# Fluazinam (303)

# First draft prepared by Dr Julian Cudmore and Mrs Sonia Tessier, Chemicals Regulation Division of the Health and Safety Executive, UK

# EXPLANATION

Fluazinam acts as a fungicide with activity against fungus from the class of *Oomycetes*, especially against *Phytophthora infestans*. It works protectively and needs to be applied before the disease attacks. At the Forty-eighth Session of the CCPR (2016), fluazinam was scheduled for evaluation as a new compound by the 2018 JMPR.

The Meeting received information on the identity, physical chemical properties, metabolism (plants, rotational crops and animals), environmental data, methods of analysis, freezer storage data, GAP information, supervised residue trials, fate of residues on processing and animal transfer studies.

# IDENTITY

| ISO Common Name    | Fluazinam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Synonyms           | IFK-1216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |  |
| Chemical name      | IUPAC: 3-chloro-Λ-(3-chloro-5-trifluoromethyl-2-pyridyl)-α,α,α-trifluoro-2,6-dinitro<br><i>p</i> -toluidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |  |
|                    | CAS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3-chloro-N-[3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl]-5-<br>(trifluoromethyl)-2-pyridinamine |  |
| CIPAC No.          | 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |  |
| CAS No             | 79622-59-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    |  |
| EEC No.            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |  |
| Structural formula | $CF_{3} \xrightarrow{\qquad VH} \\ NH \xrightarrow{\qquad VH} \\ O_{2}N \\ CF_{3} \xrightarrow{\qquad VH} \\ O_{2}N \\ O_{2}N \\ CF_{3} \xrightarrow{\qquad VH} \\ O_{2}N \\ O$ |                                                                                                    |  |
| Molecular formula  | C <sub>13</sub> H <sub>4</sub> Cl <sub>2</sub> F <sub>6</sub> N <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O <sub>4</sub>                                                                                     |  |
| Molecular mass     | 465.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |  |

Table 1 Summary of identification and characterisation of residues in grape berries and grape leaves dosed with <sup>14</sup>C-pyraclostrobin

| Grape berries |                    | Grape leaves |                    |
|---------------|--------------------|--------------|--------------------|
| Tolyl label   | Chlorophenyl label | Tolyl label  | Chlorophenyl label |

### PHYSICAL AND CHEMICAL PROPERTIES

#### Pure active ingredient

| Property                     | Results                                               | Reference                               |
|------------------------------|-------------------------------------------------------|-----------------------------------------|
| Appearance                   | Yellow, odourless crystalline solid at 20 °C (Munsell | Kimura, T. 1991a, Report No. 91 0508KT; |
|                              | colour 2.5GY 9/8)                                     | Kimura, T. 1991b, Report No. 91 0509KT; |
|                              |                                                       | Kimura, T. 1991c, Report No. 91 0510KT; |
| Vapour pressure              | 2.3 × 10 <sup>-5</sup> Pa at 25 °C,                   | Yoder, S.J. 1992,                       |
|                              | 1.3 × 10 <sup>-4</sup> Pa at 35 °C,                   | Report No. 4039-91-0385-AS-001          |
|                              | 6.7 × 10 <sup>-4</sup> Pa at 45 °C                    |                                         |
| Volatility                   | Henry's law constant at 20 °C                         | McFadden, J.J. 2000,                    |
|                              | 6.626 × 10 <sup>-6</sup> Atm/m <sup>3</sup> /mole     | Report No. F-150-A                      |
|                              | = 0.671 Pa/m <sup>3</sup> /mole                       |                                         |
| Boling point & melting point | Melting point = 117 °C (390 K)                        | van Helvoirt, J.A.M.W. 1993a,           |
|                              |                                                       | Report No. 089033                       |

| Property                            | Results                                                                             | Reference                                |
|-------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|
|                                     | The molten test substance is not stable above about                                 | van Helvoirt, J.A.M.W. 1993b,            |
|                                     | 150 °C (423 K).                                                                     | Report No. 089044                        |
| Octanol/Water Partition Coefficient | Determined at 20 °C                                                                 | Weissenfeld, M. 2008,                    |
|                                     | In water: Log Pow = 4.53                                                            | Report No. B85397                        |
|                                     | At pH 4: Log Pow = 4.99                                                             |                                          |
|                                     | At pH 7: Log Pow = 4.82                                                             |                                          |
|                                     | At pH 9: Log P <sub>ow</sub> = 4.05                                                 |                                          |
| Solubility in water                 | Determined at 20 °C                                                                 | Brekelmans, M.J.C. 2002,                 |
|                                     | at pH 5: 1.06 × 10 <sup>-4</sup> g/L                                                | Report No. 341189                        |
|                                     | at pH 7: 1.35 × 10 <sup>-4</sup> g/L                                                |                                          |
|                                     | at pH 9: 2.72 × 10° g/L                                                             |                                          |
| Colubility in execute columnts      | (column elution method)                                                             | Uage T 1001                              |
| Solubility in organic solvents      | p Heyeney 6 7 g/l                                                                   | Haya, I. 1991,<br>Deport No. 0112045.001 |
|                                     | II-REXAILE: 0.7 9/L<br>Mothanol: 162 g/l                                            | Report No. 91120HS-001                   |
|                                     | Ethyl ether $168  \alpha/l$                                                         |                                          |
|                                     | Dichlorethane: 485 g/L                                                              |                                          |
|                                     | Toluene: 512 g/l                                                                    |                                          |
|                                     | Ethyl acetate: 624 g/L                                                              |                                          |
|                                     | Acetone: >645 g/L                                                                   |                                          |
| Specific gravity/density            | Relative Density D <sup>20</sup> <sub>4</sub> : 1.81                                | van Rijsbergen, L.M. 2002a,              |
|                                     |                                                                                     | Report No. 341123                        |
| Hydrolysis                          | Label I: U-14C-phenyl Fluazinam                                                     | van der Gaauw, A. 2003,                  |
|                                     | Radiochemical purity: 100%                                                          | Report No. 846211                        |
|                                     |                                                                                     |                                          |
|                                     | Label II: 2,6-14C-pyridyl Fluazinam                                                 |                                          |
|                                     | Radiochemical purity: 97.7%                                                         |                                          |
|                                     |                                                                                     |                                          |
|                                     | <sup>14</sup> C-Fluazinam was found to be stable to hydrolysis                      |                                          |
|                                     | in buffer solution at pH 4 after 5 d at 50 °C.                                      |                                          |
|                                     | At pH 7 and 9, <sup>14</sup> C-Fluazinam was hydrolytically                         |                                          |
|                                     | unstable.                                                                           |                                          |
|                                     |                                                                                     |                                          |
|                                     |                                                                                     |                                          |
|                                     | 0.                                                                                  |                                          |
|                                     | $\text{DT}_{50}$ = 3.5 d (label I) 3.9 d (label II) at pH 9 and 25 $^\circ\text{C}$ |                                          |
|                                     |                                                                                     |                                          |
|                                     | Fluazinam was hydrolysed to CAPA, which was then                                    |                                          |
|                                     | steadily degraded to DCPA (stable to hydrolysis).                                   |                                          |
|                                     | At pH 7 CAPA (M1) represented more than 95% of                                      |                                          |
|                                     | the applied radioactivity (Labels Land II) at the end                               |                                          |
|                                     | of the incubation at 25 °C (day 29). At 50 °C, it                                   |                                          |
|                                     | reached a maximum of about 99% (Label I) and 98%                                    |                                          |
|                                     | (Label II) after 1 or 5 days of incubation at 50 °C,                                |                                          |
|                                     | respectively, then was readily hydrolysed to DCPA                                   |                                          |
|                                     | (M2). At the end of incubation, DCPA (M2)                                           |                                          |
|                                     | accounted for 70.9% (day 56) and 38.0% (day 29) of                                  |                                          |
|                                     | the applied radioactivity for                                                       |                                          |
|                                     | Labels I and II, respectively.                                                      |                                          |
|                                     |                                                                                     |                                          |
|                                     | The third radioactive fraction (M3) did not exceed                                  |                                          |
|                                     | 4.5 and 5.4% (label I and label II) of the applied                                  |                                          |
|                                     | radioactivity.                                                                      |                                          |
|                                     | At pH Q CADA (M1) represented more than Q40/ of                                     |                                          |
|                                     | the applied radioactivity (Labols Land II) at the appl                              |                                          |
|                                     | f the incubation at 25 °C (day 20). At the higher                                   |                                          |
|                                     | temperature it reached a maximum of about 05%                                       |                                          |
|                                     | (Label I) and 94% (Label II) after 1 day of incubation                              |                                          |
|                                     | at 50 °C. Thereafter, it was hydrolysed to DCPA                                     |                                          |
|                                     | (M2). At the end of incubation (day 29). DCPA (M2)                                  |                                          |
|                                     | accounted for between 95% and 96% of the applied                                    |                                          |
|                                     |                                                                                     | ı                                        |

312

| Property                    | Results                                                                                                                                                                                                                                                         | Reference                                                            |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                             | radioactivity for both labels                                                                                                                                                                                                                                   |                                                                      |
| Photolysis                  | Label I: <sup>14</sup> C-phenyl Fluazinam<br>Radiochemical purity: >99%<br>Label II: <sup>14</sup> C-pyridyl Fluazinam<br>Radiochemical purity: >99%<br>The half-life in sterile pH 5 buffer was 2.5 days for<br>both labels.                                   | Lentz, N.R. and Korsch, B.H. 1995,<br>Report No. 5312-94-0019-EF-002 |
|                             | One major photolyte was detected for both labels<br>accounting for 17.1% (label I) and 14.0% (Label II). It<br>was identified as G-504.<br>The other photolytic product was CO <sub>2</sub> (17.7% and<br>16.0% of label I and II, respectively after 30 days). |                                                                      |
|                             | Quantum Yield ( $\Phi = K_h/I_a$ ):<br>5.1×10 <sup>-5</sup> (pH 9 buffer)<br>1.7×10 <sup>-5</sup> (pH 6 distilled water)<br>2.1×10 <sup>-6</sup> (pH 5 buffer)                                                                                                  | Wadley, A.M. 1992,<br>Report No. RIC1726                             |
| Dissociation constant (pKa) | Determined at 20 °C:<br>The average pKa from three trials was 7.34 in the<br>pH range of 2-12 using the UV spectrophotometric<br>method (OECD 112).                                                                                                             | Gallacher, A.C. 1992,<br>Report No. 4039-91-0387-AS-001              |

# Technical material

| Property                                        | Results                                                                                                                                                                                                                                    | Reference                                                                                                                                                                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appearance                                      | Purity 97.7%:<br>Yellow, solid (Munsell colour 5Y 9/4 or 5Y/5), with a weak aromatic<br>hydrocarbon-like odour.<br>Purity 96.8%:<br>Mustard yellow, solid granular powder at 24 °C (Munsell colour 5Y 8/10),<br>with a strong musty odour. | Asai, N. 1991a,<br>Report No. 1216-90-06303-1;<br>Oguri, M. 1991,<br>Report No. 1216-90-06302-1;<br>Asai, N. 1991b,<br>Report No. 1216-90-06304-1;<br>Wojcieck, B.C. 1993,<br>Report No. 4039-92-0500-AS-001; |
| Melting range                                   | Purity 96.8%: Sample melted at 119 °C (metal block/capillary)                                                                                                                                                                              | Wojcieck, B.C. 1993,<br>Report No. 4039-92-0500-AS-001;                                                                                                                                                       |
| Bulk Density                                    | Purity 96.8%: 1.02 g/cm <sup>3</sup> at 25 °C                                                                                                                                                                                              | Wojcieck, B.C. 1993,<br>Report No. 4039-92-0500-AS-001;                                                                                                                                                       |
| Solubility in organic<br>solvents at 25°C       | Purity96.8%:Hexane:8 g/LMethanol:192 g/LEthyl ether:231 g/LDichloromethane:675 g/LToluene:451 g/LEthyl acetate:722 g/LAcetone:853 g/LOctanol:41 g/L                                                                                        | Sanders, J.M. 1993,<br>Report No. 4039-91-0384-AS-001                                                                                                                                                         |
| Octanol/Water Partition<br>Coefficient at 25 °C | Purity 96.8%:<br>Mean coefficient = $1.08 \times 10^4$<br>Mean log K <sub>ow</sub> = $4.03$                                                                                                                                                | Sanders, J.M. 1992<br>Report No. 4039-91-0386-AS-001                                                                                                                                                          |
| Thermal stability<br>(Flammability)             | Purity 96.7%:<br>Preliminary test: The test substance could not be ignited by a flame,<br>although it melted and turned brown. Fluazinam technical material is<br>not "highly flammable" according to the test method.                     | van Rijsbergen, L.M. 2002b,<br>Report No. 341191                                                                                                                                                              |
| Thermal stability<br>(Auto flammability)        | Purity 96.7%:<br>No self-ignition up to 400 °C                                                                                                                                                                                             | van Rijsbergen, L.M. 2002c,<br>Report No. 341202                                                                                                                                                              |

| Property               | Results                                                              | Reference                |
|------------------------|----------------------------------------------------------------------|--------------------------|
| Thermal stability      | Purity 97.8%:                                                        | Angly H. 2005,           |
| (Explosive properties) | Fluazinam technical material is not thermally sensitive (effect of a | Report No. 2005.2004.EXP |
|                        | flame) and is not sensitive to shock and friction. Fluazinam is not  |                          |
|                        | considered as explosive on the basis of the test results.            |                          |

# Formulation

Formulations of fluazinam are available as suspension concentrates and wettable powders.

| Formulation type         | Active substance/s and content | Application type    |
|--------------------------|--------------------------------|---------------------|
| SC (Soluble Concentrate) | Fluazinam 500 g/L              | Foliar applications |
| WP (Wettable Powder      | Fluazinam 500 g/Kg             | Foliar applications |

### METABOLISM AND ENVIRONMENTAL FATE

# Radiolabel Position

Radiolabelled studies were undertaken using <sup>14</sup>C -fluazinam labelled either in the phenyl or pyridyl ring as shown in Figure 1.

| <sup>14</sup> C-(Ph)-Fluazinam<br>[ <sup>14</sup> C-Phenyl] Fluazinam<br>Phenyl label    | $CF_3$ $NH$ $CF_3$ $CF_3$ $CF_3$ $O_2N$ $CF_3$                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | * position of <sup>14</sup> C radiolabel (phenyl ring)                                                                                                                                                                                                                                                            |
| <sup>14</sup> C-(Py)-Fluazinam<br>[ <sup>14</sup> C-Pyridine] Fluazinam<br>Pyridyl label | $CF_3 \xrightarrow{\hspace{1cm}} V \xrightarrow{\hspace{1cm}} V \xrightarrow{\hspace{1cm}} V \xrightarrow{\hspace{1cm}} CI \xrightarrow{\hspace{1cm}} CI \xrightarrow{\hspace{1cm}} CI \xrightarrow{\hspace{1cm}} CF_3 \xrightarrow{\hspace{1cm}} V \xrightarrow{\hspace{1cm}} V \xrightarrow{\hspace{1cm}} CF_3$ |
|                                                                                          | * position of <sup>14</sup> C radiolabel (pyridine ring)                                                                                                                                                                                                                                                          |

Figure 1 [<sup>14</sup>C]-labelled test materials used in animal metabolism, plant metabolism and environmental fate studies

The chemical structures of the major degradation compounds from the metabolism of fluazinam are provided below in Table 1.

| Table 1 Structure of compounds appearing in metabolism and environmental fate studies |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| Chemical name (IUPAC)                                                                                                                                                             | Compound<br>Name/Code  | Structure                                                                                                | Occurrence in metabolism studies                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 3-Chloro- <i>I</i> -(3-chloro-5-<br>trifluoromethyl-2-pyridyl)- <i>a,a,a</i> -<br>trifluoro-2,6-dinitro- <i>p</i> -toluidine                                                      | Fluazinam,<br>IKF-1216 | $F_3C \longrightarrow NH \longrightarrow CI$<br>$O_2N \longrightarrow CF_3$                              | Potatoes,<br>peanut (foliage),<br>grapes,<br>apples,<br>laying hen<br>(liver, kidney, muscle, fat, egg<br>yolk),<br>RAT |
| 3-[[4-amino-3-[[3-chloro-5-<br>(trifluoromethyl)-2-<br>pyridyl]amino]- <i>a,a,a</i> -trifluoro-<br>6-nitro- <i>α</i> -tolyl]thio]-2-(β-D-<br>glucopyranosyloxy) propionic<br>acid | AMGT                   | $F_3C$ $O_2N$ $CI$ $CF_3$ $O_2N$ $CF_3$ $O_2N$ $CF_3$ $O_2N$ $SCH_2CHCOOH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ | Potatoes<br>grapes,<br>wine,<br>apples                                                                                  |

| Chemical name (IUPAC)                                                                                                                   | Compound<br>Name/Code | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Occurrence in metabolism studies                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-(6-amino-3-chloro- <i>a,a,a</i> -<br>trifluoro-2-nitro- <i>p</i> -toluidino)-3-<br>chloro-5-(trifluoromethyl)<br>pyridine             | AMPA                  | $F_3C \longrightarrow NH \longrightarrow CF_3$<br>$H_2N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Potatoes,<br>peanut (foliage),<br>wine<br>goat (liver, kidney, muscle, fat,<br>milk),<br>laying hen (liver, kidney, muscle,<br>fat, egg yolk and white),<br>RAT |
| 2-chloro-6-[(3-chloro-5-<br>(trifluoromethyl)-2-<br>pyridyl)amino]- <i>a,a,a</i> -trifluoro-<br>5-nitro- <i>m</i> -cresol               | SDS-67230             | $F_3C \longrightarrow NH \longrightarrow CI \\ O_2N \\ O_2N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grapes,<br>apples                                                                                                                                               |
| 2-(2-amino-3-chloro- <i>a,a,a</i> -<br>trifluoro-6-nitro- <i>p</i> -toluidino)-3-<br>chloro-5-(trifluoromethyl)<br>pyridine             | МАРА                  | $F_{3}C$ $NH$ $O_{2}N$ $CI$ $CI$ $CI$ $CI$ $CI$ $CF_{3}$ $O_{2}N$ $O_{2}N$ $CF_{3}$ $O_{2}N$ $CF_{3}$ $O_{2}N$ | Laying hen (liver, kidney, muscle, fat egg yolk and white)                                                                                                      |
| Trifluoroacetic acid                                                                                                                    | TFAA                  | о<br>  <br>F <sub>3</sub> C—СОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Potatoes,<br>peanut (foliage),<br>apples<br>rotational crops:<br>lettuce (DAT 30)<br>carrots (DAT 30)<br>barley grain:<br>DAT 120<br>DAT 365                    |
| 5-[(3-chloro-5-<br>(trifluoromethyl)-2-<br>pyridyl)amino]- <i>a,a,a</i> -trifluoro-<br>4,6-dinitro- <i>o</i> -cresol                    | НҮРА                  | $F_3C \longrightarrow NH \longrightarrow CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laying hen (liver, kidney, muscle,<br>fat egg yolk and white);<br>SOIL (major)                                                                                  |
| 3-chloro-2-(2,6-diamino-3-<br>chloro- <i>a,a,a</i> -trifluoromethyl- <i>p</i> -<br>toluidino)-3-chloro-5-<br>(trifluoromethyl) pyridine | DAPA                  | $F_3C \longrightarrow NH \longrightarrow CF_3$<br>$H_2N \longrightarrow H_2N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | goat (liver, kidney, muscle, fat, bile,<br>urine, milk)<br>laying hen (liver, kidney, muscle,<br>fat egg yolk and white),<br>RAT                                |
| 5-Chloro-6-(3-chloro-2,6-<br>dinitro-4-<br>trifluoromethylanilino) nicotinic<br>acid                                                    | САРА                  | $HO_2C$ $NH$ $CI$ $CF_3$ $O_2N$ $CI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potato<br>Hydrolysis                                                                                                                                            |
| 6-(4-Carboxy-3-chloro-2,6-<br>dinitroanilino)-5-<br>chloronicotinic acid                                                                | DCPA                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydrolysis                                                                                                                                                      |
| 4,9-dichloro-6-nitro-8-<br>(trifluoromethyl)-pyrido-[1,2-<br>a]benzimidazole-2-carboxylic<br>acid                                       | G-504                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydrolysis                                                                                                                                                      |

#### Plant metabolism

The meeting received information on metabolism of fluazinam after foliar application in apple, grape, potato, and peanut. Fluazinam was either labelled in the phenyl or pyridine ring.

Potato

Two studies investigating the metabolism of fluazinam in potatoes were provided to the meeting.

Study 1 (Galica, H. 1991)

Seed potatoes (variety Urgenta) were planted outdoors in a clay loam soil. Within the study potatoes were treated with phenyl (radiochemical purity 98.8%, specific activity 116.2 mCi/g) and pyridyl labelled (radiochemical purity 99.3%, specific activity 129 mCi/g) fluazinam formulated as a SC.

Two application regimes were investigated; in the first regime (low dose) potatoes received 4 applications at 0.6 kg ai/ha and in the second regime (high dose) potatoes received 4 applications at 1.8 kg ai/ha. Applications were undertaken 55, 76, 99 and 105 days after sowing.

Potato tubers were sampled 7 and 22 days after the last application with the latter time period representing crop maturity.

Potato tubers were washed and peeled. Potato tubers, peel and pulp were homogenised and the radioactivity was determined by combustion. The samples were stored frozen at ≤-18 °C and analysed within 4 months.

The TRR in potato tubers and peel and washings are shown in Tables 2 and 3.

Table 2 Radioactive residues in potato tuber after application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Harvest         | Label   | Dose             | Amount found by |            |            |
|-----------------|---------|------------------|-----------------|------------|------------|
|                 |         |                  | Combustion      | Washings   | Total      |
|                 |         |                  | [mg eq/kg]      | [mg eq/kg] | [mg eq/kg] |
|                 |         |                  | (% TRR)         | (% TRR)    | (% TRR)    |
|                 | Pyridyl | 4 × 0.6 kg ai/ha | 0.055           | 0.003      | 0.058      |
|                 |         |                  | (94.8%)         | (5.2%)     | (100%)     |
|                 | Phenyl  | 4 × 0.6 kg ai/ha | 0.065           | 0.002      | 0.067      |
| 7 DALA          |         |                  | (97.0%)         | (3.0%)     | (100%)     |
| (green harvest) | Pyridyl | 4 × 1.8 kg ai/ha | 0.105           | 0.003      | 0.108      |
|                 |         |                  | (97.2%)         | (2.8%)     | (100%)     |
|                 | Phenyl  | 4 × 1.8 kg ai/ha | 0.109           | 0.002      | 0.111      |
|                 |         |                  | (98.2%)         | (1.8%)     | (100%)     |
|                 | Pyridyl | 4 × 0.6 kg ai/ha | 0.072           | 0.009      | 0.081      |
|                 |         |                  | (88.9%)         | (11.1%)    | (100%)     |
|                 | Phenyl  | 4 × 0.6 kg ai/ha | 0.069           | 0.004      | 0.073      |
| 22 DALA         |         |                  | (94.5%)         | (5.5%)     | (100%)     |
| (maturity)      | Pyridyl | 4 × 1.8 kg ai/ha | 0.100           | 0.005      | 0.105      |
|                 |         |                  | (95.2%)         | (4.8%)     | (100%)     |
|                 | Phenyl  | 4 × 1.8 kg ai/ha | 0.114           | 0.005      | 0.119      |
|                 |         |                  | (95.8%)         | (4.2%)     | (100%)     |

Table 3 Radioactive residues in potato peel and pulp after application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Harvest         | Label   | Dose             | Total radioactive residues |            |
|-----------------|---------|------------------|----------------------------|------------|
|                 |         |                  | Peel                       | Pulp       |
|                 |         |                  | [mg eq/kg]                 | [mg eq/kg] |
|                 | Pyridyl | 4 × 0.6 kg ai/ha | 0.105                      | 0.050      |
| 7 DALA          | Phenyl  | 4 × 0.6 kg ai/ha | 0.083                      | 0.064      |
| (green harvest) | Pyridyl | 4 × 1.8 kg ai/ha | 0.243                      | 0.092      |
|                 | Phenyl  | 4 × 1.8 kg ai/ha | 0.119                      | 0.108      |
|                 | Pyridyl | 4 × 0.6 kg ai/ha | 0.107                      | 0.067      |
| 22 DALA         | Phenyl  | 4 × 0.6 kg ai/ha | 0.106 <sup>a</sup>         | 0.064      |
| (maturity)      | Pyridyl | 4 × 1.8 kg ai/ha | 0.189                      | 0.090      |
|                 | Phenyl  | 4 × 1.8 kg ai/ha | 0.139                      | 0.111      |

<sup>a</sup> This result from peel combustion was not comparable to the values determined by extraction/ combustion using the two extraction procedures (0.079 and 0.076 mg/kg)

316

Homogenised potato tubers, pulp and peel were extracted using two different procedures.

In the first extraction procedure, samples were extracted four times with acetonitrile: water (80: 20, v/v) followed by extraction with acetonitrile, methanol: water (80:20, v/v) and water. The acetonitrile: water extracts were partitioned to characterise the organo-soluble radioactivity.

Following the initial solvent extraction, the remaining soilds were further treated with cellulase followed by acid and base hydrolysis. The solutions obtained from enzyme, acid and base treatments were partitioned with an organic solvent. Selected extracts were pooled and concentrated by rotary evaporation. Concentrated extracts from pulp were partitioned with dichloromethane and/or ethyl acetate at neutral pH, pH 1-2 and pH 12.

The TRR following the first extraction procedure are shown in Table 4

Table 4 Distribution of radioactivity in potato pulp and peel fractions following application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam expressed as residues in whole potato–extraction procedure 1

| Fraction                                    | Pyridyl label, lov | v dose     |              | Phenyl label, low dose |            |              |
|---------------------------------------------|--------------------|------------|--------------|------------------------|------------|--------------|
|                                             | Peel               | Pulp       | Whole potato | Peel                   | Pulp       | Whole potato |
|                                             | [mg eq/kg]         | [mg eq/kg] | [mg eq/kg]   | [mg eq/kg]             | [mg eq/kg] | [mg eq/kg]   |
|                                             |                    |            |              |                        |            |              |
|                                             | (% TRR)            | (% TRR)    | (% TRR)      | (% TRR)                | (% TRR)    | (% TRR)      |
| ACN 80%                                     | 0.049              | 0.024      | 0.028        | 0.030                  | 0.018      | 0.019        |
|                                             | (53.8%)            | (45.3%)    | (47.5%)      | (38.0%)                | (34.6%)    | (34.5%)      |
| Organic phase                               | 0.034              | 0.007      | 0.011        | 0.019                  | 0.004      | 0.006        |
|                                             | (69.4%)            | 29.2%)     | (39.3%)      | (63.3%)                | (22.2%)    | (30.0%)      |
| Aqueous phase                               | 0.015              | 0.017      | 0.017        | 0.011                  | 0.014      | 0.014        |
|                                             | (30.6%)            | (70.8%)    | (60.7%)      | (36.7%)                | (77.8%)    | (70.0%)      |
| ACN                                         | 0.000              | <0.001     | <0.001       | 0.001                  | 0.000      | <0.001       |
|                                             | (0.0%)             | (<1.9%)    | (<1.7%)      | (1.3%)                 | (0.0%)     | (<1.8%)      |
| Water                                       | 0.002              | 0.002      | 0.002        | 0.002                  | 0.003      | 0.003        |
|                                             | (2.2%)             | (3.8%)     | (3.4%)       | (2.5%)                 | (5.8%)     | (5.5%)       |
| MeOH 80%                                    | 0.001              | <0.001     | <0.001       | 0.001                  | <0.001     | <0.001       |
|                                             | (1.1%)             | (<1.9%)    | (<1.7%)      | (1.3%)                 | (<1.9%)    | (<1.8%)      |
| PES                                         |                    |            |              |                        |            |              |
| Hydrolysis (cellulase)                      | 0.002              | 0.002      | 0.002        | 0.001                  | 0.002      | 0.002        |
|                                             | (2.2%)             | (3.8%)     | (3.4%)       | (1.3%)                 | (3.8%)     | (3.6%)       |
| Hydrolysis (HCI)                            | 0.013              | 0.018      | 0.017        | 0.009                  | 0.025      | 0.023        |
|                                             | (14.3%)            | (34.0%)    | (28.8%)      | (11.4%)                | (48.1%)    | (41.8%)      |
| Hydrolysis (HCl, reflux)                    | 0.010              | 0.005      | 0.006        | 0.009                  | 0.003      | 0.004        |
|                                             | (11.0%)            | (9.4%)     | (10.2%)      | (11.4%)                | (5.8%)     | (7.3%)       |
| Hydrolysis (1M KOH)                         | 0.005              | 0.001      | 0.002        | 0.003                  | 0.001      | 0.001        |
|                                             | (5.5%)             | (1.9%)     | (3.4%)       | (3.8%)                 | (1.9%)     | (1.8%)       |
| Hydrolysis (6M KOH)                         | 0.007              | -          | 0.001        | 0.018                  | -          | 0.002        |
|                                             | (7.7%)             |            | (1.7%)       | (22.8%)                |            | (3.6%)       |
| Remaining soilds                            | 0.002              | 0.001      | 0.001        | 0.005                  | <0.001     | 0.001        |
|                                             | (2.2%)             | (1.9%)     | (1.7%)       | (6.3%)                 | (<1.9%)    | (1.8%)       |
| PES total                                   | 0.039              | 0.027      | 0.029        | 0.045                  | 0.032      | 0.033        |
|                                             | (42.9%)            | (51%)      | (49.2%)      | (57%)                  | (61.5%)    | (59.9)       |
|                                             |                    |            |              |                        |            |              |
| Total <sup>14</sup> C-residues <sup>a</sup> | 0.091              | 0.053      | 0.059        | 0.079                  | 0.052      | 0.055        |
|                                             | (100%)             | (100%)     | (100%)       | (100%)                 | (100%)     | (100%)       |

<sup>a</sup> Total by summation and hence differ slightly from the levels in Table 3

Most of the radioactivity was found in the acetonitrile: water extractions. Thereafter, radioactivity was present at low levels in all extracts and only HCl hydrolysis of the PES yielded sufficient radioactivity to allow further analysis. The residue remaining in the solids after hydrolysis was very low with 0.001 mg eq/kg for whole potato.

In the second extraction procedure, potato tubers, pulp and peel samples were extracted four times with acetonitrile: water (80:20, v/v) followed by Soxhlet extraction with acetonitrile overnight. Extracts were pooled and concentrated by rotary evaporation, partitioned twice with dichloromethane and once with ethyl acetate at neutral pH and at pH 1. These phases were

pooled and concentrated. The remaining water phase was hydrolysed with 1M HCl (pH 1) at 70 °C under nitrogen for 18 hours. Partitioning was performed with dichloromethane (tubers) or hexane (peel) and one to two times with ethyl acetate.

Extracts from the peel were partitioned at neutral pH and pH 1. The organic phases were pooled, further concentrated and analysed by TLC using reference standards. The water phase from pulp was lyophilised and hydrolysed with 2M HCl under reflux and partitioned with ethyl acetate. Unextracted radioactivity was determined by combustion.

The PES of the peel or potato tuber were subjected to acid hydrolysis (1 M HCl) at 90 °C. The resulting mixture was centrifuged, filtered and rinsed with 1M HCl and the remaining solids analysed by combustion.

The results for extraction procedure 2 are outlined in Table 5.

Table 5 Distribution of radioactivity in potato pulp and peel fractions-extraction procedure 2

| Extraction                     | Pyridyl label, lov | v dose    |              | Phenyl label, low dose |           |              |
|--------------------------------|--------------------|-----------|--------------|------------------------|-----------|--------------|
|                                | Peel               | Pulp      | Whole potato | Peel                   | Pulp      | Whole potato |
|                                | [mg eq/kg          | [mg eq/kg | [mg eq/kg    | [mg eq/kg              | [mg eq/kg | [mg eq/kg    |
|                                | potato]            | potato]   | potato]      | potato]                | potato]   | potato]      |
|                                | (% TRR)            | (% TRR)   | (% TRR)      | (% TRR)                | (% TRR)   | (% TRR)      |
| ACN: water (80:20, v/v)        | 0.007              | 0.021     | 0.028        | 0.003                  | 0.017     | 0.020        |
|                                | (9.6%)             | (28.8%)   | (38.4%)      | (4.5%)                 | (25.3%)   | (29.8%)      |
| Organic phase                  | 0.004              | 0.004     | 0.008        | 0.001                  | 0.004     | 0.005        |
|                                | (5.5%)             | (5.5%)    | (11.0%)      | (1.5%)                 | (6.0%)    | (7.4%)       |
| Aqueous phase                  | 0.003              | 0.018     | 0.021        | 0.002                  | 0.013     | 0.015        |
|                                | 4.1%)              | (24.7%)   | (28.8%)      | (3.0%)                 | (19.3%)   | (22.3%)      |
| Hydrolysis of aqueous phase    |                    |           |              |                        |           |              |
| Organic phase                  | 0.001              | 0.001     | 0.002        | <0.001                 | <0.001    | < 0.001      |
|                                | (1.4%)             | (1.4%)    | (2.7%)       | (<1.5%)                | (<1.5%)   | (<1.5%)      |
| Aqueous phase                  | 0.002              | 0.017     | 0.019        | 0.002                  | 0.013     | 0.015        |
|                                | (2.7%)             | (23.3%)   | (26.0%)      | (3.0%)                 | (19.3%)   | (22.3%)      |
|                                |                    |           |              |                        |           |              |
| Soxhlet acetonitrile           | 0.001              | 0.001     | 0.002        | 0.001                  | < 0.001   | < 0.002      |
|                                | (1.4%)             | (1.4%)    | (2.7%)       | (1.5%)                 | (<1.5%)   | (1.5%)       |
| PES                            |                    |           |              |                        |           |              |
| Organic phase                  | <0.001             | 0.000     | <0.001       | <0.001                 | <0.001    | <0.001       |
|                                | (<1.4%)            | (0.0%)    | (<1.4%)      | (<1.5%)                | (<1.5%)   | (<1.5%)      |
| Aqueous phase                  | 0.002              | 0.023     | 0.025        | 0.001                  | 0.030     | 0.031        |
|                                | (2.7%)             | (31.5%)   | (34.3%)      | (1.5%)                 | (44.6%)   | (46.1%)      |
| Remaining solids               | 0.005              | 0.014     | 0.019        | 0.003                  | 0.012     | 0.015        |
|                                | (6.9%)             | (19.2%)   | (26.0%)      | (4.5%)                 | (17.9%)   | (22.3%)      |
| Total PES                      | 0.008              | 0.037     | 0.045        | 0.005                  | 0.043     | 0.047        |
|                                | (11%)              | (50.7%)   | (61.7%)      | (7.5%)                 | (64%)     | (69.9%)      |
|                                | -                  |           |              | -                      |           |              |
| Total <sup>14</sup> C-residues | 0.015              | 0.059     | 0.074        | 0.074                  | 0.059     | 0.067        |
|                                | (20.6%)            | (80.8%)   | (101.4%)     | (11.9%)                | (87.8%)   | (99.7%)      |
| Total recovery based on whole  | 0.074              |           |              | 0.067                  |           |              |
| potato                         | (101.4%)           |           |              | (99.7%)                |           |              |

In terms of whole potato, the acetonitrile: water and Soxhlet extracts accounted for 41.1% (0.03 mg eq/kg) and 31.3% (0.022 mg eq/kg) for potatoes treated with pyridyl- and phenyl-labelled fluazinam, respectively.

Expressed in terms of whole potato, the acid hydrolysis of the PES released 34.3% (0.025 mg eq/kg) for the pyridyl-label and 46.1% (0.031 mg eq/kg potato) for the phenyl-label.

TLC analysis was undertaken on various samples from the organic phases from the acetonitrile extracts, hydrolysis of the aqueous phases and some of the organic phases obtained from hydrolysis of pulp and peel PES. Owing to the oily consistency, the aqueous phases could not be further analysed. The results from TLC analyses of potato peel are shown in Table 6.

318

| Radioactive        | Rf-value    | Identity  | Potato peels (22 DALA | H)              |                 |
|--------------------|-------------|-----------|-----------------------|-----------------|-----------------|
| fraction           | SS 2 / SS 8 |           | [%] found in organic  | [mg eq/kg peel] | [mg eq/kg whole |
|                    |             |           | phase                 |                 | potato]         |
| Pyridyl-label: lov | w dose      |           |                       |                 |                 |
| M1                 | 93 / 69     | Fluazinam | 13.2                  | 0.004           | 0.001           |
| M2                 | 66 / 59     | Unknown   | 3.4                   | 0.001           | <0.001          |
| M3                 | 97 / 44     | Unknown   | 32.4                  | 0.011           | 0.002           |
| M4                 | 89 / 35     | MAPA      | 3.7                   | 0.001           | <0.001          |
| M5                 | 89 / 01     | Unknown   | 21.4                  | 0.007           | 0.001           |
| M6                 | 78 / 01     | CAPA      | 14.8                  | 0.005           | 0.001           |
| M7                 | 59 / 01     | HYPA      | 7.6                   | 0.002           | <0.001          |
| M8                 | 44 / 01     | Unknown   | 1.7                   | 0.001           | <0.001          |
| Total              |             |           | 100.0                 | 0.032           | 0.005           |
| Phenyl-label: low  | w dose      |           |                       |                 |                 |
| M1                 | 94 / 78     | Fluazinam | 38.9                  | 0.003           | <0.001          |
| M4                 | 94 / 39     | MAPA      | 8.5                   | 0.001           | <0.001          |
| M5                 | 94 / 01     | Unknown   | 29.9                  | 0.002           | <0.001          |
| M6                 | 73 / 01     | CAPA      | 5.4                   | <0.001          | <0.001          |
| M7                 | 59 / 01     | HYPA      | 4.5                   | <0.001          | <0.001          |
| M9                 | 44 / 57     | Unknown   | 6.0                   | <0.001          | <0.001          |
| M10                | 37 / 16     | Unknown   | 6.8                   | 0.001           | <0.001          |
| Total              |             |           | 100.0                 | 0.007           | 0.001           |

Table 6 Distribution of fluazinam and metabolites in organo-soluble fraction from acetonitrile extracts from potato peel analysed by TLC

In potato peel from the pyridyl-label, fluazinam was detected amounting to 0.004 mg eq/kg (0.001 mg/kg whole as potato). The largest fraction was unknown M3 with 0.011 mg eq/kg (0.002 mg eq/kg whole potato).

All other fractions did not represent more than 0.007 mg eq/kg (0.001 mg eq/kg whole potato).

In potato peel from the phenyl-label, fluazinam was the most abundant fraction with 0.003 mg/kg (<0.001 mg/kg as whole potato). No other radioactive fraction accounted for more than 0.002 mg eq/kg (<0.001 mg eq/kg as whole potato).

The proposed metabolic pathway for fluazinam in potatoes is outlined in Figure 2.

Figure 2 Proposed metabolic pathway of fluazinam in potato

#### Study 2 (Jentoft, N.H. 1997)

Seed potatoes (variety Kennebec) were planted in a sand loam soil. Phenyl (radiochemical purity 98%, specific activity 57.3 mCi/mmole)) or pyridyl (radiochemical purity 98%, specific activity 66.2 mCi/mmole) labelled fluazinam was applied as a SC formulation. Three different application regimes were investigated as outlined in table 7.

Table 7 The application details for the metabolism studies conducted on potato

| Plant designated as:                 | Phenyl 1                      | Phenyl 2                      | Pyridyl                       |
|--------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Application rate                     | 0.505                         | 0.505                         | 0.430                         |
| per treatment (kg a.i./ha)           |                               |                               |                               |
| Number of applications               | 4                             | 4                             | 4                             |
| Application rate                     | 2.02                          | 2.02                          | 1.72                          |
| (total) (kg a.i./ha)                 |                               |                               |                               |
| Interval between applications (days) | 14, 11, 9                     | 14, 11, 9                     | 14, 11, 9                     |
| Harvest                              | 6 days after last application | 7 days after last application | 7 days after last application |

Potatoes were harvested either 6 or 7 days after the last application. Tubers were harvested, air dried, and brushed lightly to remove soil.

Potatoes were homogenised for analysis with TRR determined by combustion. In addition, one potato from each group was peeled and the peel and pulp homogenised. The samples were stored frozen at  $\leq$  -18 °C with all analysis being completed within 3 months.

Potato tuber, peel and pulp samples were each extracted two times with three volumes of acetonitrile. Undissolved solids were removed by centrifugation after each extraction. The extracts from each plant were combined and concentrated by rotary evaporation. The remaining solids were then re-extracted with three volumes of acetonitrile: water (1:1, v/v) using the same procedure and the acetonitrile: water extracts from each plant combined.

Further analysis of the PES was undertaken to demonstrate the conversion of fluazinam into natural products (starch). The PES was subjected to acid hydrolysis (1M H<sub>2</sub>SO<sub>4</sub>) for 6 hours. After neutralization, the resulting glucose solution was reduced to sorbitol with NaBH<sub>4</sub>. Sorbitol was acetylated with acetic anhydride and then water was added to stop the reaction.

| Fraction           | Phenyl 1   |       | Phenyl 2   |       | Phenyl average |       | Pyridyl    |       |
|--------------------|------------|-------|------------|-------|----------------|-------|------------|-------|
| FIACTION           | [mg eq/kg] | % TRR | [mg eq/kg] | % TRR | [mg eq/kg]     | % TRR | [mg eq/kg] | % TRR |
| Homogenate         | 0.0102     | 100.0 | 0.0120     | 100.0 | 0.0111         | 100.0 | 0.0250     | 100.0 |
| ACN extract        | 0.0017     | 16.9  | 0.0024     | 19.9  | 0.0020         | 18.4  | 0.0079     | 31.5  |
| ACN: Water         | 0.0014     | 12.0  | 0.0025     | 20.7  | 0.0010         | 17.2  | 0.0038     | 15.2  |
| (1:1) extract      | 0.0014     | 13.7  | 0.0025     | 20.7  | 0.0019         | 17.5  | 0.0038     | 13.2  |
| Total extracted    | 0.0031     | 30.8  | 0.0049     | 10.6  | 0.0040         | 35.7  | 0.0117     | 16.7  |
| residue            | 0.0031     | 30.0  | 0.0047     | 40.0  | 0.0040         | 33.7  | 0.0117     | 40.7  |
| PES                | 0.0048     | 47.5  | 0.0065     | 54.7  | 0.0057         | 51.1  | 0.0119     | 47.8  |
| Total recovery [%] | 78.3       |       | 95.3       |       | 86.8           |       | 94.5       |       |

The TRR in potatoes are shown in Table 8.

Table 8 Distribution of radioactivity in potato tuber fractions following application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

None of the extracts accounted for more than 0.01 mg eq/kg and as a result only limited identification work was undertaken. HPLC analysis of all of the extracts was undertaken. The resulting data was used to characterise the residue as the total polar fraction and the total non-polar fraction. Therefore overall the TRR found in potato tubers was characterised as 1) PES, 2) total extractable polar fraction and 3) total extractable non polar fraction.

The PES contained about half of the TRR, while the polar extractable and the non-polar extractable fractions contained 27-31% and 9-16% of the TRR, respectively (see Table 10).

To examine the nature of the residue in the PES, the glucose units of starch were converted to sorbitol hexa-acetate through a series of chemical reactions. For both the phenyl- and pyridyl-labelled <sup>14</sup>C-fluazinam samples, the amount of radioactivity recovered in twice-re-crystallised sorbitol hexa-acetate was sufficient to account for almost all of the radioactive residue in the PES fraction.

The total polar extractable fraction represents 0.003 and 0.008 mg eq/kg in the phenyl- and pyridyl-label treated potatoes, respectively. Since the levels were low attempts to identify components present in this fraction were unsuccessful, although TFAA was identified. However, the fact that the residue was eluted from an HPLC reverse phase column significantly earlier than fluazinam implies that the components do not retain the original fluazinam structure. Any fluazinam derivative retaining most of the carbon skeleton of the parent compound would have to be substituted with a highly polar group in order to elute that early. This is indicative that the components in this fraction are made up of small polar compounds.

The total nonpolar fraction represents less than 0.001 and 0.004 mg eq/kg for the phenyl- and pyridyl-label treated potatoes respectively. As with the polar fraction, the low residue levels found resulted in limited identification work. The resulting HPLC data demonstrated that there was no single component above 0.001 mg eq/kg. A comparison of the retention times allowed fluazinam to be identified and its level estimated. Small amounts of radioactivity were eluted at the retention times corresponding to AMGT and AMPA. Additional confirmation of fluazinam was achieved by TLC. Confirmation of identity of the other analytes was not achieved.

| Freetien        | Phenyl     |       | Pyridyl    |       |
|-----------------|------------|-------|------------|-------|
| Fraction        | [mg eq/kg] | % TRR | [mg eq/kg] | % TRR |
| Homogenate      | 0.011      | 100   | 0.025      | 100   |
| PES             | 0.006      | 51.1  | 0.012      | 47.8  |
| Starch          | 0.005      | 43.9  | 0.012      | 47.3  |
|                 |            |       |            |       |
| Extracts        | 0.004      | 35.7  | 0.012      | 46.7  |
| Total polar     | 0.003      | 27.2  | 0.008      | 30.9  |
| TFAA            | <0.001     | 0.9   | <0.001     | 0.6   |
| Total non-polar | 0.001      | 8.5   | 0.004      | 15.8  |
| AMGT            | <0.001     | 2.2   | <0.001     | 2.7   |
| AMPA            | <0.001     | 1.4   | <0.001     | 3.1   |
| fluazinam       | <0.001     | 2.3   | 0.001      | 5.9   |
| other           | <0.001     | 2.4   | 0.001      | 4.1   |

Table 9 Assignment of whole potato TRR to fluazinam and metabolites

Additional studies on the distribution of residue in potato were carried out by analysing peel and pulp separately. The results demonstrate differences in the distribution of the residues in peel compared to pulp (see Table 10). For peel, almost all the extractable residues appear in the acetonitrile extract, while the extractable residues from pulp are more or less evenly split between acetonitrile and acetonitrile: water (1:1, v/v) extracts.

| Fraction                          | Pulp   |            | Peel   |            |
|-----------------------------------|--------|------------|--------|------------|
|                                   | [%TRR] | [mg eq/kg] | [%TRR] | [mg eq/kg] |
| Initial                           | 100%   | 0.0159     | 100%   | 0.0109     |
| Acetonitrile extract              | 29%    | 0.0046     | 42%    | 0.0046     |
| Acetonitrile: water (1:1) extract | 21%    | 0.0033     | 6%     | 0.0006     |
| Total extractable                 | 50%    | 0.0080     | 48%    | 0.0052     |
| PES                               | 46%    | 0.0073     | 42%    | 0.0046     |
| Total recovery                    | 96%    |            | 90%    |            |

Table 10 Distribution of radioactivity in potato peel and pulp fractions

After application of phenyl-label and pyridyl-label <sup>14</sup>C-fluazinam on potato plants, overall levels of <sup>14</sup>C residues in potato tubers were low. The highest residue levels were found in the pyridyl-labelled treated potatoes with 0.025 mg eq/kg.

Non-polar residues were very low. The total amount of non-polar residue was less than 0.004 mg/kg (15.8% TRR) and consisted of multiple components. The amount of fluazinam found in all samples was a maximum of 0.001 mg eq/kg (5.9% TRR).

The polar fraction showed maximum residues of 0.008 mg/kg (30.9% TRR). TFAA was identified in this fraction.

The PES accounted for a maximum residue of 0.012 mg eq/kg (47.3% TRR). The PES consisted mosttly of radioactivity incorporated into natural products such as starch.

The presence of radioactivive residues in starch from both labels indicates that both rings are broken down into fragments that can enter the carbon pool.

### Grape (Neal, 1996)

Field-grown grapevines (variety Pinot Noir) were treated twice with <sup>14</sup>C-labelled fluazinam. Plants were treated with either the phenyl (radiochemical purity 99.4%, specific activity 122.6 mCi/g) or pyridyl-label (radiochemical purity 98%, specific activity 101.9 mCi/g) at a rate of 750 g ai/ha. The test material was formulated to be representative of a 500 SC formulation. The first application was made at 80% of petal fall and the second at bunch closure (35 days after the first application).

Grapes were harvested 71 days after the last application. The samples were stored at ≤ -18 °C with the analysis being completed within 6 months.

There were two parts to the study.

In the first part, the nature and magnitude of residues in grape berries were determined. Berries treated with both labels were extracted with acetonitrile: water (9:1, v/v). The mixture was separated by centrifugation and the liquid phase was removed. The process was repeated with acetonitrile: water (9:1, v/v) and then with acetonitrile: water (1:1, v/v). The combined extracts were concentrated and subjected to liquid scintillation counting (LSC).

The acetonitrile/ water combined extract was partitioned with three portions of hexane and then with four portions of ethyl acetate. The aqueous phase remaining after extraction was separated into several fractions by a combination of reversed-phase, cation and anion exchange chromatography. The individual extracts were concentrated and subjected to LSC.

For investigation of the nature of the residue, the hexane and ethyl acetate phases were concentrated and analysed by HPLC; radioactivity was quantitated by counting fractions collected from the HPLC run. The concentrated extracts were also analysed by GC-MS (hexane extracts) or by LC-MS (ethyl acetate extracts, following purification be semi-preparative HPLC) in order to identify the major component. To assure that the products derived from the different labels were the same, portions from the different labels were mixed and the mixture was analysed by HPLC.

The radioactivity in the remaining post-extraction solids (PES) were quantified by combustion analysis.

The PES were subjected to a series of treatments in which the solids were degraded in a stepwise fashion into six fractions representing cell wall components. The levels of radioactivity were determined by LSC. The resulting aqueous phase extract was extracted with three portions of hexane followed by four portions of ethyl acetate. The aqueous phase remaining after extraction was separated into several fractions by a combination of reversed-phase, cation and anion exchange chromatography in order to record radioactivity containing sugars. All of the fractions were concentrated, and the radioactivity analysed by LSC.

Samples of grapes were also analysed further to determine the level of fluazinam and AMGT. Analysis of fluazinam was undertaken using a GC – ECD and AMGT was determined by HPLC-UV.

The TRR determined in grape berries was 1.69 mg eq/kg from grapes treated with phenyl-label and 1.66 mg eq/kg in grapes treated with pyridyl-label fluazinam (Table 11).

| Fraction                 | Phenyl-label <sup>a</sup> |         | Pyridyl-label |         |
|--------------------------|---------------------------|---------|---------------|---------|
|                          | [mg eq/kg]                | [% TRR] | [mg eq/kg]    | [% TRR] |
|                          |                           |         |               |         |
| Grape, TRR               | 1.69                      | 100     | 1.66          | 100     |
| Initial extraction       | 0.96                      | 56.8    | 0.81          | 48.8    |
| (ACN: water extractions) |                           |         |               |         |
|                          |                           |         |               |         |
| Hexane phase             | 0.48                      | 28.4    | 0.32          | 11.4    |
| Fluazinam                | 0.36                      | 21.3    | 0.19          | 11.4    |
| SDS-67230                | 0.0067                    | 0.4     | 0.015         | 0.9     |
| Others                   | 0.12                      | 7.1     | 0.13          | 7.8     |
|                          |                           |         |               |         |
| Ethyl acetate phase      | 0.24                      | 14.2    | 0.21          | 12.7    |
| AMGT                     | 0.06                      | 3.6     | 0.065         | 3.9     |
| Others <sup>b</sup>      | 0.18                      | 10.7    | 0.15          | 8.7     |
|                          |                           |         |               |         |
| Aqueous phase            | 0.22                      | 13.0    | 0.15          | 9.0     |
| Sugars                   | 0.026                     | 1.5     | 0.045         | 2.7     |
| Others <sup>b</sup>      | 0.194                     | 11.5    | 0.11          | 6.3     |
|                          |                           |         |               |         |
| PES                      | 0.73                      | 43.2    | 0.85          | 51.2    |
| Starch <sup>c</sup>      | ≤0.024                    | <5      | ≤0.024        | <5      |
| Protein <sup>c</sup>     | ≤0.024                    | <5      | ≤0.024        | <5      |

Table 11 Distribution of radiolabel in grapes following application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Fraction              | Phenyl-label <sup>a</sup> |         | Pyridyl-label |         |  |
|-----------------------|---------------------------|---------|---------------|---------|--|
|                       | [mg eq/kg]                | [% TRR] | [mg eq/kg]    | [% TRR] |  |
| Pectin <sup>c</sup>   | ≤0.024                    | <5      | ≤0.024        | <5      |  |
| Lignin                | 0.11                      | 11.1    | 0.17          | 10.2    |  |
| Ethyl acetate extract | 0.015                     | 0.89    | 0.036         | 2.2     |  |
| Hemicellulase         | 0.14                      | 8.3     | 0.16          | 9.7     |  |
| Ethyl acetate extract | 0.018                     | 1.0     | 0.072         | 4.3     |  |
| Cellulose             | 0.18                      | 17.9    | 0.17          | 10.2    |  |
| Ethyl acetate         | 0.018                     | 1.06    | 0.038         | 2.3     |  |
|                       |                           |         |               |         |  |
| Total                 | 1.69                      | 100     | 1.66          | 100     |  |

<sup>a</sup> Data from one of two batches analysed used for calculation. Total residue in second batch was 1.16 mg/kg.

<sup>b</sup> Broadly distributed over chromatographic run with significant number of peaks

<sup>c</sup> Study only reports values as being less than 5% of the TRR (<0.024 mg eq/kg) for these fractions

The hexane phase contained fluazinam as the major radioactive compound. Fluazinam was found at levels of 0.36 mg eq/kg (21.3% of the TRR) and 0.19 mg eq/kg (11.4% of the TRR) for the phenyl- and pyridyl-labelled grapes, respectively. A minor metabolite was identified as SDS-67230 (< 1% of the TRR).

The ethyl acetate phase contained a glucose conjugate of AMPA, designated as AMGT at levels of 0.06 mg eq/kg (3.6% of the TRR) and 0.065 mg eq/kg (3.9% of the TRR) for the phenyl- and pyridyl-labels respectively.

The remainder of the radioactive residues in each of the organic extracts was accounted for as material broadly distributed over the chromatographic trace with no significant discrete radioactive peaks.

In the aqueous phase remaining after extraction, the most polar fraction was found to contain radioactivity that had been re-incorporated into sugars. This indicates that extensive degradation of fluazinam followed by re-incorporation of <sup>14</sup>C into natural products.

The PES was subjected to a series of treatments in which the solids were degraded in stepwise fashion into fractions representing cell wall components (water-soluble polysaccharides and proteins, starch, protein, pectin, lignin, hemicellulose and cellulose). This involved the PES being incubated sequentially with phosphate buffer, incubation with phosphate buffer and a-amalyse, incubation with tris buffer and protease, incubation with sodium acetate/EDTA, incubation with acetic acid and sodium chlorite, incubation with potassium hydroxide solution and incubation with sulphuric acid.

Less than 5% of the radioactivity was released in each of the starch, protein and pectin fractions. The lignin, hemicellulose and cellulose fractions contained 0.1-0.2 mg eq/kg of radioactivity. Each of these three fractions was extracted with ethyl acetate; the extracts were found to contain from 0.015 mg eq/kg up to 0.072 mg eq/kg of radioactivity. The extracts were further analysed by HPLC; none of the resulting HPLC-fractions amounted to more than 0.01 mg eq/kg. There was one discrete peak found in the hemicellulose and cellulose fractions from the pyridyl-labelled sample which did not match any of the standards; however, it was present at approximately 0.01 mg eq/kg in each of the two fractions.

In the second part of the study, bunches of grapes from the treated and untreated vines from both labels were used to produce two kinds of wine; vin de goutte and vin de presse. Fermentations were started with bunches (grapes plus stems) which had not been frozen. Bunch of grapes were transferred into glass metabolism bottles equipped with sterile filters and <sup>14</sup>CO<sub>2</sub> trapping systems. The bottles were ventilated with nitrogen gas to avoid aerobic conditions and the fermentation process was started by adding yeast-suspension to each bottle. The fermentations were stopped when the specific gravity reached values below 1 and no more CO<sub>2</sub> was generated. At the end of the fermentations, each of the samples was filtered through a nylon bag (normally used for wine production) resulting in the vin de goutte samples. Each of the marcs from the filtrations were pressed to get the vin de presse.

The wines were extracted four times with hexane followed by four times with ethyl acetate. The aqueous phase remaining after organic extraction was analysed for radioactivity by LSC. Each extract obtained was concentrated and analysed by HPLC. Radioactivity was quantitated by counting the fractions from the HPLC run.

The combined hexane extract was concentrated and purified by HPLC on a silica gel column, the resulting fractions were analysed for radioactivity by LSC. Vin de presse (phenyl label) was extracted in a separate experiment with three portions of hexane; the combined extract was concentrated and purified by HPLC. After further purification by HPLC the resulting products were analysed by GC-MS. Vin de presse (pyridyl label) was extracted in a third run with four portions of hexane; the combined extract was concentrated and purified by HPLC.

The combined ethyl acetate extract was concentrated and purified by semi-preparative HPLC in several steps. After final purification the product was analysed by LC-MS. An aliquot of the ethyl acetate extract was also concentrated and heated after

addition of HCI. The reaction mixture was cooled and extracted three times with ethyl acetate. The combined extract was concentrated and analysed by HPLC.

In order to determine whether the ethanol produced from the fermentation contained radioactive residues, samples of wine were distilled. The volume of two collected fractions and the residual liquid were measured and the radioactivity in each sample was determined by LSC.

The TRRs determined in the samples of *vin de presse* produced from grapes treated with either phenyl- or pyridyl-labelled fluazinam were found to be 0.73 mg eq/kg.

*Vin de goutte* produced from grapes treated with phenyl-labelled fluazinam contained 0.41 mg eq/kg of radioactive residues, while the *vin de goutte* from the pyridyl-labelled treatment contained 0.54 mg eq/kg of radioactive residues (Table 12).

Table 12 Distribution of radioactivity in wine and various fractions after application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Fraction                | Phenyl-label   |                | Pyridyl-label |         |  |
|-------------------------|----------------|----------------|---------------|---------|--|
| Fraction                | [mg eq/kg]     | [% TRR]        | [mg eq/kg]    | [% TRR] |  |
| Vin de presse           |                |                |               |         |  |
| Wine                    | 0.73           | 100            | 0.73          | 100     |  |
| Unaccounted for         | 0.22           | 20.7           | 0.14          | 10.2    |  |
| radioactivity†          | 0.22           | 30.7           | 0.14          | 17.5    |  |
| Hexane extract          | 0.046          | 6.3            | 0.049         | 6.7     |  |
| AMPA                    | 0.027          | 3.7            | 0.024         | 3.3     |  |
| others <sup>a b</sup>   | 0.019          | 2.6            | 0.025         | 3.4     |  |
| EtOAc Extract           | 0.13           | 17.8           | 0.21          | 28.8    |  |
| AMGT                    | 0.053          | 7.3            | 0.076         | 10.4    |  |
| AMPA                    | 0.010          | 1.4            | 0.014         | 1.9     |  |
| others <sup>a b</sup>   | 0.067          | 9.2            | 0.12          | 16.4    |  |
| Total AMPA <sup>c</sup> | 0.037          | 5.1            | 0.038         | 5.2     |  |
| Aqueous phase           | 0.33           | 45.2           | 0.33          | 45.2    |  |
| Ethanol                 | Not determined | Not determined | 0.043         | 5.9     |  |
| Vin de goutte           |                |                |               |         |  |
| Wine                    | 0.41           | 100            | 0.54          | 100     |  |
| Unaccounted for         | 0.033          | 81             | 0.00          | 17 1    |  |
| radioactivity†          | 0.055          | 0.1            | 0.07          | 17.1    |  |
| Hexane extract          | 0.017          | 4.1            | 0.018         | 3.3     |  |
| AMPA                    | 0.010          | 2.4            | 0.0065        | 1.2     |  |
| others <sup>a b</sup>   | 0.007          | 1.7            | 0.012         | 2.1     |  |
| Ethyl acetate Extract   | 0.13           | 31.7           | 0.19          | 35.2    |  |
| AMGT                    | 0.051          | 12.4           | 0.065         | 12.0    |  |
| AMPA                    | 0.0041         | 1.0            | 0.0077        | 1.4     |  |
| others <sup>a b</sup>   | 0.075          | 18.3           | 0.1173        | 21.7    |  |
| Total AMPA <sup>c</sup> | 0.014          | 3.4            | 0.014         | 2.6     |  |
| Aqueous phase           | 0.23           | 56.1           | 0.24          | 44.4    |  |
| Ethanol                 | 0.022          | 5.4            | 0.032         | 5.9     |  |

<sup>†</sup>Information on the radioacitivty unaccounted for is not given in the study

<sup>a</sup>Calculated by subtracting mg eq/kg values of metabolites from total in extract

<sup>b</sup> Remaining radioactivity distributed over several fractions, trace levels of fluazinam and MAPA (isomer of AMPA in which the nitro and amino groups are reversed) were reported

<sup>c</sup> Sum of amount in hexane and ethyl acetate extracts

The hexane extract was found to contain AMPA (maximum 0.027 mg eq/kg, 3.7% of the TRR) as the only significant component. Very low levels of fluazinam and MAPA were detected. However, the quantities were not sufficient for GC-MS analysis. The assignment was based upon HPLC retention times only.

The ethyl acetate extracts contained AMGT (0.051–0.076 mg eq/kg, 7.3–12.4% of the TRR) as the only significant radioactive product; minor amounts of AMPA were also present. In each of the organic extracts, no other discrete metabolites that amounted to more than 1% of the TRR were observed. The remainder of the radioactive residues in each of the organic extracts was accounted for as material broadly distributed over the chromatographic trace with no significant discrete radioactive peaks.

The ethanol produced in the fermentation of the grapes was found to contain radioactivity (0.022–0.032 mg/kg, 5.4– 5.9% of the TRR).

324

The proposed metabolic pathway for fluazinam in grapes is shown in Figure 3.

Figure 3 Proposed metabolic pathway of fluazinam in grapes

Apple (McClanahan, 1996)

Apple trees (variety Golden delicious) grown outdoor were treated with either phenyl (radiochemical purity 98%, specific activity 57.3 mCi/mmol) or pyridyl-labelled fluazinam (radiochemical purity 98%, specific activity 66.2 mCi/mmol).

The test material was applied as a flowable concentrate formulation in a total of six foliar applications of approximately 0.93 kg ai/ha per application. The first application was applied at the tight cluster growth stage, 161 days before harvest. The following five applications were made at intervals of 9, 22, 34, 34, and 30 days.

Samples of immature fruit and foliage were removed throughout the course of the study. All remaining apples were harvested 32 days after the last application. The samples were initially stored at 4 °C for 1 week and then stored frozen prior to analysis at  $\leq$  -18 °C with the analysis being conducted within 6 months. Storage stability was investigated in the study be the reextraction of several fractions 9 months after storage. The metabolic profiles determined initially and after 9 months were comparable.

Fruits were washed with acetonitrile to remove surface residues and then ground with dry ice and centrifuged to yield pomace and juice. Apple foliage samples were either cut into small pieces or powdered with dry ice. The total radioactivity in pomace and foliage samples was determined by combustion.

Pomace samples were extracted with acetonitrile and partitioned with ethyl acetate to generate aqueous and organic fractions. Juice was partitioned with ethyl acetate to generate the same fractions. The surface washes, ethyl acetate and aqueous fractions were each analysed by high performance liquid chromatography with radioactivity detection (HPLC-RAD).

Metabolites were identified by one or more of the following techniques: co-elution with authentic standards, mass spectrometric identification, and derivatisation followed by mass spectrometry, NMR or degradation techniques.

The nature of the un-extracted residue remaining in the PES from the pomace were characterised by degradation experiments. Un-extracted radioactive residues were fractionalised sequentially into starch, protein, pectin, lignin, hemicellulose, cellulose and insoluble radiocarbon. The process involved incubation of the PES with sodium acetate and EDTA at pH 4, incubation with acetic acid and anhydrous sodium chlorite, incubation with acetic acid at pH 4 and incubation with potassium hydroxide solution.

The total radioactive residue levels in apples treated with either <sup>14</sup>C-phenyl- or <sup>14</sup>C-pyridyl-fluazinam ranged from 1.9– 2.8 mg eq/kg. Levels in the pomace extract and juice were very similar between the two labels, while levels in the surface wash and pomace PES were slightly different between the two labels.

The residue levels and percentage of the total radioactive residue of each fraction are shown in Table 13.

Table 13 Radioactivity levels in apples following application of <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Fraction       | Phenyl-label |         | Pyridyl-label |         |  |
|----------------|--------------|---------|---------------|---------|--|
|                | [mg eq/kg]   | [% TRR] | [mg eq/kg]    | [% TRR] |  |
| Whole Apple    | 1.877        | 100     | 2.802         | 100     |  |
| Surface Wash   | 0.684        | 36.4    | 1.282         | 45.8    |  |
| Juice          | 0.158        | 8.4     | 0.207         | 7.4     |  |
| Pomace Extract | 0.209        | 11.1    | 0.309         | 11.0    |  |
| Pomace PES     | 0.827        | 44.1    | 1.003         | 35.8    |  |

The distribution of the radioactivity residues in the surface wash, pomace and juice are outlined in Table 14.

Table 14 Distribution of radioactive residues in the surface wash, apple pomace and juice

|              | Fraction       | Phenyl-label |       | Pyridyl-label |        |
|--------------|----------------|--------------|-------|---------------|--------|
|              |                | mg eq/kg     | % TRR | mg eq/kg      | % TRR  |
| Surface wash | ACN wash       | 0.684        | 36.40 | 1.282         | 45.77  |
|              | Fluazinam      | 0.648        | 34.5  | 1.178         | 42.04  |
|              | SDS-67230      | 0.036        | 1.90  | 0.07          | 2.48   |
|              | Unidentified   | -            | -     | 0.034         | 1.25   |
| Pomace       | ACN extraction | 0.209        | 11.32 | 0.309         | 11.031 |
|              | EtoAc phase    | 0.085        | 4.54  | 0.15          | 5.22   |
|              | Aqueous phase  | 0.105        | 5.57  | 0.13          | 4.62   |
|              |                |              |       |               |        |
|              | Fluazinam      | 0.04         | 2.11  | 0.076         | 2.73   |
|              | SDS-67230      | 0.007        | 0.36  | 0.01          | 0.36   |
|              | AMGT           | 0.004        | 0.19  | 0.011         | 0.38   |
|              | Sugars         | 0.064        | 3.43  | 0.07          | 2.49   |
|              | TFAA           | 0.003        | 0.16  | -             | -      |
|              | Unidentified   | 0.091        | 5.07  | 0.142         | 5.07   |

|       | Fraction         | Phenyl-label |       | Pyridyl-label |       |
|-------|------------------|--------------|-------|---------------|-------|
|       |                  | mg eq/kg     | % TRR | mg eq/kg      | % TRR |
|       |                  |              |       |               |       |
|       | PES              | 0.827        | 44.1  | 1.003         | 35.8  |
|       | Pectin           | 0.035        | 1.86  | 0.054         | 1.92  |
|       | Lignin           | 0.112        | 5.95  | 0.207         | 7.38  |
|       | Hemicellulose    | 0.225        | 12.02 | 0.336         | 12.0  |
|       | Cellulose        | 0.116        | 6.20  | 0.242         | 8.63  |
|       | Unidentified     | 0.063        | 3.37  | 0.033         | 1.18  |
|       | Remaining solids | 0.276        | 14.70 | 0.131         | 4.69  |
| Juice | ACN extraction   | 0.158        | 8.4   | 0.207         | 7.4   |
|       | EtoAc phase      | 0.023        | 1.24  | 0.059         | 2.13  |
|       | Aqueous phase    | 0.13         | 6.67  | 0.134         | 4.79  |
|       |                  |              |       |               |       |
|       | Fluazinam        | 0.001        | 0.06  | -             | -     |
|       | AMGT             | 0.01         | 0.52  | 0.014         | 0.52  |
|       | Sugars           | 0.097        | 5.16  | 0.1           | 3.55  |
|       | TFAA             | 0.02         | 1.07  | -             | -     |
|       | Unidentified     | 0.03         | 1.59  | 0.093         | 3.33  |

The main residue identified was parent fluazinam. Metabolites retaining the fluazinam moiety isolated from apples included AMGT and SDS-67230, although at levels <3% of the TRR.

After the initial extractions for apple pomace the PES accounted for 44.1% of the TRR (0.827 mg eq/kg) for the phenyl label and 35.8% of the TRR (1.003 mg eq/kg) for the pyridyl label. Degradation procedures showed that a portion of the radioactivity in the PES was associated with structural polymers of apple tissue such as pectin, lignin, hemicellulose and cellulose.

Additional evidence of complete degradation of fluazinam was the identification of trifluoroacetic acid (TFAA).

Specific quantification and identification work was not undertaken of the foliage samples. However, the chromatograms were qualitatively similar to those observed for the apple pomace extracts, indicating that the same metabolites were present in the foliage as those in the apple.

In summary, the main residue in apples treated with fluazinam was the unchanged parent, ranging from 0.689-1.254 mg eq/kg (37 to 45% of the TRR).

The two metabolites of fluazinam that retained the basic structural form of the parent molecule, SDS-67230 and AMGT, were present at levels below 3% of the TRR ( $\leq$  0.08 mg eq/kg).

Radiolabelled sugars formed by incorporation of radioactivity accounted for 0.16-0.17 mg eq/kg (6% -9% of the TRR).

Structural polymeric compounds such as hemicellulose, pectin and cellulose accounted for 0.49–0.839 mg eq/kg (26%-30% of the TRR).

Trifluoroacetic acid comprised about 1% of the TRR (0.023 mg eq/kg).

The proposed metabolic pathway of fluazinam in apples is shown in Figure 4.

Figure 4 Proposed metabolic pathway of fluazinam in apples

# Peanut (Hartman, D.A. 1995)

Peanut plants (variety florunner) were grown from seed in a sandy loam soil and later transplanted in water troughs filled with the same soil. Separate studies investigating the metabolism were undertaken in 1992, 1993 and 1994.

The plants were initially grown outdoors but weather conditions necessitated moving the growing plants into either a greenhouse or covering the plants with a portable enclosure.

The peanut plants were treated with four applications of 0.56 kg <sup>14</sup>C-fluazinam/ha each (total of 2.24 kg a.i/ha). Plants were treated with either phenyl (radiochemical purity 98%, specific activity 57 mCi/mmole) or pyridyl-labelled fluazinam (radiochemical purity 99.5%, specific activity 66 mCi/mmole).

The test material was formulated as a 40% flowable suspension and was applied by mixing with water and then spraying the peanut foliage. The details of the study regimes for the 1992, 1993 and 1994 metabolism investigations are shown in Table 15.

| Table 15 The application details for | r the metabolism : | studies of | conducted on | peanuts |
|--------------------------------------|--------------------|------------|--------------|---------|
|--------------------------------------|--------------------|------------|--------------|---------|

| Crop of year                                            | 1992                      | 1993                      | 1994                      |
|---------------------------------------------------------|---------------------------|---------------------------|---------------------------|
| Number of troughs                                       | 3                         | 4                         | 4                         |
| Application rate per<br>treatment<br>(kg ai/ha)         | 0.56                      | 0.56                      | 0.56                      |
| Number of applications                                  | 4                         | 4                         | 4                         |
| Spraying intervals<br>(days)                            | 25, 30, 25                | 19, 17, 18                | 21, 22, 23                |
| Sample collection<br>Days after the last<br>application | 90                        | 90                        | 90                        |
| Samples                                                 | Foliage, shells, nutmeats | Foliage, shells, nutmeats | Foliage, shells, nutmeats |

The samples taken from the 1992 investigation were used to develop methodology for the collection and analysis of samples from the investigations undertaken in 1993 and 1994. As such the 1992 data have not been considered further.

Samples of foliage and peanut were collected with the peanuts being shelled for separate analysis of the shells and nutmeats.

The foliage was rinsed with water and methanol before homogenisation and assayed by HPLC. The water/methanol rinse was also analysed.

Peanut shells were rinsed with water to remove any soil remaining on the shells. The water rinse was not analysed.

All samples were stored frozen at  $\leq$  -18 °C with the analysis being completed within 6 months.

Homogenised tissues were combusted in order to determine the total radioactive residue in the three crop fractions. The individual crop fractions were then subject to different extraction procedures as follows:

The foliage and shells were extracted three times with acetonitrile: water (80:20, v/v). The extracts were combined and concentrated at reduced pressure using a rotary evaporator. The concentrated extracts were partitioned with dichloromethane.

The nutmeats were extracted three times with hexane, followed in some instances by 1-2 extractions with acetonitrile and then 1-2 times with water. The hexane extracts were combined and the solvent removed at reduced pressure. The acetonitrile and water extracts were treated similarly.

The PES remaing after the solvent extractions from each crop fraction were treated at elevated temperatures (80 °C) with acid (6 M HCl) or base (24% KOH). In addition, treatments with various enzymes, were undertaken to degrade the PES in a stepwise fashion for further characterisation of the radioactive residue. The degradation experiments involved the PES being incubated sequentially with phosphate buffer, incubation with phosphate buffer and  $\alpha$ -amalyse, incubation with tris buffer and protease, incubation with sodium acetate/EDTA, incubation with acetic acid and sodium chlorite, incubation with potassium hydroxide solution and incubation with sulphuric acid.

Metabolites were identified using several techniques, including HPLC co-elution with standards, direct identification by mass spectrometry and comparison with standards, NMR and degradation experiments.

The distribution of residues in the peanut foliage, shells and nutmeats are outlined in Table 16.

Table 16 Radioactive residues in peanut crop fractions following the application of <sup>14</sup>C-phenyl-fluazinam or <sup>14</sup>C-pyridyl fluazinam

Foliage

| Fraction      | Phenyl-label |       | Pyridyl-label |       |  |
|---------------|--------------|-------|---------------|-------|--|
|               | mg eq/kg     | % TRR | mg eq/kg      | % TRR |  |
| 80% ACN       | 9.4          | 36.7  | 14.34         | 46.7  |  |
| Aqueous phase | 4.72         | 18.4  | 7.94          | 31.2  |  |
| Organic phase | 4.68         | 18.3  | 6.45          | 25.5  |  |
|               |              |       |               |       |  |
| Fluazinam     | 1.9          | 7.4   | 2.3           | 7.5   |  |
| AMPA          | 0.40         | 1.6   | 0.24          | 0.8   |  |
| TFAA          | 0.87         | 3.4   | -             | -     |  |

| Fraction         | Phenyl-label |       | Pyridyl-label |       |
|------------------|--------------|-------|---------------|-------|
|                  | mg eq/kg     | % TRR | mg eq/kg      | % TRR |
| Unidentified     | 6.23         | 24.3  | 11.8          | 38.4  |
|                  |              |       |               |       |
| PES              | 15.9         | 61.7  | 17.8          | 57.7  |
| Phosphate buffer | 1.2          | 4.7   | 2.0           | 6.5   |
| Carbohydrates    | 3.3          | 12.8  | 3.2           | 10.4  |
| Protein          | 2.0          | 7.8   | 2.5           | 8.1   |
| Pectin           | 2.3          | 8.9   | 2.1           | 6.8   |
| Lignin           | 2.9          | 11.2  | 3.7           | 11.9  |
| hemicellulose    | 1.5          | 5.7   | 2.0           | 6.5   |
| Cellulose        | 1.6          | 6.3   | 1.5           | 4.9   |
| Remaining solids | 1.1          | 4.3   | 0.8           | 2.6   |
|                  |              |       |               |       |
| Total            | 25.3         | 98.4  | 32.2          | 104   |

# Shells

| Fraction         | Phenyl-label | Phenyl-label |          |       |
|------------------|--------------|--------------|----------|-------|
|                  | mg eq/kg     | % TRR        | mg eq/kg | % TRR |
| 80% ACN          | 0.42         | 54.6         | 1.89     | 43.9  |
| Aqueous phase    | 0.34         | 44.1         | 0.89     | 20.7  |
| Organic phase    | 0.081        | 10.5         | 1.0      | 23.2  |
|                  |              |              |          |       |
| Fluazinam        | -            | -            | 0.4      | 9.3   |
| unidentified     | 0.42         | 54.6         | 1.49     | 34.6  |
|                  |              |              |          |       |
| PES              | 0.45         | 56.3         | 2.78     | 62.1  |
| Phosphate buffer | 0.06         | 6.9          | 0.20     | 4.4   |
| Carbohydrates    | 0.03         | 3.5          | 0.08     | 1.8   |
| Protein          | 0.02         | 2.5          | 0.05     | 1.2   |
| Pectin           | 0.02         | 2.1          | 0.09     | 2.2   |
| Lignin           | 0.06         | 7.5          | 0.52     | 12.2  |
| hemicellulose    | 0.07         | 9.1          | 0.40     | 9.3   |
| Cellulose        | 0.12         | 15.6         | 1.08     | 25.0  |
| Remaining solids | 0.07         | 9.1          | 0.36     | 6.0   |
|                  |              |              |          |       |
| Total            | 0.87         | 111          | 4.67     | 106   |

### Nutmeats

| Fraction         | Phenyl-label |       | Pyridyl-label |       |  |
|------------------|--------------|-------|---------------|-------|--|
|                  | mg eq/kg     | % TRR | mg eq/kg      | % TRR |  |
| Hexane           | 0.37         | 51.3  | 0.64          | 54.3  |  |
| ACN              | 0.016        | 2.13  | 0.014         | 1.2   |  |
| Water            | 0.19         | 25.7  | -             | -     |  |
|                  |              |       |               |       |  |
| Sucrose          | 0.07         | 9.6   | 0.05          | 4.2   |  |
| TFAA             | 0.28         | 38.4  | -             | -     |  |
| Fatty acids      | 0.23         | 31.5  | 0.58          | 48.7  |  |
| Glycerol         | 0.02         | 2.7   | 2.5           | 2.5   |  |
| Unidentified     | 0.02         | 2.8   | 0.24          | 20.1  |  |
|                  |              |       |               |       |  |
| PES              | 0.27         | 38.4  | 0.52          | 44.5  |  |
| Phosphate buffer | 0.06         | 9.3   | 0.25          | 21.9  |  |
| Carbohydrates    | 0.04         | 5.8   | 0.09          | 7.9   |  |
| Protein          | 0.10         | 13.7  | 0.07          | 5.9   |  |
| Pectin           | <0.01        | <1    | 0.01          | 1.0   |  |
| Lignin           | <0.01        | <1    | 0.01          | 0.9   |  |

330

| Fraction         | Phenyl-label |       | Pyridyl-label |       |  |
|------------------|--------------|-------|---------------|-------|--|
|                  | mg eq/kg     | % TRR | mg eq/kg      | % TRR |  |
| hemicellulose    | <0.01        | <1    | 0.02          | 1.4   |  |
| Cellulose        | 0.06         | 8.2   | 0.12          | 10.2  |  |
| Remaining solids | 0.01         | 1.4   | <0.01         | <1    |  |
|                  |              |       |               |       |  |
| Total            | 0.85         | 118   | 1.17          | 100   |  |

In the nutmeats, fluazinam and structurally related compounds were not found. Treatment with acid, base and enzymes did not release any of these compounds. The peanut nutmeats were shown to have radioactivity reincorporated in sucrose (0.07 mg eq/kg for the phenyl-label and 0.05 mg eq/kg for the pyridyl-label) and fatty acids (0.23 mg eq/kg for the phenyl-label and 0.58 mg eq/kg for the pyridyl-label). These levels represent approximately 5 to 10% (sucrose) and 30 to 50% (fatty acids) of the TRR. It was also established that approximately 10% of the radioactivity in nutmeats (both labels) was present in a molecular weight fraction greater than 10,000. This suggests that  $^{14}$ C from fluazinam was incorporated into natural macromolecules such as proteins. Taken together, these results establish that  $^{14}$ C from both labels was broken down into CO<sub>2</sub> or other small molecules that could enter the carbon pool and be reincorporated into natural products.

Further evidence of the complete fragmentation of the phenyl ring was seen in the observation of a trifluoroacetate signal in a 19F NMR of peanut oil (phenyl-label).

The peanut foliage from the phenyl treatment was found to contain fluazinam at 1.9 mg eq/kg (7.4% of the TRR) and AMPA at 0.4 mg eq/kg (1.6% of the TRR). For the pyridyl treatment fluazinam was at 2.3 mg eq/kg (7.5% of the TRR) and AMPA at 0.24 mg eq/kg (0.8% of the TRR).

The aqueous fraction from the phenyl label foliage contained TFAA at 0.87 mg eq/kg (3.4% of the TRR). The extractable fractions from peanut foliage were examined under a variety of HPLC conditions. These analyses demonstrated the complex, multicomponent nature of the extractable fractions.

In the case of the peanut shells, fluazinam was identified at a level of 0.4 mg eq/kg (9.3% of the TRR) following treatment with the pyridyl label. Fluazinam was not identified in the shells following treatment with the phenyl label.

The metabolism of fluazinam in peanuts showed extensive degradation and re-incorporation of the radioactivity into natural products.

In nutmeats, neither fluazinam nor any structurally related metabolites containing the phenyl-pyridyl ring were present in detectable amounts. The radioactivity was found to have been incorporated into sucrose, fatty acids and proteins.

In foliage, fluazinam was detected at levels from 1.8 to 2.3 mg eq/kg. The reduction metabolite AMPA was also detectable at levels from 0.24 to 0.4 mg eq/kg (0.8–1.6% of the TRR). The remaining radioactivity consisted of multiple components, including TFAA, indicating that extensive degradation of the fluazinam molecule had occurred.

In peanut shells only fluazinam was found at detectable levels (0.04 mg eq/kg, 9.3% of the TRR). No other residues were identified.

The proposed metabolic pathway for fluazinam in peanuts is outlined in Figure 5.

Figure 5 Proposed metabolic pathway of fluazinam in peanuts

In Figure 6 an overall proposal for the metabolic pathway of fluazinam in plants is outlined.



Figure 6 Proposed metabolic pathway of fluazinam in plants

#### Animal metabolism

The meeting received information on metabolism of fluazinam in ruminants (lactating goat) and poultry (laying hens). Fluazinam was either labelled in the phenyl or pyridine ring.

#### Lactating goat (Cheng, T. 1993)

Lactating goats (Alpine, Toggenberg or Nubian) were orally dosed with either phenyl or pyridyl-labelled fluazinam once a day for four consecutive days at a nominal rate of 20 mg/animal/day (actual dose rates were 19.9 mg/animal/day equivalent to 13.4 ppm feed (as received) for the phenyl label and 19.5 mg/animal/day equivalent to 9.14 ppm feed (as received) for the pyridyl label).

Milk, urine and faeces were collected daily. The animals were sacrificed approximately 23 hours after administration of the last dose and samples of liver, kidney, fat, muscle, blood, bile, gastrointestinal (GI) tract, and GI contents were taken.

Samples were homogenised, analysed by LSC or LSC following combustion to determine the total radioactivity content.

Samples of the kidney, liver and muscle were extracted with acetonitrile: water (1:1, v/v) and centrifuged; the resulting supernatant was partitioned with saturated aqueous sodium chloride solution and acetonitrile. The organic phase was concentrated

using nitrogen. The aqueous phase was lyophilised to dryness and the residues extracted (3×) with methanol containing 1% trichloroacetic acid. The combined extracts were concentrated under a nitrogen stream.

Fat samples were homogenised with acetonitrile: water (1:1, v/v) and hexane. The acetonitrile: water extracts were then partitioned with saturated sodium chloride solution. Further extractions were then undertaken with ethanol/hexane/water with heating. After cooling to room temperature, the samples were filtered. Nitrogen streams were used to evaporate the upper hexane phase. The suspensions that formed were extracted three times with ethanol and the combined extracts were analysed.

Milk was extracted with acetonitrile and the pellet further extracted with acetonitrile: water (1:1, v/v). The combined extracts were separated into aqueous and organic phases with saturated aqueous sodium chloride. The organic phase was concentrated before analysis. The aqueous phase was lyophilised and extracted (3×) with methanol containing 1% trichloroacetic acid. The combined methanol extracts were concentrated by nitrogen stream and analysed.

Metabolites were isolated from urine by extracting with ethyl acetate and concentrating under vacuum. The organic phase was reduced in volume under vacuum until two phases formed. The aqueous phase was discarded. The organic phase was mixed with isopropanol and concentrated under vacuum until the organic solvent was removed. Metabolites were eluted by HPLC on a reverse-phase column using acetonitrile. Urine was also enzyme-treated with either protease or  $\beta$ -glucuronidase/sulfatase and extracted with methanol containing 1% diethyl amine.

Extracts were analysed by LSC to determine the level of radioactivity present. Fractions containing the largest amount of radioactivity were analysed by 2D-TLC and HPLC to determine the metabolic profile. Metabolites were identified by comparing reference standards to the examined extracts. Mass spectrometry and NMR were also used to obtain spectral data on the isolated excreta metabolites.

All samples were stored at -20 ° C with the analysis all being conducted within 6 months. The stability of the residues in selected samples of liver and milk were examined by the comparison of metabolic profiles; the metabolic profile observed in the initial analysis and after freezer storage for 4-7 months was similar.

Sample Phenyl Label Pyridyl Label TRR (mg eq/kg) % of total dose applied TRR (mg eq/kg) % of total dose applied Liver 0.470 0.62 0.852 1.24 0.034 <0.01 0.060 0.01 Kidnev 0.035 0.05 0.04 Muscle 0.025 Fat 0.160 0.23 0 262 0.36 Total in Tissues 0.699 0.90 1.199 1.65 Milk 0.018-0.071 0.31 0.018-0.078 0.59 Blood 0.015 <0.01 0.049 <0.01 0.16 Bile 4.660 0.08 2.901 GI tract 0.152 0.82 0.125 0.59 10.51 GI tract contents n/a 9.04 n/a Urine n/a 8.91 n/a 11.55 Faeces n/a 66.18 n/a 62.37 Total 86.24 87.42

The TRR in in mg eq/kg and as a percentage of the total dose applied is shown in Table 17.

Table 17 Radioactive residues in ruminant tissues from lactating goats administered <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

The total recovery of radioactivity in the samples collected was 86.2% (phenyl-label) and 87.4% (pyridyl-label) of the total radioactivity administered. Radioactivity recovered in faeces accounted for 62–66% of the total radioactivity administered. The urine (cage wash and cage wipe included) contained 8.9% (phenyl-label) and 11.6% (pyridyl-label) of the total radioactivity administered. Of the edible tissues, the highest percentage of radioactivity was found in the liver (0.62 and 1.24% for the phenyl and pyridyl labels respectively).

The entire milk production for the phenyl-label and pyridyl-label contained 0.31% and 0.59% of the total radioactivity administered. The levels found in the milk at each milking interval are shown in Table 18 and Figure 7.

Table 18 Daily radioactivity concentrations in milk from lactating goats administered <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Collection Day | Phenyl Label |                         | Pyridyl Label |                         |  |
|----------------|--------------|-------------------------|---------------|-------------------------|--|
|                | TRR (mg/kg)  | % of total dose applied | TRR (mg/kg)   | % of total dose applied |  |
| Day 1 p.m.     | 0.046        | 0.04                    | 0.060         | 0.08                    |  |
| Day 2 a.m.     | 0.018        | 0.02                    | 0.018         | 0.04                    |  |

| - |   |     |    |   | ٠ |   |    |   |   |
|---|---|-----|----|---|---|---|----|---|---|
| F | I | 11: | ิล | 7 | L | n | ิล | r | n |
|   |   | -   | -  | - |   |   | u  |   |   |

| Collection Day    | Phenyl Label | Phenyl Label            |             | Pyridyl Label           |  |  |
|-------------------|--------------|-------------------------|-------------|-------------------------|--|--|
|                   | TRR (mg/kg)  | % of total dose applied | TRR (mg/kg) | % of total dose applied |  |  |
| Day 2 p.m.        | 0.048        | 0.04                    | 0.070       | 0.11                    |  |  |
| Day 3 a.m.        | 0.021        | 0.03                    | 0.021       | 0.04                    |  |  |
| Day 3 p.m.        | 0.062        | 0.06                    | 0.071       | 0.11                    |  |  |
| Day 4 a.m.        | 0.020        | 0.02                    | 0.022       | 0.05                    |  |  |
| Day 4 p.m.        | 0.071        | 0.06                    | 0.078       | 0.10                    |  |  |
| Sacrifice (Day 4) | 0.032        | 0.04                    | 0.028       | 0.06                    |  |  |
| Total             | -            | 0.31                    | -           | 0.59                    |  |  |



Figure 7 Daily radioactivity concentrations in milk

The distribution of the radioactivity in tissues is shown in Table 19.

Table 19 Distribution of radioactivity in extractable and unextractable fractions in samples from lactating goats dosed with <sup>14</sup>C-phenyl or<sup>14</sup>C-pyridyl-fluazinam

| Sample        | Aqueous Extra | cted  | Organic Extrac | ted   | PES      |       | Total   |
|---------------|---------------|-------|----------------|-------|----------|-------|---------|
|               | mg eq/kg      | % TRR | mg eq/kg       | % TRR | mg eq/kg | % TRR | (% TRR) |
| Phenyl label  |               |       |                |       |          |       |         |
| Liver         | 0.048         | 10.3  | 0.082          | 17.5  | 0.302    | 64.2  | 92.0    |
| Kidney        | <0.01         | 20.1  | 0.013          | 39.5  | 0.012    | 35.4  | 95.0    |
| Muscle        | <0.01         | 4.4   | 0.013          | 37.6  | 0.014    | 39.7  | 81.7    |
| Fat           | <0.01         | 4.2   | 0.127          | 79.9  | 0.012    | 7.5   | 91.6    |
| Milk          | <0.01         | 3.8   | 0.058          | 83.8  | <0.01    | 8.8   | 96.4    |
| Bile          | 4.660         | 100   | na             | na    | na       | na    | 100     |
| Urine         | 0.704         | 95.8  | na             | na    | na       | na    | 95.8    |
| Pyridyl label |               |       |                |       |          |       |         |
| Liver         | 0.083         | 9.8   | 0.141          | 16.5  | 0.497    | 58.3  | 84.6    |
| Kidney        | 0.012         | 20.0  | 0.025          | 41.0  | 0.021    | 34.7  | 95.7    |
| Muscle        | <0.01         | 5.7   | 0.011          | 43.1  | 0.012    | 47.0  | 95.8    |
| Fat           | <0.01         | 2.6   | 0.195          | 74.3  | 0.012    | 4.5   | 81.4    |
| Milk          | <0.01         | 3.4   | 0.068          | 93.0  | <0.01    | 3.0   | 99.4    |
| Bile          | 2.901         | 100   | na             | na    | na       | na    | 100     |
| Urine         | 0.909         | 93.3  | na             | na    | na       | na    | 93.3    |

na-not applicable

For liver 26–28% of the residue was extracted. For kidney 60–61% of the residue was extracted. For muscle 42–49% of the residue was extracted. For fat 77–84% of the residue was extracted, while for milk 88–96% of the residue was extracted.

