golden)									l

Apples	Application			DALA	Commodity	Residues (m	ng/kg)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				mate		fenpyroximat	
Country,year								e and M-1	
(Variety)									
Trial:	74	1480	1	0	Fruit	0.05	< 0.01	0.06	Report: R-
AD/6100/NN/1				3	Fruit	0.05	< 0.01	0.06	4161
Castelsarrasin,				7	Fruit	0.04	< 0.01	0.05	Study:
Tarn-et-Garonne,				10	Fruit	0.04	< 0.01	0.05	
S-France, 2001				14	Fruit	0.02	< 0.01	0.03	
Apple									
(Granny Smith)									

Table 183 Residues in Apples (outdoor trails) from supervised trials in EU involving foliar applications (twice) of Fenpyroximate 5% SC

Apples	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial:- S 201.89 France, 1989	6+6		2	53	Fruit	0.07	< 0.02	0.09	Report: R- 4046e
	8+8		2	53	Fruit	0.03	< 0.02	0.05	Study:- RE- 9019-H
Trial:- S 202.89 France, 1989	6+6		2	69	Fruit	0.03	< 0.02	0.05	Report: R- 4046e
,	8+8		2	69	Fruit	0.04	< 0.02	0.06	Study:- RE- 9019-H
Trial:- S 302.89 France, 1989	6+6		2	48	Fruit	0.05	< 0.02	0.07	Report: R- 4046e
	8+8		2	48	Fruit	0.08	< 0.02	0.10	Study:- RE- 9019-H
Trial:- S 361.80 France, 1989	6		2	0 7 14 21 29	Fruit Fruit Fruit Fruit Fruit	0.10 0.08 0.03 0.02 0.03	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02	0.12 0.10 0.05 0.04 0.05	Report: R- 4046e Study:- RE- 9019-H
Trial: S 302.90 France, 1990	8		2	0 7 14 21 29	Fruit Fruit Fruit Fruit Fruit	<pre><0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02</pre>	<pre>< 0.02 < 0.02</pre>	<0.04 <0.04 <0.04 <0.04 <0.04 <0.04	Report: R- 4046e Study:- RE- 9019-H
Trial: S 303.90 France, 1990	8		2	0 7 14 21 29	Fruit Fruit Fruit Fruit Fruit Fruit	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	<0.04 <0.04 <0.04 <0.04 <0.04 <0.04	Report: R- 4046e Study:- RE- 9019-H
Trial: S 217.90 France, 1990	6+6		2	68	Fruit	< 0.02	< 0.02	< 0.04	Report: R- 4046e
	8+8		2	68	Fruit	< 0.02	< 0.02	< 0.04	Study:- RE- 9019-H
Trial: S 344.90 France, 1990	6+6		2	24	Fruit	< 0.02	< 0.02	< 0.04	Report: R- 4046e
,	8+8		2	24	Fruit	< 0.02	< 0.02	< 0.04	Study:- RE- 9019-H
Trial: S 344.90 France, 1990	6+6		2	45	Fruit	< 0.02	< 0.02	< 0.02	Report: R- 4046e
	8+8		2	45	Fruit	< 0.19	< 0.19	< 0.38	Study:- RE- 9019-H

Apples	Application			DALA	Commodity	Residues (mg/k	g)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)				15		fenpyroximate	
Country.vear	ίθ γ	, j						and M-1	
(Variety)									
Trial:-DEU 89 I	112.5+	1505	2	0	Fruit	0.10	ND	0.10	Report: R-
801/11	112.5	1505	-	7	Fruit	0.12	ND	0.12	4012g.
Drage-Elbstorf.	$28 \mathrm{dav}$	1000		14	Fruit	0.11	ND	0.11	A51901
Germany, 1989	interval			21	Fruit	0.10	ND	0.10	Study:-
(Golden	niter var			21	11010	0.10		0.10	Study:
Delicious)									
Trial:-DEU 89 I	1125+	1500	2	0	Fruit	0.19	0.01	0.2	Report: R-
801/21	112.5	1500	-	7	Fruit	0.18	0.01	0.19	4012σ
Bornheim-	20 day	1500		14	Fruit	0.10	0.01	0.11	A51901
Roisdorf	interval			21	Fruit	0.09	ND	0.09	Study:-
Germany 1989	inter var			21	1 fuit	0.09		0.09	Study.
(James Grive)									
Trial-DELL 89 I	64.3 + 86.8	857	2	0	Fruit	0.12	ND	0.12	Report: R-
801/31	28 day	110/	2	7	Fruit	0.12	0.01	0.12	$\frac{1012}{\sigma}$
Sauters	interval	11)4		14	Fruit	0.12	0.01	0.13	A 51901
Germony 1080	inter var			21	Fruit	0.08	0.01	0.09	Study:
(Closter)				21	Trun	0.11	0.01	0.12	Study
Trial: DELL 80 I	100 ± 115	1330	2	0	Emit	0.21	ND	0.21	Depart: D
111alDE0 89 1 801/41	100 + 115	1520	2	7	Fruit	0.21	0.01	0.21	$\frac{1012}{3}$
001/41 Efm /Uccohst	29 uay	1520		14	Fruit	0.19	0.01	0.2	4012g,
Cormony 1080	lintervar			1 4 21	Fiult	0.15	0.01	0.10	AJ1901 Study:
(Jonathan)				21	Fiun	0.10	0.01	0.17	Study
	150 + 150	1505	2	0	E '4	0.24	0.02	0.20	
1 rial:-DEU 89 1	150 + 150	1505	2	0	Fruit	0.24	0.02	0.26	Report: R-
811/11	28 day	1505		/	Fruit	0.23	0.01	0.24	4016g,
Dorage-Elbstori,	interval			14	Fruit	0.24	0.02	0.26	A51902
Germany, 1989				21	Fruit	0.24	0.02	0.26	Study:-
(Golden									
Delicious)	05.0 + 100.0	0.50	•	0	n 1.	0.12	. 0. 01	0.12	D . D
Trial:-DEU 89 I	95.3 + 132.2	952	2	0	Fruit	0.12	< 0.01	0.13	Report: R-
811/31	28 day	1321		/	Fruit	< 0.01	< 0.01	< 0.02	4016g,
Sauters,	interval			14	Fruit	0.12	0.01	0.13	A51902
Germany, 1989				21	Fruit	0.12	0.01	0.13	Study:-
(Gloster)	112.5	1500	2	0	Emit	0.21	< 0.05	0.26	Davida D
1 mai:- 0101	112.5 +	1500	2	0	Fruit	0.21	< 0.05	0.20	A071-
winsen-Hoople,	112.5	1000		/	Fruit	0.17	< 0.05	0.22	40/16,
Germany, 1990	27 day			14	Fruit	0.13	< 0.05	0.18	A49847
(Gloster)	interval			21	Fruit	0.08	< 0.05	0.13	Study:-
T 1 0102	75 + 75	1000	2	28	Fruit	0.11	< 0.05	0.10	
1 rial:- 0102	$\frac{15+15}{26+1}$	1000	2	0	Fruit	0.13	< 0.05	0.18	Keport: K-
Born-neim-	20 day	1000		/	Fruit	0.08	< 0.05	0.13	40/1e,
Roisdorf,	interval			14	Fruit	0.08	< 0.05	0.13	A49847
Germany, 1990				21	Fruit	0.06	< 0.05	0.11	Study:-
(Cox Orange)				28	Fruit	< 0.05	< 0.05	< 0.10	
				21	Cider	< 0.05	< 0.05	< 0.10	
				21	Pomace	< 0.05	< 0.05	< 0.10	
				21	Marc	0.13	< 0.05	0.18	
				21	Washings	< 0.05	< 0.05	< 0.10	
					(cider)	a a -	.	0.10	
				21	Washings	< 0.05	< 0.05	< 0.10	
					(pomace)				
Irial:- 0301	114.5 +	1500	2	0	Fruit	0.05	< 0.05	0.10	Report: R-
Sauters-Lindau,	114.5	1500		7	Fruit	< 0.05	< 0.05	< 0.10	4071e,
Germany, 1990	27 day			14	Fruit	< 0.05	< 0.05	< 0.10	A49847
(Roter Boskop)	interval			21	Fruit	< 0.05	< 0.05	< 0.10	Study:-
				28	Fruit	< 0.05	< 0.05	< 0.10	

Apples	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial Location Country year	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
(Variety)									
Trial:- 0401 FHöchst, Germany, 1990	81 + 81 28 day interval	1083 1083	2	0 7 14 21	Fruit Fruit Fruit	0.24 0.21 0.18	< 0.05 < 0.05 < 0.05	0.29 0.26 0.23	Report: R- 4071e, A49847
(Aikmene)				21 28 21 21 21 21 21 21	Fruit Fruit Cider Pomace Marc Washings (cider) Washings (pomace)	0.13 0.13 < 0.05 < 0.05 0.39 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 0.05 < 0.05 < 0.05	$\begin{array}{l} 0.20\\ 0.18\\ < 0.10\\ < 0.10\\ 0.44\\ < 0.10\\ < 0.10\\ \end{array}$	Study:-
Trial:- UKPVB1 Staplehurst, Kent., UK, 1993 (Cox)	2.5 +2.5 g ai/hL Spray to runoff		2	14	Whole fruit	0.02	< 0.01	0.03	Report: R- 4099e, A53347 Study: RESID/94/20
Trial:- UKPVB2 Gorefield, Cambs., UK, 1993 (Bramley)	2.5 +2.5 g ai/hL Spray to runoff		2	14	Whole fruit	< 0.01	< 0.01	< 0.02	Report: R- 4099e, A53347 Study: RESID/94/20
Trial:- UKPVB3 Alresford, Essex., UK, 1993 (Cox)	2.5 +2.5 g ai/hL Spray to runoff		2	14	Whole fruit	0.03	< 0.01	0.04	Report: R- 4099e, A53347 Study: RESID/94/20
Trial:- UKPVB4 Harrietsham, Kent., UK, 1993 (Cox)	2.5 +2.5 g ai/hL Spray to runoff		2	14	Whole fruit	0.03	< 0.01	0.04	Report: R- 4099e, A53347 Study: RESID/94/20
5.2.1/18 Report: R-4099e, A53347 Study: RESID/94/20 Trial:- UKPVB5 Ridgewell, Essex., UK, 1993 (Cox)	2.5 +2.5 g ai/hL Spray to runoff		2	14	Whole fruit	0.03	< 0.01	0.04	Report: R- 4099e, A53347 Study: RESID/94/20

Table 184 Residues in Apples (outdoor trails) from supervised trials in New Zealand, Chile, Brazil and Australia involving foliar applications of Fenpyroximate 5% SC

Apples	Application	Application			Commodity	Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial:- 91/653	2.5 g/100L	1500-	1	0	Fruit	0.07	-	0.07	Report: R-
Hawkes Bay,	38-88	3500		7	Fruit	0.07	-	0.07	4049e
New Zealand,				14	Fruit	0.12	-	0.12	Study:-
1991				28	Fruit	ND	-	ND	Study not to
(Braeburn)				42	Fruit	ND	-	ND	GLP

Apples	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)		· · · ·		10		fenpyroximate	
Country,year	ũ ,	, , , , , , , , , , , , , , , , , , ,						and M-1	
(Variety)									
	5 g/100L	1500-	1	0	Fruit	0.13	-	0.13	
	75-175	3500		7	Fruit	0.10	-	0.10	
				14	Fruit	0.05	-	0.05	
				28	Fruit	0.03	-	0.03	
				42	Fruit	ND	-	ND	
				56	Fruit	ND	-	ND	
	2.5 g/100L	1500-	1	0	Fruit	0.07	-	0.07	Report: R-
Trial:- 91/976	38-88	3500		7	Fruit	0.12	-	0.12	4049e
Rangiora,				14	Fruit	0.13	-	0.13	Study:-
New Zealand,				28	Fruit	ND	-	ND	Study not to
1991				42	Fruit	ND	-	ND	GLP
(Braeburn)							-		
. ,	5 g/100L	1500-	1	0	Fruit	0.15	-	0.15	l
	75-175	3500		7	Fruit	0.07	-	0.07	
				14	Fruit	0.04	-	0.04	
				28	Fruit	0.03	-	0.03	
				42	Fruit	0.01	-	0.01	
				56	Fruit	ND	-	ND	
Trial:- 91/1163	2.5 g/100L	1500-	1	0	Fruit	0.05	-	0.05	Report: R-
Waikato,	38-88	3500		7	Fruit	0.09	-	0.09	4049e
New Zealand,				14	Fruit	0.03	-	0.03	Study:-
1991				21	Fruit	ND	-	ND	Study not to
(Fuji)				28	Fruit	ND	-	ND	GLP
				42	Fruit	0.01	-	0.01	
	5 g/100L	1500-	1	0	Fruit	0.20	-	0.20	l
	75-175	3500		7	Fruit	0.06	-	0.06	
				14	Fruit	0.02	-	0.02	
				21	Fruit	ND	-	ND	
				28	Fruit	ND	-	ND	
				42	Fruit	ND	-	ND	
				56	Fruit	ND	-	ND	
Trial:- 152/94	2.5 g ai/100		1	16	-	0.01	< 0.01	0.02	Report: R-
Molina,	L			37	-	< 0.01	< 0.01	< 0.02	4061e
Chile, 1993				47	-	< 0.01	< 0.01	< 0.02	Study:-
(Braeburn)				70	-	< 0.01	< 0.01	< 0.02	Study not to
	5 g ai/100 L		1	16	-	0.04	< 0.01	0.05	GLP
	-			37	-	0.02	< 0.01	0.03	
				47	-	< 0.01	< 0.01	< 0.02	
				70	-	< 0.01	< 0.01	< 0.02	
Trial:- 152/94	2.5 g ai/100		1	65	-	0.00	0.00	0.00	Report: R-
Molina,	L								4061e
Chile, 1993									Study:-
(Gala)									Study not to
									GLP
Trial:- 152/94	2.5 g ai/100		1	122	-	0.02	0.00	0.02	Report: R-
Molina,	L								4061e
Chile, 1993									Study:-
(R.K. Oregon)									Study not to
									GLP
Trial: 94/699	2.5 g ai/100	1500-	1	1	Fruit	0.08	-	0.08	Report: R-
Hastings,	L	3500		7	Fruit	0.06	-	0.06	4065e
New Zealand,	38-88			14	Fruit	0.03	-	0.03	
1994				21	Fruit	0.04	-	0.04	
(Braeburn)				28	Fruit	0.03	-	0.03	
				35	Fruit	0.02	-	0.02	
				42	Fruit	0.02	-	0.02	
				49	Fruit	0.02	-	0.02	

Apples	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)						fenpyroximate	
Country,year								and M-1	
(Variety)									
	5 g ai/100 L	1500-	1	1	Fruit	0.13	-	0.13	
	75-175	3500		7	Fruit	$\frac{0.11}{0.06}$	-	$\frac{0.11}{0.06}$	
				14	Fruit	0.06	-	0.06	
				21	Fruit	0.04	-	0.04	
				28	Fruit	0.05	-	0.05	
				33 42	Fruit	0.03	-	0.03	
				42 40	Fruit	0.04	-	0.04	
$T_{rigl} = 0/123/$	2.5 g ai/100	1500-	1	49 1	Fruit	0.02	-	0.02	Report: R-
Waikato	L. g al/100	3500	1	7	Fruit	0.02	_	0.02	4065e
New Zealand	38-88	5500		14	Fruit	ND	_	ND	10050
1994	50 00			23	Fruit	ND	-	ND	
(Roval Gala)				27	Fruit	ND	-	ND	
				36	Fruit	ND	-	ND	
				43	Fruit	ND	-	ND	
				52	Fruit	ND	-	ND	
	5 g ai/100 L	1500-	1	1	Fruit	0.08	-	0.08	
	75-175	3500		7	Fruit	0.05	-	0.05	
				14	Fruit	0.03	-	0.03	
				23	Fruit	0.02	-	0.02	
				27	Fruit	0.02	-	0.02	
				36	Fruit	0.01	-	0.01	
				43	Fruit	ND	-	ND	
T : 1 . 00 /1 T 0 0				52	Fruit	ND	-	ND	
Trial:- 93/1729	2.5 g ai/100	1500-	1	1	Fruit	0.11	-	0.11	Report: R-
Rangiora,	L 20.00	3500		9	Fruit	0.05	-	0.05	4065e
New Zealand,	38-88			14	Fruit	0.04	-	0.04	
1994 (December 2010)				21	Fruit	0.04	-	0.04	
(Braeburn)				20 35	Fruit	0.02	-	0.02	
				33 42	Fruit	0.02	-	0.02	
				40 40	Fruit	0.02		0.02	
				54	Fruit	ND	_	ND	
	5 g ai/100 L	1500-	1	1	Fruit	0.15	-	0.15	
	75-175	3500	-	9	Fruit	0.06	-	0.06	
				14	Fruit	0.08	-	0.08	
				21	Fruit	0.03	-	0.03	
				28	Fruit	0.03	-	0.03	
				35	Fruit	0.04	-	0.04	
				42	Fruit	0.03	-	0.03	
				49	Fruit	0.01	-	0.01	
				54	Fruit	0.01	-	0.01	
Report: R-4065e	2.5 g ai/100	1500-	1	1	Fruit	0.04	-	0.04	Report: R-
Study:-		3500		7	Fruit	0.01	-	0.01	4065e
1 rial:- 94/17/37/	38-88			14	Fruit	0.03	-	0.03	Study:-
Kangiora,				21	Fruit	0.02 ND	-	0.02 ND	
New Zealand,				28 25	Fruit	ND 0.01	-	ND 0.01	
(Prochurn)				33 42	Fruit	0.01	-	0.01	
(Blaebuill)				42 40	Fruit	0.02 ND	-	0.02 ND	
				56	Fruit	0.01	-	0.01	
	5 σ ai/100 I	1500-	1	1	Fruit	0.08	-	0.08	L.
	75-175	3500	1	7	Fruit	0.07	-	0.07	
	,5 1,5	5500		14	Fruit	0.06	-	0.06	
				21	Fruit	0.05	-	0.05	
				28	Fruit	0.03	-	0.03	
				35	Fruit	0.03	-	0.03	
				42	Fruit	0.03	-	0.03	
				49	Fruit	0.03	-	0.03	
				56	Fruit	0.03	-	0.03	

Apples	Application			DALA	Commodity	Residues (mg/k	Reference &		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial:- Cosmopolis, Brazil, 1989 (Anna)	25 + 25 35 day interval	1000 1000	2	15 30	Fruit Fruit	< 0.05 < 0.05	< 0.05 < 0.05	< 0.10 < 0.10	Report: R- 4093e, A46385 Study:- Study not to GLP
Trial:- Cosmopolis, Brazil, 1989 (Anna)	50 + 50 35 day interval	1000 1000	2	15 30	Fruit Fruit	< 0.05 < 0.05	< 0.05 < 0.05	< 0.10 < 0.10	R-4094e, A46386 Study:- Study not to GLP
Trial:- Cosmopolis, Brazil, 1989-90 (Ohio Beauty)	50 + 50 34 day interval	1000 1000	2	15 30	Fruit Fruit	< 0.05 < 0.05	< 0.05 < 0.05	< 0.10 < 0.10	Report: R- 4095e, A46387 Study:- Study not to GLP
Trial:- Cosmopolis, Brazil, 1989-90 (Ohio Beauty)	100 + 100 34 day interval	1000 1000	2	15 30	Fruit Fruit	< 0.05 < 0.05	< 0.05 < 0.05	< 0.10 < 0.10	Report: R- 4096e, A46388 Study:- Study not to GLP
Trial: Apples, 100 mL/100 L Australia, 1992 (Golden delicious)	83.3		1	0 7 14 24	Fruit Fruit Fruit Fruit	0.10 <u>0.07</u> 0.10 0.08	< 0.01 < 0.01 < 0.01 < 0.01	0.11 <u>0.08</u> 0.11 0.09	Report: R- 4048 Study: 92/12/1378
Trial: Apples, 200 mL/100 L Australia, 1992 (Golden delicious)	166.6		1	0 7 14 24	Fruit Fruit Fruit Fruit	0.28 0.26 0.18 0.14	< 0.01 < 0.01 < 0.01 < 0.01	0.29 0.27 0.19 0.15	Report: R- 4048 Study: 92/12/1378

Table 185 Residues in Apples (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% EC

Apples	Application			DALA	Commodity Residues (mg/kg)			Reference &	
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: MI Ottawa, MI, USA, 1993 (Golden Delicious)	145 + 145 14 day interval	1814 1805	2	7	Whole fruit Juice Wet pomace	0.21, 0.15, 0.18 < 0.05 0.93	< 0.05 < 0.05 0.07	0.26,0.20, 0.23 < 0.10 1.00	Report: R- 4106e Study:- AA940423
Trial: NY Wayne, NY, USA, 1993 (Idared)	150 + 149 14 day interval	1879 1870	2	7	Whole fruit Juice Wet pomace	0.10,0.15, 0.13 < 0.05 0.65	< 0.05 < 0.05 < 0.05	0.15,0.20, 0.18 < 0.10 0.70	Report: R- 4106e Study:- AA940423
Trial: PA Berks, PA, USA, 1993 (Rome)	148 + 151 14 day interval	1823 1870	2	7	Whole fruit Juice Wet pomace	0.06,0.10, 0.08 < 0.05 0.48	< 0.05 < 0.05 < 0.05	0.11,0.15, 0.13 < 0.10 0.53	Report: R- 4106e Study:- AA940423
Trial: WA Grant, WA, USA, 1993 (Red Delicious)	145 + 150 14 day interval	1833 1889	2	7	Whole fruit Juice Wet pomace	0.10,0.09, 0.10 < 0.05 0.38	< 0.05 < 0.05 < 0.05	0.15,0.14, 0.15 < 0.10 0.43	Report: R- 4106e Study:- AA940423

Apples	Application			DALA	Commodity	Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: NY01 North Rose, NY, USA, 1999 (Monroes)	1142	935	1	14	Whole fruit Juice Dry pomace Wet pomace	ND,0.084,0 0.09 < 0.01 2.563 0.309 (residues mo fenpyroxima	104, easured as the ate + M-1)	sum of	Report: R- 4120e Study:- 828W-1

Table 186 Residues in Apples (outdoor trails) from supervised trials in Japan involving foliar applications of Fenpyroximate 5% SC or 5% EC

Apples	Application	1		DALA	Commodity	Residues (mg/k	esidues (mg/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	-	Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial:- Aomori Aomori, Japan, 1988 (Fuji)	140	2800	1	15 30 45 60	Fruit Fruit Fruit Fruit	0.11 0.08 0.03 0.04	< 0.01 < 0.01 < 0.01 < 0.01	0.12 0.09 0.04 0.05	Report: R- 4058e Study: NN023-01, NN023-02
Trial:- Nagano Nagano, Japan, 1988 (Fuji)	250	5000	1	14 30 45 60	Fruit Fruit Fruit Fruit	0.05 0.03 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.06 0.04 < 0.02 < 0.02	Report: R- 4058e Study:- NN023-01, NN023-02
Trial:- Aomori Japan, 1988 (Fuji)	140	280 L/10a	1	14 29 45 60	Fruit Fruit Fruit Fruit	0.09 0.07 0.04 0.06	- - -	0.09 0.07 0.04 0.06	Report: R4260e Study:- NN023-04 Study not to GLP
Trial:- Nagano Japan, 1988 (Fuji)	250	500 L/10a	1	14 30 45 60	Fruit Fruit Fruit Fruit	0.05 < 0.01 0.03 0.01	- - - -	0.05 < 0.01 0.03 0.01	Report: R4260e Study:- NN023-04 Study not to GLP
Trial:- Aomori Japan, 1988 (Fuji)	140	280 L/10a	1	14 29 45 60	Fruit Fruit Fruit Fruit	-	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	Report: R- 4261e Study:- NN023-04 Study not to GLP
Trial:- Nagano Japan, 1988 (Fuji)	250	500 L/10a	1	14 30 45 60	Fruit Fruit Fruit Fruit	-	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	Report: R- 4261e Study:- NN023-04 Study not to GLP

Pear

Table 187 Residues in Pears (outdoor trails) from supervised trials in New Zealand, Japan, Australia, USA and EU involving foliar applications of Fenpyroximate 5% SC or 5% EC

Pears	Application			DALA	Commodity	Residues (mg/k	g)		Reference
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	&
Location	(g ai/ha)	(L/ha)						fenpyroximate and	Comments
Country, year								M-1	
(Variety)									
Trial: 93/1730	2.5 g ai/100	1500-	1	1	Fruit	0.14	-	0.14	Report: R-
Christchurch,	L	3500		9	Fruit	0.07		0.07	4066
New Zealand,	Spray to			14	Fruit	0.04		0.04	Study:
1994	runoff			21	Fruit	0.05		0.05	93/35D
(Winter Cole)	38-88			28	Fruit	0.04		0.04	
				35	Fruit	0.03		0.03	
				42	Fruit	0.01		0.01	
				49	Fruit	0.02		0.02	
	-			54	Fruit	0.03		0.03	
	5 g ai/100 L	1500-	1	1	Fruit	0.23	-	0.23	
	Spray to	3500		9	Fruit	0.19		0.19	
	runoff			14	Fruit	0.07		0.07	
	75-175			21	Fruit	0.06		0.06	
				28	Fruit	0.05		0.05	
				35	Fruit	0.04		0.04	
				42	Fruit	0.02		0.02	
				49	Fruit	0.01		0.01	
		1		54	Fruit	ND		ND	
Trial: 94/1738	2.5 g ai/100	1500-	1	1	Fruit	0.09	-	0.09	Report: R-
New Zealand,	L	3500		14	Fruit	0.06		0.06	4066
1994	Spray to			21	Fruit	0.04		0.04	Study:
(Winter Cole)	runoff			28	Fruit	0.02		0.02	93/35D
				42	Fruit	0.02		0.02	
				56	Fruit	0.01		0.01	
	5 g ai/100 L	1500-	1	1	Fruit	0.12	-	0.12	
	Spray to	3500		14	Fruit	0.14		0.14	
	runoff			21	Fruit	0.07		0.07	
				28	Fruit	0.08		0.08	
				42	Fruit	0.03		0.03	
	1.5.0			56	Fruit	0.02		0.02	
Trial: CA1	450	944	1	14	Fruit	0.0817, 0.0643	< 0.05	0.1317, 0.1143	Report: R-
Porterville, CA,						0.0720		0 1220	4154
USA, 2001	152	0.4.4	1	1.4	D	0.0730		0.1230	Study:
(Shinko)	453	944	1	14	Fruit	0.0/33, 0.0/12	< 0.05	0.1233, 0.1212	AA010/0/
						0.0722		0.1222	
Trial: CA2	450	916	1	14	Fruit	0.119,0.131	0.0528,0.0624	0.1718,0.1934	Report: R-
Porterville, CA.		-10	ſ		1 1 01 0	0.125	0.0576	0.1826	4154
USA. 2001									Study:
(Bosc)									AA010707
()									(EC)
Trial: NY1	446	935	1	14	Fruit	0.232, 0.319	0.0689, 0.0741	0.3009, 0.3931	Report: R-
Lyons, NY,						,	,	,	4154
USA, 2001						0.276	0.0715	0.3475	Study:
(Bartlett)									AA010707
· /									(EC)
Trial: OR1	447	1122	1	14	Fruit	0.1494, 0.185	< 0.05	0.1994,	Report: R-
Corvallis, OR.						,		0.235	4154
USA. 2001						0.173		0.200	Study:
(Red Aniou)			1					0.223	AA010707
· · · · · ·	447	954	1	14	Fruit	0.173.	< 0.05	0.223, 0.235	
		[- ·	ſ	[0.185		,	
								0.229	
						0.179			
		1	1					l	I
Pears	Application			DALA	Commodity	nmodity Residues (mg/kg)			
---	-------------------	-----------------	-----	---------------------------	---	--	--	---	--
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	& Comments
Trial: OR2 Corvallis, OR, USA, 2001 (Cascade)	454	935	1	7 14 21 28	Fruit	0.212,0.214, 0.213 0.152,0.175, <u>0.164</u> 0.134,0.127,0.131 0.148,0.150,0.149	0.0623,0.0694 0.0689 0.0536,0.05250.0531 0.0556, 0.05, 0.0528 < 0.05,0.0529,0.0515	0.2743,0.2834 2819 0.2056,0.2275 <u>0.2171</u> 0.1896,0.127,0.1838 0.198,0.2029,0.2005	Report: R- 4154 Study: AA010707 (EC)
Trial: WA1 Ephrata,	448	963	1	14	Fruit	0.245,0.199 0.242	0.0643,0.0516 0.0540	0.3093,0.2506 0.296	Report: R- 4154
WA, USA, 2001 (Bartlett)	449	963	1	14	Fruit	0.252,0.273 0.263	< 0.05	0.302,0.323 0.313	Study: AA010707
Trial: AD/6100/NN/2 Lagarde, Tarn-et- Garonne, S- France, 2001 (Cornice)	73.8	1476	1	10 14	Fruit Fruit	0.03 0.02	< 0.01 < 0.01	0.04 0.03	Report: R- 4161 Study:
Trial: AF/11088/NN/3 Corquilleroy, N- France, 2006 (Crassane)	120.0	1493	1	0 14 21 42 56	Fruit Fruit Fruit Fruit Fruit	0.08 <u>0.04</u> 0.04 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.09 0.05 0.05 0.03 0.03	Report: R- 4185 Study:
Trial: CA-17A1.	112	926	1	14	Fruit	< 0.05	< 0.05	< 0.10	Report: R-
0.1 Madera, CA, USA, 2005 (Asian)	448	926	1	14	Fruit	0.195,0.250 0.223	0.095,0.113 0.104	0.29,0.363, 0.327	4201 Study: (EC)
Trial: CA-17A2, 0.1	112	935	1	14	Fruit	0.070,0.101 <u>0.086</u>	< 0.05, < 0.05 < 0.05	0.120,0.151 <u>0.136</u>	Report: R- 4201
Linda/Marysville, CA, USA, 2005 (Bartlett)	448	935	1	14	Fruit	0.345,0.265 0.305	0.05, < 0.05 0.05	0.395,0.315 0.355	Study: (EC)
Trial: WA-17A, 0.1	112	935	1	14	Fruit	0.052, < 0.05 0.051	< 0.05,0.032 < 0.05	0.102,0.082 0.101	Report: R- 4201
Ephrata, WA, USA, 2005 (Concord)	448	935	1	14	Fruit	0.2449,0.155 0.202	0.146,0.092 < 0.05	0.395,0.247 0.252	Study: (EC)
Trial location: Niigata Japan, 1988 (Niitaka)	250	500 L/10a	1	7 14 21 30 60	Fruit Fruit Fruit Fruit Fruit	0.066 0.044 0.032 < 0.005 0.010	- - - -	0.066 0.044 0.032 < 0.005 0.010	Report: R- 4263 Study: NN024-01
Trial location: Tokushima Japan, 1988 (Kosui)	250	500 L/10a	1	7 13 21 30 60	Fruit Fruit Fruit Fruit Fruit	0.194 0.110 < 0.005 0.119 < 0.005	-	0.194 0.110 < 0.005 0.119 < 0.005	Report: R- 4263 Study: NN024-01
Trial location: Niigata Japan, 1988 (Niitaka)	250	500 L/10a	1	7 14 21 30 60	Fruit Fruit Fruit Fruit Fruit	- - - -	0.008 0.008 0.008 < 0.005 < 0.005	0.008 0.008 0.008 < 0.005 < 0.005	Report: R- 4264 Study: NN024-02
Trial location: Tokushima Japan, 1988 (Kosui)	250	500 L/10a	1	7 13 21 30 60	Fruit Fruit Fruit Fruit Fruit	-	0.019 0.012 < 0.005 0.016 < 0.005	0.019 0.012 < 0.005 0.016 < 0.005	Report: R- 4264 Study: NN024-02

Pears	Application			DALA	Commodity	Residues (mg/kg		Reference	
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	&
Location	(g ai/ha)	(L/ha)						fenpyroximate and	Comments
Country, year								M-1	
(Variety)									
Trial location:	250	500	1	7	Fruit	0.055	-	0.055	Report: R-
Niigata		L/10a		14	Fruit	0.040	-	0.040	4266
Japan, 1988				21	Fruit	0.046	-	0.046	Study:
(Niitaka)				30	Fruit	< 0.005	-	< 0.005	NN024-03
				60	Fruit	0.018	-	0.018	
Trial location:	250	500	1	7	Fruit	0.172	-	0.172	Report: R-
Tokushima		L/10a		13	Fruit	0.118	-	0.118	4266
Japan, 1988				21	Fruit	< 0.005	-	< 0.005	Study:
(Kosui)				30	Fruit	0.106	-	0.106	NN024-03
				60	Fruit	< 0.005	-	< 0.005	
Trial: Pears,	0.45 g	100	1	0	Fruit	0.08	< 0.01	0.09	Report: R-
Australia, 1992	ai/tree	mL/100		7	Fruit	0.06	< 0.01	0.07	4048
(Williams)		L		14	Fruit	0.05	< 0.01	0.06	Study:
				22	Fruit	0.06	< 0.01	0.07	
Trial: Pears,	0.9 g ai/tree	100	1	0	Fruit	0.09	< 0.01	0.10	Report: R-
Australia, 1992	-	mL/100		7	Fruit	0.08	< 0.01	0.09	4048
(Williams)		L		14	Fruit	0.10	< 0.01	0.11	Study:
				22	Fruit	0.10	< 0.01	0.11	

Stone fruits

Cherry

Table 188 Residues in Cherries (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% $\rm EC$

Cherries	Application			DALA	Commodity	ty Residues (mg/kg)			
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	-	Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Reference & Comments
Trial: 10-CA90 Parlier, CA, USA, 2010 (Tulare)	113, 112 (Induce) 113, 112 (Silwet L-77) 113, 112	1327 1318 1337 1318 1328	2 2 2	7 7 7	Fruit without pits and stems Fruit without pits and stems Fruit without	0.332,0.319 0.326 0.409,0.505 <u>0.457</u> 0.276,0.269 0.273	< 0.05 < 0.05 < 0.05	0.382,0.369 0.376 0.459,0.555 <u>0.507</u> 0.326,0.319 0.323	Report: R- 4519; Study- 10438.10- MIR02
Trial: 10-CO03 Montrose, CO, USA 2010	(no surfactant) 108, 117	907 982	2	7	Cherries without pits and stems	0.617,0.754 0.686	0.0921,0.108 0.100	0.7091,0.862 <u>0.787</u>	Report: R- 4519; Study- 10438 10-
(Montmorency) Trial: .10-MI24 Fennville, MI, USA, 2010	112, 111	561 561	2	7	Cherries without pits and stems	0.590.0.584 0.587	0.0812,0.0659 0.0736	0.6712,0.6499 <u>0.6606</u>	MIR02 Report: R- 4519; Study- 10438.10- MIR02
Trial: 10-MI25 Fennville, MI, USA, 2010 (Montmorency)	111, 112	1066 1122	2	7	Cherries without pits and stems	0.839,0.897 <u>0.868</u>	0.112,0.123 0.118	0.951,1.02 <u>0.986</u>	Report: R- 4519; Study- 10438.10- MIR02
Trial: 10-MI26 Fennville, MI, USA, 2010 (Heidelfingen)	112, 113	1026 1066	2	7	Cherries without pits and stems	0.359,0.356 <u>0.358</u>	< 0.05	0.409,0.406 <u>0.408</u>	Report: R- 4519; Study- 10438.10- MIR02
Trial: 10-NY12 Ithaca, NY, USA, 2010 (Galaxy)	112, 112	1057 1103	2	7	Cherries without pits and stems	0.763,0850 0.807	0.122,0.120 0.121	0.885,0.970 0.928	Report: R- 4519; Study- 10438.10- MIR02

Cherries	Application			DALA	Commodity	Residues (mg/k	(g)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Reference & Comments
Trial: 10-WA22 Procsser, WA,	114, 113 (Ad Wet 90)	1047 1318	2	7	Fruit without pits and stems	0.0889,0.0978 0.093	< 0.05	0.1389,0.1478 0.143	Report: R- 4519; Study-
USA, 2010 (Bing)	111, 106 (JMS Stylet oil)	982 991	2	7	Fruit without pits and stems	0.345,0.334, <u>0.340</u>	< 0.05	0.395,0.384 <u>0.390</u>	10438.10- MIR02
	114, 111 (no surfactant)	991 991	2	7	Fruit without pits and stems	0.313,0.285 0.299	< 0.05	0.363,0.335 0.349	
Trial: 10-WA*23 Wapato, WA, USA, 2010 (Bing)	110, 110	1000 1000	2	8	Cherries without pits and stems	0.275,0.249 <u>0.262</u>	< 0.05	0.325,0.299 0.312	Report: R- 4519; Study- 10438.10- MIR02

Peach

Table 189: Residues in Peaches (outdoor trails) from supervised trials in Japan, USA and EU involving foliar applications of Fenpyroximate 5% SC or 5% EC

Peaches Application				DALA	Commodity Residues (mg/kg)				Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximat e	M-1	Sum of fenpyroximat e and M-1	Comments
Trial location: Nagano Japan, 1989 (Peach)	250	500 L/10a	1	7 14 21	Flesh–Stone Flesh–Stone Flesh–Stone	0.008 < 0.005 < 0.005	- -	0.008 < 0.005 < 0.005	Report: R- 4134 Study: -
Trial location: Okayama Japan, 1989 (Peach)	150	500 L/10a	1	7 14 21	Flesh–Stone Flesh–Stone Flesh–Stone	< 0.005 < 0.005 < 0.005	-	< 0.005 < 0.005 < 0.005	Report: R- 4134 Study: -
Trial: 9051 TL1 Fronton, S-France, 1999 (Peach)	82.2	1000	1	21	Fruit	0.025	-	0.025	Report: R- 4147 Study: 9051
Trial: 9051 BD1 Pont-de-l'Isere, S- France, 1999 (Peach)	76.6	1000	1	21	Fruit	0.039	-	0.039	Report: R- 4147 Study: 9051
Trial: AF/6101/NN/1 St Hilaire St Mesmin, Loiret, N-France, 2001 (Sun Crest)	73.2	1464	1	0 3 7 10 14 0 3 7 10 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.17 0.11 0.07 0.06 0.04 0.15 0.09 0.06 0.05 0.04	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.18 0.12 0.08 0.07 0.05 0.16 0.10 0.07 0.06 0.05	Report: R- 4166 Study: AF/6101/NN
Trial: AF/6101/NN/2 Clery Saint Andre, Loiret, N-France, 2001 (Velvet)	77.2	1544	1	10 14 10 14	Fruit–Stones Fruit–Stones Whole fruit Whole fruit	0.01 0.02 0.01 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.02 0.03 0.02 0.03	Report: R- 4166 Study: AF/6101/NN

Peaches	Application			DALA	Commodity	Residues (mg/	kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximat e	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: AF/6771/NN/1 Catelsarrasin, Tarn-et-Garonne, S-France, 2002 (Royal Glorie)	80.2	1601	1	0 3 7 10 14 0 3 7 10 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	$\begin{array}{c} 0.07\\ 0.05\\ 0.04\\ 0.01\\ < 0.01\\ 0.06\\ 0.05\\ 0.04\\ 0.01\\ < 0.01\\ < 0.01 \end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$\begin{array}{c} 0.08\\ 0.06\\ 0.05\\ 0.02\\ < 0.02\\ 0.07\\ 0.06\\ 0.05\\ 0.02\\ < 0.02\\ < 0.02 \end{array}$	Report: R- 4174 Study: AF/6771/NN
Trial: AF/6771/NN/2 Moissac, Tarn-et- Garonne, S- France, 2002 (Royal Glory)	75.9	1518	1	10 14 10 14	Fruit–Stones Fruit–Stones Whole fruit Whole fruit	0.05 0.02 0.05 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.06 0.03 0.06 0.03	Report: R- 4174 Study: AF/6771/NN
Trial: AF/6771/NN/3 San Jose de la Rinconada, Seville, S-Spain, 2002 (SP4)	71.6	1432	1	10 14 10 14	Fruit–Stones Fruit–Stones Whole fruit Whole fruit	0.03 0.04 0.03 0.04	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.05 0.04 0.05	Report: R- 4174 Study: AF/6771/NN
Trial: AF/6771/NN/4 Calatorao, Zaragoza, Spain, 2002 (Sudanel)	74.6	1491	1	0 3 7 10 14 0 3 7 10 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.06 0.03 0.02 0.02 0.02 0.02 0.06 0.03 0.02 0.02 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.	0.07 0.04 0.03 0.03 0.03 0.07 0.04 0.03 0.03 0.03 0.03	Report: R- 4174 Study: AF/6771/NN
Trial: AF/6771/NN/5 Utebo, Zaragoza, N-Spain, 2002 (Baby Gold 7)	75.3	1505	1	10 14 10 14	Fruit–Stones Fruit–Stones Whole fruit Whole fruit	0.03 0.02 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.03 0.04 0.03	Report: R- 4174 Study: AF/6771/NN
Trial: AF/6773/NN/1 Fotenay, Linieres de Touraine, N- France, 2002 (Dixy Red)	79.8	1595	1	0 3 7 10 14 0 3 7 10 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.07 0.05 0.05 0.03 0.03 0.05 0.04 0.04 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.	0.08 0.06 0.04 0.04 0.04 0.06 0.05 0.05 0.05 0.04 0.03	Report: R- 4175 Study: AF/6773/NN
Trial: AF/6773/NN/2 La Giberdiere, Valleres, N- France, 2002 (Rouge Sanguine)	76.0	1519	1	10 14 10 14	Fruit–Stones Fruit–Stones Whole fruit Whole fruit	0.04 0.03 0.04 0.03	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.04 0.05 0.04	Report: R- 4175 Study: AF/6773/NN

Peaches	Application			DALA	Commodity	Residues (mg/	kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximat e	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: AF/6773/NN/3 Voutezac, Correze, N- France, 2002 (Flavor Crest)	76.5	1529	1	10 14 10 14	Fruit–Stones Fruit–Stones Whole fruit Whole fruit	0.06 0.04 0.05 0.04	< 0.01 < 0.01 < 0.01 < 0.01	0.07 0.05 0.06 0.05	Report: R- 4175 Study: AF/6773/NN
Trial: 01 Quatretonda, Valencia, Spain, 2009 (Royal Gladys)	77.4	1547	1	0 3 7 10 14	Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.08 0.09 0.08 0.07 0.08	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.09 0.10 0.09 0.08 0.09	Report: R- 4428 Study: S09- 02265
Trial: 02 Cofrentes, Spain, 2009 (Melcoton de Cofrentes)	77.0	1539	1	0 14	Whole fruit Whole fruit	0.37 0.12	< 0.01 < 0.01	0.38 0.13	Report: R- 4428 Study: S09- 02265
Trial: .10-AR04 Fayetteville, AR, USA, 2010 (Cresthaven)	115 + 115 14 day interval	1197 1206	2	7	Fruit (without pit)	0.0731	< 0.05	0.1231	Report: R- 4520 Study: 10468 (EC)
Trial: .10-CA93 Parlier, CA, USA, 2010 (Crimson Lady)	114 + 114 13 day interval	804 804	2	8	Fruit (without pit)	0.0983	< 0.05	0.1483	Report: R- 4520 Study: 10468 (EC)
Trial: .10-CA94 Parlier, CA, USA, 2010 (Henry II)	114 + 114 14 day interval (Induce)	1066 1075	2	8	Fruit (without pit)	0.1470	< 0.05	0.1970	Report: R- 4520 Study: 10468 (EC)
	112 + 115 14 day interval (Silwet L-77)	1047 1075	2	8	Fruit (without pit)	0.1803	< 0.05	0.2303	
	112 + 114 14 day interval (no surfactant)	1057 1066	2	8	Fruit (without pit)	0.0978	< 0.05	0.1478	
Trial: .10-CA95 Davis, CA, USA, 2010 (O'Henry)	111 + 115 7 day interval (Pro 90)	1206 1356	2	2 7 11 14	Fruit (without pit)	0.2396,0.2767,0 .2582 0.1904,0.2000,0 .1952 0.1572,0.1566,0 .1569 0.0987,0.1587,0 .1287	< 0.05 < 0.05 < 0.05 < 0.05	0.2896,0.3267 , 0.3082 0.2404,0.2500 0.2452 0.2072,0.2066 0.2069 0.1487,0.2087 0.1787	Report: R- 4520 Study: 10468 (EC)
	111 + 119 7 day interval (Silwet L-77)	1197 1384	2	7	Fruit (without pit)	0.1325,0.1618,0 .1472	< 0.05	0.1825,0.2118 0.1972	
Trial: .10-MI27 Fennville, MI, USA, 2010 (Red Haven)	111 + 112 14 day interval	1038 1038	2	7	Fruit (without pit)	0.1332,0.1257 0.1295	< 0.05	0.1832,0.1757 0.1795	Report: R- 4520 Study: 10468 (EC)
Trial: .10-NC18 Raleigh, NC, USA, 2010 (Contender)	112 + 112 15 day interval (Induce)	1085 1075	2	6	Fruit (without pit)	0.0771,0.0833 0.0802	< 0.05	0.1271,0.1333 0.1302	Report: R- 4520 Study: 10468 (EC)

Peaches			DALA	Commodity Residues (mg/kg)		kg)		Reference &	
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximat e	M-1	Sum of fenpyroximat e and M-1	Comments
	113 + 113 15 day interval (Trigard)	1085 1085	2	6	Fruit (without pit)	0.1067,0.1215 0.1141	< 0.05	0.1567,0.1715 <u>0.1641</u>	3
	114 + 111 15 day interval (no surfactant)	1094 1066	2	6	Fruit (without pit)	0.0599,0.0589 0.0594	< 0.05	0.1099,0.1089 0.1094	
Trial: .10-NC19 Raleigh, NC, USA, 2010 (Contender)	111 + 113 13 day interval	1057 1075	2	6	Fruit (without pit)	0.1704,0.1281 0.1493	< 0.05	0.2204,0.1781 0.1993	Report: R- 4520 Study: 10468 (EC)
Trial: .10-NJ09 Cream Ridge, NJ, USA, 2010 (Suncrest)	112 + 113 13 day interval	1309 1318	2	7	Fruit (without pit)	0.1180,0.1333 0.1257	< 0.05	0.1680,0.1833 0.1757	Report: R- 4520 Study: 10468 (EC)
Trial: .10-NJ10 Cream Ridge, NJ, USA, 2010 (Loring)	113 + 115 13 day interval	1318 1262	2	7	Fruit (without pit)	0.0962,0.0750 <u>0.0856</u>	< 0.05	0.1462,0.1250 0.1356	Report: R- 4520 Study: 10468 (EC)
Trial: .10-TX12 Weslaco, TX, USA, 2010 (Sentinel)	112 + 106 14 day interval	944 926	2	7	Fruit (without pit)	0.0783,0.0714 <u>0.0749</u>	< 0.05	0.1283,0.1214 0.1249	Report: R- 4520 Study: 10468 (EC)

Apricot

Table 190 Residues in Apricots (outdoor trails) from supervised trials in EU involving foliar applications of Fenpyroximate 5% SC

Apricots	Application			DALA	Commodity Residues (mg/kg)		g)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: 01 Dangolsheim, Alsace, N-France, 2015 (Tardif de Tain)	79.1	1010	1	0 1 3 7 14 0 1 3 7 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.35 0.30 0.27 0.24 0.23 0.32 0.28 0.25 0.22 0.22	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.36 0.31 0.28 0.25 0.24 0.33 0.29 0.26 0.23 0.23	Report: R- 4514 Study: S15- 03092

