Cyantraniliprole (263)

First draft prepared by K. Mahieu, Centre for Nutrition, Prevention and Health Services (VPZ), National Institute for Public Health and the Environment (RIVM), The Netherlands

EXPLANATION

Cyantraniliprole was first evaluated for toxicology and residues by the JMPR in 2013 and an ADI of 0–0.03 mg/kg bw was established. An ARfD was considered to be unnecessary. Additional use patterns were evaluated by the 2015 JMPR. The established residue definitions are:

Definition of the residue for compliance with the MRL for both plant and animal commodities: cyantraniliprole.

Definition of the residue for dietary risk assessment for unprocessed plant commodities: cyantraniliprole.

Definition of the residue for dietary risk assessment for processed plant commodities: *sum of cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole.*

Definition of the residue for dietary risk assessment for animal commodities: sum of cyantraniliprole, 2-[3-Bromo-1-(3chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4-oxo-6-quinazolinecarbonitrile [IN-J9Z38], 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-quinazolinecarbonitrile [IN-MLA84], 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide [IN-N7B69] and3-Bromo-1-(3chloro-2-pyridinyl)-N-[4-cyano-2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-1H-pyrazole-5-carboxamide [IN-MYX98], expressed a cyantraniliprole.

The residue is not fat-soluble.

At the Forty-ninth Session of the CCPR (2017), cyantraniliprole was scheduled for evaluation of additional use patterns by the 2018 JMPR.

The Meeting received a soil degradation study in rice, various supervised residue trial data for foliar and soil applications of cyantraniliprole on grapes, strawberries (outdoor), cranberries (outdoor), mango (outdoor), cucumber (glasshouse), and paddy rice and information on registered uses of cyantraniliprole on corresponding crops. In addition a processing study on grapes was resubmitted. Some of the submitted studies were evaluated by previous Meetings (2013 and 2015).

METABOLISM AND ENVIRONMENTAL FATE

Environmental fate

Degradation in soil and water systems

In a supervised residue study in rice [Qing, HX., Report CL02010-026] the degradation of cyantraniliprole and its metabolite IN-J9Z38 was investigated. Though this study was submitted to the 2013 JMPR, the data on degradation in water, soil and plants of rice fields was not summarised previously.

A single application of 150 g ai/ha was sprayed into the rice paddies. Soil, plant and field water samples were taken at 1 hour and 3, 5, 7, 14, 28, 35, 42 and 60 days after application. Plant samples of at least 1.0 kg were taken randomly from across the plots. Water was sampled by glass from at least 10 sampling points per plot and mixed evenly. Soil samples (0–10 cm) weighing 1.0 kg were quartered and debris was removed. The results are summarised in Table 1.

Soil and plant samples were extracted with acetonitrile and water (30:10 %v/v) and acetonitrile, filtered and cleaned up via silica gel columns. The samples were then analysed using reverse phase HPLC separation coupled to tandem mass spectrometry (LC-MS/MS). The ion transitions monitored were m/z 475 \rightarrow 286 and/or 475 \rightarrow 444.1 (cyantraniliprole) and m/z 457 \rightarrow 188 (IN-J9Z38). The limit of quantification (LOQs) for parent was 0.005 mg/L (water), 0.01 mg/kg for soil and brown rice and 0.05 mg/kg for rice straw and rice hull. The LOQs for metabolite IN-J9Z38 were 0.01 mg/L (water), 0.02 mg/kg (soil and brown rice), and 0.1 mg/kg for rice straw and rice hull.

No geometric mean was calculated.

DALA	Location Z	'Hejiang			Location H	lunan			Location Shandong				
	parent		IN-J9Z38		parent	parent		IN-J9Z38		parent		IN-J9Z38	
	res.	degr. rate	res.	degr. rate	res.	degr. rate	res.	degr. rate	res.	degr. rate	res.	degr. rate	
	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)	
1 h	0.16	-	<0.01	-	0.19	-	0.043	-	0.34	-	0.34	-	
1	0.22	-	<0.01	-	0.054	71.6	0.061	-	0.15	55.9	0.28	17.6	
3	0.12	25	<0.01	-	0.023	87.9	0.024	60.7	0.053	84.4	0.14	58.8	
5	0.090	43.8	<0.01	-	0.018	90.5	<0.01	-	0.052	84.7	0.14	58.8	
7	0.027	83.1	<0.01	-	0.013	93.2	<0.01	-	0.025	92.6	0.092	72.9	
14	0.0090	94.3	<0.01	-	<0.005	-	<0.01	-	0.023	93.2	0.085	75.0	
21	0.0059	96.3	<0.01	-	<0.005	-	<0.01	-	0.013	96.2	0.047	86.2	
28	0.0056	96.5	<0.01	-	<0.005	-	<0.01	-	0.0071	97.9	0.044	87.1	
control	<0.005	-	<0.01	-	<0.005	-	<0.01	-	<0.005	-	<0.01	-	
formula							İ		1				
and	Ct=0.1469e ^{-0.141t}		-		Ct=0.1064	e ^{-0.343t}	-		Ct=0.1224e ^{-0.1115t}		Ct=0.2236	e ^{-0.0375t}	
T _{1/2}													
	R ² =0.8747				R ²⁼ 0.8255				R ² =0.8005		R ² =0.8428		
	T _{1/2=} 4.9 days				T _{1/2=} 2.0 da	ys			T _{1/2=} 6.2 days		T _{1/2=} 10.3 days		

Table 1 Degradation d	vnamics of cu	antranilinrolo a	nd its motabolito II	10729 in water of	rico fiolde
Table T Degradation u	ynannics or cy	anu aninpi ole a		V-J7Z30 III Waler UI	LICE LIEIUS

Table 2 Degradation dynamics of cyantraniliprole and its metabolite IN-J9Z38 in soil of rice fields

DALA	Location Z	Location Zhejiang				lunan			Location Shandong			
	parent		IN-J9Z38		parent		IN-J9Z38		parent		IN-J9Z38	
	res. (mg/kg)	degr. rate (%)	res. (mg/kg)	degr. rate (%)	res. (mg/kg)	degr. rate (%)						
1 h	<0.01	-	<0.02	-	<0.01	-	<0.02	-	0.28	-	<0.02	-
1	0.012	-	<0.02	-	<0.01	-	<0.02	-	0.21	25.0	<0.02	-
3	0.023	-	<0.02	-	<0.01	-	<0.02	-	0.19	32.1	<0.02	-
5	0.018	-	<0.02	-	<0.01	-	<0.02	-	0.18	35.7	<0.02	-
7	0.015	-	<0.02	-	<0.01	-	<0.02	-	0.048	82.9	<0.02	-
14	0.024	-	<0.02	-	<0.01	-	<0.02	-	0.055	80.4	<0.02	-
21	0.023	-	<0.02	-	<0.01	-	<0.02	-	0.032	88.6	<0.02	-
28	0.022	-	<0.02	-	<0.01	-	<0.02	-	/	-	<0.02	-
control	<0.01	-	<0.02	-	<0.01	-	<0.02	-	<0.01	-	<0.02	-
formula and T _{1/2}	-		-	-		-		-		Ct=0.2273e ^{-0.1022t}		
									T _{1/2=} 6.8 da	iys		

Table 3 Degradation d	ynamics of c	yantraniliprol	e and its metabolite	IN-J9Z38 in rice	plants

DALA	Location Z	Hejiang			Location F	lunan			Location S	Shandong		
	parent		IN-J9Z38		parent		IN-J9Z38		parent		IN-J9Z38	
	res. (ma/ka)	degr. rate (%)	res. (ma/ka)	degr. rate	res. (ma/ka)	degr. rate	res. (ma/ka)	degr. rate	res. (ma/ka)	degr. rate (%)	res. (ma/ka)	degr. rate (%)
1 h	18	-	< 0.01	-	0.57	-	<0.01	-	1.6	-	< 0.01	-
1	12	33.3	<0.01	-	0.41	28.1	<0.01	-	1.2	25.0	<0.01	-
3	0.84	95.3	<0.01	-	0.14	75.4	<0.01	-	/	-	<0.01	-
5	0.65	96.4	<0.01	-	0.099	82.6	<0.01	-	/	-	<0.01	-
7	0.67	96.3	<0.01	-	0.095	83.3	<0.01	-	0.21	86.9	<0.01	-
14	0.34	98.1	<0.01	-	0.055	90.4	<0.01	-	0.111	93.1	<0.01	-
21	0.084	99.5	<0.01	-	<0.005	-	<0.01	-	0.077	95.2	<0.01	-
28	/	-	<0.01	-	<0.005	-	<0.01	-	0.076	95.3	<0.01	-
control	<0.05	-	<0.01	-	<0.005	-	<0.01	-	<0.005	-	<0.01	-
formula and T _{1/2}	Ct=5.493e ^{-0.2177t}		-		Ct=0.3531	Ct=0.3531e ^{-0.1578t}		-		e ^{-0.1109t}	-	
	R ² =0.7475				R²⁼0.7758				R ² =0.8231			
	T _{1/2=} 3.2 days				T _{1/2=} 4.4 da	ys			T _{1/2=} 6.3 days			

66

Analytical methods

For determination of the residues in the supervised residue trials and processing studies submitted to the 2018 JMPR LC-MS/MS method 1187A [McClory *et al.*, 2007, Report DP-15736] and extended with additional metabolites (supplement 1) as evaluated by JMPR 2013 and 2015 were used. The method was further validated [Kinney, 2008, Report DP-18846] and evaluated by JMPR 2013. The method was adapted for use to determine residues of IN-N5M09 and IN-F6L99 in grape processed fractions [Aitken, 2011, Report DP-27718] as evaluated by the JMPR 2013. Concurrent recoveries and method validation results as presented for the current evaluation and not previously evaluated are included in Table 4 (parent) and Table 5 to Table 10 (metabolites).

Matrix	Reported	Fortification	Recovery	(%)	RSD	n	control	calibration	Code no;
	LOQ	level (mg/kg)	mean	range	(%)		mg/kg		Report no
grape, mature	0.01	0.01	80	77–86	3.8	3	<0.01	external standard	Report DP-39380,
fruit		0.1	83	82-84	1.2	3		0.1–20 ng/mL	concurrent recovery
			88	85, 91	-	2		linear R ≥ 0.99	
cranberry, fruit	0.01	0.01	85	80–89	4.8	4	<0.01	external standard,	Report IR-4-10199,
-		0.1	90	87–96	4.5	4		R2 ≥ 0.9954	concurrent recovery
		1.0 ^a	92	89, 95	-	2			
cranberry, fruit	0.01	0.01	92	75–100	9.5	6	<0.01	external standard,	Report IR-4-10199,
		0.1	84	79–88	5.4	3		R2 ≥ 0.9987	method validation
		1.0	93	92-95	1.6	3			
strawberry,	0.01	0.01	96	93-100	3.8	3	<0.01	external standard,	Report IR-4-10328,
fruit		0.1	99	96-104	4.4	3		linear, R2 ≥ 0.9975	method validation
		1.0	84	79–90	6.5	3			
strawberry,	0.01	0.01	112	98–127	12.9	3	<0.01	external standard,	Report IR-4-10328,
fruit		0.1	94	86–106	6.3	7		linear, R2 ≥ 0.9966	concurrent recovery
		1.0	96	95–97	1.2	3			
mango,	0.01	0.01	96	90-105	5.7	6	<0.01	external standard	Report No. 46393,
peel		0.10	97	94-100	2.6	4		0.050–20 ng/mL	concurrent recovery
		2.0	-	105	-	1		R2 ≥ 0.99	
		2.6	88	85–91	3.5	3			
mango,	0.01	0.01	95	88–100	4.9	5	<0.01	external standard	Report No. 46393,
peel		0.10	89	70–103	16	5		0.20–20 ng/mL	method validation,
								R2 ≥ 0.99	quantification
mango,	0.01	0.01	96	83-109	11	5	<0.01	external standard	Report No. 46393,
peel		0.10	89	68–106	18	5		0.20–20 ng/mL	method validation,
								R2 ≥ 0.99	confirmation
mango, pulp	0.01	0.01	92	87-100	6.5	4	<0.01	external standard	Report No. 46393,
		0.10	98	92-102	4.8	4		0.050–20 ng/mL	concurrent recovery
								R2 ≥ 0.99	
mango, pulp	0.01	0.01	103	93–110	7.7	5	<0.01	external standard	Report No. 46393,
		0.10	97	86–103	7.7	5		0.20–20 ng/mL	method validation,
								R2 ≥ 0.99	quantification
mango, pulp	0.01	0.01	102	86–110	9.8	5	<0.01	external standard	Report No. 46393,
		0.10	96	88–102	6.2	5		0.20–20 ng/mL	method validation,
								R2 ≥ 0.99	quantification

Table 4 Validation results for LC-MS/MS method in plant commodities for determination of parent cyantraniliprole

^a storage stability concurrent recoveries.