#### The identification and distribution of metabolites is shown in Table 20.

Table 20 Identification of fluazinam and its metabolites in combined aqueous and organic extracts of samples from lactating goats dosed with <sup>14</sup>C-phenyl- or <sup>14</sup>C-pyridyl- fluazinam

| Matrix        | Aq-1<br>(DAPA<br>conjugate) | I-A            | DAPA<br>Sulfamate<br>(I) | DAPA<br>Sulfamate<br>(II) | AMPA<br>Sulfamate<br>(III) | DAPA (IV)       | AMPA (V)        | Total |
|---------------|-----------------------------|----------------|--------------------------|---------------------------|----------------------------|-----------------|-----------------|-------|
|               | % TRR [mg eq/               | kg]            |                          |                           |                            |                 |                 |       |
| Phenyl label  |                             |                |                          |                           |                            |                 |                 |       |
| Liver         | 3.6<br>[0.017]              | nd             | 2.7<br>[0.013]           | 2.7<br>[0.013]            | 6.3<br>[0.030]             | 12.5<br>[0.059] | nd              | 27.8  |
| Kidney        | 20.1<br>[<0.01]             | nd             | 3.8<br>[<0.01]           | 6.5<br>[<0.01]            | 10.1<br>[<0.01]            | 15.3<br>[<0.01] | 3.7<br>[<0.01]  | 59.6  |
| Muscle        | 4.4<br>[<0.01]              | nd             | nd                       | nd                        | nd                         | 17.5<br>[<0.01] | 20.1<br>[<0.01] | 42.0  |
| Fat           | nd                          | nd             | nd                       | nd                        | nd                         | 49.2<br>[0.078] | 34.9<br>[0.055] | 84.1  |
| Milk          | 3.8<br>[<0.01]              | nd             | nd                       | 4.2<br>[<0.01]            | 11.5<br>[<0.01]            | 30.3<br>[0.021] | 37.9<br>[0.026] | 87.6  |
| Bile          | nd                          | nd             | 84.6<br>[3.942]          | nd                        | 7.3<br>[0.340]             | 8.1<br>[0.378]  | nd              | 100   |
| Urine         | nd                          | 7.6<br>[0.056] | 66.5<br>[0.489]          | 19.5<br>[0.143]           | nd                         | 2.1<br>[0.016]  | nd              | 95.7  |
| Pyridyl label | -                           | -              |                          | -                         | •                          | •               |                 |       |
| Liver         | nd                          | nd             | 1.5<br>[0.013]           | 3.1<br>[0.026]            | 5.5<br>[0.047]             | 8.7<br>[0.074]  | 7.5<br>[0.064]  | 26.3  |
| Kidney        | 15.9<br>[0.010]             | nd             | 2.2<br>[<0.01]           | 8.4<br>[<0.01]            | 19.0<br>[0.011]            | 8.8<br>[<0.01]  | 6.8<br>[<0.01]  | 61.0  |
| Muscle        | 5.7<br>[<0.01]              | nd             | nd                       | nd                        | nd                         | 16.8<br>[<0.01] | 26.3<br>[<0.01] | 48.8  |
| Fat           | nd                          | nd             | nd                       | nd                        | nd                         | 28.3<br>[0.074] | 48.6<br>[0.126] | 76.9  |
| Milk          | 3.4<br>[<0.01]              | nd             | nd                       | 2.1<br>[<0.01]            | 13.7<br>[0.01]             | 26.4<br>[0.019] | 50.9<br>[0.037] | 96.4  |
| Bile          | nd                          | nd             | 72.4<br>[2.100]          | nd                        | 12.6<br>[0.366]            | 15.0<br>[0.435] | nd              | 100   |
| Urine         | nd                          | 7.9<br>[0.077] | 63.3<br>[0.617]          | 19.6<br>[0.190]           | nd                         | 2.6<br>[0.025]  | nd              | 93.3  |

nd = not detected

Parent fluazinam was not detected in any of the samples.

The residues in meat, milk and edible tissues mainly comprised of the metabolites AMPA (maximum levels 0.126 mg eq/kg in fat, 48.6% of the TRR) and DAPA (0.078 mg eq/kg in fat, 49.2% of the TRR) and their sulfamate conjugates.

The polar metabolite (Aq-1) that was present in liver, kidney, muscle and milk could be hydrolysed to DAPA using hydrochloric acid, and was therefore characterised as a DAPA conjugate. One metabolite designated I-A, was found only in the urine and appeared to also hydrolyse to DAPA upon acid hydrolysis. However, it was not further characterised as it was not present in tissues or milk.

As liver and kidney contained significant amounts of unextracted solids following the initial extractions, enzymatic hydrolysis was performed using protease, sulfatase and  $\beta$ -glucuronidase treatments.

In another experiment, the PES liver samples were subjected to strong acid hydrolysis (6 M HCl for 4 hours). The postenzyme extraction and post acid hydrolysis radioactivity distributions are summarized in Tables 21 and 22 respectively.

Table 21 Distribution of radioactivity released from the PES of liver and kidney by enzymatic hydrolysis

| Matrix    | % TRR released by enzymatic treatment<br>[mg eq/kg] | % TRR] remaining in solids<br>[mg eq/kg] |
|-----------|-----------------------------------------------------|------------------------------------------|
| Liver-PES | N/A                                                 | 100 [0.302] <sup>a</sup>                 |
| Protease  | 79.7 [0.241]                                        | 23.9 [0.072]                             |
| Sulfatase | 32.8 [0.099]                                        | 62.6 [0.189]                             |

| Matrix            | % TRR released by enzymatic treatment | % TRR] remaining in solids |
|-------------------|---------------------------------------|----------------------------|
| ß -alucuronidase  | 31 1 [0 094]                          | 72 [0 217]                 |
| p glassi shinados | 0111[0.071]                           | 72[0.217]                  |
| Kidney -PES       | N/A                                   | 100 [0.021] <sup>b</sup>   |
| Protease          | 93.8 [0.020]                          | 16.9 [<0.01]               |
| Sulfatase         | 62.7 [0.013]                          | 36.5 [<0.01]               |
| β-glucuronidase   | 59.3 [0.012]                          | 42.6 [<0.01]               |

<sup>a</sup> Sample from phenyl label

<sup>b</sup> Sample from pyridyl label

Table 22 Distribution of radioactivity released from the PES for liver by acid hydrolysis

| Matrix                | % TRR [mg eq/kg] |              |              |                  |  |  |  |
|-----------------------|------------------|--------------|--------------|------------------|--|--|--|
|                       | PES              | Aqueous      | Organic      | Remaining soilds |  |  |  |
| Liver (pheyl label)   | 100 [0.302]      | 14.5 [0.049] | 86.5 [0.294] | 3.2 [0.011]      |  |  |  |
| Liver (pyridyl label) | 100 [0.497]      | 17.5 [0.108] | 39.9 [0.251] | 3.6 [0.023]      |  |  |  |

For liver, 31 to 80% of bound radioactivity was released using the various enzyme treatments. In the case of kidney, 43 to 94% of bound radioactivity was released. For both liver and kidney the highest release of the bound residue occurred after treatment with protease indicating the radioactivity was associated with protein. No specific metabolites could be identified. However, the data indicated the absence of glucuronide and sulfate conjugates in the liver and kidney.

Following acid hydrolysis of the liver PES, the majority of the radioactivity was released into the organic extractable phase (up to 86.5% of the unextractable radioactivity). DAPA was a minor component, while the majority of the released radioactivity was a less polar metabolite which did not co-elute with any metabolite standard but was subsequently identified as a rearrangement product of AMPA. It was shown that AMPA could re-arrange to this isomer under acidic conditions. The levels of DAPA and the rearrangement product of AMPA released from the PES were not quantified.

The metabolism of fluazinam in lactating ruminants proceeds by reduction to give the metabolite AMPA, with further reduction to give the metabolite DAPA and conjugation of both AMPA to DAPA to sulfamate conjugates.

The proposed metabolic pathway is given in Figure 8.



(Letters in parentheses indicate matrix in which metabolite was identified: L=Liver, K=Kidney, M=Muscle, F=Fat, B=Bile, U=Urine)

Figure 8 Proposed metabolic pathway of fluazinam in lactating ruminants

### Poultry (Cheng, T. 1995)

Laying hens (white leghorn) were orally dosed by capsule with either the phenyl or pyridyl-labelled fluazinam once a day for four consecutive days at a nominal rate of 10 mg/kg of feed, as received (actual dose rates were 10.08 ppm equivalent to 0.764 mg/kg bw per day for the phenyl label and 10.62 ppm equivalent to 0.759 mg/kg bw per day for the pyridyl label).

The radiochemical purity and specific activity of the phenyl label were 98.2% and 91 419 dpm/µg and the radiochemical purity and specific activity for the pyridyl label were 97.6% and 93 991 dpm/µg.

Eight hens were dosed with the phenyl-labelled test material and seven with the pyridyl-labelled test material. Ten control animals received capsules that contained dextrose only.

Eggs and excreta were weighed and collected daily. Eggs collected from each day were separated in to yolks and white and pooled. The animals were sacrificed approximately 6 hours after administration of the last dose and samples of kidney, liver, fat, skin, thigh and breast muscle, gastrointestinal tract and contents, blood and any shelled eggs in the oviduct were taken.

Samples were homogenised, combusted and analysed by LSC. All tissue and egg samples were extracted sequentially with acetone  $(3\times)$ , methanol and methanol: water (1:1, v/v).

Following the initial solvent extractions, the PES from the liver were treated with protease, ß-glucuronidase, or sulfatase. After centrifugation, the pellet was extracted with methanol. Additional samples of the liver PES were treated with acid (HCI) and then extracted with methanol, acetone or ethyl acetate. Selected extracts were also subjected to acid hydrolysis in an attempt to characterise unknown polar components.

Metabolites present in the excreta were investigated to aid in the identification or characterization of metabolites found in tissues. Polar metabolite fractions were subjected to separation and clean-up using strong anion exchange (SAX) and C18 columns, followed by analysis using strong cation exchange HPLC-MS analysis.

Extracts were analysed by LSC. Fractions containing the largest amount of radioactivity were analysed by 2D-TLC and HPLC to determine the metabolic profile. Metabolites were identified by comparing reference standards to the examined extracts. Mass spectroscopy was also used to obtain spectral data on the isolated excreta metabolites.

Samples were all stored frozen (≤-18 °C) and analysed within 6 months. The metabolic profiles of selected samples of liver and hen were examined initially and after 4 months of storage. Changes in the metabolic profiles were observed which were most prominent in eggs and for the unidentified metabolites 10, 11 and 13.

The TRR in mg eq/kg and as a percentage of the total radioactivity applied are shown in Table 23 and 24.

Table 23 Radioactive residues in poultry tissues from laying hens administered <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Sample                | Phenyl Label   |                         | Pyridyl Label  |                         |
|-----------------------|----------------|-------------------------|----------------|-------------------------|
|                       | TRR (mg eq/kg) | % of total dose applied | TRR (mg eq/kg) | % of total dose applied |
| Blood                 | 0.392          | 0.14                    | 0.215          | 0.08                    |
| Fat (abdominal)       | 0.936          | 0.57                    | 0.959          | 0.49                    |
| Kidneys               | 0.438          | 0.11                    | 0.349          | 0.09                    |
| Liver                 | 1.047          | 0.92                    | 0.920          | 0.88                    |
| Muscle (breast)       | 0.026          | 0.08                    | 0.021          | 0.06                    |
| Muscle (thigh)        | 0.059          | 0.11                    | 0.047          | 0.08                    |
| Skin with fat         | 0.493          | 0.45                    | 0.581          | 0.58                    |
| Egg White             | 0.040          | 0.04                    | 0.039          | 0.03                    |
| Egg Yolk              | 1.169          | 0.52                    | 1.022          | 0.35                    |
| Total in Tissues      | -              | 2.94                    | -              | 2.64                    |
| Excreta               | na             | 101                     | na             | 99.1                    |
| Pan paper wash        | na             | 0.70                    | na             | 0.49                    |
| GI tract and contents | na             | 11.1                    | na             | 11.9                    |
| Total                 | -              | 116                     | -              | 114                     |

nd = not detected

| Collection | Phenyl Label | Phenyl Label |            |            |            | Pyridyl Label |            |            |  |
|------------|--------------|--------------|------------|------------|------------|---------------|------------|------------|--|
| Day        | Egg White    |              | Egg Yolk   |            | Egg White  |               | Egg Yolk   |            |  |
|            | TRR          | % of total   | TRR        | % of total | TRR        | % of total    | TRR        | % of total |  |
|            | (mg eq/kg)   | dose         | (mg eq/kg) | dose       | (mg eq/kg) | dose          | (mg eq/kg) | dose       |  |
|            |              | applied      |            | applied    |            | applied       |            | applied    |  |
| Day 1      | nd           | nd           | nd         | nd         | nd         | nd            | nd         | nd         |  |
| Day 2      | 0.003        | <0.01        | nd         | nd         | nd         | nd            | nd         | nd         |  |
| Day 3      | 0.016        | <0.01        | 0.154      | 0.03       | 0.016      | 0.01          | 0.162      | 0.06       |  |
| Day 4      | 0.027        | 0.02         | 0.598      | 0.19       | 0.029      | 0.01          | 0.680      | 0.13       |  |
| Sacrifice  | 0.040        | 0.02         | 1.169      | 0.30       | 0.039      | 0.01          | 1.022      | 0.16       |  |
| (Day 4)    |              |              |            |            |            |               |            |            |  |
| Total      | 0.086        | 0.04         | 1.921      | 0.52       | 0.084      | 0.03          | 1.864      | 0.35       |  |

Table 24 Daily radioactivity concentrations in eggs from laying hens administered <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

nd = not detected

The majority of administered radioactivity was recovered in the excreta including the GI tract (113% for the phenyl label and 111% for the pyridyl label). Total egg production contained 0.38-0.56% of the applied dose.

Total residues in egg white and egg yolk were 0.040 mg eq/kg and 1.169 mg eq/kg respectively for the phenyl label, and 0.039 mg eq/kg and 1.022 mg eq/kg respectively for the pyridyl label.

Residues in tissues were highest in the liver, accounting for 1.047 and 0.920 mg eq/kg (0.92 and 0.88% of applied dose) for the phenyl and pyridyl labels respectively, and abdominal fat, accounting for 0.936 and 0.959 mg eq/kg, (0.57 and 0.4 9% of applied dose), respectively. There was no significant difference in the elimination and distribution of radioactivity between samples from hens administered the phenyl-labelled or pyridyl-labelled <sup>14</sup>C-fluazinam, indicating that cleavage did not occur.

The distribution of the radioactivity in tissues is shown in Table 25.

Table 25 Distribution of radioactivity in extractable and unextractable fractions in samples from laying hens dosed with <sup>14</sup>C-phenyl or <sup>14</sup>C-pyridyl-fluazinam

| Sample        | ple Acetone Extracted Methanol Extracted Extracted Extracted |          | water | PES      |       | Total<br>(% TRR) |       |          |       |
|---------------|--------------------------------------------------------------|----------|-------|----------|-------|------------------|-------|----------|-------|
|               | % TRR                                                        | mg eq/kg | % TRR | mg eq/kg | % TRR | mg eq/kg         | % TRR | mg eq/kg |       |
| Phenyl label  |                                                              |          |       |          |       |                  |       |          |       |
| Liver         | 48.1                                                         | 0.50     | 3.7   | 0.04     | 1.8   | 0.02             | 44.0  | 0.46     | 97.6  |
| Kidney        | 62.0                                                         | 0.27     | 5.4   | 0.02     | 2.1   | <0.01            | 28.5  | 0.13     | 98.0  |
| Muscle        | 59.6                                                         | 0.04     | 6.9   | <0.01    | 1.3   | <0.01            | 31.4  | 0.02     | 99.2  |
| Fat           | 111.5                                                        | 1.04     | 1.1   | 0.01     | 0.1   | <0.01            | 0.5   | <0.01    | 113.2 |
| Egg Yolk      | 73.7                                                         | 0.86     | 2.4   | 0.03     | 0.8   | <0.01            | 21.1  | 0.25     | 98.0  |
| Egg White     | 92.7                                                         | 0.04     | 5.1   | <0.01    | 3.8   | <0.01            | 7.6   | <0.01    | 109.2 |
| Excreta       | 37.3                                                         | -        | 7.8   | -        | 9.5   | -                | -     | -        | -     |
| Pyridyl label |                                                              |          |       |          |       |                  |       |          |       |
| Liver         | 48.1                                                         | 0.44     | 3.8   | 0.04     | 1.7   | 0.02             | 52.8  | 0.49     | 106.4 |
| Kidney        | 63.4                                                         | 0.22     | 5.5   | 0.02     | 1.9   | <0.01            | 32.6  | 0.11     | 103.0 |
| Muscle        | 57.4                                                         | 0.03     | 8.4   | <0.01    | 2.2   | <0.01            | 32.1  | 0.02     | 100.1 |
| Fat           | 100.9                                                        | 0.97     | 1.1   | 0.01     | 0.1   | <0.01            | 0.4   | <0.01    | 102.5 |
| Egg Yolk      | 74.7                                                         | 0.76     | 3.2   | 0.03     | 0.8   | <0.01            | 23.7  | 0.24     | 102.4 |
| Egg White     | 93.1                                                         | 0.04     | 4.4   | <0.01    | 2.2   | <0.01            | 3.4   | <0.01    | 103.1 |
| Excreta2      | 40.0                                                         | -        | 7.1   | -        | 8.8   | -                | -     | -        | -     |

The total residue extracted was high for fat (100%), egg yolk (77–79%) and egg whites (100%). For liver 54% of the residue was extracted, for kidney 70–71% of the residue was extracted and for muscle 68% of the residue was extracted.

The identification and distribution of metabolites is shown in Tables 26 and 27.

Table 26 Distribution of fluazinam and its metabolites in samples from laying hens dosed with <sup>14</sup>C-phenyl-fluazinam

| Sample    | Liver   | Kidney  | Muscle  | Fat     | Egg White | Egg Yolk |
|-----------|---------|---------|---------|---------|-----------|----------|
|           | % TRR     | % TRR    |
|           | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg]   | [mg/kg]  |
| Fluazinam | 2.74    | 1.00    | 1.13    | 2.21    | <1.00     | 1.53     |
|           | [0.027] | [<0.01] | [<0.01] | [0.02]  | [<0.01]   | [0.018]  |
| MAPA      | 2.50    | 1.61    | 2.50    | 8.84    | 3.43      | 1.46     |
|           | [0.024] | [<0.01] | [<0.01] | [0.079] | [<0.01]   | [0.018]  |
| DAPA      | 3.17    | 1.98    | 6.02    | 5.90    | 4.54      | 1.25     |
|           | [0.031] | [<0.01] | [<0.01] | [0.055] | [<0.01]   | [0.015]  |
| AMPA      | 13.1    | 18.0    | 32.4    | 81.9    | 48.5      | 6.06     |
|           | [0.127] | [0.07]  | [0.019] | [0.767] | [0.019]   | [0.071]  |
| Unknown 5 | 2.16    | 3.29    | 2.09    | 2.95    | 6.21      | 1.25     |
|           | [0.021] | [0.013] | [<0.01] | [0.027] | [<0.01]   | [0.015]  |
| Unknown 6 | 1.39    | 3.35    | nd      | nd      | 17.4      | 1.67     |
|           | [0.014] | [0.013] |         |         | [<0.01]   | [0.020]  |
| HYPA      | 4.86    | 3.16    | 5.60    | 2.63    | 2.50      | 5.30     |
|           | [0.048] | [0.012] | [<0.01] | [0.024] | [<0.01]   | [0.062]  |
| Unknown 8 | 1.97    | 2.48    | 1.55    | nd      | 1.95      | 2.96     |
|           | [0.015] | [0.010] | [<0.01] |         | [<0.01]   | [0.036]  |
| Unknown 9 | 1.54    | 2.54    | 1.67    | <1.0    | 1.67      | 4.53     |
|           | [0.015] | [0.010] | [<0.01] | [<0.01] | [<0.01]   | [0.053]  |

340

| Sample      | Liver   | Kidney  | Muscle  | Fat     | Egg White | Egg Yolk |
|-------------|---------|---------|---------|---------|-----------|----------|
|             | % TRR     | % TRR    |
|             | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg]   | [mg/kg]  |
| Unknown 10  | 5.87    | 10.1    | 1.43    | <1.0    | 4.45      | 6.27     |
|             | [0.057] | [0.039] | [<0.01] | [<0.01] | [<0.01]   | [0.074]  |
| Unknown 11  | 2.74    | 4.28    | 3.22    | <1.0    | <1.0      | 11.2     |
|             | [0.027] | [0.017] | [<0.01] | [<0.01] | [<0.01]   | [0.131]  |
| Unknown 12  | 4.79    | 8.87    | 0.66    | <1.0    | <1.0      | 2.79     |
|             | [0.040] | [0.035] | [<0.01] | [<0.01] | [<0.01]   | [0.033]  |
| Unknown 13  | <1.0    | <1.0    | 1.31    | <1.0    | nd        | 20.0     |
|             | [<0.01] | [<0.01] | [<0.01] | [<0.01] |           | [0.234]  |
| Unknown 14  | 1.64    | 1.55    | nd      | <1.0    | <1.0      | 1.95     |
|             | [0.016] | [<0.01] |         | [<0.01] | [<0.01]   | [0.023]  |
| Total % TRR | 48.4    | 61.2    | 60.6    | 104     | 90.7      | 68.2     |

nd = not detected

Table 27 Distribution of fluazinam and its metabolites in samples from laying hens dosed with <sup>14</sup>C-pyridyl-fluazinam

| Sample      | Liver   | Kidney  | Muscle  | Fat     | Egg White | Egg Yolk |
|-------------|---------|---------|---------|---------|-----------|----------|
|             | % TRR     | % TRR    |
|             | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg]   | [mg/kg]  |
| Fluazinam   | 2.65    | 1.64    | <1.0    | 2.10    | <1.0      | <1.0     |
|             | [0.022] | [<0.01] | [<0.01] | [0.020] | [<0.01]   | [<0.01]  |
| MAPA        | 2.16    | 2.77    | 2.35    | 7.54    | 3.07      | 1.55     |
|             | [0.018] | [<0.01] | [<0.01] | [0.072] | [<0.01]   | [0.016]  |
| DAPA        | 2.50    | 3.15    | 6.20    | 6.21    | 7.54      | 2.83     |
|             | [0.021] | [<0.01] | [<0.01] | [0.059] | [<0.01]   | [0.031]  |
| AMPA        | 13.8    | 19.0    | 30.1    | 67.9    | 43.4      | 12.4     |
|             | [0.115] | [0.055] | [0.014] | [0.651] | [0.017]   | [0.127]  |
| Unknown 5   | 2.74    | 3.28    | 1.21    | 1.81    | 9.12      | <1.0     |
|             | [0.023] | [<0.01] | [<0.01] | [0.017] | [<0.01]   | [<0.01]  |
| Unknown 6   | 2.41    | 3.4     | nd      | nd      | 19.1      | 1.27     |
|             | [0.02]  | [0.01]  |         |         | [<0.01]   | [0.013]  |
| HYPA        | 4.95    | 3.84    | 5.91    | 4.30    | 2.79      | 3.81     |
|             | [0.041] | [0.01]  | [<0.01] | [0.041] | [<0.01]   | [0.039]  |
| Unknown 8   | 2.12    | 2.08    | 1.84    | 1.53    | 1.58      | 4.09     |
|             | [0.017] | [<0.01] | [<0.01] | [0.014] | [<0.01]   | [0.042]  |
| Unknown 9   | 0.91    | 1.70    | 2.70    | 2.29    | 1.68      | 3.95     |
|             | [<0.01] | [<0.01] | [<0.01] | [0.022] | [<0.01]   | [0.040]  |
| Unknown 10  | 5.44    | 10.5    | 3.56    | 1.53    | 2.98      | 8.39     |
|             | [0.045] | [0.030] | [<0.01] | [0.014] | [<0.01]   | [0.088]  |
| Unknown 11  | 2.98    | 3.28    | <1.0    | <1.0    | <1.0      | 9.02     |
|             | [0.025] | [<0.01] | [<0.01] | [<0.01] | [<0.01]   | [0.092]  |
| Unknown 12  | 3.27    | 6.24    | 1.44    | <1.0    | nd        | 1.41     |
|             | [0.027] | [0.018] | [<0.01] | [<0.01] |           | [0.014]  |
| Unknown 13  | <1.0    | <1.0    | <1.0    | nd      | nd        | 17.6     |
|             | [<0.01] | [<0.01] | [<0.01] |         |           | [0.180]  |
| Unknown 14  | 1.73    | 1.64    | <1.0    | nd      | <1.0      | 2.40     |
|             | [0.014] | [<0.01] | [<0.01] |         | [<0.01]   | [0.025]  |
| Total % TRR | 47.7    | 59.5    | 55.3    | 95.2    | 91.3      | 68.7     |

nd = not detected

Parent fluazinam was only detected in small amounts, accounting for less than 3.0% of the TRR.

The main metabolite in muscle, fat, liver, egg white and egg yolk was identified as AMPA; from 6% of the TRR (0.071 mg eq/kg, egg yolk, phenyl label) up to 82% of the TRR (0.767 mg eq/kg, fat, phenyl label).

The metabolites MAPA and DAPA were also detected in all samples with levels ranging from 1.46% of the TRR in egg yolk (0.018 mg eq/kg) to 8.84% of the TRR in fat (0.079 mg eq/kg) for MAPA and from 1.25% of the TRR in egg yolk (0.015 mg eq/kg) to 7.54% of the TRR in egg white (<0.01 mg eq/kg) for DAPA.

HYPA was also identified and was generally present at lower levels, with a maximum of 5.91% of the TRR in muscle (<0.01 mg eq/kg).

The unknown polar metabolites, 10–13, found in egg and tissues were found to be unstable on storage for 120 days at -30 to -10 °C. The relative amounts of the polar metabolites changed over the storage interval and were identified as N-acetyl cysteine AMPA and the N-acetyl cysteine conjugate of fluazinam. Based on this it was tentatively proposed that the metabolites 10-13 are the initial/intermediate glutathione conjugates of AMPA and fluazinam which then undergo degradation on storage to produce N-acetyl cysteine AMPA and the N-acetyl cysteine conjugate of fluazinam.

The PES of the liver were subject to enzymatic and acid hydrolysis.

Samples of the PES were treated with protease, sulfatase and  $\beta$ -glucuronidase. The data indicates that approximately half the PES from liver was protein bound residues. Subsequent treatment of the sample with acid released AMPA and the acid rearrangement product of AMPA. The exact levels of these two metabolites were not reported. The distribution of radioactivity released from the PES of liver following enzymatic hydrolysis is outlined in Table 28.

| Matrix                    | % TRR released by enzymatic treatment<br>[mg eq/kg] | % TRR] remaining in solids<br>[mg eq/kg] |
|---------------------------|-----------------------------------------------------|------------------------------------------|
| Liver–PES (phenyl label)  | N/A                                                 | 100 [0.46]                               |
| Protease                  | 50 [0.23]                                           | 50 [0.23]                                |
| Sulfatase                 | 0                                                   | 100 [0.46]                               |
| β-glucuronidase           | 0                                                   | 100 [0.46]                               |
|                           |                                                     |                                          |
| Liver–PES (pyridyl label) | N/A                                                 | 100 [0.49]                               |
| Protease                  | 50 [0.25]                                           | 50 [0.25]                                |
| Sulfatase                 | 0                                                   | 100 [0.46]                               |
| β-glucuronidase           | 0                                                   | 100 [0.46]                               |

Table 28 Distribution of radioactivity released from the PES of liver by enzymatic hydrolysis

The liver PES were treated with HCL with increasing acid strength (successive treatment with 1 M, 6 M and 12 M HCl). The distribution of radioactivity in the PES following acid hydrolysis is outlined in table 29.

Table 29 Distribution of radioactivity released from the PES of liver by acid hydrolysis

| Matrix                    | % TRR released by enzymatic treatment | % TRR remaining in solids after sequential treatments [mg eg/kg] |
|---------------------------|---------------------------------------|------------------------------------------------------------------|
| Liver DES (phopyl Jabel)  | N/A                                   |                                                                  |
|                           | IN/A                                  | 100 [0.40]                                                       |
| 1 M HCI                   | 26.4 [0.12]                           | 73.6 [0.34]                                                      |
| 6 M HCI                   | 34.7 [0.16]                           | 38.9 [0.18]                                                      |
| 12 M HCL                  | 39.5 [0.18]                           | 0                                                                |
|                           |                                       |                                                                  |
| Liver–PES (pyridyl label) | N/A                                   | 100 [0.49]                                                       |
| 1M HCI                    | 22.2 [0.11]                           | 77.8 [0.38]                                                      |
| 2M HCI                    | 28.6 [0.14]                           | 49.2 [0.24]                                                      |
| 12 M HCI                  | 39.5 [0.19]                           | 9.7 [0.05]                                                       |

Acid hydrolysis of the liver PES released the majority of the bound radioactivity through use of increasing acid strength. The major components of the released radioactivity were identified as AMPA and the re-arrangement isomer of AMPA. At least two unknown polar components were also found. Based on a similar chromatographic behaviour to the polar components found in methanol extracts of excreta samples, these components were tentatively assigned as glutathione conjugates of fluazinam and AMPA. The exact levels were not reported.

The metabolism of fluazinam in laying poultry proceeds by reduction to give the metabolites AMPA and MAPA or by dehalogenisation/hydroxylation to give HYPA. AMPA and MAPA are further reduced to give the metabolite DAPA. The proposed metabolic pathway is given in Figure 9.

342



(Letters in parentheses indicate matrix in which metabolite was identified: L=Liver, K=Kidney, M=Muscle, F=Fat, Ey=Egg yolk, Ew=Egg white)

Figure 9 Proposed metabolic pathway of fluazinam in laying poultry

# Environmental fate in soil

The FAO Manual on the Submission and Evaluation of Pesticide Residues Data for the Estimation of Maximum Residue Levels in Food and Feed (2016) explains the data requirements for studies of environmental fate. The focus should be on those aspects that are most relevant to MRL setting.

### Confined rotational crop studies

The nature of the residue in rotational crops has been investigated in two studies.

In the first study (Roninson, R.A. and Hoffman, B.A, 1994) either phenyl (radiochemical purity 99.4%) or pyridyl-labelled fluazinam (radiochemical purity 98.8%) was applied to the bare soil. The application rate was approximately 2 × 1.12 kg ai/ha with an application interval of 28 days.

Rotational crops of barley, carrots and lettuce were planted 30, 120 and 365 days after the last application. Due to crop failure, the barley planted at 30 DAT in the plot treated with <sup>14</sup>C-phenyl -fluazinam was replanted at 68 DAT.

Samples of soil, at a depth of approximately 30.5 cm, were taken prior to application, immediately following each application, at each plant back interval and at harvest. Soil samples were subjected to homogenization and combustion analysis. Crops from the control and treated plots were harvested at the immature and mature stage. Crop samples were homogenised with dry ice and the TRR in the crop fractions determined by combustion.

Subsamples of each crop homogenate were extracted three times with methanol: acetone (1:1, v/v). The mixture was filtered after each extraction, and the extraction solvent was combined and concentrated under vacuum until only an aqueous fraction remained. The resulting sample was partitioned three times with dichloromethane. All liquid samples were analysed directly by LSC. The post-extraction solids (PES) were allowed to dry and were then subjected to combustion analysis.

Crops that were very dry (i.e. barley straw and grain) were hydrated by adding  $\sim$ 3 volumes per sample weight (v/w) of water and storing overnight at  $\sim$ 2 °C. The initial extraction with methanol: acetone (1:1, v/v) was increased from 2% v/w to 6% v/w to allow for further hydration and sample swelling. The remainder of the extraction proceeded as described above.

In the second study (Robinson, R.A and Hoffman, B.A, 1995) the nature of the radioactive residue was examined in more detail. Identification and characterisation work was undertaken in the second study included the identification of metabolites by GC-MS, co-chromatography by HPLC and LC-MS, and further analysis of the PES. Extensive sample clean up using preparative HPLC (using C18 and amino columns) and SPE columns were employed as part of this analysis.

The residues in soil are shown in Table 30.

Table 30 Residue levels of <sup>14</sup>C-fluazinam in soil cores after application of 2 ×1.12 kg a.i./ha to the bare soil

| Plant back interval   | Stage of crop/days after             | Radioactive residue<br>[mg eq/kg]<br>PYRIDYL LABEL |                                                               | Radioactive residue<br>[mg eq/kg]<br>PHENYL LABEL |                     |
|-----------------------|--------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|---------------------|
| (days) planting       |                                      | Soil depth                                         | Soil depth                                                    | Soil depth                                        | Soil depth          |
|                       |                                      | 0-15 cm                                            | 15-35.5 cm                                                    | 0-15 cm                                           | 15-35.5 cm          |
| Pre application       |                                      | n.d. <sup>a</sup>                                  | n.d.                                                          | n.d.                                              | n.d.                |
| Application 1 (April) |                                      | 0.260                                              | <loq <sup="">b</loq>                                          | 0.117                                             | 0.008               |
| Application 2 (May)   |                                      | 0.590                                              | <l0q< td=""><td>0.608</td><td>0.009</td></l0q<>               | 0.608                                             | 0.009               |
|                       | Planting                             | 0.403                                              | <l0q< td=""><td>0.401</td><td><l0q< td=""></l0q<></td></l0q<> | 0.401                                             | <l0q< td=""></l0q<> |
|                       | lettuce immature / 68                | 0.643                                              | <loq< td=""><td>0.372</td><td><loq< td=""></loq<></td></loq<> | 0.372                                             | <loq< td=""></loq<> |
|                       | lettuce mature / 89                  | 0.230                                              | 0.013                                                         | 0.478                                             | <loq< td=""></loq<> |
| 30†                   | carrot immature / 99                 | 0.384                                              | 0.012                                                         | 0.370                                             | 0.015               |
|                       | carrot mature / 155                  | 0.370                                              | 0.051                                                         | 0.410                                             | 0.037               |
|                       | barley forage / 68;99                | 0.321                                              | <loq< td=""><td>0.378</td><td>0.018</td></loq<>               | 0.378                                             | 0.018               |
|                       | barley mature / 138;174 <sup>c</sup> | 0.577                                              | 0.016                                                         | 0.542                                             | 0.076               |
|                       | Planting                             | 0.583                                              | <loq< td=""><td>0.782</td><td>0.026</td></loq<>               | 0.782                                             | 0.026               |
|                       |                                      | 0.309                                              | 0.052                                                         | 0.305                                             | 0.024               |
|                       |                                      | 0.286                                              | <loq< td=""><td>0.350</td><td>0.016</td></loq<>               | 0.350                                             | 0.016               |
| 120                   |                                      |                                                    |                                                               |                                                   |                     |
|                       | At various crop stages               |                                                    |                                                               |                                                   |                     |
|                       | sampled and shipped, but no          |                                                    |                                                               |                                                   |                     |
|                       | analytical data provided.            |                                                    |                                                               |                                                   |                     |
|                       | At planting and at various crop      |                                                    |                                                               |                                                   |                     |
| 365                   | stages sampled and shipped,          | No data                                            | No data                                                       | No data                                           | No data             |
|                       | but no analytical data               |                                                    |                                                               |                                                   |                     |
|                       | provided.                            |                                                    |                                                               |                                                   |                     |

<sup>a</sup> not detected

<sup>b</sup> LOQ: The limit of quantitation for soil sample oxidation analysis ranged from 0.005 to 0.008 mg eq/kg.

<sup>c</sup> For the phenyl label the plant back interval investigated was 68 days for barley as the crop had to be replanted due to crop failure. 138 DAT represents the harvest of the crop from the pyridyl label and 174 DAT represents the harvest of the crop for the phenyl label.

The TRR determined in the upper soil layer 174 days after application were comparable to the TRR determined immediately after the second application. The data also demonstrates that only small amounts of residue were transferred to the lower soil layer.

The TRR values for the immature and mature crop samples of lettuce, carrots and barley at plant-back intervals of 30, 120 and 365 DAT are summarised in Table 31.

| Сгор                  | <sup>14</sup> C-phenyl-fluazinam |             |             | <sup>14</sup> C-pyridyl-fluazinam |             |             |
|-----------------------|----------------------------------|-------------|-------------|-----------------------------------|-------------|-------------|
|                       | [mg eq/kg]                       |             |             | [mg eq/kg]                        |             |             |
|                       | 30 day PBI                       | 120 day PBI | 360 day PBI | 30 day PBI                        | 120 day PBI | 360 day PBI |
| Immature Lettuce      | 0.318                            | 0.470       | 0.104       | 0.119                             | 0.036       | 0.049       |
| Mature Lettuce        | 0.282                            | 0.174       | 0.040       | 0.065                             | 0.034       | 0.039       |
| Immature Carrot Roots | 0.101                            | 0.066       | 0.015       | 0.087                             | 0.036       | 0.010       |
| Immature Carrot Tops  | 0.429                            | 0.164       | 0.056       | 0.333                             | 0.045       | 0.059       |
| Mature Carrot Roots   | 0.070                            | 0.066       | 0.012       | 0.045                             | 0.024       | <0.010      |
| Mature Carrot Tops    | 0.349                            | 0.223       | 0.040       | 0.222                             | 0.034       | 0.057       |
| Barley Forage         | 0.135                            | 0.934       | 0.529       | 0.327                             | 0.075       | 0.138       |
| Barley Grain          | 0.054                            | 0.155       | 0.296       | 0.234                             | 0.065       | 0.228       |
| Barley Straw          | 0.093                            | 0.256       | 0.273       | 1.249                             | 0.105       | 0.266       |

Table 31 Total radioactive residue (TRR) in rotated crops after application of <sup>14</sup>C-phenyl and <sup>14</sup>C-pyridyl-fluazinam to the bare soil

The TRR generally decreased with time for lettuce and carrots at successive plant-back intervals. The TRR found in lettuce, from <sup>14</sup>C-pyridine-fluazinam treated soil, was consistently low with similar residues found at each of the plant-back intervals. The residue concentrations in barley grain appeared to increase with increasing plant-back time in the <sup>14</sup>C-phenyl-fluazinam treated plots. Similar TRR levels were observed in the barley grain from the 30 DAT and 365 DAT plant-back intervals in the <sup>14</sup>C-pyridine-fluazinam treated plots, but the levels at 120 DAT were markedly lower.

All the mature plant samples with a TRR above 0.01 mg/kg were subject to extraction. The results are shown in Table 32.

Table 32 Partitioning of fluazinam in Rotational Crop Fractions

|                              | Plant-back Interval |          |         |          |         |          |  |
|------------------------------|---------------------|----------|---------|----------|---------|----------|--|
| Fraction                     | 30 DAT              |          | 120 DAT |          | 365 DAT |          |  |
|                              | % TRR               | mg eq/kg | % TRR   | mg eq/kg | % TRR   | mg eq/kg |  |
| <sup>14</sup> C-Phenyl label |                     |          |         |          |         |          |  |
| Immature lettuce             |                     |          |         |          |         |          |  |
| Organic                      | 2.06                | 0.007    | 1.34    | 0.006    | 4.42    | 0.005    |  |
| Aqueous                      | 88.07               | 0.280    | 96.01   | 0.452    | 74.25   | 0.077    |  |
| PES                          | 9.87                | 0.031    | 2.65    | 0.012    | 21.33   | 0.022    |  |
| Mature lettuce               |                     |          |         |          |         |          |  |
| Organic                      | <0.01               | <0.001   | 1.69    | 0.003    | 5.58    | 0.002    |  |
| Aqueous                      | 94.81               | 0.267    | 93.50   | 0.163    | 62.41   | 0.025    |  |
| PES                          | 5.19                | 0.015    | 4.81    | 0.008    | 32.01   | 0.013    |  |
| Immature Carrot roots        |                     |          |         |          |         |          |  |
| Organic                      |                     |          |         |          |         |          |  |
| Aqueous                      | 12.36               | 0.013    | 6.72    | 0.004    | 8.79    | 0.001    |  |
| PES                          | 69.60               | 0.07     | 85.76   | 0.057    | 63.53   | 0.01     |  |
|                              | 18.04               | 0.018    | 7.52    | 0.005    | 27.68   | 0.004    |  |
| Immature carrot tops         |                     |          |         |          |         |          |  |
| Organic                      |                     |          |         |          |         |          |  |
| Aqueous                      | 5.01                | 0.021    | 4.99    | 0.008    | 7.42    | 0.004    |  |
| PES                          | 81.48               | 0.35     | 75.95   | 0.125    | 43.34   | 0.024    |  |
|                              | 13.51               | 0.058    | 19.06   | 0.031    | 49.24   | 0.028    |  |
| Mature Carrot roots          |                     |          |         |          |         |          |  |
| Organic                      |                     |          |         |          |         |          |  |
| Aqueous                      | 9.55                | 0.007    | 8.93    | 0.006    | 28.03   | 0.003    |  |
| PES                          | 82.37               | 0.057    | 78.29   | 0.052    | 48.21   | 0.006    |  |
|                              | 8.08                | 0.006    | 12.78   | 0.008    | 28.76   | 0.003    |  |
| Mature carrot tops           |                     |          |         |          |         |          |  |
| Organic                      |                     |          |         |          |         |          |  |
| Aqueous                      | 2.63                | 0.009    | 2.41    | 0.005    | 10.58   | 0.004    |  |
| PES                          | 85.83               | 0.300    | 89.16   | 0.199    | 40.63   | 0.016    |  |
|                              | 11.54               | 0.040    | 8.43    | 0.019    | 48.79   | 0.020    |  |
| Barley grain                 |                     |          |         |          |         |          |  |
| Organic                      | 8.14                | 0.004    | 2.41    | 0.004    | 3.73    | 0.011    |  |
| Aqueous                      | 40.98               | 0.023    | 75.40   | 0.117    | 58.96   | 0.175    |  |
| PES                          | 50.88               | 0.027    | 22.19   | 0.034    | 37.31   | 0.110    |  |
| Barley forage                |                     |          |         |          |         |          |  |

|                               | Plant-back Interval |          |         |          |                  |          |
|-------------------------------|---------------------|----------|---------|----------|------------------|----------|
| Fraction                      | 30 DAT              |          | 120 DAT |          | 365 DAT          |          |
|                               | % TRR               | mg eq/kg | % TRR   | mg eq/kg | % TRR            | mg eq/kg |
| Organic                       | 25.78               | 0.035    | 2.23    | 0.021    | 6.96             | 0.037    |
| Aqueous                       | 53.74               | 0.072    | 94.26   | 0.880    | 77.30            | 0.409    |
| PES                           | 20.48               | 0.028    | 3.51    | 0.033    | 15.74            | 0.083    |
| Barley straw                  |                     |          |         |          |                  |          |
| Organic                       | 8.06                | 0.007    | 2.65    | 0.007    | 6.00             | 0.016    |
| Aqueous                       | 57.84               | 0.054    | 82.58   | 0.211    | 59.54            | 0.163    |
| PES                           | 34.10               | 0.032    | 14.77   | 0.038    | 34.46            | 0.094    |
| <sup>14</sup> C-Pyridyl label | •                   | •        | •       | •        | •                |          |
| Immature lettuce              |                     |          |         |          |                  |          |
| Organic                       | 12.77               | 0.015    | 19.63   | 0.007    | 15.08            | 0.007    |
| Aqueous                       | 54.03               | 0.064    | 42.76   | 0.016    | 50.19            | 0.025    |
| PES                           | 33.20               | 0.040    | 28.97   | 0.010    | 34.73            | 0.017    |
| Mature lettuce                |                     |          |         |          |                  |          |
| Organic                       | 8.74                | 0.006    | 9.74    | 0.003    | 8.41             | 0.003    |
| Aqueous                       | 48.71               | 0.031    | 42.74   | 0.014    | 42.66            | 0.017    |
| PES                           | 42.55               | 0.028    | 37.83   | 0.013    | 48.93            | 0.019    |
| Immature carrot roots         |                     |          |         |          |                  |          |
| Organic                       |                     |          |         |          |                  |          |
| Aqueous                       | 31.22               | 0.027    | 12.36   | 0.004    | 8.40             | 0.001    |
| PES                           | 40.64               | 0.036    | 62.61   | 0.023    | 62.94            | 0.006    |
|                               | 28.14               | 0.024    | 16.57   | 0.006    | 28.66            | 0.003    |
| Immature carrot tops          |                     |          |         |          |                  |          |
| Organic                       |                     |          |         |          |                  |          |
| Aqueous                       | 16.40               | 0.055    | 22.54   | 0.01     | 10.58            | 0.006    |
| PES                           | 36.77               | 0.122    | 52.80   | 0.024    | 42.60            | 0.025    |
|                               | 46.83               | 0.156    | 24.66   | 0.011    | 46.82            | 0.028    |
| Mature Carrot roots           |                     |          |         |          |                  |          |
| Organic                       |                     |          |         |          |                  | 20       |
| Aqueous                       | 14.11               | 0.006    | 14.06   | 0.003    | Not extracted (1 | KK       |
| PES                           | 54.86               | 0.025    | 60.31   | 0.015    | <0.010 mg/kg)    |          |
|                               | 31.03               | 0.014    | 25.63   | 0.006    |                  |          |
| Mature carrot tops            |                     |          |         |          |                  |          |
| Organic                       |                     |          |         |          |                  |          |
| Aqueous                       | 10.94               | 0.024    | 10.37   | 0.004    | 14.41            | 0.008    |
| PES                           | 34.72               | 0.077    | 47.00   | 0.016    | 34.33            | 0.020    |
|                               | 54.34               | 0.121    | 42.63   | 0.014    | 51.26            | 0.029    |
| Barley grain                  |                     |          |         |          |                  |          |
| Organic                       | 3.70                | 0.009    | 4.43    | 0.003    | 5.00             | 0.011    |
| Aqueous                       | 5.10                | 0.012    | 27.02   | 0.017    | 19.83            | 0.046    |
| PES                           | 91.20               | 0.213    | 68.55   | 0.045    | 75.17            | 0.171    |
| Barley forage                 |                     |          |         |          |                  |          |
| Organic                       | 11.48               | 0.037    | 15.32   | 0.011    | 6.39             | 0.009    |
| Aqueous                       | 62.32               | 0.204    | 61.95   | 0.046    | 61.55            | 0.085    |
| PES                           | 26.20               | 0.086    | 19.43   | 0.015    | 29.85            | 0.041    |
| Barley straw                  |                     |          |         |          |                  |          |
| Organic                       | 6.50                | 0.081    | 6.67    | 0.007    | 6.00             | 0.016    |
| Aqueous                       | 50.31               | 0.629    | 34.69   | 0.037    | 51.34            | 0.137    |
| PES                           | 43.19               | 0.539    | 45.22   | 0.047    | 42.66            | 0.113    |
|                               |                     |          |         |          |                  |          |

The organosoluble residues in the edible portions of crops used for human consumption were very low and generally below 0.01 mg/kg in mature crops, except 365 DAT barley grain where the residue was 0.011 mg/kg. Organosoluble residues from crop fractions used as animal feed items were more variable. The highest residues detected were in <sup>14</sup>C-pyridyl-labelled barley straw (0.081 mg/kg). However, the <sup>14</sup>C-phenyl-labelled barley straw from the same sampling time had organo-soluble residues below 0.01 mg/kg, indicating that the residues present in the <sup>14</sup>C-pyridyl-labelled fraction were extensively degraded and no longer contained the fluazinam structural backbone. HPLC profiles of the organo-soluble fractions showed radioactive regions containing a multitude of peaks. The low levels of radioactivity in most crop fractions precluded extensive investigation. Parent fluazinam was not detected in any extract from any crop sample.

In general, aqueous extracts in crops grown in <sup>14</sup>C-phenyl-labelled soils differed significantly from those in <sup>14</sup>C-pyridyllabelled soils. HPLC profiles of the <sup>14</sup>C-phenyl-label extracts showed one main peak accounting for 60 to 100% of the fraction
(metabolite region A). The <sup>14</sup>C-pyridine-label did not contain this peak, but rather had two areas of radioactivity (metabolite region B and C). This difference in the profile between the two labels provided further evidence that the fluazinam phenyl-pyridyl ring structure has been cleaved and been extensively metabolised.

The metabolite distributions in aqueous extracts are shown in Tables 33–38.

Table 33 Metabolite distribution for the aqueous lettuce extracts from <sup>14</sup>C]phenyl-fluazinam treated soil

| Sample /          | TFAA    |            | Metabolite Regi | on A <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|---------|------------|-----------------|-------------------|--------------------|------------|
| Planting Interval | [% TRR] | [mg eq/kg] | [% TRR]         | [mg eq/kg]        | [% TRR]            | [mg eq/kg] |
| Immature Lettuce  |         |            |                 |                   |                    |            |
| 30 DAT            | 85.14   | 0.271      | 2.93            | 0.009             | 88.07              | 0.280      |
| 120 DAT           | 96.01   | 0.452      | nd              | nd                | 96.01              | 0.452      |
| 365 DAT           | 67.62   | 0.070      | 6.63            | 0.007             | 74.25              | 0.077      |
| Mature Lettuce    |         |            |                 |                   |                    |            |
| 30 DAT            | 94.81   | 0.267      | nd              | nd                | 94.81              | 0.267      |
| 120 DAT           | 93.50   | 0.163      | nd              | nd                | 93.50              | 0.163      |
| 365 DAT           | 52.80   | 0.021      | 9.61            | 0.004             | 62.41              | 0.025      |

<sup>a</sup> HPLC analysis of the metabolite regions indicate the presence of more than one metabolite

<sup>b</sup> The total values may vary from the initial values due to rounding

nd: not detected

#### Table 34 Metabolite distribution for the aqueous lettuce extracts from <sup>14</sup>C-pyridyl-fluazinam treated soil

| Sample /          | Metabolite | Region B <sup>a</sup> | Metabolite | Region C <sup>a</sup> | Metabolite | Region D <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|------------|-----------------------|------------|-----------------------|------------|-----------------------|--------------------|------------|
| Planting Interval | [% TRR]    | [mg eq/kg]            | [% TRR]    | [mg eq/kg]            | [% TRR]    | [mg eq/kg]            | [% TRR]            | [mg eq/kg] |
| Immature Lettuce  |            |                       |            |                       |            |                       |                    |            |
| 30 DAT            | 19.66      | 0.023                 | 34.37      | 0.041                 | nd         | nd                    | 54.03              | 0.064      |
| 120 DAT           | 19.40      | 0.007                 | 23.36      | 0.009                 | nd         | nd                    | 42.76              | 0.016      |
| 365 DAT           | 15.94      | 0.008                 | 34.70      | 0.017                 | nd         | nd                    | 50.19              | 0.025      |
| Mature Lettuce    |            |                       |            |                       |            |                       |                    |            |
| 30 DAT            | 10.34      | 0.007                 | 38.37      | 0.024                 | nd         | nd                    | 48.71              | 0.031      |
| 120 DAT           | 11.54      | 0.004                 | 22.59      | 0.007                 | 8.61       | 0.003                 | 42.74              | 0.014      |
| 365 DAT           | 15.34      | 0.006                 | 27.32      | 0.011                 | nd         | nd                    | 42.66              | 0.017      |

<sup>a</sup> HPLC analysis of the metabolite regions indicate the presence of multiple components

<sup>b</sup> The total values may vary from the initial values due to rounding

nd: not detected

# Table 35 Metabolite distribution for the aqueous carrot extracts from <sup>14</sup>C-phenyl-fluazinam treated soil

| Sample /          | TFAA    |            | Metabolite R | egion A <sup>a</sup> | Metabolite R | legion E <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|---------|------------|--------------|----------------------|--------------|-----------------------|--------------------|------------|
| Planting Interval | [% TRR] | [mg eq/kg] | [% TRR]      | [mg eq/kg]           | [% TRR]      | [mg eq/kg]            | [% TRR]            | [mg eq/kg] |
| Immature Tops     |         |            |              |                      |              |                       |                    |            |
| 30 DAT            | 79.44   | 0.341      | 2.04         | 0.009                | nd           | nd                    | 81.48              | 0.350      |
| 120 DAT           | 74.22   | 0.122      | 1.73         | 0.003                | nd           | nd                    | 75.95              | 0.125      |
| 365 DAT           | 29.27   | 0.016      | 14.07        | 0.008                | nd           | nd                    | 43.34              | 0.024      |
| Immature Roots    |         |            |              |                      |              |                       |                    |            |
| 30 DAT            | 69.90   | 0.070      | nd           | nd                   | nd           | nd                    | 69.90              | 0.070      |
| 120 DAT           | 84.58   | 0.056      | nd           | nd                   | 1.18         | <0.001                | 85.76              | 0.056      |
| 365 DAT           | nd      | nd         | nd           | nd                   | nd           | nd                    | nd                 | nd         |
| Mature Tops       |         |            |              |                      |              |                       |                    |            |
| 30 DAT            | 85.83   | 0.300      | nd           | nd                   | nd           | nd                    | 85.83              | 0.300      |
| 120 DAT           | 87.39   | 0.195      | 1.77         | 0.004                | nd           | nd                    | 89.16              | 0.199      |
| 365 DAT           | 25.14   | 0.010      | 11.83        | 0.005                | 3.65         | 0.001                 | 40.62              | 0.016      |
| Mature Roots      |         |            |              |                      |              |                       |                    |            |
| 30 DAT            | 82.37   | 0.057      | nd           | nd                   | nd           | nd                    | 82.37              | 0.057      |
| 120 DAT           | 73.39   | 0.049      | 4.90         | 0.003                | nd           | nd                    | 78.92              | 0.052      |
| 365 DAT           | 35.48   | 0.004      | 4.73         | <0.001               | 7.99         | <0.001                | 48.20              | 0.004      |

<sup>a</sup> HPLC analysis of the metabolite regions indicate the presence of multiple components

<sup>b</sup> The total values may vary from the initial values due to rounding nd: not detected

| Sample /          | Metabolite | Region B <sup>a</sup> | Metabolite | Region C <sup>a</sup> | Metabolite | Region D <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|------------|-----------------------|------------|-----------------------|------------|-----------------------|--------------------|------------|
| Planting Interval | [% TRR]    | [mg eq/kg]            | [% TRR]    | [mg eq/kg]            | [% TRR]    | [mg eq/kg]            | [% TRR]            | [mg eq/kg] |
| Immature Tops     |            |                       |            |                       |            |                       |                    |            |
| 30 DAT            | 20.11      | 0.067                 | 16.66      | 0.055                 | nd         | nd                    | 36.77              | 0.122      |
| 120 DAT           | 16.11      | 0.007                 | 36.69      | 0.017                 | nd         | nd                    | 52.80              | 0.024      |
| 365 DAT           | 12.46      | 0.007                 | 30.14      | 0.018                 | nd         | nd                    | 42.60              | 0.025      |
| Immature Roots    |            |                       |            |                       |            |                       |                    |            |
| 30 DAT            | 40.64      | 0.036                 | nd         | nd                    | nd         | nd                    | 40.46              | 0.036      |
| 120 DAT           | 15.41      | 0.006                 | 47.20      | 0.017                 | nd         | nd                    | 62.61              | 0.023      |
| 365 DAT           | 20.03      | 0.002                 | 42.91      | 0.004                 | nd         | nd                    | 62.94              | 0.006      |
| Mature Tops       |            |                       |            |                       |            |                       |                    |            |
| 30 DAT            | 17.36      | 0.039                 | 17.36      | 0.039                 | nd         | nd                    | 34.72              | 0.078      |
| 120 DAT           | 13.98      | 0.005                 | 33.02      | 0.011                 | nd         | nd                    | 47.00              | 0.016      |
| 365 DAT           | 7.84       | 0.005                 | 19.77      | 0.012                 | 6.71       | 0.004                 | 34.32              | 0.021      |
| Mature Roots      |            |                       |            |                       |            |                       |                    |            |
| 30 DAT            | 17.96      | 0.008                 | 36.90      | 0.017                 | nd         | nd                    | 54.86              | 0.025      |
| 120 DAT           | 13.44      | 0.003                 | 46.87      | 0.012                 | nd         | nd                    | 60.31              | 0.015      |

Table 36 Metabolite distribution for the aqueous carrot extracts from <sup>14</sup>C-pyridyl-fluazinam treated soil

<sup>a</sup> HPLC analysis of the metabolite regions indicate the presence of multiple components

<sup>b</sup> The total values may vary from the initial values due to rounding

nd: not detected

Table 37 Metabolite distribution for the aqueous barley extracts from <sup>14</sup>C-phenyl-fluazinam treated soil

| Sample /          | TFAA    |            | Metabolite Regi | on A <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|---------|------------|-----------------|-------------------|--------------------|------------|
| Planting Interval | [% TRR] | [mg eq/kg] | [% TRR]         | [mg eq/kg]        | [% TRR]            | [mg eq/kg] |
| Grain             |         |            |                 |                   |                    |            |
| 68 DAT            | 37.48   | 0.021      | 3.50            | 0.002             | 40.98              | 0.023      |
| 120 DAT           | 74.21   | 0.115      | 1.19            | 0.002             | 75.40              | 0.117      |
| 365 DAT           | 58.96   | 0.175      | nd              | nd                | 58.96              | 0.175      |
| Straw             |         |            |                 |                   |                    |            |
| 68 DAT            | 47.57   | 0.044      | 10.27           | 0.010             | 57.84              | 0.054      |
| 120 DAT           | 79.71   | 0.204      | 2.87            | 0.007             | 82.58              | 0.211      |
| 365 DAT           | 43.50   | 0.119      | 16.04           | 0.044             | 59.84              | 0.163      |
| Forage            |         |            |                 |                   |                    |            |
| 30 DAT            | 46.77   | 0.063      | 6.97            | 0.009             | 53.74              | 0.072      |
| 120 DAT           | 94.26   | 0.880      | nd              | nd                | 94.26              | 0.880      |
| 365 DAT           | 70.21   | 0.371      | 7.09            | 0.038             | 77.30              | 0.409      |

<sup>a</sup> HPLC analysis of the metabolite regions indicate the presence of multiple components

<sup>b</sup> The total values may vary from the initial values due to rounding

nd: not detected

Table 38 Metabolite distribution for the aqueous barley extracts from <sup>14</sup>C-pyridyl-fluazinam treated soil

| Sample /          | Metabolite Regi | on B <sup>a</sup> | Metabolite Regi | on C <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|-----------------|-------------------|-----------------|-------------------|--------------------|------------|
| Planting Interval | [% TRR]         | [mg eq/kg]        | [% TRR]         | [mg eq/kg]        | [% TRR]            | [mg eq/kg] |
| Grain             |                 |                   |                 |                   |                    |            |
| 30 DAT            | 3.45            | 0.008             | 1.65            | 0.004             | 5.10               | 0.012      |
| 120 DAT           | 13.98           | 0.009             | 13.13           | 0.008             | 27.02              | 0.017      |
| 365 DAT           | 10.49           | 0.024             | 9.34            | 0.022             | 19.83              | 0.046      |
| Straw             |                 |                   |                 |                   |                    |            |
| 30 DAT            | 28.13           | 0.352             | 22.18           | 0.277             | 50.31              | 0.629      |
| 120 DAT           | 14.20           | 0.015             | 20.49           | 0.022             | 34.69              | 0.037      |

348

| Sample /          | Metabolite Regi | on B <sup>a</sup> | Metabolite Regi | on C <sup>a</sup> | Total <sup>b</sup> |            |
|-------------------|-----------------|-------------------|-----------------|-------------------|--------------------|------------|
| Planting Interval | [% TRR]         | [mg eq/kg]        | [% TRR]         | [mg eq/kg]        | [% TRR]            | [mg eq/kg] |
| 365 DAT           | 25.27           | 0.067             | 26.07           | 0.070             | 51.34              | 0.137      |
| Forage            |                 |                   |                 |                   |                    |            |
| 30 DAT            | 23.00           | 0.075             | 39.32           | 0.129             | 62.32              | 0.204      |
| 120 DAT           | 18.17           | 0.013             | 43.78           | 0.033             | 61.95              | 0.046      |
| 365 DAT           | 24.38           | 0.034             | 37.17           | 0.051             | 61.55              | 0.085      |

<sup>a</sup> HPLC analysis of the metabolite regions indicate the presence of multiple components

<sup>b</sup> The total values may vary from the initial values due to rounding

nd: not detected

## Carrots

Residues were generally lowest in mature carrot roots. For the 365- DAT plantings, the TRR in carrot roots was <0.01 mg eq/kg for the <sup>14</sup>C -pyridyl-label, and the total extractable residues were <0.01 mg eq/kg for each fraction from the <sup>14</sup>C-phenyl-label. At the two earlier plant-back intervals, trifluoroacetic acid (TFAA) was the main residue from the phenyl label.

For the pyridyl-labelled treatment residues in the organo-soluble extract were <0.01 mg eq/kg for the 30 and 120 DAT plantings. In the aqueous extract the TRR was 0.025 mg eq/kg (60.3% TRR) and 0.015 mg eq/kg (54.9%) for the 30 and 120 DAT plantings respectively.

The HPLC analyses of pyridyl-label aqueous extracts gave radioactive regions similar in retention times to those from barley. Characterisation of a main region of the pyridyl-label aqueous extract from barley indicated that it contained components produced by extensive metabolism of the pyridine ring, including ring opening and fragmentation.

#### Lettuce

The residues in mature lettuce generally decreased for successive planting dates except for the <sup>14</sup>C-pyridyl-label where the TRR for the 120-DAT and 360-DAT samples had comparable levels.

For both labels at all plant-back times, the organo-extractable residues were <0.01 mg/kg.

The main residue in the aqueous extracts from the <sup>14</sup>C-phenyl-label was TFAA, ranging from 0.267 mg/kg (94.8% TRR) for the 30-DAT planting to 0.021 mg/kg (52.8% TRR) for the 365-DAT planting.

The aqueous-extractable residues for the pyridyl-label ranged from 0.014 mg/kg (41.2% TRR) for the 120-DAT planting to 0.031 mg/kg (47.7% TRR) for the 30-DAT planting. These extracts had similar HPLC profiles to those for barley straw, where extensive degradation and fragmentation of the pyridine ring had been found.

## Barley Forage and Straw

The extracts of barley forage and straw from the early plantings were chosen for metabolite isolation and identification, since the highest levels of aqueous extractable residues were found in these samples. For the <sup>14</sup>C-phenyl-label, the main aqueous extractable residue was isolated and identified as TFAA.

With the [14C]-pyridine-label, a main aqueous extractable region from HPLC was characterised by spectroscopic analyses and derivatisation. The LC-MS nd NMR analysis demonstrated that there were at least two components resulting from ring opening and fragmentation.

Organo-extractable residues were low in barley forage and straw. No fluazinam-related compounds ≥0.01 mg/kg were detected.

#### Barley Grain

The TRR for barley grain ranged from 0.054 to 0.296 mg/kg for the <sup>14</sup>C-phenyl-label and from 0.065 to 0.234 mg/kg for the <sup>14</sup>Cpyridine-label.

Organo-extractable residues were generally low for both labels, ≤0.011 mg/kg. The main residue present in the aqueous extracts from the phenyl label was TFAA, ranging from 0.021 mg/kg (37.5% TRR) for the 30-DAT planting to 0.175 mg/kg (59.0% TRR) for the 365-DAT planting.

The aqueous-extractable fractions from the pyridyl-label slowly increased from 0.012 mg/kg (5.1% TRR) of the 30-DAT planting to 0.046 mg/kg (19.8% TRR) of the 365-DAT planting. The HPLC analyses of these fractions indicated that these extracts had profiles similar to those for the barley straw, where extensive degradation and fragmentation of the pyridine ring had been found.

# Analysis of the PES

The PES from the mature crops and barley forage of the 365 DAT plantings were subjected to enzyme hydrolysis with cellulase, acid hydrolysis (with HCL) and base hydrolysis (NaOH). The results of the enzymatic, acid and base hydrolysis experiments are outlined in Tables 39–45.

Table 39 Extraction distribution summary for release of bound residues from lettuce (365 DAT)

| Fraction                                | Phenyl label     | Pyridyl label    |
|-----------------------------------------|------------------|------------------|
|                                         | % TRR [mg eq/kg] | % TRR [mg eq/kg] |
| TRR in PES following solvent extraction | 32.01 [0.013]    | 48.93 [0.019]    |
| Cellulase hydrolysis                    |                  |                  |
| Aqueous fraction                        | 11.47 [0.005]    | 13.67 [0.005]    |
| Remaining solids 1                      | 20.54 [0.008]    | 35.26 [0.014]    |
| Acid hydrolysis                         |                  |                  |
| HCI-1                                   | 9.24 [0.004]     | 14.11 [0.006]    |
| HCI-3                                   | 1.67 [0.001]     | 6.89 [0.003]     |
| Ether                                   | 2.14 [0.001]     | 4 [0.002]        |
| Distillate                              | 5.32 [0.002]     | 3.17 [0.001]     |
| Precipitate                             | 0.12 [<0.001]    | 0.05 [<0.001]    |
| Remaining solids 2                      | 11.30 [0.004]    | 21.15 [0.008]    |
| HCI phase                               | 4.66 [0.002]     | -                |
| Remaing solids                          | 6.64 [0.002]     | -                |
| Base hydrolysis                         |                  |                  |
| NaOH phase                              | -                | 14.06 [0.005]    |
| Remaining solids                        | -                | 7.09 [0.003]     |

Table 40 Extraction distribution summary for release of bound residues from carrot roots (365 DAT)

| Fraction                                | Phenyl label     | Pyridyl label    |
|-----------------------------------------|------------------|------------------|
|                                         | % TRR [mg eq/kg] | % TRR [mg eq/kg] |
| TRR in PES following solvent extraction | 28.76 [0.003]    | -                |
| Cellulase hydrolysis                    |                  |                  |
| Aqueous fraction                        | 6.55 [0.001]     | -                |
| Remaining solids 1                      | 22.21 [0.002]    | -                |
| Acid hydrolysis                         |                  |                  |
| HCI-1                                   | 16.81 [0.002]    | -                |
| HCI-3                                   | 6.62 [0.001]     | -                |
| Ether                                   | 1.14 [<0.001]    | -                |
| Distillate                              | 9.05 [0.001]     | -                |
| Precipitate                             | -                | -                |
| Remaining solids 2                      | 5.40 [<0.001]    | -                |
| Acid phase                              | -                | -                |
| Remaining solids                        | -                | -                |
| Base hydrolysis                         |                  |                  |
| NaOH phase                              | -                | -                |
| Remaining solids                        | -                | -                |

- not analysed

Table 41 Extraction distribution summary for release of bound residues from carrot tops (365 DAT)

| Fraction                                | Phenyl label     | Pyridyl label    |  |  |  |  |
|-----------------------------------------|------------------|------------------|--|--|--|--|
|                                         | % TRR [mg eq/kg] | % TRR [mg eq/kg] |  |  |  |  |
| TRR in PES following solvent extraction | 48.79 [0.02]     | 51.26 [0.029]    |  |  |  |  |
| Cellulase hydrolysis                    |                  |                  |  |  |  |  |
| Aqueous fraction                        | 17.09 [0.007]    | 17.41 [0.01]     |  |  |  |  |
| Remaining solids                        | 31.70 [0.013]    | 33.85 [0.019]    |  |  |  |  |
| Acid hydrolysis                         |                  |                  |  |  |  |  |
| HCI-1                                   | 17.79 [0.007]    | 14.11 [0.008]    |  |  |  |  |
| HCI-3                                   | 6.46 [0.003]     | 8.05 [0.005]     |  |  |  |  |

| Fraction           | Phenyl label     | Pyridyl label    |
|--------------------|------------------|------------------|
|                    | % TRR [mg eq/kg] | % TRR [mg eq/kg] |
| Ether              | 2.53 [0.001]     | 6.06 [0.003]     |
| Distillate         | 3.47 [0.001]     | -                |
| Precipitate        | 5.32 [0.002]     | -                |
| Remaining solids 2 | 13.91 [0.006]    | 19.74 [0.011]    |
| Acid phase         | 3.51 [0.002]     | -                |
| Remaining solids 3 | 10.4 [0.004]     | -                |
| Base hydrolysis    |                  |                  |
| NaOH phase         | 8.81 [0.003]     | 17.01 [0.009]    |
| Remaining solids   | 1.59 [0.001]     | 2.73 [0.002]     |

- not analysed

Table 42 Extraction distribution summary for release of bound residues from barley grain (365 DAT)

| Fraction                                | Phenyl label     | Pyridyl label    |
|-----------------------------------------|------------------|------------------|
|                                         | % TRR [mg eq/kg] | % TRR [mg eq/kg] |
| TRR in PES following solvent extraction | 37.31 [0.110]    | 75.17 [0.171]    |
| Cellulase hydrolysis                    |                  |                  |
| Aqueous fraction                        | 18.26 [0.054]    | 35.08 [0.08]     |
| Remaining solids 1                      | 19.05 [0.056]    | 40.09 [0.091]    |
| Acid hydrolysis                         |                  |                  |
| HCI-1                                   | 10.45 [0.031]    | 24.82 [0.056]    |
| HCI-3                                   | 6.32 [0.019]     | 16.05 [0.036]    |
| Ether                                   | 2.43 [0.007]     | 6.14 [0.014]     |
| Distillate                              | 1.61 [0.005]     | 2.23 [0.005]     |
| Precipitate                             | 0.09 [<0.001]    | 0.40 [0.001]     |
| Remaining solids 2                      | 8.60 [0.025]     | 15.27 [0.035]    |
| Base hydrolysis                         |                  |                  |
| NaOH phase                              | 7.70[0.022]      | 12.79 [0.029]    |
| Remaining solids                        | 0.90 [0.003]     | 2.48 [0.006]     |

Table 43 Extraction distribution summary for release of bound residues from barley forage (365 DAT)

| Fraction                                | Phenyl label     | Pyridyl label    |
|-----------------------------------------|------------------|------------------|
|                                         | % TRR [mg eq/kg] | % TRR [mg eq/kg] |
| TRR in PES following solvent extraction | 15.74 [0.083]    | 29.85 [0.041]    |
| Cellulase hydrolysis                    |                  |                  |
| Aqueous fraction                        | 7.87 [0.042]     | 9.88 [0.014]     |
| Remaining soilds 1                      | 7.87 [0.042]     | 19.97 [0.027]    |
| Acid hydrolysis                         |                  |                  |
| HCI-1                                   | 3.56 [0.019]     | 6.72 [0.009]     |
| HCI-3                                   | 2.24 [0.012]     | -                |
| Ether                                   | 0.27 [0.001]     | -                |
| Distillate                              | 1.04 [0.006]     | -                |
| Precipitate                             | -                | -                |
| Remaining soilds 2                      | 4.31 [0.022]     | 13.25 [0.018]    |
| Base hydrolysis                         |                  |                  |
| NaOH phase                              | 3.53 [0.018]     | 10.50 [0.014]    |
| Remaining solids                        | 0.78 [0.004]     | 2.75 [0.004]     |

- not analysed

| Fraction                                | Phenyl label     | Pyridyl label    |
|-----------------------------------------|------------------|------------------|
|                                         | % TRR [mg eq/kg] | % TRR [mg eq/kg] |
| TRR in PES following solvent extraction | 34.46 [0.094]    | 42.66 [0.113]    |
| Cellulase hydrolysis                    |                  |                  |
| Aqueous fraction                        | 11.28 [0.031]    | 11.38 [0.03]     |
| Remaining solids                        | 23.18 [0.063]    | 31.28 [0.083]    |
| Acid hydrolysis                         |                  |                  |
| HCI-1                                   | 8.11 [0.063]     | 16.16 [0.043]    |
| HCI-3                                   | 5.64 [0.015]     | 5.02 [0.013]     |
| Ether                                   | 1.47 [0.004]     | 8.03 [0.021]     |
| Distillate                              | 1 [0.003]        | 1.90 [0.005]     |
| Precipitate                             | -                | 1.21 [0.003]     |
| Remaining solids 2                      | 15.07 [0.041]    | 15.12 [0.04]     |
| Base hydrolysis                         |                  |                  |
| NaOH phase                              | 11.21 [0.03]     | 13.62 [0.036]    |
| Remaining solids                        | 3.86 [0.011]     | 1.5 [0.004]      |

Table 44 Extraction distribution summary for release of bound residues from barley straw (365 DAT)

- not analysed

Table 45 Distribution of metabolites in the aqueous phase from the cellulase hydrolysis

# Phenyl label

| Sample                    | Metabolite region F‡ |          |          | Metabolite region G‡ |          |          | Totals    |          |          |
|---------------------------|----------------------|----------|----------|----------------------|----------|----------|-----------|----------|----------|
|                           | % by HPLC            | % of TRR | mg eq/kg | % by HPLC            | % of TRR | mg eq/kg | % by HPLC | % of TRR | mg eq/kg |
| Mature<br>lettuce         | 100                  | 11.47    | 0.005    | ND                   | ND       | ND       | 100       | 11.47    | 0.005    |
| Mature<br>carrot tops     | 100                  | 6.55     | 0.001    | ND                   | ND       | ND       | 100       | 6.55     | 0.001    |
| Mature<br>carrot<br>roots | 54.5                 | 9.31     | 0.004    | 45.5                 | 7.78     | 0.003    | 100       | 17.09    | 0.007    |
| Barley<br>grain           | 88.89                | 16.23    | 0.048    | 11.11                | 2.03     | 0.006    | 100       | 18.26    | 0.054    |
| Barley<br>straw           | 38.52                | 4.35     | 0.012    | 61.48                | 6.93     | 0.019    | 100       | 11.28    | 0.031    |
| Barley<br>forage          | 65.61                | 5.16     | 0.028    | 34.39                | 2.71     | 0.014    | 100       | 7.87     | 0.042    |

# Pyridyl label

| Sample                | Metabolite region H <sup>a</sup> |          |          | Metabolite re | Metabolite region I <sup>a</sup> |          |           | Totals   |          |  |
|-----------------------|----------------------------------|----------|----------|---------------|----------------------------------|----------|-----------|----------|----------|--|
|                       | % by HPLC                        | % of TRR | mg eq/kg | % by HPLC     | % of TRR                         | mg eq/kg | % by HPLC | % of TRR | mg eq/kg |  |
| Mature<br>lettuce     | 100                              | 13.67    | 0.005    | ND            | ND                               | ND       | 100       | 13.67    | 0.005    |  |
| Mature<br>carrot tops | 56.01                            | 9.75     | 0.006    | 43.99         | 7.66                             | 0.004    | 100       | 17.41    | 0.01     |  |
| Barley<br>grain       | 69.27                            | 24.3     | 0.055    | 30.73         | 10.78                            | 0.025    | 100       | 35.08    | 0.08     |  |
| Barley<br>straw       | 53.16                            | 6.05     | 0.016    | 46.84         | 5.33                             | 0.014    | 100       | 11.38    | 0.03     |  |
| Barley<br>forage      | 66.43                            | 6.56     | 0.009    | 33.57         | 3.32                             | 0.005    | 100       | 9.88     | 0.014    |  |

<sup>a</sup> HPLC analysis indicates more than one metabolite in the region

ND-not detected

Cellulase hydrolysis succeeded in releasing up to 51% of the PES. Analyses of the aqueous fractions from enzyme hydrolysis indicated two regions of radioactivity by HPLC analysis. Subsequent mild acid and strong base reactions succeeded in

352

releasing most of the unextractable residues. After base hydrolysis the resulting PES-fractions were all <10% of the TRR and <0.01 mg/kg, with the exception of phenyl-label barley straw where a TRR of 0.011 mg/kg was obtained.

In another experiment, the pyridyl-label barley grain PES fraction obtained from extraction with methanol/acetone (1:1, v/v) was treated with hot water to gelatinise any starch present, cooled and then incubated with a-amylase. HPLC analyses demonstrated that the a-amylase treatment released approximately 43% of the PES as glucose, maltose and other oligosaccharides. This mixture was then further treated by hydrolysis in 1M H<sub>2</sub>SO<sub>4</sub> to convert maltose and the other oligosaccharides to glucose. The glucose was then reduced to sorbitol and acetylated to given sorbitol hexa-acetate. The identity of the sorbitol hexa-acetate was confirmed by NMR. Based on the amounts of degradation products formed, it was estimated that the barley grain PES contained 32% <sup>14</sup>C-labelled starch, derived from the re-incorporation of fluazinam residues.

Samples were stored at  $\leq$ -10 °C. To confirm the stability of the residues during the course of the investigations, an immature lettuce sample from the 30 DAT planting was re-extracted after more than two years of storage using identical extraction conditions to the original extraction. The distribution of radioactivity was very similar to the original extraction. Comparison of the HPLC chromatograms of the aqueous fractions from the re-extraction with those originally obtained were also very similar. In addition, re-analysis of the original aqueous fractions after two years of storage at  $\leq$ 5 °C showed close similarity to the original. Since these storage intervals were longer than any periods encountered in the course of the laboratory phase of the studies, the stability of the residues has been addressed.

#### Field Rotational Crop Studies

No field rotation crop studies have been provided.

#### Environmental fate in soil

The meeting received information on aerobic degradation in soil, photolysis in soil and hydrolytic degradation. Information on the calculation of persistence, modelling of half-lives and formation fractions from laboratory soil degradation studies for fluazinam and its metabolite HYPA based on FOCUS kinetics were also provided. Only the data on degradation in soil, photolysis in soil and the hydrolytic degradation, which are relevant to MRL setting, are reported here.

## Route of degradation in soil

#### Aerobic degradation in soil

Three studies have investigated the aerobic degradation of fluazinam.

The first study (Bharti, H and Bewick, D.W, 1985) was non-GLP. Fluazinam, labelled in the phenyl or pyridyl ring, was applied to two soils and degradation in the laboratory under aerobic conditions. The soils were characterised as a sandy loam and loamy sand.

| Soil Characteristic | Sandy loam | Loamy sand |
|---------------------|------------|------------|
| рН                  | 6.9        | 6.4        |
| % coarse sand       | 22         | 28         |
| % fine sand         | 39         | 51         |
| % silt              | 17         | 13         |
| % clay              | 22         | 8          |
| % organic matter    | 4.4        | 1.7        |
| CEC (meq/100 g)     | 16         | 5          |

The soils were maintained at 40% moisture holding capacity and incubated at 20 °C in the dark. Fluazinam was applied to each soil type at a rate of 1 kg ai/ha or 5 kg ai/ha. Volatiles were collected in trapping solutions. In addition, samples were also prepared to cover sterilised soil. Samples of soil were removed for analysis from 7 to 361 DAT.

The soils were extracted with acetonitrile, filtered and the debris refluxed with acetonitrile for 3 hours. Extracted soil debris was analysed by combustion and LSC. Un-extracted soil residue was further characterised by refluxing the soil for 3 hours in 0.1M Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> and then partitioning the extract with a series of organic solvents. Analysis were carried out by TLC as well as HPLC and GC-MS.

The volatile radioactivity was almost entirely attributed to  $CO_2$ . In the two soils incubated aerobically for 361 days the level of  $CO_2$  collected ranged from 1.8% to 6.3% of the AR. The level of  $CO_2$  was similar for the two labels.

Anaerobic conditions reduced mineralization whereas mineralisation was negligible under sterile conditions. The amount of radioactivity extracted from the soil was >90% of the AR at the start of the study and gradually decreased over the incubation period, except for sterile soils. The un-extracted radioactivity reached 41.4% to 42.2% of the AR in the sandy loam soil and 26.1%

to 27.9% in the loamy sand soil after 361 days. The majority of the AR was extracted in the 1<sup>st</sup> extract with the second extraction procedure releasing up to another 20% of the AR.

The distribution of radioactivity in soil is outlined in Table 46 and the radioactivity identified is outlined in Table 47.

Table 46 Distribution of radioactivity

| DAT   | 1 <sup>st</sup> extract |                        | 2 <sup>nd</sup> extract |          | NER     |          | <sup>14</sup> CO <sub>2</sub> |          | Recovery |          |
|-------|-------------------------|------------------------|-------------------------|----------|---------|----------|-------------------------------|----------|----------|----------|
|       | Phenyl-                 | Pyridyl-               | Phenyl-                 | Pyridyl- | Phenyl- | Pyridyl- | Phenyl-                       | Pyridyl- | Phenyl-  | Pyridyl- |
|       | label                   | label                  | label                   | label    | label   | label    | label                         | label    | label    | label    |
| Sandy | loam _ aerobio          | c—20 ° C—1 kg          | j ai/ha                 |          |         |          |                               |          |          |          |
| 0     | 88.7                    | 101.5                  | na                      | na       | 4.0     | 1.5      | na                            | na       | 92.6     | 103.0    |
| 7     | 83.1                    | 79.0                   | na                      | 4.5      | 12.4    | 9.1      | 0.1                           | <0.1     | 95.6     | 92.7     |
| 14    | 72.3                    | 68.7                   | 2.9                     | 3.3      | 16.4    | 16.8     | 0.2                           | 0.1      | 91.9     | 88.9     |
| 30    | 66.1                    | 64.0                   | 3.2                     | 2.4      | 23.8    | 21.9     | 0.5                           | 0.3      | 93.6     | 88.6     |
| 60    | 56.5                    | 48.5                   | 2.8                     | 3.2      | 29.0    | 32.5     | 1.4                           | 0.7      | 89.7     | 84.9     |
| 90    | 49.6                    | 48.3                   | 4.0                     | 4.1      | 37.1    | 35.5     | 2.2                           | 1.2      | 92.9     | 89.1     |
| 180   | 39.7                    | 37.4                   | 2.4                     | 3.4      | 43.8    | 47.2     | 4.4                           | 2.4      | 90.2     | 88.0     |
| 361   | 23.1                    | 19.4                   | 14.6                    | 15.6     | 42.2    | 41.4     | 6.3                           | 4.7      | 86.5     | 83.3     |
| Sandy | loam _ aerobio          | c—20 ° C <i>—5 kg</i>  | n ai/ha                 |          |         |          |                               |          |          |          |
| 0     | 94.8                    | 96.1                   | na                      | na       | 2.0     | 2.1      | na                            | na       | 96.8     | 98.2     |
| 7     | 84.2                    | 85.2                   | na                      | Na       | 9.8     | 10.8     | 0.1                           | <0.1     | 94.0     | 96.0     |
| 14    | 76.7                    | 78.3                   | 3.0                     | 3.5      | 14.3    | 15.1     | 0.2                           | 0.1      | 94.2     | 97.0     |
| 30    | 73.3                    | 75.6                   | 2.6                     | 3.2      | 19.0    | 18.8     | 0.4                           | 0.2      | 95.3     | 97.8     |
| 60    | Na                      | Na                     | na                      | na       | na      | na       | na                            | na       | na       | na       |
| 90    | 61.5                    | 66.1                   | 4.1                     | 3.5      | 26.7    | 28.0     | 0.9                           | 0.4      | 93.2     | 98.1     |
| 180   | 43.0                    | 53.7                   | 3.8                     | 3.3      | 36.0    | 34.9     | 1.6                           | 1.0      | 89.4     | 93.3     |
| 361   | na                      | na                     | na                      | na       | na      | na       | na                            | na       | na       | na       |
| Sandy | loam _ aerobio          | c—20 ° C—1 kg          | j ai/ha- <i>sterile</i> |          |         |          |                               |          |          |          |
| 0     | 102.6                   | -                      | na                      | -        | 1.5     | -        | na                            | -        | 104.1    | -        |
| 7     | 104.6                   | -                      | na                      | -        | 4.6     | -        | <0.1                          | -        | 109.1    | -        |
| 14    | 96.8                    | -                      | 3.7                     | -        | 5.6     | -        | <0.1                          | -        | 105.0    | -        |
| 30    | 98.0                    | -                      | 2.7                     | -        | 6.2     | -        | <0.1                          | -        | 106.9    | -        |
| 60    | na                      | -                      | na                      | -        | na      | -        | na                            | -        | na       | -        |
| 90    | na                      | -                      | na                      | -        | na      | -        | na                            | -        | na       | -        |
| 180   | na                      | -                      | na                      | -        | na      | -        | na                            | -        | na       | -        |
| 361   | na                      | -                      | na                      | -        | na      | -        | na                            | -        | na       | -        |
| Sandy | loam _ aerobio          | c– <i>10 ° C</i> –1 kg | ai/ha                   |          |         |          |                               |          |          |          |
| 0     | 99.0                    | 96.1                   | na                      | na       | 2.2     | 2.2      | na                            | na       | 101.2    | 98.3     |
| 7     | 91.1                    | 82.3                   | na                      | na       | 6.8     | 6.5      | <0.1                          | <0.1     | 97.9     | 88.7     |
| 14    | 96.8                    | 82.3                   | 3.2                     | 2.1      | 11.2    | 9.3      | <0.1                          | <0.1     | 101.2    | 93.9     |
| 30    | 82.7                    | 81.1                   | 2.2                     | 2.1      | 13.4    | 13.0     | 0.1                           | <0.1     | 98.5     | 96.1     |
| 60    | 72.8                    | 69.0                   | 3.2                     | 3.5      | 21.3    | 19.4     | 0.5                           | 0.2      | 97.8     | 92.1     |
| 90    | na                      | na                     | na                      | na       | na      | na       | na                            | na       | na       | na       |
| 180   | na                      | na                     | na                      | na       | na      | na       | na                            | na       | na       | na       |
| 361   | na                      | na                     | na                      | na       | na      | na       | na                            | na       | na       | na       |
| Loamy | sand _ aerobi           | c–20 ° C–1 kợ          | g ai/ha                 |          |         |          |                               |          |          |          |
| 0     | 90.7                    | 101.8                  | na                      | na       | 1.5     | 1.3      | na                            | na       | 92.3     | 103.1    |
| 7     | 89.3                    | 92.3                   | na                      | na       | 6.1     | 6.3      | 0.1                           | <0.1     | 95.4     | 98.7     |
| 14    | 86.2                    | 86.7                   | 2.1                     | 2.4      | 7.1     | 7.4      | 0.2                           | 0.1      | 95.6     | 96.5     |
| 30    | 84.2                    | 82.9                   | 1.9                     | 2.1      | 26.4    | 9.8      | 0.4                           | 0.1      | 112.9    | 94.9     |
| 60    | na                      | na                     | na                      | na       | na      | na       | na                            | na       | na       | na       |
| 90    | 72.6                    | 69.6                   | 3.4                     | 3.8      | 16.7    | 15.8     | 1.2                           | 0.4      | 93.9     | 89.6     |
| 180   | 51.7                    | 57.6                   | 2.0                     | 2.8      | 21.2    | 25.4     | 2.7                           | 1.3      | 78.0     | 88.5     |
| 361   | 38.2                    | 35.3                   | 18.6                    | 19.6     | 27.9    | 26.1     | 3.5                           | 1.8      | 88.2     | 84.0     |

Na not analysed

Table 47 radioactive residues in soil extracts

|                                                      |         | Radioactive Residues [% of Applied] |      |      |      |          |        |
|------------------------------------------------------|---------|-------------------------------------|------|------|------|----------|--------|
| Treatment,                                           | Extract | Fluazinam                           | MAPA | DAPA | HYPA | Baseline | Others |
| Sample Day                                           |         |                                     |      |      |      |          |        |
| Sandy loam soil/Aerobic/ 1kg ai/ha /20º/Phenyl-label |         |                                     |      |      |      |          |        |

354

|                           |                | Radioactive Res                 | idues [% of Applie | dl    |             |             |             |
|---------------------------|----------------|---------------------------------|--------------------|-------|-------------|-------------|-------------|
| Treatment                 | Extract        | Fluazinam                       |                    | ΠΔΡΔ  | ΗΥΡΔ        | Baseline    | Others      |
| Sample Day                | Extract        | Tiddzindin                      |                    | DAIN  |             | Dusenne     | others      |
| 0                         | 1              | 77.0                            | < 0.5              | < 0.5 | 3.3         | 4.5         | 3.9         |
| 7                         | 1              | 67.2                            | 1.8                | 1.0   | 5.1         | 6.0         | 2.1         |
| 14                        | 1              | 53.7                            | 1.8                | 0.3   | 8.2         | 7.0         | 13          |
| 30                        | 1              | 48.0                            | 1.0                | 0.6   | 7.8         | 65          | 2.0         |
| 60                        | 1              | 40.7                            | 1.2                | 0.2   | 65          | 5.4         | 2.0         |
| 90                        | 1              | 30.6                            | 2.1                | 1.2   | 77          | 73          | 0.8         |
| 90                        | 2              | 1.2                             | 0.4                | 0.1   | 0.4         | 0.8         | 1.1         |
| 180                       | 1              | 26.1                            | 1.2                | < 0.5 | 5.1         | 5.0         | 1.1         |
| 361                       | 1              | 20.1                            | 1.2                | < 0.5 | 5.0         | 5.6         | 25          |
| 361                       | 2              | 0.5                             | 0.4                | < 0.5 | 1.2         | 10.4        | 1.0         |
| Sandy loam soil /Aorobic/ |                | 0°/Duridul Jabol                | 0.4                | < 0.5 | 1.2         | 10.4        | 1.2         |
| O                         | 1              |                                 | < 0.5              | < 0.5 | 2.2         | 5.2         | 12          |
| 7                         | 1              | 59.2                            | < 0.5              | < 0.5 | 5.Z<br>6.1  | 0.2         | 4.J         |
| 1                         | 1              | 50.2                            | < 0.5              | < 0.5 | 0.1         | 9.3<br>F F  | 1.0         |
| 14                        | 1              | 31.Z                            | 1.9                | 0.9   | 8.0         | 0.0<br>F F  | 1.2         |
| 30                        | 1              | 40.7                            | 0.8                | 0.8   | 0.4         | 5.5<br>10.7 | 3.7         |
| 60                        | 1              | 25.0                            | 1.0                | 1.3   | 1.1         | 10.7        | 2.8         |
| 90                        | 1              | 33.2                            | 1.5                | 1.5   | 6.5         | 4.6         | 0.8         |
| 90                        | 2              | 1.3                             | 0.4                | 0.1   | 0.6         | 0.5         | 1.1         |
| 180                       | 1              | 20.2                            | 0.1                | < 0.5 | 8.2         | 4.9         | 2.2         |
| 180                       | 2              | 1.0                             | 0.3                | < 0.5 | 1.1         | 0.4         | 0.5         |
| 361                       | 1              | 6.4                             | 1.1                | < 0.5 | 5.3         | 3.8         | 2.9         |
| 361                       | 2              | 0.4                             | 0.5                | < 0.5 | 1.7         | 9.7         | 1.6         |
| Sandy loam soil/Aerobic/  | 1kg ai/ha /2   | 0°/ Phenyl-label-S              | terile             | 1     | T           | T           | 1           |
| 0                         | 1              | 99.8                            | <0.5               | <0.5  | <0.5        | 0.8         | 2.0         |
| 7                         | 1              | 88.3                            | <0.5               | <0.5  | <0.5        | 9.6         | 6.7         |
| 14                        | 1              | 95.2                            | <0.5               | <0.5  | <0.5        | 0.5         | <0.5        |
| 30                        | 1              | 92.1                            | <0.5               | <0.5  | <0.5        | 5.0         | 0.5         |
| Sandy loam soil /Aerobic  | / 1kg ai/ha /  | 10°/ Phenyl-label               |                    |       |             |             |             |
| 0                         | 1              | 90.7                            | <0.5               | <0.5  | 1.6         | 3.2         | 3.5         |
| 7                         | 1              | 80.3                            | 0.5                | 1.2   | 3.7         | 5.0         | 0.4         |
| 14                        | 1              | 79.8                            | <0.5               | <0.5  | 2.1         | 2.0         | 2.8         |
| 30                        | 1              | 67.8                            | <0.5               | 0.3   | 5.1         | 8.8         | 0.1         |
| 60                        | 1              | 42.3                            | 1.4                | 0.8   | 7.8         | 17.0        | 3.6         |
| Sandy loam soil /Aerobic  | / 1kg ai/ha /1 | 10°/ Pyridyl-label              |                    |       | •           | -           |             |
| 0                         | 1              | 88.5                            | <0.5               | 1.0   | 1.7         | 2.6         | 2.3         |
| 7                         | 1              | 72.3                            | <0.5               | 1.0   | 3.7         | 4.4         | 0.9         |
| 14                        | 1              | 74.2                            | 0.6                | <0.5  | 2.4         | 2.6         | 2.6         |
| 30                        | 1              | 66.1                            | 0.5                | 0.3   | 4.0         | 6.5         | 2.1         |
| 60                        | 1              | 54.1                            | 1.0                | <0.5  | 6.9         | 5.6         | 1.4         |
| Loamy sand soil/ Aerobic  | / 1kg ai/ha /  | 20°/ Phenyl-label               |                    |       | 1           |             |             |
| 0                         | 1              | 85.3                            | <0.5               | <0.5  | <0.5        | 1.8         | 3.7         |
| 7                         | 1              | 72.2                            | 1.5                | 0.8   | 5.9         | 6.3         | 2.6         |
| 14                        | 1              | 66.5                            | <0.5               | <0.5  | 3.6         | 3.6         | 12.6        |
| 30                        | 1              | 77.5                            | <0.5               | <0.5  | 2.1         | 3.2         | <0.5        |
| 90                        | 1              | 66.1                            | <0.5               | <0.5  | 2.7         | 2.8         | 1.0         |
| 90                        | 2              | 2.3                             | <0.5               | <0.5  | <0.5        | <0.5        | <0.5        |
| 180                       | 1              | 45.3                            | <0.5               | <0.5  | 2.9         | 2.0         | 1.5         |
| 361                       | 1              | 28.8                            | 0.5                | <0.5  | 2.8         | 3.1         | 2.9         |
| 361                       | 2              | 1.4                             | 0.4                | <0.5  | 1.8         | 13.1        | 1.6         |
| Loamy sand soil /Aerobic  | / 1kg ai/ha /  | 20°/ Pyridyl-lahel              |                    | .0.0  |             |             |             |
| 0                         | 1              | 97.0                            | <0.5               | <0.5  | <0.5        | 1.0         | 3.9         |
| 7                         | 1              | 85.1                            | <0.5               | 10    | 31          | 3.6         | <0.5        |
| 14                        | 1              | 74.2                            | <0.5               | <0.5  | 5.6         | 4.3         | 27          |
| 30                        | 1              | 77.6                            | <0.5               | <0.5  | 2.0         | 3.0         | <0.5        |
| 90                        | 1              | 63.0                            | <0.5               | <0.5  | 3.0         | 1.8         | 10.5        |
| 70<br>00                  | 2              | 24                              | <0.5               | <0.5  | 3.0<br><0.5 | 1.0         | 1.7         |
| 100                       | 2              | 2.4                             | <0.5               | <0.5  | <0.5        | <0.5<br>E 1 | <0.5<br>2.7 |
| 100                       | 1              | 44.3                            | 0.0                | <0.5  | 4.0         | D.1         | 2.1         |
| 301                       |                | 23.9                            | 0.0                | <0.5  | 3.9         | 2.8         | 3.9         |
| 301                       | Z              | 0.8                             | 0.5                | <0.5  | 1.0         | 13.8        | 2.0         |
| Loamy sand soll /Aerobic  | / oku ai/ha /. | ZU <sup>~</sup> / Prienvi-label |                    |       |             |             |             |

|                          |                | Radioactive Residues [% of Applied] |       |      |      |          |        |
|--------------------------|----------------|-------------------------------------|-------|------|------|----------|--------|
| Treatment,               | Extract        | Fluazinam                           | MAPA  | DAPA | HYPA | Baseline | Others |
| Sample Day               |                |                                     |       |      |      |          |        |
| 0                        | 1              | 91.3                                | < 0.5 | 0.5  | 0.8  | 0.9      | 1.3    |
| 7                        | 1              | 72.4                                | 1.4   | <0.5 | 4.8  | 5.3      | 0.3    |
| 14                       | 1              | 52.8                                | 2.0   | 1.9  | 9.0  | 5.0      | 3.6    |
| 30                       | 1              | 46.5                                | 1.0   | 1.5  | 11.4 | 10.3     | 2.5    |
| 90                       | 1              | 47.4                                | 2.2   | 0.6  | 6.8  | 3.8      | 2.7    |
| 90                       | 2              | 2.1                                 | 0.3   | 0.1  | 0.8  | 0.5      | 0.3    |
| 180                      | 1              | 40.5                                | 0.8   | 0.1  | 3.8  | 1.8      | 1.0    |
| 180                      | 2              | 0.7                                 | < 0.5 | <0.5 | 1.2  | 0.4      | 1.0    |
| Sandy loam soil/Aerobic/ | ′ 5kg ai/ha /2 | 0°/ Pyridyl-label                   |       |      |      |          |        |
| 0                        | 1              | 91.3                                | <0.5  | 0.5  | 1.1  | 1.9      | 1.3    |
| 7                        | 1              | 72.2                                | 1.0   | 1.3  | 3.9  | 5.2      | 1.6    |
| 14                       | 1              | 56.4                                | 1.6   | 0.9  | 10.6 | 6.6      | 2.1    |
| 30                       | 1              | 52.4                                | 2.2   | 0.5  | 10.6 | 6.7      | 2.3    |
| 90                       | 1              | 53.4                                | 1.3   | 0.6  | 6.2  | 2.7      | 0.5    |
| 90                       | 2              | 1.6                                 | 0.3   | <0.5 | 0.8  | 0.5      | 0.2    |
| 180                      | 1              | 39.8                                | 0.6   | 0.3  | 8.1  | 3.8      | 1.1    |
| 180                      | 2              | 0.8                                 | 0.4   | 0.1  | 1.0  | 0.4      | 0.6    |

The identity of the degradation products MAPA and HYPA were confirmed by mass spectrometry. The metabolite DAPA was identified only by co-chromatography. At the rate of 1 kg ai/ha, none of the metabolites were present at levels greater than 10% of applied fluazinam. HYPA was the only metabolite present at levels greater than 10% during the course of the study and only at the higher application rate of 5 kg ai/ha.