Apricots	Application			DALA	Commodity	Residues (mg/k	ig)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: 02 Meckenheim, Rheinland-Pfalz, Germany, 2015 (Kaito)	78.7	1005	1	0 1 3 7 14 0 1 3 7 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.37 0.24 0.21 0.20 0.14 0.32 0.22 0.19 0.18 0.13	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.38 0.25 0.22 0.21 0.15 0.33 0.23 0.20 0.19 0.14	Report: R- 4514 Study: S15- 03092
Trial: 03 Dangolsheim, Bas-Rhin,N- France, 2015 (Goldrich)	79.2	1011	1	14 14	Fruit-Stone Whole fruit	0.04 0.04	< 0.01 < 0.01	0.05	Report: R- 4514 Study: S15- 03092
Trial: 04 Obersulm, Baden- Württemberg, Germany, 2015 (Hargand)	80.4	1027	1	14 14	Fruit-Stone Whole fruit	0.10 0.10	0.01 < 0.01	0.11 0.11	Report: R- 4514 Study: S15- 03092
Trial: 05 Llutxent, Valencia,Spain, 2015 (Tadeo)	81.2	1038	1	0 1 3 7 14 0 1 3 7 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit Whole fruit	0.28 0.22 0.11 0.09 0.11 0.26 0.20 0.10 0.09 0.10	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.	0.29 0.23 0.12 0.10 0.12 0.27 0.21 0.11 0.10 0.11	Report: R- 4514 Study: S15- 03092
Trial: 06 Altedo, Emila Romagna, Italy, 2015 (Precoce d'Imola)	78.9	1008	1	0 1 3 7 14 0 1 3 7 14	Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Fruit–Stones Whole fruit Whole fruit Whole fruit Whole fruit	$\begin{array}{c} 0.06\\ 0.03\\ 0.04\\ 0.03\\ 0.01\\ 0.05\\ 0.03\\ 0.04\\ 0.03\\ < 0.01 \end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$\begin{array}{c} 0.07\\ 0.04\\ 0.05\\ 0.04\\ 0.02\\ 0.06\\ 0.04\\ 0.05\\ 0.04\\ < 0.02\\ \end{array}$	Report: R- 4514 Study: S15- 03092
Trial: 07 Tobarra, Albacete,Spain, 2015 (Apricot Moniquí)	79.1	1010	1	14 14	Fruit-Stone Whole fruit	0.09 0.08	< 0.01 < 0.01	0.10 0.09	Report: R- 4514 Study: S15- 03092
Trial: 08 Zola Predosa, Emilia Romagna, Italy, 2015 (Lady Elena)	83.6	1068	1	14 14	Fruit-Stone Whole fruit	0.05 0.05	0.01 < 0.01	0.06 0.06	Report: R- 4514 Study: S15- 03092

Plum

Table 191 Residues in Plums (outdoor trails) from supervised trials in USA and EU involving foliar applications of Fenpyroximate 5% SC or 5% EC

Plums	Application			DALA	Commodity	Residues (r	ng/kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: - Gruenendelch, Germany, 1989 (Ortenaner)	112.5	1500	1	0 7 14 21	Fruit Fruit Fruit Fruit	0.02 0.04 0.015 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.03 0.05 0.025 0.03	Report: R- 4024 Study: -
Trial: - Bornheim, Germany, 1989 (Purpur Gold)	112.5	1500	1	0 7 14 21	Fruit Fruit Fruit Fruit	0.07 0.05 0.03 0.03	< 0.01 < 0.01 < 0.01 < 0.01	0.08 0.06 0.04 0.04	Report: R- 4025 Study: -
Trial: - Bischweler, Germany, 1989 (Zimmers)	112.5	1500	1	0 7 14 21	Fruit Fruit Fruit Fruit	0.01 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.02 0.02 < 0.02 < 0.02	Report: R- 4026 Study: -
Trial: - Hoechst, Germany, 1989 (Ortenaner)	63	840	1	0 7 14 21	Fruit Fruit Fruit Fruit	0.03 0.03 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.04 < 0.02 < 0.02	Report: R- 4027 Study: -
Trial: 0101 Grünendeich, Germany, 1990 (Ortenaner)	112.5	1500	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	< 0.05 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<0.10 0.10 <0.10 <0.10 <0.10 <0.10	Report: R- 4135 Study: -
Trial: 0102 Bornheim, Germany, 1990 (Ortenaner)	79	1000	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.09 < 0.05 0.06 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.14 < 0.10 0.11 < 0.10 < 0.10	Report: R- 4135 Study: -
Trial: 0301 Bischweier, Germany, 1990 (Zimmers)	54.5	727	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<0.10 <0.10 <0.10 <0.10 <0.10	Report: R- 4135 Study: -
Trial: 0401 Hochst, Germany, 1990 (Hauszwetsche)	74	987	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	$\begin{array}{c} 0.06\\ 0.07\\ < 0.05\\ < 0.05\\ < 0.05\\ \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.11 0.12 < 0.10 < 0.10 < 0.10	Report: R- 4135 Study: -
Trial: AF/6102/NN/1 Lafrancaise, Tarn- et-Garonne, S-France, 2001 (Bavee)	75	1503	1	0 3 7 10 14	Fruit incl stone Fruit incl stone Fruit incl stone Fruit incl stone Fruit incl stone	0.03 0.03 0.02 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.04 0.04 0.03 0.04 0.03	Report: R- 4169 Study: -
Trial: AF/6102/NN/2 Lizac, Tarn-et- Garonne, S- France, 2001 (President)	75	1501	1	10 14	Fruit incl stone Fruit incl stone	0.03 0.01	< 0.01 < 0.01	0.04 0.02	Report: R- 4169 Study: -

Plums	Application			DALA	Commodity	Residues (m	ıg/kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: AF/6770/NN/1 Calatorao, La Almunia de Dona Godina, Spain, 2002 (Claudia)	75.5	1510	1	10 14	Fruit incl stone Fruit incl stone	0.03 < 0.01	< 0.01 < 0.01	0.03 < 0.02	Report: R- 4170 Study: -
Trial: AF/6772/NN/1 Jussy, N-France, 2002 (President)	76.4	1527	1	10 14	Fruit incl stone Fruit incl stone	0.01 0.01	< 0.01 < 0.01	0.02 0.02	Report: R- 4171 Study: -
Trial: AF/6772/NN/2 Dirmstein, Germany, 2002 (Auerbacher)	76.1	1522	1	10 14	Fruit incl stone Fruit incl stone	0.02 0.02	< 0.01 < 0.01	0.03 0.03	Report: R- 4171 Study: -
Trial: AF/6772/NN/3 Meckesheim, Germany, 2002 (Schufer)	75.8	1515	1	10 14	Fruit incl stone Fruit incl stone	0.02 0.01	< 0.01 < 0.01	0.03 0.02	Report: R- 4171 Study: -
Trial: AF/6772/NN/4 Lobenfeld, Germany, 2002 (Cacaks Schone)	76.8	1536	1	10 14	Fruit incl stone Fruit incl stone	0.02 0.02	< 0.01 < 0.01	0.03 0.03	Report: R- 4171 Study: -
Trial: CA96 Parlier, CA, USA, 2010 (President)	113, 113 14d interval	832 842	2	7	Fruit w/o stone	<u>< 0.05</u>	< 0.05	<u>< 0.10</u>	Report: R- 4481 Study: - (EC)
Trial: CA97 Parlier, CA, USA, 2010 (President)	114, 113 572, 570 572, 570 13d interval	1328 1328 1318	2	7	Fruit w/o stone Fruit w/o stone Fruit w/o stone (dried)	0.251,0.290, 0.271 1.84 3.18	< 0.05 0.208 0.316	0.301,0.340, <u>0</u> . <u>321</u> 2.048 3.496	Report: R- 4481 Study: - (EC)
Trial: CA98 Parlier, CA, USA, 2010 (President)	114, 115 14d interval	813 822	2	7	Fruit w/o stone	< 0.05	< 0.05	<u><0.10</u>	Report: R- 4481 Study: - (EC)
Trial: CA99 Davis, CA, USA, 2010 (President)	115, 115 14d interval	1150 1159	2	7	Fruit w/o stone	0.215,0.175 <u>0.195</u>	< 0.05	0.265,0.225 0.245	Report: R- 4481 Study: - (EC)
Trial: MI28 Fennville, MI, USA, 2010 (President)	112, 112 15d interval	1066 1057	2	7	Fruit w/o stone	0.116,0.142 0.13	< 0.05	0.166,0.192 <u>0.18</u>	Report: R- 4481 Study: - (EC)
Trial: OR23 Aurora, OR, USA, 2010 (President)	111, 111 14d interval	1141 1206	2	6	Fruit w/o stone	0.0804, 0.0866 <u>0.08</u>	< 0.05	0.1304, 0.1366 <u>0.13</u>	Report: R- 4481 Study: - (EC)

Plums	Application			DALA	Commodity	lity Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: S15-03091- 01 Spain, 2015 (President)	78		1	0 1 3 8 14	Fruits	0.05 0.05 0.03 0.03 0.03	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.06 0.06 0.04 0.04 0.04	Report: R- 4510 Study: S15- 03091
Trial: S15-03091- 02 Italy, 2015 (Anna Spath)	77		1	0 1 3 7 14	Fruits	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4510 Study: S15- 03091
Trial: S15-03091- 03 Spain, 2015 (Angeleno)	76		1	14	Fruits	0.01	< 0.01	0.02	Report: R- 4510 Study: S15- 03091
Trial: S15-03091- 04 S-France, 2015 (President)	73		1	14 26	Fruits	0.01 < 0.01	< 0.01 < 0.01	0.02 < 0.02	Report: R- 4510 Study: S15- 03091
Trial: S09-02264- 01 Innenheim, Alsace, N-France, 2009 (Quetsche D'Alsace)	74.6	1491	1	0 3 7 10 14	Fruit Fruit Fruit Fruit Fruit	0.02 0.04 0.03 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.03 0.05 0.04 0.04 0.03	Report: R- 4436 Study: S09- 02264
Trial: S09-02264- 03 Stotzheim, Alsace, N-France, 2009 (Elena)	74.0	1481	1	0 14	Fruit Fruit	0.04 0.03	< 0.01 < 0.01	0.05 0.04	Report: R- 4436 Study: S09- 02264
Trial: S09-02264- 02 Calatorao, Zaragoza, Spain, 2009 (Anappar)	69.8	1395	1	0 3 7 10 14	Fruit Fruit Fruit Fruit Fruit	0.01 0.01 0.01 0.01 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.02 0.02 0.02 0.02 0.02 0.02	Report: R- 4436 Study: S09- 02264

Grapes

Table 192 Residues in Grapes (outdoor trails) from supervised trials in EU involving foliar applications (once) of Fenpyroximate 5% SC

Grapes	Application			DALA	Commodity	Residues (mg/k		Reference &	
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: S362.90 S-France, 1989 (Carignan)	60		1	0 7 14 21 29	Fruit Fruit Fruit Fruit Fruit	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.04 < 0.04 < 0.04 < 0.04 < 0.04	Report: R- 4044 Study: -

Grapes	Application			DALA	Commodity	Residues (mg/k	Reference &		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: S363.90 S-France, 1990 (Carignan)	80		1	0 7 14 21 30	Fruit Fruit Fruit Fruit Fruit	< 0.10 0.05 < 0.05 0.08 0.07	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.12 0.05 < 0.07 0.10 0.09	Report: R- 4044 Study: -
Trial: S933.89 S-France, 1989 (Merlot)	60 80		1 1	36 36	Fruit Fruit	0.05 < 0.02	< 0.02 < 0.02	0.07 < 0.04	Report: R- 4044 Study: -
Trial: S321.89 S-France, 1989 (Carignana)	60 80		1 1	47 47	Fruit Fruit	< 0.02 < 0.02	< 0.02 < 0.02	< 0.04 < 0.04	Report: R- 4044 Study: -
Trial: S401.89 N-France, 1989 (Pinot Noir)	60 80		1	37 37 37	Fruit Wine Fruit	0.07 < 0.02 0.14	< 0.02 < 0.02 < 0.02	0.09 < 0.04 0.16	Report: R- 4044 Study: -
Trial: S345.90 S-France, 1990	60		1	37 55 55	Wine Fruit Wine	< 0.02 0.06 < 0.02	< 0.02 < 0.02 < 0.02	< 0.04 0.08 < 0.04	Report: R- 4044
(Cinsault)	80		1	55 55	Fruit Wine	0.04 < 0.02	< 0.02 < 0.02	0.06 < 0.04	Study: -
Trial: S402.90 N-France, 1990 (Pinot Noir)	60 80		1	46 46 46	Fruit Wine Fruit	0.07 < 0.02 0.05	< 0.02 < 0.02 < 0.02	0.09 < 0.04 0.07	Report: R- 4044 Study: -
Trial: S403.90 N-France, 1990	60		1	46 42 42	Wine Fruit Wine	< 0.02 0.05 < 0.02	< 0.02 < 0.02 < 0.02	< 0.04 0.07 < 0.04	Report: R- 4044
(Pinot Noir)	80		1	42 42	Fruit Wine	0.08 < 0.02	<0.02 <0.02 <0.02	0.10 < 0.04	Study: -
Trial: 01 Faenza,Italy, 1991 (Albana)	81 165	1319 1319	1 1	14 14	Fruit Fruit	0.47 0.57	0.02 0.03	0.49 0.6	Report: R- 4050 Study: A52051
Trial: 01 S. Martino in Riparotta, Italy, 1991 (Trebbiano)	91 188	1510 1498	1 1	14 14	Fruit Fruit	0.17 0.52	0.03 0.03	0.2 0.55	Report: R- 4050 Study: A52051
Trial: - S. Martino in Riparotta, Italy, 1991 (Trebbiano)	94	1510	1	14	Fruit	0.17	0.01	0.18	Report: R- 4052 Study: A50133
Trial: - S. Martino in Riparotta, Italy, 1991 (Trebbiano)	187.3	1498	1	14	Fruit	0.52	0.03	0.55	Report: R- 4053 Study: A50132
Trial: - Trani, Italy, 1991 (Regina)	64.4	1000	1	14	Fruit	0.07	< 0.01	0.08	Report: R- 4054 Study: A50131
Trial: - Trani, Italy, 1991 (Regina)	128.8	1000	1	14	Fruit	0.19	0.01	0.20	Report: R- 4055 Study: A50134

Grapes	Application			DALA	Commodity	nodity Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: 01 Bollullos del Condado, Huelva	95.1	991	1	14	Fruit	0.04	-	0.04	Report: R- 4110 Study:
Spain, 1988 (Cardinal)	96.7	1007	1	14	Fruit	0.06	-	0.06	NHH/093
Trial: 02 Los Palacios,	97.3	1014	1	14	Fruit	0.04	-	0.04	Report: R- 4110
Seville, Spain, 1988 (Cardinal)	98.8	1029	1	14	Fruit	0.04	-	0.04	Study: NHH/093
Trial: 03 Granieri, Catania,	51.3	1014	1	28	Fruit	0.04	-	<u>0.04</u>	Report: R- 4110
(Italia)	50.7	1002	1	28	Fruit	0.02	-	0.02	Study: NHH/093 (protected)
Trial: 04 Mazzarrone,	50.5	999	1	28	Fruit	0.04	-	<u>0.04</u>	Report: R- 4110
Catania, Italy, 1988 (Italia)	50.7	1002	1	28	Fruit	0.03	-	0.03	NHH/093 (protected)
Trial: S08-02423- 01 Castel San Pietro Terme, Bologna, Italy, 2008 (Barbera)	51.2	1004	1	28	Fruit	<u>< 0.01</u>	< 0.01	<u><0.02</u>	Report: R- 4205 Study: S08- 02423
Trial: S08-02423- 02 Sistels, Tarn-et- Garonne, France, 2008 (Merlot)	52.2	1024	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.08 0.04 0.07 0.04 <u>0.05</u>	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.09 0.05 0.08 0.05 <u>0.06</u>	Report: R- 4205 Study: S08- 02423
Trial: S08-02423- 03 Villaneuva del Ariscal, Sevilla, Spain, 2008 (Garrido Fino)	51.5	1009	1	28	Fruit	< 0.01	< 0.01	< 0.02	Report: R- 4205 Study: S08- 02423
Trial: S08-02423- 05 Malejan, Aragon, Spain, 2008 (Garnacha)	51.1	1002	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.08 0.08 0.05 0.05 <u>0.03</u>	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.09 0.09 0.06 0.06 <u>0.04</u>	Report: R- 4205 Study: S08- 02423
Trial: S09-02663- 01 Poggio Grande, Bologna, Italy, 2009 (Sangiovese)	50.0	981.2	1	28	Fruit	0.01	< 0.01	0.02	Report: R- 4219 Study: S09- 02663
Trial: S09-02663- 02 Grayssas, Lot Et Garonne, France, 2009 (Tammat)	54.4	1067	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.12 0.11 0.11 0.07 0.05	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.13 0.12 0.12 0.08 0.06	Report: R- 4219 Study: S09- 02663

Grapes	Application			DALA	Commodity	y Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: S09-02663- 03 Sinarcas, Valencia, Spain, 2009 (Bobal)	53.8	1055	1	28	Fruit	<u>0.02</u>	< 0.01	<u>0.03</u>	Report: R- 4219 Study: S09- 02663
Trial: S09-02663- 04 Quatretande, Valencia, Spain, 2009 (Monastrell)	54.4	1067	1	0 7 14 21 29	Fruit Fruit Fruit Fruit Fruit	0.03 0.05 0.03 0.02 <u>0.02</u>	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.04 0.06 0.04 0.03 <u>0.03</u>	Report: R- 4219 Study: S09- 02663
Trial: S11-02944- 03 Gertwiller, Alsace, France, 2011 (Gewurztraminer)	50.9	990	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.06 0.06 0.04 0.05 <u>0.04</u>	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.07 0.07 0.05 0.06 <u>0.05</u>	Report: R- 4469 Study: S11- 02944
Trial: S11-02944- 04 Heidelberg, Baden- Württemberg, Germany2011 (Müller-Thurgau)	50.5	983	1	0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.02 0.04 0.02 0.03 <u>0.01</u>	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.03 0.04 0.03 0.04 <u>0.02</u>	Report: R- 4469 Study: S11- 02944
Trial: S15-03093- 01 N-France, 2015 (Pinot Auxerrois)	97			0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.16 0.08 0.03 0.04 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.17 0.09 0.04 0.05 < 0.02	Report: R- 4504 Study: S15- 03093
Trial: S15-03093- 02 N-France, 2015 (Cabernet)	90			0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.17 0.07 0.08 0.08 0.07	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.18 0.08 0.09 0.09 0.08	Report: R- 4504 Study: S15- 03093
Trial: S15-03093- 03 Germany, 2015 (Kemer)	91			0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.05 0.03 0.02 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.06 0.04 0.03 0.04 0.03	Report: R- 4504 Study: S15- 03093
Trial: S15-03093- 04 Germany, 2015 (Reisling)	85			0 7 14 21 28	Fruit Fruit Fruit Fruit Fruit	0.20 0.04 0.07 0.06 0.01	< 0.01 < 0.01 0.01 < 0.01 < 0.01	0.21 0.05 0.08 0.07 0.02	Report: R- 4504 Study: S15- 03093
Trial: S15-03093- 05 N-France, 2015 (Gewurztraminer)	84			28	Fruit	0.04	< 0.01	0.05	Report: R- 4504 Study: S15- 03093
Trial: S15-03093- 06 N-France, 2015 (Cabernet Sauvignon)	92			28	Fruit	0.08	< 0.01	0.09	Report: R- 4504 Study: S15- 03093

Grapes	Application			DALA	Commodity	modity Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: S15-03093- 07 Germany, 2015 (Reisling)	89			28	Fruit	0.05	< 0.01	0.06	Report: R- 4504 Study: S15- 03093

Table	193	Residues	in	Grapes	(outdoor	trails)	from	supervised	trials	in	EU	involving	foliar
applica	ations	s (twice) of	Fe	npyroxin	hate 5% Se	С							

Grapes	Application			DALA	Commodity	Residues (mg		Reference &	
Trial Location Country,year (Variety) Trial: W-6507	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxima te	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: W-6507 Ingelheim, Germany, 1990 (Portugeiser)	45 135	300 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.17 0.18 0.10 0.07 0.08	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.22 0.23 0.15 0.12 0.13	Report: R- 4168 Study: ER90DEU80 3
Trial: W-6909 Muehlhausen, Krg, Germany, 1990 (Spätbergunder)	45 135	300 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.24 0.17 0.19 0.24 0.15	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.29 0.22 0.24 0.29 0.20	Report: R- 4168 Study: ER90DEU80 3
Trial: 020102 Nittel, Germany, 1991 (Müller-Thurgau)	45 135		2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.22 0.16 0.16 0.10 0.08	0.02 0.02 0.02 0.01 0.01	0.24 0.18 0.18 0.11 0.09	Report: R- 4067 Study: ER91DEU81 4
Trial: 020202 Mühlhofen, Germany, 1991 (Kerner)	45 135		2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.36 0.29 0.17 0.12 0.11	0.04 0.03 0.02 0.02 0.01	0.4 0.32 0.19 0.14 0.12	Report: R- 4067 Study: ER91DEU81 4
Trial: 0201 Wachenheim, Germany, 1990 (Riesling)	45 135	300 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.13 0.13 0.09 0.14 0.09	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.18 0.18 0.14 0.19 0.14	Report: R- 4069 Study: ER90DEU80 5
Trial: 0202 Opfingen, Germany, 1990 (Müller-Thurgau)	45 135	300 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.15 0.17 0.14 0.08 0.08	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.20 0.22 0.19 0.13 0.13	Report: R- 4069 Study: ER90DEU80 5
Trial: 21 Pfeddersheim, Germany, 1989 (Schwartz- reisling)	180 180	600 600	2	0 7 14 28 35 35 35 35 35	Fruit Fruit Fruit Fruit Fruit Must Young wine Mature wine	0.20 0.145 0.14 0.21 0.15 < 0.10 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.21 0.155 0.15 0.22 0.16 < 0.11 < 0.02 < 0.02 < 0.02	Report: R- 4102 Study: DEU89I803

Grapes	Application			DALA	Commodity	ty Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxima te	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: 22 Willsbach, Germany, 1989 (Müller-Thurgau)	180 180	600 600	2	0 7 14 28 35 35 35 35 35	Fruit Fruit Fruit Fruit Must Young wine Mature wine	0.19 0.18 0.24 0.16 0.135 0.02 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.20 0.19 0.25 0.17 0.145 0.03 < 0.02 < 0.02	Report: R- 4102 Study: DEU891803
Trial: 21 Muβbach, Germany, 1989 (Reisling)	180 180	600 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.26 0.16 0.10 0.13 0.13	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.27 0.17 0.11 0.14 0.14	Report: R- 4103 Study: DEU89I805
Trial: 22 Kappelrodeck, Germany, 1989 (Müller-Thurgau)	180 180	600 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.29 0.30 0.18 0.12 0.16	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.30 0.31 0.19 0.13 0.17	Report: R- 4103 Study: DEU89I805
Trial: 21 Muβbach, Germany, 1989 (Reisling)	135 135	600 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.17 0.12 0.11 0.09 0.06	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.18 0.13 0.12 0.10 0.07	Report: R- 4104 Study: DEU89I813
Trial: 22 Kappelrodeck, Germany, 1989 (Spätbergunder)	135 135	600 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.41 0.41 0.31 0.32 0.40	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.42 0.42 0.32 0.33 0.41	Report: R- 4104 Study: DEU89I813
Trial: 0201 Ingelhelm, Germany, 1990 (Portugeiser)	45 135	300 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.17 0.18 0.10 0.07 0.08	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.22 0.23 0.15 0.12 0.13	Report: R- 4168 Study: ER90DEU80 3
Trial: 0201 Muehlhausen, Germany, 1990 (Spätbergunder)	45 135	300 600	2	0 7 14 28 35	Fruit Fruit Fruit Fruit Fruit	0.24 0.17 0.19 0.24 0.15	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.29 0.22 0.24 0.29 0.20	Report: R- 4168 Study: ER90DEU80 3

Table	194	Residues	in	Grapes	(protected	trails)	from	supervised	trials	in	Japan	involving	foliar
applic	ation	s of Fenpy	rox	imate 5%	% SC								

Grape	Application			DALA	Commodity	Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroxima te and M-1	Comments
Trial: Ishikawa Japan, 1989 (Delaware)	200	400 L/10a	1	14 21 30 60	Fruit Fruit Fruit Fruit	0.394 0.432 0.349 0.060	< 0.005 0.012 0.010 0.006	0.399 0.444 0.359 0.066	Report: R-4059 + R-4285 Study: NN025-01 Study not to GLP
Trial: Fukui Japan, 1989 (Delaware)	200	400 L/10a	1	13 20 29	Fruit Fruit Fruit	0.430 0.512 0.502	< 0.005 < 0.005 0.010	0.435 0.517 0.512	Report: R-4060 + R-4288 Study: NN025-02

Grape	Application			DALA	Commodity	Residues (r	ng/kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroxima te and M-1	Comments
	2 x 200	400 L/10a	2	13 20	Fruit Fruit	1.15 1.14	0.014 0.014	1.164 1.154	Study not to GLP
Trial: Ishikawa Japan, 1988 (Delaware)	200	400 L/10a	1	14 21 30 60	Fruit Fruit Fruit Fruit	0.311 0.260 0.244 0.040	- - -	0.311 0.260 0.244 0.040	Report: R-4291 Study: NN025-04 Study not to GLP
Trial: Fukui Japan, 1988 (Delaware)	200	400 L/10a	1	13 20 29	Fruit Fruit Fruit	0.430 0.444 0.408	- -	0.430 0.444 0.408	Report: R-4291 Study: NN025-04 Study not to GLP
	2 x 200	400 L/10a	2	13 20	Fruit Fruit	0.928 0.848	-	0.928 0.848	
Trial: Ishikawa Japan, 1988 (Delaware)	200	400 L/10a	1	14 21 30 60	Fruit Fruit Fruit Fruit	- - -	0.006 0.007 0.009 < 0.005	0.006 0.007 0.009 < 0.005	Report: R-4291 Study: NN025-04 Study not to GLP
Trial: Fukui Japan, 1988 (Delaware)	200	400 L/10a	1	13 20 29	Fruit Fruit Fruit Fruit	-	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R-4291 Study: NN025-04 Study not to GLP
	2 x 200	L/10a	2	20	Fruit	-	0.010	0.010	

Table 195 Residues in Grapes (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% EC

Grape	Application	1		DALA	Commodity	Residues (mg/kg)	Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)	-	Fenpyroximate M-1	Comments
Trial: NY01 Dundee, NY, USA, 1999 (DeChaunac)	224	377	1	14	Fruit	0.220,0.252 0.236 (sum of fenpyroximate + M-1)	Report: R-4121 Study: 826W
Trial: NY02 Dundee, NY, USA, 1999 (Concord)	224	377	1	14	Fruit	0.192,0.282 0.187 (sum of fenpyroximate + M-1)	Report: R-4121 Study: 826W
Trial: CA01 Fresno, CA, USA, 1999 (Thompson seedless)	224	376	1	14	Fruit	0.114,0.099 0.107 (sum of fenpyroximate + M-1)	Report: R-4121 Study: 826W
Trial: CA02 Fresno, CA, USA, 1999 (Thompson seedless)	224	386	1	14	Fruit	0.166,0.129 0.148 (sum of fenpyroximate + M-1)	Report: R-4121 Study: 826W
Trial: CA03 Fresno, CA, USA, 1999 (Thompson seedless)	224	355	1	14	Fruit	0.108,0.140 0.124 (sum of fenpyroximate + M-1)	Report: R-4121 Study: 826W
Trial: CA04 Fresno, CA, USA, 1999 (Thompson seedless)	224	384	1	14	Fruit	0.170,0.058 0.114 (sum of fenpyroximate + M-1)	Report: R-4121 Study: 826W

Grape	Application			DALA	Commodity	dity Residues (mg/kg)		Reference &	
Trial Location Country,year (Variety)	al Rate Wa cation (g ai/ha) (L/I untry,year criety) 224		No.	(days)		Fenpyroximate	M-1	Comments	
Trial: CA05 Fresno, CA, USA, 1999 (Thompson seedless)	224	378	1	14	Fruit	0.092,0.093 0.093 (sum of fenpyroximate +	+ M-1)	Report: R-4121 Study: 826W	
Trial: CA06 Porterville, CA, USA, 1999 (Thompson seedless)	224	385	1	14	Fruit	< 0.05, < 0.05 < 0.05 (sum of fenpyroximate +	+ M-1)	Report: R-4121 Study: 826W	
Trial: CA07 Porterville, CA, USA, 1999 (Flame seedless)	224	376	1	14	Fruit	<pre>< 0.05, < 0.05 < 0.05 (sum of fenpyroximate +</pre>	+ M-1)	Report: R-4121 Study: 826W	
Trial: CA08 Manteca, CA, USA, 1999 (Palomino Wine)	224	374	1	14	Fruit	0.060, < 0.05 < 0.05 (sum of fenpyroximate +	+ M-1)	Report: R-4121 Study: 826W	
Trial: ID01 Payette, ID, USA, 1999 (Concord)	224	381	1	14	Fruit	0.091,0.056 0.074 (sum of fenpyroximate +	+ M-1)	Report: R-4121 Study: 826W	
Trial: WA01 Ephrata, WA, USA, 1999 (White Reisling)	224	375	1	14	Fruit	0.093,0.074 0.084 (sum of fenpyroximate +	+ M-1)	Report: R-4121 Study: 826W	
Trial: CA01 Fresno, CA, USA, 1999 (Thompson seedless)	1120	381	1	-14	Fruit Juice Dry pomace Wet pomace Raisins Raisin waste	0.511,0.381, 0.446 < 0.05 4.266 1.251 1.212 1.580 (sum of fenpyroximate -	+ M-1)	Report: R-4122 Study: 827W	

Raspberries

Table 196 Residues in Raspberry (outdoor trails) from supervised trials in EU involving foliar applications of Fenpyroximate (5% SC formulation)

Raspberry	Application			DALA	Commodity	y Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxim ate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: S09-02709-01 Pithiviers-le-Vieil, Loiret, France, 2009 (Heritage)	77.8	1000	1	0 3 7 10 14	Fruits	0.16 0.15 0.10 0.05 0.04	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.17 0.16 0.11 0.06 0.05	Report: R- 4435 Study: -
Trial: S09-02709-01 Ruschwedel, Lower Saxony, Germany, 2009 (Erika)	76.7	1000	1	0 3 6 9 14	Fruits	0.23 0.18 0.18 0.12 0.08	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.24 0.19 0.19 0.13 0.09	Report: R- 4435 Study: -

Raspberry	Application			DALA	Commodity	y Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxim ate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: S10-02527-01 Heldelberg, Baden- Würtemberg, Germany, 2010 (Malling Promise)	73.0	1000	1	0 14	Fruits	1.09 0.10	< 0.01 < 0.01	1.10 0.11	Report: R- 4457 Study: -
Trial: S10-02527-01 Nottensdorf, Niedersachsen, Germany, 2010 (Glen Ample)	77.0	1000	1	0 3 7 10 14	Fruits	0.14 0.07 0.03 0.02 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.15 0.08 0.04 0.03 0.02	Report: R- 4457 Study: -

Strawberries

Table 197 Residues in Strawberries (outdoor trails) from supervised trials in EU involving foliar applications of Fenpyroximate 5% SC

Strawberries	Application		DALA Commodity Residues (mg/kg) Refer				Reference &		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Boara, Italy, 1991 (Hanoy)	154.5	1000	1	0 14 21 28	Fruit Fruit Fruit Fruit	0.10 0.03 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.11 0.04 0.02 < 0.02	Report: R- 4142 Study: A50814 Study not to GLP
North Wheatley, Nottinghamshire, UK, 2001 (Elsanta)	98.8	964	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.04 0.02 <u>0.03</u> 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.03 0.04 0.03	Report: R- 4162 Study: AF/6011/NN
Tillington, Hereford and Worcestershire, UK, 2001 (Symphony)	105.7	1031	1	0 3 6	Fruit Fruit Fruit	0.01 0.04 <u>0.02</u>	< 0.01 < 0.01 < 0.01	0.02 0.05 0.03	Report: R- 4162 Study: AF/6011/NN
Kings Lynn, Cambridgeshire, UK, 2001 (Elsanta)	101.9	750	1	3 7	Fruit Fruit	0.02 < 0.01	0.01 < 0.01	0.02 < 0.02	Report: R- 4162 Study: AF/6011/NN
Walpole St. Andrew, Norfolk, UK, 2001 (Elsanta)	104.9	750	1	37	Fruit Fruit	0.05 <u>0.01</u>	< 0.01 < 0.01	0.06 0.02	Report: R- 4162 Study: AF/6011/NN
Balignac, Tarn-et- Garonne, France, 2001 (Siloue)	98.1	761	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.38 0.17 <u>0.05</u> 0.05	0.03 < 0.01 0.01 < 0.01	0.38 0.18 0.05 0.06	Report: R- 4162 Study: AF/6011/NN
Labastide-du- Temple, Tarn-et- Garonne, France, 2001 (Tetis)	102.0	979	1	37	Fruit Fruit	0.04 <u>0.01</u>	0.01 0.01	0.04 0.01	Report: R- 4162 Study: AF/6011/NN

Strawberries	Application			DALA	Commodity	Residues (r	ng/kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Argelato, Emilia Romagna, Italy, 2001 (Marmolada)	100.5	980	1	0 3 7 10	Fruit Fruit Fruit Fruit	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4162 Study: AF/6011/NN
Granarolo, Emilia Romagna, Italy, 2001 (Selva)	100.7	737	1	3 7	Fruit Fruit	0.09 <u>0.05</u>	0.02 0.01	0.09 0.05	Report: R- 4162 Study: AF/6011/NN
Hom Green, Herefordshire, UK, 2003 (Everest)	103	1006	1	3 7	Fruit Fruit	0.10 <u>0.07</u>	< 0.01 < 0.01	0.11 0.08	Report: R- 4167 Study: AF/7640/NN
North Wheatley, Nottinghamshire, UK, 2003 (Flamenco)	102	990	1	3 7	Fruit Fruit	0.19 <u>0.08</u>	< 0.01 < 0.01	0.20 0.09	Report: R- 4167 Study: AF/7640/NN
Elmhurst, Staffordshire, UK, 2003 (Everest)	103	1001	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.18 0.12 <u>0.19</u> 0.06	< 0.01 < 0.01 < 0.01 < 0.01	0.19 0.13 0.20 0.07	Report: R- 4167 Study: AF/7640/NN
Gnosall, Staffordshire, UK, 2003 (Diamante)	102.3	998	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.24 0.20 <u>0.06</u> 0.05	< 0.01 < 0.01 < 0.01 < 0.01	0.25 0.21 0.07 0.06	Report: R- 4167 Study: AF/7640/NN
Labarthe, S- France, 2002 (Ciloe)	101.7	992	1	3 7 7 7 7 7 7 7 7	Fruit Fruit Whole fruit Washed fruit Wash water Jam Blanch water Canned fruit	0.23 0.13 0.105 0.075 0.01 0.01 < 0.01 0.03	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.24 0.14 0.115 0.085 0.02 0.02 < 0.02 < 0.02 0.04	Report: R- 4177 Study: AF/6783/NN
Puygaillard de Lomagne, S- France, 2002 (Ciloe)	99.7	973	1	3 7 7 7 7 7 7 7	Fruit Fruit Whole fruit Washed fruit Wash water Jam Blanch water Canned fruit	0.08 0.05 0.045 0.04 < 0.01 0.01 < 0.01 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$\begin{array}{c} 0.09\\ 0.06\\ 0.055\\ 0.05\\ < 0.02\\ < 0.02\\ < 0.02\\ 0.03\\ \end{array}$	Report: R- 4177 Study: AF/6783/NN
Balignac, S- France, 2002 (Valeta)	08	060	1	0 3 7 10 7 7 7 7 7	Fruit Fruit Fruit Whole fruit Washed fruit Wash water Jam Blanch water Canned fruit	$\begin{array}{c} 0.11\\ 0.06\\ 0.10\\ 0.08\\ \end{array}$ $\begin{array}{c} 0.07\\ 0.05\\ 0.01\\ 0.01\\ < 0.01\\ 0.02\\ \end{array}$	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$\begin{array}{c} 0.12 \\ 0.07 \\ 0.11 \\ 0.09 \\ 0.08 \\ 0.06 \\ 0.02 \\ 0.02 \\ < 0.02 \\ < 0.02 \\ 0.03 \\ 0.11 \end{array}$	Report: R- 4177 Study: AF/6783/NN
Greece, 2002 (Diamant)	70	900	1	3 7 10	Fruit Fruit Fruit Fruit	0.10 0.14 <u>0.07</u> 0.05	< 0.01 < 0.01 < 0.01 < 0.01	0.11 0.15 0.08 0.06	4177 Study: AF/6783/NN

Strawberries	Application	Application			Commodity	Residues (r	ng/kg)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Italy, 2011 (Nayad)	100.88		2	0 1 3 5 7	Fruit Fruit Fruit Fruit Fruit	0.28 0.18 0.21 0.10 0.05	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.29 0.19 0.22 0.11 0.06	Report: R- 4449 Study: 52003A001

Table 198 Residues in Strawberries (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% EC

a. 1 ·				D + T +	~	D / M	``````````````````````````````````````		D 0
Strawberries	Application			DALA	Comm	Residues (mg/k	g)	-	Reference &
Trial	Rate	Water	No.	(days)	odity	Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)						fenpyroximate	
Country, year								and M-1	
(Variety)									
Oviedo, FL, USA,	109 + 112	3.26	2	1	Fruit	0.614,0.383	0.081,0.049	0.695,0.432	Report: R-
2008						0.499	0.065	<u>0.564</u>	4233 + R-
(Camarosa)	109 ± 112	3.26	2	1	Fruit	0.590,0.473	0.015,0.014	0.605,0.487	4445
						0.532	0.015	0.547	Study:
									52003A001
Leggett,	111 + 112	5.68	2	1	Fruit	0.293,0.265	0.057,0.050	0.350,0.315	Report: R-
Porterville, CA,						<u>0.279</u>	0.054	<u>0.333</u>	4233 + R-
USA, 2008	112 ± 112	5.68	2	1	Fruit	0 182 0 185	0.003.0.005	0 185 0 190	4445
(Diamante)	112 + 112	5.00	2	1	1 I un	0.184	0.004	0.188	Study:
									52003A001
Salinas, CA, USA,	112 + 113	5.5	2	1	Fruit	0.238,0.178	0.017,0.012	0.255,0.190	Report: R-
2008						0.208	0.015	0.223	4233 + R-
(Albion)	111 ± 116	5.5	2	1	Emit	0 242 0 233	0.005.0.005	0 247 0 238	4445
	111 ± 110	5.5	2	1	Fruit	0.242,0.233	0.005,0.005	0.247,0.238	Study:
						0.250	0.005	0.215	52003A001
East Williamson,	112+113	281	2	1	Fruit	0.0371,0.0503	< 0.01	0.0421,0.06609,0	Report: R-
NY, USA, 2010						0.04		.05	4438
(Idea)	112+112					0.0787,0.0248	< 0.01	0.0891,0.03831,0	Study: TCI-
						0.05	< 0.01	.06	10-273
	113+113					0.0373,0.0010	< 0.01	0.00327,0.0749,0	1=no surfactant
						0.00	< 0.01	0.08397.0.092	2=InduceNIS
	113+113					0.07	0.01	0.08	3=Dyme-Amic
Sever Springs,	113+109	413	2	1	Fruit	0.0947,0.104,	< 0.01	0.10873,0.1192,0	MSO 4-Silwot I 77
NC, USA, 2010				1	Fruit	0.10		.11	4-Silwet L//
(Camino Real)	112+112			1	Fruit	0.163,0.181, 0.17	< 0.01	0.17864,0.1989,0	organosmeone
· /				1	Fruit	0.105,0.173, 0.14		.18	
	111+113					0.213,0.159, <u>0.19</u>	< 0.01	0.11794,0.1900	
	_						< 0.01	0.15	
	113+112						< 0.01	0.22138,0.1043 <u>0.</u> 20	
St Stephen MN	112+112	234	2	1	Fruit	0 0607 0 04110	ND	0.0607.0.04110	
USA 2010	112.112	201	Ĩ	1	Fruit	05	ND	05	
(Honevove)	111+111			1	Fruit	0 0298 0 03290	ND	0 0298 0 03290	
(Holicyoye)	111 111			1	Fruit	0.0290,0.03290	ND	0.0290,0.03290	
	112+111			1	1 I un	0 0703 0 05780		0 0703 0 05780	
	112.111					0.0705,0.0570 <u>0</u> 06		0.0705,0.0570 <u>0</u> 06	
	112+111					$\frac{.00}{0.0199} 0.04320$		$\frac{.00}{0.0199} 0.04320$	
	112.111					0.0199,0.01520		0.0199,0.01920	
Salinas CA USA	112+114	161	2	1	Fruit	0 164 0 178	0.04	0 1965 0 21560	
2010	112 117	-0-	2	1	Fruit	0.104, 0.170,	0.04	21	
(Albion)	112+114			1	Fruit	0.17 0.216.0.200	0.04	.21	
	113+114		1	1	Fruit	0.210,0.209,	0.04	25	
	112 + 114		1	1	Tun	0.21	0.03	0.2545.0.275.0	
	112+114		1			0.230,0.249,	0.05	0.2343,0.273, <u>0.</u> 27	
	114+112		1			0.24 0.176.0.242	0.03	$\frac{21}{0.2080}$ 0.27570	
	1147113		1			0.170,0.242,	0.05	0.2009,0.27370	
			1	1		11771	1	1 / 4	

Strawberries	Application			DALA	Comm	Residues (mg/kg		Reference &	
Trial Location Country year	Rate (g ai/ha)	Water (L/ha)	No.	(days)	odity	Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
(Variety)									
Elmira, OR, USA, 2010 (Benton)	115+119 114+117 112+117	241	2	1 1 1 1	Fruit Fruit Fruit Fruit	0.201,0.179, <u>0.19</u> 0.197,0.180, 0.19 0.101,0.150, 0.13 0.135,0.228, 0.18	0.0342,0.0292 0.03 0.0218,0.0246 0.02 0.00915,0.009 0.01 0.0159,0.0342	0.2352,0.2082, 0.22 0.2188,0.2046, 0.21 0.11015,0.1596, 0.14 0.1509,0.2622,	
	115+118						0.03	0.21	

Table 199 Residues in Strawberries (protected trails) from supervised trials in EU involving foliar applications of Fenpyroximate 5% SC

Strawberries	Application			DALA	Commodity	Residues (mg/	Residues (mg/kg)		
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxima te	M-1	Sum of fenpyroximat e and M-1	Comments
Kings Bromley, Staffordshire, UK, 2002 (Elsanta)	100.9	984	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.04 0.06 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.07 0.04 0.03	Report: R- 4157 Study: AF/6776/NN
Meauzac, Tarn-et- Garonne, Southern France, 2002 (Mara des Bois)	103.8	1013	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.08 0.08 0.04 0.07	< 0.01 < 0.01 < 0.01 < 0.01	0.09 0.09 0.05 0.08	Report: R- 4157 Study: AF/6776/NN
Burntwood, Staffordshire, UK, 2002 (Elsanta)	102.9	1004	1	37	Fruit Fruit	0.03 0.07	< 0.01 < 0.01	0.04 0.08	Report: R- 4157 Study: AF/6776/NN
Vazerac, Tarn-et- Garonne, Southern France, 2002 (Tiara des Bois)	102.1	996	1	37	Fruit Fruit	0.07 0.04	< 0.01 < 0.01	0.08 0.05	Report: R- 4157 Study: AF/6776/NN
Cendieux, Dordogne, Southern France, 2002 (Aromace)	97.3	949	1	37	Fruit Fruit	0.15 0.12	< 0.01 < 0.01	0.16 0.13	Report: R- 4157 Study: AF/6776/NN
Halam, Nottinghamshire, UK, 2001 (Elsanta)	102.7	922	1	0 3 7 10	Fruit Fruit Fruit Fruit	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4163 Study: AF/6026/NN
Puygaillard de Lomagne, Tarn-et- Garonne, Southern France, 2001 (Gariguette)	105.1	761	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.28 0.07 0.08 0.03	0.02 0.01 0.01 0.01	0.3 0.08 0.09 0.04	Report: R- 4163 Study: AF/6026/NN
Meauzac, Tarn-et- Garonne, Southern France, 2001 (Miranda)	104.1	1016	1	37	Fruit Fruit	0.08 0.07	0.01 0.01	0.09 0.08	Report: R- 4163 Study: AF/6026/NN
Argelato, Emilia Romagna, Italy, 2001 (Miss)	98.8	858	1	37	Fruit Fruit	0.13 0.08	0.01 0.01	0.14 0.09	Report: R- 4163 Study: AF/6026/NN

Assorted tropical and sub-tropical fruit-inedible peel

Avocado

Table 200 Residues in Avocados (outdoor trails) from supervised trials in USA involving foliar applications of Fenpyroximate 5% SC

Avocados	Application			DALA Commodit		odity Residues (mg/kg)			Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximate and M-1	Comments
Paso Robles, CA, USA, 2008 (Haas)	111, 112 14d interval	1788	2	1	Fruit	0.06	-	<u>0.06</u>	Report: R-4459 Study: 10007
Paso Robles, CA, USA, 2008 (Haas)	112, 112 13d interval	1677	2	1	Fruit	< 0.05	-	<u><0.05</u>	Report: R-4459 Study: 10007
Parlier, CA, USA, 2009 (Haas)	115, 114 17d interval	1280	2	1	Fruit	< 0.05	-	<u><0.05</u>	Report: R-4459 Study: 10007
Parlier, CA, USA, 2009 (Haas)	115, 114 14d interval	1631	2	1	Fruit	< 0.05	-	< 0.05	Report: R-4459 Study: 10007
Homestead, FL, USA, 2009 (Simmonds)	102, 102 14d interval	1369	2	1	Fruit	0.10	-	0.10	Report: R-4459 Study: 10007

Papaya

Table 201 Residues in Papaya (outdoor trails) from supervised trials in Brazil involving foliar applications of Fenpyroximate 5% SC

Papaya	Application			DALA	Commodity	Residues (mg/kg	g)		Reference &
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Linhares (ES), Brazil, 2002 (Golden)	50 + 50 14 day interval	1000	2	0 3 5 7 14	Fruit Fruit Fruit Fruit Fruit	0.06 0.2 0.2 0.2 0.2 0.2	- - - -	0.06 0.2 0.2 0.2 0.2 0.2	Report: R- 4496 Study: 74/4534/03 Study not to
	100 + 100 14 day interval	1000	2	0 3 5 7 14	Fruit Fruit Fruit Fruit Fruit	< 0.05 0.2 0.2 0.3 0.3	- - - -	< 0.05 0.2 0.2 0.3 0.3	GLP
Santa Fe do Sul (SP), Brazil, 1997/1998 (Papaya)	100 + 100 14 day interval	1000	2	0 3 5 7 14	Fruit Fruit Fruit Fruit Fruit	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	- - - -	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Report: R- 4496 Study: - Study not to GLP
	30 + 30 14 day interval	600	2	0 3 5 7 14	Fruit Fruit Fruit Fruit Fruit	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	- - - -	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	

Papaya	Application			DALA	Commodity	Residues (mg/kg		Reference &	
Trial Location Country,year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Ilha Solteira (SP), Brazil,1997/1998 (Papaya)	60 + 60 14 day interval	600	2	0 3 5 7 14	Fruit Fruit Fruit Fruit Fruit	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	- - - -	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Report: R- 4496 Study: - Study not to GLP
	40 + 40 14 day interval	800	2	0 3 5 7 14	Fruit Fruit Fruit Fruit Fruit	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	- - - -	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	

Fruiting vegetables, Cucurbits

Cucumber

Table 202 Residues in cucumber from supervised trials in EU, Japan and USA involving foliar applications of Fenpyroximate 5%SC or 5%EC.