Table 5 Validation results for LC-MS/MS method in plant commodities for determination of metabolite IN-J9Z38

Matrix	analyte	Fortifi- cation level (mg/kg)	Recovery mean	range (%)	RSD (%)	n	Control mg/kg	calibration	Code no; Report no
grape, mature fruit	IN-J9Z38	0.01 0.1	82 85	81–83 84–87	1.2 1.8	3 3	<0.01	external standard 0.1–20 ng/mL linear R ≥ 0.99	Report DP-39380, concurrent recovery
cranberry, fruit	IN-J9Z38	0.01 0.1 1.0 ª	89 92 103	80–98 89–94 96, 110	8.4 2.6 -	4 4 2	<0.01	external standard, linear R ² ≥0.9664	Report IR-4-10199, concurrent recovery
cranberry,	IN-J9Z38	0.01	94	77–115	18	6	<0.01	external standard,	Report IR-4-10199,

Matrix	analyte	Fortifi- cation level (mg/kg)	Recovery mean	/ (%) range	RSD (%)	n	Control mg/kg	calibration	Code no; Report no
fruit		0.1	90 05	82-95	8.0	3		linear R ² ≥0.9954	method validation

^a storage stability concurrent recoveries.

able 6 Validation results for LC-MS/MS method	plant commodities for determination of metabolite IN-JCZ38
---	--

Matrix	analyte	Fortifi-	Recovery	(%) range	RSD	n	control	calibration	Code no; Report no
		level	moun	runge	(70)		iiig/ikg		Report no
		(mg/kg)							
grape,	IN-JCZ38	0.01	84	80-90	6.3	3	<0.01	external standard	Report DP-39380,
mature		0.1	85	84–86	1.4	3		0.1–20 ng/mL	concurrent
fruit								linear R ≥ 0.99	recoveries
cranberry,	IN-JCZ38	0.01	93	83–	10	4	<0.01	external standard,	Report IR-4-
fruit		0.1	102		4.7	4		linear R ² ≥0.9909	10199,
		1.0 ^a	88	83–91	-	2			concurrent
			94	87, 101					recovery
cranberry,	IN-JCZ38	0.01	86	73–	13	6	<0.01	external standard,	Report IR-4-
fruit		0.1	105		5.5	3		linear R ² ≥0.9831	10199,
		1.0	83	78–86	6.5	3			method validation
			94	87–98					

^a storage stability concurrent recoveries.

Table 7 Validation results for LC-MS/MS method in plant commodities for determination of metabolites IN-K7H19

a .
Code no;
Report no
Report DP-
39380,
concurrent
recoveries
Report IR-4-
10199,
concurrent
recovery
Report IR-4-
10199,
method
validation
()

^a storage stability concurrent recoveries.

Table 8 Validation results for LC-MS/MS method in plant commodities for determination of metabolite IN-MLA84

Matrix	analyte	Fortifi- cation	Recovery (%) mean range		RSD (%)	n	Control ma/ka	calibration	Code no; Report no
		level (mg/kg)			()				
grape, mature fruit	IN-MLA84	0.01 0.1	87 87	85–91 86–88	4.0 1.3	3 3	<0.01	external standard 0.1–20 ng/mL linear R ≥ 0.99	Report DP- 39380, concurrent recovery
cranberry,	IN-MLA84	0.01	96	94-106	8.2	4	<0.01	external standard,	Report IR-4-

Matrix	analyte	Fortifi- cation level (mg/kg)	Recovery mean	(%) range	RSD (%)	n	Control mg/kg	calibration	Code no; Report no
fruit		0.1 1.0 ª	96 106	84—104 98, 115	8.9 11	4 2		linear R ² ≥0.9714	10199, concurrent recovery
cranberry, fruit	IN-MLA84	0.01 0.1 1.0	90 85 92	68–106 55–100 85–106	17 30 13	6 3 3	<0.01	external standard, linear R ² ≥0.9859	Report IR-4- 10199, method validation

^a storage stability concurrent recoveries.

Table 9 Validation results for LC-MS/MS method in plant commodities for determination of metabolite IN-MYX98

Matrix	analyte	Fortifi- cation level (mg/kg)	Recovery mean	(%) range	RSD (%)	n	control mg/kg	calibration	Code no; Report no
grape, mature fruit cranberry, fruit	IN-MYX98 IN-MYX98	0.01 0.1 0.01 0.1 1.0 °	87 90 86 93 93	84–92 89–91 79–91 89–95 93 93	4.8 1.3 5.9 3.1	3 3 4 4 2	<0.01 <0.01	external standard 0.1-20 ng/mL linear R ≥ 0.99 external standard, linear R ² ≥ 0.9991	Report DP-39380, concurrent recoveries Report IR-4- 10199, concurrent
		1.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70, 70		-			recovery
cranberry, fruit	IN-MYX98	0.01 0.1 1.0	89 90 93	83–93 88–91 92–95	4.4 1.7 1.9	6 3 3	<0.01	external standard, linear R ² ≥0.9980	Report IR-4- 10199, method validation

^a storage stability concurrent recoveries.

Table 10 Validation results for LC-MS/MS method in plant commod	dities for determination of metabolite IN-N7B69
---	---

Matrix	analyte	Fortifi-	Recovery	Recovery (%)		n	control	calibration	Code no;
		cation	mean	range	(%)		mg/kg		Report no
		level							
		(mg/kg)							
grape,	IN-N7B69	0.01	94	88-	7.7	3	<0.01	external standard	Report DP-39380,
mature		0.1	102		0.6	3		0.1–20 ng/mL	concurrent
fruit			98	97–98				linear R ≥ 0.99	recoveries
cranberry,	IN-N7B69	0.01	82	80-84	2.5	4	<0.01	external standard,	Report IR-4-
fruit		0.1	92	87–99	5.3	4		linear R ² ≥0.9983	10199,
		1.0 ^a	92	91, 92	-	2			concurrent
									recovery
cranberry,	IN-N7B69	0.01	82	76–93	7.6	6	<0.01	external standard,	Report IR-4-
fruit		0.1	86	85–88	2.0	3		linear R ² ≥0.9978	10199,
		1.0	95	92–97	2.7	3			method validation

^a storage stability concurrent recoveries.

Stability of pesticide residues in stored analytical samples

The 2018 Meeting did not receive additional specific storage stability studies. However, storage stability data were included in the submitted supervised residue trials [Dorschner, 2012, Report IR-4-10313 and Samoil, 2013, Report IR-P No. 10199]. The study by Dorschner, 2012 (cucumber) was evaluated by the previous Meeting [JMPR 2013]. Results were not re-included. The data on cranberries were new and summarised below.

Storage stability samples were fortified with cyantraniliprole and each of its six metabolites at 1.0 mg/kg (cranberries) soon after the receipt of the samples by the analytical laboratory. The storage stability samples were held in frozen storage under similar conditions to the field generated samples. After 546 days (cranberry study) of freezer storage (prior to analysis of field-treated samples), and again after 576 days of storage (after completion of the analysis of field-treated samples), the samples were analyzed for cyantraniliprole and its six metabolites. The recoveries for the storage stability samples ranged from 74 to100% at

546 days and from 75 to 101% at 576 days. Concurrent recoveries for spikes analyzed along with the storage stability samples were in the range of 87–115%. This data indicates that cyantraniliprole and its metabolites are stable under the conditions which the samples were held between harvest and analysis.

The results are presented in Table 11 (metabolites). Samples were reported as uncorrected for average concurrent method recoveries.

Table 11 Storage stability of cyantraniliprole and the six metabolites in cranberries as determined in field residue trials [Samoil, 2011, Report IR-4-10199]

Compound	Storage time (days)	Spike level (mg/kg)	% remaining (n)
cyantraniliprole	546	1.0	87, 88, 92 (3)
cyantraniliprole	576	1.0	85, 86, 87 (3)
IN-J9Z38	546	1.0	91, 87, 77 (3)
IN-J9Z38	576	1.0	77, 82, 82 (3)
IN-JCZ38	546	1.0	85, 77, 74 (3)
IN-JCZ38	576	1.0	86, 77, 79 (3)
INK7H19	546	1.0	95, 93, 90 (3)
INK7H19	576	1.0	97, 91, 97 (3)
IN-MLA84	546	1.0	95, 92, 100 (3)
IN-MLA84	576	1.0	79, 75, 101 (3)
IN-MYX98	546	1.0	99, 96, 89 (3)
IN-MYX98	576	1.0	93, 92, 94 (3)
IN-N7B69	546	1.0	82, 82, 74 (3)
IN-N7B69	576	1.0	79, 79, 79 (3)

USE PATTERN

Cyantraniliprole is registered in many countries for the control of insect pests on fruits, vegetables and cereals. Cyantraniliprole is intended for use as foliar applications in a wide range of fruit and vegetable crops, tree crops and oil seed crops. Other applications include seed treatments and pre-plant soil applications. The information from the labels made available to the 2018 Meeting and relevant for the submitted field trial data are included in the following table.

Table 12 Registered pre-harvest uses of cyantraniliprole

Crop	F/G	Country	Form	Application	PHI, days						
				Method	Rate	Spray conc,	Number				
					g ai/ha	g ai/hL					
Berries and other small fruits (004) - small fruit vine climbing – Subgroup 004D											
grape, wine	F	UK	SE, 100	foliar spray	72–90	6–18	1–2	10 days			
(FB 1236)			g/L				(RTI 14 days)	500-1200			
								L/ha			
grape, table	F	BE	SE, 100	foliar spray	53	n.r.	1–2/year	10 days			
and wine			g/L				(RTI 10 days)				
(FB 1235 and											
FB 1236)											
grape, wine	F	1	SE, 100	foliar spray	75–112.5	5–7.5	1–2	10 days			
(FB1236)			g/L				(RTI 14 days)				
Berries and othe	r small fr	uit – Iow growir	ig berries – Si	ubgroup 004E							
cranberries	F	Canada	SE, 100	foliar spray or	75–150	25-75	1-4	14 days			
(FB 0265)			g/L	ground spray		[d]	(RTI 7 days)	[a]			
Label: low								[b]			
growing											
berries, except											
strawberry.											
strawberries	F	Canada	SE, 100	foliar or	50-150	50	1-4	1 day			
(FB 0275)			g/L	ground spray		[e]	(RTI 5 days)	[a]			
								[b]			
strawberries	F	UK	0D, 100	foliar spray	75	7.5–25	1–2	1 days			
(FB 0275)			g/L				(RTI 7 days)	[a]			
strawberries	F	USA	SE 100	foliar spray	99-148	158 (max)	1–3	1 day			
(FB 0275)			g/L			[f]	(RTI 7 days)	[a] [b] [c] [g]			

70

Cron	E/G	Country	Form	Application	Application							
orop	170	oountry	Tom	Method	Rate	Spray conc,	Number	r m, uays				
					g ai/ha	g ai/hL						
Assorted tropica	I and sub	-tropical fruits -	- inedible smo	ooth peel – large – S	ubgroup 006E	3						
mango (FI 0345)	F	Cambodia	0D, 100 g/L	foliar spray	150–180	15–18	2 (RTI 7 days)	7 days				
Eruiting vogetab		rhite Crown 01	1									
	les, cucu	IDILS – GIOUP UI	CE 100	faller annau	72 140	150 (may)	1.0	0 days				
Cucumber	G	USA	SE, 100	Tollar spray	/3-149	158 (max)	I-3 (PTI5 days)	0 days				
(VC 0424)			y/∟				(KTT5 udys)	[b]				
								[c]				
cucumber	G	Canada	SE, 100	foliar spray	25-100	ns	1-4	0 day				
(VC 0424)			g/L				(RTI 7 days)	[a]				
								[b]				
Rice cereals – Si	ubgroup	020C										
rice	F	China	OD, 100	spray	30–60	ns	2	21 days				
(GC 0649)			g/L				(RTI 7 days)	max 2				
								applications				
								/season				

OD=Oil based suspension concentrate; SE=Suspo emulsion; ns=not specified; n.r.=not reported; RTI=retreatment interval

[^a] Use of an adjuvant is advised for enhanced control.

[^b] Do not apply more than 450 kg ai/ha /calendar year.

[^c] Re-entry interval 12 days.

[d] Minimum 200 L/ha - up to 3000 L/ha

[*] This is de maximum concentration a the minimum water rate of 325 L/ha.

[^f] This is the maximum concentration at the minimum water rate.

[9] Crops on this label and the following crops or crop groups may be planted immediately following the last application of DuPont[™] EXIREL[®]: Brassica Leafy Vegetables (Crop Group 5); Bulb Vegetables (Crop Group 3-07); Cotton; Cucurbit Vegetables (Crop Group 9); Fruiting Vegetables (Crop Group 8-10); Leafy Vegetables (except brassicas) (Crop Group 4); Leaves of Root and Tuber Vegetables (Crop Group 2); Legume Vegetables (Crop Groups 6 and 7); Low Growing Berries (Berry and Fruit Crop Subgroup 13-07H); Oilseeds (Crop Group 20); Peanuts; Root and Tuber Vegetables (Crop Subgroups 1B and 1C); Tobacco. The following crops or crop groups may be planted 30 days following the last application of EXIREL[®]: Cereal Grains (Crop Group 15); Forage, Fodder and Straw of Cereal Grains (Crop Group 16); Grass Forage, Fodder and Hay (Crop Group 17); Non-grass Animal Feeds (forage, fodder, straw and hay) (Crop Group 18); Sugar beets. There is no plant back restriction for conversion of a treated field to, or for making a new or replacement planting into established orchards or fields of "Low Growing Berries". All other crops cannot be planted until 12 months after the last application.

RESIDUES RESULTING FROM SUPERVISED TRIALS

The Meeting received information on supervised field trials following foliar applications of cyantraniliprole to the following crops: wine grapes, strawberries, cranberries, cucumber (greenhouse), mango and rice.

The supervised trials were documented with laboratory and field reports. Laboratory reports included method validation including procedural recoveries with spiking at residue levels similar to those occurring in the samples from the supervised residue trials. Dates of analyses or duration of residue sample storage were also provided. Although trials included control plots, no control data are recorded in the tables unless residues in control samples exceeded the LOQ. In such cases, the residues found are noted as "c = nn mg/kg" in the reference and comments columns. Residue data are recorded unadjusted for recovery.