The main metabolic pathway is the formation of bound residues (up to 47.2% after 180 days under). Metabolites, which would indicate cleavage of the bridging amino group of fluazinam, were not found. Mineralisation (formation of CO<sub>2</sub>) amounted for up to 6% AR after one year under standard conditions. Under aerobic conditions HYPA was the major metabolite which is formed by de-chlorination and subsequent hydroxylation of the phenyl ring of fluazinam. Reduced metabolism of fluazinam was observed at the lower temperature and for the higher application rate.

The half-time ( $DT_{50}$ ) were determined using single first order kinetics (SFO), and where this was not a good fit they were determined using double first order in parallel kinetics (DFOP). The  $DT_{50}$  values determined are outlined in Table 48

The results of the sterilised control samples showed that the degradation of fluazinam was mainly microbiological.

Table 48 Summary of DT50 values for fluazinam and HYPA under aerobic conditions

| Soil                           | DT <sub>50</sub> (days) |        |  |
|--------------------------------|-------------------------|--------|--|
|                                | Fluazinam               | НҮРА   |  |
| Sandy loam (1 kg ai/ha, 20 °C) | 17.83                   | 257.21 |  |
| Sandy loam (5 kg ai/ha, 20 °C) | 55.6                    | 165.8  |  |
| Sandy loam (5 kg ai/ha, 10 °C) | 60                      | -      |  |
| Loamy sand                     | 211.7                   | -      |  |

-Could not be calculated

The degradation rate of fluazinam was also investigated in a further study (Ryan, J and Sapiets, A, 1992) in which unlabelled fluazinam was applied at a rate of 750 g ai/ha to a standard Speyer 2.2 soil.

| Soil type              | Speyer 2.2 |
|------------------------|------------|
| Sand content           | 87%        |
| Silt content           | 7%         |
| Clay content           | 6%         |
| Organic matter content | 3%         |
| рН                     | 5.4        |

The soil was maintained at 40% moisture holding capacity and incubated at 20 °C for 1 year in the dark. At intervals over the range of 0-364 days, soil samples were extracted with acetonitrile and analysed for fluazinam by GC-ECD. In parallel untreated control samples were established which were analysed at the same time points as the treated soil samples. Freshly fortified control

samples were also analysed and gave acceptable procedural recoveries. The results from the analysis of the samples are shown in Table 49.

Table 49 Fluazinam residues in soil

| Sampling Interval (Days) | Fluazinam Residue |             |  |
|--------------------------|-------------------|-------------|--|
|                          | [mg/kg]           | [% applied] |  |
| 0                        | 0.69              | 92          |  |
| 7                        | 0.63              | 84          |  |
| 14                       | 0.59              | 79          |  |
| 28                       | 0.38              | 51          |  |
| 56                       | 0.32              | 43          |  |
| 85                       | 0.23              | 31          |  |
| 182                      | 0.13              | 17          |  |
| 287                      | 0.09              | 12          |  |
| 331                      | 0.08              | 11          |  |
| 364                      | 0.09              | 12          |  |

The half-time (DT<sub>50</sub>) determined using DFOP kinetics resulted in a value of 42.9 days.

In the third study (Maward, N, 2003) a mixture of fluazinam labelled in the phenyl and pyridyl ring was applied to a sandy loam soil under laboratory conditions at a rate of 0.99 mg ai/kg dry soil (equivalent to 0.74 kg ai/ha if a soil depth of 5 cm and a soil density of 1.5 g/cm<sup>3</sup> are assumed).

| Soil type                      | Sandy loan        |
|--------------------------------|-------------------|
| Sand content                   | 71.1%             |
| Silt content                   | 21.9%             |
| Clay content                   | 7 %               |
| Organic matter content         | 1.1%              |
| Maximum water holding capacity | 54.4 g/100 g soil |
| Cation exchange capacity       | 6.9 meq/100 g     |
| рН                             | 7.1               |

The soils were maintained at 40% moisture holding capacity and incubated at 20 °C in the dark.

The flasks containing the soil samples were continuously ventilated with moistened air, and the outgoing air was passed through a trapping system designed to capture organic volatiles and CO<sub>2</sub>. Individual soil samples were taken for analysis from 0 to 158 days after treatment.

Samples were extracted (methanol: phosphoric acid 99.5:0.5 v/v) and the extracts analysed by HPLC and/or TLC to characterise and identify the components. Residual soil was exhaustively extracted using Soxhlet extraction (either methanol: phosphoric acid 99.5:0.5 v/v or acetonitrile: water 4:1 v/v). The remaining soil was combusted to determine the amount of bound radioactivity. The microbial viability of the soil was determined prior to treatment and at 120 and 217 days of incubation.

Extraction with methanol/phosphoric acid up to four times, recovered the majority of extractable radioactivity from the soil sample. Soxhlet extraction contributed a maximum of 8.4% of the AR (day 70). The total extractable radioactivity steadily decreased over time to 55.2% AR on day 48. After this time point the total extractable radioactivity continued to decrease to 49.1% on day 70 and to 43.4% of the AR after 158 days.

The amount of unextractable radioactivity was high increasing from 3.7% of the AR on day 0 to 43-46% of the AR between 70 and 158 DAT.

The mineralization of fluazinam to  $CO_2$  accounted for a maximum of 4.2% of the AR. Other volatile compounds collected did not exceed 0.4% of the AR. One major metabolite was detected which was characterized as HYPA. The maximum amount of HYPA (13.9% of the AR) was reached after 48 days of incubation. Up to 14 minor degradation products were detected with none of these individually exceeding 4.7% of the AR during the whole incubation period. The results are summarized in Table 50.

| DAT             | Extractable | Unextacted | CO <sub>2</sub> | Other<br>volatiles | Recovery | Fluazinam | НҮРА |
|-----------------|-------------|------------|-----------------|--------------------|----------|-----------|------|
| 0               | 96.0        | 3.7        | NA              | NA                 | 99.7     | 96.0      | ND   |
| 2               | 93.3        | 6.8        | <0.1            | <0.1               | 100.1    | 93.3      | ND   |
| 7               | 84.1        | 13.2       | 0.3             | <0.1               | 97.6     | 72.8      | 6.5  |
| 14              | 77.7        | 20.7       | 0.7             | 0.1                | 99.2     | 57.5      | 10.8 |
| 28 <sup>a</sup> | 58.9        | 35.0       | 2.0             | 0.3                | 96.2     | 26.3      | 9.1  |
| 48              | 55.2        | 38.8       | 3.3             | 0.2                | 97.5     | 16.4      | 13.9 |
| 70              | 49.1        | 43.0       | 4.2             | 0.4                | 96.8     | 7.8       | 11.3 |
| 120             | 44.2        | 46.4       | 2.7             | 0.1                | 93.3     | 4.5       | 10.6 |
| 158             | 43.3        | 43.4       | 3.3             | 0.4                | 90.6     | 2.9       | 8.3  |

Table 50 Distribution of radioactivity (% AR) after aerobic incubation of fluazinam

<sup>a</sup> duplicate samples

NA not analysed

ND not detected

Fluazinam rapidly degraded in this sandy loam soil, having a  $DT_{50}$  of 16.6 days at 20 °C based on first order kinetics. The only metabolite formed in any significant amount was HYPA, which reached a maximum of 13.9% of the applied radioactivity at day 48. The calculated  $DT_{50}$  for HYPA was 109 days based on first order kinetics. All other extractable metabolites/degradates were minor, with none present above 5%. Mineralisation was a minor pathway, as carbon dioxide formation was limited to 4.2% of the applied radioactivity. Incorporation into bound soil matter was the major route of degradation, with 43.4% bound by the end of the study.

#### Photolysis-Soil

The photo-degradation of phenyl and pyridyl labelled fluazinam was investigated under laboratory conditions (Lentz, N.R and Korsch, B.H, 2001). The soil was a loamy sand soil.

| Soil       | % sand | % silt | % clay | % organic<br>matter | рН  | Cation exchange<br>capacity (meq/100g) | Bulk density (g/cm <sup>3</sup> ) |
|------------|--------|--------|--------|---------------------|-----|----------------------------------------|-----------------------------------|
| Loamy sand | 76.4   | 17.2   | 6.4    | 2.19                | 7.0 | 6.37                                   | 1.35                              |

The test substance was applied at a rate of 3.55 and 3.32 mg/kg for the phenyl and pyridyl labels respectively. The soils were exposed to simulated sunlight (xenon arc lamp with filters) with a 12-hour light/12-hour dark cycle for 30 days at  $25 \pm 2$  °C.

Volatiles were collected in trapping solutions. Duplicate soil samples were extracted 3 times with acetone: 0.1 M HCI (90:10 v/v). Attempts were made to release additional radioactivity from the post extracted solids of day 28 and day 30 samples. The PES were extracted with 0.1 M sodium pyrophosphate solution.

Light-exposed and dark control samples were analysed by radio-HPLC. Identification was established using GC-MS.

The photolysis half-lives on soil were 32.1 and 21.2 days for the phenyl ring labelled and the pyridyl ring labelled fluazinam, respectively. The half-lives in the dark controls were 68.6 days and 69.3 days. The rates of conversion of fluazinam to extractable degradation products, bound residues and to  $CO_2$  were all more rapid for light-exposed soil than for the dark controls.

In the organic extractable fraction, fluazinam was found at a level of 35.7% (phenyl label) and 32.7% (pyridyl label) of the AR after 30 days. Two other components were identified by GC-MS. The largest component was identified as HYPA accounting for an average of 6.2% of the AR. AMPA was also identified in amounts of 4.3% and 5.1% of the AR for the phenyl and the pyridyl labels respectively after 30 days.

In the dark control samples fluazinam was present at 66.4% (phenyl label) and 71.4% (pyridyl label) of the AR after 30 days. HYPA in the dark control samples accounted for 4.9% (phenyl label) and 3.9% (pyridyl label) of the AR after 30 days. For the dark control samples AMPA represented less than 1% of the AR after 30 days.

Additionally one polar fraction and two other not identified minor fractions were found in the soil samples. In the light exposed samples these fractions amounted individually up to 2.5% of the AR. In the dark control samples these fractions amounted individually up to 0.7% of the AR.

The amount of bound residues accounted for 26.5% (phenyl label) and 16.8% (pyridyl label) of the AR after 30 days. In the dark control samples after 30 days the amounts were 10.8% (phenyl label) and 9.0% (pyridyl label) of the AR. By day 30 the

358

amount of  $CO_2$  accounted for an average of 2.4% of the AR in the light-exposed samples and 0.2% of the AR in the dark control samples.

The distribution of the radioactivity after the application of fluazinam on soil is summarized in Table 51.

Table 51 Distribution of radioactivity (% AR) after application of fluazinam on soil (photolysis)

| DAT   | Extractable              | Un-extractable | CO <sub>2</sub> | Recovery     | Fluazinam   | НҮРА      | AMPA      |
|-------|--------------------------|----------------|-----------------|--------------|-------------|-----------|-----------|
| Light |                          |                |                 |              |             |           |           |
| 0     | 98.8 / 99.3 <sup>a</sup> | 1.2 / 0.7      | NA / NA         | 100.0        | 94.7 / 96.3 | 1.0 / 0.4 | 0.8 / 0.4 |
| 3     | 89.1 / 92.2              | 7.0 / 5.7      | 0.2 / 0.3       | 96.3 / 98.2  | 79.8 / 83.7 | 2.2 / 1.3 | 2.1/1.8   |
| 5     | 81.9 / 81.5              | 11.1 / 8.8     | 0.3 / 0.5       | 93.3 / 90.8  | 69.5 / 70.1 | 3.1 / 1.6 | 2.8/2.4   |
| 7     | 80.5 / 80.1              | 13.5 / 12.1    | 0.5 / 0.8       | 94.5 / 93.0  | 63.7 / 65.5 | 5.2 / 3.4 | 2.9/3.1   |
| 10    | 78.5 / 71.2              | 10.1 / 13.7    | 0.7 / 1.1       | 89.3 / 86.0  | 66.3 / 58.5 | 3.2 / 3.3 | 2.7 / 2.6 |
| 14    | 70.2 / 71.5              | 20.0 / 15.1    | 1.0 / 1.4       | 91.2 / 88.0  | 49.9 / 57.0 | 5.3 / 3.9 | 4.1 / 2.9 |
| 21    | 69.8 / 69.5              | 16.3 / 17.2    | 1.5 / 2.0       | 87.6 / 88.7  | 49.6 / 47.8 | 5.4 / 5.6 | 3.8 / 4.4 |
| 28    | 61.6 / NA                | 24.5 / NA      | 2.2 / NA        | 88.3 /NA     | 36.2 / NA   | 6.8 / NA  | 4.5 / NA  |
| 30    | 69.8 / 66.1              | 26.5 / 16.8    | 2.2 / 2.5       | 98.5 / 85.4  | 35.7 / 32.7 | 6.2 / 6.1 | 4.3 / 5.1 |
| Dark  |                          |                |                 |              |             |           |           |
| 0     | 98.8 / 99.3              | 1.2 / 0.7      | NA / NA         | 100.0        | 94.7 / 96.3 | 1.0/0.4   | 0.8 / 0.4 |
| 3     | 87.0 / 99.0              | 3.5 / 4.0      | 0.1/0.0         | 90.6 / 103.0 | 82.6 / 94.6 | 1.3 / 1.0 | 0.8 / 0.5 |
| 5     | 91.1 / 94.1              | 4.9 / 4.6      | 0.1/0.1         | 96.1 / 98.7  | 86.0 / 89.8 | 1.5 / 1.1 | 0.8 / 0.5 |
| 7     | 90.0 / 94.4              | 4.8 / 5.0      | 0.1/0.1         | 94.9 / 99.5  | 85.2 / 89.9 | 1.8 / 1.3 | 0.7 / 0.5 |
| 10    | 88.8 / 82.0              | 6.3 / 6.9      | 0.2 / 0.1       | 95.3 / 89.0  | 82.3/ /77.1 | 2.6 / 1.8 | 0.9/0.6   |
| 14    | 74.2 / 83.1              | 7.2 / 7.5      | 0.2 / 0.1       | 81.6 / 90.7  | 86.4 / 77.9 | 2.3 / 1.7 | 0.8 / 0.7 |
| 21    | 83.2 / 85.8              | 10.5 / 8.1     | 0.3/0.1         | 94.0 / 94.0  | 75.0 / 78.3 | 4.1/3.3   | 0.9/0.8   |
| 28    | 77.5 / 79.2              | 9.6 / 8.3      | 0.3 / 0.1       | 87.4 / 87.6  | 68.7 / 71.9 | 4.5 / 3.5 | 0.9/0.6   |
| 30    | 78.5 / 78.4              | 9.0 / 10.8     | 0.3 / 0.1       | 87.8 / 89.3  | 66.4 / 71.4 | 4.9/3.9   | 0.9/0.7   |

Day 0 samples were set to 100% <sup>a</sup> phenyl ring label / pyridyl ring label

NA Not analysed

Photolysis significantly increases the degradation rate of fluazinam on soil at  $25 \pm 2^{\circ}$ C relative to the dark control samples. The half-lives for the dark controls averaged 69 days versus 22.2 days for the light exposed samples.

Under both light and dark conditions, conversion to bound residue was the main pathway for degradation of fluazinam. Conversion to bound residue, however, was more extensive for the light-exposed samples. In general, photolysis appears to accelerate reactions that also occur in soil under dark conditions.

The presence of HYPA at comparable levels in the dark control and the light-exposed samples suggests it is a product of soil metabolism. AMPA, however, is found in the light-exposed samples at levels of up to 5% versus levels of less than 1% in the dark control samples.

#### Photolysis-Aqueous Solution

The abiotic hydrolysis of phenyl and pyridyl labelled fluazinam (concentration: 0.04–0.05 mg/L) was investigated in sterile aqueous buffer solutions at pH 4, 7 and 9 (Van der Gaauw, A, 2003). The following conditions were investigated:

| Experiment | рН | Temperature (°C) | Time (days) |
|------------|----|------------------|-------------|
| 1          | 4  | 50               | 5           |
| 2          | 7  | 25               | 29          |
| 3          | 7  | 50               | 56          |
| 4          | 9  | 25               | 29          |
| 5          | 9  | 50               | 56          |

During the incubation time, periodically the pH of each buffer solution was recorded and test samples were taken and analysed by LSC, HPLC and TLC.

All test solutions remained sterile and no significant variation of temperature and pH value was observed throughout the study. Mean recoveries of total radioactivity for both labels were between 95.8 ± 5.0% (pH 4, 50 °C) and 103.6 ± 2.4% (pH 7, 50 °C).

At pH 4 fluazinam was found to be hydrolytically stable.

At pH 7, fluazinam was rapidly hydrolysed. CAPA was the only hydrolysis product formed at 25 °C, representing 92.3% (phenyl label) and 95.1% (pyridyl label) of the applied radioactivity after 29 days. At 50 °C the major metabolite CAPA was steadily hydrolysed to DCPA with a DT<sub>50</sub> value of about 32 days. At the end of incubation DCPA was found in amounts of 70.9% (phenyl label, day 56) and 38% (pyridyl label, day 28) of the applied radioactivity. Degradation of DCPA was not observed. For both labels, an additional minor hydrolysis product was detected at a maximum level of 5% of the AR on day 29.

At pH 9, hydrolysis of fluazinam was comparable to that observed at pH 7. CAPA was again the major hydrolysis product formed at 25 °C, representing 94.0% (phenyl label) and 102.6% (pyridyl label) of the applied radioactivity at the end of incubation (day 29). At 50 °C CAPA was steadily hydrolysed to DCPA with a  $DT_{50}$  value of about 8 days. DCPA represented 95.5% and 95.4% of the applied radioactivity for the phenyl label and pyridyl label, respectively, at day 29. No further degradation of this major metabolite was observed.

The balance and distribution of the radioactivity for the photolysis studies conducted at pH 7 and 9 and at 25  $^{\circ}$ C are summarized in Table 52.

| Days    | pH 7         |             |              | Days  | рН 9         |              |      |               |
|---------|--------------|-------------|--------------|-------|--------------|--------------|------|---------------|
|         | Fluazinam    | CAPA        | Total        |       | Fluazinam    | CAPA         | DCPA | Total         |
| 0       | 94.0 / 100.0 | nd / nd     | 94.0 / 100.0 | 0     | 97.4 / 100.0 | 2.6 / nd     | nd   | 100.0 / 100.0 |
| 2       | 55.5 / -     | 38.9 / -    | 94.4 / -     | 1     | 77.2 / 88.6  | 23.9 / 12.2  | nd   | 101.1 / 100.9 |
| 5       | 40.9 / 27.5  | 57.6 / 72.3 | 98.5 / 99.9  | 2     | 69.5 / -     | 30.6 / -     | nd   | 100.1 / -     |
| 10 / 15 | 31.4 / 5.2   | 64.5 / 94.5 | 96.0 / 99.6  | 5     | 36.8 / 39.7  | 63.0 / 62.0  | nd   | 99.8 / 101.7  |
| 20      | 3.1 / -      | 93.9 / -    | 96.9 / -     | 20/15 | 4.3 / 6.5    | 96.5 / 94.7  | nd   | 100.8 / 101.2 |
| 29      | 5.8 / 6.1    | 92.3 / 95.1 | 98.1 / 101.2 | 29    | 2.7 / nd     | 94.0 / 102.6 | 5.5  | 102.2 / 102.6 |

Table 52 Balance and distribution of radioactivity in the buffer solutions (in percent AR) at 25 °C (phenyl label/pyridyl label)

nd not detected

The half-time (DT<sub>50</sub>) and DT<sub>90</sub> values for fluazinam, calculated on the basis of first order kinetics, are shown in table 53.

| Table 53 DT <sub>50</sub> and DT <sub>90</sub> val | ues (days) for fluazinam | hydrolysis at three different pl |
|----------------------------------------------------|--------------------------|----------------------------------|
| 00 ,0                                              |                          |                                  |

|                            | [14C]-phenyl-f | [ <sup>14</sup> C]-pyridyl-fluazinam |       |       |       |        |       |       |       |       |
|----------------------------|----------------|--------------------------------------|-------|-------|-------|--------|-------|-------|-------|-------|
|                            | pH 4           | pH 7                                 |       | pH 9  |       | pH 4   | pH 7  |       | pH 9  |       |
|                            | 50 °C          | 25 °C                                | 50 °C | 25 °C | 50 °C | 50 °C  | 25 °C | 50 °C | 25 °C | 50 °C |
| DT <sub>50</sub><br>[days] | Stable         | 4.5                                  | 0.1   | 3.5   | 0.2   | Stable | 2.7   | 0.2   | 3.9   | 0.1   |
| DT <sub>90</sub><br>[days] | Stable         | 14.8                                 | 0.4   | 11.6  | 0.6   | Stable | 9.1   | 0.6   | 13.0  | 0.3   |

# **RESIDUE ANALYSIS**

#### Analytical methods

Data collection methods-plant commodities

# Analytical method 1 (Apple Trials conducted in 1992-1996, grapes, bulb onion, broccoli, snap beans lima beans, peanut nutmeat and tea)

Residues of fluazinam, MAPA, CAPA and HYPA were extracted using methanol: acetic acid (100:2, v/v) followed by filtration. For fluazinam and MAPA the extract was acidified with HCI and partitioned with hexane. The hexane phase was partitioned with 0.2-0.5M NaOH. The aqueous phase was acidified and extracted with hexane. The hexane phase was concentrated and cleaned up using a Florisil column.

For CAPA and HYPA the initial extract was partitioned with chloroform. The organic phase was partitioned with 0.2 M NaOH. The aqueous phase was acidified and extracted with chloroform. The chloroform was evaporated, taken up in phosphoric acid: methanol (10:90, v/v) and residues methylated using diazomethane. Residues were partitioned into hexane and cleaned up using SEP-PAK Florisil columns.

Final determination was by GC-ECD.

Residues of AMGT were extracted using acetonitrile: water (4:1, v/v) followed by filtration. Aqueous sodium sulfate was added, extracts partitioned with methylene chloride, pH adjusted to 1 with HCl and partitioned twice with ethyl ether: ethyl acetate

(1:1, v/v). The organic phase was partitioned with 0.5% sodium carbonate. The organic phase was evaporated to near dryness, and re-dissolved in acetonitrile: water (32.5:67.5, v/v).

Final determination was by HPLC-UV with quantification at 254 nm.

Both methods were validated within the residue trial studies prior to sample analysis or with concurrent recoveries being analysed. The linearity of the detector response covered a working range of  $0.005-0.05 \ \mu$ g/mL and  $0.05-2 \ \mu$ g/mL for fluazinam and AMGT respectively. For MAPA, CAPA and HYPA the concentration ranged covered was not clear.

The specific LOQ validated for each analyte/commodity combination is reported with the residue trials.

The recovery data obtained from each study are summarised in Table 54.

Table 55 Recovery data for analytical method 1 used to determine residues of fluazinam and AMGT in apple, grapes, bulb onion, broccoli, snap beans, lima beans peanut nutmeat and tea.

| Crop/                  | Analyte      | Fortification | Individual                       | Dange of recoveries    | Mean     | RSD |
|------------------------|--------------|---------------|----------------------------------|------------------------|----------|-----|
| Study reference        |              | level         | recoveries                       | rover and the coveries | recovery |     |
|                        |              | [mg/kg]       | [%]                              | [70]                   | [%]      |     |
| Apple                  |              | 0.01          | 88, 83                           | 83-88                  | 86       | -   |
| 5347-92-0245-          |              | 0.04          | 78                               | -                      | -        | -   |
| CR-001                 | Fluazinam    | 0.1           | 88, 93                           | 88-93                  | 91       | -   |
| McFall, D.D.           |              | 0.2           | 90                               |                        |          | -   |
| 1996a                  |              | 0.5           | 96                               | -                      | -        | -   |
|                        |              | 0.01          | 113                              | -                      | -        | -   |
|                        | AMCT         | 0.2           | 82                               | -                      | -        | -   |
|                        | AIVIGT       | 0.5           | 104                              | -                      | -        | -   |
|                        |              | 1             | 97                               | -                      | -        | -   |
| Apple<br>5878-93-0345- |              | 0.01          | 112, 82, 79, 71, 112,<br>110, 72 | 71-112                 | 91       | 21  |
| CR-001                 |              | 0.1           | 101,98                           | 98-101                 | 100      | -   |
| Fitzgerald, T.J.       |              | 0.2           | 85                               | -                      | -        | -   |
| and McFall, D.D.       | Fluazinam    | 0.3           | 83                               | -                      | -        | -   |
| 1995 and               |              | 0.4           | 83                               | -                      | -        | -   |
|                        |              | 0.5           | 96                               | -                      | -        | -   |
| 5878-93-0345-          |              | 1             | 1                                | -                      | -        | -   |
| CR-001                 |              | 0.01          | 70, 76                           | 70-76                  | 73       | -   |
| Fitzgerald, I.J.       |              | 0.025         | 92                               | -                      | -        | -   |
| and MCFall, D.D.       |              | 0.04          | 93                               | -                      | -        | -   |
| 1995                   |              | 0.05          | 82                               | -                      | -        | -   |
|                        |              | 0.07          | 87                               | -                      | -        | -   |
|                        | AMGT         | 0.2           | 109, 93                          | 93-109                 | 101      | -   |
|                        |              | 0.25          | 85                               | -                      | -        | -   |
|                        |              | 0.30          | 93                               | -                      | -        | -   |
|                        |              | 0.40          | 95                               | -                      | -        | -   |
|                        |              | 0.5           | 97, 110, 97                      | 97-110                 | 101      | 74  |
|                        |              | 1             | 82                               | -                      | -        | -   |
| Apple                  |              | 0.01          | 86, 93, 94, 88, 112              | 86-112                 | 95       | 11  |
| 6103-95-0025-          |              | 0.03          | 97                               | -                      | -        | -   |
| CR-001                 | El continona | 0.04          | 95                               | -                      | -        | -   |
| Fitzgerald, T.J.       | Fiuazinam    | 0.05          | 106                              | -                      | -        | -   |
| and McFall. D.D.       |              | 0.1           | 102                              | -                      | -        | -   |
| 1996b                  |              | 0.4           | 102                              | -                      | -        |     |
|                        |              | 0.01          | 86                               |                        |          | -   |
|                        |              | 0.02          | 95                               |                        |          | -   |
|                        |              | 0.05          | 78                               | -                      | -        | -   |
|                        |              | 0.06          | 95                               | -                      |          | -   |
|                        | ANACT        | 0.08          | 98                               | -                      | -        | -   |
|                        | AIVIGT       | 0.1           | 91                               | -                      | -        | -   |
|                        |              | 0.2           | 93, 93                           | 93                     | 93       | -   |
|                        |              | 0.25          | 106                              |                        | -        | -   |
|                        |              | 0.40          | 95                               | -                      | -        | -   |
|                        |              | 0.45          | 102                              | -                      | -        | -   |

| Crop/<br>Study reference            | Analyte      | Fortification<br>level<br>[mg/kg] | Individual<br>recoveries<br>[%] | Range of recoveries<br>[%] | Mean<br>recovery<br>[%] | RSD  |
|-------------------------------------|--------------|-----------------------------------|---------------------------------|----------------------------|-------------------------|------|
|                                     |              | 0.50                              | 91                              | -                          | -                       | -    |
|                                     |              | 0.80                              | 88                              | -                          | -                       | -    |
| Grape                               |              | 0.01                              | 110                             | -                          | -                       | -    |
| 2127-91-0434-                       |              | 0.05                              | 102                             | -                          | -                       | -    |
| CR-001                              | Eluazinam    | 0.1                               | 95                              | -                          | -                       | -    |
| McFall, D.D.                        | Fludzilldill | 0.8                               | 100                             | -                          | -                       | -    |
| 1996a                               |              | 1.0                               | 118                             | -                          | -                       | -    |
|                                     |              | 2.5                               | 96                              | -                          | -                       | -    |
| Grape                               |              | 0.01                              | 80, 108, 77, 100                | 77-108                     | 91                      | 17   |
| 2106-91-0309-                       |              | 0.1                               | 83                              | -                          | -                       | -    |
| CR-001-001                          | Eluazinam    | 0.2                               | 95                              | -                          | -                       | -    |
| Kenyon R.G.                         | Fludzilldill | 0.4                               | 78                              | -                          | -                       | -    |
| 1992a                               |              | 0.8                               | 84                              | -                          | -                       | -    |
|                                     |              | 1.0                               | 120                             | -                          | -                       | -    |
| Grape                               |              | 0.01                              | 100                             | -                          | -                       | -    |
| 6245-95-0001-                       |              | 0.05                              | 92                              | -                          | -                       | -    |
| CR-001                              | AGMT         | 0.1                               | 76                              | -                          | -                       | -    |
| Jablonski, J.E.                     |              | 0.2                               | 84                              | -                          | -                       | -    |
| 1995b                               |              | 0.5                               | 86.75                           | 75-86                      | 81                      | -    |
| Bulb onion                          |              | 0.01                              | 115, 117, 110                   | 110-115                    | 114                     | 3    |
| IR-4 PR No.                         |              | 0.1                               | 113, 113, 110                   | 110-113                    | 112                     | 2    |
| 07092                               | Fluazinam    | 1                                 | 113 100 111                     | 100-113                    | 108                     | 7    |
| Carpenter, D.H.<br>2008a            |              |                                   | 113, 100, 111                   | 100 113                    | 100                     | ,    |
| Broccoli                            |              | 0.01                              | 94, 99, 91                      | 91–99                      | 95                      | 4    |
| AAFC03-018                          |              | 0.02                              | 88, 92, 73                      | 73–92                      | 84                      | 12   |
| Ure G.B. 2006                       | Fluazinam    | 0.1                               | 70, 70, 74                      | 70-74                      | 71                      | 3    |
|                                     |              | 0.01<br>(Concurrent)              | 95, 95, 75, 80, 82, 80          | 75–95                      | 85                      | 10   |
|                                     |              | 0.1<br>(Concurrent)               | 62                              | -                          | -                       | -    |
| Snap bean<br>IR-4 PR No.            |              | 0.02                              | 105, 118, 119, 107,<br>105, 103 | 103-119                    | 110                     | 7    |
| 07602<br>Starner, V.R.              | Fluazinam    | 0.1                               | 102, 92, 107                    | 92-107                     | 100                     | 7    |
| 2006a                               |              | 1                                 | 88, 87, 97                      | 88-97                      | 91                      | 6    |
| Lima beans                          |              | 0.02                              | 71, 78, 81                      | 71-81                      | 77                      | 7    |
| IR-4 PR No.                         |              | 0.1                               | 75, 79, 72                      | 72-79                      | 75                      | 5    |
| 08798<br>Starner V.R.<br>2006b      | Fluazinam    | 1                                 | 84, 88, 93                      | 84-93                      | 88                      | 5    |
| Peanut nutmeat                      |              | 0.01                              | 88, 75, 91, 92                  | 75–92                      | 87                      | 9    |
| 5879-93-0335-                       |              | 0.05                              | 72, 74, 82                      | 72–82                      | 76                      | 7    |
| CR-001                              | Eluczinom    | 0.1                               | 98                              | -                          | -                       | -    |
| Hayes, P.C. Jr.<br>and Kenyon, R.G. | Fluazillatti | 1.0                               | 107                             | -                          | -                       | -    |
| Peanut hulls                        |              | 0.01                              | 78 97 91 86                     | 78-97                      | 88                      | Q    |
| 5879-93-0335-                       |              | 0.03                              | 80.97                           | 80-97                      | 89                      | -    |
| CR-001                              |              | 0.05                              | 88                              | -                          |                         | -    |
| Haves, P.C. Jr.                     | Fluazinam    | 0.03                              | 00                              | -<br>  _                   | -                       |      |
| and Kenyon, R.G.                    |              | 1.0                               | 02                              | -                          | -                       | -    |
| 1994                                |              | 0.01                              | 74 04 75 07                     | -                          | - 02 5                  | -    |
| 5870-02 0225                        |              | 0.01                              | 10, 70, 70, 01                  | 70-70                      | 03.3                    | 11.7 |
| CR-001                              |              | 0.05                              | 02                              | -                          | -                       | -    |
| Haves P.C. Ir                       | Fluazinam    | 0.1                               | 0/                              | -                          | -                       | -    |
| and Kenvon, R.G.                    |              | 0.2                               | 7U, /J<br>40                    |                            |                         |      |
| 1994                                |              | 1.0                               | 00                              | -                          | -                       | -    |
|                                     | I            | 1.0                               | 04, 70                          | I                          |                         | l    |

| Crop/                 | Analyte   | Fortification        | Individual                 |                     | Mean     | RSD  |
|-----------------------|-----------|----------------------|----------------------------|---------------------|----------|------|
| Study reference       |           | level                | recoveries                 | Range of recoveries | recovery |      |
| ,                     |           | [mg/kg]              | [%]                        | [%]                 | [%]      |      |
|                       |           | 2.0                  | 89                         | -                   | -        | -    |
| Peanut nutmeat        |           | 0.01                 | 78, 90, 93, 119            | 78-119              | 95       | 18.2 |
| 2105-91-0307-         |           | 0.06                 | 82                         | -                   | -        | -    |
| CR-001                |           | 0.1                  | 84                         | -                   | -        | -    |
| Kenyon, R.G.          | Fluazinam | 0.2                  | 90                         | -                   | -        | -    |
| 1992b                 |           | 0.3                  | 90                         | -                   | -        | -    |
|                       |           | 0.5                  | 90                         | -                   | -        | -    |
|                       |           | 1.0                  | 95                         | -                   | -        | -    |
| Peanut nutmeat        |           | 0.01                 | 105, 101                   | 101 -105            | 103      | -    |
| 6107-95-0013-         |           | 0.1                  | 89, 76                     | 76–89               | 83       | 11   |
|                       |           | 0.2                  | 97                         | -                   | -        | -    |
| WICF all, D.D. 1995   | - ·       | 0.4                  | 97                         | -                   | -        | -    |
|                       | Fluazinam | 1.0                  | 93                         | -                   | -        | -    |
|                       |           | 0.01<br>(concurrent) | 99, 100, 93                | 93–100              | 97       | 4    |
|                       |           | 0.1<br>(concurrent)  | 93, 91, 91                 | 91-93               | 92       | 1    |
| Peanut shells         |           | 0.01                 | 111, 112                   | 111-112             | 112      | -    |
| 6107-95-0013-         |           | 0.1                  | 108, 101                   | 101–108             | 105      | -    |
| CR-001                |           | 0.2                  | 100                        | -                   | -        | -    |
| McFall, D.D. 1995     |           | 0.4                  | 90                         | -                   | -        | -    |
|                       | Fluazinam | 1.0                  | 107                        | -                   | -        | -    |
|                       |           | 0.01                 | 108, 83, 120               | 83–120              | 104      | 19   |
|                       |           | 0.1                  | 110, 93, 108               | 93–110              | 104      | 9    |
|                       |           | (concurrent)         |                            |                     |          |      |
| Peanut hay            |           | 0.01                 | 119, 94                    | 94-119              | 107      | -    |
| 6107-95-0013-         |           | 0.05                 | 112                        | -                   | -        | -    |
| CR-001                |           | 0.5                  | 100                        | -                   | -        | -    |
| MCFall, D.D. 1995     |           | 1.0                  | 74, 78                     | 74-78               | 76       | -    |
|                       |           | 2.0                  | 73                         | -                   | -        | -    |
|                       |           | 5.0                  | 75                         | -                   | -        | -    |
|                       | Fluazinam | 7.0                  | 72                         | -                   | -        | -    |
|                       |           | 10                   | 68                         | -                   | -        | -    |
|                       |           | 15                   | 92                         | -                   | -        | -    |
|                       |           | 0.01                 | 125, 108, 81               | 81–125              | 105      | 22   |
|                       |           | (concurrent)         | 100 00 7/                  | 7/ 100              | 01       | 10   |
|                       |           | 0.05<br>(concurrent) | 100, 98, 76                | 76-100              | 91       | 13   |
| Теа                   | Fluazinam | 0.02                 | 83, 81                     | 81-83               | 82       | -    |
| Ohyama, J. 1993       |           | 0.1                  | 85, 70                     | 70-85               | 78       | -    |
|                       | МАРА      | 0.02                 | 78, 76                     | 76-78               | 77       | -    |
|                       |           | 0.1                  | 79, 85                     | 79-85               | 77       | -    |
|                       | НҮРА      | 0.02                 | 85, 83                     | 83-85               | 84       | -    |
|                       |           | 0.1                  | 86, 73                     | 73-86               | 80       | -    |
| Tea<br>Kondo, K. 1997 | Fluazinam | 0.02                 | 86, 82, 88, 80, 100,<br>92 | 82-100              | 88       | 7    |
|                       |           | 1                    | 76, 73, 83, 80, 77, 75     | 73-83               | 77       | 4    |
|                       |           | 0.02                 | 100, 90, 83, 80, 89,<br>85 | 80 -100             | 88       | 7    |
|                       | MAPA      | 0.2                  | 75, 71, 85, 82, 88, 84     | 71-88               | 81       | 7    |
|                       | НҮРА      | 0.02                 | 77, 73, 76, 75, 76, 70     | 70-77               | 75       | 3    |
|                       |           | 0.2                  | 75, 71, 72, 70, 74, 71     | 70-75               | 72       | 2    |
| Теа                   |           | 0.4                  | 88, 88                     | 88                  | 88       | -    |
| Kato, S.              | Fluazinam | 20                   | 91, 93                     | 92                  | 91-93    | -    |
| 1987                  | MAPA      | 0.8                  | 71, 72                     | 72                  | 71-72    | -    |
|                       | НҮРА      | 0.4                  | 69, 73                     | 71                  | 69-73    | -    |

| Crop/<br>Study reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual<br>recoveries<br>[%] | Range of recoveries<br>[%] | Mean<br>recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|---------------------------------|----------------------------|-------------------------|-----|
|                          | CAPA      | 0.8                               | 76, 77                          | 77                         | 76-77                   | -   |
| Теа                      | Fluezinem | 0.02                              | 84, 93                          | 88                         | 84-93                   | -   |
| Hagi, I.                 | Fluazinam | 0.2                               | 87, 93                          | 90                         | 87-93                   | -   |
| 1986                     |           | 0.04                              | 83, 89                          | 86                         | 83-89                   | -   |
|                          | IVIAPA    | 0.2                               | 88, 94                          | 91                         | 88-94                   | -   |
|                          |           | 0.02                              | 82, 85                          | 84                         | 82-85                   | -   |
|                          | ПТРА      | 0.2                               | 83, 88                          | 86                         | 83-88                   | -   |
|                          | CAPA      | 0.04                              | 78, 85                          | 82                         | 78-85                   | -   |
|                          |           | 0.2                               | 82, 84                          | 83                         | 82-84                   | -   |

#### Analytical method 2 (Apple Trials conducted in 2008)

Residues of fluazinam were extracted using methanol. The methanol extract was partitioned with 2M HCl followed by hexane. The hexane phase was partitioned with 5M NaOH. The alkaline layer was acidified to pH 1 and partitioned with hexane. Hexane extracts were evaporated to dryness and the residue re-dissolved in acetone. Final determination was by GC-ECD.

Residues of AMGT were extracted using methanol. The methanol extract was evaporated to near dryness and redissolved in 2% sodium sulfate that was partitioned with methylene chloride. The aqueous phase was acidified to pH 1 and partitioned with ethyl acetate: ethyl ether (1: 1, v/v). The organic layer was evaporated to dryness and dissolved in 30% aqueous acetonitrile. Final determination was by HPLC -UV with quantification at 254 nm.

Both methods were validated prior to the sample analysis. Concurrent recoveries ranging from 0.01-1 mg/kg, were also analysed with the samples. The linearity of the detector response covered a working range of 0.005-0.25 µg/mL and 0.005-1 µg/mL for fluazinam and AMGT respectively.

The LOQ validated for both Fluazinam and AMGT in apples was 0.01 mg/kg.

The recovery data obtained from each study are summarised in Table 55.

Table 55 Recovery data for analytical method 2 used to determine residues of fluazinam and AMGT in apples

| Crop/ Study<br>reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Apple                    | Fluazinam | 0.01                              | 121, 109, 97, 90             | 90-121                  | 104                  | 13  |
| IB-2006-JLW-             |           | 0.1                               | 126, 117                     | 117-126                 | 122                  | -   |
| 002-00-01                |           | 1                                 | 100, 96                      | 96-100                  | 98                   | -   |
| Wiedmann, J.L.           | AMGT      | 0.01                              | 109, 55, 90                  | 55-109                  | 85                   | 32  |
| 2008a                    |           | 0.1                               | 100, 66                      | 66-100                  | 83                   | -   |
|                          |           | 1                                 | 100, 100                     | 100                     | 100                  | -   |

#### Analytical method 3 (Grape trials conducted in 1994-1997 and blueberries)

Residues of fluazinam were extracted using methanol: acetic acid (100:2, v/v) followed by filtration. The extract was acidified with HCl and partitioned with petroleum ether. The aqueous phase was discarded. The petroleum ether phase was evaporated to dryness, re-dissolved in hexane and cleaned up using a Florisil column. Final determination was by GC-ECD.

Residues of AMGT were extracted using acetonitrile: water (4:1, v/v) followed by filtration. Aqueous sodium sulphate was added, extracts partitioned with methylene chloride, pH adjusted to 1 with HCl and partitioned twice with ethyl ether: ethyl acetate (1:1, v/v). The organic phase was partitioned with 0.5% sodium carbonate. The aqueous phase was acidified to pH 1 and partitioned with ethyl ether: ethyl acetate (1:1, v/v). The organic phase was partitioned with 0.5% sodium carbonate to near dryness, and either re-dissolved in methanol and cleaned up by solid phase extraction using ENVI-Carb columns or re-dissolved in water and cleaned-up using t-C18 Sep-Pak columns. Final determination was by HPLC-UV with quantification at 254 nm.

Both methods were validated within the residue trial studies prior to sample analysis or with concurrent recoveries being analysed. The linearity of the detector response covered a working range of  $0.005-2 \mu g/mL$  and  $0.05-2 \mu g/mL$  for fluazinam and AMGT respectively.

The specific LOQ validated for each analyte/commodity combination is reported with the residue trials.

The recovery data obtained from each study are summarised in Table 56.

| Crop/<br>Study reference | Analyte   | Fortification | Individual recoveries | Range of recoveries | Mean | RSD  |
|--------------------------|-----------|---------------|-----------------------|---------------------|------|------|
| Study reference          | Analyte   | [mg/kg]       | [%]                   | [%]                 | [%]  |      |
| Grape                    |           | 0.01          | 110, 110, 110         | 110                 | 110  | 0    |
| 6106-95-0012-            |           | 0.02          | 105                   | -                   | -    | -    |
| CR-001                   |           | 0.05          | 110, 112, 100         | 100 -112            | 107  | 6    |
| lablonski                | Fluazinam | 0.10          | 99, 96                | 96–99               | 98   | -    |
| I F 1995a                |           | 0.25          | 98                    | -                   | -    | -    |
| J.L. 17750               |           | 0.50          | 111,99                | 99-111              | 105  | -    |
|                          |           | 1.0           | 123, 126, 102         | 102-128             | 118  | 12   |
|                          |           | 3.0           | 113<br>00 100 00      | - 00 100            | -    | - 11 |
|                          |           | 0.01          | 40, 100, 80           | 00-100              | 90   |      |
|                          |           | 0.02          | 84 74 104             | 74–104              | 87   | 18   |
|                          | AMGT      | 0.10          | 72.94.71.86           | 71–94               | 81   | 14   |
|                          |           | 0.20          | 92,93                 | 92-93               | 93   |      |
|                          |           | 0.50          | 84, 83, 80, 89, 82    | 80-89               | 84   | 4    |
| Grape                    | 1         | 0.01          | 80, 90                | 80-90               | 85   | -    |
| EA950132                 | Fluazinam | 0.1           | 110.100               | 900-110             | 105  |      |
|                          | T MOZING  | 10            | 112 114               | 112–114             | 113  |      |
| Grolleau, G. and         |           | 0.01          |                       | 100                 | 100  |      |
| Kenyon, R.G.             |           | 0.01          |                       | 07, 110             | 100  | 0    |
| 1996<br>Validation       | AMGT      | 0.10          | 110, 87, 88           | 8/-110              | 95   | 14   |
| Valluation               |           | 1.0           | 101, 88, 68, 77       | 68–101              | 84   | 17   |
| Grape                    |           | 0.01          | 100                   | -                   | -    | -    |
| EA950132                 | Fluazinam | 0.1           | 100                   | -                   | -    | -    |
| Crollogy C and           | Tuazinam  | 0.5           | 120                   | -                   | -    | -    |
| Grolleau, G. anu         |           | 1.0           | 106                   | -                   | -    | -    |
| 1996                     |           | 0.01          | 100, 100              | 100                 | 100  | -    |
| 1770                     | AMGT      | 0.05          | 126, 110              | 110–126             | 118  | -    |
| Chilean trials           |           | 0.1           | 110                   |                     | -    | -    |
|                          | +         | 0.5           | 86                    | -                   | -    | -    |
| Grape                    |           | 0.01          | 90, 100               | 90-100              | 95   | -    |
| EA950132                 |           | 0.02          | 85                    |                     | -    | -    |
| Grolleau, G. and         |           | 0.05          | 88                    |                     | -    | -    |
| Kenyon, R.G.             |           | 0.00          |                       | - 00_00             | -    | -    |
| 1996                     |           | 0.1           | 99, 09<br>97 107      | 87-107              | 94   |      |
|                          |           | 0.15          | 20, 107               |                     | 71   |      |
| EU trials                |           | 0.25          | 108                   |                     | 1.   |      |
|                          | Fluazinam | 0.50          | 100.100               | 100                 | 100  | -    |
|                          |           | 0.75          | 96                    | -                   | -    |      |
|                          |           | 1.0           | 99                    | -                   | 1-   | -    |
|                          |           | 1.5           | 111                   | -                   | -    | -    |
|                          |           | 2.0           | 101                   |                     |      |      |
|                          |           | 2.5           | 101                   | -                   | -    | -    |
|                          |           | 3.0           | 111                   | -                   | -    | -    |
|                          |           | 5.0           | 109                   | -                   | -    | -    |
|                          |           | 0.01          | 80, 90                | 80-90               | 85   |      |
|                          |           | 0.03          | 67                    | -                   | -    | -    |
|                          |           | 0.04          | 93                    |                     | -    | -    |
|                          |           | 0.05          | 90, 70                | 70-90               | 80   | -    |
|                          |           | 0.07          | 97                    | -                   | •    | -    |
|                          | AMGT      | 0.1           | 96, 90, 83, 90        | 83-96               | 90   | 6    |
|                          |           | 0.2           | 75                    | <u> </u>            | -    | -    |
|                          |           | 0.4           | 83                    | -                   | -    | -    |
|                          |           | 0.5           | 80, 94                | 80-94               | 8/   | -    |
|                          |           | 0.7           | 90                    | -                   | -    |      |
|                          |           | 1.0           | 11,114                | /1-114              | 90   | -    |

Table 56 Recovery data for analytical method 3 used to determine residues of fluazinam and AMGT in grapes and blueberries

| Crop/<br>Study reference | Analyte    | Fortification level  | Individual recoveries                                                                                      | Range of recoveries | Mean<br>recovery | RSD |
|--------------------------|------------|----------------------|------------------------------------------------------------------------------------------------------------|---------------------|------------------|-----|
|                          |            | [mg/kg]              | [/0]                                                                                                       | [%]                 | [%]              |     |
| Grape                    |            | 0.01                 | 80, 90                                                                                                     | 80-90               | 85               | -   |
| 7074-96-0287-            |            | 0.05                 | 108                                                                                                        | -                   | -                | -   |
| CR-001                   |            | 0.1                  | 99, 100, 100                                                                                               | 99-100              | 100              | 0.6 |
| Kenyon, R.G.             | Fluazinam  | 0.2                  | 115                                                                                                        | -                   | -                | -   |
| 19978                    |            | 0.5                  | 94, 94                                                                                                     | 94                  | 94               | -   |
|                          |            | 1.0                  | 128, 95                                                                                                    | 95-128              | 112              | -   |
|                          |            | 3.0                  | 90                                                                                                         | -                   | -                | -   |
| Grape                    |            | 0.01                 | 80, 70                                                                                                     | 70-80               | 75               | -   |
| 7074-97-0059-            |            | 0.03                 | 103                                                                                                        | -                   | -                | -   |
| CR-001                   |            | 0.05                 | 86                                                                                                         | -                   | -                | -   |
| Kenyon, R.G.             | AMGT       | 0.08                 | 81                                                                                                         | -                   | -                | -   |
| 19970                    | /11/01     | 0.1                  | 110, 89, 74                                                                                                | 74-110              | 91               | 20  |
|                          |            | 0.2                  | 90                                                                                                         | -                   | -                | -   |
|                          |            | 0.3                  | 87                                                                                                         | -                   | -                | -   |
|                          |            | 0.5                  | 82, 102                                                                                                    | 82-102              | 92               | -   |
| Grape                    |            | 0.01                 | 90, 120                                                                                                    | 90-120              | 96               | -   |
| 6649-96-0022-            | Fluazinam  | 0.5                  | 108                                                                                                        | -                   | -                | -   |
| CR-001                   | Tuazinani  | 1.0                  | 102, 108                                                                                                   | 102-108             | 105              | -   |
|                          |            | 8.0                  | 104                                                                                                        | -                   | -                | -   |
| Dvorak, R.S. and         |            | 0.01                 | 110, 90                                                                                                    | 90-110              | 100              | -   |
| Kenyon, R.G.             | АМСТ       | 0.1                  | 85, 110                                                                                                    | 85-110              | 98               | -   |
| 1996                     | AIVIGT     | 0.5                  | 90                                                                                                         | -                   | -                | -   |
|                          |            | 1.0                  | 76                                                                                                         | -                   | -                | -   |
| Grape                    |            | 0.01                 | 130                                                                                                        | -                   | -                | -   |
| 6245-95-0001-            |            | 0.02                 | 110                                                                                                        | -                   | -                | -   |
| CR-003                   | Fluazinam  | 0.05                 | 96                                                                                                         | -                   | -                | -   |
|                          |            | 0.1                  | 117                                                                                                        | -                   | -                | -   |
| Jablonski, J.E.          |            | 0.2                  | 113, 104                                                                                                   | 104-113             | 109              | -   |
| 1995c                    |            | 0.5                  | 106                                                                                                        | -                   | -                | -   |
|                          |            | 1.0                  | 106                                                                                                        | -                   | -                | -   |
|                          |            | 0.01                 | 60                                                                                                         | -                   | -                | -   |
|                          |            | 0.02                 | 70                                                                                                         | -                   | -                | -   |
|                          |            | 0.05                 | 80                                                                                                         | -                   | -                | -   |
|                          | AMGT       | 0.1                  | 80                                                                                                         | -                   | -                | -   |
|                          |            | 0.2                  | 108, 69, 83                                                                                                | 69-108              | 89               |     |
|                          |            | 0.5                  | 87                                                                                                         | -                   | -                | -   |
|                          |            | 1.0                  | 82                                                                                                         | -                   | -                | -   |
| Blueberry                |            | 0.01                 | 100, 110, 98                                                                                               | 98-110              | 103              | 6   |
| IR-4 PR No.              |            | 0.10                 | 120, 120, 120                                                                                              | 120                 | 120              | 0   |
| 06129                    |            | 1.0                  | 130, 140, 120, 120, 120, 120,                                                                              | 110-140             | 123              | 8   |
|                          |            |                      | 110                                                                                                        |                     |                  |     |
| Thompson, D.C.<br>2006a  | Fluorinom  | 0.01<br>(concurrent) | 100, 84, 85, 140, 110, 60, 66,<br>81, 120, 140, 95                                                         | 60–140              | 98               | 28  |
|                          | Fludzindin | 0.10                 | 90, 90, 88, 83, 110, 100, 98,                                                                              | 74–110              | 94               | 12  |
|                          |            | (concurrent)         | 100, 74, 110                                                                                               |                     |                  |     |
|                          |            | 1.0                  | 110, 110, 96, 86, 140, 100, 110                                                                            | 86-140              | 107              | 16  |
|                          |            | (concurrent)         |                                                                                                            |                     |                  |     |
|                          |            | 3.0                  | 97, 80, 80                                                                                                 | 80-97               | 86               | 12  |
|                          | L          | (concurrent)         |                                                                                                            |                     |                  |     |
|                          |            | 0.02                 | 110, 95, 100                                                                                               | 95-110              | 102              | 8   |
|                          |            | 0.10                 | 95, 81, 94                                                                                                 | 81-95               | 90               | 9   |
|                          |            | 1.0                  | 110, 110, 110                                                                                              | 110                 | 110              | 0   |
|                          |            | 0.02                 | 125, 65, 70, 70, 110                                                                                       | 65-125              | 88               | 31  |
|                          | AMGT       | (concurrent)         |                                                                                                            |                     |                  |     |
|                          |            | 0.10<br>(concurrent) | 93, 76, 81, 82, 71, 58, 81, 82,78,<br>79, 74, 72, 100, 73, 70, 88, 68,<br>68, 110, 70, 80, 90, 89, 83, 84, | 58-110              | 80               | 13  |
|                          |            | 0.2                  | 02,00                                                                                                      | 80 0E               | 00               |     |
|                          | l          | U.Z                  | 70, OU                                                                                                     | 00-90               | 00               | -   |

366

| Crop/<br>Study reference | Analyte | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of<br>recoveries<br>[%] | Mean<br>recovery<br>[%] | RSD |
|--------------------------|---------|-----------------------------------|------------------------------|-------------------------------|-------------------------|-----|
|                          |         | (concurrent)                      |                              |                               |                         |     |
|                          |         | 1.0                               | 77                           | -                             | -                       | -   |
|                          |         | (concurrent)                      |                              |                               |                         |     |

## Analytical method 4 [PPRAM 87] (Grape trials conducted in 1990)

Residues of fluazinam were extracted using methanol. The extract was evaporated to give the aqueous phase which was then partitioned with dichloromethane and cleaned by adsorption chromatography on a silica cartridge. Final determination was by GC-ECD.

The method was validated within the residue trial studies prior to sample analysis or with concurrent recoveries being analysed.

The linearity of the detector response was not reported.

The recovery data obtained from each study are summarised in Table 57.

Table 57 Recovery data for analytical method PPRAM 87 used to determine residues of fluazinam in grapes.

| Crop/<br>Study reference                                 | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%]                      | Range of recoveries [%] | Mean recovery<br>[%] | RSD    |
|----------------------------------------------------------|-----------|-----------------------------------|---------------------------------------------------|-------------------------|----------------------|--------|
| Grape<br>M53785<br>Ryan, J. and Sapiets, A. 1991a        | Fluazinam | 0.02–0.1                          | -                                                 | -                       | 87                   | 15     |
| Grape<br>M5377B<br>Ryan, J. and Sapiets, A. 1991b        | Fluazinam | 0.05–0.2                          | -                                                 | -                       | 86                   | 12     |
| Grape<br>RJ1107B<br>Burke, S.R. and Sapiets, A.<br>1991a | Fluazinam | 0.1–0.2                           | -                                                 | -                       | 91                   | 9      |
| Grape<br>RJ1133B<br>Burke, S.R. and Sapiets, A.<br>1992b | Fluazinam | 0.02–0.5                          | -                                                 | -                       | 87                   | 11     |
| Grape<br>RJ1147B<br>Burke, S.R. and Sapiets, A.<br>1992c | Fluazinam | 0.02–0.5                          | -                                                 | -                       | 90                   | 11     |
| Grape<br>6936-96-0228-CR-001<br>Kenyon, R.G. 1996        | Fluazinam | 0.2                               | 93, 87, 93, 89, 91, 83<br>94, 81, 83, 95, 101, 88 | 83-93<br>81-101         | 91<br>91             | 3<br>9 |
| Grape<br>RJ1112B<br>Ryan, J. and Sapiets, A. 1992b       | Fluazinam | 0.1                               | -                                                 | -                       | 86                   | 6      |

## Analytical method 5 (Swiss grape trials conducted in 1990)

Residues of fluazinam were extracted using acetone and hydrochloric acid and filtered. Saturated sodium chloride solution was added and the extracts were partitioned with toluene. The organic phase was evaporated to dryness, re-dissolved in hexane and cleaned up by solid phase extraction using silica gel columns. Final determination was by GC-ECD.

The method was validated within the residue trial studies with concurrent recoveries being analysed. The linearity of the detector response was not reported. The recovery data obtained from each study are summarised in Table 58.

| Crop/<br>Study reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Grape                    |           | 0.02                              | 95                           | -                       | -                    | -   |
| 343631                   | Fluazinam | 0.1                               | 113                          | -                       | -                    | -   |
| Schanné C. 1994          |           |                                   |                              |                         |                      |     |

Table 58 Recovery data for analytical method PPRAM 87 used to determine residues of fluazinam in grapes

## Analytical method 6 (Grape)

Residues of fluazinam were extracted using methanol. The methanol extract was partitioned with 2M HCl followed by hexane. The hexane phase was partitioned with 5M NaOH. The alkaline layer was acidified to pH 1 and partitioned with hexane. Hexane extracts were evaporated to dryness and the residue re-dissolved in acetone. Final determination was by GC-ECD.

Residues of AMGT were extracted using acetonitrile: water (4:1, v/v) followed by filtration. Aqueous sodium sulphate was added, extracts partitioned with methylene chloride, pH adjusted to 1 with HCl and partitioned twice with ethyl acetate. The organic phase was evaporated to near dryness, re-dissolved in water and cleaned-up using a C18 Sep-Pak column.

Final determination was by HPLC-UV with quantification at 254 nm.

Both methods were validated within the residue trial studies with concurrent recoveries being analysed. The linearity of the detector response covered a working range of  $0.005-0.05 \ \mu g/mL$  and  $0.01 - 1 \ \mu g/mL$  for fluazinam and  $0.5 - 5 \ \mu g/mL$  for AMGT respectively. The LOQ validated was 0.01 mg/kg for both Fluazinam and AMGT.

The recovery data obtained from each study are summarised in Table 59.

Table 59 Recovery data for analytical method 6 used to determine residues of fluazinam in grapes.

| Crop/<br>Study reference    | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|-----------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Grape                       |           | 0.01                              | 88, 107, 111                 | 88-111                  | 102                  | 12  |
| 604372                      | Fluazinam | 0.10                              | 116, 72, 98, 76              | 72–116                  | 91                   | 23  |
|                             |           | 4.0                               | 81, 101                      | 81-101                  | 91                   | -   |
| Schulz, M. and              |           | 0.01                              | 74, 106                      | 74-106                  | 90                   | -   |
| Ullrich-Mietzel, A.<br>1996 | AMGT      | 0.10                              | 84                           | -                       | -                    | -   |

#### Method 7 (Identical to AGR/MOA/FLZ-7 monitoring method)

Residues of fluazinam, AMPA and AMGT were extracted from crop samples by shaking with methanol: acetic acid (98:2 v/v). After Celite filtration and dilution, an aliquot was purified using an Oasis HLB cartridge. The residues were eluted with acetonitrile: ultrapure water (80:20, v/v) and then analysed by LC-MS/MS. Quantitation and confirmation was performed using the following mass transitions:

| Analyte   | Quantitation | Confirmation |
|-----------|--------------|--------------|
| Fluazinam | 463→416      | 463→398      |
| AMPA      | 433→397      | 433→303      |
| AMGT      | 681→431      | 681→327      |

This method is identical to the monitoring method that was validated in the representative crop matrices of potato and grape by Heilaut, 2008 [Ref: ISK/FLU/08002] and in onion, dry beans and oilseed rape seed by Gemrot, 2011 [Ref: S10-03542]. In addition concurrent recoveries were analysed validated within the residue trial studies.

The recovery data obtained from these studies are summarised in Table 60. Recovery data were only reported for the ion transition used for quantification.

368

| Crop/<br>Study reference | Analyte   | Fortification<br>level | Individual recoveries | Range of recoveries | Mean recovery | RSD |
|--------------------------|-----------|------------------------|-----------------------|---------------------|---------------|-----|
| -                        |           | [mg/kg]                | [%]                   | [%]                 | [%]           |     |
| Grape                    | Fluezinem | 0.01                   | 92                    | -                   | -             | -   |
| S10-02337                | Fluazinam | 1.0                    | 95                    | -                   | -             | -   |
|                          |           | 0.01                   | 94                    | -                   | -             | -   |
| Gemrot, F. 2011c         | AIVIPA    | 1.0                    | 96                    | -                   | -             | -   |
|                          | AMCT      | 0.01                   | 106                   | -                   | -             | -   |
|                          | AIVIGT    | 1.0                    | 100                   | -                   | -             | -   |
| Grape                    |           | 0.1                    | 95, 96, 97            | 95–97               |               |     |
| S10-02338                | Fluazinam | 0.1                    | 90, 89                | 89-90               | 90            | -   |
|                          |           | 1.0                    | 90                    | -                   | -             | -   |
| Gemrot, F. 2011d         |           | 0.01                   | 98, 100, 97           | 97–100              | 98            |     |
|                          | AMPA      | 0.1                    | 90, 90                | -                   | 90            | -   |
|                          |           | 1.0                    | 93                    | -                   | -             | -   |
|                          |           | 0.01                   | 90, 110, 88           | 88-110              | 96            |     |
|                          | AMGT      | 0.1                    | 88, 87                | 87-88               | 88            | -   |
|                          |           | 1.0                    | 90                    | -                   | -             | -   |
| Grape                    |           | 0.01                   | 103                   | -                   | -             | -   |
| ISK/FLU/08001            | Fluazinam | 0.1                    | 106                   | -                   | -             | -   |
|                          |           | 0.01                   | 92                    | -                   | -             | -   |
| Heilaut, C. 2009         | AMPA      | 0.1                    | 98                    | -                   | -             | -   |
|                          |           | 0.01                   | 89                    | -                   | -             | -   |
|                          | AMGI      | 0.1                    | 95                    | -                   | -             | -   |
| Grape                    |           | 0.01                   | 99                    | -                   | -             | -   |
| S10-00193                | Fluazinam | 10                     | 97                    | -                   | -             | -   |
|                          |           | 0.01                   | 100                   | -                   | -             | -   |
| Gemrot, F. 2011b         | AMPA      | 10                     | 100                   | -                   | -             | -   |
|                          |           | 0.01                   | 104, 76, 100          | 76–104              | 93            |     |
|                          | AMGT      | 0.1                    | 95, 96                | 95-96               | 96            | -   |
|                          |           | 10                     | 96                    | -                   | -             | -   |
| Cabbage                  |           | 0.01                   | 89, 91, 86            | 86–91               | 91            | 3   |
| IR-4 PR No.              |           | 0.1                    | 91, 91, 89            | 89–91               | 91            | 1   |
| 07093                    |           | 1.0                    | 87, 89, 89            | 87–89               | 89            | 1   |
|                          |           | 0.01                   | 96, 83, 84            | 83–96               | 88            | 8   |
| Barney, W.P.             |           | (concurrent)           |                       |                     |               |     |
| 2014a                    | Fluazinam | 0.1                    | 92, 91, 88, 86        | 86–92               | 89            | 3   |
|                          |           | (concurrent)           |                       |                     |               |     |
|                          |           | 1.0                    | 87, 89                | 87–89               | 88            | 2   |
|                          |           | (concurrent)           |                       |                     |               |     |
|                          |           | 10                     | 89, 87, 85            | 85–89               | 87            | 2   |
|                          |           | (concurrent)           |                       |                     |               |     |
|                          |           | 0.01                   | 87, 82, 89            | 82-89               | 89            | 4   |
|                          |           | 0.1                    | 94, 84, 89            | 84–94               | 94            | 6   |
|                          |           | 1.0                    | 97, 95, 101           | 95-101              | 98            | 3   |
|                          |           | 0.01                   | 89, 70, 90            | 70–90               | 83            | 14  |
|                          |           | (concurrent)           |                       |                     |               |     |
|                          | AMGT      | 0.1                    | 97, 91, 93, 94        | 91–97               | 94            | 3   |
|                          |           | (concurrent)           |                       |                     |               |     |
|                          |           | 1.0                    | 82, 90                | 82-90               | 86            | 7   |
|                          |           | (concurrent)           |                       |                     |               |     |
|                          |           | 10                     | 99, 95, 94            | 94-99               | 98            | 3   |
|                          |           | (concurrent)           |                       |                     |               |     |

Table 60 Recovery data for analytical method 7 used to determine residues of fluazinam and its metabolites in grapes and cabbage.

# Method 8 (grapes, cabbage, mustard greens, lettuce)

Residues of fluazinam were extracted from crop samples by shaking with methanol: acetic acid (98:2 v/v). After Celite filtration and dilution, an aliquot was acidified and partitioned twice with hexane; the organic phase was subsequently partitioned with 0.5M

sodium hydroxide. The aqueous phase was adjusted to pH 1 using HCl and then portioned twice with hexane. The organic phase was concentrated to dryness, re-dissolved in hexane and purified using either:

A Florisil column eluting with hexane: ethyl acetate water (95:5, v/v), evaporating to dryness and re-dissolving in dodecane: acetone (9:1 v/v).

A C18 Sep-Pak column eluting with hexane: dichloromethane (50:50, v/v), evaporating to dryness and re-dissolving in hexane.

Residues were determined by GC-ECD.

The methods were validated within the residue trial studies with concurrent recoveries being analysed. The linearity of the detector response covered a working range of  $0.01-0.5 \mu g/mL$  for fluazinam. The recovery data obtained from each study are summarised in Table 61.

| Crop/<br>Study reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of<br>recoveries<br>[%] | Mean recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|------------------------------|-------------------------------|----------------------|-----|
| Grape                    |           | 0.01                              | 95                           | -                             | -                    | -   |
| 734387                   | Fluazinam | 0.1                               | 107                          | -                             | -                    | -   |
| Wais, A. 2000            |           |                                   |                              |                               |                      |     |
| Cabbage                  |           | 0.01                              | 62, 50, 85, 85, 80           | 50-85                         | 72                   | 22  |
| IR-4 PR No. 08796        |           | 0.1                               | 82, 93, 82                   | 82–93                         | 86                   | 7   |
|                          | Eluazinam | 0.01                              | 82, 83, 103, 95, 82, 80,     | 78–103                        | 87                   | 10  |
| Thompson, D.C.           | Tuazinani | (concurrent)                      | 85, 85, 100, 78, 82          |                               |                      |     |
| 2006c                    |           | 0.1                               | 113, 66, 101, 106, 91,       | 66–125                        | 99                   | 16  |
|                          |           | (concurrent)                      | 125, 113, 89, 99, 91, 99     |                               |                      |     |
| Cabbage                  |           | 0.01                              | 74, 78, 81                   | 74–81                         | 78                   | 5   |
| AAFC03-066R              |           | 0.02                              | 93, 76, 84                   | 76 –93                        | 84                   | 10  |
|                          |           | 0.10                              | 108, 110, 113                | 108-113                       | 110                  | 2   |
| Ballantine, J. 2006      | Fluazinam | 0.05                              | 99                           | -                             | -                    | -   |
|                          | Tudzinam  | (concurrent)                      |                              |                               |                      |     |
|                          |           | 0.1                               | 72, 89, 85, 72, 77, 72, 70,  | 70-115                        | 81                   | 17  |
|                          |           | (concurrent)                      | 82, 72, 77, 71, 86, 107,     |                               |                      |     |
|                          |           |                                   | 115, 75                      |                               |                      |     |
| Mustard Greens           |           | 0.01                              | 93, 77, 70                   | 70–93                         | 80                   | 15  |
| IR-4 PR No. 08797        |           | 0.1                               | 109, 95, 80                  | 80–109                        | 95                   | 15  |
| 71 5.0                   | Fluazinam | 0.01                              | 104, 90, 94, 77, 64, 97,     | 64–109                        | 89                   | 17  |
| Thompson, D.C.           |           | (concurrent)                      | 75, 76, 109, 103             |                               |                      |     |
| 20060                    |           | 0.1                               | 87, 118, 99, 90, 80, 71,     | 71–118                        | 92                   | 13  |
|                          |           | (concurrent)                      | 104, 87, 87, 85, 97, 95      |                               |                      |     |
| Lettuce                  |           | 0.01                              | 90, 101, 98, 96, 85, 106,    | 85–106                        | 98                   | 7   |
| IR-4 PR No. 06892        |           |                                   | 105, 101                     |                               |                      |     |
|                          |           | 0.1                               | 105, 108, 110                | 105–110                       | 108                  | 2   |
| Carpenter, D.H.          |           | 1.0                               | 101, 102, 99                 | 99–102                        | 101                  | 2   |
| 2008b                    |           | 3.0                               | 110, 105, 108                | 105–110                       | 108                  | 2   |
|                          |           | 0.01                              | 82, 96, 114, 111, 109,       | 82–114                        | 102                  | 11  |
|                          | Fluazinam | (concurrent)                      | 105, 108, 99, 90             |                               |                      |     |
|                          |           | 0.02                              | 98, 85, 86                   | 85–98                         | 90                   | 8   |
|                          |           | (concurrent)                      |                              |                               |                      |     |
|                          |           | 0.2                               | 119, 91                      | 91–119                        | 105                  | -   |
|                          |           | (concurrent)                      |                              |                               |                      |     |
|                          |           | 1.0                               | 118, 117                     | 117-118                       | 118                  | -   |
|                          |           | (concurrent)                      |                              |                               |                      |     |

# Analytical method 9 (Broccoli Trials conducted in 2004)

Residues of fluazinam were extracted using methanol: acetic acid (125:2, v/v) followed by filtration. The extract was acidified with 0.2N HCl and partitioned twice with hexane. The hexane phase was partitioned with 0.5M NaOH. The aqueous phase was acidified and partitioned twice with hexane. The hexane phase was concentrated and analysed by GC-ECD.

370

The methods were validated within the residue trial studies prior to sample analysis or with concurrent recoveries being analysed. The linearity of the detector response covered a working range of  $0.005-0.025 \mu g/mL$  for fluazinam. The recovery data obtained from each study are summarised in Table 62.

| Crop/<br>Study reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Broccoli                 |           | 0.01                              | 90, 80, 82, 82, 72, 81       | 72–90                   | 81                   | 7   |
| IR-4 PR No.              |           | 0.10                              | 68, 83, 88                   | 68–88                   | 80                   | 13  |
| 08795                    |           | 0.01                              | 57, 65, 58, 86, 100,         | 57–110                  | 78                   | 24  |
|                          | Fluazinam | (concurrent)                      | 70, 81, 72, 110              |                         |                      |     |
| Thompson, D.C.           |           | 0.10                              | 88, 76, 77, 72, 73, 88,      | 72-90                   | 80                   | 10  |
| 2006b                    |           | (concurrent)                      | 72, 90                       |                         |                      |     |
| Validation               |           |                                   |                              |                         |                      |     |

Table 62 Recovery data for analytical method 9 used to determine residues of fluazinam in broccoli.

## Analytical method 10 (Melon, cucumber, summer squash, pepper, soya bean)

Residues of fluazinam and AMGT were extracted using methanol: acetic acid (98:2, v/v). The extract was cleaned-up by polymeric SPE and diluted with water. Final determination was by LC-MS/MS.

The method was validated for each commodity prior to the sample analysis. The linearity of the detector response covered a working range of  $0.1-2 \mu g/mL$  for both fluazinam and AMGT. The recovery data are summarised in Table 63.

Table 63 Recovery data for analytical method 10 used to determined residues of fluazinam and AMGT in cantaloupe melon, cucumber and summer squash

| Crop/ Study<br>reference  | Analyte      | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|---------------------------|--------------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Cantaloupe                | Fluazinam    | 0.01                              | 83, 81, 77                   | 77-83                   | 84                   | 3.7 |
| melon                     |              | 0.1                               | 82, 85, 85                   | 82-85                   | 84                   | 2.1 |
| IR-4 PR No.               |              | 1                                 | 92, 90, 88                   | 88-92                   | 90                   | 2.2 |
| 07097                     | AMGT         | 0.01                              | 83, 92, 88                   | 83-92                   | 88                   | 5.1 |
| Thompson, D.C.            |              | 0.1                               | 87, 90, 88                   | 87-90                   | 88                   | 1.7 |
| 2011a                     |              | 1                                 | 97, 95, 96                   | 95-97                   | 96                   | 1.0 |
| Cucumber                  | Fluazinam    | 0.01                              | 93, 96, 91                   | 91-96                   | 93                   | 2.7 |
|                           |              | 0.1                               | 93, 91, 89                   | 89-93                   | 91                   | 2.2 |
| IR-4 PR No.               |              | 1                                 | 94, 89, 94                   | 89-94                   | 92                   | 3.1 |
| 09238                     | AMGT         | 0.01                              | 98, 94, 99                   | 94-99                   | 97                   | 2.7 |
| Barney, W.P.              |              | 0.1                               | 89, 86, 89                   | 86-89                   | 88                   | 2.0 |
| 2014b                     |              | 1                                 | 87, 78, 96                   | 78-96                   | 87                   | 10  |
| Pepper                    |              | 0.01                              | 85, 89, 84                   | 84-89                   | 86                   | 3.1 |
|                           | Fluazinam    | 0.1                               | 90, 87, 88                   | 87-90                   | 88                   | 1.7 |
| IR-4 PR No.               |              | 1                                 | 86, 84, 87                   | 84-87                   | 86                   | 1.8 |
| 09556                     |              | 0.01                              | 83, 97, 94                   | 83-97                   | 91                   | 8.1 |
|                           | AMGT         | 0.1                               | 88, 93, 93                   | 88-93                   | 91                   | 3.2 |
| Thompson, D.C.<br>2011b   | AMOT         | 1                                 | 88, 92, 91                   | 88-92                   | 90                   | 2.3 |
| Soya bean seeds           | Eluazinam    | 0.01                              | 97, 93, 98                   | 93-98                   | 96                   | 3   |
|                           | Fludzilldill | 0.1                               | 108, 104, 109                | 104-109                 | 107                  | 3   |
| IB-2010-JLW-              | АМСТ         | 0.01                              | 83, 104, 76                  | 76-104                  | 88                   | 17  |
| 006-00-01                 | AIVIGT       | 0.1                               | 109, 104, 106                | 104-109                 | 106                  | 2   |
| Soya bean                 | Eluazinam    | 0.01                              | 92, 79, 89                   | 79-92                   | 86                   | 8   |
| forage                    | FIUdZIIIdIII | 0.1                               | 94, 106, 99                  | 94-106                  | 100                  | 6   |
|                           |              | 0.01                              | 105, 109, 102                | 102 -109                | 105                  | 3   |
| IB-2010-JLW-<br>006-00-01 | AMGT         | 0.1                               | 102, 106, 105                | 102-106                 | 104                  | 2   |
| Soya bean hay             | Fluezinem    | 0.01                              | 86, 84, 88                   | 84-88                   | 86                   | 2   |
|                           | FIUZZIIIZIII | 0.1                               | 97, 94, 102                  | 94-102                  | 97                   | 4   |
| IB-2010-JLW-              | AMCT         | 0.01                              | 118, 108, 102                | 76-104                  | 96                   | 3   |
| 006-00-01                 | AIVIGT       | 0.1                               | 110, 112, 109                | 104 -109                | 107                  | 3   |

| Crop/ Study<br>reference  | Analyte     | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|---------------------------|-------------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Soya bean grain           | Eluazinam   | 0.01                              | 72, 72, 76                   | 72-76                   | 73                   | 3   |
| dust                      | Fluazinani  | 0.1                               | 91, 118, 85                  | 85-118                  | 98                   | 18  |
|                           |             | 0.01                              | 108, 107, 86                 | 86-108                  | 100                  | 12  |
| IB-2010-JLW-<br>006-00-01 | AMGT        | 0.1                               | 109, 108, 113                | 108-113                 | 110                  | 2   |
| Soya bean hulls           | Fluorinom   | 0.01                              | 78, 77, 76                   | 76-78                   | 77                   | 1   |
|                           | Fluazinam   | 0.1                               | 118, 121, 116                | 116-121                 | 118                  | 2   |
| IB-2010-JLW-              | AMOT        | 0.01                              | 97, 100, 92                  | 92-100                  | 96                   | 4   |
| 006-00-01                 | AIVIGT      | 0.1                               | 118, 117, 115                | 115-118                 | 116                  | 2   |
| Soya bean meal            | Eluczinom   | 0.01                              | 111, 101, 107                | 101 -111                | 106                  | 5   |
|                           | Fluazinam   | 0.1                               | 120, 102, 109                | 102-120                 | 110                  | 8   |
| IB-2010-JLW-              | AMOT        | 0.01                              | 94, 84, 96                   | 84-96                   | 91                   | 7   |
| 006-00-01                 | AIVIGT      | 0.1                               | 104, 103, 107                | 103-107                 | 105                  | 2   |
| Soya bean                 | Elucationer | 0.01                              | 79, 89, 85                   | 79-89                   | 84                   | 6   |
| refined oil               | Fluazinam   | 0.1                               | 92, 73, 101                  | 73-101                  | 89                   | 16  |
|                           |             | 0.01                              | 100, 106, 102                | 100-106                 | 103                  | 3   |
| IB-2010-JLW-<br>006-00-01 | AMGT        | 0.1                               | 110, 107, 114                | 107-110                 | 110                  | 3   |

## Analytical method 11 (Dry bean)

Residues of fluazinam were extracted using methanol: acetic acid (100:2, v/v) followed by filtration. The extract was acidified with 0.2N HCl and partitioned twice with hexane. The hexane phase was partitioned with 0.5M NaOH. The aqueous phase was acidified and partitioned twice with hexane. The hexane phase was concentrated and analysed by GC-ECD.

The methods were validated within the residue trial studies prior to sample analysis or with concurrent recoveries being analysed. The linearity of the detector response covered a working range of  $0.002-0.012 \mu g/mL$  for fluazinam. The recovery data obtained from each study are summarised in Table 64.

| Crop/<br>Study reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Dry beans                |           | 0.01                              | 102, 88, 71                  | 71–102                  | 87                   | 18  |
| IR-4 PR No.              |           | 0.10                              | 102, 100, 94                 | 94–102                  | 99                   | 4   |
| 06369                    |           | 1.0                               | 98, 95, 87                   | 87–98                   | 93                   | 6   |
|                          | Fluazinam | 0.01                              | 88, 72, 74, 88, 76, 79,      | 72-108                  | 83                   | 13  |
| Thompson, D.C.           | Tuazinani | (concurrent)                      | 83, 71, 79, 100, 86,         |                         |                      |     |
| 2006e                    |           |                                   | 108, 77                      |                         |                      |     |
|                          |           | 1.0                               | 96                           | -                       | -                    | -   |
|                          |           | (concurrent)                      |                              |                         |                      |     |

Table 64 Recovery data for analytical method 11 used to determine residues of fluazinam in dried beans

## Analytical method 12 (Tea)

Residues of Fluazinam, MAPA and HYPA were extracted using methanol: phosphoric acid followed by filtration. The extract was partitioned with hexane followed by acetonitrile partitioning. The extract was concentrated and cleaned up using Florisil columns followed by silica gel column chromatography. Residues were analysed by GC-ECD. For HYPA, an additional methylation step using diazomethane was necessary before GC-ECD analysis. The linearity of the detector response covered a working range of  $0.005-0.2 \mu g/mL$  for fluazinam, MAPA and HYPA. The recovery data are summarised in Table 65.

| Table 65 Recovery data for analytical method 12 u | used to determined residues of | of fluazinam, MAPA and HYPA in tea |
|---------------------------------------------------|--------------------------------|------------------------------------|
|---------------------------------------------------|--------------------------------|------------------------------------|

| Crop/ Study<br>reference | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|--------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Теа                      | Fluazinam | 0.4                               | 91, 90                       | 90-91                   | 91                   | -   |
|                          |           | 40                                | 91, 85                       | 85-91                   | 88                   | -   |
| Komatsu, K. and          | MAPA      | 0.4                               | 85, 77                       | 77-85                   | 81                   | -   |

| Crop/ Study<br>reference                | Analyte   | Fortification<br>level<br>[mg/kg] | Individual recoveries<br>[%] | Range of recoveries [%] | Mean recovery<br>[%] | RSD |
|-----------------------------------------|-----------|-----------------------------------|------------------------------|-------------------------|----------------------|-----|
| Yabusaki. T.<br>1993                    | НҮРА      | 0.4                               | 78, 74                       | 74-78                   | 76                   | -   |
| Теа                                     | Fluazinam | 0.2                               | 96, 93, 94, 92, 99, 97       | 92-99                   | 95                   | 3   |
|                                         | MAPA      | 0.2                               | 84, 75, 81, 80, 79, 73       | 73-84                   | 79                   | 5   |
| Komatsu, K. and<br>Yabusaki. T.<br>1997 | НҮРА      | 0.2                               | 76, 73, 77, 76, 82, 76       | 73-82                   | 77                   | 4   |

#### Data collection methods-animal commodities

#### Method IB-2007-JLW-004-00-01

This method is presented in the enforcement methods section in the study by Weidmann, 2008b [Ref: IB-2007-JLW-004-00-01].