Cucumber	Application			DALA	Commodity		Reference &		
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Study: A48128 Cheste SPAIN, 1990 (Dinastic 2) (Protected)	103	2000	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.12 0.04 0.01 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.13 0.05 0.02 0.02	Report: R- 4036 5%SC
Study: A48129 Cheste SPAIN,1990 (Dinastic 2) (Protected)	154.5	2000	1	0 3 7 14	Fruit Fruit Fruit Fruit	0.09 0.06 0.02 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.10 0.07 0.03 0.02	Report: R- 4037 5%SC
Trial: AF/6097/NN/2 Montauban S FRANCE,2001 (Defence) (Protected)	108.5	1059	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.03 0.02 0.02 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.03 0.03 < 0.02	Report: R- 4172, Study:
Trial: AF/6097/NN/3 St Jory S FRANCE, 2001 (1976 Bruisma) (Protected)	102.9	1004	1	7 10	Fruit Fruit	0.02 < 0.01	< 0.01 < 0.01	0.03 < 0.02	AF/6097/NN 5%SC
Trial: AF/6097/NN/4 Riolo Terme ITALY, 2001 (Darina) (Protected)	107.3	1047	1	7 10	Fruit Fruit	< 0.01 < 0.01	< 0.01 < 0.01	< 0.02 < 0.02	
Trial: AF/6779/NN/01 Los Palacio y Villafranca Seville SPAIN,2002 (not stated) (Protected)	103.5	1010	1	Post T1 3 7 10	Fruit Fruit Fruit Fruit	0.04 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4173 Study: AF/6779/NN
Trial: AF/6779/NN/02 Burstwick, East Yorkshire UK,2002 (Amaada) (Protected)	105	1025	1	Post T1 3 7 10	Fruit Fruit Fruit Fruit	0.03 0.02 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.03 < 0.02 < 0.02	5%SC

Cucumber	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: AF/6779/NN/03 Beverley, East Yorkshire UK,2002 (Aviance) (Protected)	110	1069	1	Post T1 3 7 10	Fruit Fruit Fruit Fruit	0.04 0.03 0.02 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.04 0.03 < 0.02	
Trial: AF/6779/NN/04 Keyingham, East Yorkshire UK,2002 (Korinda) (Protected)	90	881	1	7 10	Fruit Fruit	< 0.01 < 0.01	< 0.01 < 0.01	< 0.02 < 0.02	
Trial: AF/6779/NN/05 Los Palacio y Villafranca, Sevilla SPAIN,2002 (Dona) (Protected)	103	1000	1	7 10	Fruit Fruit	< 0.01 < 0.01	< 0.01 < 0.01	< 0.02 < 0.02	
Trial: AF/6779/NN/06 Rieux, Orgueil S FRANCE,2002 (Beluga) (Protected)	103	1008	1	7 10	Fruit Fruit	0.01 < 0.01	< 0.01 < 0.01	0.02 < 0.02	
Trial: Gunma A Gunma JAPAN, 1989	100	2000	1	1 3 7	Fruit Fruit Fruit	0.058 0.029 0.008	- - -	0.058 0.029 0.008	Report: R- 4348
(Sharp One) (Protected)	50	2000	1	1 3 7	Fruit Fruit Fruit		- - -	0.019 0.014 0.006	Study: NN028-01
Study NN028-01 Trial Kochi A Kochi	100	2000	1	1 3 7	Fruit Fruit Fruit	0.105 0.026 0.006	- - -	0.105 0.026 0.006	-Study not to GLP 5%EC
JAPAN, 1989 (Sharp One) (Protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	0.040 0.010 < 0.005	- - -	0.040 0.010 < 0.005	Refer also to 5.6.1/08 5%EC
Trial: Gunma A Gunma JAPAN, 1989	100	2000	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	R-4349, NN028-02
(Snarp One) (Protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	-Study not to GLP
Trial Kochi A Kochi JAPAN, 1989 (Sharp One) (Protected)	100	2000	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	-Study not to GLP
(Sharp One) (Frotected)	50	2000	1	1 3 7	Fruit Fruit Fruit	- -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Refer also to 5.6.1/07
Trial Gunma A Gunma JAPAN, 1990	100	2000	1	1 3 7	Fruit Fruit Fruit	0.028 0.028 < 0.005	- -	0.028 0.028 < 0.005	Report: R- 4350
(Sharp One) (Protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	< 0.005 0.008 < 0.005	- - -	< 0.005 0.008 < 0.005	Study NN028-03
Study NN028-03 Trial Kochi A Kochi	100	2000	1	1 3 7	Fruit Fruit Fruit	0.084 0.020 < 0.005	- - -	0.084 0.020 < 0.005	GLP 5%EC
JAPAN, 1990 (Sharp One) (Protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	0.038 < 0.005 < 0.005	-	0.038 < 0.005 < 0.005	Refer also to 5.6.1/10

Cucumber	Application			DALA	Commodity	Residues (mg/k	(g)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: Gunma A Gunma JAPAN, 1990	100	2000	1	1 3 7	Fruit Fruit Fruit	- -	1 3 7		Report: R- 4351
(Sharp One) (Protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	- -	1 3 7		Study: NN028-04
Trial: Kochi A Kochi JAPAN, 1990 (Sharp One) (Protected)	100	2000	1	1 3 7	Fruit Fruit Fruit	-	< 0.005 0.006 < 0.005	< 0.005 0.006 < 0.005	-Study not to GLP 5%EC Refer also to
	50	2000	1	1 3 7	Fruit Fruit Fruit	-	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	5.6.1/09
Trial: Chiba A Chiba JAPAN, 1997 (Sharp One) (Protected)	50 80	2000 2000	1	1 1 3 7	Fruit Fruit Fruit Fruit	0.046 0.118 0.066 0.015	< 0.005 < 0.005 < 0.005 < 0.005	0.051 0.123 0.071 0.020	Report: R- 4404 Study:
Study: NN028-05 Trial: Miyazaki A Miyazaki JAPAN, 1997 (Suisei Fuchinari #2) (Protected)	80	2000	1	1 3 7	Fruit Fruit Fruit	0.091 0.048 0.018	< 0.005 < 0.005 < 0.005	0.096 0.053 0.023	-Study not to GLP -Study carried out in 1997 5%EC
Trial: Chiba A Chiba JAPAN, 1997	80	2000	1	1 3 7	Fruit Fruit Fruit	0.110 0.076 0.022	< 0.005 < 0.005 < 0.005	0.115 0.081 0.027	Report: R- 4405
(Snarp One) (Protected) Trial: Miyazaki A Miyazaki JAPAN, 1997 (Suiaci Euclinesi #2)	50 120	2000 3000	1	1 1 3 7	Fruit Fruit Fruit Fruit	0.061 0.086 0.046 0.019	< 0.005 < 0.005 < 0.005 < 0.005	0.066 0.091 0.051 0.024	Study: NN028-06 -Study not to GLP
(Protected)	75	3000	1	1	Fruit	0.057	< 0.005	0.062	5%EC
Gunma JAPAN, 1997 (Honor) (Protected)	80	2000	1	1 3 7	Fruit Fruit Fruit	0.076 0.032 0.010	< 0.005 < 0.005 < 0.005	0.081 0.037 0.015	Report: R- 4406
Trial Aichi A Aichi JAPAN, 1997 (Sharp 301) (Protected)	120	3000	1	1 3 7	Fruit Fruit Fruit	0.182 0.081 0.026	< 0.005 < 0.005 < 0.005	0.187 0.086 0.031	Study: NN028-07 -Study not to GLP 5%EC
Trial: S15-03095-03 El Viso del Alcor, Seville, SPAIN, 2015 (Alanis)	104.2	833	1	0 1 3 5 7	Fruit Fruit Fruit Fruit Fruit	0.02 0.02 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$\begin{array}{c} 0.03 \\ 0.03 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \end{array}$	Report: R- 4511 Study: S15- 03095
Trial: S15-03095-04 Monte San Biagio, ITALY, 2015 (Ekron)	105.6	1056	1	0 1 3 5 7	Fruit Fruit Fruit Fruit Fruit	0.06 0.07 0.03 0.04 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.07 0.08 0.04 0.05 0.03	5%SC

Cucumber	Application			DALA	Commodity	Residues (mg/k		Reference &	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: S15-03095-05 Saint-Laurent-de-la- Salanque, Pyrénées- Orientales, S FRANCE, 2015 (Roccken)	100.4	803	1	7	Fruit	0.04	< 0.01	0.05	
Trial: S15-03095-06 Los Palacios, Andalucia, SPAIN, 2015 (Alanis)	95.5	955	1	7	Fruit	0.06	< 0.01	0.07	
Trial: S15-03095-09 Saint-Laurent-de-la- Salanque, Pyrénées- Orientales, S FRANCE, 2015 (Marketer)	103	928	1	7	Fruit	0.02	< 0.01	0.03	
Trial: NC08 Clinton, NC USA, 2009 (Cross country)	110.9 + 109.7 13 day interval	382 380	2	1	Fruit	0.0604,0.088 <u>0.08</u>	< 0.05	0.1104,0.138 0.13	Report: R- 4460 Study: IR-4
Trial: SC*05 Charleston, SC USA, 2009 (Calypso Hybrid)	112 + 113.1 13 day interval	443 428	2	1	Fruit	0.10,0.12 <u>0.11</u>	< 0.05	0.15,0.17 <u>0.16</u>	PR No. 09032 5%EC
Trial: SC*06 Charleston, SC USA, 2009 (Poinsett 76)	112 + 112 14 day interval	439 427	2	1	Fruit	0.19,0.15 <u>0.17</u>	< 0.05	0.24,0.20 <u>0.22</u>	
Trial: GA*02 Tifton, GA USA, 2009 (National Pickling)	112 + 112 13 day interval	412 410	2	1	Fruit	0.069,0.060 <u>0.065</u>	< 0.05	0.119,0.110 0.115	
Trial: GA*03 Tifton, GA USA, 2009 (Straight 8)	113.1 + 112 13 day interval	414 412	2	1	Fruit	0.053,0.056 0.55	< 0.05	0.103,0.106 0.60	
Trial: OH*01 Fremont, OH USA, 2009 (Dasher II)	110.9 + 107.5 16 day interval	495 506	2	1	Fruit	<u><0.05</u>	< 0.05	<u><0.10</u>	
Trial: OH*02 Fremont, OH USA, 2009 (Sassy)	112 + 110.9, 16 day interval	500 524	2	1	Fruit	< 0.05	< 0.05	< 0.10	
Trial: TX*21 Weslaco, TX USA, 2009 (Poinsett 76)	112 + 113.1 14 day interval	403 399	2	1	Fruit	0.08,0.07 <u>0.08</u>	< 0.05	0.13,0.12 0.13	
Trial: CA44 Holtville, CA USA, 2009 (Cobra)	112 + 112 13 day interval	484 490	2	1	Fruit	0.059,0.066 <u>0.063</u>	< 0.05	0.109,0.116 0.113	

Courgette

Table 203 Residues in courgette from supervised trials in EU, Japan and USA involving foliar applications of Fenpyroximate 5%SC or 5%EC

Courgette	Application			DALA	Commodi	Residues (1	ng/kg)		Reference &
Trial	Rate	Water	No	(days)	ty	Fenpyroxi	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)			-	mate		fenpyroxim	
Country, year	Č,							ate and M-1	
(Variety)									
Trial: S15-03095-01	101.9	918	1	0	Fruit	0.07	< 0.01	0.08	Report: R-
Saint-Laurent-de-la-				1	Fruit	0.05	< 0.01	0.06	4511
Salanque, Pyrénées-				3	Fruit	0.01	< 0.01	0.02	
Orientales,				5	Fruit	< 0.01	< 0.01	< 0.02	Study: S15-
S FRANCE, 2015				7	Fruit	< 0.01	< 0.01	< 0.02	03095
Courgette (Diamant)									
Trial: S15-03095-02	98.4	984	1	0	Fruit	0.04	< 0.01	0.05	5%SC
Carmona, Andalucia,				1	Fruit	0.02	< 0.01	0.03	
SPAIN, 2015				3	Fruit	< 0.01	< 0.01	< 0.02	
Courgette (Sabla)				5	Fruit	< 0.01	< 0.01	< 0.02	
				7	Fruit	< 0.01	< 0.01	< 0.02	
Trial: S15-03095-07	105.3	1053	1	7	Fruit	< 0.01	< 0.01	< 0.02	
Conil de la Frontera,									
Cádiz,									
SPAIN, 2015									
Courgette (Gelide)									
Trial: S15-03095-08	101.8	1018	1	7	Fruit	< 0.01	< 0.01	< 0.02	
Castenaso, Bologna,									
ITALY, 2015									
Courgette									
(Apollonia)									
Trial: S13-03365-01	101.4	691.7	1	0	Fruit	0.07	< 0.01	0.08	Report: R-
Saint Laurent de la				3	Fruit	0.02	< 0.01	<u>0.03</u>	4486
Salanque, Pyrenees-				7	Fruit	< 0.01	< 0.01	< 0.02	
Orientales,				14	Fruit	< 0.01	< 0.01	< 0.02	Study: S13-
S FRANCE, 2013				21	Fruit	< 0.01	< 0.01	< 0.02	03365
Courgette (Greyzini)									
Trial: S13-03365-02	102.1	595.6	1	0	Fruit	0.05	< 0.01	0.06	5%SC
Budrio, Bologna				3	Fruit	<u>0.01</u>	< 0.01	<u>0.02</u>	
ITALY, 2013				7	Fruit	< 0.01	< 0.01	< 0.02	
Courgette (Carisma)				14	Fruit	< 0.01	< 0.01	< 0.02	
				21	Fruit	< 0.01	< 0.01	< 0.02	
Trial: S13-03365-03	103.1	1002	1	0	Fruit	0.13	< 0.01	0.14	
Valle Marine, Latina				3	Fruit	0.03	< 0.01	<u>0.04</u>	
ITALY, 2013				7	Fruit	< 0.01	< 0.01	< 0.02	
Courgette (Greyzini)				14	Fruit	< 0.01	< 0.01	< 0.02	
				21	Fruit	< 0.01	< 0.01	< 0.02	
Trial: S13-03365-04	103.9	504.8	1	0	Fruit	0.07	< 0.01	0.08	
Vazerac, Tarm et Garonne				3	Fruit	0.02	< 0.01	0.03	
S FRANCE, 2013				7	Fruit	< 0.01	< 0.01	< 0.02	
Courgette (Bauera)				14	Fruit	< 0.01	< 0.01	< 0.02	
		1		21	Fruit	< 0.01	< 0.01	< 0.02	

1154

Melons

Table 204 Residues in Melon from supervised trials in EU and Japan involving one foliar application of Fenpyroximate 5%SC

Melon	Applica	tion		DALA	Commodity	Residues (mg/kg)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: JPPA A JPPA Japan, 1988 (Andes) (Protected)	150	300	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	- -	< 0.005 < 0.005 < 0.005	Report: R- 4306 Study: NN026-01
Trial: JPPA-Kochi A JPPA-Kochi Japan, 1988 (W. S. Earl's) (Protected)	175	350	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	-	< 0.005 < 0.005 < 0.005	- Study not to GLP 5%SC
Trial: JPPA A JPPA Japan, 1988 (Andes) (Protected)	150	300	1	1 3 7	Flesh Flesh Flesh	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R- 4307 Study: NN026-02
Trial: Kochi A JPPA-Kochi Japan, 1988 (W. S. Earl's) (Protected)	175	350	1	1 3 7	Flesh Flesh Flesh	- -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	- Study not to GLP 5%SC
Trial: JPPA A JPPA Japan, 1988 (Andes) (Protected)	150	300	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	-	< 0.005 < 0.005 < 0.005	Report: R- 4309 Study: NN026-03
Trial: Kochi A JPPA-Kochi Japan, 1988 (W. S. Earl's) (Protected)	175	350	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	-	< 0.005 < 0.005 < 0.005	Study not to GLP Peel was removed 5%SC
Trial: JPPA A JPPA Japan, 1988 (Andes) (Protected)	150	300	1	1 3 7	Flesh Flesh Flesh	- -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R- 4310 Study: NN026-04
Trial: Kochi A Kochi Japan, 1988 (W. S. Earl's) (Protected)	175	350	1	1 3 7	Flesh Flesh Flesh	-	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	- Study not to GLP -Refer also to 5.7.1/03 Peel was removed 5%SC
Trial: S13-03364-01 Fontanars, Valencia SPAIN,2013 (Amarillo de España)	107.6	523		0 0 3 3 7 7 7 14 14 14 21 21 21	Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit	< 0.01 0.32 0.07 < 0.01 0.25 0.06 0.01 0.35 0.08 < 0.01 0.14 0.03 < 0.01 0.14 0.03 < 0.01 0.11 0.02	$ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\$	<pre>< 0.02 0.33 0.08 < 0.02 0.26 0.07 0.02 0.36 0.09 < 0.02 0.15 0.04 < 0.02 0.15 0.04 < 0.02 0.12 0.03</pre>	Report: R- 4487 Study: S13- 03364 5%SC

Melon	Applicat	tion		DALA	Commodity	Residues (n	ng/kg)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of fenpyroximat e and M-1	Comments
Trial: S13-03364-02 Budrion, Province of Bologna ITALY, 2013 (Saphir)	108.4	843	1	0 0 0 3 3 7 7 7 14 14 14 21 21 21	Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit	$< 0.01 \\ 0.03 \\ 0.01 \\ < 0.01 \\ 0.02 \\ < 0.01 \\ < 0.01 \\ 0.02 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 $	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.	< 0.02 0.04 0.02 < 0.02 0.03 < 0.02 < 0.02 0.03 < 0.02 < 0.02	
Trial: S13-03364-03 Huelva, Andalusia Spain, 2013 (Quisose)	104.3	811	1	0 0 3 3 7 7 7 14 14 14 21 21	Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit	$< 0.01 \\ 0.06 \\ 0.02 \\ < 0.01 \\ 0.06 \\ 0.01 \\ < 0.01 \\ 0.05 \\ 0.01 \\ < 0.01 \\ 0.08 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.04 \\ < 0.01$	$< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \end{aligned}$	$< 0.02 \\ 0.07 \\ 0.03 \\ < 0.02 \\ 0.07 \\ 0.02 \\ < 0.02 \\ 0.06 \\ 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.$	
Trial: S13-03364-04 Laguanto, Ferrara Italy, 2013 (Sogna)	107.5	627	1	0 0 3 3 7 7 7 7 14 14 14 21 21	Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit Pulp Peel Whole Fruit	$< 0.01 \\ 0.19 \\ 0.05 \\ < 0.01 \\ 0.06 \\ 0.02 \\ < 0.01 \\ 0.04 \\ 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 $	$< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \\< 0.01 \end{aligned}$	$< 0.02 \\ 0.20 \\ 0.06 \\ < 0.02 \\ 0.07 \\ 0.03 \\ < 0.02 \\ 0.05 \\ 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.$	

Cantaloupe

Table 205 Residues in Cantaloupe from supervised trials in USA involving 2 foliar applications of Fenpyroximate 5%EC

Cantaloupe Application				DALA	Commodity	Residues (mg/k	g)		Reference
Trial	Rate	Water	No.	(days)	-	Fenpyroximate	M-1	Sum of	&
Location	(g ai/ha)	(L/ha)						Fenpyroximate	Comments
Country, year								and M-1	
(Variety)									
Trial: 09022.05-OH*06	110.9 + 109.7	500	2	3	Fruit	< 0.05	-	< 0.05	Report: R-
Fremont, Ohio	15 day	489							4195
USA, 2005	interval								
(Aphrodite)									Study: IR-
Trial: 09022.05-GA*06	113.1 + 113.1	303	2	2	Fruit	≤ 0.05	-	≤ 0.05	4 PR No.
Tifton, Georgia	12 day	302							09022
USA, 2005	interval								
(Hale's Best Jumbo)									5%EC
Trial: 09022.05-TX*12	112 + 112	307	2	3	Fruit	≤ 0.05	-	≤ 0.05	
Weslaco, Texas	16 day	326							
USA, 2005	interval								
(Mission)									
Trial: 09022.05-TX*13	112 + 112	347	2	4	Fruit	< 0.05	-	< 0.05	
Weslaco, Texas	16 day	317							
USA, 2005	interval								
(Cruiser)									
Trial: : 09022.05-CA41	112 + 113.1	281	2	1	Fruit	< 0.05	-	< 0.05	
Riverside, California	14 day	283		3	Fruit	< 0.05		≤ 0.05	
USA, 2005	interval			7	Fruit	< 0.05		< 0.05	
(Laredo)				13	Fruit	< 0.05		< 0.05	
				21	Fruit	< 0.05		< 0.05	
Trial: : 09022.05-NM08	114.1 + 112	386	2	3	Fruit	< 0.05	-	< 0 <u>.05</u>	
Mesilla, New Mexico	14 day	379							
USA, 2005	interval								
(Topmark SR)									
Trial: : 09022.05-CA42	112 + 112	295	2	2	Fruit	< 0.05	-	< 0.05	
Holtville, California	12 day	296							
USA, 2005	interval								
(Hymark)									
Trial: : 09022.05-CA43	$11\overline{3.1} + 11\overline{2}$	377	2	2	Fruit	< 0.05	-	< 0.05	
Parlier, California	12 day	370							
USA, 2005	interval								
(Topmark)									

Watermelon

Table 206 Residues in watermelon from supervised trials in Japan and USA involving 1-2 foliar applications of Fenpyroximate 5%SC or 5%EC.

Watermelon	on Application DALA Commodity Residues (mg/kg) Refe						Reference		
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: Niigata Niigata JAPAN, 1989 (Wase-Nissho) (Protected)	25	1000	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	- -	< 0.005 < 0.005 < 0.005	Report: R- 4300 Study not to GLP
Trial: Nara Nara JAPAN, 1989 (Asahikari SR) (Protected)	50	1000	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	- -	< 0.005 < 0.005 < 0.005	Fruits (peel removed) 5%SC

Watermelon	Application			DALA	Commodity	Residues (mg/k	ig)		Reference
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Trial: Niigata Horticulture Experimental Station Niigata Horticulture Experimental Station JAPAN, 1989 (Wase-Nissho) (Protected)	25	1000	1	1 3 7	Flesh Flesh Flesh	-	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R- 4301 Study not to GLP Fruits (peel
Trial: Nara Agricultural Experimental Station Nara Agricultural Experimental Station JAPAN, 1989 (Asahikari SR) (Protected)	50	1000	1	1 3 7	Flesh Flesh Flesh	- -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	removed) 5%SC
Trial: Niigata Niigata JAPAN, 1989 (Wase-Nissho) (Protected)	25	1000	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	- -	< 0.005 < 0.005 < 0.005	Report: R- 4303 Study not to GLP
Trial: Nara Nara JAPAN, 1989 (Asahikari SR) (Protected)	50	1000	1	1 3 7	Flesh Flesh Flesh	< 0.005 < 0.005 < 0.005	-	< 0.005 < 0.005 < 0.005	Fruits (peel removed) 5%SC
Trial: Niigata Niigata JAPAN, 1990 (Wase-Nissho) (Protected)	25	1000	1	1 3 7	Flesh Flesh Flesh	-	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R- 4304 - Study not to GLP
Trial: Nara Nara JAPAN, 1989 (Asahikari SR) (Protected)	50	1000	1	1 3 7	Flesh Flesh Flesh	-	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	(peel removed) 5%SC
Trial: JPPA, Kochi JPPA, Kochi JAPAN, 2011 (Yozora) (Protected)	140.5	2810	1	1 3 7 1 3 7	Flesh Flesh Whole fruit* Whole fruit* Whole fruit*	< 0.005 < 0.005 < 0.005 0.061 0.083 0.069	< 0.005 < 0.005 < 0.005 < 0.005 0.005 0.005	< 0.010 < 0.010 < 0.010 0.066 0.088 0.074	Report: R- 4452 - Study not to GLP Refer also to 5.7.3/06 5%SC *
Trial: JPPA, Miyazaki JPPA, Miyazaki JAPAN, 2011 (Hitorijime HM) (Protected)	115.5	2310	1	1 3 7 1 3 7	Flesh Flesh Whole fruit* Whole fruit* Whole fruit*	< 0.005 < 0.005 < 0.005 0.030 0.053 0.069	< 0.005 < 0.005 < 0.005 < 0.005 0.006 0.005	< 0.010 < 0.010 < 0.010 0.035 0.059 0.074	calculated value
Trial JPPA, Kochi JPPA, Kochi JAPAN, 2011 (Yozora) (Protected)	140.5	2810	1	1 3 7	Peel Peel Peel	0.283 0.393 0.327	< 0.005 0.006 0.006	0.288 0.399 0.333	Report: R- 4453- Study not to GLP
Trial JPPA, Miyazaki JPPA, Miyazaki JAPAN, 2011 (Hitorijime HM) (Protected)	115.5	2310	1	1 3 7	Peel Peel Peel	0.128 0.243 0.126	< 0.005 0.009 0.005	0.133 0.252 0.131	- Keler also to 5.7.3/05 5%8C

Watermelon	Application			DALA	Commodity	Residues (mg/k	(g)		Reference
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Study: N10R060-1 Trial: JPPA, Kochi JPPA, Kochi JAPAN, 2011 (Yozora) (Protected)	140.5	2810	1	1 3 7 1 3 7	Flesh Flesh Flesh Whole fruit* Whole fruit* Whole fruit*	< 0.005 < 0.005 < 0.005 0.042 0.046 0.026	< 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	< 0.010 < 0.010 < 0.010 0.047 0.051 0.031	Report: R- 4454 - Study not to GLP 5%SC * calculated value
Study: N10R060-1 Trial: JPPA, Miyazaki JPPA, Miyazaki JAPAN, 2011 (Hitorijime HM) (Protected)	115.5	2310	1	1 3 7 1 3 7	Flesh Flesh Flesh Whole fruit* Whole fruit* Whole fruit*	< 0.005 < 0.005 < 0.005 0.017 0.022 0.014	< 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	< 0.010 < 0.010 < 0.010 0.022 0.027 0.019	
Trial: JPPA, Kochi JPPA, Kochi JAPAN, 2011 (Yozora) (Protected)	140.5	2810	1	1 3 7	Peel Peel Peel	0.188 0.209 0.112	< 0.005 0.005 < 0.005	0.193 0.214 0.117	Report: R- 4455 Study: N10RO60-
Trial: JPPA, Miyazaki JPPA, Miyazaki JAPAN, 2011 (Hitorijime HM) (Protected)	115.5	2310	1	1 3 7	Peel Peel Peel	0.064 0.091 0.050	< 0.005 0.005 < 0.005	0.069 0.096 0.055	2 Study not to GLP 5%SC
Trial: 11182.13-CA121 Parlier, CA USA, 2013 (All Sweet)	112 + 113.1 14 day interval	374 393	2	1	Fruit	<u>< 0.05</u>	< 0.05	<u><0.10</u>	Report: IR-4 PR No. 11182
Trial: 11182.13-GA*02 Tifton, GA USA, 2013 (Charleston Grey)	110.9 + 110.9 10 day interval	234 234	2	1	Fruit	<u><0.05</u>	< 0.05	< 0.10	Study: IR- 4 PR No. 11182
Trial: 11182.13-OH*15 Fremont, OH USA, 2013 (Sangria)	112 + 110.9 13 day interval	430 364	2	1	Fruit	<u><0.05</u>	< 0.05	<u><0.10</u>	570EC
Trial: 11182.13-SC*438 Charleston, SC USA, 2014 (Micky Lee)	113.1 + 114.2 13 day interval	439 449	2	1	Fruit	<u><0.05</u>	< 0.05	<u><0.10</u>	

Peppers

Table 207 Residues in Peppers from supervised trials in EU, Japan and the USA involving foliar applications of Fenpyroximate 5% SC or 5% EC

Peppers	Applica	ation		DALA	Commodity	Residues (mg/l	Reference &		
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: AF/6096/NN/2 Montauban, Tarn-et-Garonne France, 2001 (Joselito)	105.4	829	1	7 10	Whole pepper Whole pepper	0.08 0.06	< 0.01 < 0.01	0.09 0.07	Report: R- 4176 Study:
Trial: AF/6096/NN/3 Larbarthe, Tarn-et-Garonne France, 2001 (Joselito)	99.6	972	1	7 10	Whole pepper Whole pepper	0.03 0.02	< 0.01 < 0.01	0.04 0.03	AF/6096/NN 5%SC
Trial: AF/6096/NN/4 Zangadas, Thessaloniki Greece, 2001 (RS 912869)	105.5	1037.7	1	0 3 7 10	Whole pepper Whole pepper Whole pepper Whole pepper	0.14 0.15 0.12 0.10	< 0.01 < 0.01 < 0.01 < 0.01	0.15 0.16 0.13 0.11	
Trial Miyagi A Miyagi JAPAN, 1989 Bell Pepper (, Nishiki) (protected)	75	1500	1	1 3 7	Fruit Fruit Fruit	0.130 0.102 0.064	- -	0.130 0.102 0.064	Report: R- 4336 Study: NN027-01 -Study not to
Trial Nagano A Nagano JAPAN, 1989	100	2000	1	1 3 7	Fruit Fruit Fruit	0.092 0.055 0.048	- - -	0.092 0.055 0.048	GLP Remove the Calyx 5%EC
Bell Pepper (, Kyonami) (protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	0.051 0.036 0.028	- -	0.051 0.036 0.028	
Trial Miyagi A Miyagi JAPAN, 1989 Bell Pepper (Nishiki) (protected)	75	1500	1	1 3 7	Fruit Fruit Fruit	- - -	0.006 0.005 0.005	0.006 0.005 0.005	Report: R- 4337 Study: NN027-02 -Study not to
Trial Nagano A Nagano JAPAN, 1989	100	2000	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	GLP Remove the Calyx 5%EC
(protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	
Trial: Miyagi A Miyagi JAPAN, 1989 Bell Pepper (Nishiki) (protected)	75	1500	1	1 3 7	Fruit Fruit Fruit	0.124 0.057 0.071	-	0.124 0.057 0.071	Report: R- 4339 Study: NN027-03
Trial: Nagano A Nagano JAPAN, 1989 Bell Pepper (Kyonami)	100	2000	1	1 3 7	Fruit Fruit Fruit	0.080 0.068 0.038	- - -	0.080 0.068 0.038	-Study not to GLP Remove the Calyx
Bell Pepper (Kyonami) (protected)	50	2000	1	1 3 7	Fruit Fruit Fruit	0.044 0.040 0.030	- - -	0.044 0.040 0.030	570EC

Peppers	Application DALA Commodity Residues (mg/kg)				Reference &				
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial: Miyagi A Miyagi JAPAN, 1989 Bell Pepper (Nishiki) (protected)	75	1500	1	1 3 7	Fruit Fruit Fruit	- -	0.007 < 0.005 0.007	0.007 < 0.005 0.007	Report: R- 4340 Study: NN027-04 -Study not to
Trial: Nagano A Nagano JAPAN, 1989 Bell Pepper (Kyonami) (protected)	100 50	2000 2000	1	1 3 7 1 3 7	Fruit Fruit Fruit Fruit Fruit Fruit	- - - - -	< 0.005 0.005 < 0.005 < 0.005 < 0.005 < 0.005	< 0.005 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	GLP Remove the Calyx 5%EC
Trial: Kochi A Kochi JAPAN, 1991 Bell Pepper (Tosahime) (protected)	75	300	1	1 3 7	Fruit Fruit Fruit	0.126 0.107 0.066	- -	0.126 0.107 0.066	Report: R- 4342 Study: NN027-05 -Study not to
Trial: Miyazaki A Miyazaki JAPAN, 1991 Bell Pepper (Tosahikari-D) (protected)	50	200	1	1 3 7	Fruit Fruit Fruit	0.100 0.083 0.069	-	0.100 0.083 0.069	GLP Remove the Calyx 5%EC
Trial: Kochi A Kochi JAPAN, 1991 Bell Pepper (Tosahime) (protected)	75	300	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R- 4343 Study: NN027-06 -Study not to
Trial: Miyazaki A Miyazaki JAPAN, 1991 Bell Pepper (Tosahikari-D) (protected)	50	200	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	GLP Remove the Calyx 5%EC
Trial: Kochi A Kochi JAPAN, 1991 Bell Pepper (Tosahime) (protected)	75	300	1	1 3 7	Fruit Fruit Fruit	0.107 0.086 0.071	-	0.107 0.086 0.071	Report: R- 4344 Study: NN027-07 -Study not to
Trial: MiyazakiA Miyazaki JAPAN, 1991 Bell Pepper (Tosahikari-D) (protected)	50	200	1	1 3 7	Fruit Fruit Fruit	0.084 0.078 0.059	-	0.084 0.078 0.059	GLP Remove the Calyx 5%EC
Trial: Kochi A Kochi JAPAN, 1991 Bell Pepper (Tosahime) (protected)	75	300	1	1 3 7	Fruit Fruit Fruit	- - -	< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	Report: R- 4345 Study: NN027-08 -Study not to
Trial: Miyazaki A Miyazaki JAPAN, 1991 Bell Pepper (Tosahikari-D) (protected)	50	200	1	1 3 7	Fruit Fruit Fruit		< 0.005 < 0.005 < 0.005	< 0.005 < 0.005 < 0.005	GLP Remove the Calyx 5%EC
Study: NN027-09 Trial: Iwate A Iwate	100	200	1	1 3 7	Fruit Fruit Fruit	0.170 0.138 0.094	- -	0.170 0.138 0.094	Report: R- 4346 -Study not to

Peppers	Applica	tion		DALA	Commodity	Residues (mg/kg)			Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
JAPAN, 1991 Bell Pepper (Tosa-green B)	50	200	1	1 3 7	Fruit Fruit Fruit	0.084 0.070 0.040	- -	0.084 0.070 0.040	GLP Remove the Calyx 5%EC
Trial: NJ09 Bridgeton, NJ USA, 2005 Bell Pepper (King Authur)	117.6 + 113.1 14 day interval	715 740	2	1	Fruit	0.068,0.069 <u>0.07</u>	-	0.068,0.069 <u>0.07</u>	Report: R- 4194 Study: IR-4
Trial-WI04 Arlington,WI USA, 2005 Bell Pepper (Bellboy)	115.3 + 112 14 day interval	440 432	2	1	Fruit	<u><0.05</u>	-	<u><0.05</u>	PR No. 08617 5%EC
Trial –OH*05 Freemont, OH USA, 2005 Non Bell Pepper (Sahuaro)	112 + 112 14 day interval	462 459	2	1	Fruit	<u><0.05</u>	-	<u><0.05</u>	* rain within 1 hour, so application 2 repeated
Trial –TX09 Weslaco, TX USA, 2005 Non Bell Pepper (Tam Veracruz)	114.2 + 115.3 13 day interval	398 402	2	1	Fruit	< 0.05	-	<u>< 0.05</u>	
Trial –TX10 Weslaco, TX USA, 2005 Bell Pepper (Capistrano)	113.1 + 113.1 14 day interval	433 436	2	1	Fruit	< 0.05	-	< 0.05	
Trial FL14 Citra, FL USA, 2005 Non Bell Pepper (Mitla)	114.2 + 116.5 13 day interval	426 437	2	1	Fruit	0.11,0.12 <u>0.12</u>	-	0.11,0.12 <u>0.12</u>	
Trial FL15 Citra, FL USA, 2005 Bell Pepper (Capistrano)	110.9 + 115.3 14 day interval	413 434	2	1	Fruit	<u><0.05</u>	-	<u>< 0.05</u>	
Trial TX*11 Weslaco, TX USA, 2005 Bell Pepper (Capistrano)	112 + 115.3 16 day interval	393 396	2	1	Fruit	0.056,0.075 <u>0.07</u>	-	0.056,0.075 <u>0.07</u>	
Trial –NC04 Clinton, North Carolina USA, 2005 Bell Pepper (Heritage)	112 + 109.7* + 112 14 day interval	403 396	2	0 1 3 7 12	Fruit Fruit Fruit Fruit Fruit	0.093,0.0950.09 0.133,0.120 <u>0.13</u> 0.098,0.1100.10 0.099,0.0960.10 0.094,0.0700.08	-	0.093,0.095,0.09 0.133,0.120, <u>0.13</u> 0.098,0.110,0.10 0.099,0.096,0.10 0.094,0.070,0.08	
Trial –NC05 Clinton, North Carolina USA, 2005 Non Bell Pepper (Aruba)	112 + 113.1 14 day interval	403 408	2	1	Fruit	0.057,0.050 <u>0.05</u>	-	0.057,0.050, <u>0.05</u>	
Trial-TN05 Crossville, TN USA, 2005 Bell Pepper (California Wonder Sweet)	115.3 + 114.2 + 120.9 14 day interval	402 400 409	3	1	Fruit	< <u>0.05</u>	-	< 0 <u>.05</u>	
Trial-FL16 Citra, FL USA, 2005 Bell Pepper (Capistrano)	116.5 + 110.9 14 day interval	435 416	2	1	Fruit	0.074,0.067	-	0.074,0.067	

Peppers	Application			DALA	Commodity	Commodity Residues (mg/kg)			Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of fenpyroximate and M-1	Comments
Trial-NM09 Mesilla, NM USA, 2005 Non Bell Pepper (Joe E. Parker)	112 + 112 14 day interval	467 467	2	1 3 7 14	Fruit Fruit Fruit Fruit	$\frac{< 0.05}{< 0.05} \\ < 0.05 \\ < 0.05 \\ < 0.05$	-	$\frac{< 0.05}{< 0.05} \\ < 0.05 \\ < 0.05 \\ < 0.05$	
Trial-CA39 Holtville, CA USA, 2005 Bell Pepper (Wizard)	114.2 + 110.9 13 day interval	547 536	2	1	Fruit	<u><0.05</u>	-	<u><0.05</u>	
Trial-CA40 Parlier, CA USA, 2005 Bell Pepper (Indria)	112 + 114.2 14 day interval	426 424	2	1	Fruit	<u><0.05</u>	-	<u><0.05</u>	
Trial-CO08 Ft. Collins, CO USA, 2005 (protected) Non Bell Pepper (DRH 7118 F1)	113.1 + 115.3 13 day interval	471 480	2	1	Fruit	0.056,0.052 <u>0.054</u>	-	0.056,0.052 <u>0.054</u>	

Tomato

Table 208 Residues in Tomatoes from supervised trials in Brazil, EU and Japan involving foliar applications of Fenpyroximate 5% SC or 5% EC

Tomatoes	Application			DALA	Commodity	Residues (mg/l	Residues (mg/kg)				
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments		
Study A48130 Cheste Spain, 1990 (Alex) (protected)	103	2000	1	0 3 7 14	Fruit Fruit Fruit Fruit	0.04 0.03 0.03 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.04 0.04 0.03	Report: R- 4038 -Study not to GLP 5%SC		
Study A48131 Cheste Spain, 1990 (Alex) (protected)	154.5	2000	1	0 3 7 14	Fruit Fruit Fruit Fruit	0.04 0.04 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.05 0.05 0.03 0.03	Report: R- 4039 -Study not to GLP 5%SC		
Trial: AF/6094/NN/1 Akrolimni, Pella, Greece, 2001 (Titano)	102.9	1004	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.01 0.02 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.02 0.03 0.03 0.03	Report: R- 4178 Study:		
Trial: AF/6094/NN/2 Anachoma, Thessaloniki Greece, 2001 (Volcano)	100.5	980	1	7 10	Fruit Fruit	0.02 0.02	< 0.01 < 0.01	0.03 0.03	AF/6094/NN 5%SC		
Trial: AF/6094/NN/3 Camino De la Reina, Seville Spain, 2001 (Malpica)	103.1	1006	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.08 0.04 0.04 0.04	< 0.01 < 0.01 < 0.01 < 0.01	0.09 0.05 0.05 0.05			
Tomatoes	Appli	cation		DALA	Commodity	Residues (mg/k	g)		Reference &		
---	----------------------	---	-----	-------------------------	---	--	--	---	--		
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments		
Trial: AF/6094/NN/4 La Puebla del Rio, Seville Spain, 2001 (Avalon)	107.4	1048	1	7 10	Fruit Fruit	0.05 0.05	< 0.01 < 0.01	0.06 0.06			
Trial: AF/6095/NN/1 Charlton, Shropshire UK, 2001 (Solution)(protected) Trial: AF/6095/NN/2	104.1	1016 998	1	0 3 7 10 7	Fruit Fruit Fruit Fruit Fruit	0.03 0.04 0.02 0.03 0.10	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.04 0.05 0.03 0.04 0.11	Report: R- 4179 Study: AF/6095/NN		
Spondon, Derbyshire UK, 2001 (Cussack)(protected)	102.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	10	Fruit	0.08	< 0.01	0.09	5%SC		
Trial: AF/6095/NN/3 Montauban, Tarn-et- Garonne France, 2001 (Petula) (protected)	101.8	993	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.03 0.04 0.06 0.03	< 0.01 < 0.01 < 0.01 < 0.01	0.04 0.05 0.07 0.04			
Trial: AF/6095/NN/4 Orgueil, Tarn-et- Gronne, France, 2001 (Cecilia) (protected)	100.6	981	1	7 10	Fruit Fruit	0.02 0.04	< 0.01 < 0.01	0.03 0.05			
Trial: AF/6095/NN/5 Argelato, Emilia Romagna Italy, 2001 (Incas) (protected)	105.3	1027	1	7 10	Fruit Fruit	0.08 0.09	< 0.01 < 0.01	0.09 0.10			
Trial: AF/6781/NN/1 Charlton, Shropshire UK, 2002 (Solution)(protected)	97.4	950	1	0 3 7 10	Fruit Fruit Fruit Fruit	0.06 0.04 0.03 0.03	< 0.01 < 0.01 < 0.01 < 0.01	0.07 0.05 0.04 0.04	Report: R- 4180, Study:		
Trial: AF/6781/NN/2 Valle Niza, Malaga Spain, 2002 (Josefina)(protected)	104.9	1023	1	0 3 7 10	Fruit Fruit Fruit Fruit	< 0.01 0.09 0.06 0.07*	< 0.01 < 0.01 < 0.01 < 0.01*	< 0.02 0.10 0.07 0.08*	AF/6781/NN 5%SC		
Trial: AF/6781/NN/3 Spondon, Derbyshire UK, 2002 (Shirley) (protected)	94.9	926	1	7 10	Fruit Fruit	0.06 0.07	< 0.01 < 0.01	0.07 0.08			
Trial: AF/6781/NN/4 Valle Niza, Malaga, Spain, 2002 (Josefina)(protected)	111.7	1090	1	7 10	Fruit Fruit	0.08 0.11	< 0.01 < 0.01	0.09 0.12			
Trial: AF/6782/NN/1 Sevilla Spain, 2002 (Mina)	102.5	1000	1	0 3 7 10 14	Fruit Fruit Fruit Fruit Fruit	0.01 0.02 < 0.01 < 0.01 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	$\begin{array}{c} 0.02 \\ 0.03 \\ < 0.02 \\ < 0.02 \\ 0.02 \end{array}$	Report: R- 4181 Study: AF/6782/NN		
Trial: AF/6782/NN/3 Funes, Zaragoza Spain, 2002 (H-9036 DG)	102.5	995	1	0 3 7 10 14	Fruit Fruit Fruit Fruit Fruit	0.07 0.04 0.05 0.03 0.04	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.08 0.05 0.06 0.04 0.05	5%SC		

Tomatoes	Appli	Application I			Commodity	Residues (mg/k	Reference &		
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: AF/6782/NN/4 Barboles, Zaragoza Spain, 2002 (H-9036)	102.5	997	1	7 10	Fruit Fruit	0.04 0.03	< 0.01 < 0.01	0.05 0.04	
Trial: AF/6782/NN/5 Lavilledieu du Temple, Tarn-et-Garonnne France, 2002 (Rio Grande)	102.5	1003	1	7 10	Fruit Fruit	0.02 0.01	< 0.01 < 0.01	0.03 0.02	
Trial: .Ushiku A Ushiku Japan, 1995	60	300	1	1 3 7	Fruit Fruit Fruit	0.104 0.061 0.064	< 0.005 < 0.005 < 0.005	0.109 0.066 0.069	Report: R- 4400
(Houryu) (protected)	120	300	1	1 3 7	Fruit Fruit Fruit	0.120 0.112 0.062	0.006 0.006 0.005	0.126 0.118 0.067	Study: NN031-01 Calvyes
Trial: . Miyazaki A Miyazaki Japan, 1995	60	300	1	1 3 7	Fruit Fruit Fruit	0.097 0.053 0.062	0.006 0.005 0.006	0.103 0.058 0.068	removed 5%EC
(Momotaro) (protected)	120	300	1	1 3 7	Fruit Fruit Fruit	0.095 0.087 0.083	0.007 0.008 0.012	0.102 0.095 0.094	
Trial: Ibaraki Ibaraki Japan, 1995	120	300	1	1 3 7	Fruit Fruit Fruit	0.122 0.127 0.106	< 0.005 0.008 0.008	0.127 0.135 0.114	Report: R- 4401
(Houryu) (protected)	60	300	1	1 3 7	Fruit Fruit Fruit	0.111 0.076 0.080	0.006 < 0.005 < 0.005	0.117 0.081 0.085	Study: NN031-02 Calvyes
Trial: . Miyazaki Miyazaki Japan, 1995	120	300	1	1 3 7	Fruit Fruit Fruit	0.107 0.112 0.110	0.010 0.012 0.009	0.117 0.124 0.119	removed 5%EC
(protected)	60	300	1	1 3 7	Fruit Fruit Fruit	0.096 0.058 0.062	0.010 0.008 0.006	0.106 0.066 0.068	
Study A48132 Santo Antonio de posse Brazil, 1990 (Santa Clara)	108.2	1400 1400	2	7 14	Fruit	0.02 0.01	< 0.01 < 0.01	0.03 0.02	Report: R- 4040 -Study not to GLP
Study A48133 Santo Antonio de posse Brazil, 1990 (Santa Clara)	216.3	1400 1400	2	7 14	Fruit	0.03 0.02	< 0.01 < 0.01	0.04 0.03	Report: R- 4041 -Study not to GLP 5%SC