Results from replicated field plots are presented as individual values. When residues were not detected they are shown as <LOQ. Residues and application rates have been reported as provided in the study reports, although the results from trials used for estimation of maximum residue levels (underlined) have been rounded to two significant figures in the Appraisal.

In some trials, samples were taken just before the final application and then, again on the same day after the spray had dried. The notation for these two sampling times in the data tables is '-0' and '0' respectively.

The analytical methods used in the majority of the field trials were capable of analysing both cyantraniliprole and one to six metabolites (among them, four metabolites are considered in a residue definition). In most cases, residues of these metabolites were not detected (LOD of 0.003 mg/kg in most trials) or in some cases were reported at levels below the LOQ of 0.01 mg/kg. Where

metabolite residues were present at levels above the LOQ, these values are recorded in the tables of previous evaluations using the abbreviations listed below:

M1=IN-J9Z38 quinazolinecarbonitrile	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4-oxo-6-
M2=IN-MYX98 1 <i>H</i> -pyrazole-5-carboxamide	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-
M3=IN-N7B69 [(methylamino)carbonyl]pheny	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6- /l]-1 <i>H</i> -pyrazole-5-carboxamide
M4=IN-MLA84 quinazolinecarbonitrile	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-
M5=IN-JCZ38 benzenedicarboxamide	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]carbonyl]amino]-N'3',5-dimethyl-1,3-
M6=IN-N5M09	6-Chloro-4-methyl-11-oxo-11H-pyrido[2,1-b]quinazoline-2-carbonitrile

Berries and other small fruits (Group 004)

Small fruit vine climbing (Subgroup 004D)

Grapes, wine (FB 1236)

Two studies on grapes were submitted to the 2018 Meeting [Aitken 2011, Report DP-27718 and Munro and Campbell, 2015, Report DP-39380]. One study [Aitken 2011, Report DP-27718] was previously evaluated by the 2013 JMPR, but not further addressed as no registered use label was submitted at that time. For completeness, it is included in the current evaluation in Table 13, referenced as JMPR 2013.

In a second study nine field residue trials on wine grapes were conducted in Northern and Southern Europe in the 2014 growing season [Munro and Campbell, 2015, Report DP-39380]. Two foliar applications at a targeted rated of 112.5 g ai/ha cyantraniliprole (100 g/L SE formulation) were applied at 14 day intervals, using 1500 L/ha. In the tests performed in France (Trial 08 and 09) a reduced water volume of 300 L/ha was used. No adjuvant was added.

Samples of mature wine grapes were collected by hand 10 days after the last application and weighed at least 1 kg (\geq 12 bunches). Samples were frozen within 8 hours of collection and stored at -20 °C for up to 8.2 months (245 days) before analysis. The samples were analyzed for residues as described for the study above. This method is based on LC-MS-MS method described in Report DP-15736 [McClory *et al.*, 2007, Report 15736 and modified in McClory *et al.*, 2011, DP-15736, S1] and validated on representative crops [Kinney, 2008, Report DP-18846]. The method with its modifications and the validation are evaluated by JMPR 2013. Concurrent recoveries ranged from 77–91% (cyantraniliprole) and 81–106% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg (n = 3/fortification level and n = 2 for fortification level 1.0 mg/kg (parent only)). The recovery levels are reported in the analytical section. The reported residue levels were not corrected for concurrent recoveries. The LOQ of the method was 0.01 mg/kg. The results are summarized in Table 13.

Storage stability for cyantraniliprole and its metabolites was assessed in a separate study [Rodgers, 2010, Report DP-16990], evaluated by JMPR 2013 and supports the storage period and conditions employed for both grape studies (stable in grapes for up to 24 months).

Parent was the only residue found. All other metabolites (M1–M6) were below LOQ.

Table 13 Residues of cyantraniliprole in field grown grapes from supervised (reversed decline) trials in Europe following 2 foliar applications.

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing, last application	DAT ^[d]	parent, mg/kg ^[a]	trial number, reference
Kato Milia, Pieria, Central	SE 100 g/L	2	14	150 150	10	foliar broadcast,	-0	0.14	Trial 01 [JMPR 2013]
Macedonia, Greece, 2009 (Muscat)				149	10	BBCH 89, 04 Sept BBCH 87	10	0.32	
(musour)				152	10	21 August,	10	0.20	

72

Location	Form	No	Inter	a	a	method	ΠΔΤ	narent	trial number reference
vear.	TOIL	110	val	9 ai/ha	9 ai/hL	timing, last	[d]	ma/ka	that number, reference
(variety)			(days)	aiina	di/ IIE	application		[a]	
(121121)			()-/	151	10	BBCH 84	21	0.076	
				151		11 August		0.070	
				151	10	BBCH 81.	28	0.11	
				149		31 July			
				154	10	BBCH 77,	56	0.029	
				150		10 July			
Villié Morgon, Rhône	SE 100	2	14	150	10	foliar	-0	0.050	Trial 02
Alpes,	g/L					broadcast			[JMPR 2013]
South France,				147	10	BBCH 89,	0	0.24	
2009				150		03 Sept			
(Gamay)				147	10	BBCH 85,	10	0.14	
				149		24 August			
				148	10	BBCH 83,	21	0.11	
				147	4.0	13 August		0.00/	
				154	10	BBCH 81-	28	0.096	
				150		83,00 August			
				151	10		56	0.050	
				149	10		50	0.050	
Höhnstedt, Saxonv-	SF 100	2	14	155	10	foliar	-0	0.29	Trial 03
Anhalt,	a/L	-		154		broadcast	, i i i i i i i i i i i i i i i i i i i	0.27	[JMPR 2013]
	5								[]
Germany,						BBCH 89,	0	0.42	
2009						14 Sept			
(Gutedel)				146	10	BBCH 81-85	10	0.33	
				152		31 August			
				152	10	BBCH 79	21	0.27	
				144		21 August			
				144	10	BBCH 77-	28	0.15	
				144		79, 10			
					4.0	August	F (0.47	
				144	10	BBCH 73,	56	0.17	
Moaroa Island	SE 100	2	14	152	10	foliar	0	0.11	Trial 04
Colchester Essex	a/l	2	14	150	10	broadcast	-0	0.11	[IMPR 2013]
obicitester, Essex,	9/1			150		bioducast			[510] [2 2 7 3]
United Kingdom.						BBCH 89.	0	0.23	
2009						29 Sept			
(Reichensteiner)				150	10	BBCH 85,	10	0.30	
				150		19 Sept			
				150	10	BBCH 79,	21	0.16	
				150		08 Sept			
				151	10	BBCH 77–	28	0.16	
				150		79, 01 Sept			
				150	10	BBCH 71-	56	0.10	
				150		75,04 August			
Valdanz Wittlich	SE 100	2	12_15	1//6	10	foliar	-0	0.16	Trial 05
VEIUCHZ, WILLIICH,		_	13-13	140	10	broadcast	-0	0.10	[IMPR 2013]
Germany	9' -			070		BRCH 80	0	0.46	[588111 2010]
2009						15 Oct		0.40	
(Kerner)				144	10	BBCH 87	10	0.36	
(150		05 Oct		0.00	
				143	10	BBCH 83,	21	0.30	
				148		24 Sept			
				145	10	BBCH 81,	28	0.68	
				143		17 Sept			
				144	10	BBCH 75,	56	0.19	

	-								
Location, year,	Form	No	Inter val	g ai/ha	g ai/hL	method, timing, last	DAT [d]	parent, mg/kg	trial number, reference
(variety)			(days)			application		[a]	
				148		20 August			
Miradolo Terme, Lombardia,	SE 100 g/L	2	13–14	153 149	10	foliar broadcast	-0	0.34	Trial 06 [JMPR 2013]
Italy, 2009						BBCH 89, 17 Sept	0	0.65	1
(Bonarda)				144 149	10	BBCH 87, 06 Sept	10	0.56	-
				147 152	10	BBCH 85, 26 August	21	0.48	
				150 152	10	BBCH 83, 19 August	28	0.67	
				150 148	10	BBCH 79, 22 July	56	0.63]
				144 149	10	BBCH 87, 06 Sept	11	0.16 ^[t]	Trial 06 ^[p]
Guimera, Catalunya,	SE 100 g/L	2	13–14	151 150	10	foliar broadcast	-0	0.062	Trial 07 [JMPR 2013]
Spain, 2009						BBCH 89, 17 Sept	0	0.065]
(Tempranillo)				181 152	10	BBCH 87, 05 Sept	10	0.21]
				151 152	10	BBCH 85, 27 August	21	0.18	
				151 150	10	BBCH 85, 20 August	28	0.079	
				150 149	10	BBCH 81, 23 July	56	0.077	
				151 152	10	BBCH 87, 05 Sept	10	0.12 ^[t]	Trial 07 ^[p]
Marfaux, Champgane Ardenne,	SE 100 g/L	2	14–15	155 145	10	foliar broadcast	-0	0.023	Trial 08 [JMPR 2013] 14 DAA1
North France, 2009						BBCH 89, 15 Oct	0	0.071	
(Chardonnay)				153 145	10	BBCH 89, 06 Oct	10	0.070	
				164 145	10	BBCH 88, 24 Sept	21	0.034	1
				147 149	10	BBCH 87– 88, 17 Sept	28	0.040]
				150 150	10	BBCH 81 20 August	56	0.047]
				153 145	10	BBCH 89 06 Oct	9	0.11 ^[t]	Trial 08 ^[p]
Kato Milia, Pieria, Central Macedonia,	SE 100 g/L	2	14	151 150	10	foliar broadcast	-0	0.15	Trial 13 [JMPR 2013]
Greece, 2010						BBCH 89, 02 Sept	0	0.33	
(Muscat)				150 145	10	BBCH 87, 23 August	10	0.41]
				150 151	10	BBCH 85, 12 August	21	0.31]
				151	10	BBCH 83,	28	0.18	

Location	Form	No	Inter	a	a	method	ΠΔΤ	narent	trial number reference
vear.	1 OIIII	110	val	9 ai/ha	9 ai/hL	timing, last	[d]	ma/ka	that number, reference
(variety)			(days)	aiirtia	GIITE	application		[a]	
(121121)			(150		05 August	1		
				1/0	10	BBCH 76	56	0.071	
				147	10		50	0.071	
Villié Morgon Rhône	SE 100	2	13_15	118	8	foliar	-0	0.021	Trial 14
Alpes	a/l	2	10 10	123	Ū	broadcast	Ŭ	0.021	[JMPR 2013]
1 (1000)	9/ -			.20		Dioduotot			[0.0.0.1.2010]
South France.						BBCH 89.	0	0.073	
2010						10 Sept			
(Gamay)				120	8	BBCH 83-	10	0.071	
-				117		85, 31			
						August			
				123	8	BBCH 81,	21	0.036	
				122		20 August			
				121	8	BBCH 79-	28	0.028	
				122		81, 13			
						August			
				121	8	BBCH 73,	56	0.032	
				119		16 July			
La Roche Vineause,	SE 100	2	13–14	121	40	foliar	-0	0.061	Trial 15
Bourgogne, Rhône	g/L			121		broadcast			[JMPR 2013]
Alpes,						DDCU 00	0	0.10	
North France,						BBCH 89,	0	0.13	
2010						13 Sept			
(Camay)				110	40		10	0.16	
(Gallay)				110	40	03 Sent	10	0.10	
				110	40	BBCH 79_	21	0.16	
				120	40	81.23	21	0.10	
				120		August			
				121	40	BBCH 79	28	0.047	
				120		16 August			
				119	40	BBCH 75.	56	0.047	
				117		19 July			
Miradolo Terme,	SE 100	2	13–14	123	8	foliar	-0	0.45	Trial 16
Lombardia,	g/L			120		broadcast			[JMPR 2013]
	-								
Italy,						BBCH 89,	0	0.99	
2010						15 Sept			
(Bonarda)				122	8	BBCH 85,	10	0.80	
				120		05 Sept			
				400		DD0'' Cr		0.10	
				122	8	BBCH 81,	21	0.63	
				121	0	25 August	00	0.45	
				120	8	BBCH /9,	28	0.45	
				121	0		E4	0.21	
				123	0		00	0.21	
Verdu Catalunya	SE 100	2	1/	121	8	foliar	-0	0.13	Trial 17
vorau, oataiuriya,	a/L	_		120		broadcast		0.15	[JMPR 2013]
	5'-					5.0440451			[
Spain,						BBCH 89,	0	0.40	
2010						30 Sept			
(UII de Llebre)				120	8	BBCH 89, 20	10	0.13	
				120		Sept			
				119	8	BBCH 85, 09	21	0.19	
				120		Sept			
				120	8	BBCH 85, 02	28	0.074	
				119		Sept			