#### Enforcement methods-plant matrices

#### Method AGR/MOA/FLZ-7 (potato, grape, onion, dry beans, oilseed rape seed)

Residues of fluazinam, AMPA and AMGT were extracted from crop samples by shaking with methanol: acetic acid (98:2 v/v). After Celite filtration and dilution, an aliquot was purified using an Oasis HLB cartridge. The residues were eluted with acetonitrile: ultrapure water (80:20, v/v) and then analysed by LC-MS/MS. Quantitation and confirmation was performed using the following mass transitions:

| Analyte   | Quantitation | Confirmation |
|-----------|--------------|--------------|
| Fluazinam | 463→416      | 463→398      |
| AMPA      | 433→397      | 433→303      |
| AMGT      | 681→431      | 681→327      |

The method was validated in the representative crop matrices of potato (high starch) and grape (high acid content) by Heilaut, 2008 [Ref: ISK/FLU/08002] and in onion (high water content), dry beans (high protein content) and oilseed rape seed (high oil content) by Gemrot, 2011 [Ref: S10-03542].

The method showed good linearity in the range of 0.1-5 ng/mL for all analytes (correlation coefficients >0.99 and no significant interferences were noted at the retention times corresponding to the analytes in any control samples (the response in control samples at the relevant retention times for fluazinam, AMPA and AMGT always corresponded to less than 30% of the limit of quantification). The mean recoveries for all matrices tested at all fortification levels ranged from 78 to 104%, within the acceptable range, with relative standard deviations of <20%. The limits of quantitation (LOQs) were 0.01 mg/kg for all matrices tested.

Table 66 Method AGR/MOA/FLZ-7 analytical recovery rates for fluazinam and its metabolites in crop matrices

| Matrix            | Fortification level | Number       | % Recovery           | Average % | % RSD | Reference     |
|-------------------|---------------------|--------------|----------------------|-----------|-------|---------------|
|                   | (mg/kg)             | of tests     |                      | recovery  |       |               |
|                   |                     | Fluazinam, r | n/z 463 →416         |           |       |               |
| Potato            | 0.01                | 5            | 89, 89, 88, 91, 91   | 90        | 1     | ISK/FLU/08002 |
|                   | 0.1                 | 5            | 93, 92, 92, 87, 91   | 91        | 3     |               |
| Grape             | 0.01                | 5            | 98, 97, 103, 93, 95  | 97        | 4     |               |
|                   | 0.1                 | 5            | 98, 97, 102, 105, 92 | 99        | 5     |               |
| Onion             | 0.01                | 5            | 99, 88, 96, 96, 92   | 94        | 5     | S10-03542     |
|                   | 0.1                 | 5            | 83, 83, 79, 79, 78   | 80        | 3     |               |
| Dry bean          | 0.01                | 5            | 95, 93, 98, 98, 95   | 96        | 2     |               |
|                   | 0.1                 | 5            | 83, 82, 79, 82, 83   | 82        | 2     |               |
| Oilseed rape seed | 0.01                | 5            | 93, 90, 98, 96, 94   | 94        | 3     | -             |
|                   | 0.1                 | 5            | 78, 79, 81, 84, 80   | 80        | 3     |               |
|                   |                     | Fluazinam, r | n/z 463 →398         |           |       |               |
| Potato            | 0.01                | 5            | 90, 90, 93, 91, 92   | 91        | 1     | ISK/FLU/08002 |

| Matrix            | Fortification level | Number       | % Recovery              | Average % | % RSD   | Reference      |
|-------------------|---------------------|--------------|-------------------------|-----------|---------|----------------|
|                   | (mg/kg)             | of tests     | 5                       | recovery  |         |                |
|                   | 0.1                 | 5            | 93, 92, 91, 88, 91      | 91        | 2       |                |
| Grape             | 0.01                | 5            | 97, 96, 102, 95, 96     | 97        | 3       | ]              |
| Ī                 | 0.1                 | 5            | 98, 96 ,102, 105, 91    | 98        | 5       |                |
| Onion             | 0.01                | 5            | 97, 88, 94, 94, 91      | 93        | 4       | S10-03542      |
|                   | 0.1                 | 5            | 84, 85, 78, 81, 78      | 81        | 4       |                |
| Dry bean          | 0.01                | 5            | 94, 93, 100, 100, 94    | 96        | 4       | ]              |
|                   | 0.1                 | 5            | 84, 82, 80, 84, 83      | 83        | 2       |                |
| Oilseed rape seed | 0.01                | 5            | 92, 89, 96, 95, 93      | 93        | 3       | ]              |
|                   | 0.1                 | 5            | 79, 79, 81, 85, 80      | 81        | 3       |                |
|                   |                     | AMPA, m/     | z 433 →397              |           | •       | •              |
| Potato            | 0.01                | 5            | 78, 82, 79, 82, 84      | 81        | 3       | ISK/FLU/08002  |
| ľ                 | 0.1                 | 5            | 89, 99, 92, 89, 88      | 92        | 5       | 1              |
| Grape             | 0.01                | 5            | 98, 103, 115, 99, 103   | 104       | 6       | 1              |
|                   | 0.1                 | 5            | 104, 99, 101, 101, 104  | 102       | 2       |                |
| Onion             | 0.01                | 5            | 98, 87, 93, 93, 92      | 92        | 4       | S10-03542      |
| İ                 | 0.1                 | 5            | 84, 83, 78, 80, 78      | 81        | 3       | -              |
| Dry bean          | 0.01                | 5            | 97, 90, 98, 97, 97      | 96        | 3       | 1              |
|                   | 0.1                 | 5            | 82, 81, 79, 82, 83      | 81        | 2       | -              |
| Oilseed rape seed | 0.01                | 5            | 93, 91, 97, 96, 92      | 94        | 3       | -              |
|                   | 0.1                 | 5            | 78, 79, 82, 84, 80      | 81        | 3       | -              |
| I                 | 011                 | AMPA. m/     | $z 433 \rightarrow 303$ |           | ů       | I              |
| Potato            | 0.01                | 5            | 80, 82, 83, 87, 88      | 84        | 4       | ISK/FLU/08002  |
|                   | 0.1                 | 5            | 101, 101, 96, 95, 100   | 99        | 3       |                |
| Grape             | 0.01                | 5            | 99, 105, 109, 96, 104   | 102       | 5       | -              |
| enapo             | 0.1                 | 5            | 105 99 99 99 104        | 101       | 3       | -              |
| Onion             | 0.01                | 5            | 98 88 97 98 91          | 94        | 5       | \$10-03542     |
| onion             | 0.01                | 5            | 86 84 78 81 79          | 82        | 4       | 010 000 12     |
| Dry bean          | 0.01                | 5            | 96 91 97 97 94          | 95        | 3       | -              |
| biy boun          | 0.01                | 5            | 82 81 79 83 85          | 82        | 3       | -              |
| Oilseed rane seed | 0.01                | 5            | 94 91 99 95 94          | 94        | 3       | -              |
| onseed tape seed  | 0.01                | 5            | 79 80 81 85 81          | 81        | 3       | -              |
| I                 | 0.1                 | AMGT m/      | 7 681 →431              | 01        | 5       |                |
| Potato            | 0.01                | 5            |                         | 03        | 8       | ISK/EL11/08002 |
| 1 otato           | 0.01                | 5            | 86 81 81 77 78          | 81        | 4       | 13101 20/00002 |
| Grane             | 0.01                | 5            | 80 88 02 86 88          | 89        | 3       | -              |
| Giape             | 0.01                | 5            |                         | 95        | 5       | -              |
| Onion             | 0.01                | 5            | 80 65 87 83 03          | 83        | 13      | \$10-03542     |
| onion             | 0.01                | 5            | 79 80 76 78 78          | 78        | 2       | 310-03342      |
| Dry bean          | 0.01                | 5            |                         | 00        | 2       | -              |
| Drybean           | 0.01                | 5            | 81 81 81 70 83          | 81        | 2       | -              |
| Oilseed rane seed | 0.01                | 5            | 85 96 108 104 108       | 100       | 10      | -              |
| onseed tape seed  | 0.01                | 5            | 80 8/ 01 80 80          | 87        | 5       | -              |
| I                 | 0.1                 | J<br>AMCT m/ | 7 691 327               | 07        | 5       |                |
| Dotato            | 0.01                | AIVIGT, III/ | $2 001 \rightarrow 327$ | 07        | 6       | ISK/EL11/09002 |
| POIAIO            | 0.01                | 5            | 05, 07, 00, 90, 02      | 07        | 5       | ISK/FLU/06002  |
| Crapo             | 0.01                | 5            | 00,04,70,77,70          | 04        | 3       | -              |
| Grape             | 0.01                | 5            | 98, 95, 94, 87, 95      | 94        | 4       | -              |
| Onion             | 0.1                 | 5            | 90, 94, 98, 104, 89     | 90        | 0       | \$10.02542     |
| UNION             | 0.01                | Э<br>Е       | 97, 07, 100, 100, 93    | 70        | 1       | 310-03042      |
| Drubaar           | U. I                | 5            | 01, 0U, /0, /8, /4      | /8        | 4       | 4              |
| Dry bean          | 0.01                | 5            | 90, 94, 103, 101, 97    | 98        | 4       | 4              |
| Ollegenterrer     | U. I                | 5            | 87, 81, 81, 84, 83      | 83        | 3<br>10 | 4              |
| Uliseed rape seed | 0.01                | 5            | 105, 84, 88, 103, 102   | 9/        | 10      | 4              |
|                   | 0.1                 | 5            | 81, 83, 88, 88, 87      | 82        | 4       |                |

No consideration of the extraction efficiency of this method was provided. Instead extraction efficiency for "Method 1" used in support of residue trials for peanuts was provided [Ref: 6574-95-0257-EF-001]. In "Method 1" samples are extracted by homogenisation with methanol: acetic acid (98:2 v/v), however the subsequent clean-up, which includes additional acidification and solvent partition steps, and the measurement technique are different.

An independent laboratory validation of Method AGR/MOA/FLZ-7 for residues of fluazinam, AMPA and AMGT in potato, grapes, onion, dry beans and oilseed rape seed was conducted by Eichler, 2010 and 2011 [Refs: 59321101 and59322101] and reported good linearity in the range of 0.1-5 ng/mL for all analytes (correlation coefficients >0.99) and no significant interferences at the relevant retention times. The mean recoveries for all matrices tested at all fortification levels ranged from 73 to 100% (RSDs <20%) with the exception of dry beans (high protein content) for AMPA and AMGT where average recoveries were in the range 67–93% with RSDs of 11-27%. The limits of quantitation (LOQs) were 0.01 mg/kg for all matrices tested.

| Matrix            | Fortification level | Number    | % Recovery            | Average % | % RSD | Reference |  |  |
|-------------------|---------------------|-----------|-----------------------|-----------|-------|-----------|--|--|
| Eluzioam m/z 463  |                     |           |                       |           |       |           |  |  |
| Potato            | 0.01                | 5         | 70 67 80 77 76        | 74        | 72    | 59321101  |  |  |
| 1 otato           | 0.01                | 5         | 84, 73, 77, 82, 83    | 80        | 5.8   | 0,021101  |  |  |
| Grape             | 0.01                | 5         | 76, 79, 79, 79, 78    | 78        | 1.7   | -         |  |  |
| orapo             | 0.1                 | 5         | 85, 83, 81, 85, 84    | 84        | 2.0   |           |  |  |
| Onion             | 0.01                | 5         | 85, 84, 83, 82, 77    | 82        | 3.8   | 59322101  |  |  |
|                   | 0.1                 | 5         | 78, 72, 67, 74, 74    | 73        | 5.5   |           |  |  |
| Drv bean          | 0.01                | 5         | 104, 89, 87, 99, 88   | 93        | 8.2   |           |  |  |
|                   | 0.1                 | 5         | 93, 96, 92, 74, 91    | 89        | 9.8   | 1         |  |  |
| Oilseed rape seed | 0.01                | 5         | 87, 91, 89, 86, 86    | 88        | 2.5   |           |  |  |
|                   | 0.1                 | 5         | 82, 86, 83, 83, 82    | 83        | 2.0   | 1         |  |  |
|                   |                     | Fluazinam | , m/z 463 →398        |           |       | 1         |  |  |
| Potato            | 0.01                | 5         | 77, 72, 79, 78, 81    | 77        | 4.3   | 59321101  |  |  |
|                   | 0.1                 | 5         | 85, 71, 73, 83, 84    | 80        | 7.6   | 1         |  |  |
| Grape             | 0.01                | 5         | 77, 82, 82, 78, 82    | 80        | 3.1   |           |  |  |
|                   | 0.1                 | 5         | 86, 83, 81, 85, 83    | 84        | 2.3   | 1         |  |  |
| Onion             | 0.01                | 5         | 98, 93, 93, 91, 86    | 92        | 4.7   | 59322101  |  |  |
|                   | 0.1                 | 5         | 79, 71, 68, 77, 73    | 74        | 6.0   | 1         |  |  |
| Dry bean          | 0.01                | 5         | 99, 87, 91, 90, 93    | 92        | 4.9   |           |  |  |
|                   | 0.1                 | 5         | 95, 99, 90, 70, 93    | 89        | 12.7  | 1         |  |  |
| Oilseed rape seed | 0.01                | 5         | 75, 67, 77, 74, 73    | 73        | 5.1   |           |  |  |
|                   | 0.1                 | 5         | 84, 91, 84, 85, 80    | 85        | 4.7   | 1         |  |  |
|                   |                     | AMPA, r   | n/z 433 →397          |           |       |           |  |  |
| Potato            | 0.01                | 5         | 90, 90, 86, 91, 90    | 89        | 2.2   | 59321101  |  |  |
|                   | 0.1                 | 5         | 96, 83, 92, 93, 92    | 91        | 5.3   | 1         |  |  |
| Grape             | 0.01                | 5         | 87, 97, 95, 91, 90    | 92        | 4.3   |           |  |  |
|                   | 0.1                 | 5         | 97, 93, 95, 94, 94    | 95        | 1.6   | 1         |  |  |
| Onion             | 0.01                | 5         | 103, 93, 97, 103, 100 | 99        | 4.3   | 59322101  |  |  |
|                   | 0.1                 | 5         | 89, 82, 83, 84, 86    | 85        | 3.3   | 1         |  |  |
| Dry bean          | 0.01                | 5         | 82, 85, 135, 85, 79   | 93        | 25.2  |           |  |  |
|                   | 0.1                 | 5         | 95, 91, 91, 71, 94    | 88        | 11.   | 2         |  |  |
| Oilseed rape seed | 0.01                | 5         | 82, 84, 85, 83, 79    | 83        | 2.8   |           |  |  |
|                   | 0.1                 | 5         | 92, 82, 81, 79, 83    | 83        | 6.0   | 1         |  |  |
|                   |                     | AMPA, r   | n/z 433 →303          |           |       |           |  |  |
| Potato            | 0.01                | 5         | 88, 89, 89, 89, 91    | 89        | 1.2   | 59321101  |  |  |
|                   | 0.1                 | 5         | 96, 83, 95, 94, 92    | 92        | 5.7   | ]         |  |  |
| Grape             | 0.01                | 5         | 87, 93, 95, 94, 93    | 92        | 3.4   |           |  |  |
|                   | 0.1                 | 5         | 96, 93, 95, 96, 94    | 95        | 1.4   | 1         |  |  |
| Onion             | 0.01                | 5         | 97, 96, 104, 102, 101 | 100       | 3.4   | 59322101  |  |  |
|                   | 0.1                 | 5         | 88, 83, 90, 86, 89    | 87        | 3.2   | 7         |  |  |
| Dry bean          | 0.01                | 5         | 97, 85, 134, 84, 87   | 97        | 21.7  | 1         |  |  |
|                   | 0.1                 | 5         | 92, 91, 91, 72, 92    | 88        | 10.0  | T         |  |  |
| Oilseed rape seed | 0.01                | 5         | 84, 87, 89, 80, 81    | 84        | 4.6   | ]         |  |  |
|                   | 0.1                 | 5         | 95, 80, 80, 78, 82    | 83        | 8.3   |           |  |  |
|                   |                     | AMGT, n   | n/z 681 →431          |           |       |           |  |  |
| Potato            | 0.01                | 5         | 92, 100, 96, 95, 87   | 94        | 5.2   | 59321101  |  |  |

Table 67 Method AGR/MOA/FLZ-7: Independent validation recovery rates for fluazinam and its metabolites in crop matrices

| Matrix            | Fortification level | Number  | % Recovery          | Average % | % RSD | Reference |
|-------------------|---------------------|---------|---------------------|-----------|-------|-----------|
|                   | (HIY/KY)            |         | 05 74 04 04 00      | Tecovery  |       |           |
|                   | 0.1                 | 5       | 85, 74, 84, 84, 82  | 82        | 5.5   |           |
| Grape             | 0.01                | 5       | 79, 95, 101, 91, 81 | 89        | 10.4  |           |
|                   | 0.1                 | 5       | 92, 86, 91, 85, 85  | 88        | 3.9   |           |
| Onion             | 0.01                | 5       | 74, 81, 96, 78, 108 | 87        | 15.1  | 59322101  |
|                   | 0.1                 | 5       | 90, 84, 96, 83, 81  | 87        | 7.1   | Ī         |
| Dry bean          | 0.01                | 5       | 88, 75, 75, 63, 90  | 78        | 14.1  |           |
|                   | 0.1                 | 5       | 84, 134, 83, 68, 89 | 92        | 27.3  | Ī         |
| Oilseed rape seed | 0.01                | 5       | 75, 74, 56, 71, 73  | 70        | 11.3  |           |
|                   | 0.1                 | 5       | 77, 74, 71, 71, 75  | 71        | 3.5   | Ĩ         |
|                   |                     | AMGT, m | /z 681 →327         |           |       |           |
| Potato            | 0.01                | 5       | 75, 77, 74, 82, 82  | 78        | 4.9   | 59321101  |
|                   | 0.1                 | 5       | 83, 71, 79, 79, 85  | 79        | 6.8   |           |
| Grape             | 0.01                | 5       | 77, 82, 87, 79, 76  | 80        | 5.5   |           |
|                   | 0.1                 | 5       | 89, 86, 86, 84, 80  | 85        | 3.9   | Ī         |
| Onion             | 0.01                | 5       | 107, 86, 68, 95, 87 | 89        | 16.1  | 59322101  |
|                   | 0.1                 | 5       | 93, 91, 97, 79, 81  | 88        | 8.9   |           |
| Dry bean          | 0.01                | 5       | 73, 52, 66, 92, 53  | 67        | 24.5  | Ì         |
|                   | 0.1                 | 5       | 83, 130, 88, 65, 82 | 90        | 27.0  | Ī         |
| Oilseed rape seed | 0.01                | 5       | 102, 99, 99, 79, 99 | 96        | 9.8   |           |
|                   | 0.1                 | 5       | 80, 77, 77, 76, 79  | 78        | 2.1   |           |

#### Method US FDA PAM 1

The analytical characteristics of fluazinam, AGMT and AMPA when subject to analysis by US FDA Multi-Residue Protocols A, C, D, E, and F (third edition 1/94) were investigated in three separate studies by Rhodes, 1995 [Ref: 6582-95-0190-EF], 1996a [Ref: 6582-95-0192-EF]. The analytical characteristics of the metabolite DAPA when subjected to the same methods were investigated by Robaugh, 2011 [Ref: 6582-95-0192-EF].

Briefly, Protocol A evaluates tests substances for fluorescence, to determine if LC analysis is appropriate and if required Protocol C evaluates the GC profile of tests substances using a variety of column polarity and detection systems. Protocols D, E and F evaluate various extractions and clean-up procedures, using test materials in solvent and in fortified food matrices (fatty and non-fatty).

A summary of the method parameters evaluated and the results for each compound is given in Table 70. The FDA PAM 1 methods could be used to determine residues of fluazinam in high water and high fat content commodities and residues of AMPA in high fat content commodities. The methods are not suitable for the determination of AGMT or DAPA.

| Analyte    | Fluazinam                                                                                                                                                                            | AMGT                                                                            | AMPA                                                                                                                                                                              | DAPA                                                                                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Protocol A | Not fluorescent. No further<br>work required                                                                                                                                         | Not fluorescent. No further<br>work required                                    | Not fluorescent. No further<br>work required                                                                                                                                      | Not fluorescent. No further<br>work required                                                                       |
| Protocol B | Not applicable                                                                                                                                                                       | GC analysis of methylated derivatives was successful.                           | Not applicable                                                                                                                                                                    | Not applicable                                                                                                     |
| Protocol C | Response for both GC-ECD<br>and GC-NPD. GC-ECD 10×<br>better sensitivity                                                                                                             | GC-NPD selected.                                                                | GC-NPD selected.                                                                                                                                                                  | GC-NPD selected.                                                                                                   |
| Protocol D | Validated in grapes.<br>Mean recovery 72.7% ± 22%<br>(n = 4) at 0.05 and 0.5 mg/kg                                                                                                   | Validated in grapes<br>No recovery data obtained due<br>to matrix interference. | Validated in wine.<br>Mean recovery 82% ± 12%<br>(n = 4) at 0.05 and 0.25 mg/kg                                                                                                   | Validated in potatoes.<br>Mean recovery 29% (n = 2) at<br>0.05 mg/kg<br>Mean recovery 19% (n = 2) at<br>0.25 mg/kg |
| Protocol E | Validated in grapes<br>Clean-up 303 C1:<br>Mean recovery 114% ± 73%<br>(n = 4) at 0.05 and 0.5 mg/kg<br>Clean-up 303 C2:<br>Mean recovery 76% ± 15%<br>(n = 4) at 0.05 and 0.5 mg/kg | AMGT was not recovered from<br>Florisil columns. No further<br>work required.   | Validated in wine<br>Clean-up 303 C1:<br>Mean recovery 37% ± 22%<br>(n = 4) at 0.05 and 0.5 mg/kg<br>Clean-up 303 C2:<br>Mean recovery 20% ± 22%<br>(n = 4) at 0.05 and 0.5 mg/kg | DAPA was not recovered from<br>Florisil columns. No further<br>work required.                                      |

Table 68 Summary of the evaluation of US FDA PAM 1 for the determination of fluazinam and its metabolites

| Analyte         | Fluazinam                     | AMGT                         | AMPA                          | DAPA                         |
|-----------------|-------------------------------|------------------------------|-------------------------------|------------------------------|
| Protocol F      | Validated in peanut.          | AMGT was not recovered from  | Validated in milk.            | DAPA was not recovered from  |
|                 | Clean-up 304 C1:              | Florisil columns. No further | Clean-up 304 C1:              | Florisil columns. No further |
|                 | Mean recovery 71% ± 9%        | work required.               | Mean recovery 82% ± 10%       | work required                |
|                 | (n = 4) at 0.05 and 0.5 mg/kg |                              | (n = 4) at 0.05 and 0.5 mg/kg |                              |
|                 | Clean-up 304 C2:              |                              | Clean-up 304 C2:              |                              |
|                 | Mean recovery 87% ± 60%       |                              | Mean recovery 59% ± 6%        |                              |
|                 | (n = 4) at 0.05 and 0.5 mg/kg |                              | (n = 4) at 0.05 and 0.5 mg/kg |                              |
| Study reference | 6582-95-0190-EF               | 6582-95-0191-EF              | 6582-95-0192-EF               | 6582-95-0192-EF              |

#### Enforcement methods-animal commodities

#### Method ISK-0504V

The determination of residues of fluazinam in animal matrices was investigated and validated by Lakaschus, 2006 [Ref: ISK-0504V]. Meat, milk and fat were extracted with methanol: acetic acid (100:2, v/v) in the presence of Celite 545 and filtered. The extract was acidified with HCl and partitioned with hexane. The hexane phase was reduced to near dryness, taken up in ethyl acetate: cyclohexane (1:1, v/v) and cleaned-up using gel permeation chromatography and silica column chromatography.

Liver and eggs were extracted under acidic conditions with a mixture of hydrochloric acid, sodium chloride and ethyl acetate. After homogenization and centrifugation, the organic phase is isolated, concentrated and cleaned up by gel permeation chromatography and silica column chromatography.

The final extracts were diluted in toluene and analysed by gas-liquid chromatography with GC-ECD. A further aliquot was diluted with methanol and acetic acid for confirmatory analysis by LC-MS/MS, using the mass transitions m/z  $463 \rightarrow 416$  for quantification and m/z  $463 \rightarrow 398$  for confirmation).

The method showed good linearity in the range of 10-500 ng/mL for GC-ECD and in the range of 0.25-20 ng/mL for LC-MS/MS (correlation coefficients >0.99) and no significant interferences were noted at the retention times corresponding to the analytes in any control samples. The mean recoveries for all matrices tested at all fortification levels ranged from 71 to 100%, within the acceptable range, with relative standard deviations of <20%. The limit of quantitation (LOQ) was 0.01 mg/kg for all matrices tested.

| Matrix             | Fortification level | Number           | % Recovery             | Average % | % RSD | Reference |  |  |  |
|--------------------|---------------------|------------------|------------------------|-----------|-------|-----------|--|--|--|
|                    | (mg/kg)             | of tests         |                        | recovery  |       |           |  |  |  |
| Fluazinam (GC-ECD) |                     |                  |                        |           |       |           |  |  |  |
| Meat               | 0.01                | 5                | 86, 80, 84, 70, 80     | 80        | 7.8   | ISK-0504V |  |  |  |
|                    | 0.1                 | 5                | 73, 56, 76, 77, 73     | 71        | 12    |           |  |  |  |
| Liver              | 0.01                | 5                | 73, 78, 86, 64, 80     | 76        | 1     |           |  |  |  |
|                    | 0.1                 | 5                | 72, 77, 91, 68, 105    | 83        | 18    |           |  |  |  |
| Milk               | 0.01                | 5                | 86, 69, 76, 92, 85     | 82        | 11    |           |  |  |  |
|                    | 0.1                 | 5                | 87, 80, 80, 82, 85     | 83        | 3.7   |           |  |  |  |
| Eggs               | 0.01                | 5                | 105, 104, 102, 96, 105 | 102       | 3.7   |           |  |  |  |
|                    | 0.1                 | 5                | 128, 109, 80, 92, 93   | 100       | 19    |           |  |  |  |
| Fat                | 0.01                | 5                | 118,101, 103, 89, 87   | 100       | 13    |           |  |  |  |
|                    | 0.1                 | 5                | 87, 77, 87, 67, 97     | 83        | 14    |           |  |  |  |
|                    |                     | Fluazinam (LC MS | /MS m/z 463→416)       |           |       |           |  |  |  |
| Meat               | 0.01                | 3                | 89, 81, 91             | 87        | 6.1   | ISK-0504V |  |  |  |
|                    | 0.1                 | 3                | 74, 72, 77             | 74        | 3.4   |           |  |  |  |
| Liver              | 0.01                | 3                | 79, 87, 84             | 83        | 4.8   |           |  |  |  |
|                    | 0.1                 | 3                | 83, 77, 85             | 82        | 5.1   |           |  |  |  |
| Milk               | 0.01                | 3                | 85, 77, 90             | 84        | 7.9   |           |  |  |  |
|                    | 0.1                 | 3                | 76, 80, 82             | 79        | 3.9   |           |  |  |  |
| Eggs               | 0.01                | 3                | 80, 85, 85             | 83        | 3.5   |           |  |  |  |
|                    | 0.1                 | 3                | 80, 73, 74             | 76        | 5.0   |           |  |  |  |
| Fat                | 0.01                | 3                | 84, 78, 83             | 82        | 3.9   |           |  |  |  |
|                    | 0.1                 | 3                | 82, 82, 85             | 83        | 2.0   |           |  |  |  |
|                    |                     | Fluazinam (LC MS | /MS m/z 463→398)       |           |       |           |  |  |  |
| Meat               | 0.01                | 3                | 87, 82, 92             | 88        | 4.1   | ISK-0504V |  |  |  |

Table 69 Method ISK-0504V analytical recovery rates for fluazinam in animal matrices

| Matrix | Fortification level<br>(mg/kg) | Number<br>of tests | % Recovery | Average %<br>recovery | % RSD | Reference |
|--------|--------------------------------|--------------------|------------|-----------------------|-------|-----------|
|        | 0.1                            | 3                  | 73, 72, 77 | 74                    | 3.5   |           |
| Liver  | 0.01                           | 3                  | 78, 86, 86 | 83                    | 5.5   |           |
|        | 0.1                            | 3                  | 83, 76, 86 | 82                    | 6.2   |           |
| Milk   | 0.01                           | 3                  | 81, 82, 85 | 83                    | 2.5   |           |
|        | 0.1                            | 3                  | 73, 82, 80 | 78                    | 6.0   |           |
| Eggs   | 0.01                           | 3                  | 79, 85, 84 | 83                    | 3.9   |           |
|        | 0.1                            | 3                  | 80, 73, 74 | 76                    | 3.8   |           |
| Fat    | 0.01                           | 3                  | 83, 78, 81 | 81                    | 3.1   |           |
|        | 0.1                            | 3                  | 83, 80, 86 | 83                    | 3.6   |           |

#### Method IB-2007-JLW-004-00-01 (method also used in feeding study)

The determination of residues of fluazinam, AMPA and DAPA in animal matrices was investigated and validated by Weidmann, 2008b [Ref: IB-2007-JLW-004-00-01].

Milk was extracted with acidified methanol in the presence of Celite 545 and filtered. The extract was concentrated, water and NaCl added and partitioned with hexane. The hexane was evaporated to near dryness and taken up in acetonitrile: water (1:1, v/v) for LC-MS/MS analysis of fluazinam and AMPA or taken up in toluene for GC/MS analysis of DAPA.

Muscle was extracted with acidified acetonitrile: water (1:1, v/v) in the presence of Celite 545 and filtered. The extract was concentrated and cleaned-up using Extrelut QE column and analysed using LC-MS/MS.

Fat was extracted with acidified acetonitrile in the presence of Celite 545 and filtered. The extract was partitioned with acetonitrile saturated cyclohexane. The cyclohexane phase was discarded, and the acetonitrile evaporated to near dryness and taken up in acetonitrile: water (1:1, v/v). Analysis was by LC-MS/MS.

Liver and kidney were extracted with acidified acetonitrile: water (liver: 3:1, v/v; kidney 1:1, v/v) in the presence of Celite 545 and filtered. The acetonitrile was evaporated, water and NaCl added and the extract partitioned with dichloromethane. The dichloromethane was evaporated to near dryness and residues taken up in acetonitrile and analysed by LC-MS/MS.

In addition, to determine conjugates in kidney and liver, samples were extracted with acetonitrile: water (1:1, v/v) and an additional hydrolysis step with HCl at 37 °C for 1 hour was added. The extract was partitioned with hexane (liver) or ethyl acetate (kidney). The organic phase was evaporated to near dryness and residues taken up in acetonitrile and analysed by LC-MS/MS.

Quantitation and confirmation was performed using the following mass transitions for LC-MS/MS:

| Analyte   | Quantitation | Confirmation |
|-----------|--------------|--------------|
| Fluazinam | 465→373      | 465→338      |
| AMPA      | 435→373      | 435→354      |
| DAPA      | 405→353      | 405→333      |

Validation data were only generated for the ion transition used for quantification.

For the GC-MS determination of DAPA the ion m/z 369 was used for quantification, with m/z 388 and m/z 404 used as qualifier ions.

The method showed good linearity in the range of 0.1- 40 ng/mL for all analytes (correlation coefficients >0.99) and no significant interferences were noted at the retention times corresponding to the analytes in any control samples. Validation data for the quantitation ion/mass transition only were provided and recovery data were provided for two fortification levels for each analyte/matrix combination (n = 3 per level). The mean recoveries for milk, muscle and fat for fluazinam, AMPA and DAPA were generally within or just outside the range of 70-120% with relative standard deviations of <20%, although it is noted that analysis of DAPA residue in milk by GC gave better recovery values.

In liver (without hydrolysis) mean recoveries for fluazinam and AMPA were within or just outside the range of 70-120% with relative standard deviations of <20%. Recoveries for DAPA were poor: with individual and mean recoveries less than 30%.

In kidney without the additional hydrolysis step mean recoveries for fluazinam, AMPA and DAPA were in the range 42-63%; the relative standard deviations were <20% with the exception of fluazinam in kidney for the lowest fortification level.

The additional hydrolysis step (validation data reported in table 71) did not lead to improved recovery data.

The limits of quantitation (LOQs) were stated to be 0.01 mg/kg for all matrices tested.

Table 70 Method IB-2007-JLW-004-00-01 analytical recovery rates for fluazinam and its metabolites in animal matrices (no hydrolysis step)

| Motrix   | Fortification loval  | Number       | 0/ Decovery                | Average % | 0/ DCD | Deference    |
|----------|----------------------|--------------|----------------------------|-----------|--------|--------------|
| IVIALITX | For tilication lever | of tosts     | % Recovery                 | Average % | % KSD  | Reference    |
|          | (iiig/kg)            | Eluazinam (m | /z 465 \ 272)              | Tecovery  |        |              |
| Milk     | 0.01                 |              | $1/2 403 \rightarrow 3/3)$ | 04        | 4.5    | IR 2007 II W |
| WIIK     | 0.01                 | 2            | 71,73,77                   | 74        | 4.5    | 004-00-01    |
| Muscle   | 0.01                 | 3            | 79,84,83                   | 82        | 3.2    |              |
| Muscie   | 0.01                 | 3            | 64 70 65                   | 66        | 1.8    |              |
| Liver    | 0.01                 | 3            | 83 80 79                   | 81        | 2.6    | 1            |
| LIVEI    | 0.05                 | 3            | 70 64 68                   | 67        | 4.6    | -            |
| Kidney   | 0.00                 | 3            | 54 58 33                   | 48        | 28     | -            |
| Runcy    | 0.05                 | 3            | 49 41 35                   | 40        | 17     | -            |
| Fat      | 0.00                 | 3            | 96,96,101                  | 98        | 3.0    |              |
| i ut     | 0.02                 | 3            | 99, 103, 103               | 102       | 2.3    | -            |
|          | 0.1                  | 3            | 98, 98, 101                | 99        | 1.7    |              |
|          | 0.11                 | AMPA (m/     | 7 435→373)                 |           |        | 1            |
| Milk     | 0.01                 | 3            | 93, 93, 89                 | 92        | 2.5    | IB-2007-JLW- |
|          | 0.1                  | 3            | 80, 86, 91                 | 86        | 6.4    | 004-00-01    |
| Muscle   | 0.01                 | 3            | 97, 92, 98                 | 96        | 3.3    |              |
|          | 0.05                 | 3            | 94, 96, 96                 | 95        | 1.3    |              |
| Liver    | 0.01                 | 3            | 72, 69, 61                 | 67        | 8.5    |              |
|          | 0.05                 | 3            | 62, 65, 62                 | 63        | 2.7    |              |
| Kidney   | 0.01                 | 3            | 61, 72, 57                 | 63        | 12     | 1            |
| ,        | 0.05                 | 3            | 50, 49, 44                 | 48        | 6.7    |              |
| Fat      | 0.01                 | 3            | 102, 106, 106              | 105       | 2.2    |              |
|          | 0.02                 | 3            | 105, 109, 104              | 106       | 2.5    |              |
|          | 0.1                  | 3            | 101, 104, 104              | 103       | 1.7    |              |
|          | 0.5                  | 3            | 99, 103, 104               | 102       | 2.5    |              |
|          |                      | DAPA (m/z    | 2 405 →353)                |           |        |              |
| Milk     | 0.01                 | 3            | 58, 69, 65                 | 64        | 8.8    | IB-2007-JLW- |
|          | 0.1                  | 3            | 74, 74, 60                 | 69        | 12     | 004-00-01    |
| Muscle   | 0.01                 | 3            | 98, 83, 90                 | 90        | 8.3    |              |
|          | 0.05                 | 3            | 93, 96, 96                 | 95        | 1.8    |              |
| Liver    | 0.01                 | 3            | 25, 24, 24,                | 24        | 2.5    |              |
|          | 0.05                 | 3            | 24, 23, 23                 | 23        | 2.6    |              |
| Kidney   | 0.01                 | 3            | 63, 73, 52                 | 63        | 17     |              |
|          | 0.05                 | 3            | 65, 65, 60                 | 63        | 4.6    |              |
| Fat      | 0.01                 | 3            | 64, 72, 71                 | 69        | 6.4    | ]            |
|          | 0.02                 | 3            | 65, 70, 72                 | 69        | 5.2    | ]            |
|          | 0.1                  | 3            | 88, 78, 74                 | 80        | 9.0    | ]            |
|          | 0.5                  | 3            | 75, 77, 73                 | 75        | 2.7    |              |
|          |                      | DAPA         | (GC-MS)                    |           |        |              |
| Milk     | 0.01                 | 3            | 105, 109, 108              | 107       | 2.0    | IB-2007-JLW- |
|          | 0.1                  | 3            | 98, 106, 105               | 103       | 4.3    | 004-00-01    |

Table 71 Method IB-2007-JLW-004-00-01 analytical recovery rates for fluazinam and its metabolites including conjugates in liver and kidney (hydrolysis step)

| Matrix                           | Fortification level | Number   | % Recovery | Average % | % RSD | Reference |  |  |  |
|----------------------------------|---------------------|----------|------------|-----------|-------|-----------|--|--|--|
|                                  | (mg/kg)             | of tests |            | recovery  |       |           |  |  |  |
| Fluazinam (including conjugates) |                     |          |            |           |       |           |  |  |  |
|                                  |                     | (m/z 46  | 5 →373)    |           |       |           |  |  |  |
| Liver (hydrolysis                | 0.01                | 3        | 83, 84, 93 | 87        | 6.3   |           |  |  |  |
| method)                          | 0.05                | 3        | 81, 83, 74 | 79        | 5.9   |           |  |  |  |
| Kidney (hydrolysis               | 0.01                | 3        | 96, 95, 98 | 96        | 1.6   |           |  |  |  |
| method)                          | 0.05                | 3        | 69, 61, 58 | 63        | 9.0   |           |  |  |  |

| Matrix             | Fortification level         | Number        | % Recovery      | Average % | % RSD | Reference |  |  |  |  |  |
|--------------------|-----------------------------|---------------|-----------------|-----------|-------|-----------|--|--|--|--|--|
|                    | (mg/kg)                     | of tests      |                 | recovery  |       |           |  |  |  |  |  |
|                    | AMPA (including conjugates) |               |                 |           |       |           |  |  |  |  |  |
|                    |                             | (m/z 43       | 5 → 373)        |           |       |           |  |  |  |  |  |
| Liver (hydrolysis  | 0.01                        | 3             | 71, 68, 66      | 68        | 3.7   |           |  |  |  |  |  |
| method)            | 0.05                        | 3             | 60, 68, 66      | 65        | 6.5   |           |  |  |  |  |  |
| Kidney (hydrolysis | 0.01                        | 3             | 62, 83, 79      | 75        | 15    |           |  |  |  |  |  |
| method)            | 0.05                        | 3             | 30, 26, 60      | 39        | 48    |           |  |  |  |  |  |
|                    |                             | DAPA (includi | ing conjugates) |           |       |           |  |  |  |  |  |
|                    |                             | (m/z 40       | 95 →353)        |           |       |           |  |  |  |  |  |
| Liver (hydrolysis  | 0.01                        | 3             | 43, 35, 36      | 38        | 12    |           |  |  |  |  |  |
| method)            | 0.05                        | 3             | 37, 34, 32      | 34        | 7.4   |           |  |  |  |  |  |
| Kidney (hydrolysis | 0.01                        | 3             | 17, 33, 43      | 31        | 42    |           |  |  |  |  |  |
| method)            | 0.05                        | 3             | 12, 8, 7        | 9         | 2.6   |           |  |  |  |  |  |

No consideration of the extraction efficiency of this method was provided.

## First independent laboratory validation (ILV)

An independent laboratory validation of Method IB-2007-JLW-004-00-01 for residues of fluazinam, AMPA and DAPA in beef liver, fat and milk was conducted by Smith and Perez, 2009 [Ref: 2K8-ADPEN-023-0808], although alternations to the methods were required in order to achieve acceptable recoveries. The validation data for the unchanged method is presented in Table 72.

Table 72 Method IB-2007-JLW-004-00-01: Independent validation recovery rates for fluazinam and its metabolites in animal matrices (original method)

| Matrix                | Fortification level | Number   | % Recovery            | Average % | % RSD | Reference  |  |  |  |  |  |
|-----------------------|---------------------|----------|-----------------------|-----------|-------|------------|--|--|--|--|--|
|                       | (mg/kg)             | of tests |                       | recovery  |       |            |  |  |  |  |  |
| Fluazinam             |                     |          |                       |           |       |            |  |  |  |  |  |
|                       |                     | (m/z 46  | 5 → 373)              |           |       |            |  |  |  |  |  |
| Milk–Original method  | 0.01                | 5        | 109, 62, 74, 72, 62   | 76        | 25.5  | 2K8-ADPEN- |  |  |  |  |  |
|                       | 0.1                 | 5        | 76, 97, 111, 113, 118 | 103       | 16.5  | 023-0808   |  |  |  |  |  |
| Fat-Original method   | 0.01                | 5        | 74, 62, 79, 60, 61    | 67        | 12.6  |            |  |  |  |  |  |
|                       | 0.1                 | 5        | 60, 59, 59, 61, 53    | 58        | 5.3   |            |  |  |  |  |  |
| Fat-Original method   | 0.01                | 5        | 85, 85, 88, 69, 70    | 79        | 11.3  |            |  |  |  |  |  |
| (repeated)            | 0.1                 | 5        | 77, 91, 90, 60, 65    | 76        | 18.3  |            |  |  |  |  |  |
| Liver–Original method | 0.01                | 5        | 70, 48, 80, 46, 61    | 62        | 23.7  |            |  |  |  |  |  |
|                       | 0.1                 | 5        | 34, 37, 25, 23, 37    | 31        | 20.8  |            |  |  |  |  |  |
| АМРА                  |                     |          |                       |           |       |            |  |  |  |  |  |
|                       |                     | (435 -   | → 373)                |           |       |            |  |  |  |  |  |
| Milk–Original method  | 0.01                | 5        | 79, 64, 58, 71, 65    | 67        | 11.6  | 2K8-ADPEN- |  |  |  |  |  |
|                       | 0.1                 | 5        | 77, 91, 88, 85, 96    | 87        | 8.2   | 023-0808   |  |  |  |  |  |
| Liver–Original method | 0.01                | 5        | 88, 77, 86, 82, 78    | 82        | 5.8   |            |  |  |  |  |  |
|                       | 0.1                 | 5        | 86, 97, 81, 67, 81    | 82        | 13.2  |            |  |  |  |  |  |
|                       |                     | D        | APA                   |           |       |            |  |  |  |  |  |
|                       |                     | (405     | -353)                 |           |       |            |  |  |  |  |  |
| Milk–Original method  | 0.01                | 5        | 65, 63, 91, 78, 54    | 70        | 20.6  | 2K8-ADPEN- |  |  |  |  |  |
|                       | 0.1                 | 5        | 67, 28, 33, 41, 33    | 34        | 13.6  | 023-0808   |  |  |  |  |  |
| Fat-Original method   | 0.01                | 5        | 76, 72, 88, 82, 13    | 66        | 46.3  |            |  |  |  |  |  |
|                       | 0.1                 | 5        | 27, 42, 88, 64, 19    | 48        | 58.7  | ]          |  |  |  |  |  |
| Fat -Original method  | 0.01                | 5        | 79, 80, 78, 82, 83    | 80        | 2.5   | ]          |  |  |  |  |  |
| (repeated)            | 0.1                 | 5        | 62, 72, 80, 77, 80    | 74        | 10.2  | ]          |  |  |  |  |  |
| Liver–Original method | 0.01                | 5        | 20, 47, 40, 39, 31    | 36        | 28.7  | ]          |  |  |  |  |  |
|                       | 0.1                 | 5        | 41, 46, 41, 4, 32     | 33        | 51.8  |            |  |  |  |  |  |

The mean recoveries for milk for fluazinam, AMPA and DAPA and for fat for fluazinam and DAPA were generally within or just outside the range of 70-120% with relative standard deviations of <20%. In liver (without hydrolysis) mean recoveries for AMPA were within the range of 70-120% with relative standard deviations of <20%, however the mean recoveries for fluazinam and DAPA were in the range 31-62% with relative standard deviations of >20% (range of RSDs 21–52%).

The additional hydrolysis step (validation data reported in Table 73) did not lead to improved recovery data.

| Matrix            | Fortification level | Number   | % Recovery         | Average % | % RSD | Reference  |  |  |  |  |  |
|-------------------|---------------------|----------|--------------------|-----------|-------|------------|--|--|--|--|--|
|                   | (mg/kg)             | of tests |                    | recovery  |       |            |  |  |  |  |  |
|                   | Fluazinam           |          |                    |           |       |            |  |  |  |  |  |
|                   |                     | (m/z 46  | 5 → 373)           |           |       |            |  |  |  |  |  |
| Liver (hydrolysis | 0.01                | 5        | 30, 47, 33, 30, 39 | 36        | 20.4  | 2K8-ADPEN- |  |  |  |  |  |
| method)           | 0.1                 | 5        | 32, 30, 37, 38, 42 | 36        | 13.4  | 023-0808   |  |  |  |  |  |
| AMPA              |                     |          |                    |           |       |            |  |  |  |  |  |
|                   |                     | ( m/z 43 | 85 → 373)          |           |       |            |  |  |  |  |  |
| Liver (hydrolysis | 0.01                | 5        | 33, 39, 32, 45, 29 | 36        | 17.6  | 2K8-ADPEN- |  |  |  |  |  |
| method)           | 0.1                 | 5        | 58, 27, 42, 49, 45 | 44        | 25.8  | 023-0808   |  |  |  |  |  |
|                   |                     | D        | APA                |           |       |            |  |  |  |  |  |
|                   |                     | (405     | →353)              |           |       |            |  |  |  |  |  |
| Liver (hydrolysis | 0.01                | 5        | 15, 14, 11, 12, 13 | 13        | 11.9  | 2K8-ADPEN- |  |  |  |  |  |
| method)           | 0.1                 | 5        | 17, 7, 10, 15, 12  | 12        | 32.5  | 023-0808   |  |  |  |  |  |
| Liver (hydrolysis | 0.01                | 5        | 16, 5, 19, 11, 14  | 13        | 43.1  | ]          |  |  |  |  |  |
| method)-repeated  | 0.1                 | 5        | 14, 11, 12, 9,7    | 10        | 24.5  |            |  |  |  |  |  |

Table 73 Method IB-2007-JLW-004-00-01: Independent validation recovery rates for fluazinam and its metabolites including conjugates in liver (hydrolysis step)

The following alternations to the method were made as a result of the poor recoveries:

For milk, samples were extracted with HCl and methanol in the presence of Celite 545 and filtered. The concentration and partitioning steps from the primary method were removed and the extract was made up to volume in methanol, filtered, then diluted in acetonitrile: water (1:1, v/v) for LC-MS/MS analysis for all compounds.

For liver, samples were extracted with acidified acetonitrile: water (3:1, v/v) in the presence of Celite 545 and filtered. The concentration and partitioning steps from the primary method were removed and the extract was diluted with acetonitrile: water (3:1, v/v) and filtered for LC-MS/MS analysis.

The validation data for the modified method is presented in table 74.

Table 74 Method IB-2007-JLW-004-00-01: Validation recovery rates for fluazinam and its metabolites in animal matrices for the modified method (method modifications made within the ILV)

| Matrix               | Fortification level<br>(mg/kg) | Number<br>of tests | % Recovery              | Average %<br>recovery | % RSD | Reference  |  |  |  |  |  |
|----------------------|--------------------------------|--------------------|-------------------------|-----------------------|-------|------------|--|--|--|--|--|
|                      | Fluazinam                      |                    |                         |                       |       |            |  |  |  |  |  |
|                      |                                | (m/z 46            | 5 → 373)                |                       |       |            |  |  |  |  |  |
| Milk–Modified method | 0.01                           | 5                  | 98, 101, 97, 88, 94     | 95                    | 5.3   | 2K8-ADPEN- |  |  |  |  |  |
|                      | 0.1                            | 5                  | 73, 83, 79, 85, 81      | 80                    | 5.5   | 023-0808   |  |  |  |  |  |
| Liver-Modified       | 0.01                           | 5                  | 113, 70, 81, 84, 84     | 86                    | 18.6  |            |  |  |  |  |  |
| method               | 0.1                            | 5                  | 82, 89, 90, 82, 92      | 87                    | 5.4   |            |  |  |  |  |  |
|                      | AMPA                           |                    |                         |                       |       |            |  |  |  |  |  |
|                      |                                | (435               | → 373)                  |                       |       |            |  |  |  |  |  |
| Milk–Modified method | 0.01                           | 5                  | 93, 91, 82, 94, 88      | 89                    | 5.6   | 2K8-ADPEN- |  |  |  |  |  |
|                      | 0.1                            | 5                  | 73, 85, 81, 77, 81      | 79                    | 6.1   | 023-0808   |  |  |  |  |  |
| Liver-Modified       | 0.01                           | 5                  | 85, 117, 86, 91, 97     | 95                    | 13.8  |            |  |  |  |  |  |
| method               | 0.1                            | 5                  | 72, 90, 90, 76, 89      | 84                    | 10.4  |            |  |  |  |  |  |
|                      |                                | D                  | APA                     |                       |       |            |  |  |  |  |  |
|                      |                                | (405               | →353)                   |                       |       |            |  |  |  |  |  |
| Milk-Modified method | 0.01                           | 5                  | 106, 34, 107, 80, 24    | 70                    | 56.0  | 2K8-ADPEN- |  |  |  |  |  |
|                      | 0.1                            | 5                  | 89, 120, 122, 55, 77    | 93                    | 30.8  | 023-0808   |  |  |  |  |  |
| Liver-Modified       | 0.01                           | 5                  | 107, 109, 104, 101, 110 | 106                   | 3.4   |            |  |  |  |  |  |
| method               | 0.1                            | 5                  | 72, 77, 83, 79, 84      | 79                    | 6.2   |            |  |  |  |  |  |

The modified methods showed good linearity in the range of 0.1-40 ng/mL for all analytes (correlation coefficients >0.99) and no significant interferences at the relevant retention times.

The mean recoveries for milk and liver for fluazinam, AMPA and DAPA were within the range of 70-120% with relative standard deviations of <20%; with the exception of analysis of DAPA in milk where the relative standard deviations were

significantly higher than 20%. The ILV used LC-MS/MS for determination of DAPA residues and as already observed in the primary validation analysis of DAPA residue in milk by GC gives better recovery values.

## Second ILV

Method IB-2007-JLW-004-00-01 was further independently validated in kidney, liver and fat by Schoenau, 2010 [Ref: 100342] using the modified extraction procedures for liver and kidney as given in the first ILV. Modifications to the original extraction procedures for fat were also made.

An outline of the method extraction is as follows:

Liver and kidney were extracted with acidified acetonitrile: water (3:1 v/v) in the presence of Celite 545 and filtered. In the primary method kidney was extracted using acidified acetonitrile: water (1:1 v/v). The concentration and partitioning steps from the primary method were removed and the extract was diluted with acetonitrile: water (3:1, v/v) and filtered for LC-MS/MS analysis.

Fat was extracted with acidified acetonitrile in the presence of Celite 545 and filtered. The extract was partitioned with acetonitrile saturated cyclohexane. The cyclohexane phase was discarded, and the acetonitrile evaporated to low volume, instead of near dryness as in the original method. The extract was filtered and diluted in acetonitrile: water (1:1, v/v). Analysis was by LC-MS/MS.

Quantitation and confirmation was performed using the following mass transitions for LC-MS/MS:

| Analyte   | Quantitation | Confirmation |
|-----------|--------------|--------------|
| Fluazinam | 465→373      | 465→338      |
| AMPA      | 435→373      | 435→354      |
| DAPA      | 405→353      | 405→333      |

The modified method showed good linearity in the range of 0.1-40 ng/mL for all analytes (correlation coefficients >0.99) and no significant interferences at the relevant retention times. The mean recoveries for all matrices tested using the modified methods at all fortification levels ranged from 74 to 94% (RSDs <20%) with the exception of kidney for fluazinam where the RSD was 23%. The limits of quantitation (LOQs) were 0.01 mg/kg for all matrices tested.

Table 75 Method IB-2007-JLW-004-00-01: Independent validation recovery rates for fluazinam and its metabolites in animal matrices for the modified extraction procedure

| Matrix | Fortification level   | Number      | % Recovery          | Average % | % RSD | Reference |  |  |  |  |
|--------|-----------------------|-------------|---------------------|-----------|-------|-----------|--|--|--|--|
|        | (mg/kg)               | of tests    |                     | recovery  |       |           |  |  |  |  |
|        | Fluazinam m/z 465→373 |             |                     |           |       |           |  |  |  |  |
| Liver  | 0.01                  | 5           | 62, 88, 79, 70, 72  | 74        | 13.2  | 100342    |  |  |  |  |
|        | 0.1                   | 5           | 100, 98, 84, 92, 93 | 93        | 6.5   |           |  |  |  |  |
| Kidney | 0.01                  | 5           | 99, 88, 74, 76, 52  | 78        | 22.7  |           |  |  |  |  |
|        | 0.1                   | 5           | 98, 88, 90, 86, 93  | 91        | 5.4   |           |  |  |  |  |
| Fat    | 0.01                  | 5           | 87, 93, 92, 85, 92  | 90        | 3.8   |           |  |  |  |  |
|        | 0.1                   | 5           | 88, 88, 92, 93, 87  | 90        | 3.3   |           |  |  |  |  |
|        |                       | Fluazinam r | n/z 465→338         |           |       |           |  |  |  |  |
| Liver  | 0.01                  | 5           | 52, 85, 83, 76, 79  | 75        | 17.8  | 100342    |  |  |  |  |
|        | 0.1                   | 5           | 101, 96, 84, 96, 88 | 93        | 7.5   |           |  |  |  |  |
| Kidney | 0.01                  | 5           | 94, 90, 80, 79, 55  | 80        | 19.1  |           |  |  |  |  |
|        | 0.1                   | 5           | 99, 85, 89, 80, 94  | 89        | 8.3   |           |  |  |  |  |
| Fat    | 0.01                  | 5           | 85, 93, 88, 86, 90  | 89        | 3.6   |           |  |  |  |  |
|        | 0.1                   | 5           | 85, 86, 91, 92, 85  | 88        | 4.1   |           |  |  |  |  |
|        |                       | AMPA m/     | z 435→373           |           |       |           |  |  |  |  |
| Liver  | 0.01                  | 5           | 87, 88, 87, 90, 87  | 88        | 1.5   | 100342    |  |  |  |  |
|        | 0.1                   | 5           | 93, 94, 93, 96, 94  | 94        | 1.3   | ]         |  |  |  |  |
| Kidney | 0.01                  | 5           | 92, 95, 92, 88, 86  | 91        | 3.9   | ]         |  |  |  |  |
|        | 0.1                   | 5           | 96, 94, 95, 90, 96  | 94        | 2.6   | ]         |  |  |  |  |
| Fat    | 0.01                  | 5           | 86, 91, 87, 86, 87  | 88        | 2.6   | ]         |  |  |  |  |
|        | 0.1                   | 5           | 94, 93, 94, 98, 89  | 94        | 3.5   | l         |  |  |  |  |
|        |                       | AMPA m/     | z 435→354           |           |       |           |  |  |  |  |
| Liver  | 0.01                  | 5           | 91, 92, 90, 90, 86  | 90        | 2.5   | 100342    |  |  |  |  |
|        | 0.1                   | 5           | 91, 92, 92, 92, 94  | 92        | 1.1   |           |  |  |  |  |
| Matrix | Fortification level | Number   | % Recovery         | Average % | % RSD | Reference |
|--------|---------------------|----------|--------------------|-----------|-------|-----------|
|        | (mg/kg)             | of tests |                    | recovery  |       |           |
| Kidney | 0.01                | 5        | 94, 94, 92, 91, 86 | 91        | 3.6   |           |
|        | 0.1                 | 5        | 95, 92, 96, 86, 96 | 93        | 4.7   |           |
| Fat    | 0.01                | 5        | 86, 92, 88, 87, 90 | 89        | 2.8   |           |
|        | 0.1                 | 5        | 94, 92, 93, 95, 90 | 93        | 2.3   |           |
|        |                     | DAPA m/  | z 405→353          |           |       |           |
| Liver  | 0.01                | 5        | 80, 79, 86, 81, 79 | 81        | 3.5   | 100342    |
|        | 0.1                 | 5        | 81, 78, 74, 78, 77 | 78        | 3.5   |           |
| Kidney | 0.01                | 5        | 97, 89, 92, 87, 89 | 91        | 4.1   |           |
|        | 0.1                 | 5        | 94, 95, 96, 90, 94 | 94        | 2.4   |           |
| Fat    | 0.01                | 5        | 83, 86, 82, 83, 83 | 84        | 1.4   |           |
|        | 0.1                 | 5        | 90, 91, 89, 94, 86 | 90        | 3.3   |           |
|        |                     | DAPA m/  | z 405→333          |           |       |           |
| Liver  | 0.01                | 5        | 79, 78, 84, 83, 80 | 81        | 3.2   | 100342    |
|        | 0.1                 | 5        | 83, 79, 75, 81, 80 | 80        | 3.5   |           |
| Kidney | 0.01                | 5        | 94, 92, 88, 88, 90 | 91        | 2.8   |           |
|        | 0.1                 | 5        | 93, 96, 93, 91, 97 | 94        | 2.4   |           |
| Fat    | 0.01                | 5        | 84, 85, 83, 83, 85 | 84        | 1.1   |           |
|        | 0.1                 | 5        | 90, 91, 92, 92, 89 | 91        | 1.4   |           |

### Stability of residues in stored analytical samples

The meeting received freezer storage stability data for fluazinam in a variety of plant and animal matrices. The meeting also received data to support the stability of AMGT and AMPA in various matrices.

Plant commodities

### Coffee, potato, onion, grape and wine

Samples of coffee, potato, onion and grape were homogenised, fortified at 0.1 mg/kg with fluazinam and stored frozen (<-15 °C). Samples of wine were fortified at 0.05 mg/L. Samples were analysed at different time points for up to two years after storage.

At each time point samples were freshly fortified with fluazinam to serve as procedural recovery samples. After extraction the methanol extracts were stored at < 8  $^{\circ}$ C for various periods of time prior to analysis. Final determination was achieved using analytical method 2. The results are summarised in Table 76.

| Matrix | Sample storage interval (days) | Storage interval of extracts (days) | % remaining after storage | Procedural recoveries (%) |
|--------|--------------------------------|-------------------------------------|---------------------------|---------------------------|
| Grape  | 5                              | 13                                  | 91, 126, 99 (105)         | Recoveries were           |
|        | 113                            | 10                                  | 111, 111 (111)            | undertaken in the range   |
|        | 243                            | 8                                   | 92, 109 (101)             | of 0.1–0.2 mg/kg (0.05 -  |
|        | 428                            | 8                                   | 95, 94 (95)               | 0.2 mg/L for wine) at     |
|        | 786                            | 4                                   | 111, 119 (115)            | each time point for each  |
| Potato | 1                              | 10                                  | 118, 117 (118)            | crop. The recoveries      |
|        | 118                            | 1                                   | 81, 87 (84)               | obtained were all         |
|        | 218                            | 1                                   | 83, 95 (89)               | acceptable                |
|        | 363                            | 15                                  | 89, 93 (91)               |                           |
|        | 758                            | 14                                  | 73, 78 (76)               |                           |
| Onion  | 5                              | 6                                   | 97, 105 (101)             |                           |
|        | 118                            | 16                                  | 77, 77 (77)               |                           |
|        | 218                            | 1                                   | 98, 112 (105)             |                           |
|        | 481                            | 1                                   | 74, 88 (81)               |                           |
|        | 768                            | 1                                   | 93, 83 (88)               |                           |
| Coffee | 1                              | 10                                  | 109, 108 (109)            |                           |
|        | 107                            | 25                                  | 101, 100 (101)            |                           |
|        | 217                            | 8                                   | 88, 98 (93)               |                           |
|        | 425                            | 37                                  | 107, 99 (103)             |                           |
|        | 790                            | 8                                   | 99, 100 (100)             |                           |
| Wine   | 5                              | 10                                  | 80, 78 (79)               |                           |
|        | 111                            | 0                                   | 92, 100 (96)              | Ī                         |

Table 76 Storage stability data for fluazinam residues in frozen plant matrices

| Matrix | Sample storage interval | Storage interval of | % remaining after storage | Procedural recoveries (%) |
|--------|-------------------------|---------------------|---------------------------|---------------------------|
|        | (days)                  | extracts (days)     |                           |                           |
|        | 222                     | 3                   | 100, 101 (101)            |                           |
|        | 377                     | 1                   | 90, 100 (95)              |                           |
|        | 777                     | 7                   | 94, 92 (93)               |                           |

Values in parentheses = mean recovery of stored samples

<sup>a</sup> Based on data presented it is not possible to determine which procedural recoveries relate to specific time points.

Residues of fluazinam were shown to be stable in potatoes (high starch content commodity) for up to 25 months, in coffee (high oil content commodity), onion (high water content commodity), grapes (high acid content commodity) and wine for up to 26 months after frozen storage.

Grapes

Samples of untreated homogenised grapes were fortified with fluazinam at 0.25 mg/kg. Control matrices/procedural recovery samples were also prepared. Samples were analysed after 0, 31, 63, 94 and 183 days of frozen storage.

At each time point freshly fortified samples were fortified with fluazinam to serve as procedural recovery samples. Final determination was achieved using analytical method 1. The results are summarised in Table 77.

| Table 77 | Storage  | stability   | data | for f | luazinam | residues | in frozen | grapes |
|----------|----------|-------------|------|-------|----------|----------|-----------|--------|
|          | 0.0.0490 | 0.000000000 |      |       |          |          |           | 9.0000 |

| Matrix | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|--------|--------------------------------|---------------------------|---------------------------|
| Grapes | 0                              | 96, 96, 104 (99)          | 108, 104                  |
|        | 31                             | 92, 96, 88 (92)           | 84, 100                   |
|        | 63                             | 112, 108, 104 (108)       | 112, 112                  |
|        | 94                             | 100, 92, 104 (99)         | 104, 100                  |
|        | 183                            | 112, 88, 88 (96)          | 88, 100                   |

Values in parentheses = mean recovery of stored samples

Residues of fluazinam were shown to be stable in grapes (high acid content commodity) for at least 6 months in freezer storage.

#### Potatoes and processed fractions of potatoes

Samples of whole potatoes were chopped and homogenised with dry ice pellets using a Hobart chopper. Potato chips were crushed and mixed by hand. Potato wet peels and granules were mixed by hand to homogenise. Samples were fortified with fluazinam at 0.5 mg/kg and stored frozen for up to three years (-18°C to -20°C). At specified sampling intervals, four replicate fortified (stored) samples were analysed for residues of fluazinam along with one control sample and two concurrent (fresh) fortification samples. Final determination was achieved using analytical method 1. The results are summarised in Table 78.

| Table 78 Storage stability | y data for fluazinam | residues in frozen | potato and | processed fractions |
|----------------------------|----------------------|--------------------|------------|---------------------|
|                            |                      |                    |            |                     |

| Matrix       | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|--------------|--------------------------------|---------------------------|---------------------------|
| Potato       | 0                              | 110, 110, 108, 100 (107)  | 116, 106                  |
|              | 1                              | 92, 98, 96, 100 (97)      | 100, 92                   |
|              | 21                             | 96, 98, 102 , 96 (98)     | 108, 114                  |
|              | 49                             | 90, 92, 90, 86 (90)       | 100, 122                  |
|              | 90                             | 88, 84, 84, 88 (87)       | 112, 108                  |
|              | 181                            | 98, 100, 104, 102 (101)   | 112, 118                  |
|              | 363                            | 78, 78, 82, 82 (80)       | 106, 108                  |
|              | 547                            | 72, 74, 66, 74 (72)       | 108, 110                  |
|              | 767                            | 72, 70, 70, 64 (69)       | 102, 102                  |
|              | 924                            | 64, 50, 60, 72 (59)       | 98, 94                    |
|              | 1096                           | 62, 64, 68, 56 (63)       | 104, 108                  |
| Potato chips | 0                              | 108, 90, 94, 86 (97)      | 90, 100                   |
|              | 1                              | 88, 94, 90, 94 (92)       | 90, 94                    |
|              | 21                             | 78, 84, 86, 90 (85)       | 84, 78                    |
|              | 49                             | 98, 86, 90, 84 (90)       | 124, 102                  |
|              | 91                             | 74, 76, 76, 76 (76)       | 82, 78                    |
|              | 182                            | 78, 86, 88, 92, (86)      | 114, 114                  |

| Matrix           | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|------------------|--------------------------------|---------------------------|---------------------------|
|                  | 365                            | 72, 66, 64, 66 (67)       | 72, 76                    |
|                  | 546                            | 84, 62, 62, 66 (69)       | 90, 84                    |
|                  | 764                            | 88, 82, 86, 82 (85)       | 92, 88                    |
|                  | 912                            | 68, 62, 64, 66 (65)       | 72, 74                    |
|                  | 1146                           | 72, 76, 74, 76 (75)       | 94, 96                    |
| Potato granules  | 0                              | 112, 122, 124 (119)soil   | 118, 114                  |
|                  | 1                              | 90, 92, 96, 92 (93)       | 94, 96                    |
|                  | 21                             | 116, 106, 98, (105)       | 104, 110                  |
|                  | 49                             | 66, 66, 66, 62 (65)       | 102, 104                  |
|                  | 57                             | 92, 92, 90, 90 (91)       | 98, 106                   |
|                  | 91                             | 64, 64, 64, 66 (65)       | 116, 116                  |
|                  | 99                             | 66, 64, 72, 66 (67)       | 100, 106                  |
|                  | 183                            | 48, 44, 46, 53 (48)       | 100, 100                  |
|                  | 196                            | 38, 40, 40, 40 (40)       | 92, 90                    |
|                  | 364                            | 58, 60, 64, 64 (62)       | 106, 100                  |
|                  | 547                            | 30, 28, 34, 28, (30)      | 100, 104                  |
|                  | 766                            | 54, 46, 54, 52 (52)       | 90, 88                    |
|                  | 910                            | 44, 56, 62, 56 (55)       | 112, 100                  |
|                  | 1094                           | 36, 38, 34, 34, (36)      | 114, 124                  |
| Wet potato peels | 0                              | 84, 86, 79, 78 (82)       | 84, 88                    |
|                  | 1                              | 86, 92, 86, 86 (88)       | 84, 94                    |
|                  | 21                             | 76, 80, 72, 72 (75)       | 82, 84                    |
|                  | 50                             | 78, 76, 84, 84 (81)       | 86, 88                    |
|                  | 91                             | 70, 70, 64, 66 (68)       | 82, 94                    |
|                  | 138                            | 58, 56, 54, 52 (55)       | 92, 90                    |
|                  | 182                            | 84, 70, 68, 76 (75)       | 90, 94                    |
|                  | 365                            | 70, 74, 74, 72 (73)       | 108, 112                  |
|                  | 534                            | 62, 68, 52, 62 (61)       | 104, 106                  |
|                  | 728                            | 66, 64, 70, 80 (70)       | 116, 118                  |
|                  | 917                            | 64, 52, 54, 66, (59)      | 110, 116                  |
|                  | 1107                           | 54, 56, 70, 54 (59)       | 100, 104                  |

Values in parentheses = mean recovery of stored samples

Residues of fluazinam were shown to be stable in potatoes (high starch content commodity) for up to 26 months, in potato chips for up to 38 months and in potato granules for up to 2 months. With respect to wet potato peel, the data shows a degradation at 91 days and 138 days. The recoveries then obtained from the stored samples after 182 days and 365 days were above 70% before a decline was seen after this time period. Overall the data supports the stability for a 12 month period.

#### Grapes

Samples of untreated homogenised grapes and wine were fortified separately with fluazinam, AMGT and AMPA (wine only) at 0.5 mg/kg. Samples were stored frozen (-22 to -12 °C) and analysed after intervals up to 36 months of storage. At each sampling point, four stored samples were analysed along with a control and two untreated crop samples freshly fortified with analytes at 0.5 mg/kg to act as procedural recoveries. Final determination was achieved using analytical method 1. The results are summarised in Tables 79, 80 and 81 for fluazinam, AMGT and AMPA respectively.

| Table 79 Storage stability | / data for fluazinam residues in grape | s and wine |
|----------------------------|----------------------------------------|------------|
|                            |                                        |            |

| Matrix     | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|------------|--------------------------------|---------------------------|---------------------------|
| Red grapes | 0                              | 92, 92, 92, 92 (92)       | 88, 86                    |
|            | 1                              | 92, 90, 78, 84 (86)       | 90, 82                    |
|            | 21                             | 92, 90, 78, 84 (86)       | 100, 102                  |
|            | 49                             | 94, 96, 86, 76 (88)       | 90, 84                    |
|            | 90                             | 84, 70, 66, 82 (76)       | 72, 70                    |
|            | 181                            | 92, 94, 92, 98 (94)       | 96, 84                    |
|            | 363                            | 86, 88, 84, 90 (87)       | 98, 90                    |
|            | 553                            | 110, 108, 96, 102 (104)   | 116, 108                  |
|            | 714                            | 82, 78, 70, 84 (79)       | 88, 86                    |
|            | 918                            | 86, 90, 90, 88 (89)       | 90, 94                    |

| Matrix       | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|--------------|--------------------------------|---------------------------|---------------------------|
|              | 1148                           | 80, 90, 80, 84 (84)       | 82, 82                    |
| White grapes | 0                              | 88, 86, 90, 88 (88)       | 92, 84                    |
|              | 1                              | 88, 88, 88, 90 (89)       | 90, 86                    |
|              | 21                             | 88, 90, 96, 90 (91)       | 88, 104                   |
|              | 50                             | 84, 90, 84, 82 (85)       | 86, 92                    |
|              | 91                             | 88, 86, 76, 86 (84)       | 86, 84                    |
|              | 182                            | 94, 94, 102, 102 (98)     | 96, 98                    |
|              | 361                            | 98, 86, 100, 104 (97)     | 96, 108                   |
|              | 550                            | 92, 98, 102, 100 (98)     | 96, 98                    |
|              | 709                            | 86, 92, 88, 92, (90)      | 90, 86                    |
|              | 914                            | 92, 88, 92, 92 (91)       | 92, 96                    |
|              | 1144                           | 90, 96, 90, 96 (93)       | 88, 96                    |
| Red wine     | 0                              | 104, 100, 104, 106 (104)  | 100, 102                  |
|              | 1                              | 102, 102, 102, 106 (103)  | 102, 102                  |
|              | 21                             | 102, 100, 100, 104 (102)  | 108, 106                  |
|              | 49                             | 82, 90, 112, 90 (94)      | 108, 98                   |
|              | 91                             | 90, 88, 100, 88, (92)     | 90, 78                    |
|              | 183                            | 116, 112, 118, 118 (116)  | 116, 116                  |
|              | 357                            | 116, 112, 116, 118 (116)  | 110, 118                  |
|              | 553                            | 98, 96, 100, 92 (97)      | 96, 100                   |
|              | 721                            | 94, 94, 94, 100 (96)      | 98, 100                   |
|              | 920                            | 98, 94, 102, 90 (96)      | 98, 100                   |
|              | 1155                           | 90, 96, 92, 96 (94)       | 96, 94                    |
| White wine   | 0                              | 104, 102, 104. 98 (102)   | 102, 100                  |
|              | 1                              | 108, 106, 108, 108 (108)  | 106, 106                  |
|              | 21                             | 104, 102, 102, 102 (103)  | 106, 106                  |
|              | 49                             | 90, 98, 110, 110 (102)    | 106, 90                   |
|              | 90                             | 96, 94, 108,114 (103)     | 124, 92                   |
|              | 182                            | 108, 104, 110, 108 (108)  | 112, 106                  |
|              | 354                            | 92, 104, 100, 98 (99)     | 108, 100                  |
|              | 550                            | 100, 94, 94, 100 (97)     | 98, 92                    |
|              | 718                            | 90, 92, 88, 94 (91)       | 96, 92                    |
|              | 917                            | 96, 104, 104 (101)        | 94                        |
|              | 1152                           | 92, 98, 96, 98 (96)       | 88, 88                    |

Values in parentheses = mean recovery of stored samples

# Table 80 Storage stability data for AMGT residues in grapes and wine

| Matrix       | Sample storage interval<br>(days) | % Remaining after storage | Procedural recoveries (%) |
|--------------|-----------------------------------|---------------------------|---------------------------|
| Red grapes   | 0                                 | 86, 90, 92, 92 (90)       | 84, 90                    |
|              | 1                                 | 82, 90, 94, 90 (89)       | 106, 98                   |
|              | 21                                | 84, 90, 92, 94 (90)       | 94, 102                   |
|              | 49                                | 98, 98, 98, 94 (97)       | 98, 108                   |
|              | 90                                | 98, 110, 124, 110 (111)   | 112, 114                  |
|              | 181                               | 92, 90, 82, 92 (89)       | 114, 106                  |
|              | 370                               | 86, 88, 92, 74 (85)       | 96, 96                    |
|              | 615                               | 74, 74, 72, 74 (74)       | 92, 94                    |
|              | 728                               | 76, 82, 80, 76 (79)       | 88, 92                    |
|              | 930                               | 74, 72, 72, 74 (73)       | 82, 82                    |
|              | 1162                              | 84, 82, 86, 86 (85)       | 96, 98                    |
| White grapes | 0                                 | 94, 94, 90, 90 (92)       | 92, 94                    |
|              | 1                                 | 98, 102, 94, 100 (99)     | 90, 106                   |
|              | 21                                | 80, 88, 60, 80 (77)       | 92, 88                    |
|              | 50                                | 90, 94, 98, 100 (96)      | 102, 104                  |
|              | 91                                | 80, 84, 88, 72 (81)       | 94, 92                    |
|              | 182                               | 72, 92, 74, 88 (82)       | 102, 96                   |
|              | 367                               | 70, 80, 74, 74 (75)       | 82, 82                    |
|              | 616                               | 66, 68, 72, 62 (67)       | 90, 90                    |

| Matrix     | Sample storage interval<br>(days) | % Remaining after storage | Procedural recoveries (%) |
|------------|-----------------------------------|---------------------------|---------------------------|
|            | 724                               | 78, 78, 76 74 (77)        | 88, 84                    |
|            | 927                               | 62, 74, 72, 70 (70)       | 78, 76                    |
|            | 1155                              | 74, 80, 82, 76 (78)       | 96, 98                    |
| Red wine   | 0                                 | 94, 92, 90, 108 (96)      | 88, 88                    |
|            | 1                                 | 92, 96, 94, 96 (95)       | 98, 94                    |
|            | 21                                | 78, 82, 80, 92 (83)       | 98, 08                    |
|            | 49                                | 94, 96, 88, 88 (92)       | 102, 106                  |
|            | 91                                | 84, 86, 86, 84 (85)       | 92, 92                    |
|            | 183                               | 90, 94, 84, 80 (87)       | 106, 90                   |
|            | 380                               | 80, 80, 82, 78 (80)       | 88, 94                    |
|            | 563                               | 78, 78, 80, 74 (78)       | 104, 100                  |
|            | 728                               | 96, 94, 98 (96)           | 106                       |
|            | 934                               | 82, 76, 74, 74 (77)       | 90, 84                    |
|            | 1165                              | 86, 90, 92, 90 (90)       | 98, 112                   |
| White wine | 0                                 | 92, 84, 98 (91)           | 96, 80                    |
|            | 1                                 | 62, 76, 82, 84 (76)       | 66, 74                    |
|            | 21                                | 88, 92, 98, 92 (93)       | 100, 94                   |
|            | 49                                | 100, 100, 106, 105 (103)  | 82, 108                   |
|            | 90                                | 84, 96, 98, 98 (94)       | 98, 94                    |
|            | 181                               | 92, 92, 96, 98 (95)       | 98, 98                    |
|            | 375                               | 94, 96, 96, 98 (96)       | 92, 86                    |
|            | 557                               | 78, 80, 78, 78 (79)       | 88, 84                    |
|            | 728                               | 94, 90, 88, 106 (95)      | 98, 100                   |
|            | 935                               | 90, 80, 88, 84 (86)       | 84, 88                    |
|            | 1163                              | 96, 92, 92, 92 (93)       | 98, 94                    |

Values in parentheses = mean recovery of stored samples

## Table 81 Storage stability data for AMPA residues in wine

| Matrix     | Sample storage interval (davs) | % Remaining after storage | Procedural recoveries (%) |
|------------|--------------------------------|---------------------------|---------------------------|
| Red wine   | 0                              | 104, 104, 108, 104 (105)  | 102, 106                  |
|            | 1                              | 104, 108, 108, 110 (108)  | 104, 106                  |
|            | 21                             | 100, 106, 106, 104 (104)  | 98, 100                   |
|            | 49                             | 100, 114, 112, 112 (110)  | 102, 104                  |
|            | 90                             | 82, 96, 90, 96 (91)       | 92, 88                    |
|            | 186                            | 114, 114, 110, 114 (113)  | 114, 112                  |
|            | 362                            | 98, 100, 98, 100 (99)     | 96, 98                    |
|            | 553                            | 80, 92, 100, 92 (91)      | 98, 98                    |
|            | 727                            | 92, 84, 86, 76 (85)       | 80, 90                    |
|            | 901                            | 110, 118, 116, 118, (116) | 108, 112                  |
|            | 1142                           | 98, 98, 104, 98 (100)     | 100, 100                  |
| White wine | 0                              | 106, 108, 106, 108 (107)  | 106, 104                  |
|            | 1                              | 108, 110, 112, 112 (111)  | 102, 102                  |
|            | 21                             | 98, 98, 100, 102 (100)    | 90, 96                    |
|            | 49                             | 88, 98, 84, 100 (93)      | 94, 98                    |
|            | 90                             | 80, 109, 96, 96 (95)      | 90, 94                    |
|            | 181                            | 100, 102, 108,100 (103)   | 98, 102                   |
|            | 357                            | 98, 102, 106, 107 (103)   | 100, 102                  |
|            | 549                            | 90, 86, 96, 86 (90)       | 90, 94                    |
|            | 722                            | 88, 86, 80, 96 (88)       | 84, 94                    |
|            | 896                            | 102, 100, 106, 106 (104)  | 102, 102                  |
|            | 1140                           | 94, 96, 104, 104 (100)    | 94, 92                    |

Values in parentheses = mean recovery of stored samples

Residues of fluazinam were shown to be stable in grapes (high acid content commodity) and wine for at least 38 months after frozen storage. Residues of AMGT were shown to be stable in grapes (high acid content commodity) and wine for at least 39 months after frozen storage. Residues of AMPA were shown to be stable in wine for at least 38 months after frozen storage.

#### Peanut nutmeats

Samples of untreated peanut nutmeat were fortified with fluazinam at 0.25 mg/kg. Samples were stored frozen (-23 to -12 °C) and analysed at different intervals up to 190 days of storage. At each sampling point, three stored samples were analysed along with a control and two untreated crop samples freshly fortified with fluazinam at 0.25 mg/kg to act as procedural recoveries. Final determination was achieved using analytical method 1. The results are summarised in Table 82.

| Matrix          | Sample storage interval<br>(days) | % Remaining after storage | Procedural recoveries (%) |
|-----------------|-----------------------------------|---------------------------|---------------------------|
| Peanut nutmeats | 0                                 | 104, 88, 80 (91)          | 92, 92                    |
|                 | 29                                | 76, 72, 88 (79)           | 84, 68                    |
|                 | 60                                | 84, 76, 88 (83)           | 84, 96                    |
|                 | 88                                | 80, 84, 80 (81)           | 96, 104                   |
|                 | 102                               | 88, 88, 80 (85)           | 100, 104                  |
|                 | 190                               | 80, 76, 84 (80)           | 100, 108                  |

Table 82 Storage stability data for fluazinam residues in peanut nutmeats

Values in parentheses = mean recovery of stored samples

Residues of fluazinam were shown to be stable in peanut nutmeat (high oil content commodity) for at least 6 months in freezer storage.

#### Peanuts and processed fractions

Homogenised samples of peanut nutmeat, hay, hull, meal and oil were fortified with fluazinam at 0.5 mg/kg (0.4 mg/kg for peanut oil). Samples were stored frozen (-22 to -12 °C) and analysed after different intervals up to 36 months of storage. At each sampling point, four stored samples were analysed along with a control and two untreated crop samples freshly fortified with analytes at 0.5 mg/kg to act as procedural recoveries. Final determination was achieved using analytical method 1. The results are summarised in Table 83.

| Table 83 Storage stability | data for fluazinam residues in i | peanut fractions |
|----------------------------|----------------------------------|------------------|
|                            |                                  |                  |

| Matrix          | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|-----------------|--------------------------------|---------------------------|---------------------------|
| Peanut hay      | 0                              | 84, 86, 86, 84 (85)       | 84, 86                    |
| -               | 1                              | 88, 88, 88, 92 (89)       | 85, 85                    |
|                 | 21                             | 88, 84, 86, 86 (86)       | 77, 80                    |
|                 | 49                             | 84, 78, 82, 80 (81)       | 78, 81                    |
|                 | 91                             | 92, 88, 90, 90 (90)       | 80, 87                    |
|                 | 184                            | 84, 84, 80, 86 (84)       | 84, 88                    |
|                 | 366                            | 78, 80, 80, 86 (81)       | 77, 77                    |
|                 | 548                            | 80, 80, 82, 88 (83)       | 91, 86                    |
|                 | 752                            | 90, 84, 86, 88 (87)       | 96, 92                    |
|                 | 924                            | 84, 86, 74,8 8 (83)       | 95, 95                    |
|                 | 1164                           | 72, 68, 66, 70 (69)       | 76, 68                    |
| Peanut hulls    | 0                              | 90, 92, 92, 94 (92)       | 103, 91                   |
|                 | 1                              | 102, 100, 102, 100 (101)  | 94, 97                    |
|                 | 21                             | 98, 100, 102, 102 (101)   | 98, 97                    |
|                 | 49                             | 92, 92, 94, 90 (92)       | 95, 92                    |
|                 | 91                             | 102, 102,100,98 (101)     | 105, 104                  |
|                 | 181                            | 98, 94, 94, 84 (93)       | 95, 94                    |
|                 | 364                            | 90, 92, 92, 90 (91)       | 86, 94                    |
|                 | 545                            | 86, 86, 90, 90 (88)       | 91, 105                   |
|                 | 747                            | 98, 100, 100, 100 (100)   | 107, 110                  |
|                 | 916                            | 80, 84, 88, 86 (85)       | 93, 93                    |
|                 | 1156                           | 76, 80, 82, 80 (80)       | 91, 91                    |
| Peanut nutmeats | 0                              | 76, 74, 72, 70 (73)       | 81, 61                    |

| Matrix      | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|-------------|--------------------------------|---------------------------|---------------------------|
|             | 1                              | 92, 94, 90, 98 (94)       | 95, 96                    |
|             | 21                             | 90, 88, 84, 88 (88)       | 91, 85                    |
|             | 49                             | 88, 86, 86, 88 (87)       | 89, 91                    |
|             | 89                             | 90, 86, 90, 92 (90)       | 83, 92                    |
|             | 181                            | 88, 90, 86, 92 (89)       | 85, 90                    |
|             | 368                            | 84, 84, 84, 86 (85)       | 87, 90                    |
|             | 550                            | 86, 78, 86, 80 (83)       | 93, 98                    |
|             | 753                            | 92, 88, 82, 86 (87)       | 85, 89                    |
|             | 924                            | 76, 80, 76, 76 77)        | 90, 90                    |
|             | 1167                           | 64, 68, 74, 68 (69)       | 86, 86                    |
| Peanut meal | 0                              | 92, 86, 82, 86 (87)       | 86, 86                    |
|             | 1                              | 78, 78, 80, 80 (79)       | 83, 83                    |
|             | 21                             | 70, 74, 70, 68 (71)       | 82, 83                    |
|             | 49                             | 56, 54, 54, 60 (56)       | 81, 74                    |
|             | 71                             | 54, 58, 54, 54 (55)       | 83, 70                    |
|             | 90                             | 58, 60, 48, 54 (55)       | 80, 71                    |
|             | 183                            | 48, 50, 42, 78 (55)       | 79, 80                    |
|             | 364                            | 44, 48, 50, 50 (48)       | 77, 77                    |
|             | 546                            | 42, 36, 40, 36 (39)       | 80, 76                    |
|             | 743                            | 70, 68 ,62, 70 (68)       | 100, 105                  |
|             | 916                            | 44, 46, 44, 36 (43)       | 81, 72                    |
|             | 1151                           | 40, 32, 26, 32 (33)       | 77,77                     |
| Peanut oil  | 0                              | 85, 98, 98, 95 (94)       | 90, 93                    |
|             | 1                              | 90, 95,95,102.5 (96)      | 92, 97                    |
|             | 21                             | 102.5, 103,103,103 (103)  | 109, 109                  |
|             | 49                             | 100, 100, 93, 100 (98)    | 95, 92                    |
|             | 90                             | 100, 108, 108, 105 (105)  | 113, 117                  |
|             | 181                            | 90, 88, 90, 90 (89)       | 102, 97                   |
|             | 365                            | 93, 93, 95, 95 (94)       | 103, 100                  |
|             | 547                            | 95, 85, 80, 85 (87)       | 95, 92                    |
|             | 738                            | 90, 90, 93, 98 (93)       | 102, 105                  |
|             | 910                            | 88, 88, 88, 88 (88)       | 103, 103                  |
|             | 1147                           | 83, 78, 78, 78 (79)       | 94, 99                    |

Values in parentheses = mean recovery of stored samples

Residues of fluazinam were shown to be stable in peanut nutmeat (high oil content commodity), hulls, and hay for at least 39 months, in peanut oil for at least 38 months and in peanut meal for up to 21 days after frozen storage.

#### Apple and processed commodities

Samples of apples were chopped and homogenised using a Hobart chopper. The homogenised apple, wet apple pomace and apple juice samples were fortified with fluazinam and AMGT separately at 0.5 mg/kg and stored frozen for up to three years (-18 °C to - 20 °C). At specified sampling intervals, four replicate fortified (stored) samples were analysed for residues of fluazinam along with one control sample and two concurrent (fresh) fortification samples. Final determination was achieved using analytical method 1. The results are summarised in Tables 84 and 85 for fluazinam and AMGT respectively.