Tomatoes	Applica	tion		DALA	Commodity	Residues (mg/k	(g)	Reference	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Study: IR-4 No. 09027 Trial: .NY03 Freeville, NY USA, 2005 (Mariana)	102 + 118 12 day interval	Treatment 02: 192, 202 Treatment 03: 189, 199	2	1	Fruit	0.04,0.04 < <u>0.05</u>	0.03,0.03 < 0.05	0.07,0.07 ≤0.10	Report: R- 4196 (Processing study) 5%EC
Study: IR-4 No. 09027 Trial: .OH*04 Fremont, OH USA, 2005 (Cupid)	113.1, 114.2, 112 12 and 23 day interval	455 478 468	3	1	Fruit	<u><0.05</u>	< 0.05	<u><0.10</u>	Report: R- 4196 (Small fruited trial) 5%EC
Trial: .FL11 Citra, FL USA, 2005 (Solarsett)	113.1, 116.5 13 day interval	285 295	2	1 3 7 14 21	Fruit Fruit Fruit Fruit Fruit	0.07,0.07, <u>0.07</u> < 0.05 < 0.05 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<u>0.12</u> < 0.10 < 0.10 0.10 < 0.10	Report: R- 4196, Study: IR- 4 No. 09027
Trial: .GA*05 Tifton, GA USA, 2005 (Amelia)	113.1, 112 12 day interval	455 450	2	1	Fruit	0.11,0.06 <u>0.09</u>	0.02,0.02,< 0.05	0.13,0.08 <u>0.14</u>	5%EC
Trial: FL13 Citra, FL USA, 2005 (FL47) (protected)	109.7, 108.6 14 day interval	278 275	2	1	Fruit	0.14,0.07 <u>0.11</u>	< 0.05	0.19,0.12 <u>0.16</u>	
Trial: .FL12 Citra, FL USA, 2005 (FL47)	115.3, 113.1 14 day interval	293 286	2	1	Fruit	0.09,0.08 <u>0.09</u>	< 0.05	0.11,0.10 0.14	
Trial: .TX08 Weslaco, TX USA, 2006 (Mariachi RZ) (protected)	113.1, 113.1 13 day interval	434 433	2	1	Fruit	0.08,0.07 0.08	< 0.05	0.13,0.12 0.13	
Trial: .CO07 Fort Collins, CO USA, 2005 (Trust F1) (protected)	118.7, 114.2 13 day interval	295 285	2	1	Fruit	0.08,0.07 0.08	< 0.05	0.13,0.12 0.13	
Trial: .NM06 Las Cruces, NM USA, 2005 (Celebrity VFN)	112, 109.7 14 day interval	234 231	2	1 3 7 13	Fruit Fruit Fruit Fruit	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	$ \frac{< 0.10}{< 0.10} \\ < 0.10 \\ < 0.10 $	
Trial: .CA30 Medera, CA USA, 2005 (Ace 55 VF)	112, 112 14 day interval	281 282	2	1	Fruit	<u><0.05</u>	< 0.05	<u><0.10</u>	
Trial: .NM07 Las Cruces, NM USA, 2005 (Cal-Ace)	138.9, 138.9 12 day interval	639 639	2	1	Fruit	0.06,0.05	< 0.05	0.11, 0.10, 0.14	Report: R- 4196, Study: IR-

Table 209 Residues in Tomatoes from supervised trials in USA involving foliar applications of Fenpyroximate 5%EC

Tomatoes	Applica	tion		DALA	Commodity	nmodity Residues (mg/kg)			
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Trial: .CA31 Irvine, CA USA, 2005 (Bobcat)	113.1, 113.1 15 day interval	378 377	2	1	Fruit	0.05	< 0.05	0.10	4 No. 09027 5%EC
Trial: .CA32 Irvine, CA USA, 2005 (Bobcat)	112, 114.2 15 day interval	376 383	2	1	Fruit	<u><0.05</u>	< 0.05	<u><0.10</u>	
Trial: .CA33 Holtville, CA USA, 2005 (#9997)	113.1, 112 12 day interval	258 261	2	1	Fruit	0.08,0.08 0.08	< 0.05	0.08	
Trial: .CA34 Holtville, CA USA, 2005 (#9997)	113. 114.2 13 day interval	252 259	2	1	Fruit	< 0.05	< 0.05	<u>< 0.05</u>	
Trial: .CA35 Davis, CA USA, 2005 (Shady Lady)	112, 115.3 13 day interval	279 289	2	1	Fruit	< 0.05	< 0.05	<u>< 0.05</u>	
Trial: .CA36 Davis, CA USA, 2005 (AB-2)	112, 112 14 day interval	Treatment 02: 280, 280 Treatment 03: 279, 283	2	1 1 1	Fruit	< 0.05	< 0.05	<u>< 0.05</u>	
Trial: .CA37 Parlier, CA USA, 2005 (Cherry Grande)	110.9, 112 14 day interval	372 387	2	1	Fruit	0.12,0.11 0.12	0.06,0.05 0.05	0.158,0.16 <u>0.17</u>	
Trial: .CA38 Parlier, CA USA, 2005 (Quality 21)	114.2, 115.3 14 day interval	241 250	2	1	Fruit	< 0.05	< 0.05	<u>< 0.05</u>	

Beans

Table 210 Residues in Beans from supervised trials in the EU and the USA involving foliar applications of Fenpyroximate 5% SC or 5% EC

Beans	Application			DALA	Commodity	Residues (Reference &	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of Fenpyroximat e and M-1	Comments
Study: A48191 Cheste SPAIN, 1990 (Kidney, Garrafal Oro) (protected)	321.9	2500	1	0 3 7 14	Beans Beans Beans Beans	0.55 0.30 0.14 0.04	0.02 0.01 0.01 < 0.01	0.57 0.31 0.15 0.04	R-4068, -Study not to GLP 5%SC
Trial:-AF/6098/NN/1 Sanlucar de Barrameda, Seville SPAIN, 2001 (Brasilena) (protected)	102.7	1002	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.30 0.09 0.08 0.05	< 0.01 < 0.01 < 0.01 < 0.01	0.31 0.10 <u>0.09</u> 0.06	Report: R- 4158 Study: AF/6098/N

Beans	Application			DALA	Commodity	Residues (mg/kg)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of Fenpyroximat e and M-1	Comments
Trial:-AF/6098/NN/2 Los Palacios Villafranca, Seville SPAIN, 2001 (Helda) (protected)	108.4	1058	1	7 10	Whole pods Whole pods	<u>0.10</u> 0.06	< 0.01 < 0.01	<u>0.11</u> 0.07	N 5%SC
Trial:-AF/6098/NN/3 Coria del Rio, Seville SPAIN, 2001 (Festival RZ) (protected)	103.9	1014	1	7 10	Whole pods Whole pods	<u>0.02</u> 0.03	< 0.01 < 0.01	<u>0.03</u> 0.04	
Trial:-AF/6098/NN/4 Akrolimni, Pella Greece, 2001 (Trebona) (protected)	97.7	954	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.18 0.13 0.05 <u>0.06</u>	< 0.01 < 0.01 < 0.01 < 0.01	0.19 0.14 0.06 <u>0.07</u>	
Trial: AF/6099/NN/1 Montauban, Tarn-et- Garonne, France,2001 Bean, Green (Anger)	106.3	1037	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.23 0.25 0.19 <u>0.23</u>	< 0.01 < 0.01 < 0.01 < 0.01	0.24 0.26 0.20 <u>0.24</u>	Report: R- 4159 Study: AF/6099/N
Trial: AF/6099/NN/2 St Jory, Haute-Garonne Frence, 2001 Bean, Green (Bouster)	102.3	1000	1	7 10	Whole pods Whole pods	<u>0.08</u> 0.06	< 0.01 < 0.01	<u>0.09</u> 0.07	N 5%SC
Trial: AF/6099/NN/3 Palefyto, Pella Greece, 2001 Bean, Green (-)	107.1	1045	1	7 10	Whole pods Whole pods	0.06 <u>0.07</u>	< 0.01 < 0.01	0.07 <u>0.08</u>	
Trial: AF/6099/NN/4 Profitis, Thessaloniki Greece, 2001 Bean, Green (Zargana)	101.9	994	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.24 0.20 <u>0.14</u> < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	0.25 0.21 <u>0.15</u> < 0.02	
Trial AF/6778/NN/01 Sanlucar de Barrameda, Cadiz Spain, 2002 (Encano Dulce) (protected)	101.9	994	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.19 0.08 <u>0.03</u> 0.02	< 0.01 < 0.01 < 0.01 < 0.01	0.20 0.09 <u>0.04</u> 0.03	Report: R- 4160 Study AF/6778/N N
Trial AF/6778/NN/02 Santa Engracia, Spain, 2002 (Oriente) (protected)	101.2	987	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.18 0.11 <u>0.03</u> 0.03	< 0.01 < 0.01 < 0.01 < 0.01	0.19 0.12 <u>0.04</u> 0.04	5%SC
Trial AF/6778/NN/03 Sanlucar de Barrameda, Cadiz Spain, 2002 (Brisilena) (protected)	100.5	980	1	7 10	Whole pods Whole pods	<u>0.03</u> 0.01	< 0.01 < 0.01	<u>0.04</u> 0.02	
Trial AF/6778/NN/04 Los Palacios y Villafrance, Sevilla Spain, 2002 (Helba) (protected)	98.2	958	1	7 10	Whole pods Whole pods	<u>0.03</u> 0.02	< 0.01 < 0.01	<u>0.04</u> 0.03	
Trial: AF/6769/NN/1 Malause, Meauzac France, 2002 Bean, Green (Booster)	103.63	1011	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.43 0.37 0.40 <u>0.41</u>	< 0.01 < 0.01 0.01 0.01	0.44 0.38 0.41 <u>0.42</u>	Report: R- 4164 Study:

Beans	Application			DALA	Commodity	Residues (Reference &		
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of Fenpyroximat e and M-1	Comments
Trial: AF/6769/NN/2 Milagro, Zaragoza Spain, 2002 Bean, Green (Antea)	103.53	1010	1	0 3 7 10	Whole pods Whole pods Whole pods Whole pods	0.08 0.07 0.05 <u>0.06</u>	< 0.01 < 0.01 < 0.01 < 0.01	0.09 0.08 0.06 <u>0.07</u>	AF/6769/N N 5%SC
Trial: AF/6769/NN/3 St Porquier, Meauzac France, 2002 Bean, Green (Arcalia)	104.14	1016	1	7 10	Whole pods Whole pods	<u>0.06</u> 0.04	< 0.01 < 0.01	<u>0.07</u> 0.05	
Trial: AF/6769/NN/4 Funes, Zaragoza, Spain, 2002 Bean,Green Moncayo)	102.60	1001	1	7 10	Whole pods Whole pods	<u>0.13</u> 0.06	< 0.01 < 0.01	<u>0.14</u> 0.07	
Trial CA38 Davis, CA USA, 2008 Snap Bean (Blue Lake Bush 274)	110 + 109 14 day interval	299 290	2	1 3 8 10	Whole pods Whole pods Whole pods Whole pods	0.19,0.17,0 .18 0.12,0.08,0 .10 0.06,0.07,0 .07 0.08,0.06,0 .07	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.24,0.22, 0.23 0.17,0.23, 0.15 0.11,0.12, 0.12 0.13,0.11, 0.12	Report: R- 4458 Study IR-4 PR No. 09942
5.9.1/06 Study: IR-4 PR No. 09942 Trial FL37 Citra, FL USA, 2008 Snap Bean (Dusky)	110 + 109 5 day interval	374 364	2	1	Whole pods	0.07,0.1, 0.09	< 0.05	0.12,0.17 0.14	5%EC
Trial GA*13 Tifton, GA USA, 2008 Snap Bean (Blue Lake Bush 274)	112 + 113 13 day interval	449 449	2	1 1	Whole pods	0.13,0.16 0.15	0.04,0.03 < 0.05	0.17,0.19 <u>0.20</u>	
Trial NY24 Freeville, NY USA, 2008 Snap Bean (Hystyle)	111 + 111 13 day interval	318 318	2	1	Whole pods	0.08,0.10 0.09	< 0.05	0.13,0.15 0.14	
Frrmont, OH09 USA, 2008 Snap Bean (Sea Biscuit)	110 + 108 14 day interval	374 364	2	1	Whole pods	< 0.05	< 0.05	<u><0.10</u>	
Trial OH*10 Fremont, OH USA, 2011 Snap Bean (Brio)	106 + 111 14 day interval	364 374	2	1	Whole pods	< 0.05	< 0.05	<u><0.10</u>	
Trial WA*07 Moxee, WA USA, 2011 Snap Bean (Jade)	114 + 111 14 day interval	374 364	2	1	Whole pods	0.19,0.18 0.19	< 0.05	0.24,0.23	
Trial W117 Arlington, WI USA, 2011 Snap Bean (Hystyle)	113, 111 13 day interval	393 383	2	1	Whole pods	0.10,0.07 0.09	< 0.05	<u>0.15,0.12,</u> <u>0.,14</u>	

Potato

Table 211 Residues in Potato from supervised trials in USA involving 2 foliar applications of Fenpyroximate 5%EC

Potato	Applic	ation		DALA	Commodity	Residues (mg/kg)			Reference &
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)						Fenpyroximate and M-1	
Country, year	al/naj								
(Variety)									
Trial 09-NY10	111+	321	2	6	Tubers	< 0.05	< 0.05	< 0.10	Unpublished
Freeville, NY	112	333	-	Ů	1	0.00	0.00	0.10	Chpachenea
USA, 2009	_								Study IR-4 PR No. 10173
(Yukon Gold)	1		-						
Trial 09-NY11	115 +	376	2	7	Tubers	< 0.05	< 0.05	< 0.10	5%EC
North Rose,	114	375							
NY	_		_						
USA, 2009	-		_						
(Superior)	111	275	2	-	T 1		10.05	< 0.10	-
Trial 09-FL07	111 +	3/5	_2	/	Tubers	< 0.05	< 0.05	< 0.10	
Citra, FL	111	3/5	-						
(Bad Bantina)	-		_						
(Red Fondac)	125 +	353	2	6	Tubers	< 0.05	< 0.05	< 0.10	
OH*09	115	555	2	0	Tubers	< 0.05	< 0.05	< 0.10	
Wooster, OH	110	356							
USA, 2009	1		-						
(Norland Red)									
Trial 09-WI12	112 +	394	2	6	Tubers	< 0.05	< 0.05	< 0.10	
Arlington, WI	114	399							
USA, 2009									
(Superior)									
Trial 09-WI16	113 +	200	2	7	Tubers	< 0.05	< 0.05	< 0.10	
Arlington, WI	114	212							
USA, 2009									
(Superior)									-
Trial 09-NM17	115 +	288	2	7	Tubers	< 0.05	< 0.05	< 0.10	
Las Cruces,	110	325							
NM USA 2000	-		-						
(Red Pontiac)	-		-						
Trial 09-ID12	112 +		2	7	Tubers	< 0.05	< 0.05	< 0.10	-
Kimberley ID	112		-	,	1 40015	.0.05	.0.05		
USA, 2009	-								
(Russet	565 +	422	2	7	Flakes	< 0.05	< 0.05	< 0.10	-
Burbank)	567		_						-
	-	424	_		Chips	< 0.05	< 0.05	< 0.10	-
T : 1 00 ID 12	112	460	2	-	Wet Peels	< 0.05	< 0.05	< 0.10	-
Irial 09-ID13	113 + 112	468		/	Tubers	< 0.05	< 0.05	< 0.10	
LISA 2000	115	470	-						
(Busset	-		-						
(Russel Burbank)									
Trial 09-	113 +	341	2	7	Tubers	< 0.05	< 0.05	< 0.10	1
WA05	113								
Prosser, WA		328							
USA, 2009									
(Yukon Gold)				<u> </u>					
Trial 09-	116 +	274	2	7	Tubers	< 0.05	< 0.05	< 0.10	

Potato	Applica	ation		DALA	Commodity	Residues (mg/kg)			Reference &
Trial	Rate	Water	No.	(days)		Fenpyroximate	M-1	Sum of	Comments
Location	(g ai/ha)	(L/ha)						Fenpyroximate and M-1	
Country, year	,								
(Variety)									
WA06	114								
Prosser, WA		256							
USA, 2009									
(Russet									
Burbank)									
Trial 09-	118 +	388	2	7	Tubers	< 0.05	< 0.05	< 0.10	
WA*07	117		п						
Moxee, WA	-	384							
USA, 2009	-								
(Red Norland)									
Trial 09-	113 +	377	2	7	Tubers	< 0.05	< 0.05	< 0.10	
WA*08	112		_						
Moxee, WA	-	370							
USA, 2009	-								
(Russet (Dillon))									
Trial 09-CA97	111 +	294	2	7	Tubers	< 0.05	< 0.05	< 0.10	
Holtville, CA	111	293							
USA, 2009									
(Cal White)									
Trial 09-NC18	110 +	292	2	0	Tubers	< 0.05	< 0.05	< 0.10	
Clinton, NC	112	298		3	Tubers	< 0.05	< 0.05	< 0.10	
USA, 2009				6	Tubers	< 0.05	< 0.05	< 0.10	
(Atlantic)				9	Tubers	< 0.05	< 0.05	< 0.10	
()				12	Tubers	< 0.05	< 0.05	< 0.10	
Trial 09-MI11	112 +	281	2	0	Tubers	< 0.05	< 0.05	< 0.10	
Laingsburg, MI	111	279		3	Tubers	< 0.05	< 0.05	< 0.10	
USA, 2009				7	Tubers	< 0.05	< 0.05	< 0.10	
(FL 1879)				11	Tubers	< 0.05	< 0.05	< 0.10	
				14	Tubers	< 0.05	< 0.05	< 0.10	

Maize

Table 212 Residues in maize from supervised trials in EU and USA involving 1-2 foliar applications of Fenpyroximate 5 %SC or 5%EC

Maize	Application			DALA	Commodity	Residues (n		Reference &	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of fenpyroxi mate and M-1	Comments
Trial: S11-02946-01 Bolho, Somogy HUNGARY, 2011 (Royalty)	51.4	305	1	0 7 16 21 28	Cobs Cobs Cobs Cobs Cobs	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4470 Study: S11- 02946 5%SC
Study: S12-02436 Mezohek, Josz-Naggkun- Szolnok HUNGARY, 2011 (Royalty)	49.5	386	1	0 7 14 21 28	Cobs Cobs Cobs Cobs Cobs	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4480 5%SC

Maize	Application			DALA	DALA Commodity Residues (mg/				Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No	(days)		Fenpyroxi mate	M-1	Sum of fenpyroxi mate and M-1	Comments
Trial: 01 Stafford, KS USA, 2010 (P0541HR)	109 + 108 14 day interval	94 94	2	13	Grain	<u><0.003</u>	< 0.003	< 0.003	Report: R- 4447 Study: TCI- 10-270
Trial: 02 Hinton, OK USA, 2010 Field corn(Syngenta NK- N72K)	112 + 115 14 day interval	94 94	2	7 14 21 28	Grain Grain Grain Grain	$ \frac{< 0.003}{< 0.003} \\ < 0.003 \\ < 0.003 $	< 0.003 < 0.003 < 0.003 < 0.003 < 0.003	$ \frac{< 0.003}{< 0.006} \\ < 0.006 \\ < 0.003 $	5%EC
Trial: 03 Hinton, OK USA, 2010 Field corn(Pioneer 33B54)	110 + 115 15 day interval	94 94	2	13	Grain	< 0.003	< 0.003	< 0.003	
Trial: 04 Uvalde, TX USA, 2010 (D16 6721)	112 + 111 14 day interval	94 94	2	14	Grain	<u><0.01</u>	< 0.01	< 0.02	
Trial: 05 Raymondville, TX USA, 2010 Field corn(H6284162)	115 + 114 13 day interval	94 94	2	14	Grain	<u><0.003</u>	<u>< 0.003</u>	<u><0.003</u>	
Trial: 06 Dill City, OK USA, 2010 (SyngentaNK-N72K)	114 + 114 14 day interval	94 94	2	13	Grain	<u><0.003</u>	< 0.003	< 0.003	
Trial: 07 Levelland, TX USA, 2010 (Agventure R350VBW)	111 + 110 14 day interval	94 94	2	14	Grain	<u><0.003</u>	< 0.003	<u><0.006</u>	
Trial: 08 Larned, KS USA, 2010 Field corn(33Y75)	111 + 112 14 day interval	94 94	2	14	Grain	<u><0.003</u>	< 0.003	<u><0.006</u>	
Trial: 09 Belpre, KS USA, 2010 (Pioneer 33D49)	109 + 111 14 day interval	94 94	2	14	Grain	<u><0.003</u>		<u><0.003</u>	
Trial: 10 Pierce, CO USA, 2010 (LG 2407)	109 + 109 14 day interval	94 94	2	14	Grain	< 0.003	< 0.003	< 0.003	

Table 213 Residues in Maize from supervised trials in EU involving one foliar application of Fenpyroximate 5%SC.

Maize	Applica	Application			Commodity	Residues (mg/kg))		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: S11- 02947-01 HUNGARY EU, 2011 (DKC 4490)	56.4	329	1	0 7 14 21 28	Grain Grain Grain Grain Grain	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	Report: R- 4471 Study: S11- 02947

Maize	Applicat	Application		DALA	Commodity	Residues (mg/kg)		Reference &	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: S11- 02947-02 HUNGARY EU, 2011 (DK 4590)	54.4	318	1	0 7 14 21 28	Grain Grain Grain Grain Grain	<0.01 <0.01 <0.01 <0.01 <0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	5%SC

Tree nuts

Almonds

Table 214 Residues in almond from supervised trials in USA involving one foliar application of Fenpyroximate 5%EC.

Almond	Applicati	on		DALA	Commodity	Residues (mg/kg		Reference	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Trial: CA1 Porterville, CA USA, 2001 (Mission)	451	944	1	14	Nut meat	<u>< 0.05</u>	< 0.05	<u>< 0.10</u>	Report: R- 4155 Study:
Trial: CA2 Terra Bella, CA USA, 2001 (Carmel)	448	935	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	AA010709 5%EC
Trial: CA3 Hanford, CA USA, 2001 (Carmel)	449	925	1	14	Nut meat	<u>< 0.05</u>	< 0.05	<u>< 0.10</u>	
Trial: CA4 Hanford, CA USA, 2001 (Mission)	450	925	1	14	Nut meat	<u><0.05</u>	< 0.05	<u>< 0.10</u>	
Trial: CA5 Hanford, CA USA, 2001	447	935	1	0 7	Nut meat Nut meat	< 0.05 < 0.05	< 0.05 < 0.05	< 0.10 < 0.10	
(Prices)				14 21 28	Nut meat Nut meat Nut meat	< 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.10 < 0.10 < 0.10	

Walnut

Table 215 Residues in walnut from supervised trials in USA involving one foliar application of Fenpyroximate 5%EC

Walnut	Application			DALA	Commodity	Residues (mg/kg)		Reference
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
									Report: R-
Trial: CA6 Farmersville, CA USA, 2001 (Serr)	453	925	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	4155 Study: AA010709 5%EC
Trial: CA7 Poplar, CA USA, 2001 (Tulare)	445	944	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	
Trial: CA8 Porterville, CA USA, 2001 (Chandler)	448	953	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	

Pecan

Table 216 Residues in Pecan from supervised trials in USA involving one foliar application of Fenpyroximate 5% EC

Pecan	Application			DALA	Commodity	Residues (mg/kg)		Reference	
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Trial: FL1 Monticello, FL USA, 2001 (Stuart)	449	916	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	Report: R- 4155 Study: AA010709 5%EC
Trial: GA1 Chula, GA USA, 2001 (Sumner)	449	935	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	
Trial: GA2 Nashville, GA USA, 2001 (Stuart)	451	953	1	14	Nut meat	<u>< 0.05</u>	< 0.05	<u><0.10</u>	
Trial: LA1 Shreveport, LA USA, 2001 (Melrose)	460	972	1	14	Nut meat	<u>< 0.05</u>	< 0.05	<u><0.10</u>	
Trial: TX1 Uvalde, TX USA, 2001 (Stuart)	449	916	1	14	Nut meat	<u><0.05</u>	< 0.05	<u><0.10</u>	

Coffee

Table 217 Residues in Coffee Bean from supervised trials in Brazil involving two foliar applications of Fenpyroximate (5%SC)

Coffee Bean	Applicati	on		DALA	Commodity	Residues (mg/kg	g)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: 018.034.184.08 Londrina/PR Brazil, 2008 (Red Catuai)	100 + 100 30 day interval	2500 2500	2	15	Beans	< 0.025	-	<u>< 0.025</u>	Report: R- 4499 5%SC
Trial:0018.034.190.08 Espirito Santo do Pinhal/SP. Brazil, 2008 (New world)	100 + 100 30 day interval		2	15	Beans	< 0.025	-	< 0.025	Report: R- 4500 5%SC
Trial:0018.034.240.08	100 +		2	7	Beans	< 0.025	-	ND	Report: R-
Uberlândia / MG Brazil, xxxx	100 30 day interval			15	Beans	< 0.025	-	<u>< 0.025</u>	4501 5%SC
(Red Catuai)				25	Beans	ND	-	ND	
				35	Beans	ND	-	ND	
Trial:0018.034.251.08 Pereiras/SP	108 + 108		2	7	Beans	< 0.025	-	< 0.025	Report: R-
Brazil, 2008	30 day			15	Beans	< 0.025	-	<u>< 0.025</u>	5%SC
(Red Catuai)	inter vur			25	Beans	< 0.025	-	< 0.025	
				35	Beans	< 0.025	-	< 0.025	
Trial: RA 121 001 13B	100 + 100		2	5	Beans	0.05	-	0.05	Report: R-
Santa Mariana/PR Brazil, 2014	100 30 day interval			15	Beans	0.02	-	0.02	4490
(Catuara amarela)				25	Beans	< 0.01	-	< 0.01	Study: RA 121 001 13B
				35	Beans	0.03	-	0.03	
Trial: Bandeirantes/PR	100 + 100		2	5	Beans	0.05	-	0.05	5%SC
Brazil, 2014	30 day interval			15	Beans	0.03	-	0.03	
(Catuai Vermelho)				25	Beans	0.04	-	0.04	
			_	35	Beans	0.02	-	0.02	_
Trial: Cornélio Procópio/ PR	100 + 100		2	5	Beans	0.04	-	0.04	
Brazil, 2014	30 day interval			15	Beans	< 0.01	-	<u>< 0.01</u>	
(Catuai Vermelho)				25	Beans	0.02	-	0.02	
				35	Beans	0.02	-	0.02	
Trial: Iracemápolis/SP	100 + 100		2	15	Beans	< 0.01	-	< 0.01	
Brazil, 2014	30 day interval								
(Catuai Vermelho)									

Hops

Table 218 Residues in Hops from supervised trials in EU, Japan and the USA involving 1-2 foliar applications of Fenpyroximate 5% SC or 5% EC

Hops	Applicati	on		DALA	Commodity	Residues (mg/kg	;)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: 01	375	3000	1	0	Green hops	5.2	< 0.5	5.7	Report: R-4032
Gambach,				7	Green hops	1.6	< 0.5	2.1	
Germany, 1989				14	Green hops	0.9	< 0.5	1.4	Study:
				21	Green hops	0.8	< 0.5	1.3	ER89DEU804
				21	Dried hops	6.4	<1.0	7.4	5%SC
Trial: 02	375	3000	1	0	Green hops	7.6	< 0.5	8.1	57050
Gambach,				7	Green hops	3.8	< 0.5	4.3	
Germany, 1989				14	Green hops	3.1	< 0.5	3.6	
(North Brewers)				21	Green hops	3.2	< 0.5	3.7	
				21	Dried hops	4.7	<1.0	5.7	
Trial: 03	375	4000	1	0	Green hops	2.7	< 0.5	3.2	1
Oberrussenried,				7	Green hops	1.6	< 0.5	2.1	
Germany, 1989				14	Green hops	1.5	< 0.5	2	
(Hallerlauer)				21	Green hops	0.5	< 0.5	1	
				21	Dried hops	2.1	<1.0	3,1	
Trial: 04	375	4000	1	0	Green hops	2.6	< 0.5	3.1	-
Oberrussenried,				7	Green hops	1.1	< 0.5	1.6	
Germany, 1989				14	Green hops	1.1	< 0.5	1.6	
(lettnanger)				21	Green hops	0.8	< 0.5	1.3	
				21	Dried hons	3	<1.0	4	
Trial: 01	269.2	3526	1	21	Fresh hops	1.59	-	1.59	Report: R-4111
Wolnzach, Germany, 1998			-	21	Dried hops	4.38	-	4.38	Study: NHH
(Perle)	262	3431	1	21	Fresh hops	1.94	-	1.94	094/984984
				21	Dried hops	4.98	-	4.98	5%SC
Trial: 02	280.7	3677	1	21	Fresh hops	1.66	-	1.66	-
Wolnzach, Germany, 1998 (Magnum)				21	Dried hops	5.89	-	5.89	
(Wagnum)	278	3641	1	21	Fresh hops	1.76	-	1.76	-
				21	Dried hops	8.24	-	8.24	
Trial: 03	263.1	3446	1	21	Fresh hops	1.89	-	1.89	1
Wolnzach, Germany, 1998				21	Dried hops	7.42	-	7.42	
(Hersbrucker)	270.4	3542	1	21	Fresh hops	1.87	-	1.87	-
				21	Dried hops	6.22	-	6.22	
Trial: 01	375	2000	1	0	Green hops	3.1	< 0.5	3.6	Report: R-4063
Gambach				7	Green hops	3.7	< 0.5	4.2	
(Brewers Gold)				14	Green hops	3.7	< 0.5	4.2	Study: ER90DEU804
				21	Green hops	1.1	< 0.5	1.6	
				21	Dried hops	6.8	<1.0	7.8	5%SC
Trial: 02	375	2000	1	0	Green hops	1.8	< 0.5	2.3	
Gambach				7	Green hops	2.1	< 0.5	2.6	
Germany, 1990				14	Green hops	2.5	< 0.5	3	
(North Brewers)				21	Green hops	< 0.5	< 0.5	<1.0	

Hops	Applicati	on		DALA	Commodity	Residues (mg/kg))		Reference &
Trial Location Country, year	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
(variety)				21	Dried hops	8 2	< 1.0	9.2	
Trial: 03	375	2500	1	0	Green hops	53	< 0.5	5.8	-
Tettnang-Ried	575	2000	1	7	Green hops	2.5	< 0.5	3	
Germany 1000				14	Green hons	2.5	< 0.5	29	
(Tettnanger)				21	Green hons	2.7	< 0.5	2.9	
(Tetthanger)				21	Dried hong	7	< 1.0	2.0	
Trial: 04	375	4000	1	0	Green hons	4 7	< 1.0	o 5 2	-
Lindau-Bodenegg	575	1000	1	7	Green hons	3.5	< 0.5	4	
Germany 1990				14	Green hops	13.7	< 0.5	14.2	
(Tettnanger)				21	Green hons	49	< 0.5	5 4	
(Tetulanger)				21	Dried hons	<1.0	< 1.0	< 2.0	
Trial: 0301	232	3095	1	0	Green hops	11.3	< 0.5	11.8	Report: R-4064
Gambach		0070	-	7	Green hops	1.5	< 0.5	2	in point in the loop
Germany 1991				14	Green hops	< 0.5	< 0.5	< 1	Study:
Germany, 1991				1.	Green nops		.0.5	· 1	ER91DEU804
(Brewers gold)				21	Green hops	< 0.5	< 0.5	< 1	
				21	Dried hops	1.2	<.0	2.2	5%SC
Trial: 0302	231.5	3088	1	0	Green hops	6.6	< 0.5	7.1	-
Gambach				7	Green hops	2.3	< 0.5	2.8	
Germany, 1991				14	Green hops	1.2	< 0.5	1.7	
(North Brewers)				21	Green hops	0.7	< 0.5	1.2	
				21	Dried hops	3.7	< 1.0	4.7	
Trial: 0303	210	2800	1	0	Green hops	< 0.5	< 0.5	< 1	-
Lindau-Bodenegg				7	Green hops	2.6	< 0.5	3.1	
Germany, 1991				14	Green hops	1.7	< 0.5	2.2	
(Tettnanger)				21	Green hops	1.6	< 0.5	2.1	
				21	Dried hops	4.3	< 1.0	5.3	
Trial: OR29	178 + 188	949	2	13	Cones	1.2,1.3	-	1.2, 1.3	Report: R-4197
Hubbard, OR	15 day interval	1015				1,25		1.25	
USA, 2002									Study: A8087
(Nugget)									
Trial: WA43	177 +	1850	2	15	Cones	1.5,1.2	-	1.5,1.2	5%EC
USA. 2002	170 14 dav	1836				1.35		1.35	
(Nugget)	interval	1000							
Trial: ID17 Parma_ID	183 + 177	968	2	13	Cones	4.2,3.4	-	4.2,3.4	-
USA, 2002	14 dav	941				3.8		3.8	
(Zeus)	interval								
Trial: Iwate	200	40	1	14	Dried cones	4.34	0.11	4.45	Report: R-4375
Iwate				28	Dried cones	1.48	0.05	1.53	
Japan, 1992 (Shinshu Wasa)				42	Dried cones	0.16	< 0.05	0.21	Study not to
(Shinshu- wase)				56	Dried cones	0.07	< 0.05	0.12	5%SC
Trial: Yamagata	350	70	1	14	Dried cones	7.21	0.16	7.37	
Yamagata				28	Dried cones	7.68	0.31	7.99	

Hops	Application	on		DALA	Commodity	Residues (mg/kg))		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Japan, 1992				42	Dried cones	0.44	< 0.05	0.49	
(Shinshu-Wase)				56	Dried cones	0.15	< 0.05	0.2	
Trial: Iwate	200	40	1	14	Dried cones	3.86	0.3	4.16	Report: R-4376
Iwate				28	Dried cones	1.47	0.14	1.61	
(Shinshu-Wase)				42	Dried cones	0.18	< 0.08	0.26	- Study not to GLP
				56	Dried cones	0.12	< 0.08	0.2	
									5%SC
Trial: Yamagata	350	70	1	14	Dried cones	7.66	0.72	8.38	
Yamagata				28	Dried cones	7.53	0.74	8.27	
Japan, 1992 (Shinshu-Wase)				42	Dried cones	0.48	< 0.08	0.56	
, ,				56	Dried cones	0.19	< 0.08	0.27	

Tea

Table 219 Residues in Tea from supervised trials in India and Japan involving 1-2 foliar applications of Fenpyroximate 5%EC

Tea	Application	n		DALA Commodity Residues (mg/kg)					Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Trial: Ibaraki Ibaraki Japan 1989	200	40	1	7	Plucked leaves	13.2	-	13.2	Report: R- 4133
(Kanaya				14	Plucked leaves	3.98	-	3.98	
midori)				21	Plucked leaves	1.06	-	1.06	Study not to GLP
				30	Plucked leaves	0.482	-	0.482	
									5%EC
				7	Tea extract	0.091	-	0.091	
				14	Tea extract	0.027	-	0.027	
				21	Tea extract	0.014	-	0.014	
				30	Tea extract	0.009	-	0.009	
Trial: Kyoto Kyoto	200	40	1	7	Plucked leaves	10.2	-	10.2	
Japan, 1989 (Oku midori)				14	Plucked leaves	2.98	-	2.98	
				21	Plucked leaves	1.48	-	1.48	
				30	Plucked leaves	0.104	-	0.104	
				7	Tea extract	0.07	-	0.07	
				14	Tea extract	0.021	-	0.021	
				21	Tea extract	0.013	-	0.013	
				30	Tea extract	< 0.005	-	< 0.005	
Trial: Kyoto	500	10000	1	7	Dried leaves	21	0.68	21.68	Report: R- 4211

Tea	Application	1		DALA	Commodity	Residues (mg/kg	g)		Reference &
Trial Location	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate	Comments
Country, year (Variety)								and M-1	
Japan, 2008				14	Dried leaves	10.4	0.66	11.06	Study: 24- 226
(Yabukita)				21	Dried leaves	3.44	0.2	3.64	Study not to GLP
Trial: Kumamoto	500	10000	1	7	Dried leaves	17.8	0.76	18.56	5%EC
Japan, 2008				14	Dried leaves	5.66	0.33	5.99	
(Oku midori)				21	Dried leaves	1.3	0.07	1.37	
Trial: Saitama Japan, 2010	500+200	10000	2	7	Dried leaves	11.6	1.34	12.94	Report: R- 4432
(Fukumidori)		4000		14	Dried leaves	1.8	0.32	2.12	-Study not to GLP
				21	Dried leaves	30.21	0.05	30.26	5%EC
Trial: Mie	500+200	10000	2	7	Dried leaves	31.2	1.86	33.06	
Japan, 2010		4000		14	Dried leaves	11.2	0.75	11.95	
(Yabukita)	20		1	21	Dried leaves	3.2	0.23	3.43	D (D
Jorhat, Assam	30		1	7	Green tea leaf	1.15	0.19	<u>1.34</u>	Report: R- 4182
India, 2004				7	Black tea leaf	0.98	0.19	1.17	
(-)				14	Green tea leaf	ND	ND	ND	Study: 3865/04
-				14	Black tea leaf	ND	ND	ND	_
	60		1	7	Green tea leaf	1.22	0.19	1.41	5%EC
				7	Black tea leaf	1.2	0.15	1.35	
				14	Green tea leaf	0.02	ND	ND	
				14	Black tea leaf	0.02	ND	ND	
Trial: N2 Jorhat, Assam	30		1	7	Green tea leaf	0.68	0.03	0.71	_
India, 2004				7	Black tea leaf	0.61	0.04	0.65	
(-)				14	Green tea leaf	< 0.02	ND	ND	
				14	Black tea leaf	< 0.02	ND	ND	
-	60		1	7	Green tea leaf	1.23	0.06	1.29	_
				7	Black tea leaf	1.29	0.06	1.35	
				14	Green tea leaf	0.16	0.02	0.18	
				14	Black tea leaf	0.16	0.02	0.18	
Trial: N3 Jorhat, Assam	30		1	7	Green tea leaf	<u>1.44</u>	0.1	1.54	-
India, 2004				7	Black tea leaf	0.78	0.05	0.83	
(-)				14	Green tea leaf	ND	ND	ND	
				14	Black tea leaf	ND	ND	ND	
	60		1	7	Green tea leaf	1.99	0.12	2.11	_
				7	Black tea leaf	1.27	0.07	1.34	
				14	Green tea leaf	0.05	< 0.02	ND	
				14	Black tea leaf	0.03	ND	ND	
Trial: N4	30		1	7	Green tea	0.3	0.03	0.33	1

Tea Application DALA Commodity Residues (mg/kg)			Reference &						
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Jorhat, Assam			<u> </u>		leaf				
(-)				7 14	Black tea leaf Green tea	0.27 < 0.02	0.03 ND	0.3 ND	
				14	Black tea leaf	0.02	ND	ND	
	60		1	7	Green tea leaf	0.31	0.04	0.35	-
				7	Black tea leaf	0.3	0.05	0.35	
				14	Green tea leaf	0.04	< 0.02	ND	
				14	Black tea leaf	0.02	< 0.02	ND	
Trial: S1 UPASI, Valuerai	30		1	7	Green tea leaf	<u>3.89</u>	0.16	4.05	
Valparal, Tamili Nadu				7	Black tea leaf	2.8	0.21	3.01	
India, 2004 (-)				14	Green tea leaf	0.44	0.03	0.47	
	(0)		1	14	Black tea leaf	0.2	0.02	0.22	-
	60		1	/	Green tea leaf	4.1	0.26	4.36	
					Black tea leaf	3.97	0.34	4.31	
				14	Green tea leaf	1.25	0.08	1.33	
T : 1 CO	20		1	14	Black tea leaf	0.79	0.1	0.89	_
UPASI, Gudalur	30		1	/	Green tea leaf	<u>3./</u>	0.14	3.84	
Tamili Nadu				/	Black tea leaf	2.97	0.14	3.11	
India, 2004 (-)				14	Green tea leaf	1.21	0.08	1.29	
	60		1	14	Green teo	0.95	0.07	1.02	-
	00		1	7	leaf	2.44	0.14	4.01	
				14	Green tee	1.04	0.10	2.07	
				14	leaf	1.94	0.13	2.07	
Trial: S3	30		1	14	Green tea	1.45	0.11	1.56	-
UPASI,	50		1	7	leaf Black tea leaf	0.67	0.03	0.7	
Valparai, Tamili Nadu India 2004				14	Green tea	0.12	ND	0.12	
(-)				14	leaf Black tea leaf	0.12	< 0.02	0.12	
	60		1	7	Green tea	0.99	0.04	1.03	-
				7	leaf Black tea leaf	1.33	0.06	1.39	
				14	Green tea leaf	0.15	< 0.02	0.17	
				14	Black tea leaf	0.11	< 0.02	0.13	
Trial: S4	30	1	1	7	Green tea leaf	0.8	0.02	0.82	1
UPASI, Gudalur,				7	Black tea leaf	0.93	0.05	<u>0.98</u>	

Tea	Application	n		DALA	Commodity	Residues (mg/kg	g)		Reference &
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	Comments
Tamili Nadu									
India, 2004 (-)				14	Green tea leaf	0.15	< 0.02	0.17	
				14	Black tea leaf	0.09	< 0.02	0.11	
	60		1	7	Green tea leaf	2.72	0.06	2.78	
				7	Black tea leaf	2.39	0.11	2.5	
				14	Green tea leaf	0.69	0.04	0.73	
				14	Black tea leaf	0.67	0.06	0.73	
Trial: UPASI	25	400	1	0	Black tea	4.76	-	4.76	Report: R- 4461
India, 2005				7	Black tea	<u>1.78</u>	-	<u>1.78</u>	- Study not to GLP
(mix of cultivars)				10	Black tea	0.73	-	0.73	5%EC
				14	Black tea	0.48	-	0.48	
Trial: UPASI	25	400	1	0	Black tea	17.29	-	17.29	
India, 2004				1	Black tea	15.74	-	15.74	
(mix of cultivars)				3	Black tea	8.56	-	8.56	
				5	Black tea	6.33	-	6.33	
				7	Black tea	3.01	-	3.01	
				10	Black tea	1.01	-	1.01	
				14	Black tea	0.21	-	0.21	
	50	400	1	0	Black tea	32.01	-	32.01	
				1	Black tea	20.71	-	20.71	
				3	Black tea	12.45	-	12.45	
				5	Black tea	11.59	-	11.59	
				7	Black tea	4.85	-	4.85	
				10	Black tea	2.78	-	2.78	
				14	Black tea	0.59	-	0.59	

Animal feed

Bean forage

Table 220 Residues in Snap Beans forage from supervised trials in USA involving foliar applications of Fenpyroximate 5% EC

Beans Application DALA Commodity Residues (mg/kg) R					Reference &				
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroxim ate	M-1	Sum of Fenpyroxima te and M-1	Comments
Trial CA38 Davis, CA USA, 2008 (Blue Lake Bush 274)	110 + 109 14 day interval	299 290	2	1 3	Foliage Foliage	2.07,1.76, 1.92 1.69,1.61, 1.65	1.28, 1.15, <1.22	3.35, 2.91, <u>3.14</u> 3.3,3.04, 3.17	Report: R- 4458 Study IR-4 PR No.
				8 10	Foliage Foliage	0.88,0.99, 0.93 0.83,0.74, 0.79	1.52 0.79,0.84, 0.82 0.62,0.52, 0.57	1.67,1.83, 1.75 1.45,1.26, 1.36	5%EC
Trial FL37 Citra, FL USA, 2008 (Dusky)	110 + 109 5 day interval	374 364	2	1	Foliage	0.96,0.83, 0.90	0.37,0.31 0.34	1.33,1.14 <u>1.24</u>	
Trial GA*13 Tifton, GA USA, 2008 (Blue Lake Bush 274)	112 + 113 13 day interval	449 449	2	1	Foliage	2.16,2.73 2.45	0.55,0.53 0.54	2.71,3.26 <u>2.99</u>	
Trial NY24 Freeville, NY USA, 2008 (Hystyle)	111 + 111 13 day interval	318 318	2	1	Foliage	3.38,3.45 3.42	1.01,1.05 1.03	4.39,4.5 <u>4.45</u>	
Frrmont, OH09 USA, 2008 (Sea Biscuit)	110 + 108 14 day interval	374 364	2	1	Foliage	0.02,0.02 < 0.05	< 0.05, < 0.05 < 0.05	0.07, 0.07,	
Trial OH*10 Fremont, OH USA, 2011 (Brio)	106 + 111 14 day interval	364 374	2	1	Foliage	< 0.05, < 0.05 < 0.05	< 0.05, < 0.05 < 0.05	< 0.10, < 0.10 < 0.10	
Trial WA*07 Moxee, WA USA, 2011 (Jade)	114 + 111 14 day interval	374 364	2	1	Foliage	1.70,2.04 1.87	0.62,0.77 0.70	2.32,2.81 <u>2.57</u>	
Trial WI17 Arlington, WI USA, 2011 (Hystyle)	113, 111 13 day interval	393 383	2	1	Foliage	5.1,6.5, 5.80	0.93,1.01 0.97	6.03,7.51 <u>6.77</u>	

Maize forage and stover

Table 221 Residues in forage and stover of field maize from supervised trials in USA involving 2 foliar applications of Fenpyroximate 5%EC

Maize	Application			DALA	Commo	Residues (n	ıg/kg)		Reference
Trial	Rate	Water	No.	(davs)	dity	Fenpvroxi	M-1	Sum of	&
Location	(g ai/ha)	(L/ha)			5	mate		fenpyroxima	Comments
Country, year	(8)	()						te and M-1	
(Variety)									
Trial: 01	113 + 113	94	2	14	Forage	0.312,	0.0878,	0.3998,	Report: R-
Stafford, KS	14 day interval	94			C	0.274	0.0829	0.356	4447
USA, 2010						0.29	0.09	0.38	
(P0541HR)	109 + 108	94	2	13	Stover	0.617,1.49,	0.193,042	0.81,1.916	Study:
	14 day interval	94				1.05	6, 0.310	, <u>1.36</u>	TCI-10-
Trial: 02	112 + 113	94	2	7	Forage	0.720,0.77,	0.520,0.56	1.24,1.335,	270
Hinton, OK	14 day interval	94			Ũ	0.75	, 0.54	1.29	
USA, 2010				14	Forage	0.556,0.76,	0.352,0.51	0.908,1.272,	5%EC
(Syngenta NK-N72K)						0.66	,0.43	1.09	
				21	Forage	0.698,0.67	0.447,0.42	1.145,1.094,	
						0,0.68	,0.44	1.12	
				28	Forage	0.284,0.35	0.173,0.21	0.457,0.563,	
						0,0.32	,0.19	0.51	
	112 + 115	94	2	7	Stover	2.54,2.08	1.41,1.19	3.95,3.27,	
	14 day interval	94				, 2.31	, 1.30	3.61	
				14	Stover	1.38,1.92	0.917,122	2.297,3114	
				21	C 1	, 1.65	1.07	, 2.72	
				21	Stover	2.18,1.31	1.57,0.939	3.75,2.249	
				20	Stover	, 1.75	1.25	<u>3.0</u>	
				20	Slover	0.906,107	0.749,0.85	1.655,1.919	
						0.99	0.80	1.79	
Hinton, OK	111 + 110	94	2	14	Forage	0.432,0.55	0.269,0.37	0.701,0.918	
USA, 2010	14 day interval	94				2	0.32	0.81	
(Pioneer 33B54)			-			0.49			4
	110 + 115	94	2	13	Stover	1.67,1.60	1.65,1.61	3.32,3.21 <u>,</u>	
	15 day interval	94				1.64	1.63	<u>3.27</u>	
Trial: 04	111 + 109	94	2	13	Forage	0.228,0.39	0.118,0.21	0.346,0.604	
Uvalde, TX	14 day interval	94				6	0.16	<u>0.47</u>	
USA, 2010	110		_			0.31			-
(D16 6721)	112 + 111	94	2	14	Stover	1.33,1.73	0.574,0.82	2.98,2.552	
T 1 05	14 day interval	94	2	1.4	F	1.53	0.698	2.228	-
Irial: 05	110 + 115	94	2	14	Forage	0.214,0.17	0.143,0.12	0.357,0.291	
Kaymondville, I X	14 day interval	94				2	0.13	0.32	
USA, 2010 (H6284162)	115 ± 114	0.4	2	1.4	C+	0.19	1 (5 1 7)	2 72 4 02	-
(110204102)	113 ± 114 13 day interval	94	2	14	Slover	2.06,2.50	1.05,1.72	3./3,4.02 <u>,</u>	
T 1 0C		94	2	1.4	Г	2.13	1.005	<u>3.8/5</u> 0.205.0.25(-
Irial: 00 Dill City, OV	113 ± 112	94	2	14	Forage	0.262,0.17	0.133,0.08	0.395,0.256	
$D_{\rm III}$ City, OK	14 day interval	94				0 22	0.11	0 33	
(Syngenta NK-N72K)	114 + 114	9/	2	13	Stover	0.22	0 700 1 00	<u>0.55</u> 1.676.2.17	4
(Syngenia WK-W/2K)	14 day interval	94	2	15	Slover	1.02	0.777,1.00	1.070,2.17	
Trial: 07	111 + 110	94	2	14	Stover	1.02	1 07 0 808	292178	-
Levelland TX	14 day interval	94	2	11	510 101	1.600	0.939	2 539	
USA, 2010	i i day interval	<i>,</i>				1.000	0.959	2.007	
Field corn (Agventure									
R350VBW)		1							
Trial: 08	109 + 112	94	2	13	Forage	0.488,0.39	0.157,0.13	0.645,0.524	1
Larned, KS	14 day interval	94				8, 0.44	0.14	0.58	
USA, 2010	111 + 112	94	2	14	Stover	1.007	0.499.0.37	1.619,1.265	1
Field corn(33Y75)	14 day interval	94	–	[· ·			0.435	1.442	
Trial: 09	111 + 112	94	2	13	Forage	0.24. 0.24	0.134.0.12	0.382,0.362	1
Belpre, KS	14 day interval	94			8-	0.24	0.13	0.37	
USA, 2010	109 + 111	94	2	14	Stover	1.04.1.10	0.44.0.56	1.477.1.658	1
(Pioneer 33D49)	14 day interval	94		14		1.070	0.498	1.568	

Maize	Application			DALA	Commo	Residues (n	Residues (mg/kg)		
Trial	Rate	Water	No.	(days)	dity	Fenpyroxi	M-1	Sum of	&
Location	(g ai/ha)	(L/ha)				mate		fenpyroxima	Comments
Country, year								te and M-1	
(Variety)									
Trial: 10	112 + 113	94	2	14	Forage	0.168,0.18	0.117,0.14	0.285,0.322	
Pierce, CO	14 day interval	94			_	4	0.13	0.31	
USA, 2010	-					0.18			
Field corn(LG 2407)	109 + 109	94	2	14	Stover	0.160,0.18	0.115,0.14	0.275,0.32	
	14 day interval	94				4	0.126	0.298	
	-					0.172			

Maize silage

Table 222 Residues in Maize silage from supervised trials in EU involving one foliar application of Fenpyroximate 5% SC

Maize	Applica	tion		DALA	Commodity	Residues (mg/kg))		Reference
Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	& Comments
Trial: S11- 02947-01 HUNGARY EU, 2011 (DKC 4490)	56.4	329	1	0 7 14 21 28	Silage Silage Silage Silage Silage	1.19 0.93 1.1 0.71 0.81	0.02 0.06 0.09 0.08 0.09	1.21 0.99 1.19 0.79 <u>0.9</u>	Report: R- 4471 Study: S11-02947
Trial: S11- 02947-02 HUNGARY EU, 2011 (DK 4590)	54.4	318	1	0 7 14 21 28	Silage Silage Silage Silage Silage	0.79 0.89 0.5 0.69 0.21	< 0.01 0.06 0.04 0.06 0.03	0.8 0.95 0.54 0.75 <u>0.24</u>	5%SC

Almond hull

Table 223 Residues in almond hull from supervised trials in USA involving one foliar application of Fenpyroximate 5% $\rm EC$

Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	
Trial: CA1 Porterville, CA USA, 2001 (Mission)	451	944	1	14	Hulls	0.547,0.559 0.553	0.215,0.191 0.203	0.762, 0.75 0.756	Report: R- 4155 Study: AA010709
Trial: CA2 Terra Bella, CA USA, 2001 (Carmel)	448	935	1	14	Hulls	0.998,1.13 1.064	0.277,0.312 0.295	<u>1.275,1.442</u> <u>1.359</u>	5%EC
Trial: CA3 Hanford, CA USA, 2001 (Carmel)	449	925	1	14	Hulls	0.889,1.14 1.015	0.178,0.224 0.201	<u>1.067,1.364</u> <u>1.216</u>	

Trial Location Country, year (Variety)	Rate (g ai/ha)	Water (L/ha)	No.	(days)		Fenpyroximate	M-1	Sum of Fenpyroximate and M-1	
Trial: CA4 Hanford, CA USA, 2001 (Mission)	450	925	1	14	Hulls	0.871,1.14 1.006	0.256,0.285 0.271	<u>1.127,1.425</u> <u>1.277</u>	
Trial: CA5 Hanford, CA USA, 2001 (Prices)	447	.935	1	0 7 14 21 28	Hulls Hulls Hulls Hulls Hulls	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0895, 0.0788, 0.084 0.286,0.247, 0.267 0.129,0.118, 0.124 0.232,0.225, 0.229 0.117,0.135, 0.126	1.2095, 1.1788, 1.194 1.446,1.208, 1.328 0.484,0.423, 0.454 <u>0874,0.965,</u> <u>0.920</u> 0.365, 0.431, 0.398	

FATE OF RESIDUES IN STORAGE AND PROCESSING

Hydrolysis

Hydrolysis of fenpyroximate under simulated processing conditions was studied with [pyrazole-3-¹⁴C]fenpyroximate to investigate nature of degradation in aqueous buffered solutions at a nominal concentration of 1 mg/L at pH of 4, 5 and 6 (Penketh, S., 2008, Report No R-4475). Fenpyroximate and degradates were determined by liquid scintillation counting and analysed by reversed phase HPLC. The principal degradate was M-3 (41.0–88.7% after incubation). Degradates M-1 and M-6 were found at \leq 3.0%. An unidentified breakdown product was found in the pH 4 and 5 samples that was not M-11. The results are summarised below table and are expressed as a percentage of applied radioactivity (% AR).