Location,	Form	No	Inter	g	g	method,		parent,	trial number, reference
year, (variety)			val (days)	ai/ha	ai/hL	timing, last application	[0]	mg/kg [a]	
				119 120	8	BBCH 83, 05 August	56	0.024	
Verdu, Catalunya,	SE 100	2	13–14	120	8	foliar	-0	0.060	Trial 18
	g/L			120		bioaucast			
Spain, 2010						BBCH 89, 06 Sept	0	0.16	
(Macabeu)				121 120	8	BBCH 87, 27 August	10	0.48	
				120	8	BBCH 83, 16	21	0.14	
				120	8	BBCH 79, 09	28	0.19	-
				119 120	8	August BBCH 77	56	0.056	-
Boyted Colchester	SE 100		14_15	120	8	12 July foliar	-0	0.053	Trial 10
Essex, United	g/L		14-15	120	0	broadcast	-0	0.033	[JMPR 2013]
Kingdom, 2010						BBCH 89, 07 Oct	0	0.13	
(Baccus)				121	8	BBCH 85, 27	10	0.096	
				120 120	8	Sept BBCH 85,	21	0.059	-
				122		15 Sept		0.000	-
				122	8	85, 08 Sept	28	0.039	
				120 121	8	BBCH 77 12 August	56	0.034	
Höhnstedt, Saxony,	SE 100 g/L	2	14	118 119	8	foliar broadcast	-0	0.033	Trial 20 [JMPR 2013]
Germany,						BBCH 89,	0	0.34	
2010 (Müller-Thurgau)				119	8	27 Sept BBCH 85, 13	10	0.11	-
				148		Sept			-
				125 126	8	BBCH 83, 03 Sept	21	0.14	
				120	8	BBCH 79,	28	0.12	
				122 125	8	23 August BBCH 75	56	0.045	-
				121		02 August			
Kesten, Wittlich,	SE 100 g/L		14–15	121 125	8	foliar broadcast	-0	0.16	Trial 21 [JMPR 2013]
Germany,						BBCH 89, 05	0	0.23	
(Riesling)				125	8	BBCH 87,	10	0.24	-
				119 120	8	25 Sept BBCH 85.	21	0.22	-
				123		14 Sept			-
				125 122	8	BBCH 85, 07 Sept	28	0.21	
				119 121	8	BBCH 81, 02 August	56	0.12	
Veldenz, Wittlich,	SE 100	2	14	117	8	foliar	-0	0.14	Trial 22
	g/L			115		broadcast			[JMPR 2013]
Germany,						BBCH 89	0	0.22	1
(Müller-Thurgau)				119	8	BBCH 87	10	0.19	1

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing, last application	DAT ^[d]	parent, mg/kg ^[a]	trial number, reference
				120		18 Sept			
				115	8	BBCH 85	21	0.49	
				115	Ŭ	07 Sent	21	0.17	
				115	8	BBCH 83-85	28	0.64	
				122	Ŭ	31 August	20	0.01	
				116	8	BBCH 77	56	0.22	
				118	U	03 August	50	0.22	
Los Palacios Andalucia	SE 100	2	13	112	75	foliar	10	0.18	Trial 01 [Munro&Campbell
Snain	a/l	-	10	114	7.5	broadcast	10	0.10	2015 Report DP-393801
2014	9, -				7.0	BBCH 83			
(Merlot-red)						11 Aug			
Sant Marti de Malda	SF 100	2	14	113	7.5	foliar	10	0.099	Trial 02 [Munro&Campbell.
Catalonia, Spain,	a/L	_		112	7.5	broadcast.			2015, Report DP-393801
2014	5				-	BBCH 87.			
(Macabeu-white)						26 Aug			
Klein Umstadt, Hessen,	SE 100	2	13	110	7.5	foliar	10	0.031	Trial 03 [Munro&Campbell,
Germany,	a/L			117	7.5	broadcast.	-		2015, Report DP-39380]
2014	5				-	BBCH 85.			
(Riesling-white)						18 Sept			
Kato Mila, Central	SE 100	2	15	113	7.5	foliar	10	0.43	Trial 04 [Munro&Campbell,
Macedonia, Greece,	g/L			114	7.5	broadcast,			2015, Report DP-39380]
2014	Ū					BBCH 87, 19			
(Cabernet Sauvignon-						August			
red)						-			
Pannonhalma, Györ-	SE 100	2	13	114	14	foliar	10	0.42	Trial 05 [Munro&Campbell,
Moson-Sopron,	g/L			112	14	broadcast,			2015, Report DP-39380]
Hungary,						BBCH 87,			
2014						16 Sept			
(Welshriesling-white)									
Miradolo Terme,	SE 100	2	13	112	7.5	foliar	10	0.40	Trial 06 [Munro&Campbell,
Lomardia,	g/L			113	7.5	broadcast,			2015, Report DP-39380]
Italy,						BBCH 86,			
2014						03 Sept			
(Verdea-white)									
Hühnstedt, Saxony-	SE 100	2	15	108	7.6	foliar	10	0.34	Trial 07 [Munro&Campbell,
Anhalt, Germany,	g/L			114	7.6	broadcast,			2015, Report DP-39380]
2014						BBCH 85,			
(Pinot noir-red)						13 Sept			
Villié-Morgon, Rhône-	SE 100	2	14	110	37.5	foliar	10	0.058	Trial 08 [Munro&Campbell,
Alpes, South France,	g/L			111	37.5	broadcast,			2015, Report DP-39380]
2014						BBCH 85,			
(Garnay-red)						15 August			
Courville Champagne	SE 100	2	13	118	37 5	foliar	10	0.11	Trial 09 [Munro&Campbell
Ardenne	a/l	2	15	115	37.5	broadcast	10	0.11	2015 Report DP-202801
North France	9' -			115	57.5	BBCH 87			2010, http://bit.bit-07000]
2014						02 Sept			
(Pinot meunier-red)						02 00pt			
(ot mounted rou)	1		1		1			I	I

[ª] Residues refer to parent. Metabolites M1–M6 were analysed, but were all < LOQ of 0.01 mg/kg.

 $\left[^{d}
ight]$ -0 = sample is taken before last treatment; 0 = sample is taken after last treatment

[^p] used for processing study

[^t] mean of three field samples.

Low growing berries (Subgroup 004E)

Strawberries

Two studies on strawberries were submitted to the 2018 Meeting [Aitken *et al.*, 1013, Report DP-29223 and Lennon, 2015, Report IR-4-10328]. One of these studies on greenhouse and field grown strawberries [Aitken *et al.*, 1013, Report DP-29223] was previously evaluated by the 2015 JMPR, but without a supporting label. Since these field trials only support a less critical GAP from the United Kingdom and sufficient data in support of the critical GAP from Canada and the USA were provided, the results were not re-included in the current evaluation.

Supervised residue data on applications by drip irrigation in field and greenhouse grown strawberries [McConnell *et al.*, 2013, Report DP-34085] were made available to the 2015 Meeting. These data were not resubmitted to the 2018 Meeting, because higher residues are found following foliar applications for which the registered label information was supplied.

In the newly submitted supervised field residue trials on strawberries conducted in the USA [Lennon, 2015, Report IR-4-10328] three foliar applications of 150 g ai/ha cyantraniliprole (100 g/L SE formulation) were applied by backpack sprayer or R&D sprayer model T, at 4–6 day intervals, using 178–458 L/ha, with adjuvant added. Mature strawberries were harvested 1–2 day after the last application and 0, 1, 3, 8 and 14 days after the last application in the decline trial. Duplicate samples (\geq 0.9 kg) were collected from 12 separate areas within the plot. Caps were removed before bagging and cooling. Samples were stored frozen within 24 hours after collection. Though the samples weighed slightly lower than 1 kg, this was not considered to influence the findings.

Samples were stored at -18 °C for up to 421 days (9.1 months) before extraction. Stability samples were prepared, but were not analyzed. Analysis of the field samples took place within 14–15 months. The LC-MS/MS analytical method 15736 [McClory *et al.*, 2011, Report DP-15736], as evaluated by JMPR in 2013, was used to determine parent and its metabolites, with a method LOQ of 0.01 mg/kg for all analytes. The average concurrent recoveries were within 70–120% for parent cyantraniliprole in samples spiked with 0.01, 0.1 and 1.0 mg/kg (n = 3–7/fortification level). Metabolites M1–M6 were not analysed in this study. Method validation and concurrent recoveries in this study are summarized in the analytical method section.

The storage period and conditions employed in the strawberry study is covered by the storage stability studies evaluated by the 2013 JMPR (stable in matrices with high water and/or acid content for up to 24 months).

The results of the residue trials are presented in Table 14.

Table 14 Residues of cyantraniliprole in field grown strawberries in supervised trials following foliar applications using an SE formulation.

Location	Form	No	Inter	a	~	mathed	DAT	noront	Trial number and
Location,	FOITH	NO	inter-	g sl/ha	g si/ki	metrioù,	DAT	parent,	
year,				ai/na	ai/nL	uming		mg/kg	reference
(variety)			(days)					[0]	
Parlier, CA,	SE,	3	5	150	40	foliar, crop	1	0.67, 0.73 (<u>0.70</u>)	13-CA80
USA,	100		6	151	40	height 25 cm,			[Lennon, 2015,
2013	g/L			150	40	fruiting,			Report IR-4-
(San Andreas)	-					29 April			10328]
[+ADJ]									
Aurora, OR,	SE,	3	4	155	53	foliar, crop	0	0.28, 0.33 (0.31)	13-0R18
USA,	100			154	53	height 38-46	1	0.27, 0.27 (0.27)	[Lennon, 2015,
2013	g/L			151	54	cm, fruiting	3	0.16, 0.18 (0.17)	Report IR-4-
(Totem)	Ũ					05 June	8	0.15, 0.16 (0.16)	103281
							14	0.11.0.12 (0.12)	
[+ADJ]									
Salina, CA,	SE,	3	4	154	44	foliar, crop	1	0.44, 0.44 (0.44)	13-CA81
USA,	100			150	45	height 20-30			considered a
2013	a/L			150	45	cm, all			duplicate of 13-
(Monterev)	5					stages of			CA82
(incriticity)						flowers and			[Lennon 2015
[+ 4 D I]						fruit 28 Aug			Report IR-4-
[1705]						nun, 20 Aug			102201
									10320]
Salina, CA.	SE.	3	4	146	33	foliar, crop	1	0.86.0.82 (0.84)	13-CA82
USA	100	-		148	32	height 15–28	-	·····, ····· (<u>····</u>)	[Lennon, 2015.
2013	a/l			148	33	cm all			Report IR-4-
(Albion)	9' -			1.10		stages of			103281
						flowers and			10320]
		1				nowers and	1		1

Location	Form	No	Inter-	a	a	method	ΠΔΤ	narent	Trial number and
vear.	1 OIIII	110	val	9 ai/ha	9 ai/hL	timina	DAI	ma/ka	reference
(variety)			(days)					[a]	
[+AD J]	1		()))			fruit, 28 Aug			
Cream Ridge, NJ.	SE	3	4	154	86	foliar, crop	1	0 22 0 23 (0 22)	13-NJ12
USA.	100	Ŭ	6	151	85	height 30–36		0122, 0120 (<u>0122</u>)	[Lennon, 2015.
2013	a/L		Ũ	151	85	cm, green and			Report IR-4-
(AC Wendy)	5					ripe fruit,			10328]
. ,						23 May			-
[+ADJ]						-			
Coloma, WI,	SE,	3	5	149	64	foliar, crop	1	0.091, 0.081 (<u>0.086</u>)	12-WI16
USA,	100		6	151	67	height 51 cm,			[Lennon, 2015,
2013	g/L			156	67	fruiting,			Report IR-4-
(Cavendish)						25 June			10328]
[+ADJ]	05	-	r	140	50	fallen anan	1	0 (5 0 (2 (0 (1)	10 51 00
UITTA, FL,	SE,	3	5	148	53	tollar, crop	1	0.65, 0.63 (<u>0.64</u>)	13-FL28
USA,	100		6	151	54	neight 10–15			[Lennon, 2015, Depart ID 4
2013 (Eastival)	g/L			152	53	Cm, Iruiting,			102201
(Festival)						20 101011			10320]
[+ADJ]									
Clinton, NC,	SE,	4	6	146	54	foliar, crop	1	0.25, 0.23 (0.24)	13-NC13
USA,	100		6	150	55	height 15-30			[Lennon, 2015,
2013	g/L		4	151	54	cm, fruiting,		[b]	Report IR-4-
(Chandler)				150	55	27 April			10328]
[+AD.J]									
Harrow, ON.	SE.	3	6	167	55	foliar, crop	1	0.19.0.22 (0.20)	13-0N11
Canada,	100	-	6	154	50	height 25 cm,	-	····, ···- (<u>-··-</u> ,	[Lennon, 2015,
2013	g/L			154	50	mature fruit,			Report IR-4-
(Tribute)						08 June			10328]
[+AUJ]	CL.	2	4	140	75	folior oron	2	0.60.0 E0.(0.64)	12 0011
L ACAULE, QC,	SE,	3	4	148	75	ioliar, crop	2	0.09, 0.58 (<u>0.64</u>)	IJ-UUII
Callaua, 2012	100 a/l			157	70	cm fruiting			[Lennon, 2015, Poport IP 4
(Seascane)	9/1			155	15	21 Δugust			10328]
(Seascape)						21 August			10520]
[+ADJ]									
L'Acadie, QC, Canada,	SE,	3	4	152	49	foliar, crop	2	0.30, 0.24 (0.28)	13-QC12
2013	100			156	51	height ~20			considered a
(Albion)	g/L			155	50	cm, fruiting,			duplicate of 13-
						21 August			QC11
[+ADJ]									[Lennon, 2015,
									Report IR-4-
		1							10328]

SE = Suspoemulsion

[+ADJ] = an adjuvant was added (non-ionic surfactant, crop oil concentrate, or methylated seed oil)

^a Residues reported represent the parent compound. Samples were not analysed for metabolites (M1–M6). Values between brackets after two reported values represent the mean of two replicate field samples of parent only.

^b Additional application was needed because cool weather delayed maturity of the strawberries. Decline trials show significant levels of residues after the retreatment interval. Given the short PHI, the trial was not considered suitable for use in MRL setting.