Table 84 Storage stability data for fluazinam in apples and processed apple fractions

| Matrix | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|--------|--------------------------------|---------------------------|---------------------------|
| Apple  | 0                              | 90 ,84 ,94 ,82(88)        | 104, 92                   |
|        | 1                              | 86 ,82 ,92(87)            | 90, 104                   |
|        | 21                             | 100 ,100 ,92 ,92 (96)     | 94, 110                   |
|        | 57                             | 96 ,92 ,86 ,88(90.5)      | 88, 98                    |
|        | 93                             | 114 ,108 ,112 ,118 (113)  | 120, 118                  |
|        | 181                            | 98 ,100 ,108 ,98 (101)    | 108, 108                  |
|        | 366                            | 88 ,92 ,92 ,90 (91)       | 96, 98                    |
|        | 547                            | 106 ,94 ,104 ,98 (101)    | 100, 98                   |
|        | 733                            | 116 ,114 ,114 ,104 (112)  | 124, 114                  |

| Matrix           | Sample storage interval (days) | % Remaining after storage | Procedural recoveries (%) |
|------------------|--------------------------------|---------------------------|---------------------------|
|                  | 915                            | 106 ,114 ,106 ,106 (108)  | 114, 100                  |
|                  | 1097                           | 92 ,102 ,100 ,98 (98)     | 118, 112                  |
| Apple juice      | 0                              | 76 ,82 ,86 ,90 (85)       | 78, 70                    |
|                  | 1                              | 92 ,90 ,90 ,86 (90)       | 98, 98                    |
|                  | 21                             | 78 ,84 ,86 ,84 (83)       | 90, 90                    |
|                  | 50                             | 96 ,86 ,88 ,88(90)        | 92, 104                   |
|                  | 92                             | 104 ,96 ,98 ,96 (99)      | 100, 104                  |
|                  | 182                            | 102 ,104 ,102 ,102 (103)  | 102, 100                  |
|                  | 364                            | 82 ,92 ,90 ,86 (88)       | 88, 90                    |
|                  | 546                            | 86 ,80 ,90 ,84(85)        | 98, 84                    |
|                  | 731                            | 104 ,102 ,106 ,110 (106)  | 96, 98                    |
|                  | 912                            | 92 ,100 ,98 ,104 (99)     | 104, 88                   |
|                  | 1094                           | 92 ,88 ,94 ,92 (92)       | 92, 94                    |
| Apple wet pomace | 0                              | 118 ,110 ,122 (117)       | 114, 122                  |
|                  | 1                              | 114 ,114 ,110 ,108 (112)  | 110, 116                  |
|                  | 21                             | 84 ,88 ,88 ,78 (85)       | 86, 86                    |
|                  | 49                             | 100 ,88 ,94 ,96(95)       | 92, 100                   |
|                  | 92                             | 76 ,86 ,94 ,90 (87)       | 92, 92                    |
|                  | 181                            | 100 ,96 ,96 ,98 (98)      | 100, 108                  |
|                  | 363                            | 84 ,92 ,88 ,86 (88)       | 80, 78                    |
|                  | 546                            | 90 ,86 ,82 ,88 (87)       | 92, 88                    |
|                  | 729                            | 118 ,118 ,126 ,120 (121)  | 112, 112                  |
|                  | 916                            | 110 ,108 ,114 ,108 (110)  | 114, 118                  |
|                  | 1096                           | 88 ,88 ,86 ,86 (87)       | 90, 90                    |

Values in parentheses = mean recovery of stored samples

# Table 85 Storage stability data for AMGT in apples and processed apple fractions

| Matrix           | Sample storage interval<br>(days) | % Remaining after storage | Procedural recoveries (%) |
|------------------|-----------------------------------|---------------------------|---------------------------|
| Apple            | 0                                 | 80, 88, 90, 82 (85)       | 86, 88                    |
|                  | 1                                 | 112, 96, 94, 88 (98)      | 100, 92                   |
|                  | 21                                | 88, 100, 80, 98 (92)      | 96, 84                    |
|                  | 49                                | 98, 90, 90, 106 (96)      | 100, 94                   |
|                  | 90                                | 60, 52, 70, 68 (63)       | 86, 86                    |
|                  | 94                                | 96, 100, 100, 110 (102)   | 112, 108                  |
|                  | 180                               | 86, 82, 86, 78 (83)       | 106, 86                   |
|                  | 360                               | 74, 74, 74, 76 (75)       | 84, 72                    |
|                  | 559                               | 68, 68, 62, 68 (67)       | 88, 90                    |
|                  | 566                               | 66, 66, 64, 68 (66)       | 94, 90                    |
|                  | 714                               | 76, 70, 70, 70 (72)       | 92, 104                   |
|                  | 932                               | 62, 78, 66, 70 (69)       | 90, 104                   |
|                  | 1108                              | 62, 70, 64, 68 (66)       | 88, 104                   |
| Apple juice      | 0                                 | 98, 94, 86, 88 (92)       | 96, 96                    |
|                  | 1                                 | 94, 98, 98, 104 (99)      | 98, 90                    |
|                  | 21                                | 98, 94, 90, 92 (94)       | 92, 94                    |
|                  | 49                                | 100, 88, 104, 96 (97)     | 64, 80                    |
|                  | 90                                | 76, 82, 82, 82 (81)       | 82, 84                    |
|                  | 180                               | 100, 98, 84, 106 (97)     | 116, 108                  |
|                  | 360                               | 90, 80, 88, 88 (87)       | 90, 88                    |
|                  | 581                               | 82, 78, 80, 70 (78)       | 92, 90                    |
|                  | 735                               | 70, 68, 62, 70 (68)       | 74, 74                    |
|                  | 960                               | 68, 76, 66, 72 (71)       | 80, 102                   |
|                  | 1114                              | 66, 60, 62, 64 (63)       | 70, 90                    |
| Apple wet pomace | 0                                 | 84, 76, 84, 72(79)        | 74, 78                    |
|                  | 1                                 | 88, 78, 86, 78 (83)       | 88, 90                    |
|                  | 21                                | 80, 76, 74, 78 (77)       | 78, 80                    |
|                  | 49                                | 76, 68, 64, 76 (71)       | 78, 82                    |

| Matrix | Sample storage interval<br>(days) | % Remaining after storage | Procedural recoveries (%) |
|--------|-----------------------------------|---------------------------|---------------------------|
|        | 90                                | 72, 72, 72, 72 (72)       | 92, 84                    |
|        | 180                               | 52, 80, 84, 46 (66)       | 104, 92                   |
|        | 360                               | 62, 62, 60, 64 (62)       | 74, 72                    |
|        | 577                               | 48, 54, 56, 50 (52)       | 84, 96                    |
|        | 584                               | 52, 50, 50, 56 (52)       | 80, 94                    |
|        | 742                               | 68, 76, 72, 58 (69)       | 92, 86                    |
|        | 959                               | 52, 60, 50, 50 (53)       | 82, 94                    |
|        | 1128                              | 28, 26, 28, 26( 27)       | 88, 92                    |

Values in parentheses = mean recovery of stored samples

Residues of fluazinam were shown to be stable in apple (high water content commodity) and apple wet pomace for at least 37 months and in apple juice for at least 36 months after frozen storage. Residues of AMGT were shown to be stable in apple (high water content commodity) up to 31 months, in apple juice for up to 32 months and in apple wet pomace for up to 3 months after frozen storage.

### Various crops

The stability of residues in a number of crops were investigated within the residue trial studies.

The homogenised crop samples were fortified with fluazinam and stored frozen. Stored samples were analysed along with control and concurrent recovery samples.

In some cases the stability of AMGT was also investigated:

- · For blueberries separate samples were fortified with fluazinam and AMGT
- For Cabbage (heads with wrapper leaves) samples were fortified with fluazinam and AMGT using a mixed fortification standard
- For cantaloupe samples were fortified with fluazinam and AMGT using a mixed fortification standard
- Cucumbers samples were fortified with fluazinam and AMGT using a mixed fortification standard
- For summer squash samples were fortified with fluazinam and AMGT using a mixed fortification standard
- For pepper samples were fortified with fluazinam and AMGT using a mixed fortification standard
- · For soya bean separate samples were fortified with fluazinam and AMGT
- In the majority of cases the initial fortification levels in the crops were not verified by the analysis of a time zero sample. The results are summarised in Tables 86 and 87 for fluazinam and AMGT respectively.

Table 86 Storage stability data for fluazinam in various crops

| Matrix       | Analytical<br>method<br>number | Storage<br>temperature <sup>b</sup><br>(°C) | Fortification level<br>(mg/kg) | Sample storage<br>interval (days) | Stored recoveries<br>(%) | Procedural<br>recoveries (%)  |
|--------------|--------------------------------|---------------------------------------------|--------------------------------|-----------------------------------|--------------------------|-------------------------------|
| Blueberries  | 1                              | -21                                         | 0.1                            | 203                               | 98, 99, 84 (94)          | 100, 100                      |
| Onion        | 1                              | -40 to -6                                   | 1                              | 429                               | 99, 94, 100 (98)         | 114                           |
| Broccoli     | 1                              | -21                                         | 0.1                            | 182†                              | 39, 52, 50 (47)          | 43, 46, 38,77,<br>72,73,49,82 |
|              |                                |                                             |                                | 205†                              | 66, 68, 68 (67)          | 88, 72, 90                    |
| Broccoli     | 1                              | -20                                         | 0.1                            | 232                               | 50, 52, 42 (52)          | 67                            |
| Cabbage      | 1                              | -22 to -4                                   | 0.1                            | 560                               | 26, 27, 33 (29)          | 99                            |
| Cabbage head | 1                              | -22 to -4                                   | 0.1                            | 0                                 | 77, 76, 77 (77)          | 72                            |
| with wrapper |                                |                                             |                                | 1                                 | 76, 79, 70 (75)          | 89                            |
| leaves       |                                |                                             |                                | 4                                 | 72, 69, 62 (68)          | 85                            |
|              |                                |                                             |                                | 7                                 | 64, 59, 63 (59)          | 72                            |
|              |                                |                                             |                                | 10                                | 61, 58, 53(57)           | 77                            |
|              |                                |                                             |                                | 14                                | 62, 57, 56 (58)          | 72                            |
|              |                                |                                             |                                | 21                                | 55, 55, 53 (54)          | 70                            |
|              |                                |                                             |                                | 28                                | 59, 62, 60 (60)          | 82                            |

| Matrix           | Analytical | Storage                  | Fortification level | Sample storage  | Stored recoveries            | Procedural     |
|------------------|------------|--------------------------|---------------------|-----------------|------------------------------|----------------|
|                  | method     | temperature <sup>b</sup> | (mg/kg)             | interval (days) | (%)                          | recoveries (%) |
|                  | number     | (°C)                     |                     |                 |                              |                |
|                  |            |                          |                     | 35              | 46, 47, 47 (47)              | 72             |
|                  |            |                          |                     | 42              | 58, 53, 55 (55)              | 77             |
|                  |            |                          |                     | 65              | 46, 40, 44 (43)              | 71             |
|                  |            |                          |                     | 95              | 59, 44, 54 (52)              | 86             |
|                  |            |                          |                     | 125             | 76, 78, 69 (74)              | 107            |
|                  |            |                          |                     | 155             | 81, 79, 87 (82)              | 115            |
|                  |            |                          |                     | 185             | 54, 54, 54 (54)              | 75             |
| Cabbage head     | 3          | -20                      | 0.1                 | 435             | 69, 71, 70 (70)              | 88, 86         |
| with wrapper     |            |                          |                     |                 |                              |                |
| leaves           |            |                          |                     |                 |                              |                |
| Cantaloupe       | 10         | -20                      | 0.1                 | 1184            | 78, 77, 75 (77)              | 69, 68         |
| Cucumber         | 10         | -20                      | 0.1                 | 477             | 80, 84, 86 (83)              | 91, 90         |
| Summer squash    | 10         | -20                      | 0.1                 | 425             | 70, 72, 72 (72)              | 90, 89         |
| Pepper           | 10         | -20                      | 1                   | 1241            | 61, 73, 70 (68)              | See table 67 ° |
| Mustard greens   | 1          | -22 to -4                | 0.1                 | 590             | 44, 52, 40 (45)              | See table 65 ° |
| Lettuce          | 1          | -40 to 0                 | 1                   | 414             | 75, 70 (72)                  | 118            |
|                  |            |                          |                     | 419             | 85, 87 (86)                  | 117            |
| Succulent bean   | 1          | -38 to -1                | 1                   | 377             | 59, 58, 69 (62)              | 75             |
| (bean without a  |            |                          |                     |                 |                              |                |
| pod)–snap bean   |            |                          |                     |                 |                              |                |
|                  |            |                          |                     |                 |                              |                |
| Lima bean        | 1          | -38 to -1                | 1                   | 455             | 51, 46, 57 (51)              | 78             |
| Soya bean forage | 10         | <-10                     | 0.1                 | 0               | 97, 103, 96 (98)             | 91, 114        |
|                  |            |                          |                     | 37              | 79, 86, 72 (79)              | 89, 101        |
|                  |            |                          |                     | 62              | 76, 76, 67 (73)              | 82, 102        |
|                  |            |                          |                     | 125             | 84, 86, 104 (91)             | 109, 107       |
|                  |            |                          |                     | 153             | 82, 87, 102 (90)             | 102, 106       |
| Soya bean hay    | 10         | <-10                     | 0.1                 | 0               | 120, 119, 107                | 116, 120       |
|                  |            |                          |                     |                 | (115)                        |                |
|                  |            |                          |                     | 37              | 72, 86, 70 (76)              | 85, 92         |
|                  |            |                          |                     | 62              | 73, 68, 77 (73)              | 106, 116       |
|                  |            |                          |                     | 125             | 69, 79, 82 (77)              | 107, 95        |
|                  |            |                          |                     | 153             | 78, 81, 80 (79)              | 108, 97        |
| Soya bean seed   | 10         | <-10                     | 0.1                 | 0               | 85, 87, 86 (86)              | 84, 83         |
|                  |            |                          |                     | 37              | 78, 73, 87 (79)              | 105, 119       |
|                  |            |                          |                     | 62              | 76, 65, 65 (69)              | 91, 105        |
|                  |            |                          |                     | 125             | 82, 81, 80 (81)              | 105, 95        |
|                  |            |                          |                     | 153             | 74, 73, 73 (73)              | 106, 88        |
| Bean (dry)       | 1          | -22 to -4                | 1                   | 307             | 58, 46, 59 (54)              | 96             |
| Carrot           | 1          | -22 to -4                | 1                   | 469             | 79, 70, 80 (76)              | 83, 105        |
| Ginseng          | 1          | -21                      | 1                   | 332             | 49, 46, 42 (46)              | 75, 75, 80     |
|                  |            |                          |                     | 344             | 64, 59, 56 (60) <sup>a</sup> | 77, 76, 78     |

Values in parentheses = mean recovery of stored samples

<sup>a</sup> Storage stability repeated for broccoli as first set of data at 182 days showed poor recoveries from the storage and freshly prepared samples. The extraction procedure of the analytical method was modified slightly for the samples analysed at 205 days. Storage stability was also repeated for ginseng due to the low recoveries obtained in the first set of data.

<sup>b</sup> The trial samples were subject to the same temperature ranges during storage prior to analysis

<sup>c</sup> Freshly fortified samples were not prepared for peppers and mustard greens. The recovery data generated for the analytical methods were generated at the same time as the analysis of the stored samples. The data in the tables indicated are applicable.

| Matrix                              | Analytical<br>method<br>Number | Storage<br>temperature <sup>a</sup><br>(°C) | Fortification level<br>(mg/kg) | Sample storage<br>interval (days) | Stored recoveries<br>(%)     | Procedural<br>recoveries (%) |
|-------------------------------------|--------------------------------|---------------------------------------------|--------------------------------|-----------------------------------|------------------------------|------------------------------|
| Blueberries                         | 1                              | -21                                         | 0.1                            | 251-259                           | 70, 140, 34, 110, 60<br>(89) | 120, 65, 94, 62, 70,<br>64   |
|                                     |                                |                                             | 0.2                            | 219                               | 75, 75, 75 (75)              | 85                           |
| Cabbage head with<br>wrapper leaves | 3                              | -20                                         | 0.1                            | 435                               | 54, 53, 52 (53)              | 93, 94                       |
| Cantaloupe                          | 3                              | -20                                         | 0.1                            | 1035                              | 86, 85, 82 (84)              | 98, 72                       |
|                                     |                                |                                             |                                | 1055                              | 78, 81, 88 (82)              | 70                           |
| Cucumber                            | 3                              | -20                                         | 0.1                            | 477                               | 84, 88, 92 (88)              | 98, 97                       |
| Summer squash                       | 3                              | -20                                         | 0.1                            | 425                               | 79, 86, 81 (82)              | 96, 90                       |
| Pepper                              | 3                              | -20                                         | 1                              | 1106                              | 72, 78, 74 (75)              | See Table 67 <sup>b</sup>    |
| Soya bean forage                    | 3                              | <-10                                        | 0.1                            | 0                                 | 108, 120, 118 (115)          | 98, 104                      |
|                                     |                                |                                             |                                | 37                                | 87, 87, 79 (84)              | 1115, 112                    |
|                                     |                                |                                             |                                | 62                                | 93, 86, 82 (87)              | 104, 111                     |
|                                     |                                |                                             |                                | 125                               | 84, 81, 93 (85)              | 108, 110                     |
|                                     |                                |                                             |                                | 153                               | 86, 88, 95 (89)              | 113, 110                     |
| Soya bean hay                       | 3                              | <-10                                        | 0.1                            | 0                                 | 118, 116,118 (117)           | 87, 98                       |
|                                     |                                |                                             |                                | 37                                | 87, 77, 74 (76)              | 109, 111                     |
|                                     |                                |                                             |                                | 62                                | 77, 71, 76 (75)              | 97, 112                      |
|                                     |                                |                                             |                                | 125                               | 86, 86, 85 (85)              | 102, 98                      |
|                                     |                                |                                             |                                | 153                               | 80, 91, 82 (84)              | 111, 101                     |
| Soya bean seed                      | 3                              | <-10                                        | 0.1                            | 0                                 | 119, 118, 119 (118)          | 87, 104                      |
| -                                   |                                |                                             |                                | 37                                | 71, 76, 71 (72)              | 100, 118                     |
|                                     |                                |                                             |                                | 62                                | 54, 57, 59 (56)              | 98, 111                      |
|                                     |                                |                                             |                                | 125                               | 73, 75, 72 (73)              | 113, 98                      |
|                                     |                                |                                             |                                | 153                               | 75, 70, 72 (94)              | 89, 98                       |

Table 87 Storage stability data for AMGT in various crops

Values in parentheses = mean recovery of stored samples

<sup>a</sup> The trial samples were subject to the same temperature ranges during storage prior to analysis

<sup>b</sup> Freshly fortified samples were not prepared for peppers. The recovery data generated for the analytical methods were generated at the same time as the analysis of the stored samples. The data in the tables indicated are applicable.

#### Теа

Separate samples of non-milled untreated dried tea leaves were fortified with fluazinam, MAPA and HYPA at 2.0 mg/kg and stored frozen (-20 °C). Stored samples were analysed along with control samples. No procedural recoveries were analysed. Final determination was achieved using analytical methods 1 or 12. The results are summarised in Table 88.

Table 88 Storage stability data for tea

| Analyte   | Sample storage interval (days) | Stored recoveries (%)       | Procedural recoveries (%)      |
|-----------|--------------------------------|-----------------------------|--------------------------------|
| Fluazinam | 32                             | 77, 70 (74)                 | No procedural recovery samples |
|           | 77                             | 87, 79 (84)                 | were given                     |
|           | 156                            | 89, 88, 94, 86, 97, 95 (92) |                                |
| MAPA      | 32                             | 77, 76 (77)                 |                                |
|           | 77                             | 86, 81 (84)                 |                                |
|           | 156                            | 75, 72, 72, 70, 74, 73 (73) |                                |
| НҮРА      | 32                             | 77, 69 (83)                 |                                |
|           | 77                             | 88, 86 (87)                 |                                |
|           | 170                            | 65, 62, 69, 65, 68, 65 (67) |                                |

#### Animal commodities

Separate control samples of milk and tissues of muscle, liver, fat and kidney were fortified with fluazinam, AMPA and DAPA at 0.1 mg/kg and stored frozen. Unfortified samples to serve as control and procedural recovery samples were also prepared.

At specified sampling intervals stored samples and freshly fortified samples were analysed for residues of fluazinam, AMPA and DAPA. Final determination was achieved using analytical method IB-2007-JLW-004-00-01. The method used for milk included a hydrolysis step to extract any sulfamate conjugates that may be present. For kidney and liver samples two sets of analysis were undertaken; extraction with acetonitrile: water, and extraction with acetonitrile: water followed by a hydrolysis step with HCI. The results are summarised in Table 89.

| Analyte   | Matrix                         | Sample storage interval | Stored recoveries               | Procedural recoveries |
|-----------|--------------------------------|-------------------------|---------------------------------|-----------------------|
|           |                                | (days)                  | (%)                             | (%)                   |
| Fluazinam | Milk                           | 183                     | 79, 87, 95 (87)                 | 79, 87                |
|           | Fat                            | 205                     | 84, 84, 87 (85)                 | 90, 91                |
|           | Mussla                         | 1                       | 62, 66, 62 (63)                 | 68, 64                |
|           | Muscle                         | 164                     | 43, 44, 47 (45)                 | 83, 79                |
|           | Liver (non-hydrolysis method)  | 209                     | 28, 24, 29 (27)                 | 76, 82                |
|           | Liver (hydrolysis method)      | 210                     | 18, 20, 19 (21)                 | 68, 76                |
|           | Kidney (non-hydrolysis method) | 210                     | 19, 23, 21(35)                  | 42, 53                |
|           | Kidney (hydrolysis method)     | 218                     | 34, 36, 34 (35)                 | 86, 85                |
| AMPA      | Milk                           | 183                     | 87, 87, 98 (91)                 | 92, 96                |
|           | Fat                            | 205                     | 92, 90, 91 (91)                 | 108, 106              |
|           | Mucele                         | 2                       | 109, 113, 107 (110)             | 103, 90               |
|           | Muscle                         | 161                     | 42, 38, 34 (38)                 | 95, 91                |
|           | Liver (non-hydrolysis method)  | 209                     | 42, 43, 48 (44)                 | 45, 55                |
|           | Liver (hydrolysis method)      | 210                     | 31, 43, 38 (37)                 | 47, 48                |
|           | Kidney (non-hydrolysis method) | 218                     | 31, 43, 38 (37)                 | 60, 68                |
|           | Kidney (hydrolysis method)     | 218                     | 26, 37, 33 (32)                 | 57, 64                |
| DAPA      | Milk                           | 183                     | 90, 87, 88 (88)                 | 76, 78                |
|           | Fat                            | 205                     | 62, 57, 59 <b>(</b> 59 <b>)</b> | 92, 92                |
|           | Mucele                         | 2                       | 102, 98, 90 (97)                | 104, 93               |
|           | Muscle                         | 161                     | 11, 10, 9 (10)                  | 97, 95                |
|           | Liver (non-hydrolysis method)  | 209                     | 14, 19, 22 (18)                 | 31, 53                |
|           | Liver (hydrolysis method)      | 210                     | 17, 18, 20 (18)                 | 33, 36                |
|           | Kidney (non-hydrolysis method) | 218                     | 13, 23 ,18 (18)                 | 68, 77                |
|           | Kidney (hydrolysis method)     | 218                     | 4, 6, 7 (6)                     | 20, 45                |

Table 89 Storage stability data for fluazinam, AMGT and DAPA in animal matrices

Values in parentheses = mean recovery of stored samples

#### Stability of residues in samples extract

The storage stability of sample extracts was addressed by the analysis of procedural recovery samples which were prepared, stored and analysed concurrently with the samples from the residue trials.

### **USE PATTERNS**

Table 90 represents a summary of the GAPs submitted for consideration in this Meeting.

Table 90 List of uses of fluazinam submitted for this meeting

| Сгор                                     | Country | Indoor/<br>outdoor | Туре   | Timing of application      | Rate per appl'n<br>(kg ai/ha) | Total appl'n<br>(kg ai/ha) | No. of appl'n<br>(interval)          | PHI<br>(days)               |
|------------------------------------------|---------|--------------------|--------|----------------------------|-------------------------------|----------------------------|--------------------------------------|-----------------------------|
| Apple                                    | USA     | Outdoor            | Foliar | Not stated                 | 0.504                         | 5.045                      | Must not<br>exceed 10<br>(7–10 days) | 28                          |
| Wine grape                               | Hungary | Outdoor            | Foliar | BBCH 79                    | 0.750                         | 3.75                       | 5<br>(7 -14 days)                    | 21                          |
| Wine grape                               | Italy   | Outdoor            |        | Not stated                 | 0.5                           | 0.5                        | 1                                    | 22                          |
| Table grape                              |         |                    |        | At the end of<br>flowering | 0.5                           | 0.5                        | 1                                    | Defined by<br>appl'n timing |
| Wine grape                               | Chile   | Outdoor            | -      | Not stated                 | 1.2                           | 3.6                        | 3<br>(not specified)                 | 22                          |
| Blueberries<br>and other bush<br>berries | USA     | Outdoor            | Foliar | Some fruit<br>ripened      | 0.730                         | 4.38                       | Not specified<br>(7–10 days)         | 30                          |

| Сгор                                                            | Country | Indoor/<br>outdoor | Туре                                 | Timing of application                         | Rate per appl'n<br>(kg ai/ha)                                                                      | Total appl'n<br>(kg ai/ha)                                                                  | No. of appl'n<br>(interval)                        | PHI<br>(days)               |
|-----------------------------------------------------------------|---------|--------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|
| Bulb onions                                                     | USA     | Outdoor            | Foliar                               | Not stated                                    | 0.584                                                                                              | 3.51                                                                                        | Must not<br>exceed 6<br>(7–10 days)                | 7                           |
| Broccoli                                                        | USA     | Outdoor            | Soil drench                          | At or after<br>transplanting                  | 1.52                                                                                               | 1.52                                                                                        | 1                                                  | 50                          |
| Cabbage                                                         | USA     | Outdoor            | Soil drench                          | At or after<br>transplanting                  | Soil drench:<br>0.025 kg/hL<br>(100 mL of<br>soln per plant<br>i.e. 0.025 kg<br>ai/1000<br>plants) | Soil drench:<br>0.025 kg/hL<br>(100 mL soln<br>per plant i.e.<br>0.025 kg<br>ai/1000 plants | Not specified<br>(7 days)                          | 7                           |
|                                                                 |         |                    | Plus<br>Foliar                       |                                               | Foliar:                                                                                            | Foliar:                                                                                     |                                                    |                             |
| Mustard<br>greens                                               | USA     | Outdoor            | Soil drench                          | At or after<br>transplanting                  | 0.025 kg/hL<br>(100 mL soln<br>per plant i.e.<br>0.025 kg<br>ai/1000<br>plants)                    | 0.025 kg/hL<br>(100 mL of<br>soln per plant<br>i.e. 0.025 kg<br>ai/1000<br>plants)          | Not specified<br>(7 days)                          | 20                          |
| Lettuce                                                         | USA     | Outdoor            | Foliar                               | -                                             | 0.874                                                                                              | 0.874 <sup>b</sup>                                                                          | -                                                  | 30                          |
| Melon                                                           | USA     | Outdoor            | Foliar                               | Defined by PHI                                | 0.876                                                                                              | 5.26                                                                                        | Not specified<br>(7-10 days)                       | 30                          |
| Cucumber,<br>summer<br>squash                                   | USA     | Outdoor            | Soil drench<br>followed by<br>Foliar | For soil drench<br>BBCH 00-10                 | 0.876                                                                                              | 4.38                                                                                        | 4 <sup>a</sup><br>(7–10 days for<br>foliar appl'n) | 7                           |
| Bell pepper<br>and non-bell<br>pepper                           | USA     | Outdoor            | Soil drench<br>followed by<br>Foliar | For soil drench<br>7 days after<br>transplant | 0.876                                                                                              | 5.26                                                                                        | Not specified<br>(7–14 days for<br>foliar appl'n)  | 30                          |
| Snap beans<br>and other<br>Edible podded<br>beans<br>(Bean with | USA     | Outdoor            | Foliar                               |                                               | 0.497                                                                                              | 1.02                                                                                        | Not specified<br>(7–10 days) <sup>c</sup>          | 14                          |
| pod)                                                            | 115.4   | Outdoor            | Foliar                               |                                               | 0.407                                                                                              | 1.02                                                                                        | Not specified                                      | 20                          |
| beans,<br>including Lima<br>beans                               | USA     |                    | rollai                               |                                               | 0.497                                                                                              | 1.02                                                                                        | (7–10 days) °                                      | 30                          |
| (Bean without<br>a pod)                                         |         |                    |                                      |                                               |                                                                                                    |                                                                                             |                                                    |                             |
| Soya bean <sup>d</sup>                                          | USA     | Outdoor            |                                      | Early pod<br>formation (R3)                   | 0.583                                                                                              | 1.17                                                                                        | Not specified<br>(10–14 davs)                      | Defined by<br>appl'n timing |
| Dry beans                                                       | USA     | Outdoor            | Foliar                               |                                               | 0.497                                                                                              | 1.02                                                                                        | Not specified (7–10 davs) <sup>c</sup>             | 30                          |
| Carrot                                                          | USA     | Outdoor            | Foliar                               |                                               | 0.583                                                                                              | 2.33                                                                                        | 4<br>(7–14 days)                                   | 7                           |
| Potato                                                          | USA     | Outdoor            | Foliar                               |                                               | 0.293                                                                                              | 2.04                                                                                        | Not specified                                      | 14                          |
| Ginseng                                                         | USA     | Outdoor            | Foliar                               |                                               | 0.876                                                                                              | 3.51                                                                                        | Not specified<br>(7–14 days)                       | 30                          |
| Peanuts <sup>e</sup>                                            | USA     | Outdoor            | Foliar                               |                                               | 0.874                                                                                              | 2.34                                                                                        | Not specified                                      | 30                          |

| ( | Сгор | Country | Indoor/<br>outdoor | Туре   | Timing of application | Rate per appl'n<br>(kg ai/ha) | Total appl'n<br>(kg ai/ha) | No. of appl'n<br>(interval) | PHI<br>(days) |
|---|------|---------|--------------------|--------|-----------------------|-------------------------------|----------------------------|-----------------------------|---------------|
| Γ |      |         |                    |        |                       |                               |                            | (21– 28 days)               |               |
| F | Геа  | Japan   | Outdoor            | Foliar | -                     | 1                             | 1                          | -                           | 14            |

<sup>a</sup> Only 4 applications at 0.876 kg ai/ha are permitted. The first application at 0.876 kg ai/ha may be made as soil drench at transplantation or when the plants have the first true leaves. The critical GAP is therefore four foliar applications.

<sup>b</sup> The total application rate per crop cycle is 0.874 kg ai/ha with no more than 4 crop cycles permitted per year and a total application rate of 3.51 kg ai/ha/year

<sup>c</sup> The total application rate per crop cycle is 1.02 kg ai/ha with no more than 3 crop cycles permitted per year and a total application rate of 3.07 kg ai/ha/year

<sup>d</sup> For soya bean livestock are not permitted to graze treated areas and treated hay must not be fed to livestock

<sup>e</sup> For peanut livestock are not permitted to graze in treated area and treated hay and threshings must not be fed to livestock

#### RESIDUES RESULTING FROM SUPERVISED TRIALS

### Apple

Twenty three residue trials were conducted in Canada and the USA in 1992-1994 and 2006.

Seven-twelve foliar applications were made using an SC formulation at application rates in the range of 0.482–1.009 kg ai/ha.

Samples of apple were collected 28-90 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 287 days for fluazinam and 1187 days for AMGT prior to extraction and analysis.

Residues of fluazinam and AMGT in apple were determined using the two analytical methods outlined above. Procedural recovery samples were analysed with the residue trial samples. For fluazinam the recoveries were at fortification levels of 0.01-1 mg/kg with recoveries in the range of 71–126%. For AMGT the recoveries were at fortification levels of 0.01-1 mg/kg with recoveries in the range of 55–130%.

Table 91 Residues in Apple from supervised trials in Canada and the USA involving 7-12 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total]                                 | Interval<br>(days)               | Growth<br>stage at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference               |
|-----------------------------------------|---------------------------------------------------------------|----------------------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|-------------------------|
| GAP USA                                 | MID: 0.504<br>MTD:<br>5.045 †                                 | 7-10                             | -                                      | 28             | -         | -                    |                 | -                       |
| Kenly, NC, USA                          | 0.504<br>0.504                                                | <br>7                            | Fruit less<br>than 8.9 cm              | 30             | Apple     | 0.05, 0.03 (0.04)    | <0.01           | 5347-92-0245-CR-<br>001 |
| 1992                                    | 0.504<br>0.504                                                | 10<br>14                         | diameter                               |                |           |                      |                 | McFall, D.D. 1996a      |
| Apple/Starspur                          | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>[5.045] | 14<br>15<br>14<br>12<br>15<br>13 |                                        |                |           |                      |                 | Kenly, NC               |

| Location, Country<br>Year, Crop/Variety                | Rate<br>(kg ai/ha)                                                                                | Interval<br>(days)                                      | Growth stage at last                             | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)      | Reference                                                                                                                                             |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------|-----------|----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | [Total]                                                                                           |                                                         | application                                      |                |           |                      |                      |                                                                                                                                                       |
| Conklin, MI, USA                                       | 0.504<br>0.504                                                                                    | <br>7<br>7                                              | Apples are<br>5.7-6.4 cm                         | 30             | Apple     | 0.05, 0.06 (0.06)    | 0.01, 0.02<br>(0.02) | 5347-92-0245-CR-<br>001                                                                                                                               |
| 1992                                                   | 0.504                                                                                             | 7                                                       | diameter                                         |                |           |                      |                      | McFall, D.D. 1996a                                                                                                                                    |
| Apple/ Miller                                          | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>[6.053]          | ,<br>10<br>10<br>13<br>15<br>13<br>15<br>13<br>15<br>14 |                                                  |                |           |                      |                      | Conklin, M                                                                                                                                            |
| Ephrata, WA, USA                                       | 0.504                                                                                             |                                                         | Fruit 3.8 cm                                     | 90             | Apple     | <0.01                | 0.02                 | 5878-93-0345-CR-                                                                                                                                      |
| 1993<br>Apple/ Red delicious                           | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>(3.504<br>[3.531]                                    | 8<br>13<br>10<br>10<br>10<br>10                         | diameter                                         |                |           |                      |                      | 001<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1995 and<br>5878-93-0345-CR-<br>002<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1996<br>Ephrata, WA     |
| Watsonville, CA,                                       | 0.504                                                                                             |                                                         | 60-70%                                           | 90             | Apple     | <0.01                | <0.01                | 5878-93-0345-CR-                                                                                                                                      |
| USA<br>1993<br>Apple/ Fuji                             | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>[3.531]                                     | 7<br>9<br>11<br>9<br>11<br>10                           | cessation of<br>terminal<br>growth               | 20             | Applo     | 0.02.0.04/0.02)      | 0.01                 | 001<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1995 and<br>5878-93-0345-CR-<br>002<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1996<br>Watsonville, CA |
| upper black Eddy,<br>PA, USA<br>1993<br>Apple/ Jonamac | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>[5.045] | <br>7<br>10<br>12<br>13<br>14<br>14<br>14<br>14         | r ruit sizing<br>slowly due<br>to dry<br>weather | 28             | Арріе     | 0.02, 0.04 (0.03)    | 0.01                 | 5878-93-0345-CR-<br>001<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1995 and<br>5878-93-0345-CR-<br>002<br>Fitzgerald, T.J.<br>and McFall, D.D.        |

| Location, Country<br>Year, Crop/Variety                   | Rate<br>(kg ai/ha)                                                                                         | Interval<br>(days)                                         | Growth<br>stage at last<br>application          | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                                                                                                                                                                |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|----------------|-----------|----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | 1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>[10.089]         | <br>7<br>7<br>10<br>12<br>13<br>14<br>14<br>14<br>14       | Fruit sizing<br>slowly due<br>to dry<br>weather | 28             | Apple     | 0.1, 0.08 (0.09)     | 0.01            | 1996<br>Upper Black Eddy,<br>PA<br>Replicate trials—<br>HR taken from<br>0.03 and 0.08                                                                                   |
|                                                           | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>[5.045] | <br>7<br>7<br>10<br>12<br>13<br>14<br>14<br>14<br>14<br>14 | Fruit sizing<br>slowly due<br>to dry<br>weather | 28             | Apple     | 0.08, 0.08 (0.08)    | <0.01           |                                                                                                                                                                          |
| Williamson, NY, USA<br>1993<br>Apple/ Twenty<br>ounce     | 0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>[5.045]          | <br>10<br>7<br>10<br>12<br>10<br>10<br>14<br>14<br>14      | Fruit 6.3-6.6<br>cm diameter                    | 29             | Apple     | 0.02, 0.03 (0.03)    | <0.01           | 5878-93-0345-CR-<br>001<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1995 and<br>5878-93-0345-CR-<br>002<br>Fitzgerald, T.J.<br>and McFall, D.D.<br>1996<br>Williamson, NY |
| Ephrata, WA, USA<br>1994<br>Apple/ Golden<br>delicious    | 0.493<br>0.482<br>0.493<br>0.482<br>0.482<br>[2.433]                                                       | <br>4<br>15<br>10<br>10                                    | Fruit<br>diameter at<br>1.3 cm                  | 90             | Apple     | <0.01                | <0.01           | 6103-95-0025-CR-<br>001<br>Fitzgerald, T.J.<br>and McFall. D.D.<br>1996b<br>Ephrata, WA                                                                                  |
| Winchester, VA, USA<br>1994<br>Apple/ Golden<br>delicious | 0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493<br>0.493   | <br>8<br>8<br>12<br>15<br>15<br>14<br>14<br>15<br>15       | not noted                                       | 31             | Apple     | 0.03, 0.04 (0.04)    | 0.01            | 6103-95-0025-CR-<br>001<br>Fitzgerald, T.J.<br>and McFall. D.D.<br>1996b<br>Winchester, VA                                                                               |

398

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth<br>stage at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)          | AMGT<br>(mg/kg) | Reference          |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------------|-----------------|--------------------|
| Orablia MLUCA                           | [lotal]            |                    | A                                      | 20             | Annla     | 0.01                          | 0.01            | (102.05.0005.00    |
| CONKIIN, IVII, USA                      | 0.493              |                    | Apples are                             | 30             | Арріе     | <0.01                         | <0.01           | 6103-95-0025-CR-   |
| 100/                                    | 0.004              | 7                  | approx. 4.4                            |                |           |                               |                 | 001                |
| 1774                                    | 0.475              | 7                  | cini diameter                          |                |           |                               |                 | Fitzgorald T I     |
| Apple/ Paula red                        | 0.402              | 10                 |                                        |                |           |                               |                 | and McFall D D     |
| Apple/ I duid i cu                      | 0.504              | 10                 |                                        |                |           |                               |                 | 1996h              |
|                                         | 0.504              | 11                 |                                        |                |           |                               |                 | 17705              |
|                                         | 0.493              | 9                  |                                        |                |           |                               |                 | Conklin, MI        |
|                                         | 0.493              | 10                 |                                        |                |           |                               |                 |                    |
|                                         |                    |                    |                                        |                |           |                               |                 |                    |
|                                         | [4.45]             |                    |                                        |                |           |                               |                 |                    |
| Hereford, PA, USA                       | 0.522              |                    | Final Fruit                            | 28             | Apple     | 0.16, 0.16 ( <u>0.16</u> )    | <0.01           | IB-2006-JLW-002-   |
|                                         | 0.517              | 7                  | Swell                                  |                |           |                               |                 | 00-01              |
| 2006                                    | 0.516              | 7                  |                                        |                |           |                               |                 |                    |
|                                         | 0.522              | 6                  |                                        |                |           |                               |                 | Wiedmann, J.L.     |
| Apple/ Starkrims on                     | 0.521              | 8                  |                                        |                |           |                               |                 | 2008               |
| red delicious                           | 0.528              | /                  |                                        |                |           |                               |                 |                    |
|                                         | 0.511              | 5                  |                                        |                |           |                               |                 | IB-2006-JLW-002-   |
|                                         | 0.525              | 0<br>7             |                                        |                |           |                               |                 | 01                 |
|                                         | 0.524              | 7                  |                                        |                |           |                               |                 |                    |
|                                         | 0.324              | '                  |                                        |                |           |                               |                 |                    |
|                                         | [5.209]            |                    |                                        |                |           |                               |                 |                    |
| Shelby, MI, USA                         | 0.519              |                    | BBCH 82                                | 28             | Apple     | 1 <sup>st</sup> sample-0.04   | <0.01, 0.01,    | IB-2006-JLW-002-   |
|                                         | 0.518              | 6                  |                                        |                |           | [0.26], (0.15)                | (0.01)          | 00-01              |
| 2006Apple/                              | 0.518              | 7                  |                                        |                |           |                               |                 |                    |
| Yellow delicious                        | 0.521              | 7                  |                                        |                |           | 2 <sup>nd</sup> sample-0.10   |                 | Wiedmann, J.L.     |
|                                         | 0.503              | 7                  |                                        |                |           | [0.14], (0.12)                |                 | 2008               |
|                                         | 0.503              | 7                  |                                        |                |           |                               |                 |                    |
|                                         | 0.503              | 7                  |                                        |                |           |                               |                 | IB-2006-JLW-002-   |
|                                         | 0.504              | 7                  |                                        |                |           | Mean = <u>0.14</u>            |                 | 05                 |
|                                         | 0.504              | /                  |                                        |                |           | 1 Baharat an abatta at        |                 |                    |
|                                         | 0.504              | /                  |                                        |                |           | Hignest analytical            |                 |                    |
|                                         | [5 099]            |                    |                                        |                |           | 1esuit = 0.15                 |                 |                    |
| Eckert, CO, USA                         | 0.500              |                    | BBCH 85                                | 28             | Apple     | 1 <sup>st</sup>               | <0.01           | IB-2006-JLW-002-   |
|                                         | 0.502              | 7                  | 81 mm fruit                            |                |           | sample = 1.75[1.61],          |                 | 00-01              |
| 2006                                    | 0.498              | 7                  |                                        |                |           | (1.68)                        |                 |                    |
|                                         | 0.501              | 7                  |                                        |                |           |                               |                 | Wiedmann, J.L.     |
| Apple/ Red delicious                    | 0.501              | 7                  |                                        |                |           |                               |                 | 2008               |
|                                         | 0.505              | 7                  |                                        |                |           | 2 <sup>nd</sup> sample = 1.74 |                 |                    |
|                                         | 0.500              | 7                  |                                        |                |           | [1.04], (1.39)                |                 | IB-2006-JLW-002-   |
|                                         | 0.501              | 7                  |                                        |                |           |                               |                 | 06                 |
|                                         | 0.503              | 6                  |                                        |                |           | Magn. 154                     |                 |                    |
|                                         | 0.500              | 8                  |                                        |                |           | viean = 1.54                  |                 |                    |
|                                         | [5 01]             |                    |                                        |                |           | Highest analytical            |                 |                    |
|                                         | [0.01]             |                    |                                        |                |           | result = 1.68                 |                 |                    |
| Hickson, CA, USA                        | 0.501              |                    | BBCH 77                                | 28             | Apple     | 0.05, 0.02 ( <u>0.04</u> )    | 0.01, <0.01     | IB-2006-JLW-002-   |
| 2004                                    | 0.506              | /                  |                                        |                |           |                               | (0.01)          | 00-01              |
| 2000                                    | 0.501              | /                  |                                        |                |           |                               |                 | Windmann           |
| Apple/ Ellipt                           | 0.504              | 0<br>6             |                                        |                |           |                               |                 | 2008               |
|                                         | 0.502              | 7                  |                                        |                |           |                               |                 | 2000               |
|                                         | 0.505              | 7                  |                                        |                |           |                               |                 | IB-2006- II W-002- |
|                                         | 0.518              | 7                  |                                        |                |           |                               |                 | 07                 |
|                                         | 0.518              | 7                  |                                        |                |           |                               |                 | <i></i>            |
|                                         | 0.513              | 7                  |                                        |                |           |                               |                 |                    |
|                                         |                    |                    |                                        |                |           |                               |                 |                    |
|                                         | [5.081]            |                    |                                        |                |           |                               |                 |                    |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth<br>stage at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)         | AMGT<br>(mg/kg) | Reference          |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|------------------------------|-----------------|--------------------|
| Enbrata W/A                             | [10tal]            |                    |                                        | 20             | Applo     | 0 17 0 00 (0 12)             | -0.01           |                    |
| Ephilata, WA                            | 0.500              | 7                  |                                        | 20             | Apple     | 0.17, 0.09 ( <u>0.13</u> )   | <0.01           | 00-01              |
| 2006                                    | 0.499              | 7                  |                                        |                |           |                              |                 | 00 01              |
|                                         | 0.497              | 7                  |                                        |                |           |                              |                 | Wiedmann, J.L.     |
| Apple/ Braeburn                         | 0.499              | 7                  |                                        |                |           |                              |                 | 2008               |
|                                         | 0.494              | 7                  |                                        |                |           |                              |                 |                    |
|                                         | 0.498              | 7                  |                                        |                |           |                              |                 | IB-2006-JLW-002-   |
|                                         | 0.499              | 7                  |                                        |                |           |                              |                 | 08                 |
|                                         | 0.500              | 7                  |                                        |                |           |                              |                 |                    |
|                                         | 0.495              | 7                  |                                        |                |           |                              |                 |                    |
|                                         | [4 979]            |                    |                                        |                |           |                              |                 |                    |
| Toppenish, WA                           | 0.502              |                    | Immature                               | 0              | Apple     | 2 39[2 88], 1 45             | <0.01           | IB-2006- JI W-002- |
| roppenisit, wh                          | 0.534              | 6                  | fruit                                  | Ŭ              | Apple     | [2,13] (2,21)                | <b>(0.01</b>    | 00-01              |
| 2006                                    | 0.538              | 8                  |                                        |                |           | [2::0] (2:2:)                | <0.01           |                    |
|                                         | 0.522              | 6                  |                                        | 7              |           | 1.87, 1.80 (1.84)            | <0.01           | Wiedmann, J.L.     |
| Apple/ Red delicious                    | 0.526              | 7                  |                                        |                |           |                              |                 | 2008               |
|                                         | 0.537              | 7                  |                                        | 14             |           | 1.07 [1.46], 1.95            | <0.01           |                    |
|                                         | 0.518              | 8                  |                                        |                |           | [2.17] (1.66)                |                 | IB-2006-JLW-002-   |
|                                         | 0.539              | 6                  |                                        |                |           |                              |                 | 09                 |
|                                         | 0.532              | 7                  |                                        | 21             |           | 1.99, 1.69 (1.84)            | <0.01           |                    |
|                                         | 0.528              | 6                  |                                        |                |           |                              |                 |                    |
|                                         |                    |                    |                                        | 28             |           | 1 <sup>st</sup> sample-1.10  | <0.01           |                    |
|                                         | [5.277]            |                    |                                        |                |           | [1.51], (1.31)               |                 |                    |
|                                         |                    |                    |                                        |                |           | and seconds 1 20 [           |                 |                    |
|                                         |                    |                    |                                        |                |           | 2 Sample-1.38 [              |                 |                    |
|                                         |                    |                    |                                        |                |           | 1.59], (1.49)                |                 |                    |
|                                         |                    |                    |                                        |                |           | Mean = <u>1.40</u>           |                 |                    |
|                                         |                    |                    |                                        |                |           | Highest analytical           |                 |                    |
|                                         |                    |                    |                                        |                |           | result = 1 49                |                 |                    |
|                                         |                    |                    |                                        |                |           |                              |                 |                    |
|                                         |                    |                    |                                        |                |           |                              |                 |                    |
|                                         |                    |                    |                                        |                |           |                              |                 |                    |
| Payette, ID                             | 0.522              |                    | 40% colour                             | 28             | Apple     | 0.13, 0.15 ( <u>0.14</u> )   | <0.01           | IB-2006-JLW-002-   |
|                                         | 0.518              | 6                  |                                        |                |           |                              |                 | 00-01              |
| 2006                                    | 0.521              | 1                  |                                        |                |           |                              |                 |                    |
| Annia / Low name                        | 0.515              | 6                  |                                        |                |           |                              |                 | Wiedmann, J.L.     |
| Apple/ Law forme                        | 0.518              | 0                  |                                        |                |           |                              |                 | 2008               |
|                                         | 0.513              | 7                  |                                        |                |           |                              |                 | IB-2006- II W-002- |
|                                         | 0.505              | 7                  |                                        |                |           |                              |                 | 10                 |
|                                         | 0.511              | 6                  |                                        |                |           |                              |                 | 10                 |
|                                         | 0.518              | 7                  |                                        |                |           |                              |                 |                    |
|                                         |                    |                    |                                        |                |           |                              |                 |                    |
|                                         | [5.154]            |                    |                                        |                |           |                              |                 |                    |
| Hood River, OR                          | 0.528              |                    | Fruit                                  | 28             | Apple     | 1 <sup>st</sup> sample-      | <0.01           | IB-2006-JLW-002-   |
|                                         | 0.519              | 7                  | coloring                               |                |           | 0.04[0.06], (0.05)           |                 | 00-01              |
| 2006                                    | 0.522              | 6                  |                                        |                |           |                              |                 |                    |
|                                         | 0.534              | 8                  |                                        |                |           | 2 <sup>111</sup> sample-0.30 |                 | Wiedmann, J.L.     |
| Apple/ Jonigold                         | 0.528              | /                  |                                        |                |           | [0.30], (0.3)                |                 | 2008               |
|                                         | 0.520              | /                  |                                        |                |           | Moon 0.10                    |                 |                    |
|                                         | 0.528              | 7                  |                                        |                |           | iviean = $0.18$              |                 | IB-2006-JLW-002-   |
|                                         | 0.510              | 7                  |                                        |                |           | Highost applytical           |                 | 11                 |
|                                         | 0.517              | 7                  |                                        |                |           |                              |                 |                    |
|                                         | 0.000              | ľ                  |                                        |                |           | 105un - 0.5                  |                 |                    |
|                                         |                    | 1                  |                                        |                |           |                              |                 |                    |

400

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth<br>stage at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)       | AMGT<br>(mg/kg) | Reference        |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------------|-----------------|------------------|
|                                         | [Total]            |                    | approduction                           |                |           |                            |                 |                  |
| Ephrata, WA                             | 0.498              |                    | BBCH 81                                | 28             | Apple     | 0.12, 0.17 ( <u>0.15</u> ) | <0.01           | IB-2006-JLW-002- |
|                                         | 0.498              | 7                  |                                        |                |           |                            |                 | 00-01            |
| 2006                                    | 0.494              | 7                  |                                        |                |           |                            |                 |                  |
|                                         | 0.500              | 7                  |                                        |                |           |                            |                 | Wiedmann, J.L.   |
| Apple/ Red delicious                    | 0.499              | 7                  |                                        |                |           |                            |                 | 2008             |
|                                         | 0.499              | 7                  |                                        |                |           |                            |                 |                  |
|                                         | 0.500              | 7                  |                                        |                |           |                            |                 | IB-2006-JLW-002- |
|                                         | 0.495              | 7                  |                                        |                |           |                            |                 | 12               |
|                                         | 0.499              | 7                  |                                        |                |           |                            |                 |                  |
|                                         | 0.501              | /                  |                                        |                |           |                            |                 |                  |
|                                         | [4 983]            |                    |                                        |                |           |                            |                 |                  |
| Branchton ON                            | 0 504              |                    | not noted                              | 29             | Apple     | <0.01                      | <0.01           | 6103-95-0025-CR- |
| Canada                                  | 0.504              | 8                  | nothoteu                               | 27             | Apple     | 0.01                       | \$0.01          | 001              |
| Canada                                  | 0.516              | 8                  |                                        |                |           |                            |                 | 001              |
| 1994                                    | 0.504              | 9                  |                                        |                |           |                            |                 | Fitzgerald, T.J. |
|                                         | 0.504              | 11                 |                                        |                |           |                            |                 | and McFall, D.D. |
| Apple/ Courtland                        | 0.504              | 10                 |                                        |                |           |                            |                 | 1996b            |
|                                         | 0.516              | 11                 |                                        |                |           |                            |                 |                  |
|                                         | 0.493              | 21                 |                                        |                |           |                            |                 | Branchton, ON    |
|                                         | 0.538              | 23                 |                                        |                |           |                            |                 |                  |
|                                         | 0.516              | 14                 |                                        |                |           |                            |                 |                  |
|                                         |                    |                    |                                        |                |           |                            |                 |                  |
|                                         | [5.112]            |                    |                                        |                |           |                            |                 |                  |
| Sommerset, NS,                          | 0.493              |                    | not noted                              | 32             | Apple     | 0.02, 0.04 ( <u>0.03</u> ) | <0.01           | 6103-95-0025-CR- |
| Canada                                  | 0.538              | 9                  |                                        |                |           |                            |                 | 001              |
| 1004                                    | 0.527              | 8                  |                                        |                |           |                            |                 | Elemental T. I   |
| 1994                                    | 0.504              | 9                  |                                        |                |           |                            |                 | Fitzgerald, L.J. |
| Annia / Maintach                        | 0.516              | 10                 |                                        |                |           |                            |                 | and MCFall. D.D. |
| Apple/ McIntosh                         | 0.493              | 10                 |                                        |                |           |                            |                 | 19960            |
|                                         | 0.516              | 15                 |                                        |                |           |                            |                 | Sommoreot NS     |
|                                         | 0.510              | 15                 |                                        |                |           |                            |                 | Sommerset, NS    |
|                                         | 0.527              | 13                 |                                        |                |           |                            |                 |                  |
|                                         | 0.010              | 10                 |                                        |                |           |                            |                 |                  |
|                                         | [5.145]            |                    |                                        |                |           |                            |                 |                  |
| St. Paul                                | 0.506              |                    | 6-7 cm fruit                           | 7              | Apple     | 0.44, 0.34 (0.39)          | 0.02, 0.01      | IB-2006-JLW-002- |
| d'Abbotsford, QC,                       | 0.506              | 6                  |                                        |                |           |                            | (0.02)          | 00-01            |
| Canada‡                                 | 0.510              | 7                  |                                        | 14             |           | <0.01                      |                 |                  |
| 2007                                    | 0.500              | 6                  |                                        | 01             |           | 0.01.0.01 (0.01)           | 0.02, 0.01      | Wiedmann, J.L.   |
| 2006                                    | 0.508              | /                  |                                        | 21             |           | <0.01, 0.01 (0.01)         | (0.02)          | 2008             |
| Annia /Laha                             | 0.512              | 8                  |                                        |                |           | 0.02.0.02 (0.02)           | 0.02.0.01       | D 2007 ILW 002   |
| Appie/Lobo                              | 0.500              | 1                  |                                        | 20             |           | 0.03, 0.02 ( <u>0.03</u> ) | 0.03, 0.01      | B-2006-JLW-002-  |
|                                         | 0.521              | 6                  |                                        | 29             |           |                            | (0.02)          | 02               |
|                                         | 0.520              | 7                  |                                        |                |           |                            |                 |                  |
|                                         | 0.510              | ľ                  |                                        |                |           |                            | 0.02.0.03       |                  |
|                                         | [5.103]            |                    |                                        |                |           |                            | (0.03)          |                  |
| St. Paul                                | 0.499              |                    | 6-7 cm fruit                           | 28             | Apple     | 0.09, 0.15 (0.12)          | 0.02, 0.01      | IB-2006-JLW-002- |
| d'Abbotsford, QC,                       | 0.503              | 8                  |                                        |                |           |                            | (0.02)          | 00-01            |
| Canada‡                                 | 0.507              | 6                  |                                        |                |           |                            |                 |                  |
|                                         | 0.510              | 7                  |                                        |                |           |                            |                 | Wiedmann, J.L.   |
| 2006                                    | 0.516              | 6                  |                                        |                |           |                            |                 | 2008             |
|                                         | 0.492              | 8                  |                                        |                |           |                            |                 |                  |
| Apple/ Empire                           | 0.503              | 7                  |                                        |                |           |                            |                 | IB-2006-JLW-002- |
|                                         | 0.504              | 8                  |                                        |                |           |                            |                 | 03               |
|                                         | 0.510              | 6                  |                                        |                |           |                            |                 |                  |
|                                         | 0.504              | 7                  |                                        |                |           |                            |                 |                  |
|                                         | [5.049]            |                    |                                        |                |           |                            |                 |                  |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth<br>stage at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)       | AMGT<br>(mg/kg) | Reference        |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------------|-----------------|------------------|
|                                         | [Total]            |                    |                                        |                |           |                            |                 |                  |
| St. Paul                                | 0.488              |                    | 6-7 cm fruit,                          | 28             |           | 0.15, 0.12 ( <u>0.14</u> ) | <0.01           | IB-2006-JLW-002- |
| d'Abbotsford, QC,                       | 0.510              | 8                  | 50% red                                |                |           |                            |                 | 00-01            |
| Canada‡                                 | 0.506              | 6                  |                                        |                |           |                            |                 |                  |
|                                         | 0.515              | 7                  |                                        |                |           |                            |                 | Wiedmann, J.L.   |
| 2006                                    | 0.507              | 6                  |                                        |                |           |                            |                 | 2008             |
|                                         | 0.501              | 7                  |                                        |                |           |                            |                 |                  |
| Apple/ Paula red                        | 0.500              | 8                  |                                        |                |           |                            |                 | IB-2006-JLW-002- |
|                                         | 0.500              | 6                  |                                        |                |           |                            |                 | 04               |
|                                         | 0.519              | 7                  |                                        |                |           |                            |                 |                  |
|                                         | 0.799              | 6                  |                                        |                |           |                            |                 |                  |
|                                         | [5.344]            |                    |                                        |                |           |                            |                 |                  |

†The GAP authorised is restricted to a maximum of 10 applications

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represents the re-analysis of the same analytical sample. The mean result from these duplicate analyses is given. The overall mean from the two independent samples analysed is also given as this the highest analytical result taking into account the mean of the duplicate analysis.

<sup>‡</sup>Two trials conducted on same trial site. However, the timings of all applications were >30 days apart. The third trial from Canada was in the same region but a different trial site.

### Grapes

Nine residue trials were conducted in Canada and the USA in 1991 and 1994.

One to eight foliar applications were made using an SC formulation at application rates in the range of 0.751–1.121 kg ai/ha.

Samples of grapes were collected 11–21 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 207 days for fluazinam and AMGT prior to extraction and analysis.

Residues of fluazinam and AMGT in grapes were determined using the analytical methods 1 and 3. Procedural recovery samples were analysed with the residue trial samples. For fluazinam the recoveries were at fortification levels of 0.01-1 mg/kg with recoveries in the range of 77–126%. For AMGT the recoveries were at fortification levels of 0.01-1 mg/kg with recoveries in the range of 55–130%.

| Table 92 Residues in Grapes from supervised trials in Canada and the USA involving 1-8 foliar applications of fluazina | m |
|------------------------------------------------------------------------------------------------------------------------|---|
|------------------------------------------------------------------------------------------------------------------------|---|

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference        |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|------------------|
|                                         | [Total]            |                    |                                        |                |           |                      |                 |                  |
| GAP Hungary                             | 0.750 ×5           | 7-14               | Defined by<br>PHI                      | 21             | -         | -                    | -               | -                |
|                                         | [3.75]             |                    |                                        |                |           |                      |                 |                  |
| Madera CA, USA                          | 1.121              |                    | Maturing                               | 11             | Grapes    | 0.89, 0.63 (0.76)    | n/a             | 2127-91-0434-CR- |
|                                         | 1.121              | 14                 | fruit; Berry                           |                |           |                      |                 | 001              |
| 1991                                    | 1.121              | 15                 | size 1.3 cm                            | 11             |           | 2.25, 1.72 (1.99)    |                 |                  |
|                                         |                    |                    |                                        |                |           |                      |                 | Fitzgerald, T.J. |
| Grape/Thompson                          | [3.363]            |                    |                                        |                |           | Mean = 1.38          |                 | 1992             |
| Seedless                                |                    |                    |                                        |                |           |                      |                 |                  |
| Dundee NY, USA                          | 1.121              |                    | Fully                                  | 13             | Grapes    | 0.39, 0.25 (0.32)    | n/a             | 2106-91-0309-CR- |
|                                         |                    |                    | coloured,                              |                |           |                      |                 | 001-001          |
| 1991                                    | [1.121]            |                    | Fruit 1-2 cm                           |                |           |                      |                 |                  |

| Location Country           | Rate       | Interval | Growth stage              | DALA   | Cron part | Fluazinam           | AMGT        | Reference         |
|----------------------------|------------|----------|---------------------------|--------|-----------|---------------------|-------------|-------------------|
| Year, Crop/Variety         | (kg ai/ha) | (days)   | at last                   | (days) | orop part | (mg/kg)             | (mg/kg)     | Kererenee         |
|                            | [Total]    |          | apprioution               |        |           |                     |             |                   |
|                            | 1.121      |          | Fully                     | 13     | Grapes    | 0.42, 0.29 (0.36)   | n/a         | Kenyon R.G. 1992a |
| Grape/Concord              | 1.121      | 32       | coloured,<br>Fruit 1-2 cm |        |           |                     |             |                   |
|                            | [2.242]    |          |                           |        |           |                     |             |                   |
| Royal City WA, USA         | 1.121      |          | Mature                    | 14     | Grapes    | 0.45, 0.41 (0.43)   | n/a         |                   |
| 1991                       | [1.121]    |          | 9.4000                    |        |           |                     |             | -                 |
| Cropo/Cohorpot             | 1.121      |          | Mature                    | 14     | Grapes    | 0.37, 0.35 (0.36)   | n/a         |                   |
| Sauvignon                  | 1.121      | 26       | grapes                    |        |           |                     |             |                   |
|                            | [2.242]    |          |                           |        | -         |                     |             | -                 |
| Madera CA, USA             | 1.121      |          | Maturing fruit            | 14     | Grapes    | 0.73, 0.69 (0.71)   | n/a         |                   |
| 1991                       | [1.121]    |          |                           |        |           |                     |             |                   |
|                            | 1.121      |          | Maturing fruit            | 14     | Grapes    | 0.96, 0.79 (0.88)   | n/a         |                   |
| Grape/Thompson<br>Seedless | 1.121      | 14       |                           |        |           |                     |             |                   |
|                            | [2.242]    |          |                           |        |           |                     |             |                   |
| Fresno CA, USA             | 0.751      |          | -                         | 20     | Grapes    | 0.07 [0.09]         | 0.27 [0.27] | 6106-95-0012-CR-  |
|                            | 0.751      | 45       |                           |        |           | Mean = 0.08         |             | 001               |
| 1994                       | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | 0.751      | 25       |                           |        |           |                     |             | Jablonski,        |
| Grape/Thompson             |            |          |                           |        |           |                     |             | J.E.1995a         |
| Seedless                   | [3.004]    |          | -                         |        | -         |                     |             | -                 |
| George WA, USA             | 0.751      |          | Grape health              | 19     | Grapes    | 0.17, 0.15 (0.16)   | 0.11, 0.09  |                   |
| 1004                       | 0.751      | 32       | excellent,                | 10     |           | 0.07.0.00 (0.00)    | (0.10)      |                   |
| 1994                       | 0.751      | 43       | crup ~3                   | 19     |           | 0.07, 0.08 (0.08)   | 0.08, 0.08  |                   |
| Grane/White Riesling       | 0.751      | 30       | maturity                  |        |           | Mean - 0.12         | 0.00)       |                   |
| orape/ write Realing       | [3 004]    |          | matarity                  |        |           | Wearr = <u>0.12</u> | 0.07        |                   |
| Suisun CA. USA             | 0.751      |          | -                         | 21     | Grapes    | 0.11 [0.11]         | 0.15 [0.13] | -                 |
|                            | 0.751      | 27       |                           |        |           | Mean = 0.11         |             |                   |
| 1994                       | 0.751      | 43       |                           |        |           |                     |             |                   |
|                            | 0.751      | 36       |                           |        |           |                     |             |                   |
| Grape/Carignane            |            |          |                           |        |           |                     |             |                   |
|                            | [3.004]    |          |                           |        |           |                     |             |                   |
| Phelps NY, USA             | 0.751      |          | Veraison                  | 20     | Grapes    | 0.70, 0.82 (0.76)   | 0.10, 0.16  | 6106-95-0012-CR-  |
|                            | 0.751      | 14       |                           |        |           |                     | (0.13)      | 001               |
| 1994                       | 0.751      | 14       |                           |        |           |                     |             | lable and d       |
| Crapa/Catawha              | 0.751      | 14       |                           |        |           |                     |             | Jadionski,        |
| Grape/Catawba              | 0.751      | 14       |                           |        |           |                     |             | J.E. 1993d        |
|                            | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | [6 008]    |          |                           |        |           |                     |             |                   |
| Vineland ON 11SA           | 0 751      |          | Ripening                  | 17     | Granes    | 0.03 [0.03]         | 0.05 [0.05] |                   |
|                            | 0.751      | 14       | Ripering                  | .,     | orapos    | 0.00 [0.00]         | 0.00 [0.00] |                   |
| 1994                       | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | 0.751      | 14       |                           |        | 1         |                     |             |                   |
| Grape/Riesling             | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | 0.751      | 14       |                           |        |           |                     |             |                   |
|                            | [6.008]    |          |                           |        |           |                     |             |                   |

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

Two residue trials were conducted in Chile in 1996.

Four foliar applications were made using an SC formulation at application rates in the range of 0.730–0.780 kg ai/ha.

Samples of grapes were collected 20-21 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 30 days for fluazinam and up to 70 days for AMGT prior to extraction and analysis.

Residues of fluazinam and AMGT in grapes were determined using the analytical method 3 outlined above. Procedural recovery samples were analysed with the residue trial samples. For fluazinam the recoveries were at fortification levels of 0.01-1 mg/kg with recoveries in the range of 80–120%. For AMGT the recoveries were at fortification levels of 0.01-1 mg/kg with recoveries in the range of 68–126%.

| Table 93 Residues in Grapes f | rom supervised trials | in Chile involving 4 folia | applications of fluazinam |
|-------------------------------|-----------------------|----------------------------|---------------------------|
|-------------------------------|-----------------------|----------------------------|---------------------------|

| Location, Country<br>Year, Crop/Variety                          | Rate<br>(kg ai/ha)<br>[Total]    | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)      | Reference                                            |
|------------------------------------------------------------------|----------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|----------------------|------------------------------------------------------|
| GAP Hungary                                                      | 0.750                            | 7-14               | Defined by<br>PHI                      | 21             | -         | -                    | -                    | -                                                    |
| Paine, Region<br>Metropolitane, Chile,<br>1996<br>Grapo/Caborpot | 0.780<br>0.755<br>0.785<br>0.752 | <br>34<br>24<br>35 | Colour<br>change                       | 21             | Grapes    | 0.27, 0.36 (0.32)    | 0.13, 0.13<br>(0.13) | EA950132<br>Grolleau, G. and<br>Kenyon, R.G.<br>1996 |
| Sauvignon                                                        | [3.072]                          |                    |                                        |                |           |                      |                      |                                                      |
| San Juan de pirique,<br>Region<br>Metropolitane, Chile,<br>1996  | 0.765<br>0.765<br>0.750<br>0.730 | <br>34<br>44<br>34 | Colour<br>change                       | 20             | Grapes    | 0.45, 0.64 (0.55)    | 0.13, 0.18<br>(0.16) | EA950132<br>Grolleau, G. and<br>Kenyon, R.G.<br>1996 |
| Grape/Totonel                                                    | [3.01]                           |                    |                                        |                |           |                      |                      |                                                      |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

Sixty residue trials were conducted in Europe between 1990 and 2010. In several trials a number of replicate trials were also conducted.

One to eight foliar applications were made using either WP or SC formulations at application rates in the range of 0.250–0.870 kg ai/ha.

Samples of grapes were collected 0-111 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 363 days for fluazinam and 935 days for AMGT prior to extraction and analysis.

Residues of fluazinam and AMGT in grapes were determined using the analytical methods 3, 4, 5, 6 and. Procedural recovery samples were analysed with the residue trial samples. For fluazinam the recoveries were at fortification levels of 0.01-10 mg/kg with recoveries in the range of 72–130%. For AMGT the recoveries were at fortification levels of 0.01–10 mg/kg with recoveries in the range of 60–126%.

| Location Country    | Deta       | Intorval           | Crowth store |                | Crop port | Fluozinom     | AMCT              | Deference        |
|---------------------|------------|--------------------|--------------|----------------|-----------|---------------|-------------------|------------------|
| Location, Country   | Rate       | Interval<br>(dovo) | Growth stage | DALA<br>(daya) | Crop part | Fluazinam     | AIVIG1            | Reference        |
| Year, Crop/variety  | (kg al/na) | (days)             | allast       | (days)         |           | (mg/kg)       | (mg/kg)           |                  |
|                     | [Total]    |                    | application  |                |           |               |                   |                  |
| CADIllumment        |            | 7 1 4              | Defined by   | 21             |           |               |                   |                  |
| GAP Hungary         | 0.750      | 7-14               |              | 21             | -         | -             | -                 | -                |
|                     | [2 75]     |                    | гпі          |                |           |               |                   |                  |
| Germany ELL (North) | 0 770      |                    | BBCH 83      | 20             | Granes    | 2 22 [2 31]   | 0 18 [0 21]       | FA950132         |
| Germany, EG (North) | 0.775      | 23                 | bbonios      | 20             | Grapes    | Mean = 2.27   | Mean = 0.20       | EN750152         |
| 1995                | 0.765      | 22                 |              |                |           | 100011 - 2.27 | Wicun - 0.20      | Grolleau, G. and |
|                     | 0.785      | 17                 |              |                |           |               |                   | Kenvon, R.G.     |
| Grape/ Müller       |            |                    |              |                |           |               |                   | 1996             |
| Thurgau             | [3.095]    |                    |              |                |           |               |                   |                  |
| France, EU (North)  | 0.802      |                    | Colour       | 7              | Grapes    | 0.25, 0.23    | 0.10, 0.08 (0.09) |                  |
|                     | 0.702      | 14                 | change       |                |           | (0.24)        |                   |                  |
| 1995                | 0.773      | 31                 | _            | 14             | Grapes    | 0.17, 0.14    | 0.12, 0.05 (0.09) |                  |
|                     | 0.762      | 14                 |              |                |           | (0.16)        |                   |                  |
| Grape/Gros Plant    |            |                    |              | 21             | Grapes    | 0.12, 0.15    | 0.07, 0.08 (0.08) |                  |
|                     | [3.038]    |                    |              |                |           | (0.14)        |                   |                  |
|                     |            |                    |              | 28             | Grapes    | 0.12, 0.13    | 0.10, 0.09 (0.10) |                  |
|                     |            |                    |              |                | _         | (0.13)        |                   | -                |
|                     |            |                    |              | 35             | Grapes    | 0.14, 0.14    | 0.07, 0.14 (0.11) |                  |
|                     |            | -                  |              |                |           | (0.14)        |                   | -                |
| Spain, EU (South)   | 0.721      |                    | Colour       | 22             | Grapes    | 0.08, 0.17    | 0.06, 0.11 (0.09) |                  |
| 1005                | 0.773      | 19                 | change       |                |           | (0.13)        |                   |                  |
| 1995                | 0.750      | 24                 |              |                |           |               |                   |                  |
| Cropo/Corpocho      | 0.770      | 16                 |              |                |           |               |                   |                  |
| Comun               | [3 014]    |                    |              |                |           |               |                   |                  |
| Erance Ell (South)  | 0 778      |                    | Colour       | 22             | Granes    | 0 22 [0 21]   | 0 20 [0 22]       | FA950132         |
|                     | 0.752      | 19                 | change       | ~~             | Grapes    | Mean = 0.22   | Mean = 0.21       | 2///30132        |
| 1995                | 0.744      | 27                 | onungo       |                |           | initial offer | iniouni oizi      | Grolleau, G. and |
|                     | 0.760      | 16                 |              |                |           |               |                   | Kenyon, R.G.     |
| Grape/Syrah         |            |                    |              |                |           |               |                   | 1996             |
|                     | [3.036]    |                    |              |                |           |               |                   |                  |
| France, EU (South)  | 0.722      |                    | Colour       | 21             | Grapes    | 1.39, 1.51    | 0.16, 0.14 (0.15) |                  |
|                     | 0.771      | 27                 | change       |                |           | (1.45)        |                   |                  |
| 1995                | 0.764      | 25                 |              |                |           |               |                   |                  |
|                     | 0.784      | 19                 |              |                |           |               |                   |                  |
| Grape/Cabernet      | 10.00/1    |                    |              |                |           |               |                   |                  |
| Sauvignon           | [3.036]    |                    |              |                |           | 4 4 7 0 7 7   | 0.00.047(0.40)    | -                |
| France, EU (South)  | 0.742      |                    | Colour       | 22             | Grapes    | 1.17, 0.77    | 0.20, 0.17 (0.19) |                  |
| 1005                | 0.728      | 31                 | change       |                |           | (0.97)        |                   |                  |
| 1990                | 0.777      | 24                 |              |                |           |               |                   |                  |
| Grane/Honi Blanc    | 0.737      | 20                 |              |                |           |               |                   |                  |
| Grape/ Ogin Diane   | [2,983]    |                    |              |                |           |               |                   |                  |
| Italy, EU (South)   | 0.753      |                    | BBCH 85      | 21             | Grapes    | 0.68, 0.74    | 0.14, 0.16 (0.15) |                  |
| , . ( , ,           | 0.728      | 22                 |              |                |           | (0.71)        |                   |                  |
| 1995                | 0.727      | 21                 |              |                |           | l'Í           |                   |                  |
|                     | 0.747      | 27                 |              |                |           |               |                   |                  |
| Grape/Barbera       |            |                    |              |                |           |               |                   |                  |
|                     | [2.955]    |                    |              |                |           | 1             |                   |                  |
| Italy, EU (South)   | 0.771      |                    | BBCH 85      | 21             | Grapes    | 0.80, 0.42    | 0.18, 0.15 (0.17) |                  |
|                     | 0.715      | 28                 |              |                |           | (0.61)        | 1                 |                  |
| 1995                | 0.751      | 16                 |              |                |           |               |                   |                  |
| Caracter (Disc. 1)  | 0.759      | 15                 |              |                |           |               |                   |                  |
| Grape/Riesling      | [2 000]    | 1                  |              |                |           |               | 1                 |                  |
| 1                   | [2.998]    | 1                  | 1            | 1              | 1         | 1             | 1                 | 1                |

Table 94 Residues in Grapes from supervised trials in Europe involving 1-8 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)       | AMGT<br>(mg/kg)   | Reference                       |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------------|-------------------|---------------------------------|
|                                         | [Total]            |                    |                                        |                | -         |                            |                   |                                 |
| Italy, EU (South)                       | 0.740              |                    | BBCH 85                                | 22             | Grapes    | 2.24, 2.14                 | 0.28, 0.21 (0.25) |                                 |
| 1005                                    | 0.752              | 20                 |                                        |                |           | (2.19)                     |                   |                                 |
| 1775                                    | 0.747              | 22                 |                                        |                |           |                            |                   |                                 |
| Grape/Rondinella                        | 0.7 17             |                    |                                        |                |           |                            |                   |                                 |
|                                         | [2.995]            |                    |                                        |                |           |                            |                   |                                 |
| Italy, EU (South)                       | 0.753              |                    | BBCH 85                                | 31             | Grapes    | 1.55, 1.39                 | 0.35, 0.32 (0.34) |                                 |
|                                         | 0.739              | 9                  |                                        |                |           | (1.47)                     |                   |                                 |
| 1995                                    | 0.746              | 37                 |                                        |                |           |                            |                   |                                 |
| Crano/Trobbiano                         | 0.718              | 22                 |                                        |                |           |                            |                   |                                 |
| Grape/ Trebblano                        | [2 955]            |                    |                                        |                |           |                            |                   |                                 |
| France, EU (North)                      | 0.5                |                    | End of                                 | 83             | Grapes    | 0.02                       | n/a               | M53785                          |
|                                         |                    |                    | flowering                              |                |           |                            |                   |                                 |
| 1990                                    | 0.5                |                    | Bunch                                  | 59             | Grapes    | 0.05                       | n/a               | Ryan, J. and                    |
|                                         |                    |                    | closure                                |                |           |                            |                   | Sapiets, A. 1991a               |
| Grape/Pinot Noir                        | 0.5                |                    | Start of                               | 42             | Grapes    | 0.08                       | n/a               |                                 |
|                                         |                    |                    | colour                                 |                |           |                            |                   |                                 |
|                                         | 0.5                |                    | change                                 | 50             | Cranac    | 0.00                       | 2/2               |                                 |
|                                         | 0.5                | 24                 | closure                                | 29             | Grapes    | 0.09                       | 11/ d             |                                 |
|                                         | 0.5                | 24                 | ciusuic                                |                |           |                            |                   |                                 |
|                                         | [1.0]              |                    |                                        |                |           |                            |                   |                                 |
|                                         | 0.5                |                    | Start of                               | 42             | Grapes    | 0.06                       | n/a               |                                 |
|                                         | 0.5                | 41                 | colour                                 |                |           |                            |                   |                                 |
|                                         |                    |                    | change                                 |                |           |                            |                   |                                 |
|                                         | [1.0]              |                    | 0                                      | 40             |           | 0.40                       | ,                 |                                 |
|                                         | 0.5                |                    | Start of                               | 42             | Grapes    | 0.10                       | n/a               |                                 |
|                                         | 0.5                | 17                 | change                                 |                |           |                            |                   |                                 |
|                                         | [1.0]              |                    | chunge                                 |                |           |                            |                   |                                 |
|                                         | 0.5                |                    | Start of                               | 42             | Grapes    | 0.20                       | n/a               |                                 |
|                                         | 0.5                | 24                 | colour                                 |                |           |                            |                   |                                 |
|                                         | 0.5                | 17                 | change                                 |                |           |                            |                   |                                 |
| France, EU (North)                      | 0.5                |                    | Start of                               | 91             | Grapes    | 0.04 [0.04]                | n/a               | M53785                          |
| 1000                                    | 0.5                |                    | fruiting                               | 10             |           | Mean = 0.04                | ,                 | Duran Land                      |
| 1990                                    | 0.5                |                    | Bunch                                  | 69             | Grapes    | 0.05 [0.04]                | n/a               | Ryan, J. and<br>Sapiots A 1991a |
| Grape/Carignan                          | 0.5                |                    | Start of                               | 34             | Granes    |                            | n/a               | Sapiets, A. 1771a               |
| orapo, cangnan                          | 0.5                |                    | colour                                 | 54             | Grapes    | Mean = 0.04                | in a              |                                 |
|                                         |                    |                    | change                                 |                |           |                            |                   |                                 |
|                                         | 0.5                |                    | Bunch                                  | 69             | Grapes    | 0.03 [0.03]                | n/a               |                                 |
|                                         | 0.5                | 22                 | closure                                |                |           | Mean = 0.03                |                   |                                 |
|                                         | <b>1 1 1</b>       |                    |                                        |                |           |                            |                   |                                 |
|                                         | [1.0]              |                    | Chart of                               | 24             | Cronos    | 0.04[0.02]                 |                   |                                 |
|                                         | 0.5                |                    | Start of                               | 34             | Grapes    | 0.04 [0.03]<br>Mean - 0.04 | n/a               |                                 |
|                                         | 0.5                | 55                 | change                                 |                |           | Wican - 0.04               |                   |                                 |
|                                         | [1.0]              |                    | 9-                                     |                |           |                            |                   |                                 |
|                                         | 0.5                |                    | Start of                               | 34             | Grapes    | 0.02 [0.03]                | n/a               |                                 |
|                                         | 0.5                | 57                 | colour                                 |                |           | Mean = 0.03                |                   |                                 |
|                                         |                    |                    | change                                 |                |           |                            |                   |                                 |
|                                         | [1.0]              | <u> </u>           | Chart of                               | 24             | Crono -   | 0.00 [0.00]                |                   | 4                               |
|                                         | 0.5                |                    | Start of                               | 54             | Grapes    | 0.02 [0.03]<br>Mean = 0.02 | 11/2              |                                 |
|                                         | 0.5                | 57                 | change                                 |                |           | WCall = 0.03               |                   |                                 |
|                                         |                    |                    |                                        |                |           |                            |                   |                                 |
|                                         | [1.5]              |                    |                                        |                |           |                            |                   |                                 |

406

| Location Country     | Rate         | Interval | Growth stage   | DALA   | Crop part | Fluazinam | AMGT    | Reference         |
|----------------------|--------------|----------|----------------|--------|-----------|-----------|---------|-------------------|
| Year, Crop/Variety   | (kg ai/ha)   | (days)   | at last        | (days) | orop part | (mg/kg)   | (mg/kg) | Reference         |
|                      |              |          | application    |        |           |           |         |                   |
|                      | [Total]      |          |                |        |           |           |         |                   |
| France, EU (North)   | 0.5          |          | 23-25          | 96     | Grapes    | <0.01     | n/a     |                   |
| 1000                 |              |          | (Eichhorn-     |        |           |           |         |                   |
| 1990                 |              |          | Lorenz, late   |        |           |           |         |                   |
| Grane/Gamay          |              |          | 80% flower     |        |           |           |         |                   |
| orapo, camaj         |              |          | hoods fallen)) |        |           |           |         |                   |
|                      | 0.5          |          | 33 (Eichhorn-  | 68     | Grapes    | 0.01      | n/a     |                   |
|                      |              |          | Lorenz,        |        |           |           |         |                   |
|                      |              |          | bunch          |        |           |           |         |                   |
|                      | 0.5          |          | closure)       | 50     | 0         | 0.02      |         | -                 |
|                      | 0.5          |          | 35 (Eichhorn-  | 53     | Grapes    | 0.03      | n/a     |                   |
|                      |              |          | veraison)      |        |           |           |         |                   |
|                      | 0.5          |          | 33 (Eichhorn-  | 68     | Grapes    | 0.01      | n/a     | -                 |
|                      | 0.5          | 28       | Lorenz,        |        | orapoo    | 0.01      |         |                   |
|                      |              |          | bunch          |        |           |           |         |                   |
|                      | [1.0]        |          | closure)       |        |           |           |         | -                 |
|                      | 0.5          |          | 35 (Eichhorn-  | 53     | Grapes    | 0.03      | n/a     |                   |
|                      | 0.5          | 43       | Lorenz,        |        |           |           |         |                   |
|                      | [1 0]        |          | veraison)      |        |           |           |         |                   |
|                      | 0.5          |          | 35 (Fichhorn-  | 53     | Granes    | 0.05      | n/a     | -                 |
|                      | 0.5          | 15       | Lorenz.        | 55     | Orape3    | 0.05      | 11/ 4   |                   |
|                      |              |          | veraison)      |        |           |           |         |                   |
|                      | [1.0]        |          | -              |        |           |           |         |                   |
|                      | 0.5          |          | 35 (Eichhorn-  | 53     | Grapes    | 0.04      | n/a     |                   |
|                      | 0.5          | 28       | Lorenz,        |        |           |           |         |                   |
|                      | 0.5          | 15       | veraison)      |        |           |           |         |                   |
|                      | [1 5]        |          |                |        |           |           |         |                   |
| France EU (North)    | 0.5          |          | End of         | 82     | Granes    | 0.03      | n/a     | M5377B            |
| 110100, 20 (1101 01) | 0.5          | 31       | flowering      | 02     | orapoo    | 0.00      |         |                   |
| 1990                 |              |          | Ũ              |        |           |           |         | Ryan, J. and      |
|                      | [1.0]        |          |                |        |           |           |         | Sapiets, A. 1991b |
| Grape/Chenin         | 0.5          |          | First fruits   | 55     | Grapes    | 0.09      | n/a     |                   |
|                      | 0.5          | 58       | colouring      |        |           |           |         |                   |
|                      | [1 0]        |          |                |        |           |           |         |                   |
|                      | 0.5          |          | Eiret fruite   | 55     | Granos    | 0.06      | n/2     | -                 |
|                      | 0.5          | 31       | colouring      | 55     | Grapes    | 0.00      | 11/ d   |                   |
|                      | 0.5          | 27       | oolouning      |        |           |           |         |                   |
|                      |              |          |                |        |           |           |         |                   |
|                      | [1.5]        |          |                |        |           |           |         |                   |
|                      | 0.75         |          | 3 weeks        | 22     | Grapes    | 0.46      | n/a     |                   |
|                      | 0.75         | 31       | before         |        |           |           |         |                   |
|                      | 0.75         | 2/       | harvest        |        |           |           |         |                   |
|                      | 0.75         | 33       |                |        |           |           |         |                   |
|                      | [3.0]        |          |                |        |           |           |         |                   |
|                      | 0.5          |          | 3 weeks        | 22     | Grapes    | 0.32      | n/a     | 1                 |
|                      | 0.5          | 31       | before         |        |           |           |         |                   |
|                      | 0.5          | 27       | harvest        |        |           |           |         |                   |
|                      | 0.5          | 33       |                |        |           |           |         |                   |
|                      | [2 0]        |          |                |        |           |           |         |                   |
| France Ell (North)   | [2.0]<br>0.5 |          | Bunch          | 68     | Granes    | 0.02      | n/a     | M5377B            |
|                      | 0.5          | 30       | closing        | 00     | Giapes    | 0.02      | 11/ a   | WIJJ77D           |
| 1990                 |              |          |                |        |           |           |         | Ryan, J. and      |
|                      | [1.0]        |          |                |        |           |           |         | Sapiets, A. 1991b |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                       |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|---------------------------------|
| Grape/Sauvignon                         | 0.5                |                    | First berries                          | 43             | Grapes    | 0.01                 | n/a             |                                 |
|                                         | 0.5                | 52                 | colouring                              |                |           |                      |                 |                                 |
|                                         | [1 0]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.5                |                    | First borrios                          | 12             | Granos    | 0.07                 | n/2             |                                 |
|                                         | 0.5                | 30                 | colouring                              | 40             | Grapes    | 0.07                 | 11/ d           |                                 |
|                                         | 0.5                | 22                 | coloding                               |                |           |                      |                 |                                 |
|                                         |                    |                    |                                        |                |           |                      |                 |                                 |
|                                         | [1.5]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.75               |                    | 3 weeks                                | 28             | Grapes    | 0.14                 | n/a             |                                 |
|                                         | 0.75               | 30                 | before                                 |                |           |                      |                 |                                 |
|                                         | 0.75               | 22                 | harvest                                |                |           |                      |                 |                                 |
|                                         | 0.75               | 18                 |                                        |                |           |                      |                 |                                 |
|                                         | [3 0]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.5                |                    | 3 weeks                                | 28             | Grapes    | 0.07                 | n/a             |                                 |
|                                         | 0.5                | 30                 | before                                 | 20             | orapos    | 0.07                 | in a            |                                 |
|                                         | 0.5                | 22                 | harvest                                |                |           |                      |                 |                                 |
|                                         | 0.5                | 18                 |                                        |                |           |                      |                 |                                 |
|                                         |                    |                    |                                        |                |           |                      |                 |                                 |
|                                         | [2.0]              |                    |                                        | ļ              | _         |                      |                 |                                 |
| France, EU (North)                      | 0.5                |                    | Bunch                                  | 67             | Grapes    | 0.04                 | n/a             | M5377B                          |
| 1000                                    | 0.5                | 26                 | closing                                |                |           |                      |                 | Duon Land                       |
| 1990                                    | [1 0]              |                    |                                        |                |           |                      |                 | Ryan, J. and<br>Saniots A 1001b |
| Grape/Pinot noir                        | 0.5                |                    | First herries                          | 49             | Granes    | 0.07                 | n/a             | Sapiets, A. 1771b               |
| oruport motifon                         | 0.5                | 42                 | colouring                              | 77             | orapes    | 0.07                 | 17.0            |                                 |
|                                         |                    |                    | 5                                      |                |           |                      |                 |                                 |
|                                         | [1.0]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.5                |                    | First berries                          | 49             | Grapes    | 0.10                 | n/a             |                                 |
|                                         | 0.5                | 26                 | colouring                              |                |           |                      |                 |                                 |
|                                         | 0.5                | 16                 |                                        |                |           |                      |                 |                                 |
|                                         | [1 5]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.75               |                    | 3 wooks                                | 25             | Granes    | 0.23                 | n/a             |                                 |
|                                         | 0.75               | 26                 | before                                 | 20             | Giapes    | 0.23                 | 11/ d           |                                 |
|                                         | 0.75               | 16                 | harvest                                |                |           |                      |                 |                                 |
|                                         | 0.75               | 26                 |                                        |                |           |                      |                 |                                 |
|                                         |                    |                    |                                        |                |           |                      |                 |                                 |
|                                         | [3.0]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.5                |                    | 3 weeks                                | 25             | Grapes    | 0.44                 | n/a             |                                 |
|                                         | 0.5                | 26                 | before                                 |                |           |                      |                 |                                 |
|                                         | 0.5                | 16                 | harvest                                |                |           |                      |                 |                                 |
|                                         | 0.5                | 20                 |                                        |                |           |                      |                 |                                 |
|                                         | [2.0]              |                    |                                        |                |           |                      |                 |                                 |
| France, EU (North)                      | 0.5                |                    | Bunch                                  | 67             | Grapes    | 0.04                 | n/a             | M5377B                          |
|                                         | 0.5                | 27                 | closing                                |                |           |                      |                 |                                 |
| 1990                                    |                    |                    |                                        |                |           |                      |                 | Ryan, J. and                    |
|                                         | [1.0]              |                    |                                        |                |           |                      |                 | Sapiets, A. 1991b               |
| Grape/Pinot noir                        | 0.5                |                    | Many berries                           | 49             | Grapes    | 0.03                 | n/a             |                                 |
|                                         | 0.5                | 45                 | colouring                              |                |           |                      |                 |                                 |
|                                         | [1 0]              |                    |                                        |                |           |                      |                 |                                 |
|                                         | 0.5                |                    | Many herries                           | 49             | Granes    | 0.18                 | n/a             |                                 |
|                                         | 0.5                | 27                 | colouring                              | 1              | orupes    | 0.10                 | 1// 4           |                                 |
|                                         | 0.5                | 18                 |                                        |                |           |                      |                 |                                 |
|                                         |                    |                    |                                        |                |           |                      |                 |                                 |
|                                         | [1.5]              |                    |                                        |                |           |                      |                 |                                 |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total]   | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)       | AMGT<br>(mg/kg) | Reference                                 |
|-----------------------------------------|---------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------------|-----------------|-------------------------------------------|
|                                         | 0.75<br>0.75<br>0.75<br>0.75    | <br>27<br>18<br>21 | 3 weeks<br>before<br>harvest           | 25             | Grapes    | 0.65                       | n/a             |                                           |
|                                         | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | <br>27<br>18<br>24 | 3 weeks<br>before<br>harvest           | 25             | Grapes    | 0.34                       | n/a             |                                           |
| France, EU (North)<br>1990              | 0.5                             | <br>26             | Bunch<br>closing                       | 60             | Grapes    | 0.18                       | n/a             | M5377B<br>Ryan, J. and<br>Sapiets A 1991b |
| Grape/Pinot noir                        | 0.5                             | <br>42             | First berries colouring                | 44             | Grapes    | 0.24                       | n/a             |                                           |
|                                         | 0.5<br>0.5<br>0.5               | <br>26<br>16       | First berries colouring                | 44             | Grapes    | 0.18                       | n/a             |                                           |
|                                         | 0.75<br>0.75<br>0.75<br>0.75    | <br>26<br>16<br>26 | 3 weeks<br>before<br>harvest           | 18             | Grapes    | 0.10                       | n/a             |                                           |
|                                         | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | <br>26<br>16<br>26 | 3 weeks<br>before<br>harvest           | 18             | Grapes    | 0.71 [1.1]<br>Mean = 0.91  | n/a             |                                           |
| Franco Ell (North)                      | [2.0]                           |                    | 2.25                                   | 0              | Cranoc    | 15                         | n/2             | D 11107P                                  |
| FTAILCE, EU (NOTUT)                     | 0.75                            |                    | 3-35<br>(Fichhorn-                     | 12             | Grapos    | 1.5                        | n/a             | KJTIU/B                                   |
| 1991                                    | [0.75]                          |                    | Lorenz scale,                          | 31             | Grapes    | 0.07                       | n/a             | Burke, S.R. and                           |
|                                         |                                 |                    | bunches                                | 45             | Grapes    | 0.05                       | n/a             | Sapiets, A. 1991a                         |
| Grape/Pinneu<br>d/Aunis                 |                                 |                    | closing and<br>beginning to<br>colour) | 60             | Grapes    | 0.07                       | n/a             |                                           |
| Franco Ell (South)                      | 0.75                            |                    | 2.25                                   | 0              | Cranac    | 0.44                       | 2/2             | D 11107P                                  |
| TIANCE, EU (SUUIII)                     | 0.75                            |                    | (Fichhorn-                             | 13             | Grapes    | 0.44                       | n/a             |                                           |
| 1991                                    | [0.75]                          |                    | Lorenz scale,                          | IJ             | Giapes    | Mean = 0.07                | 11/ a           | Burke, S.R. and                           |
| Grape/Carignan                          |                                 |                    | bunches<br>closing and                 | 29             | Grapes    | 0.01 [0.02]<br>Mean = 0.02 | n/a             | Sapiets, A. 1991a                         |
|                                         |                                 |                    | colour)                                | 46             | Grapes    | <0.01                      | n/a             | _                                         |
|                                         |                                 |                    |                                        | 61             | Grapes    | <0.01                      | n/a             |                                           |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference         |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|-------------------|
| France, EU (North)                      | 0.75               |                    | Bunches                                | 77             | Grapes    | 0.03                 | n/a             | RJ1133B           |
|                                         |                    |                    | closing                                |                |           |                      |                 |                   |
| 1991                                    | [0.75]             |                    | Bunches                                | 77             | Cronoc    | 0.00                 | n/o             | Burke, S.R. and   |
| Grape/Pinot Noir                        | 0.75               | 17                 | closing                                | //             | Grapes    | 0.08                 | 11/a            | Sapiets, A. 19920 |
|                                         | 0170               |                    | oroomig                                |                |           |                      |                 |                   |
|                                         | [0.75]             |                    |                                        |                |           |                      |                 |                   |
|                                         | 0.50               |                    | Bunches                                | 66             | Grapes    | 0.14                 | n/a             |                   |
|                                         | 0.50               | 9                  | formed                                 |                |           |                      |                 |                   |
|                                         | 0.50               | 16                 |                                        |                |           |                      |                 |                   |
|                                         | 0.50               | 9                  |                                        |                |           |                      |                 |                   |
|                                         | 0.50               | 8                  |                                        |                |           |                      |                 |                   |
|                                         | 0.50               | 11                 |                                        |                |           |                      |                 |                   |
|                                         | [3.50]             |                    |                                        |                |           |                      |                 |                   |
|                                         | 0.75               |                    | Bunches                                | 66             | Grapes    | 0.33                 | n/a             |                   |
|                                         | 0.75               | 9                  | formed                                 |                |           |                      |                 |                   |
|                                         | 0.75               | 10                 |                                        |                |           |                      |                 |                   |
|                                         | 0.75               | 16                 |                                        |                |           |                      |                 |                   |
|                                         | 0.75               | 8                  |                                        |                |           |                      |                 |                   |
|                                         | 0.75               | 11                 |                                        |                |           |                      |                 |                   |
|                                         | [5.25]             |                    |                                        |                |           |                      |                 |                   |
|                                         | 0.50               |                    | Start of                               | 50             | Grapes    | 0.15                 | n/a             | RJ1133B           |
|                                         | 0.50               | 9                  | colour                                 |                |           |                      |                 |                   |
|                                         | 0.50               | 10                 | change                                 |                |           |                      |                 | Burke, S.R. and   |
|                                         | 0.50               | 0                  |                                        |                |           |                      |                 | Sapiets, A. 1992b |
|                                         | 0.50               | 8                  |                                        |                |           |                      |                 |                   |
|                                         | 0.50               | 11                 |                                        |                |           |                      |                 |                   |
|                                         | 0.50               | 16                 |                                        |                |           |                      |                 |                   |
|                                         | [4.0]              |                    |                                        |                |           |                      |                 |                   |
|                                         | 0.75               |                    | Start of                               | 50             | Grapes    | 0.29                 | n/a             |                   |
|                                         | 0.75               | 17                 | colour                                 |                |           |                      |                 |                   |
|                                         | 0.75               | 21                 | change                                 |                |           |                      |                 |                   |
|                                         | [2.25]             |                    |                                        |                |           |                      |                 |                   |
|                                         | 0.75               |                    | 3 weeks to                             | 25             | Grapes    | 1.3                  | n/a             |                   |
|                                         | 0.75               | 17                 | harvest                                |                |           |                      |                 |                   |
|                                         | 0.75               | 27                 |                                        |                |           |                      |                 |                   |
|                                         | 0.75               | 25                 |                                        |                |           |                      |                 |                   |
|                                         | [3.0]              |                    |                                        |                |           |                      |                 |                   |
| France, EU (North)                      | 0.754              |                    | Bunches                                | 71             | Grapes    | 0.01                 | n/a             |                   |
| 1991                                    | [0 754]            |                    | closing                                |                |           |                      |                 |                   |
| 1771                                    | 0.754              |                    | Bunches                                | 71             | Grapes    | 0.01                 | n/a             |                   |
| Grape/Gamay                             | 0.754              | 9                  | closing                                |                |           |                      |                 |                   |
|                                         | [1 500]            |                    |                                        |                |           |                      |                 |                   |
|                                         | [1.508]            |                    | 24 (Fishham                            | 50             | Cronos    | 0.02                 |                 |                   |
|                                         | 0.503              | 11                 | Jorenz stade                           | 57             | Grapes    | 0.03                 | 11/ d           |                   |
|                                         | 0.502              | 14                 | scale)                                 |                |           |                      |                 |                   |
|                                         | 0.508              | 9                  | , í                                    |                |           |                      |                 |                   |
|                                         | 0.505              | 12                 |                                        |                |           |                      |                 |                   |
|                                         | [2.518]            |                    |                                        |                |           |                      |                 |                   |