Table 224 Results of hydrolysis of fenpyroximate under simulated pasteurization, brewing/baking/boiling and sterilization

	pH 4, 90 °C, 20 minutes representing pasteurisation	pH5, 100 °C, 60 minutes representing brewing, baking and boiling	pH 6, 120 °C, 20 minutes representing sterilisation
Total recovery	92.3	94.9	94.5
Fenpyroximate	47.2	3.1	7.2
M-3	41.0	86.2	88.7
M-6	1.6	3.0	0.5
M-1	1.4	nd	nd
Others*	6.4	3.9	3.6

nd - Not detected

*: not associated with specific components

Figure 6 Proposed degradation pathway for fenpyroximate under simulated processing conditions

Fresh beans

Two processing Studies for Beans with Pods after one application of fenpyroximate at rate of 0.5 kg ai/ha (5× exaggerated rate) in France and Italy was conducted (Jullian E., 2015. report No.: R-4516). Beans with pod were sampled by hand 7 days after application. Fresh beans and the processed fractions (washed beans, cooked beans and canned beans) were analysed for residues of fenpyroximate, M-1 and M-3 using the multi-residue method QuEChERS by LC-MS/MS, the LOQ was 0.01 mg/kg.

Table 225 Residue trials with tenpyroximate 51.2 g/L SC in tresh beans performed for process
--

Trial Ref	Ap	plication	Process	Portion analysed	Residue (1	mg/kg	g)	Total residue	Processing	Reference
Location Crop Year	No.	kg a.s./ha	tested -		Fenpyroximate	M-1	M-3	(mg/kg, fenpyroximate equivalents)	factor (matrix / RAC)*	and comments
82000,	1	0.526	-	Fresh beans (RAC)	1.36	0.03	n/a	1.39	-	R-4516
Montauban,			Washing	Washed beans	1.70	0.02	< 0.01	<1.73	1.2	
France			Cooking	Cooked beans	0.97	0.03	< 0.01	<1.01	0.73	
2015			Canning	Canned beans	0.47	0.04	0.07	0.58	0.42	
48012,	1	0.480	-	Fresh beans (RAC)	0.89	0.03	n/a	0.92	-	
Bagnacavallo,			Washing	Washed beans	0.79	0.02	< 0.01	< 0.82	0.89	
Italy			Cooking	Cooked beans	0.40	0.02	< 0.01	< 0.43	0.47	
2015			Canning	Canned beans	0.36	0.03	0.03	0.42	0.46	

* Processing factor calculated as the sum of fenpyroximate + M-1 in the RAC divided by the sum of fenpyroximate + M-1 + M-3 in the processed commodity.

Residues <LOQ have been assumed to be at the LOQ for the purposes of this calculation

Apples

Processing studies for apples from two trials after one application of fenpyroximate at rate of 0.5 kg ai/ha were conducted in Poland and Germany (Jullian E. 2016, report No.: R-4515) during 2015. Samples from the untreated and treated plots were taken by hand 21 days after application. After processing the specimens were immediately stored deep frozen (approximately -20 °C) in a freezer at the processing test site until shipping for analytical phase. Apples prior to processing, were analysed for residues of fenpyroximate and its metabolite M-1 using the multi-residue method QuEChERS with an LOQ of 0.01 mg/kg. Apple processed fractions (washed apples, wet pomace, dry pomace, pasteurised apple juice, pasteurised apple sauce and dried apples) were analysed for residues of fenpyroximate, M-1 and M-3 using the multi-residue method QuEChERS with an LOQ of 0.01 mg/kg. The residue levels of fenpyroximate, M-1 and M-3 found in apple fruits, prior to processing and processed fractions are summarised in Table 226.

Table 226 Residue trials with	h fenpyroximate	e 51.2 g/L SC in	apples	performed fo	r processing
	12	0			1 0

Doc. No. Trial Ref Location	App	olication	Process tested	Portion analysed	Residue (mg/kg)	2.6.1	14.2	Total residue (mg/kg, fenpyroximate	Processing factor (matrix /	Reference and comments
Crop Year	No.	kg a.s./ha			Fenpyroximate	IVI-1	IVI-3	equivalents)	RAC)*	
S15- 03109-01,	1	0.476	- Washing	Fresh apple (RAC)	0.16	< 0.01	n/a	< 0.17	-	R-4515
64-530,			Pressing	Washed fruits	0.10	< 0.01	< 0.01	< 0.12	0.71	
Zapust,			Pressing	Wet Pomace	0.36	0.01	< 0.01	< 0.38	2.2	
Poland			Pasteurisation	Dry Pomace	0.81	0.04	< 0.01	< 0.86	5.1	
2015			Pasteurisation	Pasteurised juice	< 0.01	< 0.01	< 0.01	< 0.03	0.18	
			Drying	Pasteurised sauce	< 0.01	< 0.01	< 0.01	< 0.03	0.18	
				Dried apples	0.61	0.03	< 0.01	< 0.65	3.8	
S15- 03109-	1	0.556	- Washing	Fresh apple (RAC)	0.21	0.01	n/a	0.22	-	
02,			Pressing	Washed fruits	0.21	0.02	< 0.01	< 0.24	1.1	
21683,			Pressing	Wet Pomace	1.11	0.08	< 0.01	<1.20	5.5	
Stade,			Pasteurisation	Dry Pomace	2.45	0.17	< 0.01	<2.63	12.0	
Germany			Pasteurisation	Pasteurised juice	< 0.01	< 0.01	< 0.01	< 0.03	0.14	
2015			Drying	Pasteurised sauce	0.02	< 0.01	< 0.01	< 0.04	0.18	
				Dried apples	1.03	< 0.07	< 0.01	<1.11	5.0	

* Processing factor calculated as the sum of fenpyroximate + M-1 in the RAC divided by the sum of fenpyroximate + M-1 + M-3 in the processed commodity.

Residues <LOQ have been assumed to be at the LOQ for the purposes of this calculation.

Tomatoes

Two processing studies for tomatoes after one application of fenpyroximate at rate of 0.5 kg ai/ha in Italy and Spain (Jullian E., 2016, report No.: R-4518) were received. Fruits were sampled by hand 7 days after application. The tomato fruits and processed fractions (washed tomatoes, tomato juice, canned tomatoes and tomato puree) were analysed for residues of fenpyroximate, M-1 and M-3 using the multi-residue method QuEChERS by LC-MS/MS, LOQ was 0.01 mg/kg.

Table 227 Residue tria	als with fenpyroximation	ate 51.2 g/L SC in t	omatoes performed for	processing
	1 2	<u> </u>	1	· ·

Trial Ref Location	App	lication	Process tested	Portion analysed	Residue 7 (mg/kg) (Total residue (mg/kg,	Processing factor	Reference and
Crop Year	No.	kg a.s./ha	-		Fenpyroximate	M-1	M-3	fenpyroximate equivalents)	(matrix / RAC)*	comments
S15-03111- 01,44023,	1	0.519	-	Whole tomato (RAC)	0.13	< 0.01	n/a	< 0.13	-	R-4518
Lagosanto,			Washing	Washed tomatoes	0.10	< 0.01	< 0.01	< 0.12	0.92	
Emilia			Juicing	Tomato juice	0.09	< 0.01	< 0.01	< 0.11	0.85	
Italy			Canning	Canned tomatoes	0.05	< 0.01	< 0.01	< 0.07	0.54	
2015			Pureeing	Puree	0.08	< 0.01	< 0.01	< 0.10	0.76	
S15-0311-	1	0.510	-	Whole tomato	0.11	< 0.01	n/a	< 0.12	-	

Trial Ref	App	lication	Process	Portion analysed	Residue		Total residue	Processing	Reference	
Location	tion		tested		(mg/kg)	(mg/kg)		(mg/kg,	factor	and
Crop	No.	kg a.s./ha	-		Fenpyroximate	M-1	M-3	fenpyroximate	(matrix /	comments
Year		-						equivalents)	RAC)*	
02, 41790,				(RAC)						
Santiponce,			Washing	Washed tomatoes	0.08	< 0.01	< 0.01	< 0.10	0.83	
Spain			Juicing	Tomato juice	0.03	< 0.01	< 0.01	< 0.05	0.42	
2015			Canning	Canned tomatoes	0.01	< 0.01	< 0.01	< 0.03	0.25	
			Pureeing	Puree	0.06	< 0.01	< 0.01	< 0.08	0.67	

* Processing factor calculated as the sum of fenpyroximate + M-1 in the RAC divided by the sum of fenpyroximate + M-1 + M-3 in the processed commodity.

Residues <LOQ have been assumed to be at the LOQ for the purposes of this calculation.

Grapes

Two processing studies for grapes after one application of fenpyroximate at rate of 0.25 kg ai/ha in France and Spain (Jullian E., 2016, report No.: R-4517) were received. Fruits were sampled by hand 28 days after application. Grapes, and processed fractions (wet pomace, wine, pasteurised juice, washed and destemmed grapes and raisins) were analysed for residues of fenpyroximate, M-1 and M-3 using the multi-residue method QuEChERS by LC-MS/MS, LOQ was 0.01 mg/kg. The residue levels of fenpyroximate, M-1 and M-3 found in grapes (RAC) and processed fractions are summarised in Table 228.

Trial Ref	Application		Process	Portion analysed	Residue			Total residue	Processing	Reference
Location	App	lication	tested		(mg/kg)			(mg/kg,	factor	and
Crop					Formerimoto	M 1	M 2	fenpyroximate	(matrix /	comments
Year	No.	kg a.s./ha			renpyroximate	101-1	101-5	equivalents)	RAC)*	
S15-03110-	1	0.255	-	Whole fruit (RAC)	0.10	< 0.01	n/a	0.11	-	R-4517
01, 66200,				Wet pomace						
Elne,			Pomace	Wine	0.48	0.03	< 0.01	< 0.52	4.7	
France, 2015			Wine	Pasteurised juice	< 0.01	< 0.01	< 0.01	< 0.03	0.27	
,			Juicing	Washed grapes	< 0.01	< 0.01	< 0.01	< 0.03	0.27	
			Washing	Raisins	0.07	< 0.01	< 0.01	< 0.09	0.82	
			Drying		0.29	0.02	< 0.01	< 0.32	2.9	
S15-03110-	1	0.248	-	Whole fruit (RAC)	0.67	0.01	n/a	0.68	-	
02, 50549,				Wet pomace						
El Buste,			Pomace	Wine	3.37	0.09	< 0.01	<3.47	5.10	
Spain, 2015			Wine	Pasteurised juice	< 0.01	< 0.01	< 0.01	< 0.03	0.04	
1 /			Juicing	Washed grapes	< 0.01	< 0.01	< 0.01	< 0.03	0.04	
			Washing	Raisins	0.39	< 0.01	< 0.01	< 0.41	0.60	
			Drying		0.70	0.02	< 0.01	< 0.73	1.1	

* Processing factor calculated as the sum of fenpyroximate + M-1 in the RAC divided by the sum of fenpyroximate + M-1 + M-3 in the processed commodity.

Residues <LOQ have been assumed to be at the LOQ for the purposes of this calculation

Strawberry

Two processing studies for strawberries after one application of fenpyroximate at rate of 0.5 kg ai /ha in Italy and Spain were conducted (Jullian E., 2016 report No.: R-4512). Samples of fruit (RAC) were taken 7 days after application for processing. RAC samples were transferred to the laboratory for processing according to simulated commercial practices with samples taken for washing, canning and jam. All samples were then stored frozen until required for analysis. Strawberry fruits and processed fractions (washed strawberry, canned strawberry and pasteurised jam) were analysed for residues of fenpyroximate, M-1 and M-3 according to the validated method RES/RAM/004. LOQ for fenpyroximate, M-1 and M-3 in strawberry fruit and processed matrices was 0.01 mg/kg. The residue levels of fenpyroximate, M-1 and M-3 found in strawberry (RAC) and processed fractions are summarised in Table 229.

Trial Ref Location Crop Year	App No.	lication kg a.s./ha	Process tested	Portion analysed	Residue (mg/kg) Fenpyroximate	M-1	M-3	Processing factor (matrix / RAC)*	Reference and comments
S15-03112-01 Bologna Italy, 2016	1	0.508	- - Canning Jam	Whole fruit (RAC) Washed fruit Canned fruit Jam	0.58 0.31 0.03 0.11	< 0.01 < 0.01 < 0.01 < 0.01	ND < 0.01 < 0.01 < 0.01	- 0.53 0.05 0.19	R-4512
S15-03112-02 Cadiz Spain, 2015	1	0.498	- - Canning Jam	Whole fruit (RAC) Washed fruit Canned fruit Jam	0.82 0.47 0.16 0.30	0.03 0.02 < 0.01 0.02	ND < 0.01 < 0.01 0.02	- 0.58 0.19 0.38	

Table 229 Residue of fenpyroximate, M-1 and M-3 in strawberry and processed fractions (data from $5 \times$ exaggerated rate)

* Processing factor calculated as sum of individual processing factors for fenpyroximate and M-1

Orange

Processing studies for orange after 2 applications of fenpyroximate at rate of 0.5 kg ai/ha were conducted in the USA during 1994/95 (Jullian E. 2016, Report No. R-4107). Samples from the untreated and treated plots were taken 14 days after application. After processing the specimens were immediately stored deep frozen (approximately -20 °C) in a freezer at the processing test site until shipping for analytical phase. Oranges prior to processing and processed fractions (molasses, oil, dried pulp and juice) were analysed for residues of fenpyroximate and M-1. The residue levels of fenpyroximate, M-1 in orange fruits and processed fractions are summarised in Table 230.

Table 230 Residue trials with fenpyroximate 5% SC in oranges performed for processing

Trial	Annl	iantian	Process	Portion	Residue		Total residue	Processing	Reference
Location	Аррі	Ication	tested	analysed	(mg/kg)		(mg/kg,	factor *	and
Year (Variety)	No	ka ai/ha	-		Fenpyroximate	M-1	fenpyroximate		comments
	140.	kg al/lia					equivalents)		
Trial: CA4	2	0.5+0.5	-	Fresh fruits	0.420	< 0.008	0.428	-	Report No.
Tulare, CA		14 days		(RAC)					R-4107;
USA, 1994-		interval	Juice	Juice	ND	< 0.008	< 0.008	< 0.019	Study:
1995			Molasses	Molasses	0.032	< 0.008	0.040	0.093	AA940422
(Navel)			Oil	Oil	30.9	< 0.008	30.908	72.2	
			Dried	Dried fruit	2,22	< 0.046	2.266	5.3	
Trial: FL2	1	0.5+0.5	-	Fresh fruits	0.357	0.01	0.367	-	
Palm Beach		14 days		(RAC)					
FL;		interval	Juice	Juice	< 0.008	< 0.008	< 0.016	< 0.044	
USA, 1994-			Molasses	Molasses	0.009	< 0.008	0.017	0.046	
1995			Oil	Oil	4.67	0.220	4.89	13.3	
(Hamlin)			Dried	Dried fruit	1.69	0.146	1.836	5.0	

* Processing factor calculated as the sum of fenpyroximate + M-1 in the RAC divided by the sum of fenpyroximate + M-1 in the processed commodity.

Residues \leq LOQ have been assumed to be at the LOQ for the purposes of this calculation.

Maize

One processing study for maize after 2 application of fenpyroximate at rate of 570 g ai /ha in the USA (report No. R-4447). Maize grain was sampled at 14 DAT. The grain was used to generate the aspirated grain fraction and process whole grain into grifts, meal, flour, starch, and refined oil (wet and dry milled).

Trial Location Year (Variety)	Applic No.	ation kg ai/ha	Portion analysed	Residue (mg/kg) Fenpyroximate	M-1	Total residue (mg/kg, fenpyroximate equivalents)	Processing factor *	Reference and comments
Trial: TCI-10- 270-04 Uvalde,TX USA, 2010		1.14	Grains (RAC) Grits Meal Flour Refined oil (dry milling) Starch Refined oil (wet milling)	0.206 0.00332 0.0266 0.066 0.175 - 0.0563	0.00527 - 0.00574 0.0129 0.0336 - 0.00901	0.211 0.00332 0.03234 0.0789 0.2086 - 0.06531	- 0.016 0.15 0.37 0.99 0.31	Report No. R- 4447;
Trial: TCI-10- 270-04 Uvalde,TX USA, 2010		0.223	Grain (RAC) Aspirated grain fraction	0.01255 1.23	0.00617 0.387	0.01872 1.617	- 86	

T 11 001	D 1			•	•			c		
Table 231	Residue	trials wit	h tenny	roximate	1 n	maize	orains	nertormec	tor	nrocessing
1 4010 251	Itesiaae	unuis wit	n renpj	Tommate	111	maile	Siamo	periornice	101	processing

Potato

The Meeting received one processing study on potato from the USA. A potato crop received 2 applications of fenpyroximate at a rate of 570 g ai/ha (Study IR-4 PR No.10173). The potato tubers were sampled at 7 DAT, and processed to flakes, chips and wet peel.

Table 232 Processing study for potato

Potato	Applic	ation		DALA		Residues (1	mg/kg)		Processing	Referenc
Trial	Rate	Water	No	(days)	Commodity	Fenpyro	M-1	Sum of	factor	e &
Location	(g	(L/ha)				xi-		Fenpyro		Commen
Country,	ai/ha					mate		xi-		ts
year)							mate and		
(Variety)								M-1		
Trial 09-	565	422	2	7	Tubers	< 0.05	< 0.05	< 0.1	-	
ID12	+	424			(RAC)					
Kimberley,	567				Flakes	< 0.05	< 0.05	< 0.1	-	Study
ID					Chips	< 0.05	< 0.05	< 0.1	-	IR-4 PR
USA, 2009					Wet Peels	< 0.05	< 0.05	< 0.1	-	No.1017
(Russet										3
Burbank)										

Теа

Two processing studies for tea after one application of fenpyroximate at rate of 200 g ai /ha in Ibaraki and Kyoto Prefectures in Japan (report No. R-4133). Tea leaves was sampled at 7, 14, 21 and 30 DAT for processing. The dried tea leaves were soaked with 100 °C of water, and after standing to cool, the extract was filtered. Then the solution was added with sodium chloride, and then extracted with hexane. The hexane phase was dried *in vacuo*, and cleaned up by using silica-gel column and C18 cartridge column chromatography. The analytes (*E* and *Z* isomers of fenpyroximate) were determined by using a High Performance Liquid Chromatography (HPLC) equipped with UV detector. For both analytes, the limit of detection was 0.005 mg/kg and the average recoveries at 0.2 mg/kg fortified to control samples of *E* and *Z* isomers were 83% and 80%, respectively.

Table 233 Processing study for Tea

Tea	Application	on		DALA	Commodity	Residues (m	g/kg)		Processing	Reference
Trial	Rate	Water	No.	(days)		Fenpyroxi-	M-1	Sum of	factor	&
Location	(g ai/ha)	(L/ha)				mate		Fenpyroxi-		comments
Country, year								mate and		
(Variety)								M-1		
Trial: Ibaraki	200	40	1	7	Plucked leaves	13.2	-	13.2		R-4133
Ibaraki				14	Plucked leaves	3.98	-	3.98		
Japan, 1989				21	Plucked leaves	1.06	-	1.06		
(Kanaya				30	Plucked leaves	0.482	-	0.482		
midori)				7	T ()	0.001		0.001	0.0000	
,				/	Tea extract	0.091	-	0.091	0.0069	
				14	Tea extract	0.027	-	0.027	0.0008	
				21	Tea extract	0.014		0.014	0.015	
				50	Tea extract	0.009		0.009	0.019	
Trial: Kyoto	200	40	1	7	Plucked leaves	10.2	-	10.2		R-4133
Kyoto				14	Plucked leaves	2.98	-	2.98		
Japan, 1989				21	Plucked leaves	1.48	_	1.48		
(Oku midori)				30	Plucked leaves	0.104	-	0.104		
(0114 1114011)							-			
				7	Tea extract	0.07	-	0.07	0.0069	
				14	Tea extract	0.021	_	0.021	0.007	
				21	Tea extract	0.013		0.013	0.0088	
				30	Tea extract	< 0.005	-	< 0.005	0.048	
							-			

LIVESTOCK FEEDING STUDIES

The Meeting received the information on a lactating dairy cow feeding study (Baker F.C., Bacher R. and Gibson N., 1999, report No. R-4113). Holstein dairy cows were treated orally with gelatine capsules fortified with fenpyroximate once daily for 29 consecutive days. Groups of cows were dosed at three dose levels (3 cows/dose group) equal to 1.0, 3.0 and 10.0 ppm fenpyroximate equivalents in the diet (dry weight basis) for the low $(1\times)$, medium $(3\times)$ and high $(10\times)$ dose groups, corresponded to 0.03, 0.10 and 0.35 mg ai/kg body weight. Milk samples were collected twice a day (morning and evening) on dose days 0, 1, 3, 7, 11, 14, 18, 21, 24 and 28. Milk samples were composited as a proportion of the level of morning and evening milk production, and stored frozen prior to analysis. Cows were sacrificed between 15 and 22 hours after their last dose. Animals were examined for gross tissue abnormalities and the tissue samples of liver, kidney, composite muscle (round and loin) and composite fat (perirenal and omental) were collected, homogenised in a frozen state with dry ice and stored frozen prior to analysis. Samples were extracted with acetone, purified and subsequently analysed by GC/NPD or LC-MS/MS (liver, kidney). The limit of quantification for each analyte (fenpyroximate/Fen-OH, M-21, M-22, M-3, N-desmethyl-M-3) was 0.005 ppm in milk and 0.01 ppm in all tissues. The limit of detection for milk, muscle and fat method (GC/NPD) was approximately 0.1 µg/mL. The limit of detection for the LC/MS/MS analysis of liver and kidney was also approximately 0.005 µg/mL. All residue values were corrected for recovery of concurrent fortification samples under 100%. In addition storage stability studies were conducted to evaluate the stability of the analytes when stored frozen up to 82 days before extraction.

<u>Milk</u> results indicate that the mean daily fenpyroximate/Fen-OH residues in high dose milk reached a maximum level of 0.017 ppm 1 day and 3 days after the first dose. Mean daily residues of fenpyroximate/Fen-OH appeared to decline gradually over the remainder of the study except for an outlier at day 21 (0.016 ppm). High dose milk contained 0.010 ppm at day 28. Medium dose milk contained < 0.005 ppm fenpyroximate/Fen-OH at day 3, 0.008 ppm at day 14 and 0.005 ppm at day 21. Metabolite M-21 was detected below the method LOQ (< 0.005 ppm) in some high dose milk samples throughout the study. M-21 was not detected in day 3 medium dose milk and was < 0.005 ppm in day 14 and day 21 milk. Low dose milk was not analysed because of the low, or undetectable, residues observed in medium dose samples. Result are summarised in Table 234.

<u>Muscle</u> from animals receiving a high dose of fenpyroximate contained an average of 0.038 ppm fenpyroximate/Fen-OH and < 0.010 ppm of M-3. Muscle from medium dose animals

contained 0.015 ppm fenpyroximate/Fen-OH; M-3 was undetectable. The latter result was confirmed in one sample by LC-MS/MS analysis, which allowed a lower limit of detectability. Low dose muscle contained < 0.010 ppm fenpyroximate/Fen-OH.

<u>Fat</u> from high dose animals contained an average of 0.105 ppm fenpyroximate/Fen-OH. Residues of M-3 were < 0.01 ppm. Fat from animals receiving a medium dose of fenpyroximate contained an average of 0.056 ppm fenpyroximate/Fen-OH and < 0.020 ppm of M-3. The absence, or low level, of M-3 in medium dose fat was confirmed in one sample by LC/MS/MS analysis. Fat from animals receiving a low dose of fenpyroximate contained 0.015 ppm fenpyroximate/Fen-OH.

<u>Liver</u> from high dose animals contained an average of < 0.010 ppm fenpyroximate, N-desmethyl-M-3 and M-22. M-3 residues averaged 0.80 ppm. Liver from animals receiving a medium dose of fenpyroximate contained 0.37 ppm M-3; other metabolite residues were undetectable. Low dose liver contained 0.19 ppm M-3 and undetectable levels of other metabolites.

<u>Kidney</u> from high dose animals also contained a significant residue of M-3 (0.40 ppm), a lesser amount of fenpyroximate (0.014 ppm) and undetectable residues of N-desmethyl-M-3 and M-22. Kidney from medium dose animals contained 0.29 ppm M-3, < 0.01 ppm fenpyroximate, and undetectable levels of N-desmethyl-M-3 and M-22. Low dose kidney samples contained 0.20 ppm M-3; other residues were not detected.

Recovery of M-21 was low in some milk samples, as was M-3 in muscle, fenpyroximate/Fen-OH and M-3 in fat and N-desmethyl-M-3 in kidney. However, all residues were corrected for recovery %. The storage stability studies indicated that analytes were stable in milk and tissues when stored frozen, except for M-21 in milk (66% relative recovery) and Fen-OH in fat (60% relative recovery).

During the in-life phase of the study, the cows appeared normal and healthy. Residues of fenpyroximate and metabolites found in the respective samples of milk and tissues are summarised in Table 235.

Collection	Animal	PTRL West No.	Fenpyroximate/Fen- (mg/kg)	OH ^a	M-21 ^b (mg/kg)	
Interval	Code		Residue Level	Mean	Residue Level	Mean
Control	1179-1A	744W-004,5	< 0.005		< 0.005	
	1179-4A	744W-006	< 0.005		< 0.005	
Day 0	1179-4B	744W-007	ND ^c	< 0.005	< 0.005	< 0.005
	1179-4C	744W-008	< 0.005		ND	
Control	1179-1A	744W-009,10,26	ND		ND	
	1179-4A	744W-011	0.017		ND	
Day 1	1179-4B	744W-012	0.014	0.017	ND	ND
	1179-4C	744W-013	0.021		ND	
Control	1179-1A	744W-016,26	ND		ND	
	1179-4A	744W-018	0.022		ND	
Day 3	1179-4B	744W-019	0.015	0.017	ND	ND
-	1179-4C	744W-020	0.014		ND	
Control	1170.14	744W-021,-	ND		ND	
Control	11/9-1A	014,-015	ND		ND	
	1179-4A	744W-023	0.007		< 0.005	
Day 7	1179-4B	744W-024	0.019	0.014	ND	< 0.005
	1179-4C	744W-025	0.015		ND	
Control	1179-1A	744W-026,28	ND		ND	
	1179-4A	744W-030	0.010		ND	
Day 11	1179-4B	744W-031	0.010	0.012	ND	ND
-	1179-4C	744W-032	0.017		ND	
Control	1179-1A	744W-033,34	ND ³		< 0.005	
	1179-4A	744W-035	0.012		ND	
Day 14	1179-4B	744W-036	0.012	0.013	ND	ND
-	1179-4C	744W-037	0.014		ND	
Control	1179-1A	744W-040,41	ND		ND	

Table 234 Residue Levels (Corrected for Recovery) in High Dose (10 ppm in the Diet) Milk Samples from the Fenpyroximate Dairy Cow Feeding Study

Collection	Animal	PTRL West No.	Fenpyroximate/Fen- (mg/kg)	OH ^a	M-21 ^b (mg/kg)		
milervar	Code		Residue Level	Mean	Residue Level	Mean	
	1179-4A	744W-042	0.007		< 0.005		
Day 18	1179-4B	744W-043	0.013	0.011	ND	< 0.005	
-	1179-4C	744W-044	0.014		ND		
Control	1179-1A	744W-045,46	ND		< 0.005		
	1179-4A	744W-047	0.013		< 0.005		
Day 21	1179-4B	744W-048	0.019	0.016	< 0.005	< 0.005	
	1179-4C	744W-049	0.015		ND		
Control	1179-1A	744W-151	ND		< 0.005		
	1179-4A	744W-096	0.007		< 0.005		
Day 24	1179-4B	744W-097	0.006	0.007	< 0.005	< 0.005	
	1179-4C	744W-098	0.008		< 0.005		
Control	1179-1A	744W-079	ND		< 0.005		
	1179-4A	744W-102	0.015		< 0.005		
Day 28	1179-4B	744W-103	0.008	0.010	< 0.005	< 0.005	
	1179-4C	744W-104	0.007		< 0.005		

^a Fenpyroximate and Fen-OH converted to M-3 and detected as methyl M-3; expressed as fenpyroximate mg/kg corrected for recoveries of fortifications <100%.

^b M-21 detected as methyl M-21; expressed as M-21 mg/kg corrected for recoveries of fortifications <100%.

^c ND=Not detected, no peak

< 0.005 ppm is below limit of quantification

Table 235 Mean and range of recovery corrected residue levels found in milk and tissues of cows fed fenpyroximate at dose levels of 0.003, 0.10 and 0.35 mg/kg bw over 29 consecutive days

Analyte	Mean and (range) residue level (ppm)				
	Milk	Liver	Kidney	Muscle	Fat
High dose (10 ppm)					
Fenpyroximate/Fen-OH	0.013* (0.006-0.022) [101.5%]	<0.010 (<0.010-0.011) [87%]	0.014 (0.009-0.019) [77%]	0.038 (0.024-0.049) [76.1%]	0.105 (0.046-0.159) [53.5%]
M-21	< 0.005 (ND-< 0.005) [73.7%]	NA	NA	NA	NA
M-3	NA	0.80 (0.70-0.90) [103%]	0.40 (0.35-0.44) [90%]	< 0.010 (ND-< 0.010) [56.3%]	< 0.010 (ND-< 0.010) [55.2%]
N-desmethyl-M-3	NA	< 0.010 (ND-< 0.010) [83%]	ND	NA	NA
M-22	NA	< 0.010 (ND-0.010) [94%]	ND	NA	NA
Medium dose (3 ppm)					
Fenpyroximate/Fen-OH	0.005 (< 0.005-0.011) [101.5%]	ND	< 0.01 (ND-< 0.01) [77%]	0.015 (0.012-0.017) [76.1%]	0.056 (0.025-0.073) [53.5%]
M-21	< 0.005 (ND-< 0.005) [73.7%]	NA	NA	NA	NA
M-3	NA	0.37 (0.28-0.42) [103%]	0.29 (0.23-0.35) [90%]	ND	< 0.010 (ND-< 0.01) [55.2%]
N-desmethyl-M-3	NA	ND	ND	NA	NA
M-22	NA	ND	ND	NA	NA
Low dose (1 ppm)					
Fenpyroximate/Fen-OH	-	ND	ND	< 0.010 (all < 0.010) [76.1%]	0.015 (0.010-0.018) [53.5%]
M-21	-	NA	NA	NA	NA

Analyte	Mean and (range) r	Mean and (range) residue level (ppm)			
	Milk	Liver	Kidney	Muscle	Fat
M-3	NA	0.19 (0.16-0.22) [103%]	0.20 (0.18-0.23) [90%]	-	-
N-desmethyl-M-3	NA	ND	ND	NA	NA
M-22	NA	ND	ND	NA	NA

NA-Not applicable;

ND-Not detected ;

- Not analysed ;

 \ast - Does not include day 0

Recovery % is in [].

Table 236 Fortification Recoveries of fenpyroximate and M-21 obtained from Milk Analyses

Fenpyroximate Concurrent Fort in Milk Recovery				
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %
Day 0 Milk	High	Fenpyroximate	0.05	109.1
5	C	10	0.05	120.1
Day 1 Milk	High	Fenpyroximate	0.05	85.4
5	C	10	0.05	143.4
Day 3 Milk	High	Fenpyroximate	0.05	117.5
5	C	15	0.05	109.9
	Medium	Fenpyroximate	0.05	87.0
		15	0.05	97.3
Day 7 Milk	High	Fenpyroximate	0.05	124.4
5	C	10	0.05	108.3
Day 11 Milk	High	Fenpyroximate	0.05	80.7
5	C	15	0.05	117.5
Day 14 Milk	High	Fenpyroximate	0.05	100.1
5	C	15	0.05	143.8
	Medium	Fenpyroximate	0.05	80.5
		15	0.05	65.5
Day 18 Milk	High	Fenpyroximate	0.05	116.7
5	C	15	0.05	113.7
Day 21 Milk	High	Fenpyroximate	0.05	99.9
5	0	15	0.05	106.1
	Medium	Fenpyroximate	0.05	83.4
		15	0.05	74.6
Day 24 Milk	High	R-UL-1/Fen-OH	0.05	97.5
5	C		0.05	83.6
Day 28 Milk	High	Fenpyroximate	0.05	68.9
-	Ū.		0.05	104.0
			Mean	101.4
			R.S.D.	(20.3%)
M21 Concurrent Fort in M	Milk Recovery			·
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %
Day 0 Milk	High	M-21	0.05	85.8
-			0.05	83.4
Day 1 Milk	High	M-21	0.05	52.6
-			0.05	40.9
Day 3 Milk	High	M-21	0.05	52.6
-	Ū.		0.05	40.9
	Medium	M-21	0.05	89.8
			0.05	95.2
Day 7 Milk	High	M-21	0.05	48.0
	-		0.05	48.4
			0.05	44.1
			0.05	48.2
Day 11 Milk	High	M-21	0.05	52.6
			0.05	40.9
Day 14 Milk	High	M-21	0.05	37.7
			0.05	49.6

Fenpyroximate Concurrent Fort in Milk Recovery				
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %
	Medium	M-21	0.05	111.8
			0.05	116.9
Day 18 Milk	High	M-21	0.05	55.0
			0.05	75.8
Day 21 Milk	High	M-21	0.05	55.8
			0.05	48.5
	Medium	M-21	0.05	126.4
			0.05	100.8
Day 24 Milk	High	M-21	0.05	141.0
	-		0.05	170.4
Day 28 Milk	High	M-21	0.05	76.3
			0.05	73.6
			Mean	73.7
			R.S.D.	(46.9%)

Table	237	Fortification	Recoveries	of	fenpyroximate/Fen-OH	and	M-3	obtained	from	Muscle
Analys	es									

Fenpyroximate/Fen-OH Concurrent Fortification Recovery in Muscle				
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %
Muscle	High	Fenpyroximate	0.05	69.0
(Set 1)	-		0.05	81.3
	Mid	Fenpyroximate	0.05	70.0
			0.05	73.4
	Low	Fen- OH	0.05	75.8
			0.05	87.3
			Mean	76.1
			R.S.D.	(9.2%)
M-3 Concurrent Fortificat	ion Recovery in Muscl	e		
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %
Muscle	High	M-3	0.05	60.1
(Set 1)			0.05	57.9
(Set 2)	High	M-3	0.05	89.3
			0.05	52.1
			0.01	41.3
			0.01	55.1
(Set 1)	Mid	M-3	0.05	46.9
			0.05	49.0
(Set 2)	Mid	M-3	0.05	54.8
			0.05	57.3
			0.05	55.1
			Mean	56.3
			R.S.D.	(21.7%)

Table 238 Fortification Recoveries of fenpyroximate/Fen-OH and M-3 obtained from Fat Analyses

Fenpyroximate/Fen-OH Concurrent Fortification Recovery in Fat				
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %
Fat	High	Fenpyroximate	0.05	(Set 1) 45.7
			0.05	45.8
			0.05	(Set 2) 49.2
			0.05	63.4
	Mid	Fen- OH	0.05	33.9
			0.05	47.1
	Low	Fen- OH	0.05	81.8
			0.05	61.3
			Mean	53.5
			R.S.D.	(24.1%)

Fenpyroximate/Fen-OH Concurrent Fortification Recovery in Fat					
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %	
M-3 Concurrent Fortificat	tion Recovery in Fat				
Sample	Dose Level	Fortification Standard	Fort Level (µg/g)	Recovery %	
Fat	High	M-3	0.05	(Set 1) 31.9	
			0.05	51.4	
			0.05	(Set 2) 34.9	
			0.05	70.1	
			0.01	(Set 3) 66.7	
			0.01	82.1	
			0.05	(Set 3) 69.7	
			0.05	47.4	
	Mid	M-3	0.05	47.0	
			0.05	50.8	
			Mean	55.2	
			R.S.D.	(29.6%)	

Table 239 Fortification Recoveries of fenpyroximate and other metabolites obtained from Liver Analyses

Fortification Recoveries Obtained from Liver Analyses				
Sample Set	% Recoveries of Analyte F	ortified		
	N-Desmethyl M-3	M-3	M-22	Fenpyroximate
High Dose A	65	103	83	92
High Dose B	62	111	97	82
High Dose C	87	113	112	103
Mid Dose A	88	94	89	84
Mid Dose B	119	85	76	56
Mid Dose C	103	97	86	83
Low Dose A	71	104	99	95
Low Dose B	66	108	101	94
Low Dose C	84	114	102	97
Mean	83	103	94	87
R.S.D.	(23.1%)	(9.4%)	(11.9%)	(15.7%)

Table 240 Fortification Recoveries of fenpyroximate and other metabolites obtained from Kidney Analyses

Fortification Recoveries Obtained from Kidney Analyses				
Sample Set	% Recoveries of Analyte F	ortified		
	N-Desmethyl M-3	M-3	M-22	Fenpyroximate
High Dose A	33	66	70	87
High Dose B	48	89	74	69
High Dose C	32	92	78	74
Mid Dose A	86	73	80	64
Mid Dose B	73	84	85	70
Mid Dose C	105	83	87	75
Low Dose A	-*	_*	-*	_*
Low Dose B	64	119	94	90
Low Dose C	99	114	102	87
Mean	68	90	84	77
R.S.D.	(42.0%)	(20.5%)	(12.6%)	(12.6%)

* The low dose fortification sample was spilled.

APPRAISAL

Fenpyroximate is a pyrazole non-systemic selective acaricide/insecticide for the control of mites and hoppers in a wide range of crops including fruits and vegetables. It was first evaluated by JMPR in 1995 and then in 1999 and 2010 for maximum residue levels, and in 2004 and 2007 for toxicology.

Fenpyroximate was scheduled at the 48th Session of the CCPR for Periodic Re-evaluation for residues and toxicology by 2017 JMPR. The meeting received information from manufacturer on the metabolism of fenpyroximate in citrus, apple, grape, snap beans, cotton, Swiss chard and lactating goat, as well as rotational crop studies, environmental fate in soil and water, method of residue analysis, stability in stored analytical samples, use patterns, supervised residue trials, fate of residue during storage and processing, and livestock feeding studies.

The IUPAC name of fenpyroximate is tert-butyl (E)-alpha-(1,3-dimethyl-5-phenoxypyrazol-4-ylmethyleneamino-oxy)-*p* toluate.

The following abbreviations are used for the metabolites discussed in the appraisal:

Code Number (Synonyms)	Description	Structure
M-1 (Z-isomer)	IUPAC: tert-butyl (<i>Z</i>)-α-(1,3-dimethyl-5- phenoxypyrazol-4-ylmethyleneamino-oxy)- <i>p</i> -toluate CAS: 1,1-dimethylethyl (<i>Z</i>)-4-[[[[(1,3- dimethyl-5-phenoxy-1 <i>H</i> -pyrazol-4- yl)methylene]amino]oxy]methyl]benzoate	$H_{3}C \xrightarrow{H} C = N \xrightarrow{H_{2}} O \xrightarrow{O} CH_{3}$ $N \xrightarrow{N} O \xrightarrow{O} CH_{3}$ CH_{3}
M-2	Tert-butyl (<i>E</i>)-4-{[1,3-dimethyl-5-(4-hydroxyphenoxy)pyrazol-4-yl]- methyleneaminooxymethyl}benzoate	$H_{3}C$ H_{2} O O CH_{3} CH_{3} CH_{3} $H_{3}C$ CH_{3} $CH_$
M-3	(<i>E</i>)-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoic acid	$H_{3}C$

Code Number (Synonyms)	Description	Structure
N- desmethyl M-3	(<i>E</i>)-4-[(3-methyl-5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoic acid	
N- desmethyl M-3 acid	(<i>E</i>)-4-[(3-carboxy-5-phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoic acid	
M-5	(<i>E</i>)-4-{[(1,3-dimethyl-5-(4- hydroxyphenoxy)pyrazol-4- yl]methyleneaminooxymethyl}benzoic acid	$H_{3}C$ H_{2} H_{2} $H_{3}C$ H_{2} H_{2} H_{2} H_{2} H_{3} H_{3} H_{2} H_{2} H_{2} H_{2} H_{3} H_{3} H_{2} H_{2} H_{3} $H_$
M-12	Tert-butyl (<i>E</i>)4-[(3-methyl-5- phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoate	$H_{3}C$ H_{2} H_{2} H_{2} $H_{3}C$ H_{3
M-12 isomer	Tert-butyl (Z)-4-[(3-methyl-5- phenoxypyrazol-4- yl)methyleneaminooxymethyl]benzoate	$H_{3}C$ H_{2} H_{2} $H_{3}C$ H_{2} H_{2} $H_{3}C$ H_{3}
M-15	Tert-butyl 4-hydroxymethylbenzoate	$\begin{array}{c} HO \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
M-21	4-cyano-1-methyl-5-phenoxypyrazole-3- carboxylic acid	HOOC N N CH ₃
M-22	(<i>E</i>)-2-[4-[(1,3-dimethyl-5-phenoxypyrazol- 4- yl)methyleneaminooxymethyl]benzoyloxy]- 2-methylpropanoic acid	$H_{3}C$ H

Code Number (Synonyms)	Description	Structure
MTBT	Mono-(tert-butyl) terephthalate	HO O O CH ₃ CH ₃ CH ₃
Fen-OH	2-hydroxymethyl-2-propyl (<i>E</i>)-4-[(1,3- dimethyl-5-phenoxypyrazol-4-yl)- methylenaminooxymethyl]benzoate	$H_{3}C \xrightarrow{H_{2}} O \xrightarrow{C} CH_{3}$ $H_{3}C \xrightarrow{H_{2}} O \xrightarrow{C} CH_{3}$ CH_{3} CH_{3} CH_{3}
Metabolite 2	2-(5-(4-hydroxyphenoxy)-1- (hydroxymethyl)-1H-pyrazole-4- carbamoyl-3-carbonylamino)acetic acid	

Studies on the metabolism in plants, livestock and environmental fate utilised either [pyrazole-3- 14 C]-fenpyroximate or [benzyl-(U)- 14 C]-fenpyroximate.