Cranberries

The Meeting received one study reporting supervised field trials on cranberries [Samoil, 2013, Report IR-P No. 10199]. This study was not submitted to the Meeting previously. In the trials on cranberries conducted in Canada (1) and the USA (5), three foliar applications at a target rate of 150 (actual rates 149–163) g ai/ha cyantraniliprole (OD formulation) were applied at 6–8 day intervals, using 253–444 L/ha, with adjuvant added [Samoil, 2011, Report IR-4PR-10199]. The BBCH code of the crop stage was

not reported. Application was at fruiting stage with a crop height of 6-12 inches. Duplicate samples (≥ 0.9 kg) were collected from 12 separate areas within the plot. Samples were stored frozen within 24 hours after collection. Though the samples weighed slightly lower than 1 kg, this was not considered to influence the findings.

Samples were frozen upon collection and stored at -20 °C for up to 20 months (616 days) before analysis. Storage stability was demonstrated up to 546 days (n = 3/ compound) to be 77–100% and up to 576 days (n = 3/compound) to be 75–101%. Longer storage durations were covered by another study [Rodgers, 2010, Report DP-16990] evaluated by the 2013 JMPR. The LC-MS/MS analytical method 15736 [McClory *et al.*, 2011, Report DP-15736] as evaluated by the JMPR in 2013 was used to determine parent and its metabolites, with a method LOQ of 0.01 mg/kg for all analytes. Average (n = 5–10 per fortification level) method validation and concurrent recoveries were 87–93% (cyantraniliprole) and 82–98% (metabolites) in samples spiked with 0.01, 0.1 and 1.0 mg/kg. Specific recoveries were summarised in the analytical section.

The results of the study are summarised in Table 15.

Table 15 Residues of cyantraniliprole in field grown cranberries in supervised trials following 3 foliar applications.

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing, date of last application	DAT	parent, mg/kg ^[a]	Trial number and reference
Plymouth, MA, USA, 2009 (Stevens) [ADJ-1]	SE	3	7 6	149 149 149	37.1 36.2 36.2	foliar broadcast, fruiting, 09 Sept, 2009	8 10 15 19	0.013, <0.01 (0.011) <0.01, <0.01 (<0.01) <0.01, <0.01 (<u><0.01)</u> <0.01, <0.01 (<u><0.01)</u>	MA02 [Samoil, 2011, Report IR-4- 10199]
Cream Ridges, NJ, USA, 2009 (Early Black) [ADJ]	SE	3	7 7	149 163 156	51.4 48.4 52.2	foliar broadcast, fruiting, 02 Sept, 2009	14	<0.01, 0.011 (<u>0.010)</u>	NJ08 [Samoil, 2011, Report IR-4- 10199]
Langlois, OR, USA, 2009 (Pilgrim) [ADJ]	SE	3	7 8	152 152 157	45.1 45.1 45.1	foliar broadcast, fruiting, 18 Sept, 2009	14	0.011, 0.013 <u>(0.012)</u>	OR17 [Samoil, 2011, Report no. IR-4 PR- 10199]
Warren, WI, USA, 2009 (Ben Lear) [ADJ]	SE	3	8 7	160163 149	38.0 38.7 38.9	foliar broadcast, fruiting, 12 Sept, 2009	12	0.039, 0.043 <u>(0.041)</u> (b)	WI05 [Samoil, 2011, Report IR-4- 10199]
Warren, WI, USA, 2009 (Stevens) [ADJ]	SE	3	8 7	262 253 243	62.6 64.8 62.1	foliar broadcast, fruiting, 12 Sept, 2009	12	0.023, 0.029 (0.026) (b)	WI06 [Samoil, 2011, Report IR-4- 10199]
Langley, BC, Canada, 2009 (Stevens) [ADJ]	SE	3	7 8	152 155 150	34.9 34.9 34.9	foliar broadcast, fruiting, 12 Sept, 2009	14	0.032, 0.028 <u>(0.030)</u>	BC02 [Samoil, 2011, Report IR-4- 10199]

ADJ-1 = Plyac non-ionic surfactant; ADJ = adjuvant not specified

^a Results represent the results of the individual replicate field trials and the mean of the results in brackets for the parent compound. Metabolites M1–M6 were analysed, but all < LOQ of 0.01 mg/kg.</p>

^b Field trial WI05 and WI06 are considered duplicate trials. Though different cop varieties were used, identical location and application dates apply.

Assorted tropical and sub-tropical fruits – inedible peel (Group 006)

Assorted tropical and sub-tropical fruits – inedible smooth peel – large (Subgroup 006B)

Mango (FI0345)

In newly submitted trials on mangoes conducted in Thailand and Vietnam, two foliar applications at a target rate of 2 × 180 (actual rates 172–194) g ai/ha cyantraniliprole (OD formulation) were applied at 7–8 day intervals, using 982–3017 L/ha, without an

adjuvant added [Shernikau, 2017, Report FMC-46393 and later updated to Petrova, 2018, FMC Report 46393]. The last application was at BBCH stage 81–85.

Samples of at least 2 kg fruit (\geq 12 fruits) were taken from several places in the tree from at least 4 trees. Samples were frozen upon collection and stored at \leq -18 °C for less than 4 months (between sampling and extraction). Storage stability was demonstrated in previous evaluations by the JMPR. The LC-MS/MS analytical method 15736 [McClory *et al.*, 2011, Report DP-15736] as evaluated by the JMPR in 2013 was used to determine parent, with a method LOQ of 0.01 mg/kg. Average (n = 1–6 per fortification level) concurrent recoveries were 88–98% (cyantraniliprole) in samples spiked with 0.01, 0.1, 2.0 and 2.6 mg/kg in mango peel and pulp. The individual recovery results are summarized in the analytical method section.

The trials are summarised in Table 16 and Table 17.

Based on the individual weights of the pulp, peel and stone fraction of the mangoes, the reviewer calculated a mean and median peeling-pitting factor based on weight ratio of 0.60 and 0.61, respectively (n = 16). The calculated chemical specific mean and median peeling-pitting factor (based on residue concentration in peel and pulp, corrected for the weight of the fractions of stone, peel and pulp) was lower being 0.11 and 0.085 (n = 16), respectively.

Table 16 Residues of cyantraniliprole in field grown mangoes (whole fruit) in supervised trials following 2 foliar applications with a 100 g/L OD formulation.

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing, last application	DAT ^[d]	parent, mg/kg ª	Trial number and reference
Don Chedi, Suphanburi, Thailand, 2017 (Num Dok Mai)	OD, 100 g/L	2	7	176 172	6.0 6.0	foliar spray, BBCH 85, 04 April	-0 0 3 7 10 14	ND 0.10, 0.095 (0.097) 0.044, 0.045 (0.45) 0.031, 0.060 (0.046) 0.016, 0.075 (0.046) 0.081, 0.043 (<u>0.064</u>)	S17-00346-01 [Shernikau&Colorado, 2017, Report FMC- 46393]
Sawaengha, Ang Thong, Thailand, 2017 (num Duan Koa)	OD, 100 g/L	2	7	178 175	6.0 6.0	foliar spray, BBCH 85, 04 April	7	0.10, 0.11 (<u>0.11</u>)	S17-00346-02 [Shernikau &Colorado, 2017, Report FMC-46393]
Muak Lek, Saraburi, Thailand, 2017 (R2E2)	OD, 100 g/L	2	7	180 194	12 12	foliar spray, BBCH 85, 19 April	7	0.18, 0.18 (<u>0.18</u>)	S17-00346-03 [Shernikau &Colorado, 2017, Report FMC-46393]
Pak Chong, Nakhon Ratchasima, Thailand, 2017 (Keiw Yai)	0D, 100 g/L	2	7	177 176	18 18	foliar spray, BBCH 85, 19 April	7	0.50, 0.41 (<u>0.45</u>)	S17-00346-04 [Shernikau & Colorado, 2017, Report FMC-46393]
Dong Nai, Xuan Loc, Vietnam, 2017 (Xoai Buoi)	0D, 100 g/L	2	7	181 181	12 12	foliar spray, BBCH 81, 09 June	-0 0 3 7 11 14	ND 0.20, 0.16 (0.18) 0.084, 0.086 (0.085) 0.067, 0.059 (0.063) 0.054, 0.073 (<u>0.064</u>) 0.041, 0.049 (0.045)	S17-00346-05 [Shernikau &Colorado, 2017, Report FMC-46393]
Thinh Thoi, Dong Thap, Vietnam, 2017 (Chai Chu)	OD, 100 g/L	2	7	181 179	6.0 6.0	foliar spray, BBCH 85, 06 June	7	0.039, 0.032 (<u>0.035</u>)	S17-00346-06 [Shernikau &Colorado, 2017, Report FMC-46393]
Han Giang, Han Giang, Vietnam, 2017 (Dai Loan)	0D, 100 g/L	2	7	182 188	7.2 10	foliar spray, BBCH 85, 07 June	7	0.083, 0.088 (<u>0.086</u>)	S17-00346-07 [Shernikau &Colorado, 2017, Report FMC-46393]
Cai Be, Tien Giong, Vietnam, 2017 (Dai Loan)	OD, 100 g/L	2	7	180 184	12 12	foliar spray, BBCH 85, 07 June	7	0.11, 0.12 (<u>0.12</u>)	S17-00346-08 [Shernikau &Colorado, 2017, Report FMC-46393]

OD = Oil based suspension concentrate

- ^a Residues for whole fruit are calculated based on residues measured in peel and pulp and corrected for weight of peel, pulp and stone [{($R_{pred} \times W_{peel}) + (R_{pulp} \times W_{pulp})$ }/($W_{pred} + W_{pulp} + W_{stone}$))], where is R = the residue (mg/kg), W = the weight (kg). Values were recalculated by the reviewer to establish the mean. Results represent the results of the individual replicate field trials and the mean of the results in brackets for the parent compound. Metabolites M1–M6 were not analysed.
- ^d -0 = sample is taken before last treatment; 0 = sample is taken after last treatment

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing, last application	DAT	parent, mg/kg ª	Trial number and reference
Don Chedi, Suphanburi, Thailand, 2017 (Num Dok Mai)	OD, 100 g/L	2	7	176 172	6.0 6.0	foliar spray, BBCH 85, 04 April	-0 0 3 7 10 14	ND <0.01, <0.01 (<0.01) <0.01, <0.01 (<0.01) <0.01, <0.01 (<0.01) ND, <0.01 (<0.01) <0.01, ND (<0.01)	S17-00346-01 [Shernikau&Colorado, 2017, Report FMC- 46393]
Sawaengha, Ang Thong, Thailand, 2017 (num Duan Koa)	OD, 100 g/L	2	7	178 175	6.0 6.0	foliar spray, BBCH 85, 04 April	7	0.010, <0.01 <u>(<0.01)</u>	S17-00346-02 [Shernikau &Colorado, 2017, Report FMC- 46393]
Muak Lek, Saraburi, Thailand, 2017 (R2E2)	OD, 100 g/L	2	7	180 194	12 12	foliar spray, BBCH 85, 19 April	7	<0.01, <0.01 <u>(<0.01)</u>	S17-00346-03 [Shernikau &Colorado, 2017, Report FMC- 46393]
Pak Chong, Nakhon Ratchasima, Thailand, 2017 (Keiw Yai)	OD, 100 g/L	2	7	177 176	18 18	foliar spray, BBCH 85, 19 April	7	0.027, 0.029 (<u>0.028</u>)	S17-00346-04 [Shernikau & Colorado, 2017, Report FMC- 46393]
Dong Nai, Xuan Loc, Vietnam, 2017 (Xoai Buoi)	0D, 100 g/L	2	78	181 181	12 12	foliar spray, BBCH 81, 09 June	-0 0 3 7 11 14	ND 0.070, 0.038 (0.054) 0.029, 0.025 (0.027) <0.01, <0.01 (<u><0.01)</u> <0.01, <0.01 (<0.01) <0.01, <0.01 (<0.01)	S17-00346-05 [Shernikau &Colorado, 2017, Report FMC- 46393]
Thinh Thoi, Dong Thap, Vietnam, 2017 (Chai Chu)	0D, 100 g/L	2	7	181 179	6.0 6.0	foliar spray, BBCH 85, 06 June	7	<0.01, <0.01 <u>(<0.01)</u>	S17-00346-06 [Shernikau &Colorado, 2017, Report FMC- 46393]
Han Giang, Han Giang, Vietnam, 2017 (Dai Loan)	0D, 100 g/L	2	7	182 188	7.2 10	foliar spray, BBCH 85, 07 June	7	<0.01, <0.01 <u>(<0.01)</u>	S17-00346-07 [Shernikau &Colorado, 2017, Report FMC- 46393]
Cai Be, Tien Giong, Vietnam, 2017 (Dai Loan)	0D, 100 g/L	2	7	180 184	12 12	foliar spray, BBCH 85, 07 June	7	<0.01, 0.011 <u>(<0.01)</u>	S17-00346-08 [Shernikau &Colorado, 2017, Report FMC- 46393]

Table 17 Residues of cyantraniliprole in field grown mangoes (pulp) from supervised trials in following 2 foliar applications with a 100 g/L OD formulation

OD = Oil based suspension concentrate

^a Values were recalculated by the reviewer to establish the mean. Results represent the results of the individual replicate field trials and the mean of the results in brackets for the parent compound. Metabolites M1–M6 were not analysed.