410

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total]                                                           | Interval<br>(days)                  | Growth stage<br>at last<br>application  | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                            |
|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|----------------|-----------|----------------------|-----------------|--------------------------------------|
|                                         | 0.784<br>0.750<br>0.754<br>0.765<br>0.747                                               | <br>11<br>14<br>9<br>12             | 34 (Eichhorn-<br>Lorenz stage<br>scale) | 59             | Grapes    | 0.05                 | n/a             |                                      |
|                                         | [3.80]<br>0.495<br>0.513<br>0.505<br>0.502<br>0.497<br>0.498<br>0.508                   | <br>11<br>14<br>9<br>12<br>11<br>11 | Start of<br>colour<br>change            | 37             | Grapes    | 0.17                 | n/a             |                                      |
|                                         | [3.517]<br>0.750<br>0.758<br>0.761                                                      | <br>9<br>34                         | Start of<br>colour<br>change            | 37             | Grapes    | 0.13                 | n/a             |                                      |
|                                         | [2.269]<br>0.750<br>0.745<br>0.758<br>0.773                                             | <br>9<br>34<br>21                   | 3 weeks to<br>harvest                   | 16             | Grapes    | 0.51                 | n/a             |                                      |
| France, EU (South)                      | [3.025]<br>0.750                                                                        |                                     | Bunches                                 | 67             | Grapes    | 0.02                 | n/a             | RJ1133B                              |
| 1991                                    | [0.750]                                                                                 |                                     | closing                                 |                |           |                      |                 | Burke, S.R. and<br>Sapiets, A. 1992b |
| Grape/Gamay                             | 0.750<br>0.750                                                                          | <br>17                              | Bunches<br>closing                      | 67             | Grapes    | 0.04                 | n/a             |                                      |
|                                         | [1.5]<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50                           | <br>14<br>9<br>9<br>10<br>7<br>11   | 34 (Eichhorn-<br>Lorenz stage<br>scale) | 56             | Grapes    | <0.01                | n/a             |                                      |
|                                         | [3.5]<br>0.750<br>0.750<br>0.750<br>0.750<br>0.750<br>0.750<br>0.750<br>0.750<br>[5.25] | <br>14<br>9<br>9<br>10<br>7<br>11   | 34 (Eichhorn-<br>Lorenz stage<br>scale) | 56             | Grapes    | 0.03                 | n/a             |                                      |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)                                                    | Interval<br>(days)                      | Growth stage<br>at last<br>application          | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                                     |
|-----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|----------------|-----------|----------------------|-----------------|-----------------------------------------------|
|                                         | 0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50          | <br>14<br>9<br>9<br>10<br>7<br>11<br>11 | 34 (Eichhorn-<br>Lorenz stage<br>scale)         | 45             | Grapes    | 0.07                 | n/a             |                                               |
|                                         | [4.0]<br>0.750<br>0.750<br>0.750<br>0.750                             | <br>17<br>22                            | 34 (Eichhorn-<br>Lorenz stage<br>scale)         | 45             | Grapes    | 0.11                 | n/a             | _                                             |
|                                         | [2.25]<br>0.750<br>0.750<br>0.750<br>0.750<br>0.750                   | <br>17<br>22<br>27                      | 34 (Eichhorn-<br>Lorenz stage<br>scale)         | 18             | Grapes    | 0.6                  | n/a             |                                               |
| France, EU (North)<br>1991              | [3.0]<br>0.50<br>0.50<br>0.50                                         | <br>7<br>12                             | One week<br>before<br>ripening                  | 50             | Grapes    | 0.18                 | n/a             | RJ1147B<br>Burke, S.R. and                    |
| Grape/Chenin                            | 0.50<br>0.50<br>0.50<br>0.50                                          | 10<br>11<br>15<br>15                    |                                                 |                |           |                      |                 | Sapiets, A. 1992c                             |
|                                         | [3.5]<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75 | <br>7<br>12<br>10<br>11<br>15<br>15     | One week<br>before<br>ripening                  | 50             | Grapes    | 0.21                 | n/a             |                                               |
|                                         | [5.25]<br>0.75<br>0.75                                                | <br>22                                  | Bunch<br>closing                                | 69             | Grapes    | 0.50                 | n/a             |                                               |
|                                         | [1.5]<br>0.75<br>0.75<br>0.75                                         | <br>22<br>27                            | Beginning of ripening                           | 42             | Grapes    | 0.20                 | n/a             |                                               |
|                                         | [2.25]<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                        | <br>22<br>27<br>22                      | 50% ripe                                        | 20             | Grapes    | 1.7                  | n/a             | _                                             |
| France, EU (South)<br>1991              | [3.0]<br>0.50<br>0.50<br>0.50<br>0.50                                 | <br>11<br>14<br>11                      | 31 (Eichhorn-<br>Lorenz stage<br>scale), fruits | 80             | Grapes    | 0.01                 | n/a             | RJ1147B<br>Burke, S.R. and<br>Saniets A 1992c |
| Grape/Semillon                          | 0.50                                                                  | 10                                      | Pou 3120                                        |                |           |                      |                 | Supicio, A. 17726                             |

412

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total]                                 | Interval<br>(days)           | Growth stage<br>at last<br>application                          | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                                       |
|-----------------------------------------|---------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|----------------|-----------|----------------------|-----------------|-------------------------------------------------|
|                                         | 0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                  | <br>11<br>14<br>11<br>10     | 31 (Eichhorn-<br>Lorenz stage<br>scale), fruits<br>pea size     | 80             | Grapes    | 0.02                 | n/a             |                                                 |
|                                         | [3.75]<br>0.75<br>0.75                                        | <br>24                       | 31 (Eichhorn-<br>Lorenz stage<br>scale), fruits                 | 76             | Grapes    | 0.06                 | n/a             | -                                               |
|                                         | [1.5]<br>0.75<br>0.75<br>0.75                                 | <br>24<br>25                 | pea size<br>35 (Eichhorn-<br>Lorenz stage<br>scale)             | 51             | Grapes    | 0.07                 | n/a             |                                                 |
|                                         | [2.25]<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                | <br>24<br>25<br>24           | 21 days<br>before<br>harvest                                    | 27             | Grapes    | 0.08                 | n/a             | _                                               |
| France, EU (South)                      | [3.0]<br>0.5                                                  |                              | 33 (Eichhorn-                                                   | 63             | Grapes    | 0.09                 | n/a             | RJ1147B                                         |
| 1991                                    | 0.5<br>0.5<br>0.5                                             | 10<br>9<br>13                | Lorenz stage<br>scale), bunch<br>closing                        |                |           |                      |                 | Burke, S.R. and<br>Sapiets, A. 1992c            |
| Grape/Grenache                          | 0.5<br>0.5                                                    | 9<br>11                      |                                                                 |                |           |                      |                 |                                                 |
|                                         | [3.0]<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75 | <br>10<br>9<br>13<br>9<br>11 | 33 (Eichhorn-<br>Lorenz stage<br>scale), bunch<br>closing       | 63             | Grapes    | 0.1                  | n/a             | _                                               |
|                                         | 0.75                                                          | <br>22                       | 31 (Eichhorn-<br>Lorenz stage<br>scale), fruits                 | 74             | Grapes    | 0.17                 | n/a             |                                                 |
|                                         | 0.75<br>0.75<br>0.75<br>0.75                                  | <br>22<br>33                 | 35 (Eichhorn-<br>Lorenz stage<br>scale), fruit<br>colouring     | 41             | Grapes    | 0.33                 | n/a             | -                                               |
|                                         | 0.75<br>0.75<br>0.75<br>0.75<br>0.75                          | <br>22<br>33<br>17           | 37 (Eichhorn-<br>Lorenz<br>scale), 3<br>weeks before<br>harvest | 21             | Grapes    | 0.64                 | n/a             | -                                               |
| E EL (1                                 | [3.0]                                                         |                              | 05 (5)                                                          |                |           | 0.00                 |                 |                                                 |
| France, EU (North)<br>1992              | 0.750<br>[0.750]                                              |                              | 25 (Eichhorn-<br>Lorenz scale,<br>late<br>flowering)            | 91             | Grapes    | <0.01                | 0.03            | 6936-96-0228-<br>CR-001<br>Kenyon, R.G.<br>1996 |
| Grape/Pinot Noir                        | 0.870                                                         |                              | 33 (Eichhorn-<br>Lorenz scale,                                  | 70             | Grapes    | <0.01                | 0.04            | and                                             |
|                                         | [0.870]                                                       |                              | bunch<br>closure)                                               |                |           |                      |                 | 6245-95-0001-<br>CR-001                         |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application  | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                |
|-----------------------------------------|--------------------|--------------------|-----------------------------------------|----------------|-----------|----------------------|-----------------|--------------------------|
|                                         | [Total]            |                    | 22 (Eishham                             | 70             | 0         | 0.04                 | 0.11            | Johlanski J.F.           |
|                                         | 0.850              | 21                 | 33 (Elcnnorn-<br>Lorenz scale,<br>bunch | 70             | Grapes    | 0.04                 | 0.11            | Jabionski, J.E.<br>1995b |
|                                         | [1.64]             |                    | closure)                                |                |           |                      |                 |                          |
|                                         | 0.810              |                    | 35 (Eichhorn-                           | 48             | Grapes    | 0.09                 | 0.18            |                          |
|                                         | 0.820              | 21                 | Lorenz scale,                           |                |           |                      |                 |                          |
|                                         | 0.860              | 22                 | veraison)                               |                |           |                      |                 |                          |
|                                         | [2.49]             |                    |                                         |                |           |                      | _               |                          |
|                                         | 0.830              |                    | 36 (Eichhorn-                           | 24             | Grapes    | 0.28                 | 0.09            |                          |
|                                         | 0.810              | 21                 | Lorenz scale,                           |                |           |                      |                 |                          |
|                                         | 0.810              | 22                 | berries                                 |                |           |                      |                 |                          |
|                                         | 0.840              | 24                 | coloureu)                               |                |           |                      |                 |                          |
| Francis FU (North)                      | [3.29]             |                    |                                         | 00             | 0         | 0.01                 | 0.00            | (02) 0( 0220             |
| France, EU (North)                      | 0.680              |                    | Lorenz scale,                           | 88             | Grapes    | <0.01                | 0.08            | CR-001                   |
| 1992                                    | [0.68]             |                    | late                                    |                |           |                      |                 | Kenyon, R.G.             |
|                                         |                    |                    | flowering)                              |                |           | _                    |                 | 1996                     |
| Grape/Pinot Noir                        | 0.79               |                    | 33 (Eichhorn-<br>Lorenz scale,          | 67             | Grapes    | 0.05                 | 0.28            | and                      |
|                                         | [0.79]             |                    | bunch                                   |                |           |                      |                 | 6245-95-0001-            |
|                                         |                    |                    | closure)                                |                | -         |                      |                 | CR-001                   |
|                                         | 0./10              |                    | 33 (Eichhorn-                           | 6/             | Grapes    | 0.03                 | 0.30            | Jabionski, J.E.          |
|                                         | 0.770              | 21                 | Lorenz scale,<br>bunch                  |                |           |                      |                 | 19950                    |
|                                         | [1.48]             |                    | closure)                                |                |           |                      |                 |                          |
|                                         | 0.810              |                    | 35 (Eichhorn-                           | 45             | Grapes    | 0.22                 | 0.20            |                          |
|                                         | 0.800              | 21                 | Lorenz scale,                           |                |           |                      |                 |                          |
|                                         | 0.840              | 22                 | veraison)                               |                |           |                      |                 |                          |
|                                         | [2.45]             |                    |                                         |                |           |                      |                 |                          |
|                                         | 0.820              |                    | 36 (Eichhorn-                           | 21             | Grapes    | 0.37                 | 0.19            |                          |
|                                         | 0.750              | 21                 | Lorenz scale,                           |                |           |                      |                 |                          |
|                                         | 0.780              | 22                 | berries                                 |                |           |                      |                 |                          |
|                                         | 0.780              | 24                 | coloured)                               |                |           |                      |                 |                          |
|                                         | [3.1]              |                    |                                         |                |           |                      |                 |                          |
| France, EU (North)                      | 0.840              |                    | 25 (Eichhorn-                           | 99             | Grapes    | <0.01                | 0.04            | 6936-96-0228-            |
|                                         |                    |                    | Lorenz scale,                           |                |           |                      |                 | CR-001                   |
| 1992                                    | [0.84]             |                    | late                                    |                |           |                      |                 | Kenyon, R.G.             |
| 0 (0)                                   |                    |                    | flowering)                              |                | -         |                      |                 | 1996                     |
| Grape/Cnenin                            | 0.870              |                    | 33 (Eichhorn-                           | 84             | Grapes    | <0.01                | 0.04            | and                      |
|                                         | 10 071             |                    | Lorenz scale,                           |                |           |                      |                 | 6245-95-0001-            |
|                                         | [0.07]             |                    | closure)                                |                |           |                      |                 | CR-001                   |
|                                         | 0.840              |                    | 33 (Fichhorn-                           | 84             | Granes    | <0.01                | 0.07            | Jablonski, J.F.          |
|                                         | 0.870              | 15                 | Lorenz scale.                           | 101            | orapes    | 0.01                 | 0.07            | 1995b                    |
|                                         | 0.070              | 10                 | bunch                                   |                |           |                      |                 |                          |
|                                         | [1.71]             |                    | closure)                                |                |           |                      |                 |                          |
|                                         | 0.840              |                    | 35 (Eichhorn-                           | 48             | Grapes    | 0.23                 | 0.09            |                          |
|                                         | 0.830              | 15                 | Lorenz scale,                           |                |           |                      |                 |                          |
|                                         | 0.740              | 36                 | veraison)                               |                |           |                      |                 |                          |
|                                         | [2.38]             |                    |                                         |                |           |                      |                 |                          |
|                                         | 0.720              |                    | 36 (Eichhorn-                           | 21             | Grapes    | 0.70                 | 0.12            |                          |
|                                         | 0.830              | 15                 | Lorenz scale,                           |                |           |                      |                 |                          |
|                                         | 0.770              | 36                 | berries                                 |                |           |                      |                 |                          |
|                                         | 0.790              | 27                 | coloured)                               |                |           |                      |                 |                          |
|                                         | [3.11]             |                    |                                         |                |           |                      |                 |                          |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)   | Reference                          |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-------------------|------------------------------------|
| France, EU (South)                      | 0.760              |                    | 25 (Fichhorn-                          | 94             | Grapes    | 0.02                 | 0.05              | 6936-96-0228-                      |
| 1992                                    | [0.76]             |                    | Lorenz scale,<br>late<br>flowering)    | 101            | Grapes    | 0.01                 | 0.05              | CR-001<br>Kenyon, R.G.<br>1996     |
| Grape/Gamay                             | 0.760              |                    | 33 (Eichhorn-                          | 67             | Grapes    | 0.04                 | 0.22              | and                                |
|                                         | [0.76]             |                    | Lorenz scale,<br>bunch<br>closure)     | 74             | Grapes    | 0.03                 | 0.16              | 6245-95-0001-<br>CR-001            |
|                                         | 0.760              |                    | 33 (Eichhorn-                          | 67             | Grapes    | 0.03                 | 0.17              | Jablonski, J.E.                    |
|                                         | 0.760              | 27                 | Lorenz scale,<br>bunch<br>closure)     | 74             | Grapes    | 0.12                 | 0.18              | 1995b                              |
|                                         | 0.760              |                    | 35 (Eichhorn-                          | 45             | Grapes    | 0.24                 | 0.25              |                                    |
|                                         | 0.760              | 27                 | Lorenz scale,                          | 52             | Grapes    | 0.19                 | 0.24              |                                    |
|                                         | 0.760              | 22                 | veraison)                              |                |           |                      |                   |                                    |
|                                         | [2.28]             |                    |                                        |                |           |                      |                   |                                    |
|                                         | 0.760              |                    | 36 (Eichhorn-                          | 20             | Grapes    | 0.41                 | 0.24              |                                    |
|                                         | 0.760              | 27                 | Lorenz scale,                          | 27             | Grapes    | 0.50                 | 0.29              |                                    |
|                                         | 0.760              | 22                 | coloured)                              |                |           |                      |                   |                                    |
|                                         | [3.04]             |                    |                                        |                |           |                      |                   |                                    |
| Switzerland, EU<br>(North)              | 0.250              |                    | -                                      | 72             | Grapes    | 0.35                 | n/a               | 343631                             |
|                                         | [0.25]             |                    |                                        |                |           |                      |                   | Schanné C. 1994                    |
| 1995                                    | 0.250              |                    | -                                      | 0              | Grapes    | 6.62                 | n/a               |                                    |
| Grape/Riesling x                        | 0.250              | 31                 |                                        | 70             | Grapes    | 0.12                 | n/a               |                                    |
| Sylvaner                                | [0.500]            |                    |                                        | 22             | Cronos    | 2.024                | 0.007             | (04272                             |
| France, EU (North)                      | 0.748              | 21                 | -                                      | 22             | Grapes    | 2.034                | 0.237             | 604372                             |
| 1995                                    | 0.756              | 22                 |                                        | 30             | Grapes    | 1.213                | 0.22              | Schulz, M. and                     |
|                                         | 0.790              | 14                 |                                        |                |           |                      |                   | Ullrich-Mietzel,                   |
| Grape/Pinot Blanc                       | [3.05]             |                    |                                        |                |           |                      |                   | A. 1996                            |
| France, EU (North)                      | 0.747              |                    | -                                      | 19             | Grapes    | 1.881 [2.061]        | 0.058             | 604372                             |
|                                         | 0.750              | 28                 |                                        |                |           | Mean = 1.971         |                   |                                    |
| 1995                                    | 0.747<br>0.750     | 28<br>19           |                                        |                |           |                      |                   | Schulz, M. and<br>Ullrich-Mietzel, |
| Grape/Pinot Noir                        | [2.994]            |                    |                                        |                |           |                      |                   | A. 1996                            |
| France, EU (South)                      | 0.727              |                    | -                                      | 21             | Grapes    | 0.535                | 0.167             | ]                                  |
|                                         | 0.748              | 30                 |                                        |                |           |                      |                   |                                    |
| 1995                                    | 0.750              | 22                 |                                        |                |           |                      |                   |                                    |
| 0                                       | 0.747              | 14                 |                                        |                |           |                      |                   |                                    |
| Grape/Gamay                             | [2 071]            |                    |                                        |                |           |                      |                   |                                    |
| France, EU (South)                      | 0.764              |                    | -                                      | 22             | Grapes    | 0.778                | 0.068             | 1                                  |
|                                         | 0.745              | 37                 |                                        |                | 0.0000    |                      |                   |                                    |
| 1995                                    | 0.752              | 20                 |                                        |                |           |                      |                   |                                    |
|                                         | 0.754              | 20                 |                                        |                |           |                      |                   |                                    |
| Grape/Sauvignon                         | [3.015]            |                    |                                        |                |           |                      |                   |                                    |
| France, EU (North)                      | 0.750              |                    | BBCH 69                                | 93             | Grapes    | 0.01, 0.01           | 0.06, 0.05 (0.06) | 7074-96-0287-                      |
| 1996                                    | [0.75]             |                    | (end of<br>flowering)                  |                |           | (0.01)               |                   | CR-001<br>Kenyon, R.G.             |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total]                 | Interval<br>(days) | Growth stage<br>at last<br>application           | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg)                        | Reference                                               |
|-----------------------------------------|-----------------------------------------------|--------------------|--------------------------------------------------|----------------|-----------|-------------------------|----------------------------------------|---------------------------------------------------------|
| Grape/Pinot Noir                        | 0.75<br>0.75<br>[1.5]                         | <br>21             | BBCH 77<br>(bunch<br>closure)                    | 72             | Grapes    | 0.02, 0.02<br>(0.02)    | 0.07, 0.08 (0.08)                      | 1997a<br>and<br>7074-97-0059-<br>CR-001                 |
|                                         | 0.75<br>0.75<br>0.75                          | <br>21<br>35       | BBCH 81<br>(beginning<br>veraison)               | 37             | Grapes    | 0.21, 0.22<br>(0.22)    | 0.11, 0.10 (0.11)                      | Kenyon, R.G.<br>1997b                                   |
|                                         | 0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>[3.0] | <br>21<br>35<br>14 | 3 weeks<br>before<br>harvest                     | 23             | Grapes    | 1.13, 1.07<br>(1.10)    | 0.10, 0.11 (0.11)                      |                                                         |
| France, EU (North)                      | 0.750                                         |                    | BBCH 69<br>(end of                               | 97             | Grapes    | <0.01, <0.01<br>(<0.01) | 0.04, 0.04 (0.04)                      | 7074-96-0287-<br>CR-001<br>Kenvon R G                   |
| Grape/Pinot Noir                        | 0.75                                          | <br>23             | BBCH 77<br>(beg. bunch<br>closure)               | 74             | Grapes    | 0.01, 0.01<br>(0.01)    | 0.11, 0.11 (0.11)                      | Kenyon, R.G.<br>1997a<br>and<br>7074-97-0059-           |
|                                         | 0.75<br>0.75<br>0.75                          | <br>23<br>28       | BBCH 83<br>(veraison)                            | 46             | Grapes    | 0.06, 0.05<br>(0.06)    | 0.14, 0.13 (0.14)                      | Kenyon, R.G.<br>1997b                                   |
|                                         | [2.25]<br>0.75<br>0.75<br>0.75<br>0.75        | <br>23<br>28<br>21 | BBCH 85<br>(veraison)                            | 25             | Grapes    | 0.44, 0.37<br>(0.41)    | 0.13, 0.13 (0.13)                      |                                                         |
| France, EU (South)                      | 0.750                                         |                    | BBCH 69<br>(end of                               | 92             | Grapes    | <0.01, <0.01<br>(<0.01) | 0.03, 0.06 (0.05)                      | 7074-96-0287-<br>CR-001                                 |
| 1996<br>Grape/Carignan                  | [0.75]<br>0.75<br>0.75                        | <br>12             | flowering)<br>BBCH 77<br>(beg. bunch<br>closure) | 80             | Grapes    | 0.09, 0.10 (0.10)       | 0.11, 0.15 (0.13)                      | Kenyon, R.G.<br>1997a<br>and<br>7074-97-0059-<br>CP-001 |
|                                         | 0.75<br>0.75<br>0.75                          | <br>12<br>44       | BBCH 85<br>(veraison)                            | 36             | Grapes    | 0.32, 0.36<br>(0.34)    | 0.13, [0.30]<br>0.29, [0.15]<br>(0.22) | Kenyon, R.G.<br>1997b                                   |
|                                         | 0.75<br>0.75<br>0.75<br>0.75<br>0.75          | <br>12<br>44<br>11 | BBCH 86<br>(veraison)                            | 25             | Grapes    | 2.28, 2.53<br>(2.41)    | 0.28, 0.22 (0.25)                      |                                                         |
| France, EU (South)                      | 0.750                                         |                    | BBCH 63<br>(Flowering)                           | 111            | Grapes    | <0.01, <0.01<br>(<0.01) | 0.02, 0.02 (0.02)                      | 7074-96-0287-<br>CR-001<br>Kenvon R G                   |
| Grape/Merlot                            | 0.75                                          | <br>35             | BBCH 79 (D.<br>of fruits)                        | 76             | Grapes    | 0.06,<br>0.07(0.07)     | 0.06, 0.13 (0.10)                      | 1997a<br>and<br>7074-97-0059-                           |
|                                         | [1.5]                                         |                    |                                                  |                |           |                         |                                        | CR-001                                                  |

| Location, Country<br>Year, Crop/Variety   | Rate<br>(kg ai/ha)<br>[Total]                | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)   | Reference                     |
|-------------------------------------------|----------------------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-------------------|-------------------------------|
|                                           | 0.75<br>0.75<br>0.75                         | <br>35<br>33       | BBCH 85<br>(Ripening of<br>berries)    | 73             | Grapes    | 0.38, 0.42<br>(0.40) | 0.25, 0.26 (0.26) | Kenyon, R.G.<br>1997b         |
|                                           | 0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75 | <br>35<br>33<br>22 | BBCH 88<br>(Ripening of<br>berries)    | 21             | Grapes    | 1.21, 1.21<br>(1.21) | 0.17, 0.17 (0.17) |                               |
|                                           | [3.0]                                        |                    |                                        |                |           |                      |                   |                               |
| France, EU (North)<br>2010                | 0.761<br>0.764<br>0.764                      | <br>14<br>16       | BBCH 85                                | 21             | Grapes    | 0.02                 | <0.01             | S10-02337<br>Gemrot, F. 2011c |
| Grape/Gamay<br>France, EU (North)<br>2010 | [2.289]<br>0.778<br>0.787<br>0.752           | <br>21<br>13       | BBCH 85                                | 21             | Grapes    | <0.01                | <0.01             | -                             |
| Grape/Chenin                              | [2.317]                                      | 15                 |                                        | 10             |           | 0.02                 | 0.01              | -                             |
| 2010                                      | 0.742<br>0.714<br>0.717                      | 25<br>16           | BBCH 83-85                             | 19             | Grapes    | 0.03                 | <0.01             |                               |
| Grape/Carignan                            | [2.173]                                      |                    |                                        |                |           |                      |                   | _                             |
| France, EU (South)<br>2010                | 0.696<br>0.816<br>0.720                      | <br>22<br>22       | BBCH 85                                | 21             | Grapes    | <0.01                | <0.01             |                               |
| Grape/Chardonnay                          | [2.231]                                      |                    |                                        |                |           |                      |                   |                               |
| France, EU (North)                        | 0.759                                        | <br>27             | -                                      | 0              | Grapes    | 0.40                 | 0.03              | \$10-02338                    |
| 2010                                      | 0.738                                        | 16                 |                                        | 14             | Granes    | 0.21                 | 0.03              | Gemrot, F. 2011d              |
|                                           |                                              |                    |                                        | 21             | Grapes    | 0.20                 | 0.04              | -                             |
| Grape/Cabernet                            | [2.261]                                      |                    |                                        | 28             | Grapes    | 0.11                 | 0.03              |                               |
| France, EU (North)                        | 0.751                                        |                    | -                                      | 0              | Grapes    | 1.31                 | 0.11              |                               |
|                                           | 0.758                                        | 19                 |                                        | 7              | Grapes    | 1.38                 | 0.08              |                               |
| 2010                                      | 0.740                                        | 9                  |                                        | 14             | Grapes    | 0.44                 | 0.13              |                               |
| Grane/Carigan                             | [2 249]                                      |                    |                                        | 21             | Grapes    | 0.19                 | 0.07              | -                             |
| Grape/ Carigan                            | [2.247]                                      |                    |                                        | 28             | Grapes    | 0.16                 | 0.11              | -                             |
| France, EU (North)                        | 0.741                                        |                    | -                                      | 0              | Grapes    | 0.23                 | 0.01              | -                             |
| 2010                                      | 0.734                                        | 11                 |                                        | 7              | Grapes    | 0.24                 | 0.01              | -                             |
| 2010                                      | 0.770                                        |                    |                                        | 14             | Grapes    | 0.19                 | 0.02              | -                             |
| Grape/Chenin                              | [2.245]                                      |                    |                                        | 21             | Grapes    | 0.32                 | 0.05              | -                             |
| France ELL (North)                        | 0 763                                        |                    |                                        | 20             | Granes    | 1.22                 | 0.02              |                               |
|                                           | 0.766                                        | 17                 |                                        | 7              | Grapes    | 1.22                 | 0.00              | -                             |
| 2010                                      | 0.786                                        | 7                  |                                        | 14             | Grapes    | 0.56                 | 0.11              |                               |
|                                           |                                              |                    |                                        | 21             | Grapes    | 0.51                 | 0.15              |                               |
| Grape/Chardonnay                          | [2.315]                                      |                    |                                        | 28             | Grapes    | 0.36                 | 0.11              |                               |
| France, EU (South)                        | 0.721                                        |                    | -                                      | 0              | Grapes    | 0.89                 | 0.07              | S10-02338                     |
| ·                                         | 0.766                                        | 27                 |                                        | 7              | Grapes    | 0.58                 | 0.19              | ]                             |
| 2010                                      | 0.732                                        | 14                 |                                        | 14             | Grapes    | 0.37                 | 0.12              | Gemrot, F. 2011d              |
| Grapo/Cabornot                            | [2 222]                                      |                    |                                        | 21             | Grapes    | 0.09                 | 0.08              |                               |
| Sauvianon                                 | [2.222]                                      |                    |                                        | 28             | Grapes    | 0.13                 | 0.12              |                               |
| France, EU (South)                        | 0.737                                        |                    | -                                      | 0              | Grapes    | 0.40                 | 0.02              | 1                             |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)              | Reference               |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|------------------------------|-------------------------|
|                                         | 0.779                         | 29                 |                                        | 7              | Grapes    | 0.18                 | 0.01                         |                         |
| 2010                                    | 0.738                         | 13                 |                                        | 14             | Grapes    | 0.13                 | 0.02                         |                         |
| o /o ·                                  | 10.05.41                      |                    |                                        | 21             | Grapes    | 0.12                 | 0.02                         |                         |
| Grape/Carigan                           | [2.254]                       |                    |                                        | 28             | Grapes    | 0.11                 | 0.01                         |                         |
| France, EU (South)                      | 0.751                         |                    | -                                      | 0              | Grapes    | 0.45                 | 0.05                         | _                       |
|                                         | 0.767                         | 32                 |                                        | 7              | Grapes    | 0.10                 | 0.04                         | _                       |
| 2010                                    | 0.751                         | 15                 |                                        | 14             | Grapes    | 0.12                 | 0.05                         | -                       |
| Grane/Grenache Gris                     | [2 269]                       |                    |                                        | 21             | Grapes    | 0.05                 | 0.05                         | -                       |
|                                         | [2.207]                       |                    |                                        | 28             | Grapes    | 0.03                 | 0.06                         | -                       |
| France, EU (South)                      | 0.725                         |                    | -                                      | 0              | Grapes    | 0.33                 | 0.01                         | -                       |
| 2010                                    | 0.701                         | 33                 |                                        | 7              | Grapes    | 0.15                 | 0.01                         | -                       |
| 2010                                    | 0.724                         | 10                 |                                        | 14             | Grapes    | 0.16                 | 0.02                         | -                       |
| Grape/Sauvignon                         | [2.21]                        |                    |                                        | 21             | Grapes    | 0.13                 | 0.02                         | -                       |
| France FU (South)                       | 0.750                         |                    | Dunchoo                                | 28             | Grapes    | 0.08                 | 0.02                         | D 11110D                |
| France, EU (South)                      | 0.750                         |                    | closed                                 | 15             | Grapes    | 1.9                  | n/a                          | KJIIIZB                 |
| 1991                                    | [0.75]                        |                    | ciosed                                 | 10             | Grapes    | 0.3                  | n/a                          | Rvan, J. and            |
|                                         |                               |                    |                                        | 32             | Grapes    | 0.05                 | n/a                          | Sapiets, A. 1992b       |
| Grape/Pinot noir                        |                               |                    |                                        | 40             | Granes    | 0.00                 | n/a                          | -                       |
| Greece ELL (South)                      | 0 723                         |                    | Close to                               | 22             | Granes    | 6 80 [7 42]          | 0.51 [0.58]                  | 6649-96-0022-           |
| Greece, EG (South)                      | 0.725                         | 30                 | ripening                               | 22             | Urapes    | Mean = $7.11$        | Mean = 0.55                  | CR-001                  |
| 1991                                    | 0.748                         | 36                 |                                        |                |           |                      |                              |                         |
|                                         | 0.742                         | 26                 |                                        |                |           |                      |                              | Dvorak, R.S. and        |
| Grape/Savatiano                         |                               |                    |                                        |                |           |                      |                              | Kenyon, R.G.            |
|                                         | [2.969]                       |                    |                                        |                | -         |                      |                              | 1996                    |
| France, EU (South)                      | 0.728                         |                    | BBCH 77                                | 81             | Grapes    | 0.03                 | n/a                          | 734387                  |
| 1999                                    | [0.729]                       |                    |                                        |                |           |                      |                              | Wais, A. 2000           |
| Grape/Cabernet-<br>Sauvignon            |                               |                    |                                        |                |           |                      |                              |                         |
| France, EU (South)                      | 0.754                         |                    | BBCH 77-79                             | 70             | Grapes    | 0.02                 | n/a                          |                         |
| 1999                                    | [0.754]                       |                    |                                        |                |           |                      |                              |                         |
| 0                                       |                               |                    |                                        |                |           |                      |                              |                         |
| Grape/Grenache<br>Greece ELL (South)    | 0 742                         |                    | BBCH 69                                | 92             | Granes    | <0.01                | <0.01                        | ISK/FLU/08001           |
| 010000, 20 (00001)                      | 0.742                         |                    | bbono                                  | 12             | orupes    | <0.01                | <0.01                        | 15101 20/00001          |
| 2008                                    | [0.742]                       |                    |                                        |                |           |                      |                              | Heilaut, C. 2009        |
| Grape/Rhoditis                          |                               |                    |                                        |                |           |                      |                              | _                       |
| Greece, EU (South)                      | 0.742                         |                    | BBCH 69                                | 77             | Grapes    | <0.01                | <0.01                        |                         |
| 2008                                    | [0.742]                       |                    |                                        |                |           |                      |                              |                         |
| Grape/Chardonnay                        |                               |                    |                                        |                |           |                      |                              |                         |
| Greece, EU (South)                      | 0.784                         |                    | BBCH 69                                | 69             | Grapes    | <0.01                | 0.05. [0.08].                | S10-00193               |
| 2010                                    | [0.784]                       |                    |                                        |                |           |                      | [0.08], <0.01                | Gemrot, F. 2011b        |
|                                         |                               |                    |                                        |                | 1         |                      |                              |                         |
| Grape/Victoria                          |                               |                    |                                        |                |           |                      |                              |                         |
| Greece, EU (South)                      | 0.768                         |                    | BBCH 89                                | 98             | Grapes    | <0.01                | 0.10, [0.17],<br>[0.18] 0.02 |                         |
| 2010                                    | [0.768]                       |                    |                                        |                |           |                      |                              |                         |
| Grape/Soultania                         |                               |                    |                                        |                |           |                      |                              |                         |
| Greece, EU (South)                      | 0.760<br>0.750                | <br>9              | Grapes just<br>larger than             | 0              | Grapes    | 1.09, 1.16<br>(1.13) | 0.14, 0.13 (0.14)            | 6245-95-0001-<br>CR-003 |
| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)   | Reference       |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-------------------|-----------------|
| 1994                                    | 0.750<br>0.750                | 5<br>12            | pea size                               | 21             | Grapes    | 0.06, 0.05<br>(0.06) | 0.18, 0.18 (0.18) | Jablonski, J.E. |
| Grape/Sultana                           | 0.750<br>0.750                | 21<br>21           |                                        | 30             | Grapes    | 0.10, 0.09<br>(0.10) | 0.17, 0.16 (0.17) | 1995c           |
|                                         | [4.51]                        |                    |                                        | 45             | Grapes    | 0.11, 0.18<br>(0.15) | 0.21, 0.21 (0.21) |                 |
|                                         | 0.500<br>0.500                | <br>9              | Grapes just<br>larger than             | 0              | Grapes    | 1.00, 1.06<br>(1.03) | 0.04, 0.09 (0.07) |                 |
|                                         | 0.500<br>0.500                | 5<br>12            | pea size                               | 21             | Grapes    | 0.15, 0.15<br>(0.15) | 0.30, 0.28 (0.29) |                 |
|                                         | 0.500<br>0.500                | 21<br>21           |                                        | 30             | Grapes    | 0.09, 0.10<br>(0.10) | 0.20, 0.19 (0.20) |                 |
|                                         | [3.0]                         |                    |                                        | 45             | Grapes    | 0.07, 0.07<br>(0.07) | 0.20, 0.21 (0.21) |                 |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

#### Blueberries

Thirteen residue trials were conducted in Canada and the USA in 2003 and 2004.

Six foliar applications were made using an SC formulation at application rates in the range of 0.706–1.166 kg ai/ha.

Samples of berries were collected 23-51 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 162 days for fluazinam and for up to 229 days for AMGT prior to extraction and analysis.

Residues of fluazinam and AMGT in blueberries were determined using analytical method 3. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.01-3 mg/kg were made with recoveries in the range of 60–140%. Fortification levels for AMGT of 0.01-1 mg/kg were made with recoveries in the range of 58–125%.

| Table 95 Residues in Blueberries from supervised trials in Cana | hada and the USA involving 6 foliar applications of fluazinam |
|-----------------------------------------------------------------|---------------------------------------------------------------|
|-----------------------------------------------------------------|---------------------------------------------------------------|

| Location, Country<br>Year, Crop/Variety                  | Rate<br>(kg ai/ha)<br>[Total]                                 | Interval<br>(days)             | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)          | AMGT<br>(mg/kg)         | Reference                                    |
|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------|----------------------------------------|----------------|-----------|-------------------------------|-------------------------|----------------------------------------------|
| GAP USA                                                  | MID: 0.73<br>MTD: 4.38                                        | 7-10                           | Some ripe<br>fruit                     | 30             | -         | -                             | -                       | -                                            |
| Jonesboro, ME, USA<br>2003<br>Blueberry/wild low<br>bush | 0.729<br>0.729<br>0.729<br>0.729<br>0.751<br>0.740<br>[4.406] | <br>6<br>7<br>7<br>6<br>7      | Vegetative,<br>bloom                   | 50             | Berries   | 0.24, 0.41<br>(0.33)          | 0.060, 0.082<br>(0.071) | IR-4 PR No. 06129<br>Thompson, D.C.<br>2006a |
|                                                          | 0.729<br>0.751<br>0.729<br>0.729<br>0.740<br>0.751<br>[4.428] | <br>6<br>7<br>8<br>7<br>7<br>7 | Vegetative                             | 28             | Berries   | 0.45, 0.49<br>( <u>0.47</u> ) | 0.10, 0.12<br>(0.11)    |                                              |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference         |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------|-----------------|-------------------|
| Chateworth NULLISA                      | 0 704              |                    | Fruiting                               | 47             | Porrios   | 0.044.0.092             | -0.02 -0.02     |                   |
| Chatsworth, NJ, USA                     | 0.700              | 7                  | Truiting                               | 47             | Derries   | (0.074)                 | (<0.02)         |                   |
| 2003                                    | 0.727              | 8                  |                                        |                |           | (0.074)                 | (<0.02)         |                   |
| 2000                                    | 0.729              | 7                  |                                        |                |           |                         |                 |                   |
| Blueberry/Blue ray <sup>a</sup>         | 0.751              | 7                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762              | 7                  |                                        |                |           |                         |                 |                   |
|                                         | [4.439]            |                    |                                        |                |           |                         |                 |                   |
|                                         | 0.717              |                    | Fruiting                               | 32             | Berries   | 0.42, 0.68              | 0.051, 0.046    |                   |
|                                         | 0.729              | 7                  | 3                                      |                |           | (0.55)                  | (0.049)         |                   |
|                                         | 0.729              | 7                  |                                        | 39             | Berries   | 0.28, 0.26              | 0.032, 0.036    |                   |
|                                         | 0.751              | 7                  |                                        |                |           | (0.27)                  | (0.034)         |                   |
|                                         | 0.729              | 7                  |                                        |                |           |                         |                 |                   |
|                                         | 0.740              | 8                  |                                        |                |           |                         |                 |                   |
|                                         | [4.394]            |                    |                                        |                |           |                         |                 |                   |
| Chatsworth, NJ, USA                     | 0.717              |                    | Fruiting                               | 47             | Berries   | 0.11, 0.095             | 0.020, 0.023    | IR-4 PR No. 06129 |
|                                         | 0.729              | 7                  |                                        |                |           | (0.10)                  | (0.022)         |                   |
| 2003                                    | 0.740              | 8                  |                                        |                |           |                         |                 | Thompson, D.C.    |
|                                         | 0.740              | 7                  |                                        |                |           |                         |                 | 2006a             |
| Blueberry/Blue crop <sup>a</sup>        | 0.740              | 7                  |                                        |                |           |                         |                 |                   |
|                                         | 0.751              | 7                  |                                        |                |           |                         |                 |                   |
|                                         | [4.41/]            |                    |                                        |                |           |                         |                 | -                 |
|                                         | 0.729              |                    | Fruiting                               | 32             | Berries   | 1.2, 1.0 ( <u>1.1</u> ) | 0.026, 0.042    |                   |
|                                         | 0.740              | /                  |                                        |                |           | 0.04.0.40               | (0.034)         | -                 |
|                                         | 0.740              | /                  |                                        | 39             | Berries   | 0.34, 0.42              | 0.037, 0.043    |                   |
|                                         | 0.740              | 7                  |                                        |                |           | (0.38)                  | (0.040)         |                   |
|                                         | 0.740              | 0                  |                                        |                |           |                         |                 |                   |
|                                         | [/ /20]            | 0                  |                                        |                |           |                         |                 |                   |
| Castle Havne NC                         | 0 720              |                    | Fruiting                               | 50             | Porrioc   | 0.16.0.14               | 0.054.0.054     | ID 4 DD No. 04120 |
| Castle Hayne, NC,                       | 0.729              | 6                  | Tuning                                 | 50             | Derries   | (0.15)                  | (0.054, 0.050   | IK-4 FK NO. 00127 |
| 03A                                     | 0.727              | 7                  |                                        |                |           | (0.13)                  | (0.033)         | Thompson D.C      |
| 2003                                    | 0.717              | 7                  |                                        |                |           |                         |                 | 2006a             |
| 2000                                    | 0.729              | 7                  |                                        |                |           |                         |                 | 20000             |
| Blueberry/Premier                       | 0.717              | 7                  |                                        |                |           |                         |                 |                   |
| , , , , , , , , , , , , , , , , , , ,   | [4.349]            |                    |                                        |                |           |                         |                 |                   |
|                                         | 0.729              |                    | Fruiting                               | 28             | Berries   | 0.50, 0.55              | 0.055, 0.072    |                   |
|                                         | 0.729              | 7                  | 0                                      |                |           | ( <u>0.53</u> )         | (0.064)         |                   |
|                                         | 0.717              | 7                  |                                        |                |           |                         |                 |                   |
|                                         | 0.729              | 8                  |                                        |                |           |                         |                 |                   |
|                                         | 0.729              | 8                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762              | 6                  |                                        |                |           |                         |                 |                   |
|                                         | [4.349]            |                    |                                        |                |           |                         |                 |                   |
| Fennville, MI, USA <sup>b</sup>         | 0.740              |                    | Fruiting                               | 50             | Berries   | 0.042, 0.034            | <0.02, <0.02    | IR-4 PR No. 06129 |
|                                         | 0.740              | 6                  |                                        |                |           | (0.038)                 | (<0.02)         |                   |
| 2003                                    | 0.706              | 7                  |                                        |                |           |                         |                 | Thompson, D.C.    |
|                                         | 0.706              | 7                  |                                        |                |           |                         |                 | 2006a             |
| Blueberry/Rubel                         | 0.706              | /                  |                                        |                |           |                         |                 |                   |
|                                         | 0.740              | /                  |                                        |                |           |                         |                 |                   |
|                                         | [4 220]            |                    |                                        |                |           |                         |                 |                   |
|                                         | 0 706              | +                  | Fruiting                               | 20             | Borrios   | 0.16.0.12               | 0 12 0 12       | 1                 |
|                                         | 0.700              |                    | riulung                                | 20             | bernes    | 0.10, 0.12              | (0.13)          |                   |
|                                         | 0.717              | 7                  |                                        | 20             | Borrios   | 0.28 0.22               | 0.13)           | -                 |
|                                         | 0.727              | 7                  |                                        | 30             | Dellies   | 0.20, 0.22              | (0.17)          |                   |
|                                         | 0.740              | 7                  |                                        |                |           | (0.23)                  | (0.17)          |                   |
|                                         | 0.717              | 8                  |                                        |                |           |                         |                 |                   |
|                                         |                    | Ĭ                  |                                        |                |           |                         |                 |                   |
|                                         | [4.305]            |                    |                                        |                |           |                         |                 |                   |

| Location Country     | Pato        | Interval | Growth stage    |        | Crop part | Fluazinam      | AMGT         | Poforonco         |
|----------------------|-------------|----------|-----------------|--------|-----------|----------------|--------------|-------------------|
| Voar Cron/Varioty    | (kg ai/ba)  | (days)   | of Uwin Stage   | (days) | Crop part | (ma/ka)        | (ma/ka)      | Kelelelice        |
| real, crop/variety   | (ky al/fia) | (uays)   | application     | (uays) |           | (Hg/kg)        | (iiig/kg)    |                   |
|                      | [Total]     |          | application     |        |           |                |              |                   |
| Fennville, ML USA b  | 0.717       |          | Fruiting        | 50     | Berries   | 0.038.0.017    | 0 12 0 10    | IR-4 PR No. 06129 |
|                      | 0.706       | 6        |                 |        |           | (0.028)        | (0.11)       |                   |
| 2003                 | 0.729       | 7        |                 |        |           | ()             | ()           | Thompson, D.C.    |
|                      | 0.706       | 7        |                 |        |           |                |              | 2006a             |
| Blueberry/Rubel      | 0 706       | 8        |                 |        |           |                |              | 20000             |
| Dideberry/raber      | 0 729       | 6        |                 |        |           |                |              |                   |
|                      | 0.727       | Ŭ        |                 |        |           |                |              |                   |
|                      | [4.293]     |          |                 |        |           |                |              |                   |
|                      | 0.706       |          | Fruiting        | 29     | Berries   | 0.064, 0.074   | 0.11, 0.11   |                   |
|                      | 0.706       | 8        | 0               |        |           | (0.069)        | (0.11)       |                   |
|                      | 0.729       | 6        |                 |        |           | . ,            | , í          |                   |
|                      | 0.717       | 8        |                 |        |           |                |              |                   |
|                      | 0.740       | 6        |                 |        |           |                |              |                   |
|                      | 0.717       | 7        |                 |        |           |                |              |                   |
|                      |             |          |                 |        |           |                |              |                   |
|                      | [4.316]     |          | Empitie e       | F1     | Derrice   | 0.020.0.0/5    | 0.070.0.05/  |                   |
| Fennville, IVII, USA | 0.740       |          | Fruiting        | 51     | Bernes    | 0.038, 0.065   | 0.078, 0.056 |                   |
| 2002                 | 0.729       | 0        |                 |        |           | (0.052)        | (0.067)      |                   |
| 2003                 | 0.740       | 7        |                 |        |           |                |              |                   |
| Dive here / Divised  | 0.706       | /        |                 |        |           |                |              |                   |
| Blueberry/Ruber      | 0.729       | 7        |                 |        |           |                |              |                   |
|                      | 0.706       | /        |                 |        |           |                |              |                   |
|                      | [4.349]     |          |                 |        |           |                |              |                   |
|                      | 0 706       |          | Fruiting        | 30     | Berries   | 0 17 0 13      | 0.081.0.099  |                   |
|                      | 0 717       | 7        | Trutting        | 00     | Dernes    | (0.15)         | (0,090)      |                   |
|                      | 0 706       | 7        |                 |        |           | (0110)         | (01070)      |                   |
|                      | 0 706       | 7        |                 |        |           |                |              |                   |
|                      | 0 706       | 7        |                 |        |           |                |              |                   |
|                      | 0.706       | 7        |                 |        |           |                |              |                   |
|                      |             |          |                 |        |           |                |              |                   |
|                      | [4.249]     |          |                 |        |           |                |              |                   |
| Burlington, WA, USA  | 0.740       |          |                 | 50     | Berries   | 0.36, 0.42     | 0.022, <0.02 |                   |
|                      | 0.751       | 7        |                 |        |           | (0.39)         | (0.021)      |                   |
| 2003                 | 0.773       | 7        |                 |        |           |                |              |                   |
|                      | 0.740       | 7        | Croop fruit     |        |           |                |              |                   |
| Blueberry/Blue crop  | 0.729       | 7        | Green nuit      |        |           |                |              |                   |
|                      | 0.740       | 7        |                 |        |           |                |              |                   |
|                      | [4,473]     |          |                 |        |           |                |              |                   |
|                      | 0.740       |          |                 | 29     | Berries   | 1.5, 1.2 (1.4) | 0.025, 0.026 |                   |
|                      | 0.729       | 7        |                 |        |           |                | (0.026)      |                   |
|                      | 0.717       | 7        |                 |        |           |                | (*****       |                   |
|                      | 0.729       | 7        |                 |        |           |                |              |                   |
|                      | 0.729       | 7        | Fruiting        |        |           |                |              |                   |
|                      | 0.729       | 7        |                 |        |           |                |              |                   |
|                      |             |          |                 |        |           |                |              |                   |
|                      | [4.372]     |          |                 |        |           |                |              |                   |
| Aurora, OR, USA      | 0.751       |          |                 | 50     | Berries   | 0.50, 0.47     | 0.052, 0.061 |                   |
| l                    | 0.762       | 7        |                 |        |           | (0.49)         | (0.057)      |                   |
| 2003                 | 0.762       | 7        | Green fruit, 5- |        |           |                |              |                   |
|                      | 0.751       | 7        | 10%             |        |           |                |              |                   |
| Blueberry/Blue crop  | 0.729       | 7        | blossoms        |        |           |                |              |                   |
|                      | 0.762       | 7        | remain          |        |           |                |              |                   |
|                      | [4.518]     |          |                 |        |           |                |              |                   |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference         |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------|-----------------|-------------------|
|                                         | 0.740                         |                    |                                        | 29             | Berries   | 0.70, 0.64              | 0.084, 0.078    |                   |
|                                         | 0.729                         | /                  |                                        |                |           | ( <u>0.67</u> )         | (0.081)         |                   |
|                                         | 0.751                         | /                  |                                        |                |           |                         |                 |                   |
|                                         | 0.740                         | 8                  | Green fruit                            |                |           |                         |                 |                   |
|                                         | 0.751                         | 0                  |                                        |                |           |                         |                 |                   |
|                                         | 0.729                         | /                  |                                        |                |           |                         |                 |                   |
|                                         | [4.439]                       |                    |                                        |                |           |                         |                 |                   |
| St Andrews , PEI,                       | 0.751                         |                    | Fruiting                               | 47             | Berries   | 1.1, 0.86               | 0.064, 0.070    | IR-4 PR No. 06129 |
| Canada                                  | 0.751                         | 6                  |                                        |                |           | (0.98)                  | (0.067)         |                   |
|                                         | 0.751                         | 7                  |                                        |                |           |                         |                 | Thompson, D.C.    |
| 2003                                    | 0.762                         | 6                  |                                        |                |           |                         |                 | 2006a             |
|                                         | 0.751                         | 8                  |                                        |                |           |                         |                 |                   |
| Blueberry/Wild low<br>bush              | 0.751                         | 4                  |                                        |                |           |                         |                 |                   |
|                                         | [4.518]                       |                    |                                        |                |           |                         |                 | _                 |
|                                         | 0.729                         |                    | Fruiting                               | 29             | Berries   | 1.6, 1.7 ( <u>1.7</u> ) | 0.076, 0.084    |                   |
|                                         | 0.751                         | 8                  |                                        |                |           |                         | (0.080)         |                   |
|                                         | 0.762                         | 4                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762                         | 4                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762                         | 6                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762                         | 8                  |                                        |                |           |                         |                 |                   |
|                                         | [4.529]                       |                    |                                        |                |           |                         |                 |                   |
| Hermanville, PEI,                       | 0.717                         |                    | Fruiting                               | 27             | Berries   | 0.39 [0.42]             | 0.066, 0.074    |                   |
| Canada                                  | 0.751                         | 6                  | -                                      |                |           | 0.43 [0.41]             | (0.070)         |                   |
|                                         | 0.740                         | 7                  |                                        |                |           | (0.41)                  |                 |                   |
| 2003                                    | 0.740                         | 6                  |                                        |                |           |                         |                 |                   |
|                                         | 0.695                         | 8                  |                                        |                |           |                         |                 |                   |
| Blueberry/ Wild low<br>bush             | 0.729                         | 4                  |                                        |                |           |                         |                 |                   |
|                                         | [4.372]                       |                    |                                        |                |           |                         |                 |                   |
|                                         | 0.740                         |                    | Fruiting                               | 29             | Berries   | 1.6, 2.0 ( <u>1.8</u> ) | 0.11, 0.094     |                   |
|                                         | 0.762                         | 8                  | -                                      |                |           |                         | (0.10)          |                   |
|                                         | 0.740                         | 4                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762                         | 4                  |                                        |                |           |                         |                 |                   |
|                                         | 0.762                         | 6                  |                                        |                |           |                         |                 |                   |
|                                         | 0.729                         | 8                  |                                        |                |           |                         |                 |                   |
|                                         | [4.495]                       | ļ                  |                                        |                |           |                         |                 | -                 |
| St-Paul                                 | 0.729                         |                    | Fruiting                               | 22             | Berries   | 0.19                    | 0.1             |                   |
| d'Abbotsford, QC,                       | 0.807                         | 3                  |                                        |                |           |                         |                 |                   |
| Canada                                  | 0.740                         | 4                  |                                        |                |           |                         |                 |                   |
| 2002                                    | 0.751                         | 0                  |                                        |                |           |                         |                 |                   |
| 2003                                    | 0.773                         | 1                  |                                        |                |           |                         |                 |                   |
| Blueberry/Northland                     | 0.729                         | 0                  |                                        |                |           |                         |                 |                   |
| Dideberry/Northland                     | [4.529]                       |                    |                                        |                |           |                         |                 |                   |
|                                         | 0.729                         |                    | Fruitina                               | 23             | Berries   | 0.07                    | 0.096           | 1                 |
|                                         | 0.807                         | 7                  |                                        | -              |           |                         |                 |                   |
|                                         | 0.740                         | 6                  |                                        |                |           |                         |                 |                   |
|                                         | 0.751                         | 7                  |                                        |                |           |                         |                 |                   |
|                                         | 0.773                         | 7                  |                                        |                |           |                         |                 |                   |
|                                         | 0.729                         | 7                  |                                        |                |           |                         |                 |                   |
|                                         | [4.529]                       |                    |                                        |                |           |                         |                 |                   |

422

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total]    | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg)      | Reference |
|-----------------------------------------|----------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|----------------------|-----------|
| Truro, NS, Canada<br>2004               | 1.132<br>1.166<br>1.132<br>1.143 | <br>9<br>7<br>9    | Fruiting                               | 28             | Berries   | 3.0, 2.7 (2.9)       | 0.28, 0.24<br>(0.26) |           |
| Blueberry/Wild low<br>bush              | 1.143<br>1.110<br>[6.827]        | 6<br>6             |                                        |                |           |                      |                      |           |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

<sup>a</sup> Replicate trials. HR taken

<sup>b</sup> Replicate trials. HR taken.

#### Bulb onions

Nine residue trials were conducted in the USA in 2005 and 2006.

Six foliar applications were made using an SC formulation at application rates in the range of 0.555–0.631 kg ai/ha.

Samples of bulb onion were collected 6-8 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 418 days prior to extraction and analysis.

Residues of fluazinam in bulb onion were determined using the analytical method outlined above. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.01-1 mg/kg were made with recoveries in the range of 84 –117%.

| Table 96 Residues in bulb | onion from sup | pervised trials in US | SA involving 6 fo | liar applications of fluazinam |
|---------------------------|----------------|-----------------------|-------------------|--------------------------------|
|                           |                |                       |                   |                                |

| Location, Country<br>Year, Crop/Variety         | Rate<br>(kg ai/ha)<br>[Total]                                 | Interval<br>(days)        | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)            | Reference                                                   |
|-------------------------------------------------|---------------------------------------------------------------|---------------------------|----------------------------------------|----------------|-----------|---------------------------------|-------------------------------------------------------------|
| GAP USA                                         | MID: 0.583<br>MTD: 3.51 <sup>a</sup>                          | 7-10                      | -                                      | 7              | -         | -                               | -                                                           |
| Freeville, NY, USA<br>2005<br>Onion/ Millennium | 0.581<br>0.631<br>0.585<br>0.555<br>0.573<br>0.584<br>[3.509] | <br>7<br>8<br>7<br>7<br>7 | 9 true leaves                          | 6              | Bulb      | <0.01, <0.01 <u>(&lt;0.01</u> ) | IR-4 PR No. 07092<br>Carpenter, D.H. 2008a<br>07092.05-NY04 |
| Arlington, WI, USA<br>2005<br>Onion/ Frontier   | 0.590<br>0.578<br>0.602<br>0.576<br>0.591<br>0.594<br>[3.531] | <br>6<br>8<br>7<br>6<br>6 | Vegetative,<br>bulb filling            | 6              | Bulb      | 0.045, 0.035 <u>(0.04</u> )     | IR-4 PR No. 07092<br>Carpenter, D.H. 2008a<br>07092.05-WI05 |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last | DALA<br>(days) | Crop part  | Fluazinam<br>(mg/kg)                      | Reference             |
|-----------------------------------------|--------------------|--------------------|-------------------------|----------------|------------|-------------------------------------------|-----------------------|
|                                         | [Total]            |                    | application             |                |            |                                           |                       |
| Weslaco, TX, USA                        | 0.578              |                    | Bulbs formed            | 7              | Bulb       | <0.01, <0.01 <u>(&lt;0.01</u> )           | IR-4 PR No. 07092     |
| 2006                                    | 0.583              | 7                  |                         |                |            |                                           |                       |
| Onion/ El Toro                          | 0.581              | 7                  |                         |                |            |                                           | Carpenter, D.H. 2008a |
|                                         | 0.583              | 2                  |                         |                |            |                                           | 07002 05-TX*15        |
|                                         | 0.581              | 6                  |                         |                |            |                                           | 07072.03-17 13        |
|                                         |                    |                    |                         |                |            |                                           |                       |
|                                         | [3.487]            |                    |                         |                |            |                                           |                       |
| Fort Collins, CO, USA                   | 0.604              |                    | Bulbing                 | 7              | Bulb       | 0.095, 0.101 <sup>b</sup> <u>(0.098</u> ) | IR-4 PR No. 07092     |
| 2005                                    | 0.584              | 6                  |                         |                |            |                                           | Corportor D H 2009a   |
| 2003                                    | 0.581              | 6                  |                         |                |            |                                           | Carpenter, D.n. 2000a |
| Onion/Vantage                           | 0.561              | 7                  |                         |                |            |                                           | 07092.05-C009         |
| -                                       | 0.606              | 7                  |                         |                |            |                                           |                       |
|                                         | [2 551]            |                    |                         |                |            |                                           |                       |
| Mesilla, NM, USA                        | 0.586              |                    | 10-12 true              | 6              | Bulb       | <0.01, <0.01 (<0.01)                      | IR-4 PR No. 07092     |
|                                         | 0.590              | 7                  | leaves                  |                |            |                                           |                       |
| 2005                                    | 0.586              | 7                  |                         |                |            |                                           | Carpenter, D.H. 2008a |
|                                         | 0.577              | 7                  |                         |                |            |                                           |                       |
| Onion/ Cimerron                         | 0.586              | /                  |                         |                |            |                                           | 07092.05-NM10         |
|                                         | 0.560              | 1                  |                         |                |            |                                           |                       |
|                                         | [3.512]            |                    |                         |                |            |                                           |                       |
| Holtville, CA, USA                      | 0.591              | -                  | Bulbs                   | 1              | Bulb       | 0.096, 0.074 (0.085)                      | IR-4 PR No. 07092     |
| 000/                                    | 0.587              | 8                  |                         |                |            | 0.001.0.000 (0.000)                       |                       |
| 2006                                    | 0.574              | 5                  |                         | 0              |            | 0.031, 0.033 ( <u>0.032</u> )             | Carpenter, D.H. 2008a |
| Onion/Fhano                             | 0.583              | 8                  |                         | 0              |            | <0.01 <0.01 (0.01)                        | 07092 05-0448         |
|                                         | 0.586              | 6                  |                         |                |            |                                           | 01072100 01110        |
|                                         | 0.586              |                    |                         | 14             |            | <0.01, <0.01 <0.01)                       |                       |
|                                         | [3.512]            |                    |                         | 21             |            |                                           |                       |
| Salinas, CA, USA                        | 0.584              |                    | Mature bulbs            | 7              | Bulb       | 0.013, <0.01 (0.012)                      | IR-4 PR No 07092      |
|                                         | 0.596              | 7                  | 85-100% of              |                | Baile      |                                           |                       |
| 2006                                    | 0.575              | 8                  | tops down               |                |            |                                           | Carpenter, D.H. 2008a |
|                                         | 0.593              | 7                  |                         |                |            |                                           |                       |
| Onion/Olympic F1                        | 0.567              | 7                  |                         |                |            |                                           | 07092.05-CA49         |
|                                         | 0.593              | /                  |                         |                |            |                                           |                       |
|                                         | [3.508]            |                    |                         |                |            |                                           |                       |
| Aurora, OR, USA                         | 0.590              |                    | Vegetative              | 7              | Bulb       | 0.015, 0.016 ( <u>0.016</u> )             | IR-4 PR No. 07092     |
|                                         | 0.586              | 6                  |                         |                |            |                                           |                       |
| 2005                                    | 0.569              | 8                  |                         |                |            |                                           | Carpenter, D.H. 2008a |
| Onion/Gunnison                          | 0.572              | 6                  |                         |                |            |                                           | 07092 05-0R04         |
|                                         | 0.596              | 6                  |                         |                |            |                                           | 01072.00 0101         |
|                                         |                    |                    |                         |                |            |                                           |                       |
|                                         | [3.531]            |                    |                         | 7              | <b>N I</b> | 0.010.0.001 (0.017)                       |                       |
| Moxee, WA, USA                          | 0.593              |                    | Vegetative              | 7              | Bulb       | 0.013, 0.021 <u>(0.017</u> )              | IR-4 PR No. 07092     |
| 2005                                    | 0.585              | 7                  |                         |                |            |                                           | Carpenter, D.H. 2008a |
| 2000                                    | 0.593              | 7                  |                         |                |            |                                           | 20000                 |
| Onion/Olympic F1                        | 0.594              | 8                  |                         |                |            |                                           | 07092.05-WA*06        |
|                                         | 0.589              | 6                  |                         |                |            |                                           |                       |
|                                         | [3 539]            |                    |                         |                |            |                                           |                       |

<sup>a</sup> The GAP authorised is restricted to a maximum of 6 applications

<sup>b</sup> Highest individual sample result

MID Maximum individual dose

#### MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

#### Brassica vegetables

#### Broccoli

Thirteen residue trials were conducted in Canada and the USA in 2003 and 2004.

In each trial a single drench application at transplanting was made using an SC formulation at application rates 0.025 kg ai/hL (equivalent to 0.025 kg ai/1000 plants).

Samples of mature broccoli were collected 50-113 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 182 days prior to extraction and analysis.

Residues of fluazinam in broccoli were determined using the analytical methods 1 and 9. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.01–0.1 mg/kg were made with recoveries in the range of 57–110%.

The trials cannot be relied on as a result of the samples being subjected to significant temperature variations during the time period from sampling to analysis. Storage data generated under the same conditions confirmed the instability of residues.

| Table 97 Residues in Broccoli from supervised trials in Canada and the USA involving one soil drench application of fluazin | am |
|-----------------------------------------------------------------------------------------------------------------------------|----|
|-----------------------------------------------------------------------------------------------------------------------------|----|

| Location, Country<br>Year, Crop/Variety                          | Rate<br>(kg ai/hL)                                  | Interval<br>(days) | Growth stage at<br>last application         | DALA<br>(days) | Crop part         | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference                                       |
|------------------------------------------------------------------|-----------------------------------------------------|--------------------|---------------------------------------------|----------------|-------------------|-------------------------|-----------------|-------------------------------------------------|
| GAP USA                                                          | 0.025 kg/hl<br>(i.e. 0.025<br>kg ai/1000<br>plants) | -                  | Soil drench at<br>or after<br>transplanting | 50             | -                 | -                       | -               | -                                               |
| Freeville, NY, USA<br>2004<br>Broccoli/Everest                   | 0.025<br>(100<br>mL/plant)                          |                    | 3-leaf stage                                | 61             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | IR-4 PR No.<br>08795<br>Thompson, D.C.<br>2006b |
| Weslaco, TX, USA<br>2004                                         | 0.025<br>(100<br>mL/plant)                          |                    | second true<br>leaves                       | 83             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                 |
| Broccoli/Buccaneer<br>Parlier, CA, USA<br>2004<br>Broccoli/Green | 0.025<br>(100<br>mL/plant)                          |                    | 2-3 true leaves                             | 78             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                 |
| Parlier, CA, USA<br>2004<br>Broccoli/Green<br>Magic              | 0.025<br>(100<br>mL/plant)                          |                    | 2-3 true leaves                             | 113            | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                 |
| Holtville CA, USA<br>2004<br>Broccoli/Marathon                   | 0.025<br>(100<br>mL/plant)                          |                    | Transplant                                  | 87             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                 |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/hL) | Interval<br>(days) | Growth stage at last application | DALA<br>(days) | Crop part         | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference            |
|-----------------------------------------|--------------------|--------------------|----------------------------------|----------------|-------------------|-------------------------|-----------------|----------------------|
| Salinas CA, USA                         | 0.025<br>(100      |                    | 2-3 true leaves                  | 67             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2004                                    | iiic/piaiit)       |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Heritage                       |                    |                    |                                  |                |                   |                         |                 |                      |
| Salinas CA, USA                         | 0.025<br>(100      |                    | 3 true leaves                    | 78             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | IR-4 PR No.<br>08795 |
| 2004                                    | mL/plant)          |                    |                                  |                |                   |                         |                 | Thompson, D.C.       |
| Broccoli/Marathon                       |                    |                    |                                  |                |                   |                         |                 | 2006b                |
| Aurora, OR, USA                         | 0.025<br>(100      |                    | Vegetative                       | 55             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2004                                    | mL/plant)          |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Waltham                        |                    |                    |                                  |                |                   |                         |                 |                      |
| Harrow, ON, Canada                      | 0.025<br>(100      |                    | -                                | 50             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2003                                    | mL/plant)          |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Paragon                        |                    |                    |                                  |                |                   |                         |                 |                      |
| Harrow, ON, Canada                      | 0.025<br>(100      |                    | -                                | 56             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2003                                    | mL/plant)          |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Paragon                        |                    |                    |                                  |                |                   |                         |                 |                      |
| St Remi, QC, Canada                     | 0.025<br>(100      |                    | -                                | 82             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2003                                    | mL/plant)          |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Patron                         |                    |                    |                                  |                |                   |                         |                 |                      |
| St Remi, QC, Canada                     | 0.025<br>(100      |                    | -                                | 70             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2003                                    | mL/plant)          |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Decathalon                     |                    |                    |                                  |                |                   |                         |                 |                      |
| Agassiz, BC, Canada                     | 0.025<br>(100      |                    | -                                | 67             | Broccoli<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | 1                    |
| 2003                                    | mL/plant)          |                    |                                  |                |                   |                         |                 |                      |
| Broccoli/Arcadia                        |                    |                    |                                  |                |                   |                         |                 |                      |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

## Cabbage

Twenty residue trials were conducted in Canada and the USA between 2003 and 2012.

In each trial a single drench application at transplanting was made using an SC formulation at application rates of 0.025 kg ai/hL with 100 ml of the solution being applied per plant (i.e. 0.025 kg ai/1000 plants). In eight of the trials six additional foliar applications were made using an SC formulation at application rates in the range of 0.52–0.61 kg ai/ha.

Samples of cabbage heads were collected 0-104 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 526 days for fluazinam and 463 days for AMGT prior to extraction and analysis.

Residues of fluazinam in cabbage were determined using the analytical methods 7 and 8. Residues of AGMT in cabbage for some trials were determined using the analytical method 7 outlined above. Procedural recovery samples were analysed with the residue trial samples. Fortification levels of 0.01-10 mg/kg for fluazinam and AMGT were made with recoveries in the range of 50–113% and 70–99% for fluazinam and AMGT, respectively.

A number of the trials cannot be relied on as a result of the samples being subjected to significant temperature variations during the time period from sampling to analysis. Storage data generated under the same conditions confirmed the instability of residues. These trials are marked (‡). For all other trials the crops were were maintained at a temperature of  $\leq$  -18 °C throughout the study and can be relied on.

| Table 98 Residues in | Cabbage from | supervised trials | in Canada a | nd the USA | A involving ( | one soil ( | drench and 6 | 5 foliar | applicatio | ns of |
|----------------------|--------------|-------------------|-------------|------------|---------------|------------|--------------|----------|------------|-------|
| fluazinam            |              |                   |             |            |               |            |              |          |            |       |

| Location, Country<br>Year, Crop/Variety             | Rate<br>(kg ai/ha)<br>[Total]                                                                             | Interval<br>(days) | Growth stage<br>at last<br>application           | DALA<br>(days) | Crop part        | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference                                                 |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|----------------|------------------|-------------------------|-----------------|-----------------------------------------------------------|
| GAP USA                                             | Soil drench:<br>0.025 kg/hl<br>(i.e. 0.025<br>kg ai/1000<br>plants)<br>Foliar:<br>MID: 0.561<br>MTD: 3.36 | 7                  | -                                                | 7              | -                | -                       | -               | -                                                         |
| Freeville NY, USA<br>2003<br>Cabbage/Amtrak         | 0.025 kg<br>ai/hL                                                                                         |                    | 3-4 leaf<br>transplants                          | 94             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | IR-4 PR No. 08796 <sup>a</sup><br>Thompson, D.C.<br>2006c |
| Salisbury, MD, USA<br>2003<br>Cabbage/CXB93256      | 0.025 kg<br>ai/hL                                                                                         |                    | Transplants,<br>second true<br>leaves            | 104            | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                           |
| Holt MI, USA<br>2003<br>Cabbage/Blue<br>Lagoon      | 0.025 kg<br>ai/hL                                                                                         |                    | Seedling                                         | 77             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                           |
| Weslaco, TX, USA<br>2003<br>Cabbage/Blue<br>Ventage | 0.025 kg<br>ai/hL                                                                                         |                    | Vegetative                                       | 88             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                           |
| Citra, FL, USA<br>2003<br>Cabbage/Bravo             | 0.025 kg<br>ai/hL                                                                                         |                    | Transplant                                       | 70             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                           |
| Salinas, CA, USA<br>2003<br>Cabbage/Red<br>Express  | 0.025 kg<br>ai/hL                                                                                         |                    | Vegetative<br>transplants,<br>2-3 true<br>leaves | 90             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                           |
| La Salle, CO, USA<br>2003<br>Cabbage/Charmont       | 0.025 kg<br>ai/hL                                                                                         |                    | Vegetative,<br>transplant                        | 83             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                                           |

|                                         |                    | -                  |                      | -              | - <b>r</b> | r                       | r               | r                  |
|-----------------------------------------|--------------------|--------------------|----------------------|----------------|------------|-------------------------|-----------------|--------------------|
| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage at last | DALA<br>(days) | Crop part  | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference          |
|                                         | [Total]            |                    | application          |                |            |                         |                 |                    |
| Harrow, ON, Canada                      | 0.025 kg           |                    | 1                    | 63             | Cabbage    | <0.01, <0.01            | n/a             |                    |
|                                         | ai/hL              |                    | Seedling just        |                | heads      | (<0.01)                 |                 |                    |
| 2003                                    |                    |                    | transplanted         |                |            |                         |                 |                    |
| Cabbage/Survivor                        |                    |                    |                      |                |            |                         |                 |                    |
| Agassiz, BC, Canada                     | 0.025 kg           |                    |                      | 60             | Cabbage    | <0.01, <0.01            | n/a             |                    |
|                                         | ai/hL              |                    |                      |                | heads      | (<0.01)                 |                 |                    |
| 2003                                    |                    |                    | Seedlings            |                |            |                         |                 |                    |
| Cabbage/Grenadier                       |                    |                    |                      |                |            |                         |                 |                    |
| St-Michel, QC,                          | 0.025 kg           |                    |                      | 84             | Cabbage    | <0.01, <0.01            | n/a             |                    |
| Canada                                  | ai/hL              |                    |                      |                | heads      | (<0.01)                 |                 |                    |
|                                         |                    |                    | Transplant,          |                |            |                         |                 |                    |
| 2003                                    |                    |                    | 3-4 leaves           |                |            |                         |                 |                    |
| Cabbage/Bronco                          |                    |                    |                      |                |            |                         |                 |                    |
| Weslaco, TX, USA                        | Drench:            |                    | Heads 7.6-           | 7              | Cabbage    | 0.12, 0.13              | <0.01, <0.01    | IR-4 PR No. 07093  |
|                                         | 0.025 kg           |                    | 15.2 cm              |                | heads      | ( <u>0.13</u> )         | (<0.01)         |                    |
| 2012                                    | ai/hL              |                    | diameter             |                |            |                         |                 | Barney, W.P. 2014a |
| Cabbage/Gonzales                        | Foliar             |                    |                      |                |            |                         |                 |                    |
| cabbago, conzaico                       | 0.566              |                    |                      |                |            |                         |                 |                    |
|                                         | 0.557              | 28                 |                      |                |            |                         |                 |                    |
|                                         | 0.571              | 7                  |                      |                |            |                         |                 |                    |
|                                         | 0.575              | 7                  |                      |                |            |                         |                 |                    |
|                                         | 0.573              | 6                  |                      |                |            |                         |                 |                    |
|                                         | 0.002              | 6                  |                      |                |            |                         |                 |                    |
|                                         | [3.403]            |                    |                      |                |            |                         |                 |                    |
| Freeville NY, USA                       | Drench:            |                    | Forming              | 6              | Cabbage    | 1.4, 1.5 ( <u>1.5</u> ) | <0.01, <0.01    |                    |
| 2012                                    | 0.025 kg           |                    | heads                |                | heads      |                         | (<0.01)         |                    |
| 2012                                    | ai/IIL             |                    |                      |                |            |                         |                 |                    |
| Cabbage/Early                           |                    |                    |                      |                |            |                         |                 |                    |
| Thunder                                 | Foliar:            |                    |                      |                |            |                         |                 |                    |
|                                         | 0.565              | 35                 |                      |                |            |                         |                 |                    |
|                                         | 0.564              | 7                  |                      |                |            |                         |                 |                    |
|                                         | 0.565              | 7                  |                      |                |            |                         |                 |                    |
|                                         | 0.562              | 6                  |                      |                |            |                         |                 |                    |
|                                         | 0.563              | 8                  |                      |                |            |                         |                 |                    |
|                                         | [0.000]            |                    |                      |                |            |                         |                 |                    |
|                                         | [3.382]<br>Dronch: |                    | Hoads                | 7              | Cabbago    | 0 14 0 41               | <0.01 <0.01     | -                  |
| Las cruces MM, USA                      | 0.025 kg           |                    | forming              | l '            | heads      | (0.28)                  | (<0.01)         |                    |
| 2012                                    | ai/hL              |                    | J                    |                |            | 、                       |                 |                    |
|                                         |                    |                    |                      |                |            |                         |                 |                    |
| Cabbage/Golden                          |                    |                    |                      |                |            |                         |                 |                    |
| ACLE                                    | F0118ľ:<br>0 595   | 14                 |                      |                |            |                         |                 |                    |
|                                         | 0.569              | 8                  |                      |                |            |                         |                 |                    |
|                                         | 0.571              | 8                  |                      |                |            |                         |                 |                    |
|                                         | 0.559              | 8                  |                      |                |            |                         |                 |                    |
|                                         | 0.568              | 8                  |                      |                |            |                         |                 |                    |
|                                         | 0.5/2              | 8                  |                      |                |            |                         |                 |                    |
|                                         | 0.362              | o                  |                      |                |            |                         |                 |                    |
|                                         | [4.017]            |                    |                      |                |            |                         |                 |                    |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)  | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part        | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg)          | Reference          |
|-----------------------------------------|---------------------|--------------------|----------------------------------------|----------------|------------------|-------------------------|--------------------------|--------------------|
|                                         | [Total]             |                    | application                            |                |                  |                         |                          |                    |
| Salisbury, MD, USA                      | Drench:<br>0.025 kg |                    | Marketable<br>beads                    | 7              | Cabbage<br>beads | 0.49, 0.56              | <0.01, <0.01<br>(<0.01)  |                    |
| 2012                                    | ai/hL               |                    | liouus                                 |                | nouus            | (0.00)                  | ((0.01)                  |                    |
| Cabbage/Farao                           |                     |                    |                                        |                |                  |                         |                          |                    |
|                                         | Foliar:             | 24                 |                                        |                |                  |                         |                          |                    |
|                                         | 0.562               | 30<br>8            |                                        |                |                  |                         |                          |                    |
|                                         | 0.553               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.554               | 8                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.553               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.553               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | [3.323]             |                    |                                        |                |                  |                         |                          |                    |
| Arlington, WI, USA                      | Drench:<br>0.025 kg |                    | Vegetative                             | 6              | Cabbage<br>heads | 0.25, 0.21<br>(0.23)    | <0.01, <0.01<br>(<0.01)  |                    |
| 2012                                    | ai/hL               |                    |                                        |                | nouus            | (0.20)                  | ((0.01)                  |                    |
| Cabbage/Kaitlin                         |                     |                    |                                        |                |                  |                         |                          |                    |
|                                         | Foliar:             |                    |                                        |                |                  |                         |                          |                    |
|                                         | 0.565               | 44                 |                                        |                |                  |                         |                          |                    |
|                                         | 0.580               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.569               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.555               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.564               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | [3.396]             |                    |                                        |                |                  |                         |                          |                    |
| Citra, FL, USA                          | Drench:<br>0.025 kg |                    | Vegetative                             | 0              | Cabbage<br>heads | 1.6, 2.8 (2.2)          | <0.01, <0.01<br>(<0.01)  | IR-4 PR No. 07093  |
| 2012                                    | ai/hL               |                    |                                        | 3              | Cabbage          | 2.3, 1.6 (2.0)          | <0.01, <0.01             | Barney, W.P. 2014a |
|                                         |                     |                    |                                        |                | heads            |                         | (<0.01)                  |                    |
| Cabbage/Benelli                         | E . I'              |                    |                                        | 7              | Cabbage          | 1.7, 1.2 ( <u>1.5</u> ) | <0.01, <0.01             |                    |
|                                         | Foliar:             | 22                 |                                        | 0              | heads            | 0.1/ 0.40               | (<0.01)                  |                    |
|                                         | 0.568               | 7                  |                                        | 9              | Cappage          | 0.16, 0.49              | <0.01, <0.01             |                    |
|                                         | 0.567               | 7                  |                                        | 14             | Cabbage          | 1.4.0.61 (1.0)          | <0.01, <0.01             |                    |
|                                         | 0.573               | 7                  |                                        |                | heads            | ,                       | (<0.01)                  |                    |
|                                         | 0.562               | 7                  |                                        | 21             | Cabbage          | 0.61, 0.59              | <0.01, <0.01             |                    |
|                                         | 0.569               | /                  |                                        |                | heads            | (0.60)                  | (<0.01)                  |                    |
|                                         | [3.406]             |                    |                                        |                |                  |                         |                          |                    |
| Charleston, SC, USA                     | Drench:<br>0.025 kg |                    | Vegetative,<br>head set                | 7              | Cabbage<br>heads | 0.68, 0.65              | 0.011, <0.01<br>(<0.011) |                    |
| 2012                                    | ai/hL               |                    |                                        |                |                  | ()                      | (                        |                    |
| Cabbage/Blue                            |                     |                    |                                        |                |                  |                         |                          |                    |
| Vantage                                 | Foliar:             |                    |                                        |                |                  |                         |                          |                    |
| -                                       | 0.576               | 36                 |                                        |                |                  |                         |                          |                    |
|                                         | 0.562               | 8                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.563               | 6                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.568               | 0                  |                                        |                |                  |                         |                          |                    |
|                                         | 0.568               | 7                  |                                        |                |                  |                         |                          |                    |
|                                         |                     |                    |                                        |                |                  |                         |                          |                    |
|                                         | [3.406]             |                    |                                        |                |                  |                         |                          |                    |

| Location, Country<br>Year, Crop/Variety                                | Rate<br>(kg ai/ha)<br>[Total]                                 | Interval<br>(days)          | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part        | Fluazinam<br>(mg/kg)          | AMGT<br>(mg/kg)         | Reference                                                                          |
|------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|----------------------------------------|----------------|------------------|-------------------------------|-------------------------|------------------------------------------------------------------------------------|
| Clinton, NC, USA<br>2012                                               | Drench:<br>0.025 kg<br>ai/hL                                  |                             | Vegetative                             | 6              | Cabbage<br>heads | 0.45, 0.32<br>( <u>0.39</u> ) | <0.01, <0.01<br>(<0.01) |                                                                                    |
| Cabbage/Bravo                                                          | Foliar:<br>0.584<br>0.552<br>0.609<br>0.559<br>0.547<br>0.552 | 38<br>6<br>6<br>7<br>7<br>6 |                                        |                |                  |                               |                         |                                                                                    |
| Harrow, ON<br>Canada<br>2005                                           | 0.025 kg<br>ai/hL                                             |                             | Transplant                             | 58             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01)       | n/a                     | AAFC03-066R<br>Ballantine, J. 2006                                                 |
| Cabbage/Atlantis<br>Rougemont, QC<br>Canada<br>2005<br>Cabbage/Bentley | 0.025 kg<br>ai/hL                                             |                             | Transplant                             | 84             | Cabbage<br>heads | <0.01, <0.01<br>(<0.01)       | n/a                     | Samples subjected<br>to significant<br>temperature<br>variations during<br>storage |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

<sup>a</sup> Samples subjected to significant temperature variations during storage

#### Leafy vegetables

#### Mustard greens

Eleven residue trials were conducted in Canada and the USA in 2003.

In each trial a single drench application at transplanting was made using an SC formulation at application rates of 0.025 kg ai/hL with 100 ml of the solution being applied per plant (i.e. 0.025 kg ai/1000 plants).

Samples of mature mustard leaves were collected 22-78 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 682 days prior to extraction and analysis.

Residues of fluazinam in mustard leaves were determined using the analytical method 8. Procedural recovery samples were analysed with the residue trial samples. Fortification levels of 0.01–0.1 mg/kg for fluazinam were made with recoveries in the range of 64–104%.

The trials cannot be relied on as a result of the samples being subjected to significant temperature variations during the time period from sampling to analysis. Storage data generated under the same conditions confirmed the instability of residues.

| Location, Country<br>Year, Crop/Variety  | Rate<br>(kg ai/hL)       | Interval<br>(days) | Growth stage at last application            | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)           | AMGT<br>(mg/kg) | Reference            |
|------------------------------------------|--------------------------|--------------------|---------------------------------------------|----------------|-----------|--------------------------------|-----------------|----------------------|
|                                          | [Total]                  |                    |                                             |                |           |                                |                 |                      |
| GAP USA                                  | MID: 0.025<br>MTD: 0.025 | -                  | Soil drench at or<br>after<br>transplanting | 20             | -         | -                              | -               | -                    |
| Crossville, NY, USA                      | 0.025                    |                    | -                                           | 31             | Leaves    | 0.01, <0.01                    | n/a             | IR-4 PR No.<br>08797 |
| 2003                                     |                          |                    |                                             |                |           | (0.01)                         |                 | Thompson, D.C.       |
| Mustard greens/<br>Florida Broadleaf     |                          |                    |                                             |                |           |                                |                 | 2006d                |
| Salisbury, MD, USA                       | 0.025                    |                    | Transplants,<br>second true                 | 69             | Leaves    | <0.01, <0.01<br>(<0.01)        | n/a             |                      |
| 2003                                     |                          |                    | leaves                                      |                |           |                                |                 |                      |
| Mustard greens/ Green<br>Wave            |                          |                    |                                             |                |           |                                |                 |                      |
| Arlington , WI, USA                      | 0.025                    |                    | -                                           | 44             | Leaves    | <0.01, <0.01<br>(<0.01)        | n/a             |                      |
| 2003                                     |                          |                    |                                             |                |           |                                |                 |                      |
| Mustard greens/<br>Savanna               |                          |                    |                                             |                |           |                                |                 |                      |
| Clinton, NC, USA                         | 0.025                    |                    | Transplants                                 | 38             | Leaves    | 0.01, 0.01 (0.01)              | n/a             |                      |
| 2003                                     |                          |                    |                                             |                |           |                                |                 |                      |
| Mustard greens/<br>Southern Giant Curled |                          |                    |                                             |                |           |                                |                 |                      |
| Weslaco, TX, USA                         | 0.025                    |                    | Vegetative                                  | 40             | Leaves    | <0.01, <0.01                   | n/a             |                      |
| 2003                                     |                          |                    |                                             |                |           | (<0.01)                        |                 |                      |
| Mustard greens/<br>Florida Broadleaf     |                          |                    |                                             |                |           |                                |                 |                      |
| Citra, FL, USA                           | 0.025                    |                    | Transplant                                  | 37             | Leaves    | <0.01, <0.01<br>(<0.01)        | n/a             |                      |
| 2003                                     |                          |                    |                                             |                |           |                                |                 |                      |
| Mustard greens/ Green<br>Wave            |                          |                    |                                             |                |           |                                |                 |                      |
| Salinas, CA, USA                         | 0.025                    |                    | Vegetative<br>plants, 2 true                | 49             | Leaves    | <0.01, <0.01<br>(<0.01)        | n/a             |                      |
| 2003                                     |                          |                    | leaves                                      |                |           |                                |                 |                      |
| Mustard greens/Red<br>Giant              |                          |                    |                                             |                |           |                                |                 |                      |
| Parlier, CA, USA                         | 0.025                    |                    | Vegetative,<br>transplant ~2-3              | 78             | Leaves    | <0.01, 0.01<br>( <u>0.01</u> ) | n/a             |                      |
| 2003                                     |                          |                    | urue leaves                                 |                |           |                                |                 |                      |
| Florida Broadleaf                        |                          |                    |                                             |                |           |                                |                 |                      |
| Harrow, ON, Canada                       | 0.025                    |                    | Seedling, just                              | 22             | Leaves    | <0.01, <0.01<br>(<0.01)        | n/a             |                      |
| 2003                                     |                          |                    | aanspianteu                                 |                |           | (.0.01)                        |                 |                      |
| Mustard greens/<br>Savanna               |                          |                    |                                             |                |           |                                |                 |                      |

Table 99 Residues in mustard greens from supervised trials in Canada and the USA involving one soil drench of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/hL)<br>[Total] | Interval<br>(days) | Growth stage at<br>last application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference            |
|-----------------------------------------|-------------------------------|--------------------|-------------------------------------|----------------|-----------|-------------------------|-----------------|----------------------|
| Agassiz, BC, Canada                     |                               |                    | Seedlings                           | 38             | Leaves    | <0.01, <0.01<br>(<0.01) | n/a             | IR-4 PR No.<br>08797 |
| 2003                                    |                               |                    |                                     |                |           |                         |                 | Thompson, D.C.       |
| Mustard greens/                         |                               |                    |                                     |                |           |                         |                 | 2006d                |
| Southern Giant Curled                   |                               |                    |                                     |                |           |                         |                 |                      |
| Sherrington, QC,<br>Canada              | 0.025                         |                    | Transplant, 3-4<br>true leaves      | 25             | Leaves    | <0.01, <0.01<br>(<0.01) | n/a             |                      |
| 2003                                    |                               |                    |                                     |                |           |                         |                 |                      |
| Mustard greens/ Green<br>Wave           |                               |                    |                                     |                |           |                         |                 |                      |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

### Lettuce

Fourteen residue trials were conducted in the USA in 2005 and 2006.