Plant metabolism

The meeting received plant metabolism studies with fenpyroximate following foliar application (representative use patterns) to citrus, apples, grapes (Fruit crop group), snap beans and cotton (Pulses and Oilseeds crop group) and Swiss chard (Leafy crop group).

Citrus

In a study, outdoor mandarin tangerine trees were treated with [pyrazole-¹⁴C] fenpyroximate at a rate of 22.4 ± 1.5 mg/tree or 33.5 ± 0.5 mg /tree. The residues in pulp were less than 0.03 mg/kg (LOD) at 0–28 DAT or less than 0.01 mg/kg at maturity (137 DAT), therefore no characterization or identification was conducted. 67–89% radioactive residues in leaves and more than 92% in rind were extracted with acetone/methanol. Fenpyroximate (33% TRR, 0.12 mg eq/kg), M-12 (17% TRR, 0.06 mg eq/kg) and M-1 (6% TRR, 0.02 mg eq/kg) were identified as major residues in rind at harvest.

Fenpyroximate (18% TRR, 0.24 mg eq/kg), M-1 (9% TRR, 0.13 mg eq/kg) and M-12 (6% TRR, 0.08 mg eq/kg) were the major components of radioactive residues in leaves.

The polar metabolites were enzyme hydrolysed with β -glucosidase or cellulose, and M-20 glucoside and several other glucosides were found in leaves and the fruit rind.

In the second study, outdoor mandarin trees were treated with [benzyl-¹⁴C]-fenpyroximate at a rate of 21 mg/tree. Citrus leaves and fruits were sampled from two trees at 0, 3, 7, 14, 28 and 98 DAT. The radioactive residues in pulps were all less than 0.01 mg/kg, and no further characterizations or identifications were conducted. The radioactive residues in rinds were 0.21 mg eq/kg at maturity
(98 DAT) and 81–99% radioactive residues in rind were extracted with acetone/methanol (1:1). The residue of fenpyroximate in the rind was 1.1 mg eq/kg (99% TRR) just after application and 0.09 mg eq/kg (43% TRR) at maturity (98 DAT). The major metabolites in rind were M-1 and M-12. M-1 in rind were less than 4% TRR (0.01–0.04 mg eq/kg) in all samples. M-12 level in rind was 11–12% TRR (0.10–0.12 mg eq/kg) at 7–28 DAT, and 19% TRR (0.04 mg eq/kg) at maturity.

The radioactive residues in leaves were 4.2, 2.5 and 0.86 mg eq/ kg at 14, 28 and 98 DAT (maturity). 72–100% of radioactive residues in leaves were extracted with acetone/methanol (1:1). The residues of fenpyroximate in the leaves were 9.8 mg eq/kg (100% TRR) just after application, 1.1 mg eq/kg (43% TRR) at 28 DAT and 0.21 mg eq/kg (24% TRR) at maturity (98 DAT). The major metabolites in leaves were M-1 and M-12. M-1 level in leaves was 20-32% TRR (0.49–2.03 mg eq/kg) from 7 to 28 DAT, and was 16% TRR (0.14 mg eq/kg) at 98 DAT. M-12 level in leaves was less than 5% TRR (0.09–0.21 mg eq/kg) at 3–28 DAT, and 8% TRR (0.07 mg eq/kg) at maturity. Two new metabolites, M-15 in leaves was at maximum of 0.04 mg eq/kg (< 1% TRR) at 7 DAT, and M-17 in leaves was at maximum of 0.16 mg eq/kg (4% TRR) at 14 DAT.

The polar metabolites were enzyme hydrolysed with β -glucosidase or cellulose, M-15 glucoside and several unknown glucosides were detected at a level of less than 0.01 mg eq/kg in the leaves and rind at 98 DAT.

In the third study, outdoor Dancy tangerine trees were treated with [pyrazole- 14 C] fenpyroximate at the rates of 21 mg/tree (harvest at day 0–28) or 32 mg/tree (harvest at day 65). No radioactive residues were detected in pulps from trees treated with 21 mg/tree at 0–28 DAT (LOD was 0.13 mg eq/kg). Radioactive residue levels in pulps were 0.022 mg eq/kg at harvest (65 DAT).

The radioactive residue levels were 0.96-1.4 mg eq/kg in rind from trees treated with 21 mg/tree. Radioactive residue levels in rind were 1.0 mg eq/kg at the time of harvest (65 DAT). 90% of radioactivity from rind were extracted with acetone/methanol. The residues of fenpyroximate, M-1, M-12 and M-3 in rind were 0.60 mg eq/kg (58% TRR), 0.13 mg eq/kg (13% TRR), 0.04 mg eq/kg (4% TRR) and 0.04 mg eq/kg (4% TRR) at harvest (65 DAT). M-6 was detected at 0.02 mg eq/kg (2% TRR) and other metabolites (M-3, M-8, M-9, M-11, M-13 and M-19) were < 0.02 mg eq/kg (<2% TRR).

The radioactive residue levels were 11-14 mg eq/kg in leaves from trees treated with 21 mg/tree (0–28 DAT). Radioactive residue levels in leaves were 14 mg eq/kg from trees treated with 32 mg eq/tree (65 DAT). 71–96% of radioactivity from leaves were extracted with acetone/methanol. Residues of fenpyroximate in leaves were 3.6-12 mg eq/kg from 0–28 DAT. The residues of fenpyroximate, M-1 and M-12 in leaves at harvest (65 DAT) were 4.4 mg eq/kg (31% TRR), 1.7 mg eq/kg (12% TRR) and 0.41 mg eq/kg (3% TRR). Polar Radioactive residues accounted for 1.93 mg eq/kg (14% TRR) and other metabolites were < 0.02 mg eq/kg (< 2% TRR).

Apple

The meeting received information on 2 metabolism studies of fenpyroximate in/on apple.

In the studies, apple trees were treated once by foliar spraying with [pyrazole-¹⁴C] or [benzyl-¹⁴C]-fenpyroximate at rate of 7.5 g ai/100 L. The residues in apple fruits were 0.12-0.13 mg eq/kg at day 0 and 0.032-0.036 mg eq/kg at harvest. More than 97% radioactive residues in fruit was extracted with acetone/water (1:1). The major components of radioactive residues in fruits were fenpyroximate and M-1. The residues of fenpyroximate and M-1 in fruit were 0.015-0.017 mg eq/kg (47% TRR) and 0.005-0.007 mg eq/kg (18–19% TRR) at harvest. The other metabolites were all below 0.01 mg eq/kg in fruits.

Radioactive residues in leaves amounted to 10-12 mg eq/kg at day 0 and decreased to 0.51-0.63 mg eq/kg at harvest (57 DAT). More than 94% radioactive residues in leaves was extracted with acetone/water (1:1). The major components of radioactive residues in leaves were fenpyroximate and M-1. The residues of fenpyroximate and M-1 in leaves were 1.3-1.6 mg eq/kg (53–59% TRR) and 0.50–0.61 mg eq/kg (19–25% TRR) at 28 DAT, and decreased to 0.22 mg eq/kg (35–43% TRR) and

0.091-0.16 mg eq/kg (18-26% TRR) at harvest. The other metabolites were all below 0.01 mg eq/kg in leaves.

Grape

The meeting received information on 2 metabolism studies of Fenpyroximate in/on grape.

In the studies, grapevines was once treated by hand spraying with [pyrazole-¹⁴C] or [benzyl-¹⁴C]-fenpyroximate at rate of 7.5 g ai/100L. The radioactive residues in grape juice were lower than 0.01mg eq/kg over the whole sampling period, and no further characterization or identification was conducted. The radioactive residues in grape berries were 0.086-0.097 mg eq/kg at day 0 and 0.060-0.081 mg eq/kg at harvest. More than 93% of radioactive residues in berries were extracted with acetone/methanol (1:1). The major components of radioactivity in berries were fenpyroximate and M-1. The residues of fenpyroximate and M-1 were 0.027-0.031 mg eq/kg (38–45% TRR) and 0.004-0.006 mg eq/kg (5–10% TRR) in grape berry at harvest. Other metabolites identified in grape berry were less than 0.01 mg eq/kg.

The radioactive residues in leaves amounted to 6.2-7.5 mg eq/kg at day 0 and decreased to 0.97-1.2 mg eq/kg at harvest (57 DAT). 83-99% of radioactive residues in leaves was extracted with acetone/methanol (1:1). The major components of radioactivity were fenpyroximate and M-1. The residues of fenpyroximate and M-1 were 0.33-0.64 mg eq/kg (34-56% TRR) and 0.052-0.054 mg eq/kg (5% TRR) in leaves at harvest (57 DAT). Minor metabolites identified were M-9 (0.01 mg eq/kg), M-12 (0.01 mg eq/kg) and M-19 (0.02 mg eq/kg) in leaves at harvest.

Snap bean

The snap bean plants (*Phaseolus vulgaris*, field grown) were treated with [Pyrazole-¹⁴C] - fenpyroximate at rate of 104 g/ha or [Benzyl-¹⁴C]-fenpyroximate at rate of 105 g/ha. Snap beans were harvested 7 days after application. The total radioactive residues in beans were 0.11 to 0.12 mg eq/kg. More than 99% of the radioactive residues was extracted with acetonitrile: water. The primary components of the residues were fenpyroximate and M-1. The residues of fenpyroximate accounted for 86 to 89% TRR (0.095–0.106 mg eq/kg). The residues of M-1 accounted 4.0 to 4.7% TRR (0.005 mg eq/kg). Other minor components were less than 10% TRR or 0.01 mg eq/kg.

Swiss chard

Swiss Chard plants were treated once with [pyrazole-¹⁴C] or [benzyl-¹⁴C]-fenpyroximate at rate of 102 g ai/ha. Samples of stem, leaves from 0, 14 and 35 DAT and root at 35 DAT were collected. Radioactive residues in stems and leaves at 0–35 DAT were up to 6.5 mg eq/kg for [pyrazole-¹⁴C] fenpyroximate and up to 7.7 mg eq/kg for [benzyl ring -¹⁴C] fenpyroximate. The majority of the radioactivity (96 to 100% of TRR) was extracted with acetonitrile/distilled water (4/1, v/v) and acetonitrile/ 0.1N hydrochloric acid (4/1, v/v). The most prominent residue in stems and leaves was fenpyroximate (0.34–7.6 mg eq/kg, 37–99% TRR). High polar radioactivity (retained at TLC origin) accounted for 31 to 49% TRR (0.43–0.68 mg eq/kg), which consisted of a number of individual metabolites with each individually below 8.5% TRR. . M-1 was less than 3.8% TRR (0.04 mg eq/kg).

Cotton

The cotton plants were treated once with [pyrazole-¹⁴C] fenpyroximate as a foliar spray at a rate of 194 g ai/ha. The cotton forage of immature plants was harvested 1 DAT. Mature plants were harvested after boll opening (30 DAT) and were separated into seed, lint and gin trash. The major parts of the treated radioactivity were recovered from rinses and extracts (68–126% of TRR) in the forage, seed kernel, lint/hull, leaves and gin trash. The radioactive residues in post-extraction solid (PES) was < 10% of TRR except in seed kernels (28% TRR) and lint/hulls (15% TRR). However, the levels of radioactivity in PES of seed kernel and lint/hull were very low (0.002–0.003 mg eq/kg). The radioactive residues were 9.2 mg eq/kg in gin trash, 3.6 mg eq/kg in forage, 0.021 mg eq/kg in lint/hull, and 0.008 mg eq/kg in seed kernel.

Fenpyroximate and M-1 (approximately equal amounts) were the major components in leaves, the immature cotton (forage), cotton seed, and the cotton gin trash. The residues of fenpyroximate and M-1 were 2.5 mg eq/kg (70% of TRR) and 1.2 mg eq/kg (32% of TRR), respectively, in immature cotton (forage), and for both fenpyroximate and M1, 0.003 mg eq/kg (38% TRR) in cottonseed (kernel), and 3.4 mg eq/kg (37% of TRR) in Gin trash. A number of other metabolites detected were less than 10% TRR or 0.01 mg/kg.

In summary, following foliar spray application of fenpyroximate, radioactive residues mainly remained on plant surfaces, and the parent fenpyroximate and M-1 were the major components of residues. All metabolites above 0.01 mg/kg in plants were also found in rats. Primary metabolic pathways of fenpyroximate in plants included conversion of fenpyroximate to Z-isomer (M-1) and hydrolysis of ester, oxime ether cleavage, N-demethylation, oxidation or conjugation to polar metabolites

Confined rotational crop studies

The meeting received information on two confined rotational crop studies.

In the first study, radish, lettuce and wheat were sown as rotational crops at intervals of 30, 120 and 365 days following treatment of sandy loam soil with [pyrazole-¹⁴C] fenpyroximate at a rate of 224 g ai/ha. Lettuce and radish were harvested at maturity. Wheat was sampled at the forage and hay growth stages, and at maturity for collection of grain, straw and chaff. Residues in lettuce were ≤ 0.002 mg eq/kg. Residues in radish root and leaves ranged from 0.001 to 0.008 mg eq/kg. Residues wheat forage and hay ranged from 0.005 to 0.047 mg eq/kg. Residues in straw and chaff taken at maturity were 0.018 to 0.11 mg eq/kg and residues in grain were 0.004 to 0.01 mg eq/kg.

All individual metabolite residues were < 0.01 mg eq/kg. The residues of fenpyroximate in radish root was 0.001 mg eq/kg, and other two metabolites were less than 0.002 mg eq/kg. The residues of three metabolites in radish foliage were 0.001–0.002 mg eq/kg.

Wheat forage from the 120 day plant back contained M-5, M-3 and 4 other metabolites (0.001-0.005 mg eq/kg). All metabolites in hay extracts from all plant back groups were 0.001-0.007 mg eq/kg. M-21 in the 30 day plant back hay, and M-8, M-5 and M-3 in hay extracts from 120 and 365 day plant back were identified. Residues of metabolites in wheat chaff were 0.001-0.006 mg eq/kg.

The extracted residues in wheat straw from the 30, 120 and 365 day plant back intervals were 0.052, 0.081 and 0.025 mg eq/kg. Straw from the 30 day plant back contained a polar unknown (0.022 mg eq/kg, 32% TRR), M-8 (0.008 mg eq/kg, 12% TRR), and 5 other metabolites. Straw from the 120 day plant back contained M-8 (0.011 mg eq/kg, 14% TRR) and other 3 metabolites above 0.01 mg eq/kg. These included a polar unknown and 2 mid polarity metabolites.

In another study, radish, spinach, and wheat were sown as rotational crops at intervals of 30, 120 and 270 days following treatment of sandy loam soil with [benzyl-¹⁴C]-fenpyroximate at a rate of 111 g ai/ha. The plants were harvested at immaturity and maturity. Total radioactive residues in all crop matrices were very low. Wheat hay, straw and grain from Day 31, and wheat straw and grain from Day 118 had TRR equal to or more than 0.01 mg/kg. TRRs in all crops at 270 days were below 0.01 mg/kg.

Extraction of radioactivity accounted for between 69–87% TRR (0.010–0.033 mg/kg) for Day 31 (grain, hay and straw) and 24–39% TRR (0.002–0.005 mg/kg) for Day 118 grain and straw. All individual metabolites in wheat straw at the 31 day plant-back interval were less than 0.001 mg eq/kg.

In summary, fenpyroximate related residues in soil are unlikely to result in significant levels in rotational crops following application at maximum seasonal rates of up to 224 g ai/ha for non-permanent crops.

Animal metabolism

Lactating goats

Two studies on lactating goat metabolism were available for the meeting. In the first study, a lactating goat was orally administered [pyrazole-¹⁴C]-fenpyroximate by capsule twice daily for 3 consecutive days at a dose of 10 ppm in the diet, corresponding to 0.5 mg/kg bodyweight/day. Milk samples were collected twice daily during the dosing period. The treated goat was sacrificed approximately 22 hours after the final dose.

The majority of radioactive residues was recovered in the excreta (urine 32% AD, faeces 33% AD) and in the gastrointestinal tract (11% AD). For tissues, radioactive residues were highest in liver (1.2 mg eq/kg), followed by kidney (1.1 mg eq/kg), muscle (0.021 mg eq/kg) and fat (0.082 mg eq/kg). TRR in milk reached 0.037 mg eq/kg before the end of dosing.

More than 67% of the TRR in milk and tissues was extracted with solvent. The residues of fenpyroximate in milk were 0.001–0.008 mg eq/kg. The major metabolites in milk were M-21 (0.011– 0.015 mg eq/kg, 37–55% TRR) and Fen-OH (0.001–0.003 mg eq/kg, 3–12% TRR). The residues of fenpyroximate were highest in fat (0.035 mg/kg, 42% TRR), followed by muscle (0.006 mg eq/kg, 25% TRR) and kidney (0.005 mg eq/kg, 1% TRR). N-desmethyl M-3 (0.27–0.31 mg eq/kg, 21–28% TRR) and M-3 (0.46–0.61 mg eq/kg, 42–50% TRR) were the major metabolites detected in kidney and liver, Fen-OH (0.014–0.029 mg eq/kg, 35–58% TRR) was the major metabolite detected in fat and muscle, while other metabolites were less than 10% TRR in tissues. No M-1 was detected in tissues and only a very low level in milk (0.001 mg eq/kg, 3% TRR).

In another study, a lactating goat was orally administered by capsule with [benzyl -¹⁴C]-fenpyroximate for 3 consecutive days at a rate of 10 ppm in diet, corresponding to 0.3 mg/kg bodyweight/day. Milk samples were collected twice daily during the dosing period. The treated goat was sacrificed approximately 22 hours after the final dose.

The majority of the radioactive residues were recovered in the excreta (urine 12% AD, faeces 45% AD) and in the gastrointestinal tract (22% AD, unexcreted). For tissues, radioactive residues were highest in kidney (2.1 mg eq/kg), followed by liver (1.3 mg eq/kg) with fat (0.14 mg eq/kg) and muscle (0.027 mg eq/kg). TRR in milk reached the plateau of 0.031 mg eq/kg at 24–32 hours after first dosing.

More than 85% of the TRR in milk and tissues was extracted with solvent. The residues of fenpyroximate in milk were 0.003–0.008 mg eq/kg (13–26% TRR). The major metabolites in milk were M-22 (0.003–0.007 mg eq/kg, 16–27% TRR). Fen-OH was detected only in milk (0.002 mg eq/kg, 8% TRR) at 23–32 hour and M-21 (0.005 mg eq/kg, 38% TRR) was only detected in milk at 8–24 hours. The residues of fenpyroximate was highest in fat (0.049 mg eq/kg, 36% TRR), followed by kidney (0.022 mg eq/kg, 1% TRR) and muscle (0.002 mg eq/kg, 7% TRR). M-5 Glucuronide (0.25–0.55 mg eq/kg, 20–26% TRR), Fen-OH (0.741–0.98 mg eq/kg, 47–59% TRR) were the major metabolites in kidney and liver, M-22 (0.020 mg eq/kg, 74% TRR), Fen-OH (0.009 mg eq/kg, 33% TRR) were major metabolites in muscle. Fen-OH (0.019 mg eq/kg, 14% TRR) and M-22 (0.024 mg eq/kg, 17% TRR) were detected in fat. M-1 was detected in kidney (0.140 mg eq/kg, 5% TRR) and liver (0.073 mg eq/kg, 6% TRR). Other metabolites detected were less than 10% TRR in tissues.

Environmental fate

Aerobic metabolism in soil

The Meeting received information on soil aerobic metabolism, photolysis and aqueous hydrolysis properties of [¹⁴C]-fenpyroximate.

The degradation of fenpyroximate in soil incubated under dark <u>aerobic</u> conditions was moderate to slow with DT_{50} values of 23–254 days, indicating moderate persistence in soil. The parent fenpyroximate was the predominant radioactive residue in soil from day 0 to day 219. The major

degradation products formed in soil treated with [benzyl (U)-¹⁴C]-fenpyroximate were M-3 with maximum value of 29% AR, while other minor degradation products including M-1 and M-15 were less than 5% AR. The major degradation products formed in soil treated with [pyrazole- 3^{-14} C]-fenpyroximate were M-3 (maximum 17% AR), M-8 (maximum 16% AR), and M-11 (maximum 9.6% AR), with less than 5% AR of other minor degradation products including M-1, M-6 and M-13.

In summary, fenpyroximate degraded steadily to major metabolites M-3, M-8 and M-11, minor metabolites M-1 and M-6, bound residue and carbon dioxide.

Soil photolysis

The <u>soil photolysis</u> of fenpyroximate in wet soils was investigated. Irradiation enhanced the degradation of fenpyroximate on wet soils. The DT_{50} values for the irradiated soil samples (equivalent to natural sunlight at 30–50°N) were 43 and 35 days for [benzyl-¹⁴C] and [pyrazole-¹⁴C] fenpyroximate, respectively. While the DT_{50} values for the dark soil samples were 91 and 69 days for [benzyl-¹⁴C] and [pyrazole -¹⁴C] fenpyroximate, respectively. Major degradation products observed in irradiated soil samples were M-1 (maximum 17% AR), M-12 (maximum 5.5% AR), M-12 isomer (maximum 5.1% AR) and MTBT (maximum 8.3% AR). M-3 (maximum 14% AR) was the only degradation product observed in the dark soil sample.

Hydrolysis

Fenpyroximate degradation was very slow at pH 5, 7, and 9 at 25 °C. The half-life for the hydrolytic degradation of [pyrazole-¹⁴C]-fenpyroximate was calculated to be 180 days for pH 5, 226 days for pH 7 and 221 days for pH 9, indicating hydrolysis plays a negligible role in its degradation under environmental conditions. M-1 (maximum 7% AR) was only observed at pH 5 and pH 9. The principal hydrolysis product observed at each pH was M-3 (maximum 10% AR).

Methods of analysis

The Meeting received description and validation data for analytical methods for residues of fenpyroximate, M-1, M-3 and de-methyl fenpyroximate in plant matrices, livestock matrices and soil. The recoveries were within 70–120% with RSD less than 20%, the validated methods were considered suitable for data generation.

For most data gathering methods, residues are extracted with acetonitrile, acetone or methanol. Extracted residues undergo clean-up by silica gel/alumina column, GPC or dispersive SPE with primary/secondary amine (PSA). The residue separation and analysis is by GC-FTD, GC-N-FID, LC-UV, GC-MS, LC-MS, or LC-MS/MS, using internal standards or matrix matched standards. For most matrices, the limits of quantification (LOQ) for each analyte is 0.01 mg/kg.

For livestock matrices, the residues are extracted with acetone: water (2:1, v/v), acetonitrile, or acetonitrile: water (8:2. v/v), cleaned up by SPE or GPC, and analysed with GC or LC-MS. The LOQs for fenpyroximate are 0.01 mg/kg in milk and tissues (liver, kidney, muscle and fat).

Multi-residue methods (QuEChERS) for enforcement are also validated for fenpyroximate and M-1 in plant matrices, fenpyroximate and M-3 in livestock matrices.

Stability of pesticide residues in stored analytical samples

The Meeting received information on the stability of fenpyroximate in various matrices on freezer storage (-18 $^{\circ}$ C). The periods of demonstrated stability cover the frozen storage intervals used in the residue studies on crops.

Residues of fenpyroximate and M-1 were stable in lettuce at least 9 months, in apple at least 18 months, in orange at least 9 months, in hops at least 24 months, in sunflower at least 9 months and in potato at least 9 months. Residues of fenpyroximate were stable in grape for at least 12 months. Residues of M-1 were stable in grape for at least 36 months

The stability of fenpyroximate in animal commodities was studied in the lactating goat residue transfer study with fortified samples stored for the same intervals as in studies. The residues of fenpyroximate and M-1 were stable in muscle at least 56 days, kidney at least 53 days, fat at least 54 days, milk at least 79 days and liver at least 53 days.

Definition of the residue

Following application of fenpyroximate to crops, the parent compound and its Z isomer (M-1) were the major residues from the day of application until harvest (7–137 days after treatment). With the exception of M-12 in citrus rind (19% TRR, 0.04 mg eq/kg), other metabolites were less than 10% TRR or less than 0.01 mg eq/kg. Residues of fenpyroximate were consistently two to ten times greater than M-1 across all crops in the metabolism studies, and residues of M-1 were frequently below the LOQ in crop field trials. Therefore, the Meeting decided that fenpyroximate is a suitable marker for enforcement in plants.

In deciding if additional compounds should be included in the residue definition for risk assessment, the Meeting considered the likely occurrence of the compounds and the toxicological properties of those compounds. M-1 is found in metabolism studies and crop field trials at levels that are not negligible relative to parent compound in some samples and is considered to have equal toxicity to parent fenpyroximate. Therefore, M-1 should be included for risk assessment. The only other candidate compound is M-3, which formed under conditions simulating pasteurization, brewing/baking/boiling, and sterilisation. M-3 comprised from 41% (pasteurisation) to 89% (sterilisation) of the applied radioactivity in that study. M-3 was observed in the rat metabolism study and its toxicity is considered to be covered by that of fenpyroximate. Processing studies that included these conditions were conducted with exaggerated residues of fenpyroximate (relative to field trial residues) in RAC commodities of apple, bean, grape, strawberry, maize, and tea. Residues of M-3 were < 0.01 mg/kg in all processed commodities except canned beans (up to 0.07 mg/kg) and strawberry jam (0.02 mg/kg). These levels of M-3 were less than 15% of the residues of parent compound. Therefore, the Meeting decided that M-3 did not contribute significantly to the total exposure of fenpyroximate through the diet. The residue definition for assessing dietary exposure from plant commodities is the sum of fenpyroximate and M-1, expressed as fenpyroximate.

In goats, the residue profile varied by matrix. The Fen-OH metabolite was consistently observed as a major residue across all matrices (12% TRR milk, 58% TRR muscle, 35% TRR fat, 59% TRR liver, and 47% TRR kidney). Additional residues observed across multiple matrices at greater than 10% TRR were fenpyroximate (26% TRR milk, 43% TRR fat), M-5 glucuronide (20% TRR liver, 26% TRR kidney), M-3 (50% TRR liver, 42% TRR kidney), M-21 (26–55% TRR in milk, and M-22 (74% TRR muscle, 17% TRR fat). A QuEChERS method was validated for analysis of fenpyroximate and M-3 in milk, fat, muscle, and offal. Based on structural similarities between fenpyroximate, M-3 and Fen-OH, the Meeting noted that the method is likely to be suitable for analysis of Fen-OH. Given the toxicity of Fen-OH is considered to be covered by that of fenpyroximate, the Meeting decided that the sum of fenpyroximate, Fen-OH and M-3, expressed as fenpyroximate is a suitable marker for compliance in livestock commodities.

In addition to the residues for compliance, dietary exposure from consumption of livestock commodities may occur for M-5-glucuronide for liver (20% TRR, 0.25 mg eq/kg) and kidney (26% TRR, 0.55 mg eq/kg), for M-21 in milk (37% TRR, 0.011 mg eq/kg), and M-22 in muscle (74% TRR, 0.02 mg eq/kg). The toxicity of M-5- glucuronide, M-21 and M-22 are covered by parent fenpyroximate. Since M-21 and M-22 were not detected in the feeding study, the Meeting decided that they do not need to be included for assessing dietary exposure. The Meeting decided that definition for dietary assessment is the sum of fenpyroximate, Fen-OH, M-3, and M-5 (free and conjugated), expressed as fenpyroximate, in livestock commodities.

The Log Pow of fenpyroximate is above 5. The ratio of residues of fenpyroximate in fat and muscle in metabolism studies is 5.8 to 24.5, and the total residues in fat is 3.4–5.1 times higher than residues in muscle. On the weight of evidence, the Meeting decided the residue is fat soluble.

The residue definition of fenpyroximate for plant commodities for compliance with the MRL is fenpyroximate, and for dietary assessment is the sum of fenpyroximate and M-1 (Z isomer).

Residue definition of fenpyroximate for animal commodities for compliance with MRL is sum of fenpyroximate, Fen-OH and M-3, expressed as fenpyroximate, for dietary assessment is sum of fenpyroximate, Fen-OH, M-3, and M-5 (free and conjugated), expressed as fenpyroximate.

The residues of fenpyroximate, sum of fenpyroximate, Fen-OH and M-3 are fat soluble.

Results of supervised trials on crops

Supervised residue trial data were available for fenpyroximate on citrus (oranges, mandarin, lemons, grapefruit, natsudaidai, tangor), pome fruit (apples, pears), stone fruit (cherries, peaches, apricot, plums), berries and other small fruits (grape, raspberries, strawberries), assorted tropical and subtropical fruits-inedible peel (avocado, papaya), cucurbits (cucumber, melon, courgette, watermelon, cantaloupe), fruit vegetables other than cucurbits (tomatoes, pepper), legume vegetables (beans), root and tuber vegetables (potatoes), cereal grain (maize), tree nuts (almond, pecan, walnut), hops, coffee and tea.

Citrus fruits

The critical GAP for citrus in the USA is two foliar applications at 235 g ai/ha with a PHI of 14 days. The maximum rate per growing season is 471 g ai/ha. The Meeting received supervised residue trial data for fenpyroximate on citrus fruit from the USA, EU and Japan.

In trials approximating critical GAP in the USA, residues in <u>citrus fruit</u> were:

<u>Lemons</u>: residues of fenpyroximate (n=4) 0.017, 0.15, 0.17 and 0.18 mg/kg, residues of fenpyroximate and M-1 (n=4) 0.16, 0.18, 0.19 and 0.2 mg/kg.

<u>Grapefruit</u>: residues of fenpyroximate (n=4) < 0.01, 0.017, 0.017 and 0.073 mg/kg, residues of fenpyroximate and M-1 (n=4) 0.025, 0.047, 0.077 and 0.081 mg/kg

<u>Oranges</u>: residues of fenpyroximate (n=8) 0.011, 0.018, 0.039, 0.066, 0.13, 0.1332, 0.15 and 0.26 mg/kg, the residues of fenpyroximate and M-1 (n=8) 0.074, 0.089, 0.14, 0.15, 0.16, 0.18, 0.19 and 0.27 mg/kg.

The Meeting noted that median residues following two foliar applications to lemon, grapefruit and orange are within a 5-fold range and a Kruskal-Wallis H-test suggest the residues in lemon, grapefruit and orange are from similar populations. The Meeting decided to combine the data to estimate a maximum residue level for the citrus group. The combined residue data of fenpyroximate (n=16) are: < 0.01, 0.011, 0.017(3), 0.018, 0.039, 0.066, 0.073, 0.13, 0.13, 0.15, 0.15, 0.17, 0.18 and 0.26 mg/kg. The combined residue data of fenpyroximate and M-1 (n=16) 0.025, 0.047, 0.074, 0.077, 0.081, 0.089, 0.17, 0.15, 0.16, 0.18, 0.18, 0.19, 0.19, 0.20 and 0.27 mg/kg.

In trials conducted on tangor, satsuma, Chin citron natsudaidai and orange with approximate application rate, the residues in flesh was 13% of that of fruit. The Meeting recommended a maximum residue level of 0.6 mg/kg, and STMR of 0.020 mg/kg and HR of 0.0364 (highest individual) mg/kg respectively for citrus group, and replace the previous recommendation of 0.5 mg/kg for citrus fruits.

Pome fruits

Apple

The critical GAP for apple in Greece is one foliar application at 106 g ai/ha with a PHI of 7 days.

In trials conducted in EU member states approximating critical GAP, the residues of fenpyroximate in <u>apples</u> were: (n=10) 0.04, 0.06, 0.07(2), 0.08, 0.11(2), 0.12(2) and 0.14 mg/kg, the residues of fenpyroximate and M-1 in apples were: (n=10) 0.05, 0.07, 0.08(2), 0.09, 0.12(2), 0.13, 0.14 and 0.19 mg/kg.

The meeting noted that the cGAP gave rise to residues that exceeded the ARfD (110% for children in Canada) and therefore a public health concern could not be excluded. For this reason, the alternative GAP from Belgium was considered. The GAP in Belgium is one foliar application at 76.5 g ai/ha with a PHI of 7 days. Ten trials conducted in the EU are available at over dosed rates compared to the GAP and where scaled using the proportionality principle.

Residues of fenpyroximate in apple in rank order (n=10) were: 0.01, 0.04, 0.06, 0.07, 0.08, 0.09, 0.10, 0.12, 0.14 and 0.19 mg/kg.

Residues of fenpyroximate in apple (scaled using factors ranging from 1.42-2.35) in rank order (n=10) were: 0.028, 0.039, 0.049, 0.055, 0.062, 0.068, 0.073, 0.077, 0.081 and 0.095 mg/kg.

Residues of fenpyroximate and M-1 in apples were: (n=10) 0.038, 0.049, 0.059, 0.065, <u>0.072</u>, <u>0.078</u>, 0.083, 0.087, 0.1 and 0.15 mg/kg.

The Meeting recommended maximum residue level, STMR and HR of 0.2, 0.075 and 0.15 mg/kg respectively for apples.

Pears

The critical GAP for pears in US (pome fruit) is one foliar application at 117 g ai/ha with a PHI of 14 days. In trials conducted in USA approximating critical GAP in USA, France and New Zealand, residues of fenpyroximate in <u>pears</u> were: (n=6) 0.04, < 0.05, 0.07, 0.086, 0.051 and 0.14 mg/kg. The residues of fenpyroximate an M-1 in pears were: (n=6): 0.05, 0.07, < 0.10, 0.101, 0.136 and 0.14 mg/kg.

In trials conducted in USA with nominal rate of 450 g ai/ha with a PHI of 14 days were considered, the residues of fenpyroximate in pears were: (n=6) 0.073, 0.13, 0.16, 0.18, 0.24 and 0.28 mg/kg. The residues of fenpyroximate and M-1 in pears were: (n=6) 0.12, 0.18, 0.22, 0.23, 0.30 and 0.35 mg/kg.

The scaled residues (117/450=0.26) of fenpyroximate were: (n=6) 0.019, 0.033, 0.043, 0.047, 0.063, 0.072 mg/kg. The scaled residues (0.26) of fenpyroximate and M-1 were: (n=6) 0.032, 0.048, 0.056, 0.060, 0.077 and 0.090 mg/kg

Taking the proportionality approach into consideration, the Meeting agreed to make estimation based on combined data. The Meeting recommended maximum residue level of 0.2 mg/kg, STMR of 0.078 mg/kg and HR of 0.14 mg/kg for pears.

The Meeting withdrew the previous recommendations of 0.3 mg/kg for pome fruits.

Stone fruits

The critical GAP in USA for stone fruits is two applications at 117 g ai/ha with a PHI of 7 days.

Cherry

In trials conducted in the USA approximating critical GAP, the residues of fenpyroximate in <u>cherries</u> were: (n=8) 0.26, 0.34, 0.36, 0.46, 0.66, 0.79, 0.93 and 0.99 mg/kg. The residues of fenpyroximate and M-1 were: 0.31, 0.39, 0.41, <u>0.51</u>, 0.66, 0.79, 0.93 and 0.99 mg/kg. The Meeting recommended maximum residue level, STMR and HR of 2, 0.585 and 0.99 mg/kg respectively for Cherry. The Meeting noted that the GAP in USA is for group of stone fruits, and decided to extrapolate to subgroup of cherries.

Short term dietary exposure assessment showed that residues in cherry exceed the acute reference dose (ARfD) of 0.01 mg/kg bw, at 110% of ARfD for children (Denmark, Germany). No alternative GAP with sufficient data for cherry was available.

Peach

In trials conducted in the USA approximating critical GAP, the residues of fenpyroximate in <u>peaches</u> were (n=10): 0.073, 0.075, 0.086, 0.098, 0.11, 0.13, 0.13, 0.15, 0.18 and 0.20 mg/kg. The residues of

fenpyroximate and M-1 were: 0.12, 0.12, 0.14, 0.15, <u>0.16, 0.18</u>, 0.18, 0.20, 0.23, 0.25 mg/kg. The Meeting recommended maximum residue level, STMR and HR of 0.4, 0.17 and 0.25 mg/kg respectively for peaches.

Short term dietary exposure assessment showed that residues in peach exceed the acute reference dose (ARfD) of 0.01 mg/kg bw, at 130% of ARfD for children (Japan, Canada). No alternative GAP with sufficient data for peach was available.

However, as there was no exceedance of the ARfD for apricot, therefore, the Meeting estimated the maximum residue level, STMR and HR of 0.4, 0.17 and 0.25 mg/kg respectively for apricot.

Plum

In trials conducted in the USA approximating critical GAP, residues of fenpyroximate in <u>plums</u> were (n=6): < 0.05(2), 0.08 0.13, 0.20 and 0.27 mg/kg. The residues of fenpyroximate and M-1 were: < 0.1(2), 0.13, 0.18, 0.25 and 0.32 mg/kg. The Meeting estimated the maximum residue level, STMR and HR of 0.8, 0.155 and 0.33 mg/kg respectively for plums. The Meeting noted that the GAP in USA is for group of stone fruits, and decided to extrapolate to peaches.

Short term dietary exposure assessment showed that residues in plum dried exceed the acute reference dose (ARfD) of 0.01 mg/kg bw, at 270% of ARfD for children (Australia). No alternative GAP with sufficient data for plum was available.

The Meeting withdrew the previous recommendations of 0.4 mg/kg for stone fruits.

Berries and other small fruits

Raspberry

The critical GAP in the USA on raspberries is two applications at 117 g ai/ha with a PHI of 1 days. No trials were provided matching the critical GAP.

The registered use of fenpyroximate for raspberry in Austria allows one application at rate of 76.5 g ai/ha with a PHI of 14 days. In trials conducted in matching GAP, the residues of fenpyroximate in raspberry were: 0.01 0.04, 0.08 and 0.10 mg/kg. The residues of fenpyroximate and M-1 were: 0.02, 0.05, 0.09 and 0.11 mg/kg. The Meeting estimated a maximum residue level, STMR and HR of 0.2, 0.07 and 0.11 mg/kg respectively for raspberry.

Grape

The critical GAP in USA for grape is two applications at 117 g ai/ha with a PHI of 14 days.

In trials conducted in the Germany (two applications at rate of 135 g ai/ha with PHI of 14 days) approximating critical GAP, the residues of fenpyroximate in <u>grapes</u> were (n=2): 0.11, 0.40 mg/kg. The residues of fenpyroximate and M-1 were: (n=2) 0.12 and 0.41 mg/kg.

The registered use of fenpyroximate for vine in Spain allows one application at rate of 50 g ai/ha with a PHI of 28 days. In trials conducted in EU matching the GAP, the residues of fenpyroximate in grape were: (n=12) < 0.01(2), 0.01(2), 0.02(2), 0.03, 0.04(3), and 0.05(2) mg/kg. The residues of fenpyroximate and M-1 were: (n=12) < 0.02(2), 0.02(2), 0.03(2), 0.04(3) 0.05 and 0.06(2) mg/kg.

The Meeting recommended maximum residue level of 0.1 mg/kg, STMR of 0.035 mg/kg and HR of 0.06 mg/kg for grapes.

Strawberries

The Critical GAP in the USA on low growing berries including strawberries (USA subgroup 13-07G) is two applications at a rate of 117 g ai/ha with a PHI of 1 days.

In trials conducted in USA approximating critical GAP, the residues of fenpyroximate in <u>strawberries</u> were: (n=8) 0.06, 0.07, 0.19(2), 0.24, 0.24, 0.28 and 0.53 mg/kg. The residues of fenpyroximate and M-1 were: (n=8) 0.06, 0.08, 0.20, <u>0.22</u>, 0.24, 0.27, 0.33 and 0.56 mg/kg.

The meeting noted that the cGAP gave rise to residues that lead to an exceedance of the ARfD (130% for children in France) and therefore a public health concern could not be excluded. The Meeting considered the alternative GAP for strawberries in Germany and Austria. The GAP in Germany and Austria is one foliar application at 102 g ai/ha with a PHI of 7 days. Sixteen trials support the GAP.

Residues of fenpyroximate in strawberries in rank order (n=16) were: < 0.01 (2), 0.01 (2), 0.02, 0.03, 0.05 (3), 0.06, 0.07 (2), 0.08, 0.10, 0.13, 0.19 mg/kg

Residues of fenpyroximate and M1 in strawberries in rank order (n=16) were: 0.02 (4), 0.03, 0.04, <u>0.06</u> (3), 0.07, 0.08 (2), 0.09, 0.11, 0.14, 0.20 mg/kg.

The Meeting recommended maximum residue level of 0.3 mg/kg, STMR of 0.06 mg/kg and HR of 0.2 mg/kg for strawberries.

Assorted tropical and sub-tropical fruit-inedible peel

Avocado

The Critical GAP in the USA on avocado is two applications at a rate of 117 g ai/ha with a PHI of 1 days.

In trials conducted in USA approximating critical GAP, the residues in <u>avocado</u> were: (n=5) < 0.05, < 0.05, < 0.05, < 0.05, 0.06 and 0.10 mg /kg. The Meeting noted that the avocado is minor crop, and agreed to estimate a maximum residue level, STMR and HR of 0.2, 0.05 and 0.1 mg/kg respectively.

Papaya

The critical GAP in Brazil is three applications at rates of up to 40 g ai/ha with a PHI of 3 days.

The Meeting was was unable to estimate a maximum residue level as no trials were provided matching the critical GAP.

Cucurbit vegetable

Cucumber

The critical GAP in the USA on cucumber is two applications at a rate of 117 g ai/ha with a PHI of 1 days. In trials conducted in USA matching the cGAP, residues of fenpyroximate in <u>cucumber</u> were: (n=7) < 0.05, 0.08 (2), 0.063, 0.065, 0.11 and 0.17 mg/kg. The residues of fenpyroximate and M-1 were: < 0.10, 0.113, 0.115, 0.13(2), 0.16 and 0.22 mg/kg. The Meeting estimated the maximum residue level, STMR and HR of 0.3, 0.13 and 0.24 (highest individual) mg/kg for cucumber, to replace previous recommendation of 0.3 mg/kg.

Summer Squash

The registered uses of fenpyroximate for zucchini in Germany allows one application at rate of 46–92 g ai/ha with PHI of 3 days, In trials conducted in France and Italy matching the GAP, residues of fenpyroximate in <u>courgettes</u> were: (n=6) < 0.01, 0.01(2), 0.02(2) and 0.03 mg/kg. The residues of fenpyroximate and M-1 were: < 0.02, 0.02(2), 0.03(2) and 0.04 mg/kg. The Meeting estimated the maximum residue level, STMR and HR of 0.06, 0.025 and 0.04 mg/kg for summer squash.

Melons, except Watermelon

The GAP in the USA on cantaloupe (included in USA crop subgroup 9A) is two applications at rate of 117 g ai/ha with a PHI of 3 days.

In trials conducted in USA matching the GAP, the residues of fenpyroximate, fenpyroximate and M-1 in <u>cantaloupe</u> were: (n=8) < 0.05 (8) mg ai/ha.

In trials conducted in Spain and Italy (one application of 110 g ai/ha, 3 days PHI), the residues of fenpyroximate in melons were : (n=4) < 0.01, 0.01, 0.02 and 0.08 mg/kg, residues of fenpyroximate and M-1 were: < 0.02, 0.02, 0.03 and 0.09 mg/kg.

The Meeting noted the application in trials on cantaloupe was 12–12 days, and decided to combine the data to estimate a maximum residue level, STMR and HR of 0.2, 0.05 and 0.09 mg/kg respectively for melon except watermelon, replaced the previous recommendation of 0.05 mg/kg).

Watermelon

The GAP in the USA on watermelon (included in USA crop subgroup 9A) is two applications at rate of 117 g ai/ha with a PHI of 3 days. In trials conducted in USA (2 application at rate of 110 g ai/ha, PHI of 1day), the residues of fenpyroximate in watermelon fruit were: (n=4) < 0.05 (4). The residues of fenpyroximate and M-1 were < 0.1 (4).

The Meeting agreed to estimate the maximum residue level, STMR and HR of 0.05, 0.1 and 0.1 mg/kg.

Short term dietary exposure assessment showed that residues in watermelon exceed the acute reference dose (ARfD) of 0.01 mg/kg bw, at 190% of ARfD for children (Canada). No alternative GAP with sufficient data for watermelon was available.

Fruiting vegetables other than Cucurbit

Peppers

The critical GAP in USA on pepper (included in US crop group 8–10) is two applications at rate of 117 g ai/ha with a PHI of 1 day.

In trials conducted in USA matching the cGAP, residues of fenpyroximate, fenpyroximate and M-1 in <u>peppers</u> were: (n=16) < 0.05(9), 0.05, 0.054, 0.07(2), 0.012 and 0.13 mg/kg. The Meeting estimated the maximum residue level, STMR and HR of 0.2, 0.05 and 0.13 mg/kg for bell and non-bell pepper. The Meeting noted that the GAP in USA is for US crop group 8–10, The Meeting agreed to extrapolate to subgroup of peppers except martynia, okra and roselle.

The Meeting withdraw the previous recommendation for chill pepper, dry of 1 mg/kg.

Tomato

The Critical GAP in the USA on tomato (for USA crop group 8-10) is two applications at rate of 117 g ai/ha with a PHI of 1 days.

In trials conducted in USA approximating critical GAP, the residues of fenpyroximate in tomato were: (n=19) < 0.05 (9), 0.05, 0.07, 0.08 (3), 0.09 (3), 0.11 and 0.12 mg/kg. The residues of fenpyroximate and M-1 were: < 0.1(9), 0.1, 0.12, 0.13(3), 0.14(3), 0.16 and 0.17 mg/kg. As residues in cherry tomato is normally higher than that in tomato, the Meeting estimated a maximum residue level, STMR and HR of 0.3, 0.10 and 0.17 mg/kg respectively for cherry tomato and tomato. The Meeting noted that the GAP in USA is for US crop group 8-10, and agreed to extrapolate to subgroup of eggplants.

Short term dietary exposure assessment showed that residues in tomato dried exceed the acute reference dose (ARfD) of 0.01 mg/kg bw, at 310% of ARfD for general population (Australia). No alternative GAP with sufficient data for tomato was available.

The Meeting withdrew the previous recommendation for fruiting vegetables other than cucurbits of 0.2 mg/kg.

Beans with pods

The GAP in the USA on bean is two applications at rate of 117 g ai/ha with a PHI of 1 days. In trials conducted in USA matching the US GAP, residues of fenpyroximate in <u>bean with pod</u> were: (n=8) < 0.05(2), 0.09(3), 0.15, 0.18, 0.19 mg/kg. The residues of fenpyroximate and M-1 were: < 0.1(2), 0.14(3), 0.20, 0.24 and 0.24 mg/kg.