82

Fruiting vegetables, cucurbits (Group 011)

Fruiting vegetables, Cucurbits – Cucumbers and Summer Squashes (Subgroup 011A)

Cucumber (VC0424)

A study including supervised trials on greenhouse grown cucumbers [Dorschner, 2012, Report IR-4-10313] that was evaluated by the 2015 Meeting was resubmitted to the 2018 Meeting in support of Canadian and USA labels for use on cucumber under glass house conditions (Table 18).

Supervised residue data for foliar applications and for drip irrigation (2013 Meeting) applications in field and glass grown cucumbers, summer squash, and melons were made available to the 2013 Meeting [Report DP-25642, Report DP-27711, Report DP-31413, DP-28201, Report DP-25642], but were not resubmitted for the current evaluation. The current Meeting only received labels for foliar applications on protected cucumbers. The glass house data submitted to the 2013 Meeting [Report DP-28201] were not re-included, since the application rates in the studies (OD formulation, 4×120 g ai/ha, RTI 7 days, PHI 1 day) do not support the newly submitted label (SE formulation, 3×150 g ai/ha, RTI 5–7 days, PHI 0 days).

Table 18 Residues of cyantraniliprole in greenhouse grown cucumbers from supervised trials following 3 foliar applications (backpack sprayer) with an SE formulation.

Location,	Form	No	Inter	g	g	method, timing:	DAT	parent,	Trial number
year,			val	ai/ha	ai/hL	growth stage and		mg/kg	and reference
(variety)			(days)			last application		а	
Parlier, CA,	10 SE	3		151	40	foliar spray,	0	0.20, 0.19 (0.19)	CA67
USA,			5	154	40	fruiting, 203 cm,			[JMPR 2015]
2010			6	156	40	13 Sept			
(Manar F1)									
[+ADJ]									
Citra, FL,	10 SE	3		153	53	foliar spray,	0	0.33, 0.32 (0.33)	FL14
USA,			5	152	54	fruiting, crop			[JMPR 2015]]
2010			4	151	54	height 71–102			
(Jawell)						cm,			
[+ADJ]						16 April			
Salisbury, MD,	10 SE	3		147	32	foliar spray,	0	0.039, 0.047 (0.043)	MD10
USA,			4	148	32	fruiting, 120 cm,			[JMPR 2015]
2010			4	148	32	25 May			
(Danito)									
[+ADJ]									
Raleigh, NC,	10 SE	3		157	36	foliar spray,	0	0.18, 0.18 (0.18)	NC12
USA,			5	154	36	fruiting, 198 cm,			[JMPR 2015]
2010			5	151	36	02 August			
(Jawell F1)									
[+ADJ]									
Harrow, ON,	10 SE	3		152	12.5	foliar spray,	0	0.027, 0.036 (0.032)	ON12
Canada			5	152	12.5	fruiting, 183 cm,			[JMPR 2015]
2010			5	152	12.5	04 Oct			
(Camaro)									
[+ADJ]									

SE = Suspoemulsion

Residues reported represent the parent compound. Values between brackets represent mean of duplicate field samples. Residues of each of the six metabolites were found below the LOQ of 0.01 mg/kg in each sample.

Cereal grains (Group 020)

Rice cereals (Subgroup 020C)

Rice (GC0649)

A study including supervised trials in rice was conducted in China [Qing, 2012, Report CL-2010-026]. The study was previously evaluated by the 2013 Meeting, but could not be matched to the submitted label on rice from Vietnam. The study was resubmitted to the 2018 Meeting in support of a Chinese label for use of an OD formulation on rice.

The residues found in paddy rice grain are summarized in Table 19.

Table 19 Residues of cyantraniliprole in rice grain from supervised trials following 2 or 3 foliar applications of 100 or 150 g ai/ha (backpack sprayer).

	_	-	-	-		-	-		
Location,	Form	No	Inter	g	g	method, timing:	DAT	residues,	Trial number and
year,			val	ai/ha	ai/hL	growth stage		mg/kg	reference
(variety)			(days)			and last		а	
						treatment date			
Hangzhou	100	2	7	100	nr	spraying,	7	<0.01	Zejiang,
Zhejiang, China,	g/L OD					growth stage	14	<0.01	[JMPR 2013]
2010	Ũ					not reported,	21	<0.01	
(Yue You 712)						02 Nov, 2010			
Hangzhou	100	2	7	100	nr	spraving	7	<0.01	Zeijang.
Zheijang, China	a/L 0D	_	-			arowth stage	14	<0.01	[JMPR 2013]
2011	9/200					not reported	21	<0.01	
(Yue You 712)							21	(0.01	
Hangzhou	100	2	7	150	nr	chraving	7	0.02	Zoliona
7hojiang China		2	/	150	111	arowth stago	14	0.02	Lejiany, [IMDD 2012]
Zhejiany, China,	y/L OD					growin stage	14	0.013	
2010						not reported,	21	<0.01	
(Yue You / 12)	100		-	450		02 NOV, 2010	-	0.000	
Hangzhou	100	2	/	150	nr	spraying,	/	0.023	Zejiang,
Zhejiang, China,	g/L OD					growth stage	14	0.016	[JMPR 2013]
2011						not reported,	21	0.01	
(Yue You 712)						04 August, 2011			
Hangzhou	100	3	7	100	nr	spraying,	7	0.01	Zejiang,
Zhejiang, China,	g/L OD		7			growth stage	14	<0.01	[JMPR 2013]
2010						not reported,	21	<0.01	
(Yue You 712)						09 Nov,			
						2010			
Hangzhou	100	3	7	100	nr	spraying,	7	<0.011	Zejiang,
Zhejiang, China,	q/L OD		7			growth stage	14	<0.01	[JMPR 2013]
2011	5					not reported.	21	<0.01	
(Yue You 712)						11 August, 2011			
Hangzhou	100	3	7	150	nr	spraving	7	0.035	7eijang
Zheijang China		Ŭ	7	100		arowth stage	14	0.019	[IMPR 2013]
2010	9/200		,			not reported	21	<0.01	[51011112015]
(Vuo Vou 712)							21	<0.01	
(100/12)						2010			
Hangzhou	100	2	7	150	nr	spraving	7	0.041	Zojiang
Theijang China		5	7	150	111	spraying,	14	0.041	
2011	y/L OD		/			growin stage	14	0.022	
2011						11 August 2011	21	0.012	
	100	0	-	400			-	0.01	
Hunan Changsha,	100	2	/	100	nr	spraying,	/	<0.01	Hunan
China,	g/L OD					growth stage	14	<0.01	[JMPR 2013]
2010						not reported, 08	21	<0.01	
(Xin Dao 16)						Oct, 2010			
Hunan Changsha,	100	2	7	100	nr	spraying,	7	<0.01	Hunan
China,	g/L OD					growth stage	14	<0.01	[JMPR 2013]
2011						not reported,	21	<0.01	
(Xin Dao 16)						19 August, 2011			
Hunan Changsha,	100	2	7	150	nr	spraying,	7	<0.01	Hunan
China,	g/L OD					growth stage	14	<0.01	[JMPR 2013]
2010	-					not reported, 08	21	<0.01	
(Xin Dao 16)						Oct, 2010			
Hunan Changsha	100	2	7	150	nr	spraying.	7	0.07	Hunan
China,	a/L OD					growth stage	14	0.029	[JMPR 2013]
2011	5 00					not reported	21	<0.01	· · · · · · · · · · · · · · · · · · ·
(Xin Dao 16)						19 August. 2011			
Hunan Changsha	100	3	7	100	nr	spraving	7	<0.01	Hunan
China		5	7	100		arowth stage	14	<0.01	[IMDD 2012]
2010	y'L UD		'			not reported	21	<0.01	
2010 (Vin Dao 14)						not reputted,	21	NU.UI	
	100	2	7	100			7	0.010	llumon
Hunan Unangsha,	100	3	/	100	nr	spraying,		0.018	Hunan
Unina,	g/L OD		/			growth stage	14	0.01	[JIVIPR 2013]
2011	1					not reported,	21	<0.01	

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing: growth stage and last treatment date	DAT	residues, mg/kg ª	Trial number and reference
(Xin Dao 16)						19 August, 2011			
Hunan Changsha, China, 2010 (Xin Dao 16)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 08 Oct, 2010	7 14 21	<0.01 <0.01 <0.01	Hunan [JMPR 2013]
Hunan Changsha, China, 2011 (Xin Dao 16)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 19 August, 2011	7 14 21	0.039 0.025 0.019	Hunan [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 17 Sept, 2010	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 08 August, 2011	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 17 Sept, 2010	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 08 August, 2011	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu Shui 009)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 24 Sept, 2010	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu Shui 009)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 15 August, 2011	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu Shui 009)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 24 Sept, 2010	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu Shui 009)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 15 August, 2011	7 14 21	<0.01 <0.01 <0.01	Shandong [JMPR 2013]

nr = not reported

Residues reported represent the parent compound. Metabolite J9Z38 was determined, but all values were below the LOQ of 0.02 mg/kg and therefore not summarised in the table above.

Animal feed

а

Rice straw

A study including supervised trials in rice was conducted in China [Qing, 2012, Report CL-2010-026]. The study was previously evaluated by the 2013 Meeting, but could not be matched to the submitted label on rice from Vietnam. The study was resubmitted to the 2018 Meeting in support of a Chinese label for use of an OD formulation on rice.

The residues found in rice straw are summarized in Table 20.

Location, year, (variety)	Form	No	Inter val (days)	g ai/ha	g ai/hL	method, timing: growth stage and last treatment	DAT	residues, i ^a parent	ng/kg IN-J9Z38	Trial number and reference
Hangzhou Zhejiang, China, 2010 (Yue You 712)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 02 Nov, 2010	7 14 21	0.67 1.4 1.1	0.29 0.28 0.20	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2011 (Yue You 712)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 04 August, 2011	7 14 21	<0.05 <0.05 <0.05	0.21 0.12 <0.10	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2010 (Yue You 712)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 02 Nov, 2010	7 14 21	1.1 3.7 1.9	0.46 0.47 0.31	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2011 (Yue You 712)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 04 August, 2011	7 14 21	0.12 0.063 0.075	0.50 0.46 0.16	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2010 (Yue You 712)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 09 Nov, 2010	7 14 21	0.78 1.9 1.4	0.34 0.24 0.16	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2011 (Yue You 712)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 11 August, 2011	7 14 21	<0.05 0.095 <0.05	0.24 0.24 <0.10	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2010 (Yue You 712)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 09 Nov, 2010	7 14 21	1.8 4.1 3.0	0.59 0.43 0.51	Zejiang, [JMPR 2013]
Hangzhou Zhejiang, China, 2011 (Yue You 712)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 11 August, 2011	7 14 21	<0.05 <0.05 0.12	0.36 0.59 0.39	Zejiang, [JMPR 2013]
Hunan Changsha, China, 2010 (Xin Dao 16)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 08 Oct, 2010	7 14 21	<0.05 0.083 0.057	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Hunan Changsha, China, 2011 (Xin Dao 16)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 19 August, 2011	7 14 21	0.15 0.098 0.18	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Hunan Changsha, China, 2010 (Xin Dao 16)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 08 Oct, 2010	7 14 21	0.37 0.33 0.17	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Hunan Changsha, China, 2011 (Xin Dao 16)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 19 August, 2011	7 14 21	0.42 1.1 0.13	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Hunan Changsha, China, 2010 (Xin Dao 16)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 08 Oct, 2010	7 14 21	0.085 0.058 <0.05	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Hunan Changsha, China, 2011	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported,	7 14 21	0.68 0.40 0.35	<0.10 <0.10 <0.10	Hunan [JMPR 2013]

Table 20 Residues of cyantraniliprole in rice straw from supervised trials following 2 or 3 foliar applications at 100 or 150 g ai/ha (backpack sprayer).

Location, year,	Form	No	Inter val	g ai/ha	g ai/hL	method, timing: growth stage and	DAT	a residues,	mg/kg	Trial number and reference
(variety)			(days)			last treatment date		parent	IN-J9Z38	
(Xin Dao 16)						19 August, 2011				
Hunan Changsha, China, 2010 (Xin Dao 16)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 08 Oct, 2010	7 14 21	0.58 0.51 0.36	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Hunan Changsha, China, 2011 (Xin Dao 16)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 19 August, 2011	7 14 21	0.55 0.26 0.33	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 17 Sept, 2010	7 14 21	0.27 0.14 0.40	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 08 August, 2011	7 14 21	0.20 0.13 0.075	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 17 Sept, 2010	7 14 21	0.31 0.33 <0.05	<0.10 0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 08 August, 2011	7 14 21	0.25 0.18 0.079	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 24 Sept, 2010	7 14 21	0.26 0.44 0.28	<0.10 0.13 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 15 August, 2011	7 14 21	0.34 0.20 0.12	0.18 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 24 Sept, 2010	7 14 21	1.3 0.33 <0.05	0.12 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 15 August, 2011	7 14 21	0.35 0.24 0.18	0.11 <0.10 <0.10	

nr = not reported

Residues reported represent the parent compound and metabolite IN-J9Z38. The other metabolites were not determined.

Rice hulls

а

A study with supervised trials in rice was conducted in China [Qing, 2012, Report CL-2010-026]. The study was previously evaluated by the 2013 Meeting, but could not be matched to the submitted label on rice from Vietnam. The study was resubmitted to the 2018 Meeting in support of a Chinese label for use of an OD formulation on rice.

The residues found in rice hulls are summarized in Table 21.

Table 21 Residues of cyantraniliprole in rice hulls from supervised trials following 2 or 3 foliar applications at 100 or 150 g ai/ha (backpack sprayer).