In each trial a single foliar application was made using an SC formulation at application rates of 1.0–1.1 kg ai/ha.

Samples of mature lettuces were collected 46-52 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 229 days prior to extraction and analysis.

Residues of fluazinam in lettuce leaves were determined using the analytical method 8 outlined above. Procedural recovery samples were analysed with the residue trial samples. Fortification levels of 0.01-1 mg/kg for fluazinam were made with recoveries in the range of 82–119%.

| Location, Country<br>Year, Crop/Variety                     | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part        | Fluazinam<br>(mg/kg)    | AMGT<br>(mg/kg) | Reference                               |
|-------------------------------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|------------------|-------------------------|-----------------|-----------------------------------------|
| GAP USA                                                     | MID: 0.87<br>MTD: 0.87        |                    | -                                      | 30             | -                | -                       | -               | -                                       |
| Salisbury, MD, USA<br>2006<br>Head Lettuce/<br>Crispino MTO | 1.105<br>[1.105]              |                    | 2-3 true<br>leaves                     | 47             | Lettuce<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | IR-4 PR No.<br>06892<br>Carpenter, D.H. |
| Citra, FL, USA<br>2005<br>Head Lettuce/<br>Esmeralda        | 1.146<br>[1.146]              |                    | Seedling                               | 49             | Lettuce<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | 2008b                                   |
| Salinas CA, USA<br>2005<br>Head Lettuce/<br>Corona          | 1.132<br>[1.132]              |                    | 4-5 true<br>leaves                     | 52             | Lettuce<br>heads | <0.01, <0.01<br>(<0.01) | n/a             |                                         |
| Salinas CA, USA<br>2005<br>Head Lettuce/<br>Hallmark W      | 1.131<br>[1.131]              |                    | Post thinning<br>3-4 true<br>leaves    | 48             | Lettuce<br>heads | <0.01, <0.01<br>(<0.01) | n/a             | IR-4 PR No.<br>06892<br>Carpenter, D.H. |

| Location, Country<br>Year, Crop/Variety                      | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part         | Fluazinam<br>(mg/kg)                        | AMGT<br>(mg/kg) | Reference |
|--------------------------------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-------------------|---------------------------------------------|-----------------|-----------|
| Parlier CA, USA<br>2005<br>Head Lettuce/Great<br>Lakes 659   | 1.139<br>[1.139]              |                    | Vegetative                             | 49             | Lettuce<br>heads  | <0.01, <0.01<br>(<0.01)                     | n/a             | 2008b     |
| Holtville, CA, USA<br>2005<br>Head Lettuce/<br>Coyote        | 1.067<br>[1.067]              |                    | ~2 leaf                                | 50             | Lettuce<br>heads  | 0.022, [0.012],<br><0.01 [<0.01]<br>(0.013) | n/a             |           |
| Los Cruces, NM, USA<br>2005<br>Head Lettuce/ Icon            | 1.121<br>[1.121]              |                    | 4-6 true<br>leaves                     | 46             | Lettuce<br>heads  | <0.01, <0.01<br>(<0.01)                     | n/a             |           |
| Tifton, GA, USA<br>2005<br>Leaf Lettuce/ Red<br>Grant Rapids | 1.12<br>[1.12]                |                    | Vegetative                             | 20             | Lettuce<br>leaves | 0.022, 0.038<br>(0.03)                      | n/a             |           |
| Citra, FL, USA<br>2005<br>Leaf Lettuce/ Two<br>Star          | 1.146<br>[1.146]              |                    | Seedling                               | 25             | Lettuce<br>leaves | 0.02, 0.02 ( <u>0.02</u> )                  | n/a             |           |
| Salinas, CA, USA<br>2005<br>Leaf Lettuce/<br>SPX-0254        | 1.092<br>[1.092]              |                    | 4-5 true<br>leaves                     | 30             | Lettuce<br>leaves | <0.01, <0.01<br>( <u>&lt;0.01</u> )         | n/a             |           |
| Salinas, CA, USA<br>2005<br>Leaf Lettuce/<br>Antigua         | 1.132<br>[1.132]              |                    | 3-4 true<br>leaves                     | 27             | Lettuce<br>leaves | 0.01, 0.02 ( <u>0.02</u> )                  | n/a             |           |
| Parlier, CA, USA<br>2005<br>Leaf Lettuce/<br>Salad Bowl      | 1.177<br>[1.177]              |                    | Vegetative                             | 25             | Lettuce<br>leaves | 0.15, 0.16 ( <u>0.16</u> )                  | n/a             |           |
| Holtville, CA, USA<br>2005<br>Leaf Lettuce/<br>Tehama        | 1.118<br>[1.118]              |                    | 2-3 leaf                               | 26             | Lettuce<br>leaves | 1.45, 1.69 ( <u>1.57</u> )                  | n/a             |           |
| Los Cruces, NM, USA<br>2005<br>Leaf Lettuce/<br>Red Sail     | 1.117<br>[1.117]              |                    | 4-6 true<br>leaves                     | 32             | Lettuce<br>leaves | 0.02, 0.02 ( <u>0.02</u> )                  | n/a             |           |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

## Cantaloupe

Eleven residue trials were conducted in Canada and the USA in 2007.

Six foliar applications were made using an SC formulation at application rates in the range of 0.839–0.958 kg ai/ha.

Samples of melon were collected 27-32 days after the last treatment. One decline trial was conducted and samples were collected from 6 to 34 days after the last application.

Trials 07097.07-TX\*21 and 07097.07-TX\*22, trials 07097.07-AZ\*07 and 07097.07-AZ\*08 and trials 07097.07-ON13 and 07097.07-ON14 were conducted at the same trial site at the same time. Hence they are regarded as replicate trials and not independent trials.

Samples were immediately frozen and maintained in frozen storage for periods of up to 1180 days prior to extraction and analysis.

Residues of fluazinam and AMGT in melon were determined using analytical method 10. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam and AMGT of 0.01–1 mg/kg were made with recoveries in the range of 84–101% and 79–102% for fluazinam and AMGT respectively.

| Table | 101 | Residues | in cantaloupe | e melon from | supervised | l trials in | Canada and | I the USA | involving 6 | foliar | applications | of fluazinam |
|-------|-----|----------|---------------|--------------|------------|-------------|------------|-----------|-------------|--------|--------------|--------------|
|       |     |          |               |              |            |             |            |           |             |        |              |              |

| Location, Country<br>Year, Crop/Variety                                            | Rate<br>(kg ai/ha)<br>[Total]                                          | Interval<br>(days)             | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)             | AMGT<br>(mg/kg)         | Reference                                                         |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------|----------------------------------------|----------------|-----------|----------------------------------|-------------------------|-------------------------------------------------------------------|
| GAP USA                                                                            | MID: 0.876<br>MTD: 5.26                                                | 7-10                           | -                                      | 30             | -         | -                                |                         | -                                                                 |
| Tifton, GA, USA<br>2007<br>Cantaloupe<br>melon/Hale's Best<br>Jumbo                | 0.874<br>0.882<br>0.874<br>0.879<br>0.877<br>0.869<br>[5.255]          | <br>7<br>6<br>7<br>7<br>6      | Fruiting                               | 27             | Fruit     | 0.025, 0.014<br>( <u>0.02</u> )  | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>07097<br>Thompson, D.C.<br>2011a<br>07097.07-GA*07 |
| Weslaco, TX, USA<br>2007<br>Cantaloupe<br>melon/Cruiser ª                          | 0.879<br>0.877<br>0.879<br>0.878<br>0.871<br>0.871<br>[5.253]          | <br>6<br>7<br>7<br>7<br>7<br>7 | Fruiting                               | 28             | Fruit     | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>07097<br>Thompson, D.C.<br>2011a<br>07097.07-TX*21 |
| Weslaco, TX, USA<br>2007<br>Cantaloupe<br>melon/Primo <sup>a</sup>                 | 0.875<br>0.878<br>0.878<br>0.878<br>0.873<br>0.873<br>0.873<br>[5.255] | <br>6<br>7<br>7<br>7<br>7      | Fruiting                               | 28             | Fruit     | <0.01, 0.012<br>( <u>0.011</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>07097<br>Thompson, D.C.<br>2011a<br>07097.07-TX*22 |
| Maricopa, AZ, USA<br>2007<br>Cantaloupe<br>melon/Hale's Best<br>Jumbo <sup>a</sup> | 0.897<br>0.887<br>0.897<br>0.874<br>0.892<br>0.878<br>[5.324]          | <br>8<br>7<br>6<br>7<br>7      | Vegetative                             | 32             | Fruit     | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>07097<br>Thompson, D.C.<br>2011a<br>07097.07-AZ*07 |
| Maricopa, AZ, USA<br>2007<br>Cantaloupe<br>melon/Top Mark <sup>a</sup>             | 0.886<br>0.893<br>0.887<br>0.917<br>0.877<br>0.881<br>[5.34]           | <br>7<br>6<br>7<br>7<br>7      | Vegetative                             | 32             | Fruit     | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>07097<br>Thompson, D.C.<br>2011a<br>07097.07-AZ*08 |

434

|                                         | r                  | r                  | r                                      | r              | r         | r                    | r               | r                                      |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|----------------------------------------|
| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference                              |
|                                         | [Total]            |                    |                                        |                |           |                      |                 |                                        |
| Salisbury, MD, USA                      | 0.868              |                    | Fruits netting                         | 27             | Fruit     | 0.019, 0.077         | <0.01, <0.01    | IR-4 PR No.                            |
|                                         | 0.874              | 8                  |                                        |                |           | ( <u>0.048</u> )     | (<0.01)         | 07097                                  |
|                                         | 0.868              | 7                  |                                        |                |           |                      |                 |                                        |
| 2007                                    | 0.871              | 7                  |                                        |                |           |                      |                 | Thompson, D.C.                         |
| Cantaloupe                              | 0.864              | 6                  |                                        |                |           |                      |                 | 2011a                                  |
| melon/Athena                            | 0.871              | 9                  |                                        |                |           |                      |                 |                                        |
|                                         |                    |                    |                                        |                |           |                      |                 | 07097 07-MD08                          |
|                                         | [5,215]            |                    |                                        |                |           |                      |                 | 0,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                                         | [01210]            |                    |                                        |                |           |                      |                 |                                        |
|                                         |                    |                    |                                        |                |           |                      |                 |                                        |
| Las Cruces NM LISA                      | 0.873              |                    | Fruiting                               | 6              | Fruit     | 0.04.0.068           | <0.01 <0.01     | IR-4 PR No                             |
|                                         | 0.883              | 7                  | runng                                  | Ũ              | Trait     | (0.054)              | (<0.01)         | 07097                                  |
| 2007                                    | 0.003              | 6                  |                                        |                |           | (0.034)              | (<0.01)         | 0/0//                                  |
| 2007                                    | 0.070              | 7                  |                                        | 10             |           | 0.022                | .0.01 .0.01     | Thompson D.C                           |
| 0                                       | 0.878              | 7                  |                                        | 12             |           | 0.023,               | <0.01, <0.01    | mompson, D.C.                          |
| Cantaloupe                              | 0.879              | 7                  |                                        |                |           | 0.034(0.029)         | (<0.01)         | 2011a                                  |
| meion/PiviR-45                          | 0.871              | /                  |                                        | 10             |           | 0.010                | 0.01 0.01       | 07007 07 10100                         |
|                                         |                    |                    |                                        | 19             |           | 0.012,               | <0.01, <0.01    | 0/09/.0/-NM06                          |
|                                         | [5.281]            |                    |                                        |                |           | 0.017(0.015)         | (<0.01)         |                                        |
|                                         |                    |                    |                                        |                |           |                      |                 |                                        |
|                                         |                    |                    |                                        | 28             |           | <0.01, <0.01         | <0.01, <0.01    |                                        |
|                                         |                    |                    |                                        |                |           | <u>(&lt;0.01</u> )   | (<0.01)         |                                        |
|                                         |                    |                    |                                        |                |           |                      |                 |                                        |
|                                         |                    |                    |                                        | 34             |           | <0.01, <0.01         | <0.01, <0.01    |                                        |
|                                         |                    |                    |                                        |                |           | (<0.01)              | (<0.01)         |                                        |
| Holtville, CA, USA                      | 0.882              |                    | Bud, bloom,                            | 27             | Fruit     | 0.026, 0.022         | <0.01, <0.01    | IR-4 PR No.                            |
|                                         | 0.883              | 8                  | fruit                                  |                |           | ( <u>0.024</u> )     | (<0.01)         | 07097                                  |
| 2007                                    | 0.882              | 6                  |                                        |                |           | . ,                  | . ,             |                                        |
|                                         | 0.880              | 8                  |                                        |                |           |                      |                 | Thompson, D.C.                         |
| Cantaloupe                              | 0.878              | 7                  |                                        |                |           |                      |                 | 2011a                                  |
| melon/Golden                            | 0.885              | 7                  |                                        |                |           |                      |                 |                                        |
| express                                 | 01000              | ľ.                 |                                        |                |           |                      |                 | 07097 07-CA35                          |
| chpicos                                 | [5.290]            |                    |                                        |                |           |                      |                 | 0/0//.0/ 0/00                          |
| L'Acadie OC Canada                      | 0.842              |                    | BBCH 63. 3rd                           | 31             | Fruit     | 0.015.0.012          | <0.01 <0.01     | IR-4 PR No                             |
| E Acadic, 20, oanada                    | 0.042              | 7                  | flower open                            | 51             | Trait     | (0.014)              | (<0.01)         | 07007                                  |
| 2007                                    | 0.002              | 7                  | nower open                             |                |           | (0.014)              | (<0.01)         | 07077                                  |
| 2007                                    | 0.045              | 7                  | UII IIIdiii Steili                     |                |           |                      |                 | Thomason D.C.                          |
| Contolouro                              | 0.902              | 7                  |                                        |                |           |                      |                 | Thompson, D.C.                         |
|                                         | 0.870              | 7                  |                                        |                |           |                      |                 | 2011a                                  |
| meion/Athena                            | 0.839              | /                  |                                        |                |           |                      |                 | 02002 02 0000                          |
|                                         | [[ 170]            |                    |                                        |                |           |                      |                 | 0/09/.0/-0006                          |
|                                         | [5.179]            |                    |                                        | 07             |           | 0.01.0.000           | 0.01 0.01       |                                        |
| Harrow, UN, Canada                      | 0.858              |                    | Fruiting,                              | 27             | Fruit     | <0.01, 0.032         | <0.01, <0.01    | IK-4 PR No.                            |
|                                         | 0.861              | 6                  | grapefruit-                            |                |           | ( <u>0.021</u> )     | (<0.01)         | 07097                                  |
| 2007                                    | 0.898              | 6                  | sized fruit                            |                |           |                      |                 |                                        |
|                                         | 0.854              | 7                  |                                        |                |           |                      |                 | Thompson, D.C.                         |
| Cantaloupe                              | 0.918              | 8                  |                                        |                |           |                      |                 | 2011a                                  |
| melon/Athena‡                           | 0.958              | 7                  |                                        |                |           |                      |                 |                                        |
|                                         |                    |                    |                                        |                | 1         |                      |                 | 07097.07-0N13                          |
|                                         | [5.346]            |                    |                                        |                |           |                      |                 |                                        |
| Harrow, ON, Canada                      | 0.862              |                    | Fruiting,                              | 29             | Fruit     | <0.01, <0.01         | <0.01, <0.01    | IR-4 PR No.                            |
|                                         | 0.865              | 6                  | grapefruit-                            |                | 1         | (<0.01)              | (<0.01)         | 07097                                  |
| 2007                                    | 0.873              | 6                  | sized fruit                            |                | 1         |                      |                 |                                        |
|                                         | 0.859              | 7                  |                                        |                | 1         |                      |                 | Thompson, D.C.                         |
| Cantaloupe                              | 0.905              | 8                  |                                        |                | 1         |                      |                 | 2011a                                  |
| melon/Primo ª                           | 0.859              | 7                  |                                        |                | 1         |                      |                 |                                        |
|                                         |                    |                    |                                        |                | 1         |                      |                 | 07097.07-0N14                          |
|                                         | [5.222]            |                    |                                        |                |           |                      |                 |                                        |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets <sup>a</sup> For replicate trials the HR from the two non-independent trials has been taken.

### Cucumber

Six residue trials were conducted in the USA in 2012.

Five to seven applications were made using an SC formulation at application rates in the range of 0.438–1.509 kg ai/ha. The first application in all trials was a soil drench treatment with all subsequent applications being foliar applications.

Samples of cucumber were collected 6-7 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 480 days prior to extraction and analysis.

Residues of fluazinam and AMGT in cucumber were determined using analytical method 10. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam and AMGT of 0.01-1 mg/kg were made with recoveries in the range of 76–96% and 74–105% for fluazinam and AMGT respectively.

| Location, Country<br>Year, Crop/Variety                   | Rate<br>(kg ai/ha)<br>[Total]                                                       | Interval<br>(days)             | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)                | AMGT<br>(mg/kg)         | Reference                                                       |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|----------------|-----------|-------------------------------------|-------------------------|-----------------------------------------------------------------|
| GAP USA                                                   | 0.876 × 4<br>a                                                                      | 7-10                           | -                                      | 7              | -         | -                                   |                         | -                                                               |
| Weslaco, TX, USA<br>2012<br>Cucumber/<br>Diamant          | 0.880 <sup>b</sup><br>0.870<br>0.880<br>0.869<br>0.877<br>[4.375]                   | <br>11<br>7<br>6<br>7          | Blooming and fruiting                  | 7              | Fruit     | 0.022, 0.032                        | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>09238<br>Barney, W.P.<br>2014a<br>09238.12-TX03  |
| Willard, OH, USA<br>2012<br>Cucumber/<br>Dasher II        | 0.438 <sup>b</sup><br>0.897<br>0.860<br>0.916<br>0.876<br>1.509<br>0.877<br>[6.371] | <br>7<br>7<br>7<br>7<br>7<br>5 | Fruiting                               | 7              | Fruit     | <0.01, <0.01<br>(< <u>0.01</u> )    | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>09238<br>Barney, W.P.<br>2014a<br>09238.12-0H*02 |
| Tifton, GA, USA<br>2012<br>Cucumber/<br>National pickling | 0.888 <sup>b</sup><br>0.886<br>0.867<br>0.878<br>0.871<br>[4.389]                   | <br>20<br>8<br>7<br>7<br>7     | Fruiting                               | 6              | Fruit     | <0.01, <0.01<br>(<0.01)             | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>09238<br>Barney, W.P.<br>2014a<br>09238.12-GA01  |
| Citra, FL, USA<br>2012<br>Cucumber/<br>Dasher II          | 0.887 <sup>b</sup><br>0.881<br>0.877<br>0.888<br>0.909<br>[4.441]                   | <br>30<br>7<br>7<br>7<br>7     | Fruiting                               | 7              | Fruit     | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>09238<br>Barney, W.P.<br>2014a<br>09238.12-FL08  |
| Arlington, WI, USA<br>2012<br>Cucumber/<br>Fanfare        | 0.878 <sup>b</sup><br>0.890<br>0.886<br>0.878<br>0.881<br>[4.412]                   | <br>27<br>7<br>7<br>6          | Fruiting                               | 7              | Fruit     | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>09238<br>Barney, W.P.<br>2014a<br>09238.12-WI03  |

Table 102 Residues in cucumber from supervised trials in USA involving 5-7 applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference     |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|---------------|
|                                         | [Total]            |                    |                                        |                |           |                      |                 |               |
| Salisbury, MD, USA                      | 0.885 <sup>b</sup> |                    | Mature fruits                          | 7              | Fruit     | <0.01, <0.01         | <0.01, <0.01    | IR-4 PR No.   |
| 2012                                    | 0.872              | 20                 |                                        |                |           | <u>(&lt;0.01</u> )   | (<0.01)         | 09238         |
|                                         | 0.778              | 7                  |                                        |                |           |                      |                 |               |
| Cucumber/                               | 0.869              | 7                  |                                        |                |           |                      |                 | Barney, W.P.  |
| Minature white                          | 0.872              | 7                  |                                        |                |           |                      |                 | 2014a         |
|                                         | 0.868              |                    |                                        |                |           |                      |                 |               |
|                                         |                    |                    |                                        |                |           |                      |                 | 09238.12-MD05 |
|                                         | [5.144]            |                    |                                        |                |           |                      |                 |               |

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

<sup>a</sup> Only 4 applications at 0.876 kg ai/ha are permitted. The first application at 0.876 kg ai/ha may be made as soil drench at transplantation or when the plants have the first true leaves. The critical GAP is therefore four foliar applications.

<sup>b</sup> Soil drench treatments

## Summer squash

Six residue trials were conducted in the USA in 2012.

Five applications were made using an SC formulation at application rates in the range of 0.540–0.916 kg ai/ha. The first application in all trials was a soil drench treatment with all subsequent applications being foliar applications.

Samples of summer squash were collected 6-7 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods from 400 days up to 472 days prior to extraction and analysis.

Residues of fluazinam and AMGT in summer squash were determined using analytical method 10. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam and AMGT of 0.01 mg/kg were made with recoveries in the range of 85 –96% and 89– 175% for fluazinam and AMGT respectively.

|  | Table | 103 Residues | in summer s | quashes from a | supervised trials | s in USA involvin | g 5 applications | of fluazinam |
|--|-------|--------------|-------------|----------------|-------------------|-------------------|------------------|--------------|
|--|-------|--------------|-------------|----------------|-------------------|-------------------|------------------|--------------|

| Location, Country<br>Year, Crop/Variety           | Rate<br>(kg ai/ha)<br>[Total]                                     | Interval<br>(days)   | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)                | AMGT<br>(mg/kg)         | Reference                                                                                          |
|---------------------------------------------------|-------------------------------------------------------------------|----------------------|----------------------------------------|----------------|-----------|-------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------|
| GAP USA                                           | 4.38 × 4 <sup>a</sup>                                             | 7-10                 | -                                      | 7              | -         | -                                   |                         | -                                                                                                  |
| Willard, OH, USA<br>2012<br>Summer<br>squash/Envy | 0.540 <sup>b</sup><br>0.881<br>0.842<br>0.916<br>0.880<br>[4.059] | <br>7<br>7<br>7<br>7 | Fruiting                               | 6              | Fruit     | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>08916<br>Barney, W.P.<br>2014b<br>08916.12-0H*01<br>Storage<br>period = 400<br>days |

| Location, Country<br>Year, Crop/Variety                  | Rate<br>(kg ai/ha)<br>[Total]                                     | Interval<br>(days)    | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)             | AMGT<br>(mg/kg)         | Reference                                                                                                      |
|----------------------------------------------------------|-------------------------------------------------------------------|-----------------------|----------------------------------------|----------------|-----------|----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
| Citra, FL, USA<br>2012<br>Summer<br>squash/Gentry        | 0.889 <sup>b</sup><br>0.882<br>0.907<br>0.888<br>0.867<br>[4.432] | <br>14<br>7<br>7<br>7 | Fruiting                               | 7              | Fruit     | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>08916<br>Barney, W.P.<br>2014b<br>08916.12-FL07<br>Storage<br>period = 472<br>days <sup>c</sup> |
| Freeville, NY, USA<br>2012<br>Summer<br>squash/Multipik  | 0.882 <sup>b</sup><br>0.876<br>0.888<br>0.881<br>0.887<br>[4.413] | <br>16<br>7<br>7<br>7 | Blooming /<br>Fruiting                 | 6              | Fruit     | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>08916<br>Barney, W.P.<br>2014b<br>08916.12-NY03<br>Storage<br>period = 400<br>days              |
| Clinton, NC, USA<br>2012<br>Summer<br>squash/Enterprise  | 0.871 <sup>b</sup><br>0.883<br>0.880<br>0.865<br>0.865<br>[4.365] | <br>18<br>8<br>8<br>6 | Fruiting,<br>flowers                   | 7              | Fruit     | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>08916<br>Barney, W.P.<br>2014b<br>08916.12-NC02<br>Storage<br>period = 455<br>days <sup>c</sup> |
| Charleston, SC, USA<br>2012<br>Summer<br>squash/Zucchini | 0.878 <sup>b</sup><br>0.884<br>0.881<br>0.879<br>0.877<br>[4.399] | <br>16<br>7<br>7<br>7 | Blooming /<br>Fruiting                 | 6              | Fruit     | 0.012, 0.011<br>( <u>0.012</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>08916<br>Barney, W.P.<br>2014b<br>08916.12-SC*02<br>Storage<br>period = 433<br>days             |
| Davis, CA, USA<br>2012<br>Summer<br>squash/Black Beauty  | 0.886 <sup>b</sup><br>0.855<br>0.870<br>0.910<br>0.876<br>[4.397] | <br>17<br>7<br>7<br>7 | Fruiting                               | 7              | Fruit     | 0.016, <0.01<br>( <u>0.013</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No.<br>08916<br>Barney, W.P.<br>2014b<br>08916.12-CA19<br>Storage<br>period = 411<br>days              |

438

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

<sup>a</sup> Only 4 applications at 0.876 kg ai/ha are permitted. The first application at 0.876 kg ai/ha may be made as soil drench at transplantation or when the plants have the first true leaves. The critical GAP is therefore 4 foliar uses.

<sup>b</sup> Soil drench treatments

<sup>c</sup> trials not supported by storage period demonstrate

### Peppers (Bell and non-bell)

Thirteen residue trials were conducted in Canada and the USA in 2007.

Six applications were made using an SC formulation at application rates in the range of 0.462–0.963 kg ai/ha. The first two applications in all trials were soil drench treatment with all subsequent applications being foliar applications.

Trials 09556.07-0N11 and 09556.07-0N12 were conducted at the same trial site at the same time and are therefore regarded as replicate trials rather than independent trials. A number of other trials were conducted at the same trial site at the same time but as different varieties of pepper were used and the morphology is regarded as sufficiently different (bell pepper versus non-bell pepper) then the trials were regarded as independent.

Samples of pepper were collected 28-32 days after the last treatment. One decline trial was conducted with samples collected 7–35 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 1249 days prior to extraction and analysis.

Residues of fluazinam and AMGT in pepper were determined using analytical method 10. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam and AMGT of 0.01 mg/kg were made with recoveries in the range of 85–96% and 89–175% for fluazinam and AMGT respectively.

| Location, Country<br>Year, Crop/Variety       | Rate<br>(kg ai/ha)<br>[Total]                                                | Interval<br>(days)         | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)               | AMGT<br>(mg/kg)         | Reference                                   |
|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------|----------------------------------------|----------------|-----------|------------------------------------|-------------------------|---------------------------------------------|
| GAP USA                                       | MID: 0.876<br>MTD: 5.26 <sup>a</sup>                                         | 7-14                       | -                                      | 30             | -         | -                                  |                         | -                                           |
| Citra, FL, USA<br>2007                        | 0.880 <sup>b</sup><br>0.892 <sup>b</sup><br>0.876                            | <br>7<br>7                 | Vegetative                             | 31             | Fruit     | <0.01, <0.01<br><u>(&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556<br>Thompson, D.C.          |
| Bell pepper/Aristotle                         | 0.892<br>0.862<br>0.906<br>[5.195]                                           | 7<br>6<br>8                |                                        |                |           |                                    |                         | 09556.07-FL10                               |
| Parlier, CA, USA<br>2007<br>Bell pepper/Baron | 0.880 <sup>b</sup><br>0.878 <sup>b</sup><br>0.885<br>0.850<br>0.873<br>0.887 | <br>6<br>7<br>53<br>7<br>7 | Fruiting                               | 28             | Fruit     | 0.022, 0.016<br>( <u>0.019</u> )   | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556<br>Thompson, D.C.<br>2011b |
|                                               | [5.252]                                                                      | 7                          |                                        |                |           |                                    |                         | 09550.07-CA55                               |
| Irvine, CA, USA                               | 0.805 <sup>b</sup><br>0.910 <sup>b</sup>                                     | <br>7                      | Fruiting                               | 32             | Fruit     | <0.01, <0.01<br><u>(&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556                            |
| 2007                                          | 0.854<br>0.855                                                               | 7<br>15                    |                                        |                |           |                                    |                         | Thompson, D.C.<br>2011b                     |
| Bell pepper/Taurus                            | 0.873<br>0.865                                                               | 7<br>7                     |                                        |                |           |                                    |                         | 09556.07-CA34                               |
|                                               | [5.163]                                                                      |                            |                                        |                |           |                                    |                         |                                             |

Table 104 Residues in pepper from supervised trials in Canada and the USA involving 6 applications of fluazinam

| Location, Country         | Rate                                    | Interval | Growth stage | DALA   | Crop part | Fluazinam           | AMGT         | Reference         |
|---------------------------|-----------------------------------------|----------|--------------|--------|-----------|---------------------|--------------|-------------------|
| Year, Crop/Variety        | (kg ai/ha)                              | (days)   | at last      | (days) |           | (mg/kg)             | (mg/kg)      |                   |
|                           |                                         |          | application  |        |           |                     |              |                   |
|                           | [Total]                                 |          |              | -      |           |                     |              |                   |
| Bridgeton, NJ, USA        | 0.462 <sup>b</sup>                      |          | Fruiting     | /      | Fruit     | 1.2, 0.06           | <0.01, <0.01 | IR-4 PR No 09556  |
| 2007                      | 0.480                                   | 8<br>0   |              |        |           | (0.63)              | (<0.01)      | Thompson D.C      |
| 2007                      | 0.093                                   | 0        |              | 12     |           |                     | -0.01 -0.01  | 2011b             |
| Doll                      | 0.062                                   | 0        |              | 15     |           | 0.11.0.004          | <0.01, <0.01 | 20110             |
| Dell                      | 0.000                                   | 7        |              |        |           | 0.11, 0.084         | (<0.01)      | 00EE4 07 N 114    |
| pepper/Revolution         | 0.000                                   | /        |              | 20     |           | (0.097)             | .0.01 .0.01  | 090007-INJ 10     |
|                           | [4 470]                                 |          |              | 20     |           | 0.054.0.020         | <0.01, <0.01 |                   |
|                           | [4.470]                                 |          |              |        |           | 0.054, 0.038        | (<0.01)      |                   |
|                           |                                         |          |              | 20     |           | (0.046)             | .0.01 .0.01  |                   |
|                           |                                         |          |              | 28     |           | -0.01 -0.01         | <0.01, <0.01 |                   |
|                           |                                         |          |              |        |           | <0.01, <0.01        | (<0.01)      |                   |
|                           |                                         |          |              | 25     |           | ( <u>&lt;0.01</u> ) | .0.01 .0.01  |                   |
|                           |                                         |          |              | 30     |           | .0.01 .0.01         | <0.01, <0.01 |                   |
|                           |                                         |          |              |        |           | <0.01, <0.01        | (<0.01)      |                   |
| Woolaco TV USA            | 0.001 b                                 |          | Ploom        | 20     | Eruit     | (<0.01)             | -0.01 -0.01  |                   |
| WESIACO, TA, USA          | 0.001                                   | 4        | DIUUIII      | 20     | FIUIL     | 0.019, <0.01        | <0.01, <0.01 | IK-4 PK N0 09330  |
| 2007                      | 0.000                                   | 0        |              |        |           | ( <u>0.015</u> )    | (<0.01)      | Thompson D.C      |
| 2007                      | 0.074                                   | 0        |              |        |           |                     |              | 2011b             |
| Poll                      | 0.070                                   | 20       |              |        |           |                     |              | 20110             |
| Dell<br>poppor/Canistrano | 0.073                                   | 7        |              |        |           |                     |              | 00554 07 TV*20    |
| pepper/capistrario        | 0.003                                   | /        |              |        |           |                     |              | 09550.07-17 20    |
|                           | [E 240]                                 |          |              |        |           |                     |              |                   |
| Clinton NC UCA            | [5.209]                                 |          | Emultin a    | 20     | Emilt     | 0.01.0.010          | 0.01 0.01    |                   |
| Clinton, NC, USA          | 0.864                                   |          | Fruiting     | 29     | Fruit     | <0.01, 0.019        | <0.01, <0.01 | IR-4 PR N0 09556  |
| 2007                      | 0.000                                   | 7        |              |        |           | ( <u>0.015</u> )    | (<0.01)      | Thompson D.C      |
| 2007                      | 0.850                                   | /        |              |        |           |                     |              | Thompson, D.C.    |
| Poll poppor/Crusador      | 0.000                                   | 21       |              |        |           |                     |              | 20110             |
| bell peppel/clusadel      | 0.0/4                                   |          |              |        |           |                     |              | 00EE4 07 NO14     |
|                           | 0.002                                   | 0        |              |        |           |                     |              | 090007-NC10       |
|                           | [5 169]                                 |          |              |        |           |                     |              |                   |
| L'Acadio Canada           | 0.752 <sup>b</sup>                      |          |              | 21     | Eruit     | 0.029.0.021         | <0.01 <0.01  | ID / DD No 00556  |
| L'ACAUIE, Callaua,        | 0.752<br>0.964 b                        | 7        | DDCH /9      | 31     | FIUIL     | 0.038, 0.021        | <0.01, <0.01 | IK-4 PK N0 09330  |
| 2007                      | 0.004                                   | 7        |              |        |           | (0.05)              | (<0.01)      | Thompson D C      |
| 2007                      | 0.033                                   | 7        |              |        |           |                     |              | 2011h             |
| Boll poppor/              | 0.042                                   | 7        |              |        |           |                     |              | 20110             |
| Socratos                  | 0.042                                   | 7        |              |        |           |                     |              | 09556 07-0005     |
| 50014103                  | 0.040                                   | '        |              |        |           |                     |              | 07550.07-0005     |
|                           | [4 974]                                 |          |              |        |           |                     |              |                   |
| Harrow ON Canada          | 0 950 b                                 |          | Plum-sized   | 30     | Fruit     | <0.01.0.011         | <0.01 <0.01  | IR-4 PR No 09556  |
| nanow, on, oanada,        | 0.906 b                                 | 7        | nenners      | 50     | Trait     | (0.011)             | (<0.01)      | 11 41 11 10 07550 |
| 2007                      | 0.900                                   | 8        | peppers      |        |           | ( <u>0.011</u> )    | (<0.01)      | Thompson D.C      |
| 2007                      | 0.003                                   | 13       |              |        |           |                     |              | 2011h             |
| Bell pepper/ Boynton      | 0.963                                   | 7        |              |        |           |                     |              | 20110             |
| c                         | 0.833                                   | 6        |              |        |           |                     |              | 09556 07-0N11     |
|                           | 0.000                                   | 0        |              |        |           |                     |              | 07000.07 0111     |
|                           | [5 433]                                 |          |              |        |           |                     |              |                   |
| Harrow ON Canada          | 0 921 <sup>b</sup>                      |          | Plum-sized   | 30     | Fruit     | 0.01 <0.01          | <0.01 <0.01  | IR-4 PR No 09556  |
|                           | 0.949 b                                 | 7        | nenners      | 50     |           | (0.01)              | (<0.01)      | 11. 411.110.07550 |
| 2007                      | 0.902                                   | 8        | hebbers      |        |           | (0.01)              | (\$0.01)     | Thompson D.C      |
| 2007                      | 0.899                                   | 13       |              |        |           |                     |              | 2011h             |
| Rell nenner/              | 0.077                                   | 7        |              |        |           |                     |              | 20110             |
| Stavsgreen c              | 0.865                                   | 6        |              |        |           |                     |              | 00556 07 0112     |
| StaySyroon                | 0.000                                   | 5        |              |        |           |                     |              | 070007-0112       |
|                           | [5.448]                                 |          |              |        |           |                     |              |                   |
|                           | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |          |              |        | •         | •                   |              |                   |

| Location, Country<br>Year, Crop/Variety                         | Rate<br>(kg ai/ha)<br>[Total]                                                           | Interval<br>(days)              | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)               | AMGT<br>(mg/kg)         | Reference                                                    |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|----------------|-----------|------------------------------------|-------------------------|--------------------------------------------------------------|
| Arlington, WI<br>2007<br>Non-bell<br>pepper/Hungarian<br>wax    | 0.863 <sup>b</sup><br>0.861 <sup>b</sup><br>0.841<br>0.834<br>0.847<br>0.852<br>[5.098] | <br>7<br>7<br>28<br>8<br>6      | Bud, bloom,<br>fruiting                | 31             | Fruit     | <0.01, 0.022<br>( <u>0.016</u> )   | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556<br>Thompson, D.C.<br>2011b<br>09556.07-WI31 |
| Citra, FL,USA<br>2007<br>Non-bell<br>pepper/Mesilla             | 0.887 <sup>b</sup><br>0.879 <sup>b</sup><br>0.883<br>0.854<br>0.862<br>0.900            | <br>7<br>7<br>7<br>6<br>8       | Bloom                                  | 31             | Fruit     | <0.01, <0.01<br><u>(&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556<br>Thompson, D.C.<br>2011b<br>09556.07-FL11 |
| Weslaco, TX, USA<br>2007<br>Non-bell pepper/Tam<br>Veracruz     | 0.874 <sup>b</sup><br>0.881 <sup>b</sup><br>0.884<br>0.871<br>0.880<br>0.894<br>[5.285] | 7<br>7<br>7<br>7<br>7<br>8      | Fruiting                               | 30             | Fruit     | 0.036, 0.053,<br>( <u>0.054</u> )  | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556<br>Thompson, D.C.<br>2011b<br>09556.07-TX19 |
| Las Cruces, NM, USA<br>2007<br>Non-bell pepper/Joe<br>E. Parker | 0.893 <sup>b</sup><br>0.877 <sup>b</sup><br>0.876<br>0.882<br>0.892<br>0.874<br>[5.294] | <br>9<br>6<br>55<br>7<br>7<br>7 | Fruiting                               | 28             | Fruit     | <0.01, <0.01<br><u>(&lt;0.01</u> ) | <0.01, <0.01<br>(<0.01) | IR-4 PR No 09556<br>Thompson, D.C.<br>2011b<br>09556.07-NM04 |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

<sup>a</sup> The label states that the first application may be made at a rate of 0.876 kg ai/ha as a banded soil drench at transplant. The interval for the foliar uses is 7–14 days.

<sup>b</sup> Soil drench treatments

<sup>c</sup> For replicate trials the HR from the two non-independent trials has been taken.

Legume vegetables

#### Snap beans (succulent bean with pod)

Eleven residue trials were conducted in Canada and the USA in 2003 and 2004.

In ten of the trials at each site there were two treated plots; in one plot a single foliar application was made whereas in the second plot two foliar applications were made. In all cases applications were made using an SC formulation with applications in the range of 0.473–0.555 kg ai/ha. Snap beans were collected 10–24 days after the last treatment.

Trials 07602.03-QC12 and 07602.03-QC13 were conducted at the same location at the same time and are therefore are regarded as replicate trials and not independent trials.

Samples were immediately frozen and maintained in frozen storage for periods of up to 377 days prior to extraction and analysis.

Residues of fluazinam were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.02 mg/kg were made with recoveries in the range of 71–122%.

The trials cannot be relied on as a result of the samples being subjected to significant temperature variations during the time period from sampling to analysis. Storage data generated under the same conditions confirmed the instability of residues.

|                       |              |              | -                 |           |                 |                          |                  |
|-----------------------|--------------|--------------|-------------------|-----------|-----------------|--------------------------|------------------|
| Table 105 Residues in | snap beans f | rom superv   | vised trials in C | anada and | the USA involvi | ing 1-2 foliar applicati | ons of fluazinam |
| une perioù n'enredinp | ing to unurj | olor otor ag | o data gonorato   | a anaon a |                 |                          |                  |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)      | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part     | Fluazinam<br>(mg/kg)              | Reference           |
|-----------------------------------------|-------------------------|--------------------|----------------------------------------|----------------|---------------|-----------------------------------|---------------------|
|                                         | [Total]                 |                    |                                        |                |               |                                   |                     |
| GAP USA                                 | MID: 0.497<br>MTD: 1.02 | 7-10               | -                                      | 14             | -             | -                                 | -                   |
| Freeville, NY, USA                      | 0.53                    | -                  | 15% bloom                              | 24             | Bean with pod | <0.02, <0.02 (<0.02)              | IR-4 PR No. 07602   |
| 2003                                    |                         |                    |                                        |                |               |                                   | Starner, V.R. 2006a |
| Snap Bean/ Hystyle                      |                         |                    |                                        |                |               |                                   | 07602.03-NY18       |
| Salisbury, MD, , USA                    | 0.51                    | -                  | First open<br>bloom                    | 17             | Bean with pod | <0.02, <0.02 (<0.02)              | IR-4 PR No. 07602   |
| 2003                                    | 0.506<br>0.513          | -                  | 50% bloom                              | 14             | Bean with pod | <0.02, <0.02 (<0.02)              | Starner, V.R. 2006a |
| Snap Bean/<br>Slenderette               | [1.019]                 | 3                  |                                        |                |               |                                   | 07602.03-MD17       |
| Citra, FL, USA                          | 0.513                   | -                  | First bloom                            | 18             | Bean with pod | <0.02, <0.02 (<0.02)              | IR-4 PR No. 07602   |
|                                         | 0.507                   | -                  | Mid bloom                              | 10             | Bean with pod | 0.025, 0.032 (0.029)              |                     |
| 2003                                    | 0.521                   | 4                  | (100% flowers)                         |                |               | 0.046, 0.072 <sup>b</sup> (0.059) | Starner, V.R. 2006a |
| Snap Bean/ Leon                         | [1.028]                 |                    |                                        | 14             |               | <0.02.<0.02.(<0.02)               | 07602.03-FL56       |
|                                         |                         |                    |                                        | 20             |               |                                   |                     |
| Lansing, ML USA                         | 0 498                   | -                  | 90% bloom                              | 14             | Bean with pod | <0.02.<0.02.(<0.02)               | IR-4 PR No. 07602   |
|                                         | 0.521                   | -                  | 90% bloom                              | 12             | Bean with pod | <0.02, <0.02 (<0.02)              | 1                   |
| 2003                                    | 0.510                   | 4                  |                                        |                |               |                                   | Starner, V.R. 2006a |
| Snap Bean/ Hercules                     | [1.031]                 |                    |                                        |                |               |                                   | 07602.03-MI39       |
| Holt, MI, USA                           | 0.555                   | -                  | 70% bloom                              | 14             | Bean with pod | <0.02, 0.029<br>(0.025)           | IR-4 PR No. 07602   |
| 2003                                    | 0.525                   | - 3                | 100% bloom                             | 13             | Bean with pod | <0.02, 0.02 (0.02)                | Starner, V.R. 2006a |
| Snap Bean/ Hercules                     | [1 029]                 | 0                  |                                        |                |               |                                   | 07602.03-MI40       |
| Holtville, CA, USA                      | 0.506                   | -                  | 5% bloom                               | 21             | Bean with pod | <0.02, 0.02 (0.02)                | IR-4 PR No. 07602   |
| 2004                                    | 0.503                   | -                  | 32% bloom                              | 11             | Bean with pod | 0.064, 0.060 (0.062)              | Starner, V.R. 2006a |
| Snap Bean/ Ambra                        | 0.510                   | 6                  |                                        |                |               | 0.050, 0.109 <sup>b</sup> (0.08)  | 07602.03-CA127      |
|                                         | [1.013]                 |                    |                                        | 15             |               | <0.02, 0.02 (0.02)                |                     |
|                                         |                         |                    |                                        | 20             |               |                                   |                     |
| Kimberly, ID, USA                       | 0.503                   | -                  | 6% bloom                               | 28             | Bean with pod | <0.02, 0.02 (0.02)                | IR-4 PR No. 07602   |
| <b>3</b>                                | 0.5                     | -                  | 42% bloom                              | 22             | Bean with pod | <0.02, 0.02 (0.02)                |                     |
| 2003                                    | 0.499                   | 6                  |                                        |                |               |                                   | Starner, V.R. 2006a |
| Snap Bean/ Idelite                      | [0.999]                 |                    |                                        |                |               |                                   | 07602.03-ID08       |
| Prosser, WA, USA                        | 0.504                   | -                  | 55% bloom                              | 15             | Bean with pod | <0.02 / <0.02<br>(<0.02)          | IR-4 PR No. 07602   |
| 2003                                    | 0.507                   | - 3                | 40% bloom                              | 15             | Bean with pod | <0.02 / <0.02                     | Starner, V.R. 2006a |
| Snap Bean/ Igloo                        | [1 032]                 | J                  |                                        |                |               | (~0.02)                           | 07602.03-WA20       |
| New Glasgow, PE,                        | 0.51                    | -                  | 3.3% bloom                             | 20             | Bean with pod | <0.02 / <0.02                     | IR-4 PR No. 07602   |
| Canada                                  |                         |                    |                                        | L              |               | (<0.02)                           |                     |

442

|                        | r          | r        | •            | r      | •             | r                     |                     |
|------------------------|------------|----------|--------------|--------|---------------|-----------------------|---------------------|
| Location, Country      | Rate       | Interval | Growth stage | DALA   | Crop part     | Fluazinam             | Reference           |
| Year, Crop/Variety     | (kg ai/ha) | (days)   | at last      | (days) |               | (ma/ka)               |                     |
| rour, orop, carry      | (iig ui/)  | (uuje,   | application  | (uuje, |               | (                     |                     |
|                        | [Tatal]    |          | application  |        |               |                       |                     |
|                        | [lotal]    |          |              |        |               |                       |                     |
|                        | 0.501      | -        | Mid bloom    | 15     | Bean with pod | <0.02, 0.022§ (0.021) | Starner, V.R. 2006a |
| 2003                   | 0.5        | 5        |              |        |               |                       |                     |
|                        |            |          |              |        |               |                       | 07602 03-PF04       |
| Span Boans/ Goldrush   | [1 001]    |          |              |        |               |                       | 07002.00120.        |
| Shap bealls/ Golulush  | [1.001]    |          |              |        |               |                       |                     |
| St. Paul d'Abbotsford, | 0.529      | -        | 30% bloom    | 22     | Bean with pod | <0.02 / <0.02         | IR-4 PR No. 07602   |
| QC, Canada             |            |          |              |        |               | (<0.02)               |                     |
|                        | 0.522      | -2       | 60% bloom    | 21     | Bean with pod | <0.02 / <0.02         | Starner, V.R. 2006a |
| 2003                   | 0.487      |          |              |        | -             | (<0.02)               |                     |
|                        | 01107      |          |              |        |               | (10102)               | 07602 03-0012       |
| Span Boans/ Valdao a   | [1 011]    |          |              |        |               |                       | 07002.03 2012       |
| Sliap Bealls/ Valuae   | [1.011]    |          |              |        |               |                       |                     |
| St. Paul d'Abbotsford, | 0.529      | -        | 10% bloom    | 22     | Bean with pod | <0.02 / <0.02         | IR-4 PR No. 07602   |
| QC, Canada             |            |          |              |        |               | (<0.02)               |                     |
|                        | 0.516      | -        | 25% bloom    | 21     | Bean with pod | <0.02 / <0.02         | Starner, V.R. 2006a |
| 2003                   | 0.473      | 3        |              |        |               | (<0.02)               |                     |
|                        | 00         | °        |              |        |               | (10102)               | 07602 03-0013       |
| Span Doone/ Strike a   | [0 000]    |          |              |        |               |                       | 07002.03 2010       |
| Shap Beans/ Strike     | [0.989]    |          |              |        |               |                       |                     |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets <sup>a</sup> For replicate trials the HR from the two non-independent trials has been taken.

<sup>b</sup> Highest individual sample result

### *Lima beans (succulent bean without pod)*

Seven residue trials were conducted in the USA in 2003.

Two foliar applications were made using an SC formulation at application rates in the range of 0.494–0.515 kg ai/ha.

Samples of beans were collected 28-71 days after the last application.

Samples were immediately frozen and maintained in frozen storage for periods of up to 254 days prior to extraction and analysis.

Residues of fluazinam were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.02 -1 mg/kg were made with recoveries in the range of 68–107%.

The trials cannot be relied on as a result of the samples being subjected to significant temperature variations during the time period from sampling to analysis. Storage data generated under the same conditions confirmed the instability of residues.

Table 106 Residues in lima beans from supervised trials in USA involving 2 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part    | Fluazinam<br>(mg/kg) | Reference          |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|--------------|----------------------|--------------------|
| GAP USA                                 | MID: 0.497<br>MTD: 1.02       | 7-10               | -                                      | 30             | -            | -                    | -                  |
| Brighton, NJ, USA                       | 0.498                         | -                  | 43% bloom                              | 41             | Bean without | <0.02, <0.02         | IR-4 PR No. 08798  |
|                                         | 0.507                         | 5                  |                                        |                | pod          | (<0.02)              |                    |
| 2003                                    |                               |                    |                                        |                |              |                      | Starner V.R. 2006b |
|                                         | [1.004]                       |                    |                                        |                |              |                      |                    |
| Lima bean/ Bridgeton                    |                               |                    |                                        |                |              |                      | 08798.03-NJ34      |
| Salisbury, MD, USA                      | 0.509                         | -                  | 45-50% bloom                           | 52             | Bean without | <0.02, <0.02         | IR-4 PR No. 08798  |
|                                         | 0.509                         | 3                  |                                        |                | pod          | (<0.02)              |                    |
| 2003                                    |                               |                    |                                        |                |              |                      | Starner V.R. 2006b |
|                                         | [1.018]                       |                    |                                        |                |              |                      |                    |
| Lima bean/ Burpee's                     |                               |                    |                                        |                |              |                      | 08798.03-MD18      |
| improved bush                           |                               |                    |                                        |                |              |                      |                    |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part         | Fluazinam<br>(mg/kg)    | Reference          |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-------------------|-------------------------|--------------------|
| Tifton, GA, USA                         | 0.506<br>0.512                | - 4                | Mid bloom<br>(55% flowers)             | 28             | Bean without pod  | <0.02, <0.02<br>(<0.02) | IR-4 PR No. 08798  |
| 2003                                    | [1.018]                       |                    |                                        |                |                   |                         | Starner V.R. 2006b |
| Lima bean/ Cangreen                     |                               |                    |                                        |                |                   |                         | 08798.03-GA*19     |
| Parlier, CA, USA                        | 0.508                         | -                  | 40% bloom                              | 71             | Bean without      | <0.02, <0.02            | IR-4 PR No. 08798  |
| 2003                                    | 0.513                         | 4                  |                                        |                | pod               | (<0.02)                 | Starner V.R. 2006b |
| Lima bean/ Fordhook                     | [1.021]                       |                    |                                        |                |                   |                         | 08798.03-CA129     |
| 242                                     | 0.500                         |                    | 27.5% blasse                           | 70             | De en culture cut | 0.00.0.00               |                    |
| Holtville, CA, USA                      | 0.508                         | - 4                | 37.5% DIOOM                            | 70             | pod               | <0.02, <0.02<br>(<0.02) | IR-4 PR NO. 08798  |
| 2003                                    |                               |                    |                                        |                |                   |                         | Starner V.R. 2006b |
|                                         | [1.022]                       |                    |                                        |                |                   |                         |                    |
| Lima bean/ Fordhook,<br>242             |                               |                    |                                        |                |                   |                         | 08798.03-CA130     |
| Kimberly, ID, USA                       | 0.494                         | -                  | 36% bloom                              | 43             | Bean without      | <0.02, <0.02            | IR-4 PR No. 08798  |
| 2003                                    | 0.509                         | 0                  |                                        |                | poa               | (<0.02)                 | Starner V.R. 2006b |
| Lima bean/ Henderson                    | [1.003]                       |                    |                                        |                |                   |                         | 08708 03-1009      |
| Aberdeen ID USA                         | 0 498                         | -                  | 50% bloom                              | 36             | Bean without      | <0.02 <0.02             | IR-4 PR No. 08798  |
|                                         | 0.494                         | 7                  |                                        | 00             | pod               | (<0.02)                 |                    |
| 2003                                    |                               |                    |                                        |                |                   |                         | Starner V.R. 2006b |
|                                         | [0.992]                       |                    |                                        |                |                   |                         |                    |
| Lima bean/ Henderson                    |                               |                    |                                        |                |                   |                         | 08798.03-ID10      |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

### Soya bean (dry)

Sixteen residue trials were conducted in the USA and one trial in Canada in 2010.

Two foliar applications were made using an SC formulation at application rates in the range of 0.549–0.717 kg ai/ha.

The last applications were made from full flowering (R2) to Pod formation (R3). Samples of the seed were collected 65– 95 days after the last application.

Samples of soya bean seed were immediately frozen and maintained in frozen storage for periods of up to 99 days prior to extraction and analysis.

Residues of fluazinam and AMGT were determined using analytical method 10. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.01–0.1 mg/kg were made with recoveries in the range of 88–108%. For AMGT fortification levels of 0.01 mg/kg–0.1 mg/kg were made with recoveries in the range of 89.5–120.

Table 107 Residues in soya bean seeds from supervised trials in Canada and the USA involving 2 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | AMGT<br>(mg/kg) | Reference |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-----------------|-----------|
|                                         | [Total]            |                    |                                        |                |           |                      |                 |           |
| GAP USA                                 | MID: 0.583         | 10-14              | Early pod                              | -              | -         | -                    |                 | -         |
|                                         | WITD. 1.17         |                    | (R3)                                   |                |           |                      |                 |           |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)             | AMGT<br>(mg/kg)         | Reference                 |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------------------|-------------------------|---------------------------|
| Seven Springs, NC,                      | 0.561                         | -                  | Full flowering                         | 66             | Seed      | <0.01, <0.01                     | <0.01, <0.01            | IB-2010-JLW-              |
| USA                                     | 0.561                         | 9                  | (R2)                                   |                |           | (< <u>0.01</u> )                 | (<0.01)                 | 006-00-01                 |
| 2010                                    | [1.122]                       |                    |                                        | 76             |           | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
| Soya bean/ Asgrow<br>AG5605             |                               |                    |                                        | 87             |           | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-01    |
|                                         |                               |                    |                                        | 95             |           | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) |                           |
| Suffolk, VA, USA                        | 0.594<br>0.717                | -<br>11            | Full<br>flowering-Pod                  | 90             | Seed      | <0.01, <0.01<br>(<0.01)          | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| 2010<br>Soya bean/ Pioneer              | [1.311]                       |                    | formation<br>(R2- R3)                  |                |           |                                  |                         | Wiedmann, J.L.<br>2011    |
| 95120                                   |                               |                    |                                        |                |           |                                  |                         | IB-2010-JLW-<br>006-02    |
| Cheneyville, LA, USA<br>2010            | 0.583<br>0.594                | -<br>11            | Pod<br>formation<br>(late R3)          | 90             | seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean, Terral<br>55R11              | [1.177]                       |                    |                                        |                |           |                                  |                         | Wiedmann, J.L.<br>2011    |
|                                         |                               |                    |                                        |                |           |                                  |                         | IB-2010-JLW-<br>006-03    |
| Proctor, AR, USA                        | 0.561<br>0.561                | -<br>10            | Beginning<br>bloom<br>(V7 R1)          | 82             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean, Armor                        | [1.122]                       |                    | (*/ (1)                                |                |           |                                  |                         | Wiedmann, J.L.<br>2011    |
| 47G7KK                                  |                               |                    |                                        |                |           |                                  |                         | IB-2010-JLW-<br>006-04    |
| Northwood, ND, USA                      | 0.561<br>0.561                | -<br>10            | Pod<br>formation                       | 72             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean/ Pioneer                      | [1.122]                       |                    | (1(3)                                  |                |           |                                  |                         | Wiedmann, J.L.<br>2011    |
| 90141                                   |                               |                    |                                        |                |           |                                  |                         | IB-2010-JLW-<br>006-05    |
| Fisher, MN, USA                         | 0.561<br>0.561                | -<br>9             | Pod<br>formation                       | 72             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| 2010<br>Soya bean/ Asgrow               | [1.122]                       |                    | (R3)                                   |                |           |                                  |                         | Wiedmann, J.L.<br>2011    |
| AG00901                                 |                               |                    |                                        |                |           |                                  |                         | IB-2010-JLW-<br>006-06    |

| Location, Country<br>Year, Crop/Variety                           | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application         | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)             | AMGT<br>(mg/kg)         | Reference                                                                     |
|-------------------------------------------------------------------|-------------------------------|--------------------|------------------------------------------------|----------------|-----------|----------------------------------|-------------------------|-------------------------------------------------------------------------------|
| Geneva, MN, USA<br>2010<br>Soya bean/ Pioneer<br>91Y70            | 0.561<br>0.561<br>[1.122]     | -<br>10            | Full flowering<br>(R2)                         | 80             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-07 |
| Wyoming, IL, USA<br>2010<br>Soya bean/ AG 3130                    | 0.583<br>0.561<br>[1.144]     | -<br>10            | Full<br>flowering-Pod<br>formation<br>(R2- R3) | 70             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-08 |
| Fitchburg, WI, USA<br>2010<br>Soya bean/ S21-N6                   | 0.549<br>0.561<br>[1.11]      | -<br>10            | Full flowering<br>(R2)                         | 70             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-09 |
| Lesterville, SD, USA<br>2010<br>Soya bean/ Lantharn<br>CS-0991236 | 0.561<br>0.561<br>[1.122]     | -<br>16            | Pod<br>formation<br>(R3)                       | 65             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-10 |
| Richland, IA, USA<br>2010<br>Soya bean/ Pioneer<br>92Y80          | 0.561<br>0.549<br>[1.11]      | 9                  | Full<br>flowering-Pod<br>formation<br>(R2- R3) | 94             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-11 |
| Bagley, IA, USA<br>2010<br>Soya bean/ 93Y13-<br>N203              | 0.549<br>0.561<br>[1.11]      | - 10               | Full flowering<br>(R2)                         | 79             | Seed      | <0.01, <0.01<br>(< <u>0.01</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-12 |

| Location, Country<br>Year, Crop/Variety                       | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application         | DALA<br>(days)       | Crop part | Fluazinam<br>(mg/kg)                                                                                              | AMGT<br>(mg/kg)                                                                                                     | Reference                                                                     |
|---------------------------------------------------------------|-------------------------------|--------------------|------------------------------------------------|----------------------|-----------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Shelbyville, IN, USA<br>2010<br>Soya bean/<br>D4523081        | 0.561<br>0.583<br>[1.144]     | -<br>10            | Full<br>flowering-Pod<br>formation<br>(R2- R3) | 70                   | Seed      | <0.01, <0.01<br>(< <u>0.01</u> )                                                                                  | <0.01, <0.01<br>(<0.01)                                                                                             | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-13 |
| Marysville, OH, USA<br>2010<br>Soya bean/SG-<br>329RR         | 0.561<br>0.561<br>[1.122]     | - 10               | Full<br>flowering-Pod<br>formation<br>(R2- R3) | 36<br>46<br>56<br>66 | Seed      | <0.01, <0.01<br>(< <u>0.01</u> )<br><0.01, <0.01<br>(<0.01)<br><0.01, <0.01<br>(<0.01)<br><0.01, <0.01<br>(<0.01) | <0.01, <0.01<br>(<0.01)<br><0.01, <0.01<br>(<0.01)<br><0.01, <0.01<br>(<0.01)<br><0.01, <0.01<br>(<0.01)<br>(<0.01) | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-14 |
| Leonard, MO, USA<br>2010<br>Soya bean/ Asgrow<br>3803         | 0.549<br>0.561<br>[1.11]      | -<br>11            | Full flowering<br>(R2)                         | 74                   | Seed      | <0.01, <0.01<br>(<0.01)                                                                                           | <0.01, <0.01<br>(<0.01)                                                                                             | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-15 |
| Cambridge, ON,<br>Canada<br>2010<br>Soya bean/ Absoulte<br>RR | 0.572<br>0.549<br>[1.121]     | 9                  | Pod<br>formation<br>(R3)                       | 67                   | Seed      | <0.01, <0.01<br>(< <u>0.01</u> )                                                                                  | <0.01, <0.01<br>(<0.01)                                                                                             | IB-2010-JLW-<br>006-00-01<br>Wiedmann, J.L.<br>2011<br>IB-2010-JLW-<br>006-16 |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

### Pulses

### Dried beans

Thirteen residue trials were conducted in the USA in 2003.

In each trial two applications were made using an SC formulation at application rates of 0.48–0.54 kg ai/ha.

Samples of dried beans were collected 31–57 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 245 days for fluazinam prior to extraction and analysis.

Residues of fluazinam were determined using analytical method 10. Procedural recovery samples were analysed with the residue trial samples. Fortification levels of 0.01-1 mg/kg for fluazinam and were made with recoveries in the range of 71–108%.

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)                | AMGT<br>(mg/kg) | Reference               |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------------------|-----------------|-------------------------|
| GAP USA                                 | MID:<br>0.497      | 7-10               | -                                      | 30             | -         | -                                   | -               | -                       |
|                                         | MTD: 1.02          |                    |                                        |                |           |                                     |                 |                         |
| Freeville NY, USA                       | 0.495<br>0.525     | <br>13             | 1-3 inch<br>beans                      | 57             | Beans     | <0.01, <0.01<br>(<0.01)             | n/a             | IR-4 PR No. 06369       |
| 2003                                    | [1.020]            |                    |                                        |                |           |                                     |                 | Thompson, D.C.<br>2006e |
| Dry bean/Cabernet                       | 0 5 2 7            |                    | Fruiting                               | 50             | Boanc     | -0.01 -0.01                         | 2/2             |                         |
| 2003                                    | 0.537              | 14                 | Fruiting                               | 50             | Dealls    | (<0.01)                             | 11/a            |                         |
| Dry bean/ Redhawk                       | [1.067]            |                    |                                        |                |           |                                     |                 |                         |
| Arlington WI, USA                       | 0.508              |                    | Bloom-                                 | 50             | Beans     | <0.01, <0.01                        | n/a             |                         |
| 2003                                    | 0.509              | 14                 | Truiting                               |                |           | (<0.01)                             |                 |                         |
| Dry bean/ Redhawk<br>kidnev bean        | [1.017]            |                    |                                        |                |           |                                     |                 |                         |
| Brookings, SD, USA                      | 0.504<br>0.512     | <br>12             | Full bloom                             | 43             | Beans     | <0.01, <0.01<br>(<0.01)             | n/a             |                         |
| 2003                                    | [1.016]            |                    |                                        |                |           |                                     |                 |                         |
| Dry bean/Vista Navy<br>bean             |                    |                    |                                        |                |           |                                     |                 |                         |
| Brookings, SD, USA                      | 0.504<br>0.502     | <br>12             | Full bloom                             | 47             | Beans     | <0.01, <0.01<br>(<0.01)             | n/a             |                         |
| 2003                                    | [1.006]            |                    |                                        |                |           |                                     |                 |                         |
| Dry bean/Schooner                       |                    |                    |                                        |                |           |                                     |                 |                         |
| Fargo, ND, USA                          | 0.507<br>0.504     | <br>13             | Early pod                              | 39             | Beans     | <0.01, <0.01<br>(<0.01)             | n/a             |                         |
| 2003                                    | [1.011]            |                    |                                        |                |           |                                     |                 |                         |
| Dry bean/Norstar<br>Navy bean           |                    |                    |                                        |                |           |                                     |                 |                         |
| Fargo, ND, USA                          | 0.515<br>0.515     | <br>14             | Early pod                              | 35             | Beans     | <0.01, <0.01<br><u>(&lt;0.01</u> )  | n/a             |                         |
| 2003                                    | [1.030]            |                    |                                        |                |           |                                     |                 |                         |
| Dry bean/Navigator<br>Navy bean         |                    |                    |                                        |                |           |                                     |                 |                         |
| Velva, ND, USA                          | 0.484<br>0.492     | <br>14             | Late bloom                             | 31             | Beans     | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             |                         |
| 2003<br>Dry bean/Bill-Z Pinto<br>bean   | [0.976]            |                    |                                        |                |           |                                     |                 |                         |
| Yuma, CO, USA                           | 0.520<br>0.507     | <br>13             | Full bloom                             | 39             | Beans     | <0.01, <0.01<br><u>(&lt;0.01</u> )  | n/a             | IR-4 PR No. 06369       |
| 2003                                    | [1.027]            |                    |                                        |                |           |                                     |                 | Thompson, D.C.<br>2006e |
| Dry bean/590 Pinto<br>bean              |                    |                    |                                        |                |           |                                     |                 |                         |

Table 108 Residues in Dried beans from supervised trials in the USA involving 2 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)                | AMGT<br>(mg/kg) | Reference |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------------------|-----------------|-----------|
| Fort Collins CO, USA<br>2003            | 0.497<br>0.490                | <br>15             | Full bloom                             | 36             | Beans     | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             |           |
| Dry bean/Olanthe<br>Pinto bean          | [0.967]                       |                    |                                        |                |           |                                     |                 |           |
| Holtville CA, USA                       | 0.512<br>0.516                | <br>15             | Late bloom                             | 41             | Beans     | <0.01, <0.01<br>(<0.01)             | n/a             |           |
| 2003<br>Dry bean/Apache                 | [1.028]                       |                    |                                        |                |           |                                     |                 |           |
| Kimberly ID, USA                        | 0.502<br>0.498                | <br>13             | Bloom                                  | 36             | Beans     | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             |           |
| 2003<br>Dry bean/Pinto bean             | [1.000]                       |                    |                                        |                |           |                                     |                 |           |
| Prosser WA, USA                         | 0.504<br>0.498                | <br>13             | Bloom                                  | 40             | Beans     | <0.01, <0.01<br>(<0.01)             | n/a             |           |
| 2003<br>Dry bean/Othello<br>Pinto bean  | [1.002]                       |                    |                                        |                |           |                                     |                 |           |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

#### Root and tuber vegetables

#### Carrot

Thirteen residue trials were conducted in Canada and the USA in 2005 and 2006.

Four to five foliar applications were made using an SC formulation at application rates in the range of 0.552–0.821 kg ai/ha. At each trial site there were two plots; in the first plot sprinkler irrigation occurred within 2 hours after the last treatment while in the second plot sprinkler irrigation occurred at least 24 hours after the last treatment. The trials conducted on each plot are regarded as replicate trials and as such the highest residue from each replicate plot has been taken to support the GAP.

Samples of carrot were taken 6–8 days after the last application. One decline trial was performed in which samples were taken from 1–20 days after the last application.

Samples of carrot were immediately frozen and maintained in frozen storage for periods of up to 449 days prior to extraction and analysis.

Residues of fluazinam were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam were made at 0.02 and 1 mg/kg with recoveries in the range of 70–119% except in one case where a recovery at 54% was obtained.

| Location, Country          | Rate       | Interval | Growth stage at last                     | DALA   | Crop part | Fluazinam                  | Reference      |
|----------------------------|------------|----------|------------------------------------------|--------|-----------|----------------------------|----------------|
| Year, Crop/Variety         | (kg ai/ha) | (days)   | application                              | (days) |           | (mg/kg)                    |                |
|                            | [Total]    |          |                                          |        |           |                            |                |
| GAPUSA                     | MID        | 7 -14    | -                                        | 7      | -         | -                          | -              |
|                            | 0.583      |          |                                          | ľ      |           |                            |                |
|                            | MTD:       |          |                                          |        |           |                            |                |
|                            | 2.33†      |          |                                          |        |           |                            |                |
|                            |            |          |                                          |        |           |                            |                |
| Willard, OH, USA           | 0.580      |          | -                                        | 7      | Carrot    | <0.02, <0.02               | IR-4 PR No.    |
|                            | 0.583      | 7        |                                          |        | root      | <u>(&lt;0.02</u> )         | 07094          |
| 2005                       | 0.576      | 7        |                                          |        |           |                            |                |
|                            | 0.595      | 7        |                                          |        |           |                            | Barney, W.P.   |
| Carrot/ Nevis              | 0.595      | 7        |                                          |        |           |                            | 2007           |
|                            | [2.929]    |          |                                          | -      | 0         | 0.00.0.00                  | 07004.05       |
|                            | 0.583      |          | -                                        | /      | Carrot    | <0.02, <0.02               | 07094.05-      |
|                            | 0.582      | 7        |                                          |        | 1001      | (<0.02)                    |                |
|                            | 0.573      | 7        |                                          |        |           |                            |                |
|                            | 0.597      | 7        |                                          |        |           |                            |                |
|                            | [2.919]    | ľ.       |                                          |        |           |                            |                |
| Weslaco, TX, USA           | 0.583      |          | Vegetative, Roots formed                 | 8      | Carrot    | 0.07.0.19 (0.13)           | IR-4 PR No.    |
|                            | 0.580      | 7        | · J. · · · · · · · · · · · · · · · · · · |        | root      |                            | 07094          |
| 2006                       | 0.591      | 7        |                                          |        |           |                            |                |
|                            | 0.589      | 7        |                                          |        |           |                            | Barney, W.P.   |
| Carrot/ Rex 248            | [2.342]    |          |                                          |        |           |                            | 2007           |
|                            |            |          |                                          |        |           |                            |                |
|                            | 0.581      |          | Vegetative, Roots formed                 | 8      | Carrot    | 0.05, 0.07 (0.06)          | 07094.05-TX*14 |
|                            | 0.582      | 7        |                                          |        | root      |                            |                |
|                            | 0.583      | 7        |                                          |        |           |                            |                |
|                            | 0.585      | 7        |                                          |        |           |                            |                |
|                            | [2.331]    |          | Mahuna na ata                            | 7      | 0         | 0.10.0.10 (0.10)           |                |
| Salinas, CA, USA           | 0.589      |          | Mature roots                             | /      | Carrot    | 0.10, 0.10 ( <u>0.10</u> ) | IR-4 PR No.    |
| 2005                       | 0.576      | 7        |                                          |        | 1001      |                            | 07094          |
| 2005                       | 0.570      | 7        |                                          |        |           |                            | Barney W P     |
| Carrot/Nelson <sup>c</sup> | [2 32]     | <i>'</i> |                                          |        |           |                            | 2007           |
|                            | [2.52]     |          |                                          |        |           |                            | 2007           |
|                            | 0.589      |          | Mature roots                             | 7      | Carrot    | 0.09.0.09 (0.09)           | 07094.05-CA*45 |
|                            | 0.584      | 7        |                                          | ľ      | root      |                            |                |
|                            | 0.587      | 7        |                                          |        |           |                            |                |
|                            | 0.591      | 7        |                                          |        |           |                            |                |
|                            | [2.351]    |          |                                          |        |           |                            |                |
| Salinas, CA, USA           | 0.592      |          | Large Roots, 1.9 -3.2 cm                 | 6      | Carrot    | 0.09, 0.11 (0.10)          | IR-4 PR No.    |
|                            | 0.595      | 7        | diameter                                 |        | root      |                            | 07094          |
| 2005                       | 0.578      | 7        |                                          |        |           |                            |                |
|                            | 0.576      | 7        |                                          |        |           |                            | Barney, W.P.   |
| Carrot/ Bolero             | [2.342]    |          |                                          |        |           |                            | 2007           |
|                            | 0.504      |          | Larra Danta 10, 2.2 am                   | 7      | Corret    | 0.00.0.00.(0.00)           | 07004 05 04*46 |
|                            | 0.584      |          | Large Roots, 1.9 -3.2 cm                 | /      | Carrol    | 0.08, 0.09 (0.09)          | 07094.05-CA 40 |
|                            | 0.587      | 7        | ulameter                                 |        | 1001      |                            |                |
|                            | 0.590      | 7        |                                          |        |           |                            |                |
|                            | [2.366]    | ľ        |                                          |        |           |                            |                |
| Moxee, WA, USA             | 0.583      |          | Vegetative                               | 7      | Carrot    | 0.09, 0.08 (0.09)          | IR-4 PR No.    |
| ,,                         | 0.590      | 7        |                                          | Ľ      | root      | ( <u>0.07</u> )            | 07094          |
| 2005                       | 0.589      | 7        |                                          |        |           |                            |                |
|                            | 0.590      | 7        |                                          |        |           |                            | Barney, W.P.   |
| Carrot/ Siroco F1          | [2.351]    |          |                                          |        |           |                            | 2007           |
|                            |            |          |                                          | 1      |           |                            |                |

Table 109 Residues in carrots from supervised trials in Canada and the USA involving 4-5 foliar applications of fluazinam

| Location, Country      | Rate             | Interval | Growth stage at last      | DALA   | Crop part | Fluazinam                  | Reference      |
|------------------------|------------------|----------|---------------------------|--------|-----------|----------------------------|----------------|
| Year, Crop/Variety     | (kg ai/ha)       | (days)   | application               | (days) |           | (mg/kg)                    |                |
|                        |                  |          |                           | . , ,  |           |                            |                |
|                        | [Total]          |          |                           |        |           |                            |                |
|                        | 0.600            |          | Vegetative                | 7      | Carrot    | 0.05, 0.04 (0.05)          | 07094.05-      |
|                        | 0.590            | 7        |                           |        | root      |                            | WA*05          |
|                        | 0.589            | 7        |                           |        |           |                            |                |
|                        | 0.591            | 7        |                           |        |           |                            |                |
|                        | [2.369]          |          |                           |        |           |                            |                |
| Citra, FL, USA         | 0.585            |          | Vegetative, mature        | 6      | Carrot    | 0.34, 0.39 ( <u>0.37</u> ) | IR-4 PR No.    |
|                        | 0.595            | 8        |                           |        | root      |                            | 07094          |
| 2005                   | 0.591            | 8        |                           |        |           |                            |                |
|                        | 0.593            | 6        |                           |        |           |                            | Barney, W.P.   |
| Carrot/Indiana         | [2.364]          |          |                           |        |           |                            | 2007           |
|                        | 0 579            |          | Vagatativa matura         | 4      | Carrot    | 0.20.0.24 (0.24)           | 07094 05-EL 17 |
|                        | 0.570            | 8        | vegetative, mature        | 0      | root      | 0.20, 0.24 (0.20)          | 07074.031217   |
|                        | 0.502            | 8        |                           |        | 1001      |                            |                |
|                        | 0.504            | 6        |                           |        |           |                            |                |
|                        | [2.338]          | 0        |                           |        |           |                            |                |
| Riverside, CA, USA     | 0.552            | -        | Vegetative                | 1      | Carrot    | 0.62, 0.72 (0.67)          | IR-4 PR No.    |
|                        | 0.582            | 8        | 0                         | 8      | root      | 0.56, 0.46 (0.51)          | 07094          |
| 2006                   | 0.574            | 6        |                           | 13     |           | 0.43, 0.28 (0.34)          |                |
|                        | 0.582            | 9        |                           | 20     |           | 0.40, 0.28 (0.34)          | Barney, W.P.   |
| Carot/ SXC3292         |                  |          |                           |        |           |                            | 2007           |
|                        | [2.289]          |          |                           |        |           |                            |                |
|                        | 0.564            | -        | Vegetative                | 1      | Carrot    | 0.57, 0.48 (0.53)          | 07094.05-CA44  |
|                        | 0.552            | 8        |                           | 8      | root      | 0.25, 0.16 (0.21)          |                |
|                        | 0.592            | 6        |                           | 13     |           | 0.43, 0.46 (0.45)          |                |
|                        | 0.580            | 9        |                           | 20     |           | 0.41, 0.46 (0.33)          |                |
|                        | [0.007]          |          |                           |        |           |                            |                |
| Darliar CA LICA        | [2.287]          |          | Near Maturity             | 7      | Corret    | 0.22.0.22 (0.22)           |                |
| Parlier, CA, USA       | 0.574            |          | Near Maturity             | 1      | root      | 0.23, 0.22 ( <u>0.23</u> ) | 1K-4 PK NU.    |
| 2005                   | 0.569            | 7        |                           |        | 1001      |                            | 07094          |
| 2005                   | 0.507            | 7        |                           |        |           |                            | Barnov W D     |
| Carrot/Dawors 126      | 0.392            | /        |                           |        |           |                            | Damey, w.r.    |
| Carlot Dawers 120      | [2 343]          |          |                           |        |           |                            | 2007           |
|                        | 0 578            |          | Near maturity             | 7      | Carrot    | 0 02 0 02 (0 02)           | 07094 05-CA47  |
|                        | 0.582            | 7        | i i our matanty           |        | root      | 0102, 0102 (0102)          |                |
|                        | 0.573            | 7        |                           |        | 1001      |                            |                |
|                        | 0.585            | 7        |                           |        |           |                            |                |
|                        |                  |          |                           |        |           |                            |                |
|                        | [2.318]          |          |                           |        |           |                            |                |
| Kentville, NS, Canada  | 0.843            |          | 8 true leaves             | 6      | Carrot    | 0.06, 0.04 (0.05)          | IR-4 PR No.    |
|                        | 0.785            |          |                           |        | root      |                            | 07094          |
| 2005                   | 0.801            | 8        |                           |        |           |                            |                |
|                        | 0.813            | 7        |                           |        |           |                            | Barney, W.P.   |
| Carrot/ Sweetness II   | [3.24]           | 6        |                           |        |           |                            | 2007           |
|                        | 0.810            |          | 8 true leaves             | 6      | Carrot    | 0.05, 0.06 (0.06)          |                |
|                        | 0.794            | 8        |                           |        | root      |                            | 07094.05-NS01  |
|                        | 0.802            | 7        |                           |        |           |                            |                |
|                        | 0.805            | 6        |                           |        |           |                            |                |
|                        | [2 211]          |          |                           |        |           |                            |                |
| Delhi ON Canada        | [3.211]<br>0.502 |          | Poots about 60% of size   | 7      | Carrot    | 0 12 0 12 (0 12)           | IR_1 DR No     |
| Denti, UN, Canada      | 0.572            | 7        | NOOLS ADOUL OU /0 UL SIZE | ľ      | roots     | 0.12, 0.12 (0.12)          | 0700 <i>/</i>  |
| 2005                   | 0.564            | 8        |                           |        | 10015     |                            | 07074          |
| 2003                   | 0.004            | 6        |                           |        |           |                            | Barney W D     |
| Carrot/ Sugarsnay 54 b | 0.002            | 5        |                           |        |           |                            | 2007           |
| Sanon Sugarshan St     | [2.362]          |          |                           |        |           |                            | 2007           |

| Location, Country              | Rate       | Interval | Growth stage at last    | DALA   | Crop part | Fluazinam                  | Reference     |
|--------------------------------|------------|----------|-------------------------|--------|-----------|----------------------------|---------------|
| Year, Crop/Variety             | (kg ai/ha) | (days)   | application             | (days) |           | (mg/kg)                    |               |
|                                |            |          |                         |        |           |                            |               |
|                                | [Total]    |          |                         |        |           |                            |               |
|                                | 0.567      |          | Roots about 60% of size | 7      | Carrot    | 0.04, 0.03 (0.04)          | 07094.05-0N16 |
|                                | 0.581      | 7        |                         |        | roots     |                            |               |
|                                | 0.591      | 8        |                         |        |           |                            |               |
|                                | 0.608      | 6        |                         |        |           |                            |               |
|                                | [0.047]    |          |                         |        |           |                            |               |
|                                | [2.347]    |          | 7.01                    | -      | <u> </u>  |                            |               |
| Deini, ON, Canada              | 0.814      |          | 7 -9 leaves             | 8      | Carrot    | 0.14, 0.12 ( <u>0.13</u> ) | IR-4 PR NO.   |
| 0005                           | 0.609      | /        |                         |        | root      |                            | 07094         |
| 2005                           | 0.581      | 1        |                         |        |           |                            |               |
| o vio site                     | 0.5/2      | 6        |                         |        |           |                            | Barney, W.P.  |
| Carrot/ Sugarsnax 54 °         | [2.576]    |          |                         |        |           |                            | 2007          |
|                                | 0.821      |          | 7_9 leaves              | 8      | Carrot    | 0 11 0 10 (0 11)           | 07094 05-0N17 |
|                                | 0.501      | 7        | 7 7 100/03              | 0      | root      | 0.11, 0.10 (0.11)          | 0/0/1.00 011/ |
|                                | 0.591      | 7        |                         |        | 1001      |                            |               |
|                                | 0.591      | 6        |                         |        |           |                            |               |
|                                | [2 584]    | 0        |                         |        |           |                            |               |
| St Cypnien de Napierville, OC. | 0.843      |          | Carrots, 25-30 cm       | 7      | Carrot    | 0.06.0.05 (0.06)           | IR-4 PR No.   |
| Canada                         | 0.812      | 8        |                         | 1      | root      |                            | 07094         |
|                                | 0.766      | 7        |                         |        |           |                            | 0.071         |
| 2005                           | 0.851      | 6        |                         |        |           |                            | Barney, W.P.  |
| 2000                           | [3.272]    |          |                         |        |           |                            | 2007          |
| Carrot/ Appache                | 0.834      |          | Carrots, 25-30 cm       | 7      | Carrot    | 0.19.0.17 (0.18)           | 1             |
|                                | 0.854      | 8        |                         |        | root      |                            | 07094.05-QC01 |
|                                | 0.827      | 7        |                         |        |           |                            |               |
|                                | 0.881      | 6        |                         |        |           |                            |               |
|                                | [3.396]    |          |                         |        |           |                            |               |
| Ste-Brigide d'iberville, QC,   | 0.858      |          | Roots about 15-20 cm    | 7      | Carrot    | 0.12, 0.11 (0.12)          | IR-4 PR No.   |
| Canada                         | 0.790      | 6        |                         |        | root      |                            | 07094         |
|                                | 0.843      | 8        |                         |        |           |                            |               |
| 2005                           | 0.804      | 7        |                         |        |           |                            | Barney, W.P.  |
|                                | [3.295]    |          |                         |        |           |                            | 2007          |
| Carrot/ Cello Bunch            |            |          |                         |        |           |                            | ļ             |
|                                | 0.829      |          | Roots about 15-20 cm    | 7      | Carrot    | 0.41, 0.45 (0.43)          | 07094.05-QC02 |
|                                | 0.828      | 6        |                         |        | root      |                            |               |
|                                | 0.818      | 8        |                         |        |           |                            |               |
|                                | 0.807      | 7        |                         |        |           |                            |               |
|                                | [3.282]    |          |                         |        |           |                            |               |

† A total of 4 applications can be made

<sup>b</sup> Replicate trials

<sup>c</sup> Replicate trials

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

### Potato

Eleven residue trials were conducted in Canada and the USA in 1992 to 1994.

Two to eleven foliar applications were made using an SC formulation at application rates in the range of 0.202 and 1.043 kg ai/ha. For the majority of trials there were two-three plots in which different application regimes were investigated.

Samples of potato were taken from 8-40 days after the last application.

Samples of potato were immediately frozen and maintained in frozen storage for periods of up to 476 days prior to extraction and analysis.

Residues of fluazinam were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam were made between 0.01 and 1 mg/kg with recoveries in the range of 70–122 %.

| Table 110 Residues in potatoes from supervised trials in Canada and the USA involving foliar applica | itions of fluazinam |
|------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                      |                     |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)      | Interval<br>(days) | Growth stage<br>at last     | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)             | Reference                                 |
|-----------------------------------------|-------------------------|--------------------|-----------------------------|----------------|-----------|----------------------------------|-------------------------------------------|
|                                         | [Total]                 |                    | application                 |                |           |                                  |                                           |
| GAP USA                                 | MID: 0.292<br>MTD: 2.04 | 7 -10              | -                           | 14             | -         | -                                | -                                         |
| Exeter, ME, USA                         | 0.202 × 9               | 7-10               | Plants starting to die back | 14             | tuber     | <0.01, <0.01 ( <u>&lt;0.01</u> ) | 5349-92-0253-CR-<br>001                   |
| 1992                                    | [1.818]                 |                    |                             |                |           |                                  | Eterored T   1004                         |
| Potato/ Friti-Ly 945                    | 0.504 × 4               | 21-25              | Plants starting to die back | 14             | Tuber     | <0.01, <0.01 (<0.01)             | Fitzgeraid, T.J. 1994                     |
| Enhrata WA USA                          | [2.016]<br>0.202 x 10   | 7                  | Potatoes 46-                | 8              | Tuber     | <0.01 <0.01                      | 5349-92-0253-CR-                          |
| Epinata, wr. oor                        | 0.202 ~ 10              | ľ                  | 51 cm tall, no              | 0              | Tuber     | (< <u>0.01</u> )                 | 001                                       |
| 1992                                    | [2.02]                  |                    | flowers, vines              |                |           |                                  |                                           |
| Potato/ Russet                          |                         |                    | still green,<br>vigorous    |                |           |                                  | Fitzgerald, T.J. 1994                     |
| Burbank                                 |                         |                    | tubers                      |                |           |                                  |                                           |
|                                         | 0.504 × 4               | 22-28              | Potatoes 46-                | 14             | Tuber     | <0.01, <0.01                     |                                           |
|                                         | [2,01/]                 |                    | 51 cm tall, no              |                |           | (<0.01)                          |                                           |
|                                         | [2.016]                 |                    | still green.                |                |           |                                  |                                           |
|                                         |                         |                    | vigorous                    |                |           |                                  |                                           |
|                                         |                         |                    | tubers                      |                |           |                                  |                                           |
| Madison, OH, USA                        | 0.247                   |                    | Not stated                  | 40             | Tuber     | <0.01, <0.01                     | 5197-92-0047-CR-                          |
| 1992                                    | 0.247                   | 41                 |                             |                |           | (<0.01)                          | 001                                       |
|                                         | 0.504                   | 29                 |                             |                |           |                                  | Fitzgerald, T.J. and<br>Kenvon, R.G. 1994 |
| Potato/ Katahdin                        | [1.502]                 |                    |                             |                |           |                                  |                                           |
|                                         | 0.504                   |                    | Not stated                  | 32             | Tuber     | <0.01, <0.01                     |                                           |
|                                         | 0.504                   | 28                 |                             |                |           | (<0.01)                          |                                           |
|                                         | 0.504                   | 28                 |                             |                |           |                                  |                                           |
|                                         | [1.512]                 |                    |                             |                |           |                                  |                                           |
|                                         | 0.202 × 10              | 6-8                | Not stated                  | 14             | Tuber     | <0.01, <0.01<br>(<0.01)          |                                           |
|                                         | [2.02]                  |                    |                             |                |           |                                  |                                           |
| Madison, OH, USA                        | 0.538                   |                    | Not stated                  | 14             | Tuber     | <0.01, <0.01                     | 5706-93-0105-FR-                          |
| 1003                                    | 2.590                   | 28                 |                             |                |           | (<0.01)                          | 001                                       |
| 1775                                    | 2.001                   | 21                 |                             |                |           |                                  | Fitzgerald, T.J. and                      |
| Potato/ Katahdin                        | [5.728]                 |                    |                             |                |           |                                  | McFall, D.D. 1996c                        |
|                                         | 0.213                   |                    | Not stated                  | 14             | Tuber     | <0.01, <0.01                     |                                           |
|                                         | 0.348                   | 7                  |                             |                |           | (<0.01)                          |                                           |
|                                         | 0.213                   | /                  |                             |                |           |                                  |                                           |
|                                         | 0.213                   | /                  |                             |                |           |                                  |                                           |
|                                         | 1 043                   | 0                  |                             |                |           |                                  |                                           |
|                                         | 1.043                   | 13                 |                             |                |           |                                  |                                           |
|                                         | 1.009                   | 7                  |                             |                |           |                                  |                                           |
|                                         | 1.043                   | 7                  |                             |                |           |                                  |                                           |
|                                         | [5.336]                 |                    |                             |                |           |                                  |                                           |

| Location, Country<br>Year, Crop/Variety                 | Rate<br>(kg ai/ha)                                                                       | Interval<br>(days)  | Growth stage<br>at last<br>application                | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)    | Reference                                     |
|---------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------|----------------|-----------|-------------------------|-----------------------------------------------|
|                                                         | [Total]                                                                                  |                     | Dianta in aarlu                                       | 14             | Tubar     | 0.01 0.01               | F000 02 0242 CD                               |
| 1993<br>Potato/ Russet                                  | 0.527<br>0.527<br>0.516<br>0.527                                                         | -<br>28<br>28<br>29 | senescence                                            | 14             | Tubei     | <0.01, <0.01<br>(<0.01) | 001<br>McFall, D.D. 1996b                     |
| Burdank                                                 | [2.096]<br>0.213 × 11                                                                    | 8-10                | Plants in early senescence                            | 14             | Tuber     | <0.01, <0.01<br>(<0.01) |                                               |
|                                                         | [2.343]                                                                                  |                     |                                                       |                |           |                         |                                               |
| Minidoka, ID, USA<br>1993<br>Potato/ Russet             | 0.527<br>0.504<br>0.516<br>[1.574]                                                       | -<br>28<br>27       | Vines setting,<br>plants<br>vigorous                  | 34             | Tuber     | <0.01, <0.01<br>(<0.01) | 5880-93-0342-CR-<br>001<br>McFall, D.D. 1996b |
| Burbank                                                 | 0.191<br>0.202<br>0.213<br>0.202<br>0.202<br>0.202<br>0.202<br>[1.637]                   | 8-11                | Not stated                                            | 13             | Tuber     | <0.01, <0.01<br>(<0.01) |                                               |
| Eaton, CO, USA<br>1993                                  | 0.572<br>0.561<br>0.561                                                                  | -<br>28<br>29       | Tuber<br>enlargement<br>stage                         | 14             | Tuber     | <0.01, <0.01<br>(<0.01) | 5880-93-0342-CR-<br>001<br>McEall D.D. 1996b  |
| Potato/Snowdon                                          | [1.693]                                                                                  |                     |                                                       |                |           |                         | Nici ali, D.D. 17700                          |
|                                                         | 0.224 × 8<br>[1.794]                                                                     | 7-10                | Tuber<br>enlargement<br>stage                         | 14             | Tuber     | <0.01, <0.01<br>(<0.01) |                                               |
| Northwood, ND, USA                                      | 0.213 × 8                                                                                | 7-9                 | Nearing<br>maturity                                   | 14             | Tuber     | <0.01, <0.01<br>(<0.01) | 5880-93-0342-CR-<br>001                       |
| 1994<br>Potato/ Irish Norchip                           | [1.704]                                                                                  |                     |                                                       |                |           |                         | McFall, D.D. 1996b                            |
| Moses Lake, WA, USA<br>1994<br>Potato/Russet<br>Burbank | 0.213<br>0.213<br>0.213<br>0.213<br>0.213<br>0.213<br>0.213<br>0.213<br>0.202<br>[1.693] | 7-10                | 45.7 cm tall,<br>vines laying<br>down between<br>rows | 14             | Tuber     | <0.01, <0.01<br>(<0.01) | 5880-93-0342-CR-<br>001<br>McFall, D.D. 1996b |
| Portervile, CA, USA<br>1994                             | 0.516<br>0.516<br>[1.032]                                                                | -<br>28             | Not stated                                            | 14             | Tuber     | <0.01, <0.01<br>(<0.01) | 5880-93-0342-CR-<br>001<br>McFall, D.D. 1996b |
| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)    | Reference          |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------|--------------------|
| Potato/ Red LaSola                      | 0.202 × 5<br>[1.009]          | 7                  | Not stated                             | 14             | Tuber     | <0.01, <0.01<br>(<0.01) |                    |
| Portage La Prairie,                     | 0.213 × 8                     |                    | Plants                                 | 18             | Tuber     | <0.01, <0.01            | 5880-93-0342-CR-   |
| MB, Canada                              | [1.704]                       | 8-10               | maturing, no<br>signs of early         |                |           | (<0.01)                 | 001                |
| 1994                                    |                               |                    | or late blight                         |                |           |                         | McFall, D.D. 1996b |
| Potato/ Russet                          |                               |                    |                                        |                |           |                         |                    |
| Burbank                                 |                               |                    |                                        |                |           |                         |                    |
| Sommerset, NS,                          | 0.202                         |                    | Not stated                             | 14             | Tuber     | <0.01, <0.01            | 5880-93-0342-CR-   |
| Canada                                  | 0.202                         |                    |                                        |                |           | (<0.01)                 | 001                |
|                                         | 0.202                         |                    |                                        |                |           |                         |                    |
| 1994                                    | 0.202                         |                    |                                        |                |           |                         | McFall, D.D. 1996b |
|                                         | 0.202                         |                    |                                        |                |           |                         |                    |
| Potato/ Kennebec                        | 0.202                         |                    |                                        |                |           |                         |                    |
|                                         | 0.213                         |                    |                                        |                |           |                         |                    |
|                                         | [1.48]                        |                    |                                        |                |           |                         |                    |

‡Replicate trials

§Replicate trials

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

## Ginseng

Five residue trials were conducted in Canada and the USA in 2003 and 2007.