The GAP in the Spain on bean is one application at rate of 102 g ai/ha with a PHI of 7 days. In trials conducted in Greece, France and Italy approximating the Spain GAP, residues in bean with pod were: (n=16) 0.02, 0.03(4), 0.06(3), 0.07, 0.08(2), 0.1, 0.13, 0.14, 0.23 and 0.41 mg/kg. The residues of fenpyroximate and M-1 were: 0.03, 0.04(4), 0.07(3), 0.08, 0.09(2), 0.11, 0.14, 0.15, 0.24 and 0.42 mg/kg. The Meeting noted that the residues from trial approximating the Spain GAP were higher than residues from trials in US, and agree to estimate the maximum residue level, STMR and HR of 0.5, 0.075 and 0.42 mg/kg for bean with pod based on trials in Europe, and extrapolated the estimates to subgroup of beans with pods. Furthermore, the Meeting withdraws its previous recommendation of 0.4 mg/kg for common bean (pods and/or immature seeds).

Potato

GAP in US is two applications at rate of 117 g ai/ha with a PHI of 7 days. In trials conducted in USA matching the GAP, residues of fenpyroximate in <u>potato tubers</u> were: (n=16) < 0.05(16) mg/kg. The Meeting noted that residues of fenpyroximate or M-1 from trials at 5 times rate were < 0.05 mg/kg, and estimated the maximum residue level, STMR and HR of 0.05*, 0 and 0 mg/kg respectively for potatoes.

Maize

The GAP in the USA on maize is two applications at rate of 117 g ai/ha with a PHI of 14 days. In trials conducted in USA matching the US GAP, residues of fenpyroximate or M-1 in <u>maize grain</u> were: (n=10) < 0.01(10). The Meeting estimated the maximum residue level, STMR of 0.01*, 0.01 mg/kg respectively for maize.

Tree nuts

GAP in US on tree nut (US crop group 14) is two applications at rate of 117 g ai/ha with a PHI of 14 days. In trials on almond (5), pecan (5) and walnut (3) conducted in USA with exaggerated rate (one application of 450 g ai/ha 14 days PHI), residues of fenpyroximate or M-1 in <u>tree nut meats</u> were: (n=13) < 0.05(13) mg/kg. The Meeting estimated the maximum residue level, STMR and HR of 0.05*, 0 and 0 mg/kg respectively for tree nuts.

Coffee

GAP in Brazil on coffee is two applications at rate of 50-100 g ai/ha with a PHI of 15 days. In trials on coffee conducted in Brazil matching the GAP, residues in <u>coffee beans</u> were: (n=8) < 0.01(3), < 0.025(3), 0.03 and 0.04 mg/kg. The Meeting estimated the maximum residue level, STMR and HR of 0.07, 0.025 and 0.04 mg/kg respectively for coffee bean.

Hops

GAP in Europe (Austria) on hop is one application at rate of 76.8–268.8 g ai/ha with a PHI of 21 days. In trials conducted in Germany and Japan approximating the Austrian GAP, residues of fenpyroximate in <u>dried hops</u> were: (n=6) 1.2, 3.7, 4.3, 5.0, 7.4 and 8.2 mg/kg. The residues of fenpyroximate and M-1 were: 2.2, 4.7, 5.0, 5.3, 7.4 and 8.2 mg/kg. The Meeting estimated the maximum residue level, STMR of 15, 5.15 mg/kg respectively for hops, dry, and replaced the previous recommendation of 10 mg/kg.

Теа

GAP in India on tea is one application at rate of 25 g ai/ha with a PHI of 7 days. In trials conducted in India approximating Indian GAP, residues of fenpyroximate in <u>tea leaves</u> were (n=10): 0.3, 0.68, 0.93, 0.95, 1.2, 1.4, 1.8, 3.01, 3,7 and 3.9 mg/kg. The residues of fenpyroximate and M-1 were: 0.33, 0.71, 0.98(2), <u>1.3, 1.5</u>, 1.8, 3.0, 3.8 and 4.1 mg/kg. The Meeting estimated the maximum residue level and STMR of 8 and 1.4 mg/kg, respectively, for tea, green, black, dry.

Animal feed items

Bean forage

The GAP in the USA on bean is two applications at rate of 117 g ai/ha with a PHI of 1 days. In trials conducted in USA matching the US GAP, residues of fenpyroximate and M-1 in forage of bean were: (n=8) < 0.1(2), 1.2, 2.6, 3.0, 3.1, 4.5 and 6.8 mg/kg. The Meeting estimated the median residues and high residues of 2.8 and 7.5 (highest individual) mg/kg for bean forage.

Maize forage and stover

The GAP in the USA on maize is two applications at rate of 117 g ai/ha with a PHI of 14 days.

In trials conducted in USA matching the US GAP, residues of fenpyroximate and M-1 in <u>maize forage</u> were: (n=9) 0.31, 0.32, 0.33, 0.37, 0.38, 0.47, 0.58, 0.81 and 1.12 mg/kg. The residues of fenpyroximate in maize stover were: <math>(n=10) 0.17, 1.0, 1.0, 1.1, 1.1, 1.5, 1.6, 1.6, 1.8 and 2.2 mg/kg. The residues of fenpyroximate and M-1 in <u>maize stover</u> were: (n=10) 0.30, 1.4, 1.4, 1.6, 1.9, 2.2, 2.5, 3.0, 3.3 and 3.9 mg/kg. The Meeting estimated the median residues and highest residue of 0.38 and 1.3 (highest individual) mg/kg for maize forage, maximum residue level of 5 mg/kg, median residue of 2.05 and highest residue of 4.1 mg/kg (highest individual) for maize fodder.

Maize silage

GAP in Europe on maize is one applications at rate of 50 g ai/ha with a PHI of 28 days. In trials conducted in Hungary matching the GAP, residues in maize silage grains were: (n=2) 0.24 and 0.90 mg/kg. Two trials are not sufficient for recommendation.

Almond hulls

GAP in US on tree nut (US crop group 14) is two applications at rate of 117 g ai/ha with a PHI of 14 days. In trials on almond conducted in USA with exaggerated rate (one application of 450 g ai/ha 14 days PHI), residues in <u>almond hull</u> were: (n=5) 0.76, 0.92 1.2, 1.3, 1.4 mg/kg. No trials conducted matching GAP.

Fate of residues during processing

The Meeting received information on the fate of incurred residues of fenpyroximate during the processing of beans, apples, tomatoes, grapes strawberries and orange.

Hydrolysis

The Meeting received information on the nature of the residues of fenpyroximate under simulated processing conditions (pasteurization: 20 minutes at 90 °C and pH 4, baking/brewing/boiling: 60 minutes at 100 °C and pH 5, sterilization: 20 minutes at 120 °C and pH 6), fenpyroximate was not hydrolytically stable under processing conditions representative of sterilisation, pasteurisation, and brewing, baking and boiling. M-3 (41–89%) was detected as predominant product of hydrolysis in all conditions, with M-6 (< 3%) as minor hydrolysis products. M-1(< 2%) was only detected in under pasteurisation condition.

The fate of fenpyroximate residues has been investigated in a number of studies simulating household or commercial processing of beans, apples, tomatoes, grapes, strawberries, potatoes,

orange, maize and tea. Residues of M-3 were < 0.01 mg/kg in all processed commodities except canned beans (up to 0.07 mg/kg) and strawberry jam (0.02 mg/kg).

Processing studies were conducted with exaggerated residues of fenpyroximate (relative to field trial residues) in RAC commodities of apple, bean, grape, strawberry, maize, and tea. Residues of M-3 were < 0.01 mg/kg in all processed commodities except canned beans (up to 0.07 mg/kg) and strawberry jam (0.02 mg/kg). These levels of M-3 were less than 15% of the residues of parent compound. Therefore, the Meeting decided that M-3 were not included in calculation for processing factor.

The residues of fenpyroximate increase in some dried or concentrated commodities (apple pomace, dry apple, grape raisin, aspirated grain fraction of maize, orange oil and dry orange)

Processing factors calculated from sum of fenpyroximate and M-1, and estimated STMR-P and HR-P

	Processed Fraction	Processing Factor	Best estimate	RAC STMR	RAC HR or HR-P*
			PF	or STMR-P*	
Beans	Fresh beans (RAC)			0.08	0.42
	Washed beans	1.2, 0.89	1.045	0.084	0.44
	Cooked beans	0.73, 0.47	0.6	0.048	0.25
	Canned beans	0.42, 0.46	0.44	0.035	0.18
Apples	Fresh apple (RAC)			0.075	0.15
	Washed fruits	0.71, 1.1	0.905	0.679	0.136
	Wet Pomace	2.2, 5.5	3.85	0.289	
	Dry Pomace	5.1, 12.0	8.55	0.641	
	Pasteurised juice	0.18, 0.14	0.16	0.012	
	Pasteurised sauce	0.18, 0.18	0.18	0.0135	
	Dried apples	3.8, 5.0	4.4	0.33	0.66
Tomatoes	Whole tomato (RAC)			0.1	0.17
	Washed tomatoes	0.92, 0.83	0.875	0.088	0.15
	Tomato juice	0.85, 0.42	0.635	0.064	
	Canned tomatoes	0.54, 0.25	0.395	0.04	0.067
	Puree	0.76, 0.67	0.715	0.072	
Grapes	Whole fruit (RAC)			0.035	0.06
-	Wet pomace	4.7, 5.1	4.9	0.19	
	Wine	0.27, 0.04	0.155	0.005	
	Pasteurised juice	0.27, 0.04	0.155	0.005	
	Washed grapes	0.82, 0.60	0.71	0.025	0.043
	Raisins	2.9, 1.1	2	0.07	0.12
Strawberries	Whole fruit (RAC)			0.06	0.2
	Washed fruit	0.53, 0.58	0.555	0.0333	0.111
	Canned fruit	0.05, 0.19	0.12	0.0072	
	Jam	0.19, 0.38	0.285	0.0171	
Orange	Fresh fruits (RAC)			0.15	0.28
	Juice	< 0.019, < 0.044	0.032	0.0048	
	Molasses	0.093, 0.046	0.07	0.011	
	Oil	72.2, 13.3	43	6.5	
	Dried fruit	5.3, 5.0	5.2	0.78	1.5
Tea	Dry tea leave			1.5	4.1
	infusion	0.0069, 0.0068	0.0098	0.015	0.04
		0.013, 0.019			
		0.0069, 0.0070			
		0.0088			
Maize	Grains (RAC)			0.01	
	Grits	0.016	0.016	0.00016	
	Meal	0.15	0.15	0.0015	
	Flour	0.37	0.37	0.0037	
	Refined oil (dry milling)	0.99	0.99	0.0099	
	Refined oil (wet milling)	0.31	0.31	0.0031	
	Aspirated grain fraction	86	86	0.86	

*: STMR-P or HR-P was calculated by processing factor of fenpyroximate and M-1.

	Processed Fraction	Processing Factor	Best estimate PF	MRL*
Apples	RAW			0.2
	Dried apples	3.8, 4,9	4.4	1
Grapes	RAW			0.1
_	Raisins	2.9, 1.04	2.0	0.2
Orange	Fresh fruits (RAC)			0.6
	Oil	74, 4,7	39	25

Processing factors calculated from fenpyroximate for estimation of MRL

*MRL for processed commodities was calculated by processing factor of fenpyroximate.

As residues in dried apple are higher than residues in apple fruit, the Meeting estimated a maximum residue level of $1 (0.2 \times 4.4)$ mg/kg for dried apples.

As residues in orange oil are higher than residues in orange fruit, the Meeting estimated a maximum residue level of 25 (0.6×39) mg/kg for citrus oil.

As residues in grape raisin are higher than residues in grape berry, the Meeting estimated a maximum residue level of 0.2 (0.1×2) mg/kg for grape, dry, and replaced the previous recommendation of 0.3 mg/kg.

Residues in animal commodities

Farm animal feeding studies

The Meeting received information on the residue levels in tissues and milk of dairy cows dosed with fenpyroximate at the equivalent of 1.0, 3.0 and 10 ppm in the feed for 28 consecutive days.

Residues of fenpyroximate/Fen-OH and M-3 in milk from high dose group reached plateau of 0.017 mg/kg at 3 days after the first dose and were 0.010 mg/kg at day 28. Residues of fenpyroximate/Fen-OH and M-3 in milk from high dose group were 0.006–0.022 mg/kg, from low and median dose group were < 0.008 mg/kg for all samples. Other minor metabolites were < 0.005mg/kg.

Residues of fenpyroximate/Fen-OH and M-3 in <u>liver</u> from high dose group were 0.71–0.911 mg/kg, 0.28–0.42 mg/kg from median, 0.16–0.22 from low dose group. Other metabolites were less than 0.01 mg/kg from high dose group or undetected.

Residues of fenpyroximate/Fen-OH and M-3 in <u>kidney</u> from high dose group_were 0.359–0.459 mg/kg, 0.24–0.36 mg/kg from median dose group, and 0.18–0.23 mg/kg from low dose group. Other metabolites were either less than 0.01 mg/kg or undetected.

Residues of fenpyroximate/Fen-OH and M-3 in <u>muscle</u> from high, median and low dose group were 0.025–0.059, 0.012–0.017 and < 0.01 mg/kg, with other metabolites (including M-3) less than 0.01mg/kg or undetected.

Residues of fenpyroximate/Fen-OH and M-3 in <u>fat</u> from high, median and low dose group were 0.046–0.169, 0.035–0.083 and 0.01–0.018 mg/kg, with no other metabolites above 0.01mg/kg.

A laying hens feeding study was not available.

Estimation of livestock dietary burdens

Potential cattle feed items include: bean forage, corn, corn forage and stover, apple pomace and dry citrus pulp. Dietary burden calculations for beef cattle and dairy cattle and poultry are provided below. The dietary burdens were estimated using the OECD diets listed in Appendix IX of the 2017 edition of the FAO Manual.

Summary of livestock dietary burden (ppm fenpyroximate equivalents of dry matter diet) (to be finished)

	US-C	Canada	E	EU	J Australia(J	lapan
	Max	Mean	Max	mean	max	Mean	max	Mean
Beef cattle	0.885	0.524	3.49	1.625	14.8 (3.503)	5.812 (1.595)	0.009	0.009
Dairy cattle	1.956	0.905	6.89	2.81	16.5 (3.503) ^{AB}	6.36 (1.595) ^{CD}	1.63	0.48
Broilers	0.00852	0.00852	0.01	0.01			0.01	0.01
Layers	0.00852	0.00852	$0.5(0.502)^{\rm E}$	$0.26(0.255)^{\rm F}$			0.01	0.01

^A Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian meat

^B Highest maximum dairy cattle dietary burden suitable for MRL estimates for mammalian milk

^C Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat.

^D Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

^E Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs

^F Highest mean poultry dietary burden suitable for STMR estimates for poultry meat and eggs

The Meeting noted that the calculated maximum animal burden (16.5 ppm) was from Australia (mainly from bean forage). As fenpyroximate is not registered for use in bean in Australia and Australia doesn't import any forage, the meeting decided to refine the animal burden calculation (to exclude bean forage). The refined calculation of Dietary burden for beef cattle and dairy cattle for Australia is shown in (parentheses).

Animal commodity maximum residue levels

The calculation used to estimate highest total residues for use in estimating maximum residue levels, STMR and HR values for cattle matrices is shown below.

	Feed level	Residues	Feed level	Residues (m	g/kg)		
	ppm) for	(mg/kg) in	(ppm) for	Muscle	liver	Kidney	Fat
	milk residues	milk	tissue residues				
MRL (mg/kg), beef or dairy cattle							
Feeding study	3	0.005	3	0.017	0.42	0.36	0.083
	10	0.013	10	0.059	0.91	0.459	0.169
Dietary burden and high	3.503	0.0056	3.503	0.020	0.455	0.367	0.089
residue estimation							
STMR (mg/kg), beef or da	airy cattle						
Feeding study	1	0	1	< 0.01	0.19	0.20	0.015
	3	0.005		3	0.015	0.30	0.066
Dietary burden and	1.595	0.0015	1.595	0.011	0.24	0.23	0.03
median residue							
estimated							

The Meeting estimated a maximum residue level of 0.01* mg/kg for fenpyroximate for milk, of 0.1 mg/kg for mammalian meat (fat), of 0.5 mg/kg for edible offal (mammalian) and 0.1 mg/kg for mammalian fats. The Meeting estimated an STMR of 0.0015 mg/kg for milk, of 0.011 mg/ kg for mammalian meat, 0.24 mg/kg for edible offal (mammalian) and 0.03 mg/kg for mammalian fat.

Since neither feeding study nor metabolism study on laying hens was available, the Meeting was unable to estimate maximum residue level for poultry commodities.

RECOMMENDATIONS

On the basis of the data obtained from supervised residue trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI and IESTI assessment.

Definition of the residue (for compliance with MRLs) for plant commodities: *fenpyroximate*.

Definition of the residue (for dietary risk assessment) for plant commodities: sum of parent fenpyroximate and itert-butyl (Z)- α -(1,3-dimethyl-5-phenoxypyrazol-4-ylmethyleneamino-oxy)-p-toluate (its Z-isomer M-1), expressed as fenpyroximate.

Definition of the residue (for compliance with the MRL) for animal commodities: sum of fenpyroximate, 2-hydroxymethyl-2-propyl (E)-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)-methylenaminooxymethyl]benzoate(Fen-OH), and (E)-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)methyleneaminooxymethyl]benzoic acid(M-3), expressed as fenpyroximate.

Definition of the residue (for dietary risk assessment) for animal commodities: sum of fenpyroximate, 2-hydroxymethyl-2-propyl (E)-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)-methylenaminooxymethyl]benzoate(Fen-OH), (E)-4-[(1,3-dimethyl-5-phenoxypyrazol-4-yl)-methyleneaminooxymethyl]benzoic acid(M-3), and (E)-4-{[(1,3-dimethyl-5-phenoxypyrazol-4-yl]-hydroxyphenoxy)pyrazol-4-yl]methyleneaminooxymethyl}benzoic acid (M-5, free and its conjugates), expressed as fenpyroximate.

Commodity		Recommended	MRL	STMR or	HR, HR-P,
		(mg/kg)		STMR-P	highest residue
CCN	Name	New	Previous	(mg/kg)	(mg/kg)
FP 0226	Apple	0.2		0.075	0.15
FI 0326	Avocado	0.2	0.2	0.05	0.1
FP 0230	Pear	0.2		0.078	0.14
FS 0013	Subgroup of cherries	2	2	0.585	0.99
FS 0247	Peach	0.8		0.155	0.33
FS 0240	Apricot	0.4		0.17	0.25
FS 0014	Subgroup of plums (including fresh prunes	0.8		0.155	0.33
FC 0001	Group of citrus fruit	0.6	0.5	0.020	0.0364
FB 0269	Grapes	0.1	0.1	0.035	0.06
FB 0275	Strawberries	0.3	0.8	0.06	0.2
FB 0272	Raspberry	0.2		0.07	0.11
VC 0424	Cucumber	0.3	0.3	0.13	0.24
VC 0431	Squash, summer	0.06		0.025	0.04
VC 0046	Melons, except watermelon,	0.2	0.05	0.05	0.09
VC 0432	Watermelon	0.05		0.1	0.1
VO 0051	Subgroup of peppers, except martynia,	0.2		0.05	0.13
	okra and roselle				
VO 2046	Subgroup of eggplants	0.3		0.1	0.17
VO 0448	Tomatoes	0.3		0.1	0.17
VO 2700	Cherry tomato,	0.3		0.1	0.17
	Subgroup of bean with pod (Phaseolus	0.5		0.075	0.42
	spp.)				
VR 0589	Potato,	0.05*	0.05	0	0
GC 0645	Maize	0.01*		0.01	0.01
TN 0085	Tree nuts	0.05*	0.05*	0	0
SB 0716	Coffee beans	0.07		0.025	0.04
DH 1100	Hops, dry	15	10	5.15	
DT 1114	Tea, green, black, dried	8		1.4	
	Milk	0.01*	0.01*	0.0015	
	Mammalian meat, other than marine	0.1(fat)	0.2(fat)	0.011(muscle)	0.02
	mamalian				
MO 0105	Edible offal, mammalian	0.5	0.02	0.24	0.455
MF 0100	Mammalian fat, except milk fats	0.1	0.01	0.03	0.089
DF 0226	Apple, dried	1		0.33	0.66
DF 5263	Grapes dried	0.2	0.3	0.07	0.12
	Citrus oil	25		6.5	
OC 0645	Maize fodder	5		2.05	4.1

The residue is fat soluble.

Table of withdraw of previous MRL recommendations.

Commodity	Recommended MRL	STMR or	HR, HR-P,
	(mg/kg)	STMR-P	(mg/kg)

CCN	Name	New	Previous	(mg/kg)
VO 0050	Fruiting vegetable other than cucurbits	W	0.2	
FP 0009	Pome fruits	W	0.3	
DF 0014	Prunes dry	W	0.7	
FS 0012	Stone fruits	W	0.4	
VP 0526	Common beans (pod and/or immature seeds	w	0.4	
HS 0444	Pepper Chilli, dry	W	1.0	

Table of additional STMR and HR values for use in dietary intake estimation.

Commodity		STMR or STMR-P	HR, HR-P (mg/kg)
CCN	Name	(mg/kg)	
JF 0226	Apple juice	0.012	
	Apple sauce	0.0135	
JF 0269	Grape juice	0.005	
	Grape wine	0.005	
JF 0448	Tomato juice	0.064	
	Tomato canned	0.04	0.67
MW 0448	Tomato purée	0.072	
DM 0001	Citrus molasses	0.011	
JF 0001	Citrus juice	0.0048	
CF 0645	Maize meal	0.0015	
CF 1255	Maize flour	0.0037	
	Maize grits	0.00016	
OR 0645	Maize oil	0.0099	
	Tea infusion	0.015	

Table of median and highest residue values for use in livestock dietary burden estimation.

Commodity		Median residue (mg/kg)	Highest residue (mg/kg)	
CCN	Name			
AB 0226	Apple pomace dry	0.641		
	Apple pomace wet	0.289		
	Aspirated grain fraction	0.86		
AB 0001	Citrus pulp, dry	0.78	1.5	
AL 1030	Bean forage	2.8	7.5	
AF 0645	Maize forage	0.38	1.3	
AS 0645	Maize fodder	2.1	4.1	

Desirable information

Information on feeding study and metabolism on laying hen is desired for estimation of maximum residue level for poultry commodities.

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The IEDI of fenpyroximate based on the STMRs estimated by this Meetings for the 17 GEMS/Food regional diets were 3-10% of the maximum ADI of 0.01 mg/kg bw. The Meeting concluded that the long-term dietary intake of residues of fenpyroximate is unlikely to present a public health concern.

Short-term dietary exposure

An ARfD for fenpyroximate is 0.01 mg/kg bw. The Meeting estimated the International Estimated Short-Term Intake (IESTI) of fenpyroximate for commodities for which STMR, HR and maximum residue levels were estimated by the current Meeting. The IESTI were less than 100% of a maximum ARfD for the commodities estimated, except for cherry (110% for children from Netherland and Denmark), peach (130% for children from Japan and Canada), watermelon (190% for children from

Canada), dried tomato (310% the for general population from Australia), and dried plums (270% for children from Australia). The Meeting concluded that the short-term intake of fenpyroximate residues from uses considered by the current Meeting may present a public health concern for these commodities.

REFERENCE

Report No.	Author	Year	Title
PC-4037	Krips, H.J.	2001a	Determination of the melting and boiling temperature of fenpyroximate by
			differential scanning calorimetry, NOTOX B.V., The Netherlands, GLP,
			Unpublished
PC-4033	Rijsbergen van,	2001	Determination of the density of fenpyroximate, NOTOX B.V., The
	L.M.		Netherlands, GLP, Unpublished
PC-4141	Ota Y	2015a	Observation of color for fenpyroximate, CERI, Japan, GLP, Unpublished
PC-4142	Ota, Y.	2015b	Observation of physical form for fenpyroximate, CERI, Japan, GLP,
			Unpublished
PC-4039	Krips, H.J.	2001b	Determination of appearance of fenpyroximate, NOTOX B.V., The
			Netherlands, GLP, Unpublished
PC-4149	Ota Y	2015c	Measurement of vapor pressure for fenpyroximate (gas saturation method),
			CERI, Japan, GLP, Unpublished
PC-4169	Murata, S.	2016	Henry's Law Constant of fenpyroximate, Nihon Nohyaku Co. Ltd, Japan,
			Not GLP, Unpublished
PC-4003	Hori, K.	1991	Measurement of water solubility of fenpyroximate by column elution
			method, Kurume Research Laboratories, Chemical Biotesting Center,
			Chemicals Inspection & Testing Institute, Fukuoka, Japan, GLP,
			Unpublished
PC-4150	Furutani, E.	2015a	Measurement of solubility in organic solvents for fenpyroximate, CERI,
	,		Japan, GLP, Unpublished
PC-4009	Kudo, M.	2001	Fenpyroximate technical: Product chemistry (Revised 2001), Nihon
	,		Nohyaku Co. Ltd, Japan, GLP, Unpublished
PC-4156	Furutani. E.	2015b	Measurement of 1-octanol/water partition coefficient for fenpyroximate.
	,		CERI, Japan, GLP, Unpublished
PC-4147	Furutani. E.	2015c	Measurement of dissociation constants in water for fenpyroximate. CERI.
	,		Japan, GLP, Unnublished
E-4015	Swanson, M.B.	1993	Direct photolysis of pyrazole- ¹⁴ C-fenpyroximate in a buffered aqueous
1010	o mulloon, milor	1770	solution under artificial sunlight Battelle Memorial Institute Columbus
			Obio USA GLP Unpublished
Not mentioned	Zhao Y <i>et al</i>	2014	The photolysis of fennyroximate in water (English translation) Guizou
i tot mentioned		2011	University College of Chemistry and Chemical Engineering Guiyang
			550025 China Guizou Academy of Testing and Analysis Guiyang 550002
			China Guizou Institute of Biology Guivang 550009 China Not GLP
			Published
E-4013	Savena A &	1992	Hydrolysis of pyrazole- ¹⁴ C-fennyroximate in huffered aqueous solutions
L-4015	McCann D	1772	Battelle Memorial Institute Columbus Obio USA GLP Unpublished
R _4114	Ialali K &	10000	The metabolism of $[nyrazole_3]^{14}Cl_fennyrovimate in the lastating goat$
K-4114	Gibson N A	17774	Nihon Nohvaku Co. Ltd. Japan GLP. Unpublished
D /115	Iololi K &	1000b	The metabolism of [benzyl (II) ¹⁴ C] fennyrovimate in the locating goat
K-4115	Gibson NA	17770	Nihon Nohvaku Co. Ltd. Japan GLP. Uppublished
P 4101	Suzuki T	1005	Structure elucidation of CP 10 conjugate a metabolite of fennyrovimate in
K-4101	Suzuki I	1995	citrus leaves and rind of fruit Institute for Life Science Research Osaka
			Jopon Not GLD Unpublished
P 4002	Vrouttor C at al	1020	Matchelism of [¹⁴ C]NNI 850 in Tangorino Troop Grown Outside
K-4005	Klauttel, O. el ul	1989	Dharmanalagy & Toxinalagy Pasagraph Laboratory, Kantualay USA Not
			CLD Lingublished
P 4005	Eurovomo S	1000	OLF, Ulipuolished Matabalism of formuravimata (NNI 850) in aitmus Nihan Nahuala. Ca
K-4005	Fullayallia, S.	1990	I tel Jonan CLD Hamphliched
D 4006	E C	1001	Mathalian of the ment ¹⁴ Cl for memory (NDU 850) in sites a Nilsen
R-4006	Funayama, S.	1991	Netabolism of [benzyl- C] fenpyroximate (NNI-850) in citrus, Ninon
D 4004	Variation Control	1000	Nonyaku Co., Liu, Japan, GLP, Unpublished
K-4004	Krautter, G. et al	1988	ivietadolism OI [UJINNI-850 in Langerine trees under commercial
			conduons, Pharmacology & Loxicology Research Laboratory, Kentucky,
D 4007	F 2	1001	USA, GLP, Unpublished
K-4007	Funayama, S.	1991	in citrus grown in
			the greenhouse, Institute of life science research, Nihon Nohyaku Co., Ltd.
			Not GLP, Unpublished

Report No.	Author	Year	Title
R-4008	Galicia, H. et al	1992	¹⁴ C-fenpyroximate (NNI-850) [pyrazole-labelled]: Plant metabolism study
			in field grown apple, R C C Umweltchemine AG, Switserland, GLP, Unpublished
R-4009	Wyss-Bens M	1992	¹⁴ C-fennyroximate (NNI-850) [benzyl-labelled] ¹ Plant metabolism study in
IC 1005	& Mamouni A	1772	field grown apple R C C Umweltchemine AG Switserland GLP
	œ Winniouni, 71.		Unnublished
R-4100	Nishizawa H	1995	¹⁴ C-Fennyroximate (NNI-850) [Pyrazole-labelled] [.] Plant metabolism study
IC 1100	1 (15)1124 (74, 11)	1775	in field grown apple and grape. Institute for Life Science Research, Osaka.
			Japan. Not GLP. Unpublished
R-4010	Wyss-Benz, M.	1992b	¹⁴ C-fenpyroximate (NNI-850) [Pyrazole-labelled]: Plant metabolism study
	& Mamouni, A.		in field grown grape, R C C Umweltchemine AG, Switzerland, GLP,
	,		Unpublished
R-4011	Wyss-Benz, M.	1992c	¹⁴ C-fenpyroximate (NNI-850) [benzyl-labelled]: Plant metabolism study in
	& Mamouni, A.		field grown grape, R C C Umweltchemine AG, Switzerland, GLP,
			Unpublished
R-4183	Dohn, D.	2007	A metabolism study with [¹⁴ C]Fenpyroximate (2 labels) on Snap Beans,
			Analytical Phase, PTRL West, Inc, CA, USA, GLP, Unpublished
LSRC-M14-032A	Yoshizane, T.	2014	Metabolism study of fenpyroximate in Swiss Chard Nohyaku Co., Ltd.,
/R-4482			Research Center, Osaka, Japan, GLP, Unpublished
R-4116	Baker, F. et al	2001	A metabolism study with [Pyrazole-3- ¹⁴ C]-Fenpyroximate on Cotton, PTRL
			West, Inc. CA, USA, GLP, Unpublished
R-4123	Baker, F. <i>et al</i>	2001	A Confined Rotational Crop Study with [Pyrazole-3-*C]-Fenpyroximate
			Using Radish, Lettuce and Wheat, Analytical Phase: PTRL West, Inc.
D 4512	C' 1 M 0	2016	California, USA, GLP, Unpublished
R-4513	Simmonds, M. &	2016	[Benzyl-U-14C]-Fenpyroximate: Metabolism in Rotational Crops Study,
E 4005	Haynes, L.	1000	Ninon Nonyaku Co., Lid., GLP, Unpublished
E-4003	Funayania, S.	1990	under laboratory conditions. Institute of Life Science Research. Niken
			Nobyeku Co. I td. Oseka Japan Not GLP Unpublished
E_4041	Lewis C	2002	(¹⁴ C)-Fennyrovimate: Degradation in one soil at 10 °C. Covance LIK. GLP
L-4041	Lewis, C.	2002	Unpublished
E-4039	Shepler K	2003	Aerobic soil metabolism of [¹⁴ C]fennyroximate. PTRL West Inc. Hercules
1000	Shepter, It.	2005	California, USA, GLP, Unpublished
E-4052	Roohi, A.	2016	\int^{14} ClFenpvroximate: route and rate of degradation in four soils under
	,		aerobic conditions at 20 °C, Battelle UK Ltd., Chelmsford, Essex, UK,
			GLP, Unpublished
E-4053	Doble, M. L.	2016	[¹⁴ C]-Fenpyroximate: soil photolysis, Battelle UK Ltd., Chelmsford, Essex,
			UK, GLP, Unpublished
E-4008	Römbke, J. &	1992	Determination of the degradation and metabolism in soil of pyrazole- ¹⁴ C-
	Möllerfeld, J.		fenpyroximate. According to the BBA guideline for the testing of plant
			protection products (part IV-4-1), Battelle Europe, Battelle-Institute e.V.,
			Frankfurt, Germany, GLP, Unpublished
E-4020	Römbke, J. &	1992	Determination of the degradation in soil of fenpyroximate. According to the
	Brodesser, J.		BBA guideline for the testing of plant protection products (part IV-4-1),
			Battelle Europe, Battelle-Institute e. V., Frankfurt, Germany, GLP,
F-4058	Graham R	2016	Onpuonsuou Fennyrovimate: Kinetic assessment of laboratory soil degradation studios
E-4038	Orananii, K.	2010	ISC Harrogate LIK Not GLP Unpublished
A-4088	Watson G	2016a	Validation of the OuEChERS method for the determination of residues of
11 1000	Waldon, O.	20104	fenpyroximate and M-1 in crop matrices by LC-MS/MS. ResChem, UK.
			GLP. Unpublished
A-4089	Gasso-Brown, D.	2016a	Independent Laboratory Validation of the study RES-00029 based on the
	,		multi-residue method QuEChERS for the determination of fenpyroximate
			and M-1 in different matrices of plant origin, Eurofins, UK, GLP,
			Unpublished
S16-06628	Gasso-Brown, D.	2016b	Independent Laboratory Validation of the study RES-00029 based on the
			multi-residue method QuEChERS for the determination of fenpyroximate
			and M-1 in hops, Eurofins, UK, GLP, Unpublished
A-4001	Anonymous	1989a	Residue Analysis of Fenproximate and its Metabolite in Fruits [GLC
A 4000		10001	Method], Institute of Life Science Research, Not GLP, Unpublished
A-4002	Anonymous	1989b	Residue analysis of tenpyroximate and its metabolites in fruits (HPLC
			method), Nihon Nohyaku Co., Ltd., Chemical Research Center Process
A 4002	Anonimous	1000-	Laboratory, GLP, Unpublished Analytical Method of Fannravimate and its Matchalites in Emits and
A-4003	Anonymous	19090	Anarytical Method of Fenproximate and its Metadonites in Fruits and Vegetables GLC/HDLC Institute of Life Science Descerab. Not GLD
			Unpublished
			Onpuononcu

Report No.	Author	Year	Title
A-4007	Specht, W.	1991a	Validation of method DFG S 19 for the determination of the residues of
	1 ,		fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in vine
			(grape, cider, wine), Dr. Specht & Partner, Chemische Laboratorien GmbH,
			Hamburg, Germany, GLP, Unpublished
A-4008	Specht, W.	1991b	Validation of method DFG S 19 for the determination of the residues of
	•		fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in apple
			(fruit, mash, cider), Dr. Specht & Partner, Chemische Laboratorien GmbH,
			Hamburg, Germany, GLP, Unpublished
A-4010	Specht, W.	1992a	Validation of Method DFG S 19 for the Determination of the Residues of
			Fenpyroximate (HOE 094552) and Metabolites M-1 (HOE 112573) in
			Orange (Pulp and Peel), DR. Specht & Partner Chemische Laboratorien
			GMBH, GLP, Unpublished
A-4011	Specht, W.	1992b	Validation of Method DFG S 19 for the Determination of Residues of
			Fenpyroximate (HOE 094552) and Metabolite M-1 (HOE 112573) in
			Cucumber (Fruit), DR. Specht & Partner Chemische Laboratorien GMBH,
4 4010		1000	GLP, Unpublished
A-4012	Specht, W.	1992c	Validation of Method DFG S 19 for the Determination of the Residues of $\Gamma_{\rm eff}$
			Fenpyroximate (HOE 094552) and Metabolite M-1 (HOE 112573) in
			Tomato (Fruit), DR. Specht & Partner Chemische Laboratorien GMBH,
A 4012	Smacht W	10024	GLP, Unpublished Validation of Mathad DEC S 10 for the Determination of the Desidues of
A-4015	Specific, w.	19920	Experiments (IJOE 004552) and Matchelite M 1 (IJOE 112572) in
			Stroughows (FDLUT) DP. Speedt & Dertner Chemische Laboratorien
			CMPH CLD Unpublished
A_4014	Specht W	1002	Validation of Method DEG S 10 for the Determination of the Residues of
A-4014	Speent, w.	17720	Fennyroximate (HOF 094552) and Metabolite M-1 (HOF 112573) in Fog
			Plant (Fruit) DR Specht & Partner Chemische Laboratorien GMBH GLP
			Unnublished
A-4015	Specht, W.	1992f	Validation of method DFG S 19 for the determination of the residues of
	-r,		fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in pear
			(fruit), Dr. Specht & Partner, Chemische Laboratorien GmbH, Hamburg,
			Germany, GLP, Unpublished
A-4016	Specht, W.	1992g	Validation of Method DFG S 19 for the Determination of the Residues of
	•	e e	Fenpyroximate (HOE 094552) and Metabolite M-1 (HOE 112573) in
			Paprika (Fruit), DR. Specht & Partner Chemische Laboratorien GMBH,
			GLP, Unpublished
A-4017	Specht, W.	1992h	Validation of Method DFG S 19 for the Determination of the Residues of
			Fenpyroximate (HOE 094522) and Metabolites M-1 (HOE 112573) in
			Peach (Fruit),. DR. Specht & Partner Chemische Laboratorien GMBH,
			GLP, Unpublished
A-4018	Specht, W.	1992i	Validation of Method DFG S 19 for the Determination of the Residues of
			Fenpyroximate (HOE 094552) and Metabolite M-1 (HOE 112573) in
			Melon (Pulp and Peel), DR. Specht & Partner Chemische Laboratorien
4 4010		1000:	GMBH, GLP, Unpublished
A-4019	Specht, w.	1992j	Validation of Method DFG S 19 for the Determination of the Residues of Economic states (LOE 004552) and Match alite M 1 (LOE 112572) In
			Propagating Products of hop (Drogs Voist Door) DP Speeht & Partner
			Chemische Laboratorien GMBH, GLP, Unnublished
A-4020	Weber H	1003a	Validation of method DEG \$ 19 for the determination of the residues of
11 1020	Weber, 11.	17754	fennyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in dwarf
			bean (leaves). Dr. Specht & Partner. Chemische Laboratorien GmbH.
			Hamburg, Germany, GLP, Unpublished
A-4026	Weber, H.	1993b	Validation of method DFG S 19 for the determination of the residues of
	,		fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in apple
			(fruit), DR. Specht & Partner Chemische Laboratorien GMBH, GLP,
			Unpublished
A-4046	Specht, W.	1992k	Validation of method DFG S 19 for the determination of the residues of
			fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in plum
			(fruit),DR. Specht & Partner Chemische Laboratorien GMBH, GLP,
			Unpublished
A-4068	Klimmek, S. &	2007	Validation of DFG method S 19 (extended and revised version) for the
	Klimmek, A.		determination of residues of fenpyroximate and its metabolite M-1 in matrix
			with high water content (apple), Eurofins Analytik GmBH Dr. Specht
	a 1	1001	Laboratorien, Hamburg, Germany, GLP, Unpublished
A-4009	Specht, W.	1991c	Validation of Method P-14.045.02 Based on Hoechst Method AL 015/90-0
			tor the Determination of the Residues of Fenpyroximate (HOE 094552) and

Report No.	Author	Year	Title
			Metabolite M-1 (HOE 112573) in Tomato (Fruit), DR. Specht & Partner
			Chemische Laboratorien GMBH, GLP, Unpublished
A-4036	Todd, A.	1999	Fenpyroximate the development and validation of methodology for the
			determination of fenpyroximate residues in dried hops, grapes and oranges
	W , 1 , 0	2001	(pulp and peel), Huntingdon Life Sciences Ltd GLP Unpublished
A-4040	Kretschmer, S.	2001	Independent Laboratory Validation (ILV) of Analytical Methods for the
			Determination of Fenpyroximate and its Metabolite (M-1) in Apple, Grape and Cotton Somples (Metrices DTPL Europe CombH CLP Unpublished
A 4050	Todd M	2003	Eansworking and its matchelite M1. Independent laboratory validation of
A-4030	Todu, M.	2003	methodology for the determination of residues of fennyrovimate and its
			metabolite M1 in apples and tomatoes Research Laboratory Huntingdon
			Life Sciences Limited, Huntingdon, Cambridgeshire, UK, GLP.
			Unpublished
A-4062	Bacher, R.	2005	Fenpyroximate: Validation of an Analytical Residue Method for the
			Determination of Fenpyroximate in Plant Materials, PTRL Europe,
			Germany
A-4064	Brown, D.	2006a	To conduct validation of an LC-MS/MS analytical method for
			determination of residues of fenpyroximate and its M-1 metabolite in apples,
			strawberries, peaches, pears, plums, beans, cucumbers, peppers and
A 40(5	Durana D	20071	tomatoes, Agrisearch UK Ltd, GLP, Unpublished
A-4003	Brown, D.	20000	residue method for the analysis of fennyrovimate and its M 1 metabolite in
			nears Agrisearch LIK Ltd
			GLP. Unpublished
A-4081	Ihara, T.	2013	Development and validation of methodology for the determination of
	,		residues of fenpyroximate in sugar beet Nihon Nohyaku Co., Ltd., Research
			Center, Osaka, Japan, GLP, Unpublished
A-4084	Matos, D.	2015	Analytical methodology and validation: determination of fenpyroximate
			residue on coffee beans, Plantec Laboratories,, GLP, Unpublished
R-4119	Rose, K.	2001	Magnitude of the Residue of fenpyroximate in/or Apple raw agricultural
			commodities, Analytical Phase: PTRL West, INC. CA, USA, In-Life Phase:
A 4004	Watson G	2016b	Excel Research Services, CA, USA, GLP, Unpublished
A-4094	watson, G.	20100	fennyrovimate M-1 and M-3 in processing matrices by I C-MS/MS
			ResChem UK GLP Unnublished
R-4162	Oxspring, S.	2003a	Final Report on Project AF/6011/NN: To determine the magnitude of
	1 0,		fenpyroximate residues at harvest in the raw agricultural commodity
			strawberries (field) resulting from a single directed application of
			fenpyroximate 5SC, in the UK, Southern France, and Italy, Agrisearch UK
D 41/0	o	20021	Ltd. GLP, Unpublished
R-4163	Oxspring, S.	20036	Final report on project AF/6026NN To determine the magnitude of
			tenpyroximate residues at narvest in the raw agricultural commodity
			fennyroximate SSC in the UK Southern France and Italy Agrisearch UK
			Ltd. GLP. Unnublished
A-4082	Ihara, T.	2016	Development and validation of methodology for the determination of
	,		residues of fenpyroximate and its metabolite M-3 in dairy products (+
			Amendment Number 1). Nihon Nohyaku Co., Ltd., GLP, Unpublished
A-4099	Nagata, T.	2016	Fenpyroximate and its metabolite M-3: ILV (Independent Laboratory
			Validation) study of analytical method in foodstuff of animal origin (bovine
4020		1000	muscle and milk). Institute of environmental toxicology, GLP, Unpublished
A-4039	Baker, F.C. <i>et al</i>	1999	Validation and radiovalidation of the analytical residue method for the
			and milk PTPI West Inc. Richmond California USA and PTPI Europe
			Ulm Germany GLP Unnublished
A-4092	Brown, D.	1992	Validation of an analytical method for the determination of residues of
	,		fenpyroximate in soil by LC-MS/MS. ResChem, UK, GLP, Unpublished
A-4022	Wyss-Benz, M.	1994	Storage Stability of Fenpyroximate (HOE 094552) and M-1 (HOE 112573):
			in Hop (Dried Cones), R C C Umweltchemine AG, Switzerland, GLP,
			Unpublished
A-4023	Wyss-Benz, M.	1994	Storage Stability of ¹⁴ C-Fenpyroximate (NNI-850) [Pyrazole-labelled]: in
A 4024		1004	Apples R C C Umweltchemine AG, Switzerland, GLP, Unpublished
A-4024	wyss-Benz, M.	1994	Storage Stability of U-renpyroximate (INNI-850) [Pyrazole-labelled]: in Granes R C C Umweltcheming A G Switzerland CLD Unsublished
S-4027	Kramer GF	2003	Memorandum: Fennyroximate in/on Pome Fruit Cotton & Granes DD#s
5-7027	Manor, 0.1	2005	0F06437 & 0E06519, Summary of Analytical Chemistry and Residue Data.