	-	-	-	-	-	-	-	-		
Location,	Form	No	Inter	g ai/ha	g ai/hl	method, timing:	DAT	residues,	mg/kg ^a	Trial number and
year, (variety)			vai (davs)	ai/na	ai/nL	growth stage and last		parent	IN- 19738	reference
(valiety)			(uuys)			treatment date		puron	11 37200	
Hangzhou	100	2	7	100	nr	spraying,	7	3.3	0.28	Zejiang,
Zhejiang, China,	g/L OD					growth stage	14	4.3	0.35	[JMPR 2013]
2010 (Yuo You 712)						not reported,	21	2.3	0.20	
Hangzhou	100	2	7	100	nr	spraving	7	0.67	0.099	Zeijang
Zhejiang, China,	g/L OD	-				growth stage	14	0.37	<0.10	[JMPR 2013]
2011	0					not reported,	21	0.43	<0.10	
(Yue You 712)						04 August, 2011				
Hangzhou Zhailang China	100	2	7	150	nr	spraying,	7	7.5	0.92	Zejiang,
2010	g/L OD					not reported	21	1Z 3.4	0.76	[JIVIPR 2013]
(Yue You 712)						02 Nov, 2010	21	0.1	0.11	
Hangzhou	100	2	7	150	nr	spraying,	7	1.7	0.21	Zejiang,
Zhejiang, China,	g/L OD					growth stage	14	1.2	0.20	[JMPR 2013]
2011						not reported,	21	0.95	0.17	
(Yue You 712)	100	3	7	100	nr	04 August, 2011	7	16	0.55	Zeliana
Zheijang, China,	a/L OD	5	7	100		growth stage	, 14	3.7	0.53	[JMPR 2013]
2010	J					not reported,	21	1.7	0.37	
(Yue You 712)						09 Nov,				
	100			100		2010	_	1.0	0.10	
Hangzhou Zhoijang, China	100 g/L OD	3	/	100	nr	spraying, growth stago	/	1.2	0.18	Zejiang, LIMPP 20131
2011	9/L 0D		,			not reported.	21	0.42	0.096	[JWF K 2013]
(Yue You 712)						11 August, 2011				
Hangzhou	100	3	7	150	nr	spraying,	7	12	1.4	Zejiang,
Zhejiang, China,	g/L OD		7			growth stage	14	11	0.60	[JMPR 2013]
2010 (Yuo You 712)						not reported,	21	9.9	0.84	
(140 104 / 12)						2010				
Hangzhou	100	3	7	150	nr	spraying,	7	2.3	0.33	Zejiang,
Zhejiang, China,	g/L OD		7			growth stage	14	2.4	0.30	[JMPR 2013]
2011						not reported,	21	0.95	0.19	
Hunan Changsha	100	2	7	100	nr	spraving	7	0.99	<0.10	Hunan
China,	g/L OD	2	,	100		growth stage	14	1.1	<0.10	[JMPR 2013]
2010	5					not reported, 08	21	0.92	<0.10	
(Xin Dao 16)						Oct, 2010				
Hunan Changsha	100	2	7	100	nr	spraving	7	14	<0.10	Hunan
China,	q/L OD	2	,	100		growth stage	, 14	1.4	<0.10	[JMPR 2013]
2011	5					not reported,	21	1.6	<0.10	
(Xin Dao 16)						19 August, 2011				
Hunan Chanacha	100	2	7	150	nr	spraving	7	1 /	<0.10	Цирар
China.	a/L OD	2	/	150	111	growth stage	14	2.2	<0.10	[JMPR 2013]
2010	5					not reported, 08	21	1.5	<0.10	[]
(Xin Dao 16)						Oct, 2010				
Hunan Changsha,	100	2	7	150	nr	spraying,	7	8.2	< 0.10	Hunan
Unina, 2011	g/L UD					growin stage	14 21	6.8 2.2	<0.10	
(Xin Dao 16)						19 August, 2011	21	2.2	×0.10	
Hunan Changsha,	100	3	7	100	nr	spraying,	7	0.87	<0.10	Hunan
China,	g/L OD		7			growth stage	14	1.1	<0.10	[JMPR 2013]
2010						not reported,	21	1.4	<0.10	
(AIII Da0 16) Hunan Changsha	100	3	7	100	nr	UB UCT, 2010	7	4.0	<0.10	Hunan
manan onangana,	100			100		Spruying	/		NO.10	i miluli

Location, year,	Form	No	Inter val	g ai/ha	g ai/hL	method, timing: growth stage	DAT	residues,	mg/kg ^a	Trial number and reference
(variety)			(days)			and last treatment date		parent	IN-J9Z38	
China, 2011 (Xin Dao 16)	g/L OD		7			growth stage not reported, 19 August, 2011	14 21	2.5 1.6	0.11 <0.10	[JMPR 2013]
Hunan Changsha, China, 2010 (Xin Dao 16)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 08 Oct, 2010	7 14 21	1.6 1.8 2.1	<0.10 <0.10 0.096	Hunan [JMPR 2013]
Hunan Changsha, China, 2011 (Xin Dao 16)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 19 August, 2011	7 14 21	6.2 4.1 2.4	<0.10 <0.10 <0.10	Hunan [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	2	7	100	nrn	spraying, growth stage not reported, 17 Sept, 2010	7 14 21	0.46 0.38 0.32	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	2	7	100	nr	spraying, growth stage not reported, 08 August, 2011	7 14 21	0.081 0.092 0.57	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 17 Sept, 2010	7 14 21	0.92 0.18 0.14	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	2	7	150	nr	spraying, growth stage not reported, 08 August, 2011	7 14 21	<0.05 <0.05 <0.05	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 24 Sept, 2010	7 14 21	0.55 0.71 0.57	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	3	7 7	100	nr	spraying, growth stage not reported, 15 August, 2011	7 14 21	<0.05 0.16 0.13	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2010 (Ziu SHui 009)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 24 Sept, 2010	7 14 21	1.2 0.21 0.66	<0.10 <0.10 <0.10	Shandong [JMPR 2013]
Jinan Shandong, China, 2011 (Ziu SHui 009)	100 g/L OD	3	7 7	150	nr	spraying, growth stage not reported, 15 August, 2011	7 14 21	<0.05 <0.05 <0.05	<0.10 <0.10 <0.10	Shandong [JMPR 2013]

nr = not reported

^a Residues reported represent the parent compound and metabolite IN-J9Z38. The other metabolites were not determined.

^b The date listed in table is for two and three times application and sampling at 14 days. The date is 01 October 2010 for two and three times applications and sampling at 21 days.

^c The date listed in table is for two and three times application and sampling at 14 days. The date is 12 August 2011 for two and three times applications and sampling at 21 days.

FATE OF RESIDUES IN STORAGE AND PROCESSING

In storage No data submitted.

In processing

The Meeting received a processing study on grapes [Aitken, 2011, Report DP-27718], which was already evaluated by the 2013 Meeting, but without a supporting label for grapes. For the current evaluation a label for use of cyantraniliprole on grapes was submitted. The processing study was not summarised again, but is referred to in the Appraisal.

RESIDUES IN ANIMAL COMMODITIES

No new information submitted.

APPRAISAL

Cyantraniliprole was initially evaluated for toxicology and residues by the JMPR in 2013 and an ADI of 0–0.03 mg/kg bw was established. An ARfD was considered to be unnecessary. Additional use patterns were evaluated by the 2015 JMPR. The residue definitions established in 2013 and maintained at the 2015 JMPR are:

Definition of the residue for compliance with the MRL for both plant and animal commodities: cyantraniliprole.

Definition of the residue for dietary risk assessment for unprocessed plant commodities: cyantraniliprole.

Definition of the residue for dietary risk assessment for processed plant commodities: *sum of cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole.*

Definition of the residue for dietary risk assessment for animal commodities: sum of cyantraniliprole, 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4-oxo-6-quinazolinecarbonitrile [IN-J9Z38], 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1Hpyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-quinazolinecarbonitrile [IN-MLA84], 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide [IN- N7B69] and 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-1H-pyrazole-5-carboxamide [IN- MYX98],expressed as cyantraniliprole

The residue is not fat soluble.

At the Forty-ninth Session of the CCPR (2017), cyantraniliprole was scheduled for evaluation of additional use patterns by the 2018 JMPR.

The Meeting received a soil degradation study in rice, various supervised residue trial data for foliar and soil applications of cyantraniliprole on grapes, strawberries (outdoor), cranberries (outdoor), mango (outdoor), cucumber (glasshouse), and paddy rice and information on registered uses of cyantraniliprole on corresponding crops. In addition a processing study on grapes was resubmitted.

Environmental fate

In a supervised residue trial on rice, the degradation of cyantraniliprole and its metabolite IN-J9Z38 was investigated at three sites. A single application of 150 g ai/ha was sprayed over the rice paddies. Soil, plant and water samples were taken at various intervals ranging from 1 hour to 60 days after application.

The calculated half lives in water ranged from 2.0-6.2 days for cyantraniliprole (n = 3) and 10.3 days (one site only) for IN-J9Z38. The calculated half lives in plants ranged from 3.2-6.3 days for cyantraniliprole (n = 3). No residue of IN-J9Z38 was detected in the plant samples at any time point and no half-life could be calculated. The calculated half-life in soil was 6.8 days for cyantraniliprole (n = 1). No residue of parent or IN-J9Z38 was detected in any of the other soil samples at any time point.

Parent cyantraniliprole and metabolite IN-J9Z38 are not persistent in soil/water systems.

Methods of analysis

The methods for analysing cyantraniliprole and metabolites IN-F6L99, IN-J9Z38, IN-JCZ38, IN-K7H19, IN-MLA84, IN-MYX98, IN-N5M09, and IN-N7B69 as previously evaluated (2013 Meeting) were supported with additional recovery data from supervised trials. The methods are considered valid for the commodities evaluated

Stability of pesticide residues in stored analytical samples

The stability of residues of cyantraniliprole and its metabolites in stored samples was covered by the freezer stability studies evaluated by the 2013 JMPR. Additional storage stability data on cranberries were submitted and support the conclusions on storage stability from previous Meetings. Analysis of the samples from the residues trials and processing studies submitted for the current Meeting are sufficiently covered.

90

Results of supervised residue trials on crops

The Meeting received supervised trials data for cyantraniliprole on grapes (field), strawberries (greenhouse and field), cranberries (field), mango (field), cucumber (glasshouse), and paddy rice (field).

The Meeting noted that GAPs have been authorised for the use of cyantraniliprole and the product labels were available from Belgium, Cambodia, Canada, China, the United Kingdom, and the USA.

For the estimation of maximum residue levels and STMRs, the 2018 Meeting also used data from the 2013 and 2015 JMPR evaluations.

Wine grapes

The critical GAP for cyantraniliprole on wine grapes is from Italy with 2 foliar applications of 112.5 g ai/ha, a re-treatment interval of 14 days and PHI of 10 days.

Only four trials conducted in the 2014 growing season, conducted in Europe and evaluated by the current Meeting, matched this GAP. European trials conducted in the 2009/2010 growing seasons evaluated by the 2013 JMPR and additional trials from the 2014 season could be matched using the proportionality principle.

Cyantraniliprole residues from trials matching GAP without applying proportionality are (n = 27): 0.031, 0.058, 0.070, 0.071, 0.096, 0.099, 0.11, 0.14, 0.14, 0.16, 0.18, 0.19, 0.21, 0.24, 0.28, 0.30, 0.33, 0.34, 0.40, 0.41, 0.42, 0.43, 0.48, 0.64, 0.67, 0.68 and 0.80 mg/kg.

Scaling factors applied ranged from 0.74–1.0.

Scaled residues were (n = 27): 0.30, 0.054, 0.059, 0.068, 0,090, 0,099, 0.11, 0.11, 0.12, 0.15, 0.16, 0.18, 0.18, 0.21, 0.22, 0.23, 0.24, 0.32, 0.34, 0.40, 0.42, 0.42, 0.45, 0.50, 0.53, 0.59, and 0.75 mg/kg.

The Meeting estimated a maximum residue level of 1.0 mg/kg and a STMR of 0.21 mg/kg for wine grapes on the basis of the critical GAP from Italy.

Table grapes

The critical GAP for table grapes was from Belgium where the GAP for both table and wine grapes consists of 2 foliar applications of 53 g ai/ha, a re-treatment interval of 10 days and a PHI of 10 days.

As no trials matched this GAP the Meeting did not estimate a maximum residue level for table grapes.

Cranberries

The critical GAP for cyantraniliprole on cranberries is from Canada and comprises 3 foliar applications of 150 g ai/ha, a re-treatment interval of 7 days with a PHI of 14 days.

Five trials conducted in the 2009 growing season in Canada and the USA matched this GAP. The resulting residues were (n = 5): < 0.01, 0.010, 0.012, 0.030, and 0.041 mg/kg.

The Meeting estimated a maximum residue level for cyantraniliprole of 0.08 mg/kg and a STMR value of 0.012 mg/kg for cranberries.

Strawberries

The critical GAP for cyantraniliprole on strawberries is the GAP from Canada (field) with 3 foliar applications of 150 g ai/ha, a retreatment interval of 5 days and a PHI of 1 day. Residue levels in trials from Canada and the USA matching this GAP were (n = 8): 0.086, 0.20, 0.22, 0.27, 0.64, 0.64, 0.70, and 0.84 mg/kg.

Based on the USA/Canadian data set the Meeting estimated a maximum residue level for cyantraniliprole of 1.5 mg/kg and a STMR value of 0.455 mg/kg for strawberries.