Report No	Author	Vear	Title
Report no.	Autioi	i cal	LIS/EDA
R-4136	Specht, W.	1992	Storage Stability of Fenpyroximate and the metabolism M-1 in Apples, Dr Specht & Partner Chemische Laboratorien GMBH, Hamburg, GLP,
			Unpublished
R-4525	Gasso-Brown, D.	2017	Storage stability of fenpyroximate and M-1 in a range of crops Study ongoing, hon Nohyaku Co. Ltd, Report No. S16-00456
R-4107	Carringer, S.J.	1997	Magnitude of the Residue of Fenpyroximate in Citrus Raw Agricultural and Processed Commodities, American Agricultural Services, Inc. NC, USA
R-4156	Barney, W.P.	2003	Fenpyroximate (FujiMite [™] 5%EC) Residue Study in Citrus, Grayson Research, LLC., North Carolina, USA
R-4446	Marin J	2010	Magnitude of the residue of fenpyroximate (5% EC and 5% SC formulations) applied to Citrus, PTRL West, INC, CA, USA, GLP, Unpublished
R-4484	Carringer, S.J.	2014	Magnitude of the residue fenpyroximate and its metabolite in/on Citrus Raw Agricultural Commodities following two applications of fenpyroximate SEC Miticide/Insecticide (2013). The Carringers, Inc. North Carolina, USA.
R-4143	Anonymous	1993	Report on plant residue trial Hoechst AG Germany Not GLP Unpublished
D 1111	Anonymous	1993	Report on plant residue trial. Hocehst AG, Germany, Not GLD, Unpublished
R-4144	Anonymous	1993	Report on plant residue trial. Hoechst AG, Germany, Not GLP, Unpublished
R-4145	Anonymous	1992	Report on plant residue trial. Hoechst AG, Germany, Not GLP, Unpublished
R-4029	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4030	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4073	Anonymous	1991	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4074	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4075	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4076	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4077	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4078	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4079	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4091	Anonymous	1993	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4092	Anonymous	1993	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4108	Wilson, A.	1998	Raw agricultural commodity study with Miro and Kendo applied to Oranges in Spain and Italy, Huntingdon Life Sciences Ltd., Suffolk, England, GLP,
R-4352	Ueyama, I.	2009	Residue of Fenpyroximate: residue of fenpyroximate E and Z-isomer on Yuzu Orange (Citrus junos), The Institute of Environmental Toxicology,
R-4353	Ueyama, I.	2009	Ibaraki, Japan, Not GLP, Unpublished Residue of Fenpyroximate: residue of fenpyroximate E and Z-isomer on Yuzu Orange (Citrus junos), The Institute of Environmental Toxicology,
R-4354	Ueyama, I.	2009	Ibaraki, Japan, Not GLP, Unpublished Residue of Fenpyroximate: residue of fenpyroximate E and Z-isomer on Yuzu Orange (Citrus junos), Japan Analytical Chemistry Consultant Co.
R-4430	Chadwick, G.	2011	Ltd, Tokyo, Japan, Not GIP, Unpublished Determination of residues of fenpyroximate after one application of Fenpyroximate 5 SC to orange–4 sites in Southern Europe, 2009, Eurofins
R-4450	Sutherland, J.	2011	Agroscience Services, UK, GLP, Unpublished Determination of residues of fenpyroximate after one application of fenpyroximate 5 SC to orange-4 sites in Southern Europe, 2010, Eurofins
R-4056	Iwamoto, T.	1993	Agroscience Services, UK GLP, Unpublished Residue determination of fenpyroximate in or on Satsuma mandarin treated with fenpyroximate 5% SC at 50 ppm (ai), Japan Plant Protection
R-4132	Goto, M. et al	1989	Association 1-43-11, Tokyo, Japan, Not GLP, Unpublished Residues data summary from supervised trials, The Institute of
R-4234	Ueyama, I.	2009	Environmental Toxicology, Japan, Not GLP, Unpublished Residue of fenpyroximate: residue of fenpyroximate E-isomer in flesh of Satsuma Mandarin, The Institute of Environmental Toxicology, Ibaraki,

Report No.	Author	Year	Title
			Japan, Not GLP, Unpublished, Report No. NN021-01
R-4235	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer in flesh of
			Satsuma Mandarin, The Institute of Environmental Toxicology, Ibaraki,
			Japan, Not GLP, Unpublished, Report No. NN021-02
R-4237	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on peel of
			Satsuma Mandarin, The Institute of Environmental Toxicology, Ibaraki,
			Japan, Not GLP, Unpublished, Report No. NN021-05
R-4238	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on peel of
			Satsuma Mandarin, The Institute of Environmental Toxicology, Ibaraki,
			Japan, GLP, Unpublished, Report No. NN021-06
R-4240	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer in flesh of
			Satsuma Mandarin, The Institute for Life Science Research, Osaka, Japan,
			Report No. NN021-03
R-4241	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer in flesh of
			Satsuma Mandarin, The Institute for Life Science Research, Osaka, Japan,
			Report No. NN021-04
R-4243	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on peel of
			Satsuma Mandarin, The Institute for Life Science Research, Osaka, Japan,
			Report No. NN021-07
R-4244	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Peel of
			Satsuma Madarin, The Institute for Life Science Research, Osaka, Japan,
			Report No. NN021-08
R-4431	Chadwick, G.	2011	Determination of residues if fenpyroximate after one application of
			Fenpyroximate 5 SC in mandarin-4 sites in Southern Europe 2009, Eurofins

Agroscience Services, UK GLP, Unpublished, Report No. S09-02402 2011 Sutherland, G. Determination of residues if fenpyroximate after one application of Fenpyroximate 5 SC in mandarin-4 sites in Southern Europe 2010, GLP, Unpublished, Report No. S10-02526 Murakami, Y. 2009 Residue of fenpyroximate: residue of fenpyroximate E-isomer on peel of Chinese Citron, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished, Report No. NN022-01 Murakami, Y. 2009 Residue of fenpyroximate: residue of fenpyroximate Z-isomer on peel of Chinese Citron, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished, Report No. NN022-02 Murakami, Y. 2009 Residue of fenpyroximate: residue of fenpyroximate E-isomer on peel of Chinese Citron, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished, Report No. NN022-05

R-4250Murakami, Y.2009Residue of fenpyroximate: residue of fenpyroximate Z-isomer on peel of
Chinese Citron, The Institute of Environmental Toxicology, Ibaraki, Japan,
Not GLP, Unpublished, Report No. NN022-06R-4252Murakami, Y.2009Residue of fenpyroximate: residue of fenpyroximate E-isomer on peel of
Chinese Citron, Japan Food Research Laboratories, Tokyo, Japan, Not GLP,

 R-4253 Murakami, Y.
 R-4256 Murakami, Y.
 2009 Unpublished, Report No. NN022-07 Residue of fenpyroximate: residue of fenpyroximate Z-isomer on peel of Chinese Citron, Japan Food Research Laboratories, Tokyo, Japan, Not GLP, Unpublished, Report No. NN022-08 Residue of fenpyroximate: residue of fenpyroximate E-isomer in flesh of

Murakami, Y.2009Residue of fenpyroximate: residue of fenpyroximate E-isomer in flesh of
Chinese Citron, Japan Food Research Laboratories, Tokyo, Japan, Not GLP,
Unpublished, Report No. NN022-03

 R-4257 Murakami, Y. 2009 Residue of fenpyroximate: residue of fenpyroximate Z-isomer in flesh of Chinese Citron, Japan Food Research Laboratories, Tokyo, Japan, Not GLP, Unpublished, Report No. NN022-04
 R-4057 Iwamoto, T. 1993 Residue determination of fenpyroximate in or on Natsudaidais treated with

Iwamoto, T.1993Residue determination of fenpyroximate in or on Natsudaidais treated with
fenpyroximate 5% SC at 50 ppm (ai), Japan Plant Protection Association 1-
43-11, Tokyo, Japan, Not GLP, Unpublished

Anonymous 1993 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished

 R-4086
 Anonymous
 1993
 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished

 R-4087
 Anonymous
 1993
 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,

Anonymous 1993 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished

 R-4088
 Anonymous
 1993
 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished

 R-4089
 Anonymous
 1993
 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,

Anonymous 1993 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished

Anonymous 1993 Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,

R-4451

R-4246

R-4247

R-4249

R-4085

R-4090

Report No.	Author	Year	Title
R-4080	Anonymous	1991	Unpublished Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4081	Anonymous	1992	Report on Plant Protection Residue Trial, Handelslabor Dr Specht, Not GLP, Unpublished
R-4082	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4083	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4084	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4002	Anonymous	1989	Crop residue report of fenpyroximate on Apple (variety : Fuji), Registration and Safety Assessment Center, Nihon Nohyaku Co., Ltd. Not GLP, Unpublished
R-4042	Benet, F. & Decraecke, H.	1992	Analysis of residue of fenpyroximate and its two metabolites in Apples, Bernay Residues Analysis Laboratory, France, GLP, Unpublished
R-4046	Benet, F. & Massenot, F.	1991	Analysis of residues of Fenpyroximate and its two metabolites in apples, Bernay Residues Analysis Laboratory, France, GLP, Unpublished
R-4047	Benet, F.	1991	Recherche de residus de fenpyroximate et de ses deux metabolites dans les pommes
R-4012	Burstell, H.	1991	Investigation of residues in apples following application of Hoe 094552 for the control of spider mites
R-4016	Burstell, H.	1991	Investigation of residues in apples following application of Hoe 094552 for the control of spider mites
R-4049	Anonymous	1992	Results of chemical residue analysis, P.J. Dawson Laboratories, Hamilton, Not GLP, Unpublished
R-4058	Iwamoto, T.	1993	Residue determination of fenpyroximate in or on Apples treated with fenpyroximate 5% SC at 50 ppm (ai), The Institute of Environmental Toxicology Kodaira Laboratory, Tokyo, Japan, GLP, Unpublished
R-4061	Anonymous	1994	Residuals and degradation analyst of Acaban 50 SC (Fenpyroximate) and its metabolites M-1 and M-12 Ciba-Geigy Ltd. Not GLP Unpublished
R-4065	Patterson, T.	1994	The analyses of Apple for fenpyroximate residues, Ciba-Geigy New Zealand Limited Auckland NZ GLP Linnublished
R-4071	Raquet, H. et al	1992	Hoe 094552–water miscible suspension–50 g/kg (code: Hoe 094552 00 SC05 A104): Investigation of residues in processed apples following two
R-4072	Weber, H.	1992	applications of Hoe 094552, Hoechst Aktiengesellschaft, GLP, Unpublished Determination of the residues of fenpyroximate (HOE 094552) and metabolite M-1 (HOE 112573) in Apple (fruit), Dr Specht & Partner
R-4093	Anonymous	1991	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4094	Anonymous	1991	Report on Plant Protection Residue Trial, Hoechst AG, Germany Not GLP, Unpublished
R-4095	Anonymous	1991	Report on Plant Protection Residue Trial, Hoechst AG, Germany Not GLP, Unpublished
R-4096	Anonymous	1993	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4097	Anonymous	1993	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP, Unpublished
R-4099	Longland, R.	1994	Fenpyroximate suspension concentrate 50 g/1 Code: NNI–850: Residues of ai plus metabolite in apples; UK; 1993, Dr Specht & Partners Chemische Laboratories GmbH Hamburg, Germany, GLP, Unpublished
R-4106	Hatfield, M.	1996	Magnitude of the residue of Fenpyroximate in Apple raw agricultural and processed commodities, Field Phase and Study Management: American Agricultural Services, Inc. Analytical Phase, OH, USA, GLP, Unpublished, CLP, Unpublished
R-4120	Rose, J.	2001	Magnitude of the residue of fenpyroximate in/on processed fractions of Apple raw agricultural commodities, Analytical Phase: PTRL West, INC. CA, USA, In-Life Phase: Excel Research Services, CA, USA, Processing:
R-4258	Murakami, Y.	2009	A.C.D.S. Research, Inc, NY, USA, GLP, Unpublished Residue of fenpyroximate: residue of fenpyroximate E-isomer on Apple, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4259	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Apple, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished

Report No.	Author	Year	Title
R-4260	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on Apple, The Institute for Life Science Research, Osaka, Japan, Not GLP, Unpublished
R-4261	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Apple, The Institute for Life Science Research, Osaka, Japan, Not GLP,
R-4429	Chadwick, G.	2011	Unpublished Determination of residues of fenpyroximate after one application of Fenpyroximate 5 SC to apple-4 sites in Northern Europe and 4 sites in
R-4472	Emmanuelle, I	2012	Southern Europe, 2009, Eurofins Agroscience Services, UK, GLP, Unpublished
IC-11/2	Linnandene, 5.	2012	fenpyroximate 5 SC in apples at 4 sites in Northern Europe, 2011, GLP, Unpublished
R-4473	Emmanuelle, J.	2012	Determination of residues of fenpyroximate after one application of FENPYROXIMATE 5 SC in apples at 4 sites in Southern Europe, 2011, Eurofins Agroscience Services, UK, GLP, Unpublished
R-4048	Bull, M. & Holding, R.	1992	Residues of fenpyroximate (CGA 236128) and its metabolites (M1 & M12) in pome fruit following application of NNI-850, Ciba-Geigy Australia Limited, Not GLP, Unpublished
R-4066	Patterson, T.	1994	The analyses of pear for fenpyroximate residues, Ciba-Geigy New Zealand Limited, Auckland, NZ, GLP, Unpublished
R-4154	Willard, T.R.	2002	Magnitude of the Residue of Fenyroximate in/on Pears Following Application of FujiMite 5%EC or FujiMite 5%SC, American Agricultural Services. Inc. NC. USA. GLP. Unpublished
R-4161	Oxspring, S.	2003	Final Report on Project AF/6100/NN: To determine the magnitude of fenpyroximate residues at intervals and harvest in the raw agricultural
			commodity apple and pear resulting from a single directed application of Fenpyroximate 5 SC, in Southern France and Italy (2001-2002), Agrisearch, UK, GLP, Unpublished
R-4185	Oxspring, S.	2007	Final Report on Project AF/11088/NN: To determine the magnitude of fenpyroximate and its metabolite M-1 residues at intervals and harvest in the raw agricultural commodity Apple and Pear resulting from a single application of either Kiron 5%SC or Fenpyroximate 5 SC, in Northern France and Germany in 2006 A grisearch UK
R-4201	Stewart, E.R.	2006	Fenpyroximate and M-1 Metabolite: Residue Levels on Pear and Cotton from Trials Conducted in the United States During 2005, Stewart
R-4263	Murakami, Y.	2009	Agricultural Research Services, Inc., Missouri, USA. Residue of fenpyroximate: residue of fenpyroximate E-isomer on Pear, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpubliched
R-4264	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Pear, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpubliched
R-4266	Murakami, Y.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on Pear, The Institute for Life Science Research, Osaka, Japan, Not GLP, Unpublished
10438/10/MIR02	Samoil, K.	2012	Fenpyroximate: Magnitude of the Residue on Cherry. Unpublished study prepared by Interregional Research Project No. 4, University of California and Company April Tack
R-4134	Goto, M. et al	1989	Residues data summary from supervised trials, The Institute of
R-4147	Perny, A.	2000	Determination of fenpyroximate residues in peaches following treatment with the preparation TERROR under field conditions in France in 1999,
R-4166	Oxspring, S.	2004	Anadiag, Haguenau, France, GLP, Unpublished Final Report on Project AF/6101/NN: To determine the magnitude of fenpyroximate residue at intervals and harvest in the raw agricultural commodity peach resulting from a single directed application of fenpyroximate 5SC, in Northern France, Agrisearch UK Ltd. GLP,
R-4174	Martin, C.	2004	Unpublished Final Report on Project AF/6771/NN: To determine the magnitude of fenpyroximate residue at intervals and harvest in the raw agricultural commodity peach (field) resulting from a single application of fenpyroximate 5SC in Southern France. Southern Spain and Northern
R-4175	Martin, C.	2004	Spain, in 2002, Agrisearch UK Ltd. GLP, Unpublished Final Report on Project AF/6773/NN: To determine the magnitude of fenpyroximate residue at intervals and harvest in the raw agricultural commodity peach (field) and the processed fraction resulting from a single

Report No.	Author	Year	Title
*			application of fenpyroximate 5SC, in Northern France, Agrisearch UK Ltd.
R-4428	Chadwick G	2010	GLP, Unpublished Determination of residues of fennyroximate after one application of
R-4420	Chadwlex, G.	2010	Fenpyroximate 5 SC in peach–2 sites in Southern Europe 2009. Nihon-
			Nohyaku, GLP, Unpublished
IR-4 10468	Samoil, K.	2012	Fenpyroximate: Magnitude of the Residue on Peach. Unpublished study
R-4514	Julian. E.	2016	Determination of Residues of fenpvroximate after One Application of NNI-
	,		850 5SC in Apricots (outdoor) at 4 Sites in Southern Europe (2 DEC, 2
			MOR) and at 4 Sites in Northern Europe (2 DEC, 2 MOR), 2015. Eurofins
R-4024	Anonymous	1991	Agroscience Services, UK, GLP, Unpublished, Report No. 515-03092 Report on Plant Protection Residue Trial Hoechst AG Germany, Not GLP
R 1021	Thonymous	1771	Unpublished, Report No. A45335
R-4025	Anonymous	1991	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4026	Anonymous	1001	Unpublished, Report No. A45336 Report on Plant Protection Residue Trial Hoechst AG, Germany, Not GLP
R-4020	Anonymous	1771	Unpublished, Report No. A45337
R-4027	Anonymous	1991	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
D 4125	Derret II et al	1002	Unpublished, Report No. A45338
K-4155	Raquel, n. el al	1992	SC05 A104) Investigation of residues in plums following a single
			application of Hoe 094552, Hoechst Aktiengesellschaft, Hattersheim,
D 4160	0 . 0	2004	Germany, GLP, Unpublished, Report No. ER90DEU802
K-4169	Oxspring, S.	2004	final Report on Project AF/6102/NN: 10 determine the magnitude of fennyroximate residues at intervals and harvest in the raw agricultural
			commodity plum resulting from a single directed application of
			Fenpyroximate 5SC, in Southern France, Agrisearch UK Ltd. GLP,
R-4170	Martin C	2004	Unpublished, Report No. AF/6102/NN Final Report on Project AF/6770/NN: To determine the magnitude of
K-4 170	Martin, C.	2004	fenpyroximate residues at intervals and harvest in the raw agricultural
			commodity plum resulting from a single application of Fenpyroximate 5SC,
			in Northern Spain, in 2002, Agrisearch UK Ltd. GLP, Unpublished, Report
R-4171	Martin, C.	2004	Final Report on Project AF/6772/NN: To determine the magnitude of
	,		fenpyroximate residues at intervals and harvest in the raw agricultural
			commodity plum and the processed fraction resulting from a single
			2002, Agrisearch UK Ltd. GLP. Unpublished. Report No. AF/6772/NN
R-4481	Samoil, K.	2012	Fenpyroximate: Magnitude of the residue on plum, The State University of
D 4510		2016	New Jersey, New Jersey, USA, GLP, Unpublished, Report No. 10469
K4510	Jullian, E.	2016	850 5SC in Plums (outdoor) at 4 Sites in Southern Europe (2 DEC, 2 MOR)
			2015. Eurofins Agroscience Services Ltd. UK. GLP, Unpublished, Report
5 4494	~ ~		No. S15-03091
R-4436	Chadwick, G.	2010	Determination of residues of tenpyroximate after one application of Eenpyroximate 5 SC to plums 2 sites in Northern Europe and 1 site in
			Southern Europe, 2009. Eurofins Agroscience Services Ltd. UK. GLP,
			Unpublished, Report No. S09-02264
R-4168	H.Bürstell, H. <i>et</i>	1992	Hoe 094552-water miscible suspension 50 g/kg (code Hoe 094552 00 SC05
	ui		applications of Hoe 094552, GLP, Unpublished
R-4044	Benet, F. &	1992	Analysis of residues of fenpyroximate and its two metabolites in vines.
P 4050	Massenot, F.	100/	Nihon Nohyaku Co., Ltd, Japan, GLP, Unpublished
R-4030	500101, 11.	1774	094552 00 SC 05 A105): Investigation of residues in vine grapes following
			1 application of HOE 094552 00 SC 05 A 105, Hoechst Aktiengesellschaft,
P 4052	Sachar U º-	1002	Hattersheim, Germany, GLP, Unpublished
N-4032	Bürstell, H.	1773	GLP, Unpublished
R-4053	Sochor, H. &	1993	Report on a plant protection residue trial, Nihon Nohyaku Co., Ltd, Japan,
D 4054	Bürstell, H.	1002	GLP, Unpublished
K-4004	Socnor, H. & Bürstell, H.	1993	Report on a piant protection residue trial, Minon Nohyaku Co., Ltd, Japan, GLP, Unpublished
R-4055	Sochor, H. &	1993	Report on a plant protection residue trial. Nihon Nohyaku Co., Ltd, Japan,
D 4050	Bürstell, H.	1004	GLP, Unpublished
к-4039	iwamoto, 1.	1994	Residue determination of tenpyroximate in or on grapes treated with

Report No.	Author	Year	Title
R-4285			fenpyroximate in or on grapes treated with fenpyroximate 5% SC at 50 ppm
			(ai)-Ishikawa -, Japan Plant Protection Association and The Institute of
			Toxicology, Japan, Not GLP, Unpublished
R-4060	Iwamoto, T.	1994	Residue determination of fenpyroximate in or on grapes treated with
R-4288			fenpyroximate in or on grapes treated with fenpyroximate 5% SC at 50 ppm
			(ai)–Fukui -, Japan Plant Protection Association and The Institute of
			Toxicology, Japan, Not GLP, Unpublished
R-4067	Tillkes, M.	1993	Determination of the residues of fenpyroximate (Hoe 094552) and M-1
			(Hoe 112573) in/on Grapes, Dr. Specht & Partner Chemische Laboratorien
			GMBH, GLP, Unpublished
R-4069	Raquet, H. et al	1992	Hoe 094552-water miscible suspension-50 g/kg (Code: Hoe 094552 00
			SC05 A104): Investigation of residues in processed grapes following two
			applications of Hoe 094552, Hoechst Aktiengesellschaft, GLP, Unpublished
R-4070	Specht, W.	1991	Determination of the residues of fenpyroximate (HOE 094552) and
			metabolite M-1 (HOE 112573) in Vine (Grape, Cider, Wine), Dr. Specht &
			Partner Chemische Laboratorien GMBH, Hamburg, Germany, 1991, GLP,
			unpublished
R-4102	H.Bürstell, H. et	1991	Hoe 094552-water miscible suspension 50 g/kg (code Hoe 094552 00 SC05
	al		A105); Analysis of residues in vines following application of Hoe 094552
			for control of spider mites, Nihon Nohyaku Co., Ltd, Japan, GLP,
			Unpublished
R-4103	H.Bürstell, H. et	1991	Hoe 094552-water miscible suspension 50 g/kg (code Hoe 094552 00 SC05
	al		A105); Analysis of residues in vines following application of Hoe 094552
			for control of spider mites,. Nihon Nohyaku Co., Ltd, Japan, GLP,
			Unpublished
R-4104	H.Bürstell, H. et	1991	Hoe 094552-water miscible suspension 50 g/kg (code Hoe 094552 00 SC05
	al		A105); Analysis of residues in vines following application of Hoe 094552
			for control of spider mites, Nihon Nohyaku Co., Ltd, Japan, GLP,
			Unpublished
R-4110	Wilson, A.	1999	Raw agricultural commodity study with Miro and Kendo applied to Grapes
			in Spain and Italy, Huntingdon Life Sciences Ltd, Suffolk, England, GLP,
			Unpublished
R-4121	Rose, J.	2001	Magnitude of the residue of fenpyroximate in/on Grape raw agricultural
	,		commodities, In-Life Phase: Excel Research Services, California, USA,
			Analytical Phase: PTRL West, Inc. CA, USA, GLP, Unpublished
R-4122	Rose, J.E.	2001	Magnitude of the Residue of Fenpyroximate in/on Processed Fractions
			Grape Raw Agricultural Commodities, PTRL West, California, USA, GLP,
			Unpublished
R-4205	Ellis, C.	2009	Determination of residues of Fenpyroximate after one application of
			Fenpyroximate 5SC in grapevines at 4 sites in Southern Europe, 2008,
			Eurofins Agroscience Services, UK, GLP, Unpublished
R-4219	Ellis, C.	2009	Determination of residues of Fenpyroximate after one application of
			Fenpyroximate 5SC in grapevines at 4 sites in Southern Europe, 2009,
			Eurofins Agroscience Services, UK, GLP, Unpublished
R-4291	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on Grape,
	•		The Institute for Life Science Research, Not GLP, Unpublished
R-4292	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Grape,
	• /		The Institute for Life Science Research, Osaka, Japan, Not GLP,
			Unpublished
R-4469	Emmanuelle, J.	2012	Determination of residues of fenpyroximate after one application of
	,		FENPYROXIMATE 5SC in grapes at 2 sites in Northern Europe, 2011,
			Eurofins Agroscience Services, UK, GLP, Unpublished
R-4504	Emmanuelle, J.	2016	Determination of residues of fenpyroximate after one application of NNI-
			850 5SC in wine grapes (outdoor) at 7 sites in Northern Europe (4 DEC, 3
			MOR), 2015. S15-03093 (7N), Eurofins Agroscience Services, UK, GLP,
			Unpublished, Report No. S15-03093
R-4435	Chadwick, G.	2011	Determination of residues of fenpyroximate after one application of
	*		fenpyroximate 5 SC to field raspberry at 2 sites in Northern Europe 2009.
			GLP, Unpublished
R-4457	Sutherland, J.	2011	Determination of residues of fenpvroximate after one application of
	-,		Fenpyroximate 5 SC to field raspberry at 2 sites in northern Europe. 2010.
			Eurofins Agroscience Services, UK
			GLP, Unpublished
R-4142	Sochor, K. &	1993	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP.
	Burstell, H.		Unpublished
R-4157	Goodband, T.	2003	Final Report on Project AF/6776/NN: To determine the magnitude of

Report No.	Author	Year	Title
			fenpyroximate residues at intervals and harvest in the raw agricultural commodity strawberries (protected) resulting from a single directed application of fenpyroximate 5SC, in the UK and Southern France, Agrisearch UK Ltd, GLP, Unpublished
R-4167	Oxspring, S.	2004	Final report on project AF/6783NN To determine the magnitude of fenpyroximate residues at harvest in the raw agricultural commodity strawberries (field) resulting from a single directed application of fenpyroximate 5SC, in the UK, 2003, Agrisearch UK Ltd. GLP, Unpublished
R-4177	Martin, C.	2004	Final report on project AF/6783NN To determine the magnitude of fenpyroximate residues at harvest in the raw agricultural commodity strawberries (field) and the processed fraction resulting from a single application of fenpyroximate 5SC, in Southern France and Greece, in 2002, Agrisearch UK Ltd, GLP, Unpublished
R-4233	Hatterman, D.	2008	Raw agricultural commodity (RAC) residue evaluation of fenpyroximate (5% EC and 5% SC formulations) applied to strawberries, Landis International, INC, GA, USA, GLP, Unpublished
R-4445	Marin, J.	2008	Raw agricultural commodity (RAC) residue evaluation of Fenpyroximate (5% EC and 5%SC formulations) applied to strawberries, PTRL West, INC, CA, USA, GLP, Unpublished
R-4438	Carringer, S.		Bridging study to compare magnitude of the residue of fenpyroximate and its metabolite in or on strawberry raw agricultural commodities following applications of FujiMite® 5EC Miticide/Insecticide with or without surfactants-2010, The Carringers, Inc. NC, USA, GLP, Unpublished
R-4449	Sutherland, J.	2011	Determination of residues of fenpyroximate after one application of fenpyroximate 5 SC to field strawberry at 1 site in southern Europe, 2010, Eurofins Agroscience Services, UK GLP, Unpublished
R-4459	Samoil, K.	2011	Fenpyroximate: magnitude of the residue on avocado, Rutgers, The State University of New Jersey, GLP, Unpublished, Report No. 10007
R-4496	Casadei de Baptista, G	2003	Determination of residue of ORTUS 50 SC in Papaya–Linhares/ES. São Paulo University, Brazil, Non-GLP, unpublished
R-4497	Casadei de Baptista G	1998	Analysis of residue of ORTHUS 50 SC in Papaya. Universidade De São Paulo, Brazil Non-GLP, unpublished
R-4498	Casadei de Baptista, G	1998	Analysis of residue of ORTHUS 50 SC in Papaya. Universidade De São Paulo Brazil Non-GLP unpublished
R-4036	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4037	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4172	Oxspring, S.	2005	Final Report on Project AF/6097/NN: To determine the magnitude of fenpyroximate residues at intervals and harvest in the raw agricultural commodity protected cucumber resulting from one directed application of fenpyroximate 5 SC, in the UK, Southern France and Italy, in 2001, Arrigograph LW, GLP, Unwildighed
R-4173	Gillis, N.	2004	Agrisearch OK, OLF, Unpublished Final Report on Project AF/6779/NN: To determine the magnitude of fenpyroximate residues at intervals and at harvest in the raw agricultural commodity cucumber (protected) resulting from a single directed application of fenpyroximate 5SC, in the UK, Southern France and Spain during 2002. A gricogeth UK, GLP, Unpublished
R-4202	Oxspring, S.	2005	Volume 5 IR-4 Minor Use Submission in Support of Tolerances for Fenpyroximate in or on Greenhouse Cucumbers (Study title: Final Report on Project AF/6097/NN To determine the magnitude of fenpyroximate residues at intervals and harvest in the raw agricultural commodity protected cucumber resulting from one directed application of Fenpyroximate 5 SC, in
R-4203	Gills, N.	2004	the UK, Southern France and Italy, in 2001), Agrisearch, UK. Volume 6 IR-4 Minor Use Submission in Support of Tolerances for Fenpyroximate in or on Greenhouse Cucumbers (Study title: Final Report on Project AF/6779/NN To determine the magnitude of fenpyroximate residues at intervals and at harvest in the raw agricultural commodity cucumber (protected) resulting from a single directed application of Fenpyroximate 5 SC, in the UK, Southern France and Spain during 2002),
R-4348	Ueyama, I.	2009	Agrisearch, UK. Residue of fenpyroximate: residue of fenpyroximate E-isomer on Cucumber harvested in Gunma and Kochi Prefectures, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished

Report No.	Author	Year	Title
R-4349	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Cucumber
	•		harvested in Gunma and Kochi Prefectures, The Institute of Environmental
			Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4350	Uevama I	2009	Residue of fennyroximate: residue of fennyroximate Z-isomer on Cucumber
10 1550	o oguniu, n	2009	harvested in Gunma and Kochi Prefectures. The Institute for Life Science
			Descently Ocales, Jonan Nat CLD, Unnyhliched
D 4051		2000	Research, Osaka, Japan, Not GLP, Unpublished
R-4351	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Cucumber
			harvested in Gunma and Kochi Prefectures, The Institute for Life Science
			Research, Osaka, Japan, Not GLP, Unpublished
R-4404	Ueyama, I.	2009	Residue of fenpyroximate: reside of fenpyroximate E and Z-isomers on
	•		cucumber harvested in Chiba and Miyazaki prefectures. The Institute of
			Environmental Toxicology Ibaraki Japan Not GLP Unnublished
R_4405	Llevama I	2009	Recidue of Fennyrovimate: residue of fenynrovimate E and Z-isomer on
K-4405	Ocyania, i.	2007	Cusumber herriested at Chike Drofesturel A grigulturel Europinsent Station
			Japan Ecotech Co. Ltd. Osaka, Japan, Not GLP, Unpublished
R-4406	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E and z-isomer on
			cucumber harvested at Gunma Prefectural Plant Protection Association,
			Japan Ecotech Co. Ltd. Osaka, Japan, Not GLP, Unpublished
R-4460	Leonard, R.	2011	Fenpyroximate: Magnitude of the residue on cucumber. Rutgers. The State
	,		University of New Jersey, GLP, Unnublished
R_/1511	Iulian F	2015	Determination of Residues of fennyrovimate after One Anllication of NNL
K-7311	Julian, D.	2015	250 59C in Coursettee and Coursels on Court level and One Application of NNT-
			850 SSC in Courgeues and Cucumbers (outdoor) at 9 sites in Southern
			Europe (4 DEC, 5 MOR), 2015, Eurofins Agroscience Services Ltd,
			Derbyshire, UK, GLP, Unpublished
R-4486	Julian, E.	2014	Determination of residues of fenpyroximate after one application of
			fenpyroximate 5SC (NNI-850 5SC) to Courgette (Outdoor) at 4 sites in
			Southern Europe 2013, Eurofins Agroscience Services, UK, GLP,
			Unnublished
R_1306	Llevama I	2009	Recidue of fennyroximate: residue of fennyroximate E-isomer on Melon
N-4 300	Ocyania, I.	2007	The Institute of Environmental Taxiaalagy Ibarahi Janan Nat CI D
			The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP,
			Unpublished
R-4307	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on Melon,
			The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP,
			Unpublished
R-4309	Uevama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on Melon.
	,		Japan Food Research Laboratories Tokyo Japan Not GLP Unpublished
R-4310	Llevama I	2009	Residue of fennyroximate: residue of fennyroximate 7-isomer on Melon
IC 1510	Ocyania, i.	2007	Japan Food Research Laboratories Tokyo Japan Not GLP Unpublished
D 4497	Iullian E	2014	Equation of the second se
K-448/	Jullian, E.	2014	Fenpyroximate SSC (INNI-850 SSC) determination of residues of
			tenpyroximate after one application of tenpyroximate SSC (NNI-850 SSC)
			in Melon (outdoor) at 4 sites in Southern Europe 2013, Eurofins
			Agroscience Services LTD., UK GLP, Unpublished.
R-4195	Barney, W.P.	2007	Volume 3 Fenpyroximate: Magnitude of the Residue on Cantaloupe, IR-4
	•		Project Headquarters Rutgers, NJ, USA.
R-4300	Kohavashi V	1989	Residue of Fennyroximate F-isomer on Watermelon (5%Flowable 1989)
IC 1500	Roodyusiii, 1.	1909	Nihon Nohyaku Co. I td
D 4201	V -hh : V	1090	$\mathbf{D}_{\text{rel}} = \mathbf{f}_{\text{rel}} = \mathbf{f}_{\text{rel}$
K-4301	Kobayashi, Y.	1989	Residue of Fenpyroximate Z-isomer on watermeion (5%Flowable, 1989),
			Nihon Nohyaku Co., Ltd.
R-4303	Funayama, S.	1989	Residue of Fenpyroximate E-isomer on Watermelon (5%Flowable, 1989),
			Nihon Nohyaku Co., Ltd.
R-4304	Funayama, S.	1989	Residue of Fenpyroximate Z-isomer on Watermelon (5%Flowable, 1989),
	•		Nihon Nohvaku Co., Ltd.
R-4452	lijima K	2011	Residue of Fennyroximate F & 7-isomer on Watermelon Fruit
IC 1152	iijiina, ix.	2011	(5% Flowable 2010) Nihon Nobyaku Co. I td
D 4452	Illing V	2011	(5701 lowable, 2010), Willow Wollyaku Co., Eld.
K-4433	njima, ĸ.	2011	Kesidue of Fenpyroximate E & Z-isomer of watermeton Peer $(59/F)$
5		• • • • •	(5%Flowable, 2010), Ninon Nonyaku Co., Ltd.
K-4454	Imura, M.	2011	Residue of Fenpyroximate E & Z-isomer on Watermelon Fruit
			(5%Flowable, 2010), Nihon Nohyaku Co., Ltd.
R-44552	Imura, M.	2011	Residue of Fenpyroximate E & Z-isomer on Watermelon Peel
			(5%Flowable, 2010), Nihon Nohyaku Co., Ltd.
IR-4 PR No	Samoil, K	2015	Fenpyroximate: Magnitude of the residue on Watermelon. The State
11182	~~~~~	2010	University of New Jersey New Jersey USA GLD Unpublished
D 4145	Organic - C	2002	Einel Depart on Droiset AE/6700/NIN, To determine the manual of
A-4103	Oxspring, S.	2003	r markeport on Froject Ar70/80/1010. To determine the magnitude of
			renpyroximate residues at intervals and harvest in the raw agricultural
			commodity peppers (protected) resulting from a single directed application
			of fenpyroximate 5SC, in the UK, Northern France, Southern France and

Report No.	Author	Year	Title
			Spain during 2002, Agrisearch UK, GLP, Unpublished
R-4176	Oxspring, S.	2005	Final Report on Project AF/6096/NN: To determine the magnitude of
			commodity protected pepper resulting from one directed application of
			fenpyroximate 5 SC, in the UK, Southern France and Greece, in 2001,
			Agrisearch UK Ltd, GLP, Unpublished
R-4194	Barney, W.P.	2007	Volume 2 Fenpyroximate: Magnitude of the Residue on Pepper (Bell &
			Non Bell, Field and Greenhouse), IR-4 Project Headquarters Rutgers, NJ,
R-4336	Llevama I	2009	USA Residue of fennyrovimate: residue of fennyrovimate E-isomer on Bell
IC 1550	o cyuniu, i.	2007	Pepper harvested in Miyagi and Nagano Prefectures, The Institute of
			Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4337	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Bell
			Pepper harvested in Miyagi and Nagano Prefectures, The Institute of
R-4339	Llevama I	2009	Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished Residue of fennyroximate: residue of fennyroximate E-isomer on Bell
K-4557	Ocyania, i.	2007	Pepper harvested in Miyagi and Nagano Prefectures. The Institute for Life
			Science Research, Osaka, Japan, Not GLP, Unpublished
R-4340	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Bell
			Pepper harvested at Miyagi and Nagano Prefectures, The Institute for life
R-1312	Llevama I	2009	science research, Osaka, Japan, GLP, Unpublished Residue of fennyrovimate: residue of fennyrovimate E-isomer on bell
K-4342	Ocyania, i.	2007	pepper harvested in Kochi and Miyazaki Prefectures. The Institute of
			Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4343	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on bell
			pepper harvested in Kochi and Miyazaki Prefectures, Institute of
R-4344	Uevama, I.	2009	Residue of fennyroximate: residue of fennyroximate E-isomer on bell
			pepper harvested in Kochi and Miyazaki Prefectures, Japan Ecotech Co.
			Ltd, Osaka, Japan, Not GLP, Unpublished
R-4345	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate Z-isomer on Bell
			Pepper narvested in Kochi and Miyazaki Prefectures, Japan Ecotech Co.
R-4346	Uevama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E-isomer on Bell
	5		Pepper harvested at Iwate Prefectural Horticulture Experiment Station, The
D 1000		1000	Institute for life science research, Osaka, Japan, GLP, Unpublished
R-4038	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
R-4039	Anonymous	1992	Report on Plant Protection Residue Trial. Hoechst AG, Germany, Not GLP,
	5		Unpublished
R-4040	Anonymous	1992	Report on Plant Protection Residue Trial, Hoechst AG, Germany, Not GLP,
D 4041	A	1002	Unpublished
K-4041	Anonymous	1992	Unnublished
R-4178	Oxspring, S.	2004	Final report on project AF/6094/NN To determine the magnitude of
			fenpyroximate residues at intervals and harvest in the raw agricultural
			commodity outdoor tomato resulting from one directed application of
			tenpyroximate 5 SC, in Spain and Greece, in 2001, Agrisearch UK, GLP, Unpublished
R-4179	Oxspring, S.	2005	Final report on project AF/6095 To determine the magnitude of
	1 6,		fenpyroximate residues at intervals and harvest in the raw agricultural
			commodity protected tomatoe resulting from one directed application of
			tenpyroximate 5 SC, in the UK, Southern France and Italy, in 2001,
R-4180	Oxspring, S.	2005	Final report on project AF/6781 To determine the magnitude of
11 1100	onepinig, si	2000	fenpyroximate residue at intervals and at harvest in raw agricultural
			commodity tomatoes (protected) resulting from a single directed application
			of fenpyroximate 5SC, in the UK and Spain during 2002, Agrisearch UK
R-4181	Martin C	2004	Lu, OLF, Onpublished Final Report of Project AF/6782/NN: To determine the magnitude of
	marin, C.	2001	fenpyroximate residues at intervals and harvest in the raw agricultural
			commodity tomato (field) and the processed fraction resulting from a single
			application of Fenpyroximate 5 SC, in Southern France, Northern Spain and
R-4196	Barney WP	2008	Soumern Spain, in 2002, Agrisearch, UK. Volume 4 Fennyroximate: Magnitude of the Residue on Tomato (Field and
	<i>Durity</i> , 11.1.	2000	Greenhouse), IR-4 Project Headquarters Rutgers, NJ, USA

Report No.	Author	Year	Title
R-4400	Hamaguchi, H.	2009	Residue of fenpyroximate E and Z-isomers on Tomato, The Institute of Environmental Toxicology Ibaraki Japan Not GLP Unpublished
R-4401	Ueyama, I.	2009	Residue of Fenpyroximate: residue of fenpyroximate E and Z-isomers on tomato, Japan Footech Co. Ltd. Osaka, Japan Not GLP, Unpublished
R-4470	Jullian, E.	2012	Determination of residues of fenpyroximate after one application of FENPYROXIMATE 5 SC in sweet corn at 1 site Hungary, 2011, GLP,
R-4480	Jullian, E.	2013	Unpublished Determination of residues of fenpyroximate after one application of FENPYROXIMATE 5 SC in sweet corn at 1 site in Hungary, 2012,
R-4447	Carringer, S.	2011	Eurofins Agroscience Services LTD., UK, GLP, Unpublished. Magnitude of the residue fenpyroximate and its metabolite in or on a Field Corn and Processed Commodities following a two foliar applications of
R-4068	Bock	1992	Report on Plant Protection Residue Trial, Handelslabor Dr Specht, Not
R-4158	Oxspring, S.	2003	Final Report on Project AF/6098/NN: To determine the magnitude of fenpyroximate residues at intervals and harvest in the raw agricultural commodity protected bean (with pods) resulting from a single directed application of fenpyroximate 5SC, in Spain and Greece, in 2001, Agrisearch UK, GLP, Umpublished
R-4159	Oxspring, S.	2003	Final Report on Project AF/6099/NN: To determine the magnitude of fenpyroximate residue at intervals and harvest in the raw agricultural commodity bean (with pods) resulting from a single directed application of fenpyroximate 5SC, in Southern France and Greece, in 2001, Agrisearch
R-4160	Gillis, N.	2003	Final Report on Project AF/6778/NN: To determine the magnitude of fenpyroximate residue at intervals and at harvest in the raw agricultural commodity bean with pods (protected) resulting from a single directed application of fenpyroximate 5SC, in Spain during 2002, Agrisearch UK, GLP, Lingubliched
R-4164	Oxspring, S.	2003	Final Report on Project AF/6769/NN: To determine the magnitude of fenpyroximate residue at intervals and at harvest in the raw agricultural commodity bean with pods (field) resulting from a single directed application of fenpyroximate SSC, in Southern France and Spain during
R-4458	Samoil, K.	2011	2002, Agrisearch UK, GLP, Unpublished Fenpyroximate: Magnitude of the residue on bean (snap), Rutgers, The State
IR-4 PR No. 10173	Leonard, R.	2011	Fenpyroximate: Magnitude of the Residue on Potato. Unpublished study prepared by Interregional Research Project No. 4. IR-4 PR No. 10173, GLP, Unpublished
R-4471	Emmanuelle, J.	2012	Determination of residues of fenpyroximate after one application of FENPYROXIMATE 5 SC in maize (grain) at 2 sites in Hungary, 2011, Eurofins Agroscience Services, UK, GLP, Unpublished
R-4155	Willard, T.R.	2002	Magnitude of the Residue of Fenpyroximate in/on Tree Nuts Following Application of FujiMite 5%EC, American Agricultural Services, Inc., NC, USA, GLP, Unpublished
R-4499	Lopez, NMR.	2009	Determination of residues of the commercial product ORTUS 50 SC in the coffee culture - Londrina / PR. Arysta Lifescience Brazil, GLP, Unpublished
R-4500	Lopez, NMR.	2009	Determination of residues of the commercial product ORTUS 50 SC in the coffee culture–Espirito Santo do Pinhal/SP. Arysta Lifescience Brazil, GLP, Unpublished
R-4501	Lopez, NMR.	2009	Determination of residues of the commercial product ORTUS 50 SC in the coffee culture–Uberlandia/MG. Arysta Lifescience Brazil, GLP, Unpublished
R-4502	Lopez, NMR.	2009	Determination of residues of the commercial product ORTUS 50 SC in the coffee culture–Pereiras/SP. Arysta Lifescience Brazil, GLP. Unpublished
R-4490	Matos, D.	2015	Determination of Fenpyroximate residue on coffee beans, after application of ortus 50 SC, PLANTEC Laboratories, GLP, Unpublished
R-4032	Burstell, H. & Sonder, K.	1996	Fenpyroximate water miscible suspension concentrate 5% Code: AE F094552 00 SC05 A103: residue trials in hops to establish a maximum residue level. Determination of active substance and metabolite decline following one application. Germany 1989, Hoechst Schering AgrEvo GmbH, GLP, Unpublished
R-4111	Wilson, A.	1999	Raw agricultural commodity study with Kiron applied to Hops in Germany, Huntingdon Life Sciences Ltd, Suffolk, England, GLP, Unpublished

Report No.	Author	Year	Title
R-4063	Sochor, A.	1994	Fenpyroximate, water miscible suspension concentrate 50 g/l Code: Hoe 094552 00 SC05 A104 Investigation of residues of Hoe 094552 in processed and non-processed hops following one application. Hoechst
			Schering AgrEvo GmbH, Frankfurt, Germany, GLP, Unpublished
R-4064	Sochor, H.	1994	Investigation of residues of Hoe 094552 in processing and
R-4197	Dorschner, K.	2005	Volume 3 of 6 Fenpyroximate: magnitude of the residue on Hops, Center for Minor Crop Pest Management, The State University of New Jersey, NJ, USA, GLP, Unpublished
R-4375	Ueyama, I.	2009	Residue of fenpyroximate: residue of fenpyroximate E and Z-isomers on Hop, Japan Ecotech Co. Ltd. Osaka, Japan, Not GLP, Unpublished.
R-4376	Ueyama, I.	2009	Residue of fenpyroximate: residues of fenpyroximate E and Z-isomers on
R-4133	Goto, M. et al	1989	Residues data summary from supervised trials, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4182	Manjunatha, S.	2005	Final report magnitude of residue of fenpyroximate in/or black tea following application of fenpyroximate, Rallis Research Centre, Bangalore, India, GLP, Unpublished
R-4211	Odanaka, Y.	2009	Determination of residue of fenpyroximate in tea (dried leaves) following one application of fenpyroximate 5SC in Japan, 2009, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4432	Iijima, K.	2010	Determination of residue of fenpyroximate in tea (dried leaves) following two applications of fenpyroximate 5SC and NNI-0712B in Japan
R-4461	Samoil, K.	2011	Summary report of magnitude of the residue research of fenpyroximate on tea, Rutgers, The State University of New Jersey, New Jersey, USA, GLP, Unpublished
R-4478	Goto, M.	1989	Determination of residue of fenpyroximate in processed fraction (infusion) of tea following one application of fenpyroximate 5SC in Japan, 1989, The Institute of Environmental Toxicology, Ibaraki, Japan, Not GLP, Unpublished
R-4479	Goto, M.	1989	Determination of residue of fenpyroximate in tea (dried leaves) following one application of fenpyroximate 5SC in Japan, 1989, The Institute of Environmental Toxicology, Ibaraki, Japan, Net GLP, Unsubliched
R-4475	Penketh, S.	2008	Fenpyroximate–Hydrolysis under Simulated Processing Conditions. GLP, Unpublished
R-4516	Jullian, E.	2016	Development and Validation of Analytical Method for Processing Commodities and Actual Processing Studies for Beans with Pods (Outdoor) after One Application of NNI-850 5SC (fenpyroximate) at 2 Sites in Southern Europe (2 MOR), 2015, Eurofins Agroscience Services Ltd, UK, CLP, Unwildight Remet No. 515 (2011) 2 REP.
R-4515	Jullian, E.	2016	Development and Validation of Analytical Method for Processing Commodities and Actual Processing Studies for Apples (Outdoor) after One Application of NNI-850 5SC (fenpyroximate) at 2 Sites in Northern Europe (2 MOR), 2015, Eurofins Agroscience Services Ltd, UK, GLP, Unpublished, Report No. S15-03109
R-4518	Jullian, E.	2016	Development and Validation of Analytical Method for Processing Commodities and Actual Processing Studies for Tomatoes (Outdoor) after One Application of NNI-850 5SC (fenpyroximate) at 2 Sites in Southern Europe (2 MOR), 2015, Eurofins Agroscience Services Ltd, UK, GLP, Unpublished, Report No. S15-03111
R-4517	Jullian, E.	2016	Development and Validation of Analytical Method for Processing Commodities and Actual Processing Studies for Grapes (Outdoor) after One Application of NNI-850 5SC (fenpyroximate) at 2 Sites in Northern Europe (2 MOR), 2015, Eurofins Agroscience Services Ltd, UK, GLP, Unpublished Report No. \$15-03110
R-4512	Jullian, E.	2016	Development and validation of analytical method for processing commodities and actual processing studies for strawberries (outdoor) after one application of NNI-850 5SC (fenpyroximate) at 2 sites in southern Europe (2 MOR), 2015. Eurofins ~Agroscience Services Ltd, UK, GLP, Unpublished report No.: \$15-03112-RFP
R-4113	Baker, F. C. et al	1999	Magnitude of the residue in meat and milk from dairy cows administered fenpyroximate. Nihon Nohyaku Co. Ltd., Tokyo, Japan, GLP, Unpublished
R-4519	Samoil, K. S.	2012	Fenpyroximate: Magnitude of the residue on Cherry, IR-4 PR No. 10438, 10438.10-MIR02, Unpublished
R-4520	Samoil, K. S.	2012	Fenpyroximate: Magnitude of the residue on Peach, IR-4 PR No. 10468,

Report No.	Author	Year	Title
			10468.10-MIR03, Unpublished
R-11182	Samoil, K. S.	2015	Fenpyroximate: Magnitude of the residue on Watermelon,
R-4455		2011	Pesticide residue analysis report, , Nihon Nohyaku Co. Led., Tokyo, Japan
R-10173	Leonard, R. C.	2011	Fenpyroximate: Magnitude of the residue on potato
R-4117	Hatton, C. R.	2001	Magnitude of residues of Fenpyroximate in/on cotton raw agricultural
			commodities, Nihon Nohyaku Co. Ltd., Tokyo, Japan,
R-4118	Hatton, C. R.	2001	Magnitude of residues of Fenpyroximate in/on processed fractions of cotton
			raw agricultural commodities, Nihon Nohvaku Co. Ltd., Tokvo, Japan,