Mango

mango.

The critical GAP for cyantraniliprole on mangoes is the Cambodian GAP which comprises 2 foliar applications of 180 g ai/ha, with a re-treatment interval of 7 days and a PHI of 7 days.

Eight trials performed in the 2017 growing season in Thailand and Vietnam matched this GAP. The resulting residues in the RAC (whole fruit with stone and peel) were (n = 8): 0.035, 0.064, 0.064, 0.086, 0.11, 0.12, 0.18, and 0.45 mg/kg.

Residues in the edible portion (mango pulp) for dietary risk assessment were (n = 8): < 0.01 (7) and 0.028 mg/kg.

The Meeting estimated a maximum residue level for cyantraniliprole of 0.7 mg/kg and a STMR value of 0.01 mg/kg for

Cucurbits, cucumbers - Greenhouse

The 2013 Meeting recommended a maximum residue level of 0.3 mg/kg for fruiting vegetables, cucurbits, based on outdoor uses on cucumber, summer squash and melons. The current Meeting received labels from Canada and the USA for the use of cyantraniliprole on greenhouse grown cucumbers.

The critical greenhouse GAP for cyantraniliprole on cucumbers is the GAP in the USA which comprises 3 foliar applications of 150 g ai/ha, a re-treatment interval of 5 days and a PHI of 0 days.

Five trials performed in the 2010 growing season in the USA (evaluated by the 2015 JMPR) matched this GAP. The resulting residues were (n = 5): 0.032, 0.043, 0.18, 0.19 and 0.33 mg/kg. However, five trials were considered insufficient to estimate a maximum residue level for a major crop.

An alternate GAP for greenhouse grown cucumbers submitted to the current Meeting is the Canadian GAP of 4×100 g ai/ha, a RTI of 7 days, and a PHI of 0 days. Only four greenhouse trials from Europe (2013 JMPR) could be matched to this GAP. The number of trials was considered insufficient for the estimation of a maximum residue level for cucumbers.

The trials from Europe could not be matched to the USA GAP using the "GAP versus trial" model introduced by the 2017 Meeting either, as the model estimated the residue levels to be 29% lower than the GAP in the European trials.

The Meeting decided to withdraw its previous recommendation for "Fruiting vegetables, cucurbits" of 0.3 mg/kg, based on outdoor uses, and to replace it with a maximum residue level 0.3 mg/kg for the "Group of Fruiting vegetables, Cucurbits".

Rice

Residue trials on rice evaluated by the 2013 Meeting could not be matched to the GAP from Vietnam (50–100 g ai/ha, PHI 5 days) submitted in 2013. The 2018 Meeting received a new label for a use on rice in China for 2 spray applications at 60 g ai/ha, with a re-treatment interval of 7 days and a PHI of 21 days.

Supervised residue trials conducted in the 2010 and 2011 growing season in China (JMPR 2013), did not match the GAP submitted to the current Meeting.

However, residues in husked rice in overdosed trials conducted with 2 or 3×100 g ai/ha, RTI 7 days and a PHI of 21 days were all < 0.01 mg/kg (n = 12). In trials using 2 or 3×150 g ai/ha, RTI 7 days and PHI 21 days residues ranged from < 0.01 (9) to 0.019 mg/kg (n = 12). The data suggested a residue below LOQ at the critical GAP.

The Meeting concluded that residues above LOQ are not anticipated, when applied according to GAP and estimated a maximum residue level for cyantraniliprole of 0.01(*) mg/kg and a STMR value of 0.01 mg/kg for rice, husked. As residues in husked rice were below LOQ and residues in polished rice are expected to be even less, the Meeting decided to apply the estimations for husked rice to polish rice.

Cereal and grass forages, straws and hays

Rice straw

The supervised trials data were available for rice straw from China.

Overdosed trials conducted with 2 (n = 6) or 3 (n = 6) \times 100 g ai/ha, RTI 7 days and a PHI of 21 days could be matched to the Chinese GAP by applying proportionality. The trials using different application rates were performed at the same location and were considered replicate trials. The highest residue level after scaling was selected per site. Unscaled cyantraniliprole residues in rice straw from trials matching the critical GAP were (n = 6): 0.075 (2), 0.17, 0.18, 0.4, and 1.9 mg/kg.

Scaling factors ranging from 0.4-0.6 were applied, resulting in scaled residues of (n = 6): 0.030, 0.045, <u>0.068</u>, <u>0.11</u>, 0.24, and 0.76 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg (1.7 mg/kg dry weight) for cyantraniliprole in rice straw. The Meeting estimated median residue level of 0.089 mg/kg (0.099 mg/kg dry weight assuming 90% DM) and a highest residue of 0.76 mg/kg (0.84 mg/kg dry weight assuming 90% DM) for rice straw.

Miscellaneous

Rice hulls

The same trials as for rice were considered for rice hulls. Overdosed trials conducted with 2 (n = 6) or 3 (n = 6) × 100 g ai/ha, RTI 7 days and PHI of 21 days could be matched to this GAP by applying proportionality. The trials using different application rates were performed at the same location and were considered replicate trials. The highest residue level after scaling was selected per site.

Unscaled cyantraniliprole residues in rice straw from trials matching the critical GAP were (n = 6): 0.32, 0.57, 0.95, 1.5, 1.6, and 2.3 mg/kg.

Scaling factors ranging from 0.4–0.6 were applied, resulting in scaled residues of (n = 6): 0.19, 0.34, 0.38, 0.60, 0.96 and 1.4 mg/kg.

The Meeting estimated a median residue level of 0.49 mg/kg (0.54 mg/kg dry weight assuming 90% DM) for rice hulls.

Residues in processed commodities

Processing studies were undertaken for grapes and were evaluated by the 2013 Meeting. STMR-Ps were derived by the current Meeting.

Commodity	PF Residue: parent + IN- J9Z38	PF median ^a	STMR-RAC	STMR-P
Grape				
- must	0.79, 1.5, 1.6	1.5	0.21	0.32
- juice	0.48, 0.52, 1.4	0.52	0.21	0.11
- wine (bottled)	0.5, 1.0, 1.2	1.0	0.21	0.21
- raisin	0.48, 0.52, 2.3	0.52	b	b
- wet pomace	1.4, 2.7, 3.9	2.7	0.21	0.57

^a Values were taken from the 2013 evaluation.

^b The Meeting did not estimate a STMR-P for raisins, since the labels refer to wine-grapes only.

Residues in animal commodities

Farm animal dietary burden

The 2018 Meeting evaluated residues in grapes (pomace) and rice (hulls, grain and straw), which were listed in the OECD feeding table in addition to dietary burden calculated in 2015. The Meeting noted that the estimation did not result in a significant change to the dietary burdens of farm animals; a maximum increase of 9.6% of the maximum dietary burden was observed. The previous recommendations of maximum residue levels for animal commodities were maintained.

RECOMMENDATIONS

On the basis of the data from supervised residue trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue for compliance with the MRL for both plant and animal commodities: cyantraniliprole.

Definition of the residue for dietary risk assessment for unprocessed plant commodities: cyantraniliprole.

Definition of the residue for dietary risk assessment for processed plant commodities: *sum of cyantraniliprole and IN-J9238, expressed as cyantraniliprole.*

Definition of the residue for dietary risk assessment for animal commodities: sum of cyantraniliprole, 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4-oxo-6-quinazolinecarbonitrile [IN-J9Z38], 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1Hpyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-quinazolinecarbonitrile [IN-MLA84], 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide [IN- N7B69] and 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-1H-pyrazole-5-carboxamide [IN- MYX98],expressed as cyantraniliprole.

The residue is not fat soluble.

CCN	Commodity	Recommended Maximum Residue level (mg/kg)		STMR or STMR-P (mg/kg)	HR or HR-P (mg/kg)
		new	previous		
FB 0265	Cranberries	0.08	-	0.012	
VC 0045	Fruiting vegetables, Cucurbits	W	0.3		
VC 0045	Fruiting vegetables, Cucurbits, Group of (includes all commodities in this group)	0.3	-	0.065 ^a 0.01 ^b	
FI 0345	Mango	0.7	-	0.01	
GM 0649	Rice, Husked	0.01*	-	0.01	

CCN	Commodity	Recommended Ma Residue level (mg/	ximum kg)	STMR or STMR-P (mg/kg)	HR or HR-P (mg/kg)
		new	previous		
CM 1205	Rice, polished	0.01*	-	0.01	
AS 0649	Rice straw & fodder (dry)	1.7 (dw)	-	Median: 0.099 (dw)	Highest: 0.84 (dw)
FB 0275	Strawberry	1.5	-	0.455	
FB 1236	Wine-grapes	1	-	0.21	

^a edible peel

^b inedible peel

Dietary exposure and feed burden only

CCN	Commodity	STMR, STMR-P or median (mg/kg)
JF 0269	Grape, juice	0.11
-	Grape, must	0.32
-	Grape, wine	0.21
AB 0269	Grape pomace, wet	0.57
CM 1207	Rice hulls	0.54 (dw)

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The ADI for cyantraniliprole is 0–0.03 mg/kg bw. The International Estimated Daily Intakes (IEDIs) for cyantraniliprole were estimated for the 17 GEMS/Food Consumption Cluster Diets using the STMR or STMR-P values estimated by the 2013, 2015 and 2018 JMPR. The results are shown in Annex 3 of the 2018 JMPR Report. The IEDIs ranged from 4–40% of the maximum ADI.

The Meeting concluded that long-term dietary exposure to residues of cyantraniliprole from uses considered by the JMPR is unlikely to present a public health concern.

Acute dietary exposure

The 2013 JMPR decided that an ARfD for cyantraniliprole was unnecessary. The current Meeting therefore concluded that the acute dietary exposure to residues of cyantraniliprole from the uses considered is unlikely to present a public health concern.

REFERENCES

Code	Author	Year	Title, Institute & report number, Submitting manufacturer and report code, GLP/Non-GLP.
			Publisnea/Unpublisnea
DP-27718	Aitken, A.	2011	Combined processing and magnitude and decline of cyantraniliprole and metabolite residues
			in wine and table grapes (berries and small fruit) following foliar application of DPX-HGW86
			100 g/L SE – northern and southern Europe, 2009 initiation. Charles River Laboratories (UK).
	Previously submitted (2013 JMPR)		DuPont Report Number DuPont-27718. GLP: Yes. Unpublished.
			Also submitted to the 2013 Meeting.
DP-29223	Aitken, A.	2013	Magnitude and decline of cyantraniliprole (DPX-HGW86) and metabolite residues in strawberries (berries and small fruit) following foliar application of DPX-HGW86 100g/L OD –
	Previously submitted		Europe – 2011 Initiation. Charles River Laboratories (UK). DuPont Report Number DuPont-
(2013 JMPR)	(2013 JMPR)		29223. GLP: Yes. Unpublished
			Also submitted to the 2015 Meeting.
IR-4-10313	Dorschner, K.W.	2012	Cyantraniliprole: Magnitude of the residue on cucumber (greenhouse). IR-4 Project Rutgers,
			The State University of New Jersey. Report Number IR-4 PR No. 10313. GLP: Yes.
	Previously submitted (2015 JMPR)		Unpublished. (Reviewed at the 2015 JMPR)
			Also submitted to the 2013 Meeting.
IR-4-10328	Lennon, G.	2015	Cyantraniliprole: Magnitude of the residue on strawberry Amended report. IR-4 Project Rutgers, The State University of New Jersey. Report Number IR-4 PR No. 10328 AR1. GLP: Yes. Unpublished.
DP-39380	Munro, M. and Campbell, D.	2015	Magnitude of cyantraniliprole and metabolite residues in wine grapes (berries and small fruit) following foliar application of DPX-HGW86 100 g/L SE - Northern and Southern Europe, 2014

Code	Author	Year	Title, Institute & report number, Submitting manufacturer and report code, GLP/Non-GLP.				
			Published/Unpublished				
			Initiation. Charles River Laboratories (UK). DuPont Report Number DuPont-39380. GLP: Yes. Unpublished.				
FMC-46393	Petrova, D.	2018	Determination of Residues of Cyantraniliprole following two applications of DPX-HGW86 100				
			g/L OD in mango (outdoor) at 4 sites in Thaland and 4 sited in Vietnam in 2017. Eurofines				
			Agrocsciences Services GmbH, FMC Report No. 46393, S17-00346, March 8. 2018. GLP: Yes. Unpublished. Follow-up of Schernikau, 2017				
IR-4-10199	Samoil, K.S.	2011	Cyantraniliprole: Magnitude of the residue on cranberry. IR-4 Project Rutgers, The State University of New Jersey. Report Number IR-4 PR No. 10199. GLP: Yes. Unpublished.				
FMC-46393	Schernikau, N. and Colorado, C.S.	2017	Analytical Phase Report for: Determination of residues of cyantraniliprole following two applications of DPX-HGW86 100 g/L OD in mango (outdoor) at 4 sites in Thailand and 4 sites in Vietnam in 2017. Eurofins Agroscience Services GmbH. Report Number, Report No. 46393. GLP: Yes. Unpublished.				
CL-2010-026	Qing, H.X.	2012	Residue test report of cyantraniliprole on the rice field. Institute of Quality and Standard for Arra products. Report Number CL 2010.026. CLP: No. Uppublished				
	Draviously submitted		Agio-producis, Report Number CL-2010-020, GLP: No. Unpublished.				
	(2013 JMPR)		Also submitted to the 2013 Meeting.				