Four foliar applications were made using an SC formulation at application rates in the range of 0.092 and 1.3 kg ai/ha. In one trial two different application regimes were investigated.

Samples of ginseng were taken from 28-31 days after the last application.

Samples of ginseng were immediately frozen and maintained in frozen storage for periods of up to 332 days prior to extraction and analysis.

Residues of fluazinam were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam were made between 0.01 and 1 mg/kg with recoveries in the range of 64–110%.

The trials cannot be relied on as a result of the samples being subjected to significant temperature variations during the time period from sampling to analysis. Storage data generated under the same conditions confirmed the instability of residues.

Table 111 Residues in Ginseng from supervised trials in Canada and the USA involving foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg) | Reference         |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|----------------------|-------------------|
| GAP USA                                 | MID: 0.874<br>MTD: 3.51       | 7 -14              | -                                      | 30             | -         | -                    | -                 |
| East Lansing, MI, USA                   | 0.926<br>0.877                | <br>9              | Fruiting                               | 29             | Root      | 1.2, 1.4 (1.3)       | IR-4 PR No. 08791 |
| 2003                                    | 0.897<br>0.905                | 14<br>14           |                                        |                |           |                      | Corley, J. 2006   |
| Ginseng/<br>American Ginseng            | [3.604]                       |                    |                                        |                |           |                      | 08791.03-MI37     |

| Location, Country<br>Year, Crop/Variety                           | Rate<br>(kg ai/ha)<br>[Total]               | Interval<br>(days)       | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)                  | Reference                                              |
|-------------------------------------------------------------------|---------------------------------------------|--------------------------|----------------------------------------|----------------|-----------|---------------------------------------|--------------------------------------------------------|
| Holt, MI, USA<br>2003<br>Ginseng/<br>American Ginseng             | 0.874<br>0.890<br>0.872<br>0.874<br>[3.511] | <br>9<br>14<br>14        | Fruiting                               | 29             | Root      | 0.73, 0.94 (0.84)                     | IR-4 PR No. 08791<br>Corley, J. 2006<br>08791.03-MI38  |
|                                                                   | 1.768<br>1.934<br>1.823<br>1.881<br>[7.405] | <br>9<br>14<br>14        | Fruiting                               | 29             | Root      | 2.2, 2.1 (2.2)                        |                                                        |
| Athens, WI, USA<br>2003<br>Ginseng/<br>American Ginseng           | 0.892<br>1.049<br>0.847<br>0.936<br>[3.725] | <br>14<br>14<br>14<br>14 | Fruiting                               | 31             | Root      | 0.58, 0.96 (0.77)                     | IR-4 PR No. 08791<br>Corley, J. 2006<br>08791.03-WI17  |
| Marathon, WI, USA<br>2003<br>Ginseng/<br>American Ginseng         | 0.936<br>0.892<br>1.035<br>0.937<br>[3.8]   | <br>12<br>14<br>14       | Fruiting                               | 30             | Root      | 0.46, 0.28 (0.37)                     | IR-4 PR No. 08791<br>Corley, J. 2006<br>08791.03-WI25  |
| Summerland, BC,<br>Canada<br>2007<br>Ginseng/<br>American Ginseng | 0.905<br>0.920<br>0.903<br>1.013<br>[3.741] | <br>13<br>14<br>13       | Fruiting                               | 28             | Root      | 0.071, 0.094, 0.130,<br>0.072 (0.092) | AAFC07-042R<br>Ballantine, J. 2010b<br>AAFC07-042R-386 |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets. In the case of the Canadian trial four independent samples were taken from the trial site.

# Oilseeds

Nine residue trials were conducted in the USA between 1991 and 1994.

In each trial two to three applications were made using an SC formulation at application rates in the range of 0.37–1.12 kg ai/ha. In some trials applications were made either as a broadcast foliar spray or as a banded foliar application.

Peanut vines were inverted (dug out) and the crop was allowed to dry in the field for 7-10 days before samples were harvested by combine harvester and collected. Samples of whole peanuts were collected 17-59 days after the last treatment, and separated into nutmeat and hulls.

Samples were immediately frozen and maintained in frozen storage for periods of up to 176 days for nutmeat and 164 days for hulls prior to extraction and analysis.

Residues of fluazinam in peanut nutmeat and hulls were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels of 0.01–1 mg/kg for fluazinam were made for nutmeat and hulls with recoveries in the range of 62–119% and 78–120% for nutmeat and hulls, respectively.

| Location, Country      | Rate                 | Interval | Growth      | DALA   | Crop part | Fluazinam           | AMGT    | Reference        |
|------------------------|----------------------|----------|-------------|--------|-----------|---------------------|---------|------------------|
| Year, Crop/Variety     | (kg ai/ha)           | (days)   | stage at    | (days) |           | (mg/kg)             | (mg/kg) |                  |
|                        | [Total]              |          | application |        |           |                     |         |                  |
| GAP USA                | MID: 0.874           | 21-28    | -           | 30     |           | -                   | -       | -                |
|                        | MTD: 2.34            | 2.20     |             |        |           |                     |         |                  |
| Waller County TX,      | 0.773                |          | -           | 29     | Peanut    | <0.01, <0.01        | n/a     | 5879-93-0335-    |
| USA                    | 0.758                | 28       |             |        | Nutmeat   | ( <u>&lt;0.01</u> ) |         | CR-001           |
|                        | 0.759                | 28       |             |        |           |                     |         |                  |
| 1993                   |                      |          |             |        |           |                     |         | Hayes, P.C. Jr.  |
| Deeput/Elerupper       | [2.365]<br>Broadcast |          |             |        |           |                     |         | and Kenyon, R.G. |
| reallul/riorullilei    | 0.610                |          |             | 20     | Poaput    | <0.01 <0.01         | n/a     | 1994             |
|                        | 0.614                | 28       | -           | 27     | Nutmeat   | (<0.01)             | 11/ d   |                  |
|                        | 0.616                | 28       |             |        | Huthout   | ((0.01)             |         |                  |
|                        |                      |          |             |        |           |                     |         |                  |
|                        | [2.399]              |          |             |        |           |                     |         |                  |
|                        | Banded               |          |             |        |           |                     |         |                  |
| Skippers, VA, USA      | 0.746                |          | -           | 30     | Peanut    | <0.01, <0.01        | n/a     |                  |
| 1000                   | 0.686                | 29       |             |        | Nutmeat   | (<0.01)             |         |                  |
| 1993                   | 0.763                | 31       |             |        |           |                     |         |                  |
| Peanut/NC-V11          | [2 276]              |          |             |        |           |                     |         |                  |
|                        | Broadcast            |          |             |        |           |                     |         |                  |
|                        | 0.771                |          | -           | 30     | Peanut    | <0.01, <0.01        | n/a     |                  |
|                        | 0.766                | 29       |             |        | Nutmeat   | ( <u>&lt;0.01</u> ) |         |                  |
|                        | 0.752                | 31       |             |        |           |                     |         |                  |
|                        |                      |          |             |        |           |                     |         |                  |
|                        | [2.377]              |          |             |        |           |                     |         |                  |
| Shortonville AL LISA   | Banded               |          | Dod fill    | EQ     | Dooput    | -0.01 -0.01         | n/2     | -                |
| SHULLEI VIIIE, AL, USA | 0.752                | 27       | FUUTIII     | 50     | Nutmeat   | (<0.01)             | 11/ d   |                  |
| 1993                   | 0.752                | 29       |             |        | Huthout   | (((0.01))           |         |                  |
|                        |                      |          |             |        |           |                     |         |                  |
| Peanut/Florunner       | [2.343]              |          |             |        |           |                     |         |                  |
|                        | Broadcast            |          |             |        |           |                     |         |                  |
|                        | 0.372                |          | Pod fill    | 58     | Peanut    | <0.01, <0.01        | n/a     |                  |
|                        | 0.377                | 27       |             |        | Nutmeat   | (<0.01)             |         |                  |
|                        | 0.432                | 29       |             |        |           |                     |         |                  |
|                        | [1 244]              |          |             |        |           |                     |         |                  |
|                        | Banded               |          |             |        |           |                     |         |                  |
| Eakly, OK, USA         | 1.121                |          | R7          | 59     | Peanut    | <0.01, <0.01        | n/a     | 2105-91-0307-    |
| ,                      | 1.121                | 29       | beginning   |        | Nutmeat   | (<0.01)             |         | CR-001           |
| 1991                   |                      |          | maturity    |        |           |                     |         |                  |
|                        | [2.242]              |          |             |        |           |                     |         | Kenyon, R.G.     |
| Peanut/Okrun           | 1.121                |          | R7          | 31     | Peanut    | <0.01, <0.01        | n/a     | 1992b            |
|                        | 1.121                | 29       | beginning   |        | Nutmeat   | ( <u>&lt;0.01</u> ) |         |                  |
|                        | 1.121                | 27       | maturity    |        |           |                     |         |                  |
|                        | [3.363]              |          |             |        |           |                     |         |                  |
| Lucama, NC, USA        | 1.121                |          | Pegging     | 49     | Peanut    | <0.01, <0.01        | n/a     | 1                |
|                        | 1.054                | 30       |             |        | Nutmeat   | (<0.01)             |         |                  |
| 1991                   |                      |          |             |        |           |                     |         |                  |
|                        | [2.175]              |          |             |        |           |                     |         |                  |

Table 112 Residues in Peanuts from supervised trials in the USA involving 2–3 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)      | Interval<br>(days) | Growth<br>stage at<br>last                  | DALA<br>(days) | Crop part         | Fluazinam<br>(mg/kg)                | AMGT<br>(mg/kg) | Reference                                    |
|-----------------------------------------|-------------------------|--------------------|---------------------------------------------|----------------|-------------------|-------------------------------------|-----------------|----------------------------------------------|
| Peanut/Florigiant                       | 1.080<br>1.110<br>1.087 | <br>30<br>32       | Nut filling                                 | 17             | Peanut<br>Nutmeat | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             |                                              |
|                                         | [3.277]                 |                    |                                             |                |                   |                                     |                 |                                              |
| Pinehurst, GA USA                       | 1.121<br>1.121          | <br>31             | Pre-harvest                                 | 46             | Peanut<br>Nutmeat | <0.01, <0.01<br>(<0.01)             | n/a             | 2105-91-0307-<br>CR-001                      |
|                                         | [2.242]                 |                    |                                             |                |                   |                                     |                 | Kenyon, R.G.                                 |
| Peanut/Florunner                        | 1.121<br>1.121<br>1.121 | <br>31<br>29       | Pre-harvest                                 | 17             | Peanut<br>Nutmeat | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             | 1992b                                        |
|                                         | [3.363]                 |                    |                                             |                |                   |                                     |                 |                                              |
| Lucama, NC USA<br>1994                  | 0.762<br>0.762<br>0.773 | <br>32<br>31       | Excellent<br>growth,<br>rows<br>lapped, 33- | 32             | Peanut<br>Nutmeat | <0.01, <0.01<br>(<0.01)             | n/a             | 6107-95-0013-<br>CR-001<br>McFall, D.D. 1995 |
| Peanut/NC-V11                           | [2.298]<br>Broadcast    |                    | 43 cm tall                                  |                |                   |                                     |                 |                                              |
|                                         | 0.773<br>0.785<br>0.785 | <br>32<br>31       | Excellent<br>growth,<br>rows<br>lapped 33-  | 32             | Peanut<br>Nutmeat | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             | 6107-95-0013-<br>CR-001                      |
|                                         | [2.343]<br>Banded       |                    | 46 cm tall                                  |                |                   |                                     |                 |                                              |
| Eakly, OK USA                           | 0.796<br>0.830          | <br>29             | Damage<br>from                              | 33             | Peanut<br>Nutmeat | <0.01, <0.01<br>(<0.01)             | n/a             |                                              |
| 1994                                    | 0.785                   | 28                 | gopher is<br>approx. 15-                    |                |                   |                                     |                 |                                              |
| Peanut/Florunner                        | [2.42]<br>Broadcast     |                    | 25% in the<br>plots                         |                |                   |                                     |                 |                                              |
|                                         | 0.796<br>0.886<br>0.796 | <br>29<br>28       | Damage<br>from<br>gopher is                 | 33             | Peanut<br>Nutmeat | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             |                                              |
|                                         | [2.477]<br>Banded       | 20                 | approx. 15-<br>25% in the                   |                |                   |                                     |                 |                                              |
| Montezuma, GA, USA                      | 0.874                   | <br>28             | not noted                                   | 41             | Peanut            | <0.01, <0.01                        | n/a             | •                                            |
| 1994                                    | 0.796                   | 25                 |                                             |                | Nutificat         | (<0.01)                             |                 |                                              |
| Peanut/GK-7                             | [2.489]<br>Broadcast    |                    |                                             |                |                   |                                     |                 |                                              |
|                                         | 0.863<br>0.796<br>0.796 | <br>28<br>25       | not noted                                   | 41             | Peanut<br>Nutmeat | <0.01, <0.01<br>( <u>&lt;0.01</u> ) | n/a             |                                              |
|                                         | [2.455]<br>Banded       |                    |                                             |                |                   |                                     |                 |                                              |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

Теа

Seven residue trials, in non-GLP studies, consisting of the analytical phase only, were conducted in Japan in 1986, 1992, 1993 and 1997. The studies were conducted following the national requirements applicable at the time.

For the trials conducted in 1986, each trial was divided into three plots; in the first plot an application rate at 1 kg ai/ha × 1 with a PHI of 7 days was investigated, in the second plot an application rate of 1 kg ai/ha × 1 with a 14 days was investigated and in the third plot an application rate of 1 kg ai/ha × 2 with a PHI of 21 days was investigated.

In the trials conducted in 1992, 1993 and 1997 the application rate was one foliar application of fluazinam at a rate of 0.025 kg ai/hL with samples collected 14 days after the application. In two of the trials three separate plots were treated and in addition to the application regime stated being investigated in one plot, in a second plot one application of 0.025 kg ai/hL was made with samples collected 7 days after treatment and in a third plot two applications of 0.025 kg ai/hL were made with samples collected 21 days after treatment.

Four independent representative samples were taken from each trial site. Two of the samples were analysed in one laboratory with the other two samples analysed in a different laboratory.

Samples were immediately frozen and maintained in frozen storage for periods of up to 6 months for the samples from the trials conducted in 1986 and up to 5 months for the samples from the 1992, 1993 and 1997 trials.

Residues of fluazinam, MAPA and HYPA were determined using analytical methods 1 and 12. CAPA was also determined in the trials from 1986 using analytical method 1. Residues were <0.02 mg/kg at each time point.

Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.02– 20 mg/kg were made with recoveries in the range of 68–107%.

| GAP Japan MID: 0.025<br>MTD: 0.025 - - 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th< th=""><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| GAP Japan MID: 0.025 - - 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Kanagawa,<br>Japan 0.025 - - 7 Dried<br>leaves 27.1, 26.2<br>(26.6) 0.33, 0.32<br>(0.20) 0.20, 0.19<br>(0.20) Kato, S. 1987   1986 [0.025] - - 14 Dried<br>leaves 2.87, 2.85<br>(2.86) 0.05, 0.04<br>(0.04) <0.01, <0.01<br>(<0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Japan [0.025] - - 14 Dried<br>leaves (26.6) (0.32) (0.20)   1986 [0.025] - - 14 Dried<br>leaves (2.86) (0.04) <0.01, <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 0.025<br>[0.025] - - 14 Dried<br>leaves 2.87, 2.85<br>(2.86) 0.05, 0.04<br>(0.04) <0.01, <0.01<br>(<0.01) Kanagawa <sup>a</sup> 1986 0.025<br>0.025<br>[0.05] - - 21 Dried<br>leaves 0.60, 0.60<br>(0.60) 0.03, 0.02<br>(<0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1986 [0.025] - - leaves (2.86) (0.04) (<0.01) Kanagawa <sup>a</sup> Tea/Yabukita 0.025 - - 21 Dried<br>leaves 0.60, 0.60 0.03, 0.02 <0.01, <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Tea/Yabukita 0.025<br>0.025<br>[0.05] -<br>7 -<br>2 21 Dried<br>leaves 0.60, 0.60<br>(0.60) 0.03, 0.02<br>(0.02) <0.01, <0.01<br>(<0.01)   Kanagawa,<br>Japan 0.025 - - 7 Dried<br>leaves 22.8, 20.9<br>(21.8) 0.11, 0.09<br>(0.10) 0.25, 0.23,<br>(0.24) Hagi, I, 1996   1986 [0.025] - - 14 Dried<br>leaves 3.39, 3.06<br>(3.23) 0.09, 0.04<br>(0.04) 0.04, 0.03<br>(0.04) Kanagawa <sup>a</sup> 1986 [0.025] - - 21 Dried<br>leaves 0.80, 0.71<br>(0.76) 0.03, 0.02<br>(0.01) 0.01, 0.01<br>(a) = <u>3.05</u> mg/t   Tea/Yabukita 0.025 7<br>(0.05] - - 21 Dried<br>leaves 0.80, 0.71<br>(0.76) 0.03, 0.02<br>(0.01) 0.01, 0.01<br>(a) = <u>3.05</u> mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Tea/Yabukita 0.025<br>[0.05] 7<br>2 7 leaves (0.60) (0.02) (<0.01)   Kanagawa,<br>Japan 0.025 - - 7 Dried<br>leaves 22.8, 20.9 0.11, 0.09 0.25, 0.23,<br>(0.10) Hagi, I, 1996   1986 [0.025] - - 14 Dried<br>leaves 3.39, 3.06 0.09, 0.04 0.04, 0.03 Kanagawa <sup>a</sup> 1986 [0.025] - - 21 Dried<br>leaves 0.80, 0.71 0.03, 0.02 0.01, 0.01 mean residue 1   Tea/Yabukita 0.025 7 - 21 Dried<br>leaves 0.76) (0.02) (0.01) (a) = <u>3.05</u> mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| [0.05] - - 7 Dried<br>leaves 22.8, 20.9 0.11, 0.09 0.25, 0.23, Hagi, I, 1996   Japan [0.025] - - 7 Dried<br>leaves (21.8) (0.10) (0.24) Hagi, I, 1996   1986 [0.025] - - 14 Dried<br>leaves (3.23) (0.06) (0.04) Mean residue 1   1986 [0.025] - - 21 Dried<br>leaves (3.23) (0.06) (0.01) (a) = 3.05 mg/t   Tea/Yabukita 0.025 7 - - 21 Dried<br>leaves (0.76) (0.02) (0.01) (a) = 3.05 mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Kanagawa,<br>Japan 0.025 - - 7 Dried<br>leaves 22.8, 20.9<br>(21.8) 0.11, 0.09 0.25, 0.23, (0.24) Hagi, I, 1996   0.025 - - 14 Dried<br>leaves 3.39, 3.06 0.09, 0.04 0.04, 0.03 Kanagawa <sup>a</sup> 1986 [0.025] - - 14 Dried<br>leaves 3.39, 3.06 0.09, 0.04 0.04, 0.03 Kanagawa <sup>a</sup> 1986 [0.025] - - 21 Dried<br>leaves 0.80, 0.71 0.03, 0.02 0.01, 0.01 mean residue 1   Tea/Yabukita 0.025 7 - 21 Dried<br>leaves 0.76) (0.02) (0.01) (a) = <u>3.05</u> mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Japan [0.025] - - 14 Dried<br>leaves (21.8) (0.10) (0.24)   1986 [0.025] - - 14 Dried<br>leaves (3.39, 3.06) 0.09, 0.04 0.04, 0.03 Kanagawa <sup>a</sup> 1986 [0.025] - - 21 Dried 0.80, 0.71 0.03, 0.02 0.01, 0.01 mean residue 1   Tea/Yabukita 0.025 7 - 21 Dried 0.80, 0.71 0.03, 0.02 0.01, 0.01 (a) = <u>3.05</u> mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 0.025 - - 14 Dried<br>leaves 3.39, 3.06<br>(3.23) 0.09, 0.04<br>(0.06) 0.04, 0.03<br>(0.04) Kanagawa*   1986 [0.025] - - 21 Dried<br>leaves (3.23) (0.06) (0.04) mean residue 1   0.025 - - 21 Dried<br>leaves 0.80, 0.71 0.03, 0.02 0.01, 0.01 mean residue 1   10.05 7 - 21 Dried 0.80, 0.71 (0.02) (0.01) (a) = <u>3.05</u> mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 1986 [0.025] - - 21 Dried 0.80, 0.71 0.03, 0.02 0.01, 0.01 mean residue in the interval of the                                                                                                                                                                                             |          |
| 0.025 - - 21 Dried 0.80, 0.71 0.03, 0.02 0.01, 0.01 mean restoue   Tea/Yabukita 0.025 7 Image: constraint of the state of the                                                                                                                                                                                                                                                                 | <i>c</i> |
| $\begin{bmatrix} 1  Carrent of the constraint of the constr$ | ror      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | кg       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Aichi, Japan 0.025 / Dried 48.1, 48.1 0.82, 0.81 0.42, 0.41 Kato, S. 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1980 0.025 14 Dred 8.20, 7.76 0.25, 0.23 0.09, 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| [0.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.025] [10.             |          |
| 1ea/rabukita 0.025 21 Direa 2.41, 2.37 0.08, 0.08 0.02, 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 0.025 7 1eaves (2.39) (0.08) (0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Aicili, Japan 0.025 / Direu 45.0, 44.3 0.90, 0.05 0.41, 0.39 magi, 1, 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 1086 0.025 14 Dried 10.41 9.46 0.24 0.21 0.00 0.07 Aichi <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 1700 0.025 - 14 Dieu 10.41, 7.40 0.24, 0.21 0.05, 0.07 Noti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Tea/Yahukita 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for      |
| 0.025 7 $1000$ $(247, 2.57)$ $(17, 0.50)$ $(0.22, 0.51)$ mean resolution (1990) $(10) = 8.97$ m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ka       |
| [0.023] $[0.02]$ $[0.02]$ $[0.02]$ $[0.02]$ $[0.02]$ $[0.02]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3       |
| Kananawa 0.025 7 Dried 32.2.30.8 0.29.0.28 0.14.0.14 Komatsu K.au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd       |
| Japan Leaves (31.5) (0.28) (0.14) Yabusaki, T. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 993      |

Table 113 Residues in tea from supervised trials in Japan

| Location,      | Rate       | Interval | Growth        | DALA     | Crop part | Fluazinam   | MAPA        | НҮРА          | Reference               |
|----------------|------------|----------|---------------|----------|-----------|-------------|-------------|---------------|-------------------------|
| Country        | (kg ai/hL) | (days)   | stage at last | (days)   |           | (mg/kg)     | (mg/kg)     | (mg/kg)       |                         |
| Year,          |            |          | application   |          |           |             |             |               |                         |
| Crop/Variety   | [Total]    |          |               |          |           |             |             |               |                         |
| 1000           | 0.025      | -        | -             | 14       | Dried     | 2.78, 2.59  | 0.08, 0.07  | 0.04, 0.02    | Kananawa <sup>C</sup>   |
| 1992           | 0.025      |          |               | 21       | Dried     | (2.08)      |             | (0.03)        | Kanagawa                |
| Tea/Yabukita   | 0.025      | - 7      | -             | 21       | Leaves    | 0.30, 0.48  | (0.02, 0.02 | (0.02, 0.02   |                         |
|                | [0.05]     | ľ        |               |          | Louvos    | (0.17)      | (0.02)      | (0.02)        |                         |
| Kochi, Japan   | 0.025      | -        | -             | 7        | Dried     | 31.1,30.1   | 0.36 ,      | 0.36, 0.34    | Komatsu, K. and         |
|                |            |          |               |          | Leaves    | (30.6)      | 0.35        | (0.35)        | Yabusaki. T. 1993       |
| 1993           |            |          |               |          |           |             | (0.36)      |               |                         |
|                | 0.025      | -        | -             | 14       | Dried     | 0.52 , 0.48 | 0.02, 0.02  | 0.01, 0.01    | Kochi <sup>a</sup>      |
| Tea/Yabukita   |            |          |               |          | Leaves    | (0.50)      | (0.02)      | (0.01)        |                         |
|                | 0.025      |          | -             | 21       | Dried     | 0.17, 0.16  | 0.01, 0.01  | <0.01, <0.01  |                         |
|                | 0.025      | /        |               |          | Leaves    | (0.16)      | (0.01)      | (<0.01)       |                         |
| Kanagawa       | 0.025      |          |               | 7        | Dried     |             | 0.11        |               | Obvama   1003           |
| Japan          | 0.025      | -        | -             | <i>'</i> | Leaves    | 22.7, 20.1  | 0.09        | 0.10, 0.09    | onyama, 5. 1775         |
|                |            |          |               |          |           | (21.4)      | (0.10)      | (0.10)        | Kanagawa <sup>c</sup>   |
| 1992           | 0.025      | -        | -             | 14       | Dried     | 2.11 , 2.10 | 0.03, 0.03  | 0.01 , 0.01   |                         |
|                |            |          |               |          | Leaves    | (2.10)      | (0.03)      | (0.01)        | mean residue for        |
| Tea/Yabukita   | 0.025      | -        | -             | 21       | Dried     | 0 27 0 26   | 0.01 ,      | <0.01 <0.01   | (c) = <u>2.39 mg/kg</u> |
|                | 0.025      | 7        |               |          | Leaves    | 0.37,0.30   | 0.01        | <0.01, <0.01  |                         |
|                | [0.05]     |          |               |          |           | (0.30)      | (0.01)      | (<0.01)       |                         |
| Kochi, Japan   | 0.025      | -        | -             | 7        | Dried     | 18.9, 18.3  | 0.33 ,      | 0.18, 0.18    | Ohyama, J. 1993         |
| 1000           |            |          |               |          | Leaves    | (18.6)      | 0.30        | (0.18)        | K I- Id                 |
| 1993           | 0.025      |          |               | 14       | Dried     |             | (0.32)      |               | KOCHI                   |
| Tea/Yabukita   | 0.025      | -        | -             | 14       |           | 0.30 , 0.29 | 0.02 ,      | <0.01, <0.01  | mean residue for        |
|                |            |          |               |          | Leaves    | (0.30)      | (0.02)      | (<0.01)       | (d) = 0.4  ma/ka        |
|                | 0.025      | -        | -             | 21       | Dried     | 0.10.0.11   | 0.02        | 0.01 0.01     |                         |
|                | 0.025      | 7        |               |          | Leaves    | 0.12, 0.11  | 0.02        | <0.01, <0.01  |                         |
|                |            |          |               |          |           | (0.12)      | (0.02)      | (<0.01)       |                         |
| Mie, Japan     | 0.025      | -        | 3 foliar      | 14       | Dried     | 0.72 / 0.66 | 0.03 /      | 0.02 / 0.01   | Komatsu, K. and         |
|                |            |          | stage         |          | Leaves    | (0.69)      | 0.03        | (0.02)        | Yabusaki. T. 1997       |
| 1997           |            |          |               |          |           |             | (0.03)      |               | NAL-Ê                   |
| Too/Vakbukita  |            |          |               |          |           |             |             |               | MIE-                    |
| Kyoto Japan    | 0.025      | -        | -             | 14       | Dried     | 274/273     | 0.04 /      | 0.01/0.01     | Komatsu K and           |
| rtjoto, supun  | 0.020      |          |               |          | Leaves    | (2.74)      | 0.04        | (0.01)        | Yabusaki, T. 1997       |
| 1997           |            |          |               |          |           |             | (0.04)      |               |                         |
|                |            |          |               |          |           |             |             |               | Kyoto <sup>f</sup>      |
| Tea/Kyoken No. |            |          |               |          |           |             |             |               |                         |
| 129            |            |          |               |          |           |             |             |               |                         |
| Fukuoka, Japan | 0.025      | -        | 2-2.5 leaves  | 14       | Dried     | 0.77 / 0.74 | 0.05 /      | <0.01 / <0.01 | Komatsu, K. and         |
| 1007           |            |          | stage         |          | Leaves    | (0.76)      | 0.04        | (<0.01)       | Yabusaki. T. 1997       |
| 1997           |            |          |               |          |           |             | (0.04)      |               | Fukuoka                 |
| Tea/Vakbukita  |            |          |               |          |           |             |             |               | FUKUUKd°                |
| Mie. Japan     | 0.025      | -        | 3 foliar      | 14       | Dried     | 0.59.0.58   | 0.04 /      | 0.02/0.01     | Kondo, K. 1997          |
| inio, o apari  | 0.020      |          | stage         |          | Leaves    | (0.58)      | 0.04        | (0.02)        |                         |
| 1997           |            |          | 5             |          |           | . ,         | (0.04)      | ` '           | Mie <sup>e</sup>        |
|                |            |          |               |          |           |             |             |               |                         |
| Tea/Yakbukita  |            |          |               |          |           |             |             |               |                         |
|                |            |          |               |          |           |             |             |               | mean residue for        |
|                | 0.005      |          |               |          | D. I. I.  | 0.54.0.00   | 0.04/       | 0.00./0.01    | (e) = <u>0.64</u> mg/kg |
| куоto, Japan   | 0.025      | -        | -             | 14       | Dried     | 2.54, 2.32  | 0.04 /      | 0.02 / 0.01   | Kondo, K. 1997          |
| 1007           |            |          |               |          | Leaves    | (2.43)      | 0.04        | (0.02)        | Kvoto <sup>f</sup>      |
| 177/           |            |          |               |          |           |             | (0.04)      |               | NYULU                   |
| Tea/Kvoken No  |            |          |               |          |           |             |             |               | mean residue for        |
| 129            |            |          |               |          |           |             |             |               | (f) = 2.59  mg/kg       |

| Location,      | Rate       | Interval | Growth        | DALA   | Crop part | Fluazinam   | MAPA       | НҮРА       | Reference                |
|----------------|------------|----------|---------------|--------|-----------|-------------|------------|------------|--------------------------|
| Country        | (kg ai/hL) | (days)   | stage at last | (days) |           | (mg/kg)     | (mg/kg)    | (mg/kg)    |                          |
| Year,          |            |          | application   |        |           |             |            |            |                          |
| Crop/Variety   | [Total]    |          |               |        |           |             |            |            |                          |
| Fukuoka, Japan | 0.025      | -        | 2-2.5 leaves  | 14     | Dried     | 0.58 , 0.56 | 0.05, 0.03 | 0.01, 0.01 | Kondo, K. 1997           |
| 1              |            |          | stage         |        | Leaves    | (0.57)      | (0.04)     | (0.01)     |                          |
| 1997           |            |          |               |        |           |             |            |            | Fukuoka <sup>g</sup>     |
| 1              |            |          |               |        |           |             |            |            |                          |
| Tea/Yakbukita  |            |          |               |        |           |             |            |            | mean residue for         |
| 1              |            |          |               |        |           |             |            |            | (g) = <u>0.667</u> mg/kg |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets a, b, c, d, e, f, g Trials with the same letter represent the same trial but analysis was conducted on independent samples from the trial sites in two different labs

## Animal feeds

## Soya bean

The trials submitted for soya bean included residues data for forage and hay. Fifteen residue trials were conducted in the USA and one trial in Canada in 2010.

Two foliar applications were made using an SC formulation at application rates in the range of 0.549–0.717 kg ai/ha.

The last applications were made from full flowering (R2) to Pod formation (R3). Samples of the seed were collected 65– 95 days after the last application.

Samples of soya bean seed were immediately frozen and maintained in frozen storage for periods of up to 99 days prior to extraction and analysis.

Residues of fluazinam and AMGT were determined using analytical method 3. Procedural recovery samples were analysed with the residue trial samples. Fortification levels for fluazinam of 0.01-0.1 mg/kg were made with recoveries in the range of 88–108%. For AMGT fortification levels of 0.01 mg/kg–0.1 mg/kg were made with recoveries in the range of 89.5–120 %.

Table 114 Residues in soya bean seeds from supervised trials in Canada and the USA involving 2 foliar applications of fluazinam

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)                | AMGT<br>(mg/kg)         | Reference                 |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|-------------------------------------|-------------------------|---------------------------|
| GAP USA                                 | MID: 0.583<br>MTD: 1.17       | 10-14              | Early pod<br>formation<br>(R3)         | -              | -         | -                                   |                         | -                         |
| Seven Springs, NC,<br>USA               | 0.561<br>0.561                | -<br>9             | Full flowering<br>(R2)                 | 10             | Forage    | 12.439, 10.749<br>( <u>11.592</u> ) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| 2010                                    | [1.122]                       |                    |                                        | 20             |           | 1.803, 1.646<br>(1.725)             | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
| Soya bean/ Asgrow<br>AG5605             |                               |                    |                                        | 31             |           | 0.599, 0.604<br>(0.602)             | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-01    |
|                                         |                               |                    |                                        | 40             |           | 0.861, 0.965<br>(0.913)             | <0.01, <0.01<br>(<0.01) |                           |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)       | AMGT<br>(mg/kg)         | Reference                 |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|----------------------------|-------------------------|---------------------------|
|                                         |                    |                    |                                        | 12             | Нау       | 12.669, 17.603<br>(15.136) | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 24             |           | 3.759, 5.432<br>(4.596)    | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 34             |           | 1.578, 2.633<br>(2.106)    | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 43             |           | 1.240, 0.659<br>(0.950)    | <0.01, <0.01<br>(<0.01) |                           |
| Suffolk, VA, USA                        | 0.594<br>0.717     | -<br>11            | Full<br>flowering-<br>Pod              | 30             | Forage    | 2.385, 3.725<br>(3.055)    | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean/ Pioneer<br>95Y20             | [1.311]            |                    | formation<br>(R2- R3)                  | 32             | Нау       | 3.676, 3.679<br>(3.678)    | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
|                                         |                    |                    |                                        |                |           |                            |                         | IB-2010-JLW-<br>006-02    |
| Cheneyville, LA, USA                    | 0.583<br>0.594     | -<br>11            | Pod<br>formation<br>(late R3)          | 30             | Forage    | 0.753, 1.221<br>(0.987)    | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean, Terral<br>55R11              | [1.177]            |                    |                                        | 35             | Нау       | 2.020 , 1.636<br>(1.828)   | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
|                                         |                    |                    |                                        |                |           |                            |                         | IB-2010-JLW-<br>006-03    |
| Proctor, AR, USA<br>2010                | 0.561<br>0.561     | -<br>10            | Beginning<br>bloom<br>(V7 R1)          | 30             | Forage    | 1.080 , 0.990<br>(1.035)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean, Armor                        | [1.122]            |                    |                                        | 31             | Нау       | 1.553, 3.107<br>(2.330)    | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
|                                         |                    |                    |                                        |                |           |                            |                         | IB-2010-JLW-<br>006-04    |
| Northwood, ND, USA                      | 0.561<br>0.561     | -<br>10            | Pod<br>formation<br>(R3)               | 30             | Forage    | 0.637, 0.376<br>(0.507)    | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean/ Pioneer<br>90Y41             | [1.122]            |                    |                                        | 72             | Нау       | 1.241, 0.747<br>(0.994)    | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
|                                         |                    |                    |                                        |                |           |                            |                         | IB-2010-JLW-<br>006-05    |
| Fisher, MN, USA<br>2010                 | 0.561<br>0.561     | -<br>9             | Pod<br>formation<br>(R3)               | 30             | Forage    | 1.048 , 0.740<br>(0.894)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| Soya bean/ Asgrow                       | [1.122]            |                    | (10)                                   | 72             | Нау       | 0.423 , 0.276<br>(0.350)   | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
|                                         |                    |                    |                                        |                |           |                            |                         | IB-2010-JLW-<br>006-06    |
| Geneva, MN, USA                         | 0.561<br>0.561     | -<br>10            | Full flowering<br>(R2)                 | 30             | Forage    | 0.025 , 0.043<br>(0.034)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |

| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha)<br>[Total] | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)      | AMGT<br>(mg/kg)         | Reference                              |
|-----------------------------------------|-------------------------------|--------------------|----------------------------------------|----------------|-----------|---------------------------|-------------------------|----------------------------------------|
| 2010                                    |                               |                    |                                        | 34             | Нау       | 0.019 , 0.027             | <0.01, <0.01            |                                        |
| Soya bean/ Pioneer<br>91Y70             | [1.122]                       |                    |                                        |                |           | (0.023)                   | (<0.01)                 | Wiedmann, J.L.<br>2011<br>IB-2010-JLW- |
|                                         |                               |                    |                                        |                |           |                           |                         | 006-07                                 |
| Wyoming, IL, USA<br>2010                | 0.583<br>0.561                | -<br>10            | Full<br>flowering-<br>Pod              | 31             | Forage    | 0.460, 0.233<br>(0.347)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01              |
| Soya bean/ AG 3130                      | [1.144]                       |                    | formation<br>(R2- R3)                  | 34             | Нау       | 0.444 , 0.976<br>(0.710)  | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011                 |
|                                         |                               |                    |                                        |                |           |                           |                         | IB-2010-JLW-<br>006-08                 |
| Fitchburg, WI, USA                      | 0.549<br>0.561                | -<br>10            | Full flowering<br>(R2)                 | 31             | Forage    | 0.460, 0.233<br>(0.347)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01              |
| Soya bean/ S21-N6                       | [1.11]                        |                    |                                        | 34             | Нау       | 0.444, 0.976<br>(0.710)   | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011                 |
|                                         |                               |                    |                                        |                |           |                           |                         | IB-2010-JLW-<br>006-09                 |
| Lesterville, SD, USA<br>2010            | 0.561<br>0.561                | -<br>16            | Pod<br>formation<br>(R3)               | 29             | Forage    | 0.447, 0.234<br>(0.341)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01              |
| Soya bean/ Lantharn<br>CS-0991236       | [1.122]                       |                    |                                        | 44             | Нау       | 0.546 /, 0.436<br>(0.491) | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011                 |
|                                         |                               |                    |                                        |                |           |                           |                         | IB-2010-JLW-<br>006-10                 |
| Richland, IA, USA                       | 0.561<br>0.549                | -<br>9             | Full<br>flowering-<br>Pod              | 29             | Forage    | 0.062 , 0.042<br>(0.052)  | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01              |
| Soya bean/ Pioneer                      | [1.11]                        |                    | formation<br>(R2- R3)                  | 32             | Нау       | 0.468 , 0.021<br>(0.245)  | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011                 |
|                                         |                               |                    |                                        |                |           |                           |                         | IB-2010-JLW-<br>006-11                 |
| Bagley, IA, USA                         | 0.549<br>0.561                | -<br>10            | Full flowering<br>(R2)                 | 30             | Forage    | 0.113, 0.263<br>(0.188)   | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01              |
| Soya bean/ 93Y13-                       | [1.11]                        |                    |                                        | 34             | Нау       | 0.271 , 1.171<br>(0.721)  | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011                 |
| 11203                                   |                               |                    |                                        |                |           |                           |                         | IB-2010-JLW-<br>006-12                 |
| Shelbyville, IN, USA<br>2010            | 0.561<br>0.583                | -<br>10            | Full<br>flowering-<br>Pod              | 30             | Forage    | 0.090 , 0.021<br>(0.056)  | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01              |
| Soya bean/                              | [1.144]                       |                    | formation<br>(R2- R3)                  | 31             | Нау       | 0.025 , <0.01<br>(0.018)  | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011                 |
| U43Z3U81                                |                               |                    |                                        |                |           |                           |                         | IB-2010-JLW-<br>006-13                 |

|                                         |                    |                    |                                        |                |           | I                        |                         |                           |
|-----------------------------------------|--------------------|--------------------|----------------------------------------|----------------|-----------|--------------------------|-------------------------|---------------------------|
| Location, Country<br>Year, Crop/Variety | Rate<br>(kg ai/ha) | Interval<br>(days) | Growth stage<br>at last<br>application | DALA<br>(days) | Crop part | Fluazinam<br>(mg/kg)     | AMGT<br>(mg/kg)         | Reference                 |
|                                         | [Total]            |                    |                                        |                |           |                          |                         |                           |
| Marysville, OH, USA                     | 0.561<br>0.561     | -<br>10            | Full<br>flowering-                     | 10             | Forage    | 0.718, 1.574<br>(1.146)  | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| 2010<br>Soya bean/SG-                   | [1.122]            |                    | Pod<br>formation<br>(R2- R3)           | 20             |           | 0.188, 0.325<br>(0.257)  | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
| 329RR                                   |                    |                    |                                        | 30             |           | 0.146 / 0.040<br>(0.093) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-14    |
|                                         |                    |                    |                                        | 40             |           | 0.139 / 0.030<br>(0.085) | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 13             | Нау       | 1.204, 1.485<br>(1.345)  | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 23             |           | 0.687, 0.526<br>(0.607)  | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 33             |           | 0.120, 0.214<br>(0.167)  | <0.01, <0.01<br>(<0.01) |                           |
|                                         |                    |                    |                                        | 43             |           | 0.090, 0.070<br>(0.080)  | <0.01, <0.01<br>(<0.01) |                           |
| Leonard, MO, USA                        | 0.549<br>0.561     | -<br>11            | Full flowering<br>(R2)                 | 30             | Forage    | 0.881 , 0.915<br>(0.898) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| 2010<br>Soya bean/ Asgrow               | [1.11]             |                    |                                        | 34             | Нау       | 1.449 , 1.526<br>(1.488) | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
| 3803                                    |                    |                    |                                        |                |           |                          |                         | IB-2010-JLW-<br>006-15    |
| Cambridge, ON,<br>Canada                | 0.572<br>0.549     | -<br>9             | Pod<br>formation<br>(R3)               | 35             | Forage    | 0.734 , 0.716<br>(0.725) | <0.01, <0.01<br>(<0.01) | IB-2010-JLW-<br>006-00-01 |
| 2010<br>Sova bean/ Absoluto             |                    |                    |                                        | 45             | Нау       | 4.116, 2.604<br>(3.362)  | <0.01, <0.01<br>(<0.01) | Wiedmann, J.L.<br>2011    |
| RR                                      |                    |                    |                                        | 67             |           |                          |                         | IB-2010-JLW-<br>006-16    |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets

## Peanut

Six residue trials were conducted in the USA between 1991 and 1994 which included animal feed items.

In each trial two to three applications were made using an SC formulation at application rates in the range of 0.37–1.12 kg ai/ha. In some trials applications were made either as a broadcast foliar spray or as a banded foliar application.

Peanut vines were inverted (dug out) and the crop was allowed to dry in the field for 7-10 days before samples were harvested by combine harvester and collected. Samples of whole peanuts were collected 17-59 days after the last treatment, and separated into nutmeat and hulls. Samples of peanut hay were allowed to dry in the field for a further 1-8 days after harvest before collection 33-58 days after the last treatment.

Samples were immediately frozen and maintained in frozen storage for periods of up to 164 days for hulls and 153 days for hay prior to extraction and analysis.

Residues of fluazinam in peanut hulls and hay were determined using analytical method 1. Procedural recovery samples were analysed with the residue trial samples. Fortification levels of 0.01-1 mg/kg for fluazinam were made for hulls with recoveries in the range of 78–120%. For hay fortification levels of 0.01-15 mg/kg for fluazinam were made with recoveries in the range of 62–125%.

| Table 115 Residues in Peanuts from supervised trials in the l | USA involving 2-3 foliar applications of fluazinam |
|---------------------------------------------------------------|----------------------------------------------------|
|---------------------------------------------------------------|----------------------------------------------------|

| Location, Country     | Rate                 | Interval | Growth      | DALA   | Crop part    | Fluazinam        | AMGT    | Reference            |
|-----------------------|----------------------|----------|-------------|--------|--------------|------------------|---------|----------------------|
| Year, Crop/Variety    | (kg ai/ha)           | (days)   | stage at    | (days) |              | (mg/kg)          | (mg/kg) |                      |
|                       | [Total]              |          | application |        |              |                  |         |                      |
| GAP USA               | MID: 0.874           | 21-28    | -           | 30     | -            | -                | -       | -                    |
|                       | MTD: 2.34            |          |             |        |              |                  |         |                      |
| Waller County TX,     | 0.773                |          | -           | 29     | Peanut Hulls | 0.10, 0.09       | n/a     | 5879-93-0335-        |
| USA                   | 0.758                | 28       |             |        |              | ( <u>0.10</u> )  |         | CR-001               |
| 1002                  | 0.759                | 28       |             |        | Peanut Hay   | 0.29, 0.30       | n/a     | Havos P.C. Ir        |
| 1775                  | [2 365]              |          |             |        |              | ( <u>0.30</u> )  |         | and Kenvon R G       |
| Peanut/Florunner      | Broadcast            |          |             |        |              |                  |         | 1994                 |
|                       | 0.619                |          | -           | 29     | Peanut Hulls | 0.17.0.18 (0.18) | n/a     |                      |
|                       | 0.614                | 28       |             |        |              |                  |         |                      |
|                       | 0.616                | 28       |             |        | Peanut Hay   | 0 30 0 1/        | n/a     |                      |
|                       |                      |          |             |        | realiarity   | (0.42)           | 17.0    |                      |
|                       | [2.399]              |          |             |        |              | (0.12)           |         |                      |
|                       | Banded               |          |             |        |              |                  |         |                      |
| Skippers, VA, USA     | 0.746                |          | -           | 30     | Peanut Hulls | 0.04, 0.03       | n/a     |                      |
| 1000                  | 0.686                | 29       |             |        |              | (0.04)           |         |                      |
| 1993                  | 0.763                | 31       |             |        | Peanut Hay   | 1.54, 1.46       | n/a     |                      |
| Dooput/NC V11         | [2 274]              |          |             |        |              | (1.50)           |         |                      |
| reanut/NC-VTT         | [2.270]<br>Broadcast |          |             |        |              |                  |         |                      |
|                       | 0 771                |          | -           | 30     | Peanut Hulls | 0.05.0.05        | n/a     |                      |
|                       | 0.766                | 29       |             |        |              | (0.05)           | 1.7 G   |                      |
|                       | 0.752                | 31       |             |        | Poanut Hav   | 1 77 2 01        | n/a     |                      |
|                       |                      |          |             |        | Featint Hay  | (1.89)           | 11/ d   |                      |
|                       | [2.377]              |          |             |        |              | (1.0))           |         |                      |
|                       | Banded               |          |             |        |              |                  |         |                      |
| Shorterville, AL, USA | 0.752                |          | Pod fill    | 58     | Peanut Hulls | 0.02, 0.02       | n/a     |                      |
|                       | 0.761                | 27       |             |        |              | ( <u>0.02</u> )  |         |                      |
| 1993                  | 0.752                | 29       |             |        | Peanut Hay   | 0.20, 0.22       | n/a     |                      |
| Poanut/Elorunnor      | [2 242]              |          |             |        |              | ( <u>0.21</u> )  |         |                      |
| r canat/r lorunner    | Broadcast            |          |             |        |              |                  |         |                      |
|                       | 0.372                |          | Pod fill    | 58     | Peanut Hulls | 0.01.0.01        | n/a     |                      |
|                       | 0.377                | 27       |             |        |              | (0.01)           |         |                      |
|                       | 0.432                | 29       |             |        | Peanut Hay   | 0.07.0.23        | n/a     |                      |
|                       |                      |          |             |        | reanachay    | (0.16)           | 17.4    |                      |
|                       | [1.244]              |          |             |        |              | (0.10)           |         |                      |
|                       | Banded               |          |             |        |              |                  |         |                      |
| Lucama, NC USA        | 0.762                |          | Excellent   | 32     | Peanut Hulls | 0.12, 0.13       | n/a     | 6107-95-0013-        |
| 1004                  | 0.762                | 32       | growth,     |        |              | (0.13)           |         | CR-001               |
| 1994                  | 0.773                | 31       | Iows        | 33     | Peanut Hay   | 7.08, 7.55       | n/a     | McEall D.D. 1005     |
| Peanut/NC-V11         | [2 298]              |          | 43 cm tall  |        |              | (7.32)           |         | IVICI dil, D.D. 1775 |
|                       | Broadcast            |          | 10 on tan   |        |              |                  |         |                      |
|                       | 0.773                |          | Excellent   | 32     | Peanut Hulls | 0.25, 0.22       | n/a     | 6107-95-0013-        |
|                       | 0.785                | 32       | growth,     |        |              | (0.24)           |         | CR-001               |
|                       | 0.785                | 31       | rows        | 33     | Peanut Hav   | 9 69 10 7        | n/a     |                      |
|                       |                      |          | lapped, 33- | 1.00   |              | (10.2)           |         | McFall, D.D. 1995    |
|                       | [2.343]              |          | 46 cm tall  |        |              |                  |         |                      |
|                       | Banded               |          |             |        |              |                  |         |                      |
| Eakly, OK USA         | 0.796                |          | Damage      | 33     | Peanut Hulls | 0.14, 0.13       | n/a     |                      |
|                       | 0.830                | 29       | irom        |        |              | (0.13)           |         |                      |

| Location, Country  | Rate       | Interval | Growth      | DALA   | Crop part    | Fluazinam         | AMGT    | Reference |
|--------------------|------------|----------|-------------|--------|--------------|-------------------|---------|-----------|
| Year, Crop/Variety | (kg ai/ha) | (days)   | stage at    | (days) |              | (mg/kg)           | (mg/kg) |           |
|                    |            |          | last        |        |              |                   |         |           |
|                    | [Total]    |          | application |        |              |                   |         |           |
| 1994               | 0.785      | 28       | gopher is   | 38     | Peanut Hay   | 1.35, 0.98        | n/a     |           |
|                    |            |          | approx. 15- |        |              | (1.17)            |         |           |
| Peanut/Florunner   | [2.42]     |          | 25% in the  |        |              |                   |         |           |
|                    | Broadcast  |          | plots       |        |              |                   |         |           |
|                    | 0.796      |          | Damage      | 33     | Peanut Hulls | 0.17, 0.15        | n/a     |           |
|                    | 0.886      | 29       | from        |        |              | ( <u>0.16</u> )   |         |           |
|                    | 0.796      | 28       | gopher is   | 38     | Peanut Hay   | 2.33, 2.28        | n/a     |           |
|                    |            |          | approx. 15- |        | , <b>,</b>   | (2.31)            |         |           |
|                    | [2.477]    |          | 25% in the  |        |              |                   |         |           |
|                    | Banded     |          | plots       |        |              |                   |         |           |
| Montezuma, GA, USA | 0.874      |          | not noted   | 41     | Peanut Hulls | 0.18, 0.18        | n/a     |           |
|                    | 0.818      | 28       |             |        |              | (0.18)            |         |           |
| 1994               | 0.796      | 25       |             | 41     | Peanut Hay   | 0.4`, 0.26 (0.34) | n/a     |           |
| Peanut/GK-7        | [2.489]    |          |             |        |              |                   |         |           |
|                    | Broadcast  |          |             |        |              |                   |         |           |
|                    | 0.863      |          | not noted   | 41     | Peanut Hulls | 0.18, 0.21        | n/a     |           |
|                    | 0.796      | 28       |             |        |              | (0.20)            |         |           |
|                    | 0.796      | 25       |             | 41     | Peanut Hav   | 0.63 1.13         | n/a     |           |
|                    |            |          |             |        | realiating   | (0.88)            | 17.4    |           |
|                    | [2.455]    |          |             |        |              | (0.00)            |         | l         |
|                    | Banded     |          |             |        |              |                   |         |           |

MID Maximum individual dose

MTD Maximum total dose

Duplicate results represent two independent representative treated samples taken at the trial site with the mean residue level given in brackets Results in square brackets represent the re-analysis of the same analytical sample

n/a = not analysed

#### FATE OF RESIDUES IN STORAGE AND PROCESSING

#### In stored products

Fluazinam is not intended for use in stored products.

## In Processing

The meeting received information on high temperature hydrolysis of fluazinam and the fate of fluazinam residues during processing of apples, grapes, soya beans, potatoes and peanuts.

## High-temperature hydrolysis

The degradation of <sup>14</sup>C-fluazinam was studies under hydrolytic conditions at high temperatures in sterile aqueous buffers at pH 4, 5 and 6 representing pasteurization, baking/brewing/boiling and sterilization.

Fluazinam was labelled in the phenyl or pyridyl ring. Solutions were prepared in duplicate at a nominal concentration of 0.1 mg/L for each test system.

Control samples were analysed immediately at time zero (these samples were not heated). Two additional samples at pH 4 ± 0.1 were placed in an oven and maintained at 90 °C for 20 minutes, another two samples at pH 5 were placed in an oven and maintained at 100 °C for 60 minutes, and two more samples at pH 6 were placed in an autoclave and maintained at sterilizing conditions (120 °C) for 20 minutes.

Radioactive recoveries were determined by LSC. Samples were analysed directly by HPLC. Fluazinam and significant degradation products were identified by LC-MS and by HPLC co-chromatography with certified standards.

The radioactive recovery of all samples was in the range 91.9–100.8% of applied radioactivity (AR). A summary of the results are provided in Tables 116 and 117.

Table 116 Hydrolysis recovery under the conditions for processing simulation, 14C-phenyl labelled fluazinam

Component Mean % Applied radioactivity (AR)

|                                                    | pH 4, 90 °C, 20 mins, pasteurization |         | pH5, 100 °C, 60 mins,<br>Baking/Brewing/Boiling |         | pH6, 120 °C, 20 mins, Sterilization |         |
|----------------------------------------------------|--------------------------------------|---------|-------------------------------------------------|---------|-------------------------------------|---------|
|                                                    | Heated                               | Control | Heated                                          | Control | Heated                              | Control |
| Fluazinam                                          | 89.3                                 | 93.68   | 33.84                                           | 95.82   | -                                   | 98.52   |
| DCPA                                               | -                                    | -       | -                                               | -       | 36.25                               | -       |
| G-504                                              | -                                    | -       | 2.13                                            | -       | 11.17                               | -       |
| CAPA                                               | 0.71                                 | -       | 55.78                                           | -       | 44.56                               | -       |
| Minor degradates<br>(each less than<br>3.5% of AR) | 2.52                                 | -       | 3.88                                            | 2.13    | 5.63                                | 2.04    |
| Total recovery                                     | 92.52                                | 95.75   | 95.63                                           | 97.94   | 97.61                               | 100.56  |

Table 117 Hydrolysis recovery under the conditions for processing simulation, 14C-pyridinyl labelled fluazinam

| Component        | Mean % Applied ra  | Mean % Applied radioactivity (AR) |                     |         |                   |                                     |  |  |  |
|------------------|--------------------|-----------------------------------|---------------------|---------|-------------------|-------------------------------------|--|--|--|
|                  | pH 4, 90 °C, 20 mi | ns, pasteurization                | pH5, 100 °C, 60 mir | IS,     | pH6, 120 °C, 20 m | pH6, 120 °C, 20 mins, Sterilization |  |  |  |
|                  |                    |                                   | Baking/Brewing/Bo   | iling   |                   |                                     |  |  |  |
|                  | Heated             | Control                           | Heated              | Control | Heated            | Control                             |  |  |  |
| Fluazinam        | 93.20              | 95.66                             | 39.37               | 99.16   | -                 | 96.96                               |  |  |  |
| DCPA             | -                  | -                                 | -                   | -       | 37.15             | -                                   |  |  |  |
| G-504            | -                  | -                                 | 1.56                | -       | 11.01             | -                                   |  |  |  |
| CAPA             | 1.09               | -                                 | 50.89               | -       | 42.94             | 0.14                                |  |  |  |
| Minor degradates | 1.40               | 1.29                              | 2.81                | 1.03    | 3.53              | 1.40                                |  |  |  |
| (each less than  |                    |                                   |                     |         |                   |                                     |  |  |  |
| 3.5% of AR)      |                    |                                   |                     |         |                   |                                     |  |  |  |
| Total recovery   | 95.68              | 96.95                             | 94.64               | 100.19  | 94.72             | 98.50                               |  |  |  |

Fluazinam was stable under ambient conditions at all pH values tested. It was also stable under conditions simulating pasteurisation with only a few minor degradates being detected (each less than 2% AR).

Fluazinam, however, degraded rapidly under conditions simulating baking/brewing/boiling forming a single major metabolite, CAPA, plus several other minor components (including small amounts of G-504 in the phenyl label).

Fluazinam degraded completely under the conditions simulating sterilisation, forming three major components, CAPA, DCPA and G-504, plus several other minor components. The minor components detected all accounted for  $\leq$  3.5% AR individually.

In conclusion, fluazinam was stable under conditions representing pasteurization. However, significant degradation was observed under conditions representing baking/brewing/boiling and sterilization (see below):

## In processing-effect on the residue level

The meeting received information on the effects of processing on the magnitude of fluazinam and AMGT residue levels for apple, grape, soya beans, potato and peanuts.

## Apple

A processing study with apples was conducted 1993 in the USA. Apples were subjected to the following processing procedures:

## Raw juice, wet and dry pomace

Apples were grounded in a Hammer-mill and the mash was loaded into cloth stacks on a hydraulic press and pressed for five minutes. Juice was collected and the cloths were opened to collect wet pomace. Dry pomace was obtained by drying wet pomace in a dryer at 77–88 °C over 1–4 hours until the moisture content was <10%.

## Pasteurised apple juice

Raw juice was heated to 49 °C and clarified using pectinase. The cleared juice was filtrated using diatomaceous earth and pasteurised at 88 °C.

Samples were stored frozen for up to 231 days prior to analysis for fluazinam and up to 802 days for AMGT. Fluazinam and AMGT were determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in tables 118 and 119 for fluazinam and AMGT respectively.

Table 118 Summary of the processing data for apples for fluazinam

| Commodity               | Fluazinam residue (mg/kg) | Processing factor |
|-------------------------|---------------------------|-------------------|
| Apple                   | 0.03                      | -                 |
| Raw apple juice         | <0.01                     | <0.33             |
| Pasteurised apple juice | <0.01                     | <0.33             |
| Wet apple pomace        | 0.07                      | 2.33              |
| Dry apple pomace        | 0.09                      | 3.0               |

Table 119 Summary of the processing data for apples for AMGT

| Commodity               | AMGT residue (mg/kg) | Processing factor |
|-------------------------|----------------------|-------------------|
| Apple                   | <0.01                | -                 |
| Raw apple juice         | <0.01                | 1                 |
| Pasteurised apple juice | <.0.01               | 1                 |
| Wet apple pomace        | <0.01                | 1                 |
| Dry apple pomace        | 0.01                 | 1                 |

Grapes

### Study 1

Grapes were subjected to the following processing procedures:

## Juice, wet and dry pomace

Grapes were manually stemmed and crushed. Pectinase was added to the crushed grapes and heated to 60 °C for 2 hours. The crushed grapes were pressed to obtain juice and wet pomace. Wet pomace was dried at 60-63 °C in a forced air dryer to obtain dry pomace. The juice was heated to 85-88 °C and clarified at -1 to 0 °C for 4 to 6 weeks. The juice was filtered using diatomaceous earth, heated to 91-93 °C and canned.

### Raisins

Grapes for sun drying were spread on a tray covered with aluminium foil and placed in a sunny area. Grapes were dried for 14-25 days to a moisture content of 12-14%. Dried grapes were separated from the stems. Dried grapes were washed and rehydrated to 18-20% moisture to obtain raisins.

Samples were stored frozen for up to 181 days prior to analysis. Fluazinam was determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Table 120.

Table 120 Summary of the processing data for grapes from study 1

| Commodity    | Fluazinam residue (mg/kg) | Processing factor |
|--------------|---------------------------|-------------------|
| Grape        | 1.37                      | -                 |
| Wet pomace   | 9.43                      | 6.9               |
| Dry pomace   | 17.5                      | 12.8              |
| Juice        | <0.01                     | <0.01             |
| Raisin waste | 4.24                      | 3.1               |
| Raisins      | 0.34                      | 0.25              |

#### Study 2

Grapes from two trials were subjected to the following processing procedures:

## Juice, wet and dry pomace

Grapes were stemmed and crushed. The crushed grapes were pressed to obtain juice and wet pomace. Wet pomace was blended with the stems from the de-stemming process. Wet pomace was dried at 79-93 °C in a forced air dryer to obtain dry pomace. The juice was filtered and bottled.

## Raisins

Grapes were placed on paper trays and sun dried for approx. 27 days. The raisins were sieved to remove loose dirt, and field debris. Stems were removed from the field dried raisins. Raisins were batch spray washed with cold water for 10-15 seconds and allowed to dry to obtain finished raisins.

Samples were stored frozen for up to 273 days prior to analysis. Fluazinam and AMGT were determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Tables 121 and 122 for fluazinam and AMGT respectively.

| Table 121 Summar | y of the | processing | data for | grapes for | <sup>-</sup> fluazinam | from study | y 2 |
|------------------|----------|------------|----------|------------|------------------------|------------|-----|
|------------------|----------|------------|----------|------------|------------------------|------------|-----|

| Commodity     | Fluazinam residue–<br>trial 1 (mg/kg) | Processing factor–<br>trial 1 | Fluazinam residue–<br>trial 2 (mg/kg) | Processing factor–<br>trial 2 |
|---------------|---------------------------------------|-------------------------------|---------------------------------------|-------------------------------|
| Grape         | 0.08                                  | -                             | 0.08                                  | -                             |
| Raisins       | 0.02                                  | 0.25                          | -                                     | -                             |
| Raisins waste | 0.36                                  | 4.5                           | -                                     | -                             |
| Juice         | -                                     | -                             | 0.02                                  | 0.25                          |
| Wet pomace    | -                                     | -                             | 0.41                                  | 5.13                          |
| Dry pomace    | -                                     | -                             | 0.50                                  | 6.25                          |

| Tahlo | 122 | Summary | of the  | nrocossing   | 1 data for | grange fo |        | from stud    | v 2 |
|-------|-----|---------|---------|--------------|------------|-----------|--------|--------------|-----|
| Iable | 122 | Summary | yoi uic | ; hincessiii | j uata i u | yiapes iu | AIVIGI | II UIII Stuu | y Z |

| Commodity     | AMGT residue-trial 1 | Processing factor- | AMGT residue-trial 2 | Processing factor- |
|---------------|----------------------|--------------------|----------------------|--------------------|
|               | (mg/kg)              | trial 1            | (mg/kg)              | trial 2            |
| Grape         | 0.27                 | -                  | 0.08                 | -                  |
| Raisins       | 0.32                 | 1.19               | -                    | -                  |
| Raisins waste | 0.43                 | 1.59               | -                    | -                  |
| Juice         | -                    | -                  | 0.02                 | 0.25               |
| Wet pomace    | -                    | -                  | 0.21                 | 2.62               |
| Dry pomace    | -                    | -                  | 0.33                 | 4.13               |

## Study 3

Four processing studies using grapes from two trials were subjected to the processing procedures outlined below. In two of the cases the residue levels in grapes prior to processing was not determined.

### White wine and must

Grapes were pressed with a manual hydraulic press. Potassium metabisulphite and pectolytic enzymes were added to the juice and decanted after 12 hours. Yeast was added to start alcoholic fermentation. White crystalline sugar was added to the must to increase the alcoholic content by 2%. When alcoholic fermentation was achieved, potassium metabisulphite was added and the wine clarified using dry gelatine for 15 days at 5-10 °C. After clarification, the wine was filtered, potassium metabisulphite added and bottled.

## Red wine and must

Grapes were crushed, potassium metabisulphite and yeast were added to start alcoholic fermentation. The solid parts were pressed using a manual hydraulic press. Malolacetic fermentation was started by inoculation with lactic bacteria. When the malolacetic fermentation was complete, potassium metabisuphite was added and the wine clarified using dry gelatine for at least 15 days. After clarification, potassium metabisulphite and metatartaric acid were added, the wine was filtered and bottled.

Samples were stored frozen for up to 201 days prior to analysis. Fluazinam and AMGT were determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Tables 123 and 124 for fluazinam and AMGT respectively.

Table 123 Summary of the processing data for grapes for fluazinam from study 3

#### White wine

| Commodity | Fluazinam residue–<br>trial 1 (mg/kg) | Processing factor-<br>trial 1 | Fluazinam residue–<br>trial 2 (mg/kg) | Processing factor–<br>trial 2 |
|-----------|---------------------------------------|-------------------------------|---------------------------------------|-------------------------------|
| Grape     | 0.22                                  | -                             | -                                     | -                             |
| Must      | 0.09                                  | 0.41                          | 0.44                                  | -                             |
| Wine      | <0.01                                 | < 0.05                        | <0.01                                 | -                             |

## Red wine

| Commodity | Fluazinam residue–<br>trial 1 (mg/kg) | Processing factor-<br>trial 1 | Fluazinam residue–<br>trial 2 (mg/kg) | Processing factor-<br>trial 2 |
|-----------|---------------------------------------|-------------------------------|---------------------------------------|-------------------------------|
| Grape     | 0.61                                  | -                             | -                                     | -                             |
| Must      | 0.04                                  | 0.07                          | 0.27                                  | -                             |
| Wine      | <0.01                                 | <0.02                         | <0.01                                 | -                             |

## Table 124 Summary of the processing data for grapes for AMGT from study 3

## White wine

| Commodity | AMGT residue–trial 1<br>(mg/kg) | Processing factor–<br>trial 1 | AMGT residue–trial 2<br>(mg/kg) | Processing factor–<br>trial 2 |
|-----------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|
| Grape     | 0.21                            | -                             | -                               | -                             |
| Must      | 0.13                            | 0.62                          | 0.23                            | -                             |
| Wine      | 0.18                            | 0.86                          | 0.35                            | -                             |

## Red wine

| Commodity | AMGT residue–trial 1<br>(mg/kg) | Processing factor–<br>trial 1 | AMGT residue–trial 2<br>(mg/kg) | Processing factor–<br>trial 2 |
|-----------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|
| Grape     | 0.17                            | -                             | -                               | -                             |
| Must      | 0.12                            | 0.71                          | 0.25                            | -                             |
| Wine      | 0.03                            | 0.18                          | 0.06                            | -                             |

# Study 4

Grapes from four trials were processed into wine as follows:

## Wine processing

Grapes were pressed, sulphited and allowed to settle for 2-16 hours. Sugar and yeast were added to start alcoholic fermentation. After alcoholic fermentation, wine was decanted and malolacetic fermentation started by adding *Inobacter*. After malolacetic fermentation, wine was decanted, sulphited and bottled.

Samples were stored frozen for up to 228 days prior to analysis. Fluazinam and AMGT were determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Tables 125 and 126 for fluazinam and AMGT respectively.

| Table 125 Summary of the processing data for grapes | s for fluazinam from study 4 |
|-----------------------------------------------------|------------------------------|
|-----------------------------------------------------|------------------------------|

| Trial | Sample | Commodity | Fluazinam residue<br>(mg/kg) | Processing factor | Mean processing<br>factor for each<br>trial |
|-------|--------|-----------|------------------------------|-------------------|---------------------------------------------|
| 1     | 1      | Grape     | 0.01                         | <1                | 0.39                                        |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 2      | Grape     | 0.02                         | <0.5              |                                             |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 3      | Grape     | 0.22                         | <0.05             |                                             |
|       | Wine   | <0.01     |                              |                   |                                             |
|       | 4      | Grape     | 1.10                         | <0.01             |                                             |
|       |        | Wine      | <0.01                        |                   |                                             |
| 2     | 1      | Grape     | <0.01                        | <1                | 0.55                                        |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 2      | Grape     | 0.01                         | <1                |                                             |
|       | Wine   | <0.01     |                              |                   |                                             |
|       | 3      | Grape     | 0.06                         | <0.17             |                                             |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 4      | Grape     | 0.41                         | <0.024            |                                             |

| Trial | Sample | Commodity | Fluazinam residue<br>(mg/kg) | Processing factor | Mean processing<br>factor for each<br>trial |
|-------|--------|-----------|------------------------------|-------------------|---------------------------------------------|
|       |        | Wine      | <0.01                        |                   |                                             |
| 3     | 1      | Grape     | <0.01                        | <1                | 0.38                                        |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 2      | Grape     | 0.10                         | <0.1              | 1                                           |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 3      | Grape     | 0.34                         | <0.029            |                                             |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 4 Gr   | Grape     | 2.41                         | -                 |                                             |
|       |        | Wine      | -                            |                   |                                             |
| 4     | 1      | Grape     | <0.01                        | <1                | 0.39                                        |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 2      | Grape     | 0.07                         | <0.14             | 1                                           |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 3      | Grape     | 0.40                         | <0.025            | 7                                           |
|       |        | Wine      | <0.01                        |                   |                                             |
|       | 4      | Grape     | 1.21                         | -                 |                                             |
|       |        | Wine      | -                            |                   |                                             |

Table 126 Summary of the processing data for grapes for AMGT from study 4

| Trial | Sample | Commodity | AMGT residue (mg/kg) | Processing factor |  |
|-------|--------|-----------|----------------------|-------------------|--|
| 1     | 1      | Grape     | 0.06                 | <0.17             |  |
|       |        | Wine      | <0.01                |                   |  |
|       | 2      | Grape     | 0.08                 | 0.25              |  |
|       |        | Wine      | 0.02                 | Ī                 |  |
|       | 3      | Grape     | 0.11                 | 0.18              |  |
|       |        | Wine      | 0.02                 |                   |  |
|       | 4      | Grape     | 0.11                 | 0.18              |  |
|       |        | Wine      | 0.02                 |                   |  |
| 2     | 1      | Grape     | 0.04                 | 1                 |  |
|       |        | Wine      | 0.04                 |                   |  |
|       | 2      | Grape     | 0.11                 | 0.82              |  |
|       |        | Wine      | 0.09                 |                   |  |
|       | 3      | Grape     | 0.14                 | 0.93              |  |
|       |        | Wine      | 0.13                 |                   |  |
|       | 4      | Grape     | 0.13                 | 0.92              |  |
|       |        | Wine      | 0.12                 |                   |  |
| 3     | 1      | Grape     | 0.05                 | 1                 |  |
|       |        | Wine      | 0.05                 | 1                 |  |
|       | 2      | Grape     | 0.13                 | 1.46              |  |
|       |        | Wine      | 0.19                 |                   |  |
|       | 3      | Grape     | 0.22                 | 1.16              |  |
|       |        | Wine      | 0.19                 | 1                 |  |
|       | 4      | Grape     | 0.25                 | -                 |  |
|       |        | Wine      | -                    | T                 |  |
| 4     | 1      | Grape     | 0.03                 | 0.33              |  |
|       |        | Wine      | 0.01                 |                   |  |
|       | 2      | Grape     | 0.10                 | 0.008             |  |
|       |        | Wine      | 0.08                 | I                 |  |
|       | 3      | Grape     | 0.26                 | 0.69              |  |
|       |        | Wine      | 0.18                 |                   |  |
|       | 4      | Grape     | 0.17                 | -                 |  |
|       | <br>   | Wine      | -                    | ]                 |  |

#### Study 5

## Red wine

Grapes from two trials were processed into wine as follows:

Grapes were crushed and stemmed. Potassium metabisulphite and yeast were added to start alcoholic fermentation. White crystallised sugar was added to increase the alcohol content to 11.5%. Alcoholic fermentation was considered complete when the density of the must fell below the value of 1000 (using a mustimeter). The solid parts were pressed using a manual hydraulic press. Malolacetic fermentation was started by inoculation with lactic bacteria. When the malolacetic fermentation was complete, potassium metabisuphite was added and the wine clarified using dry gelatine for at least 15 days. After clarification, the wine was filtered, potassium metabisulphite was added and the wine was bottled.

Samples were stored frozen for up to 246 days prior to analysis. Fluazinam and AMGT were determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Tables 127 and 128 for fluazinam and AMGT respectively.

Table 127 Summary of the processing data for grapes for fluazinam from study 5

| Trial | Commodity | Fluazinam residue (mg/kg) | Processing factor |
|-------|-----------|---------------------------|-------------------|
| 1     | Grape     | 0.03                      | <0.33             |
|       | Wine      | <0.01                     |                   |
| 2     | Grape     | 0.02                      | <0.5              |
|       | Wine      | <0.01                     |                   |

Table 128 Summary of the processing data for grapes for AMGT from study 5

| Trial | Commodity | AMGT residue (mg/kg) | Processing factor |
|-------|-----------|----------------------|-------------------|
| 1     | Grape     | -                    | -                 |
|       | Wine      | 0.03                 |                   |
| 2     | Grape     | -                    | -                 |
|       | Wine      | 0.05                 |                   |

#### Soya bean

Soya bean samples were processed as outlined below:

#### Grain dust (aspirated grain fraction)

Whole soya beans were used for aspirated grain fraction generation. After moisture determination, soya beans were dried in an oven at 43-57 °C until the moisture content was between 10 and 13%. To generate aspirated grain fraction, samples were placed in a dust generation room containing a holding bin, two bucket conveyors and a screw conveyor. The samples travelled the system for 120 minutes and aspiration removed the light impurities (grain dust).

#### Hulls

After moisture determination, soya beans were dried in an oven at 54-71°C until the moisture content was below 13.5%. Samples for processing were cleaned by aspiration and screening. Light impurities were separated from the sample using an aspirator. After aspiration, the sample was screened to separate large and small foreign particles from the whole soya bean sample. Cleaned whole soya beans were fed into an a roller mill to crack the hull and liberate the kernel. After hulling, the material was passed through an aspirator to separate hull and kernel material.

### Meal

Moisture adjusted kernel material (13.5%) was heated to 71-79 °C and processed into flakes. Flakes were expanded in a continuous processor, where they were turned into collets by direct steam injection and compression. Collets exited the processor at 93-121°C. After expansion, the collets were dried in the oven at 66-82 °C for 30-40 minutes. Dried collets were placed in stainless steel batch extractors and submerged in 49-60 °C warm hexane. After 30 minutes, the miscella (crude oil and hexane) was drained and fresh hexane was added to repeat the cycle two more times. Extracted collets were de-solvented by heating to 99-104 °C to give the final soya bean meal.

## Refined oil

Miscella were passed through a laboratory vacuum evaporator unit to separate the crude oil and hexane. Crude oil was heated to 91-96 °C to remove hexane and then filtered. The percentage of free fatty acid (FFA) content was determined for the crude oil. Based on the FFA content, a weighed amount of crude oil and sodium hydroxide was placed in a water bath at 20-24 °C and mixed for 90 minutes at high RPM, and then for 20 minutes at low RPM at 63-67 °C. The neutralised oil was then centrifuged. Refined oil was decanted and filtered. The resulting fractions were alkali refined oil and soapstock. Soapstock was discarded.

Samples were stored frozen for up to 104 days prior to analysis. Fluazinam and AMGT were determined in the RAC and processed fractions using analytical method 3. The procedural recoveries were all acceptable. The results are summarised in Table 129.

Table 129 Summary of the processing data for soya bean

| Commodity  | Fluazinam residue (mg/kg) | Processing factor |
|------------|---------------------------|-------------------|
| Soya bean  | 0.048                     | -                 |
| Grain dust | <0.01                     | <0.21             |
| Hulls      | 0.231                     | 4.81              |
| Meal       | <0.01                     | <0.21             |
| Oil        | 0.046                     | 0.96              |

#### Potato

Potato samples from two trials were processed as outlined below:

## Potato chips

Potatoes were washed for 5-10 minutes, culls removed and peeled using an continuous abrasive peeler. Potatoes were inspected and trimmed by hand to remove rot, green or otherwise damaged potatoes. Potatoes were cut into thin slices (1.6 mm). Slices were placed into warm water to remove free starch and heated in a deep fat fryer in hot oil at 163-177 °C for 60-90 seconds. Oil was drained in draining tray and potato chips salted by hand.

### Potato flake and granules, wet and dry peel

Potatoes were tub washed and steam peeled and scrubbed to remove loosened potato peel. Potatoes were inspected and trimmed by hand to remove rot, green or otherwise damaged potatoes. Wet peel was collected and dried.

For potato flakes, peeled potatoes were cut into 1.3 cm slabs. Slabs were spray washed with cold water to remove free starch and pre-cooked at 71-74 °C for 20 minutes in a steam kettle and cooled. The pre-cooked slabs were steam cooked at 99-100 °C for 45 minutes, mashed and mixed in a Hobart Mixer with pre-weighed food-additives.

The wet mash was dried. The resulting thin potato sheet was hand broken to large flakes and processed in a Hammermill to potato flakes.

For potato granules, the pre-cooked slabs were steam cooked at 99-100 °C for 45 minutes, mashed and mixed in a Hobart Mixer with pre-weighed food-additives. The mash was packaged into plastic bags and frozen for later dehydration. The potato mash bags were thawed to give the potato granules.

#### French fries

Potatoes were tub washed and steam peeled. Potatoes were scrubbed to remove loosened peel. Potatoes were inspected and trimmed by hand to remove rot, green or otherwise damaged potatoes. The peeled potatoes were cut into 0.64x0.64 cm strips using a French Fry Cutter. French fry strips were blanched at 71-74 °C for 10 minutes and again blanched at 88-91°C for 3 minutes. The French fry strips were placed in an air dryer at 71°C for 18 minutes. The French fries were then fried at 177-191°C for 60 seconds, drained and air cooled.

Samples were stored frozen for up to 406 days prior to analysis. Fluazinam was determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Table 130.

#### Table 130 Summary of the processing data for potato

| Commodity        | Fluazinam residue–<br>trial 1 (mg/kg) | Processing factor | Fluazinam residue–<br>trial 2 (mg/kg) | Processing factor |
|------------------|---------------------------------------|-------------------|---------------------------------------|-------------------|
| Potato tubers    | <0.01                                 | -                 | <0.01                                 | -                 |
| Potato chips     | <0.01                                 | -                 | <0.01                                 | -                 |
| Wet potato peels | <0.01                                 | -                 | <0.01                                 | -                 |
| Dry potato peels | <0.01                                 | -                 | <0.01                                 | -                 |
| Potato flakes    | <0.01                                 | -                 | <0.01                                 | -                 |
| French fries     | <0.01                                 | -                 | <0.01                                 | -                 |
| Potato granules  | <0.01                                 | -                 | <0.01                                 | -                 |

#### Peanut

Potato samples from one trial were processed as outlined below:

## Hulling and separation

Peanuts were cleaned by removing rocks and soil from the sample. The cleaned samples was fed though a peanut sheller to liberate the kernels /nutmeat from the hulls. After shelling, hull material was separated from kernels using an aspiration unit. After hull and kernel separation, the moisture content of the kernels was determined and if necessary, samples dried in an air oven at 61-71°C to a final moisture content of 7-10%.

#### Peanut oil

The moisture content of the kernels was adjusted to 12%. The kernels were heated to 94-104 °C and then fed though an expeller to mechanically remove a majority of the oil and this gave rise to the press cake and crude oil. The press cake was flaked and residual oil extracted with warm hexane in a batch extractor for 30 minutes. The solvent was drained and the extraction repeated two times without heating. After draining, warm air was forced through the press cake to remove the hexane. The resulting fractions from the solvent extraction step were meal and miscella (crude oil and hexane).

The miscella was separated using an evaporator at 75-85 °C. The free fatty acid content was determined in the crude oil and based on this, NaOH was added to the crude oil. The solution was mixed for 30 minutes at 20-24 °C and for 12 minutes at 63-67 °C. The neutralised oil was allowed to settle at 60-65 °C for one hour. The oil solution was refrigerated for a minimum of 12 hours, decanted and filtered and collected as refined oil. The fraction settling to the bottom was collected as soapstock.

Samples were stored frozen for up to 93 days prior to analysis. Fluazinam was determined in the RAC and processed fractions using analytical method 1. The procedural recoveries were all acceptable. The results are summarised in Table 131.

Table 131 Summary of the processing data for peanut

| Commodity   | Fluazinam residue (mg/kg) | Processing factor |
|-------------|---------------------------|-------------------|
| Peanut      | <0.01                     | -                 |
| Hulls       | 0.36                      | 36                |
| Presscake   | <0.01                     | <1                |
| Crude oil   | 0.03                      | 3                 |
| Refined oil | 0.01                      | 1                 |
| Soapstock   | 0.05                      | 5                 |

### **RESIDUES IN ANIMAL COMMODITIES**

## Farm animal feeding studies

## Lactating cow

Three groups, each comprising three or six lactating females received fluazinam orally once daily at nominal dose levels equivalent to 2.5, 7.5 and 25 mg/kg dry matter feed for 28 days using gelatine capsules and a balling gun. A similarly constituted control group received placebos (empty capsules) concurrently with the treated group. Three animals were maintained in the high dose group and maintained for up to seven days after the cessation of treatment in order to provide data on the decline of any incurred residues.

Animals were inspected visually at least twice daily for clinical abnormalities from receipt until the scheduled termination for each animal. If daily observations revealed any health-related issues, these animals were re-examined by a licensed veterinarian. Animals were otherwise noted as normal and active. Individual body weights were obtained upon receipt and weekly during the

dosing (Study days 1, 8, 15, 22, and 28). The consumption of individual feed rations was recorded daily from acclimation to termination. Milk yields were recorded daily from acclimation to termination.

Milk was collected twice daily (am and pm) via milking machines from acclimation to termination. Separate milking machines were used for the study groups. Milk from study day 13 and 28 was separated into cream and skim milk from one control, three low dose and three high dose group animals that were not designated for use in the depuration phase.

After 28 days the animals (parts from those in the depuration study) were sacrificed within 24 hours of the last dose. samples of liver, kidney, muscle and fat were collected for analysis. Each tissue was weighed and cubed, except fat, which was allowed to freeze prior to cubing and separated into analytical and retention sample. The analytical sample was homogenised in the presence of dry ice.

All samples were then stored at -24 to -14 °C prior to analysis. The maximum lengths of storage were:

Milk: 183 days

Muscle: 157 days

Fat: 203 days

Liver: 248 days

Kidney: 255 days

Animals from the depuration phase were terminated on study day 30, 32 and 36 and samples were collected as above.

Samples of whole milk, cream, skimmed milk and tissues (muscle, fat, liver, and kidney) were analysed to determine the residues of fluazinam, AMPA and DAPA. Residues were determined using method IB-2007-JLW-004-00-01. The method used for milk included a hydrolysis step to extract any sulfamate conjugates that may be present. For kidney and liver samples two sets of analysis were undertaken; extraction with acetonitrile: water, and extraction with acetonitrile: water followed by a hydrolysis step with HCI.

Procedural recoveries were analysed with the samples. The fortification levels used were 0.01 mg/kg and 0.1 mg/kg. Only the mean procedural recoveries were reported. The mean recoveries were > 70% except for:

| Analyte   | Matrix | Method         | Mean procedural recovery (%) |
|-----------|--------|----------------|------------------------------|
| Fluazinam | Liver  | Non hydrolysis | 57                           |
| AMPA      | Liver  | Non hydrolysis | 59                           |
|           | kidney | Non hydrolysis | 60                           |
|           |        | Hydrolysis     | 41                           |
| DAPA      | Liver  | Non hydrolysis | 31                           |
|           |        | Hydrolysis     | 38                           |
|           | Kidney | Non hydrolysis | 62                           |
|           |        | Hydrolysis     | 12                           |

The mean weekly intakes of fluazinam for the different dose groups are given in Table 132.

476

| Group | Target dose | Dosing week      |         | Average dose | Average dose |       |            |
|-------|-------------|------------------|---------|--------------|--------------|-------|------------|
|       | [mg/kg dry  | 1                | 1 2 3 4 |              |              |       | [mg/kg bw] |
|       | feed]       | [mg/kg dry feed] |         | feed]        |              |       |            |
| Low   | 2.5         | 2.92             | 2.91    | 2.90         | 2.90         | 2.91  | 0.67       |
| Mid   | 7.5         | 8.73             | 8.72    | 8.72         | 8.72         | 8.72  | 2.10       |
| High  | 25          | 28.74            | 28.64   | 29.00        | 28.99        | 28.84 | 6.40       |

Table 132 Summary of fluazinam dose administration to lactating cows

The average dose of fluazinam administered over the four week study period was 2.91, 8.72 and 28.84 mg/kg dry weight for the low, mid and high dose group, respectively. When related to the body weight, the achieved fluazinam intakes were 0.67, 2.10 and 6.40 mg/kg bw per day for the low, mid and high dose group, respectively.

All animals were observed to be healthy and normal throughout the study. No treatment related effects were observed. Body weights were considered normal throughout the study for animals of this species and age. Milk production appeared to be consistent throughout the study and did not appear to be affected by treatment with the test substance.

Following termination, tissues were observed for gross lesions. In one animal (cow #1, control group), pale discoloration of the liver and abscesses in the right front leg and left rear upper leg as a result of a stanchion injury from test day 14 was observed. Gross observations of all other animals revealed no findings.

Total residues of fluazinam, AMPA and DAPA in milk are shown in Table 133 to Table 137.

Since residues in milk of the mid dose group were below the limit of quantification (0.01 mg/kg), the milk samples from the low dose group were not analysed.

| Dose  | Animal | Day of t | reatmen | t     |       |       |       |       |       |       |       |       |       |       |       |       |
|-------|--------|----------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| level | number | 0        | 1       | 2     | 3     | 4     | 5     | 6     | 7     | 10    | 13    | 16    | 19    | 22    | 25    | 28    |
|       |        | [mg/kg]  | •       | •     | •     | •     | •     | •     |       | •     | •     | •     | •     | •     | •     | •     |
|       | 6      | <0.01    | -       | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | <0.01 |
| Mid   | 7      | <0.01    | -       | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | <0.01 |
| aroun | 8      | <0.01    | -       | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | <0.01 |
| group | Mean   | <0.01    | -       | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | -     | <0.01 | <0.01 |
|       | 9      | <0.01    | <0.01   | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
|       | 10     | <0.01    | <0.01   | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| High  | 11     | <0.01    | <0.01   | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| dose  | 12     | <0.01    | <0.01   | <0.01 | <0.01 | -     | -     | -     | -     | -     | -     | -     | -     | -     | <0.01 | <0.01 |
| group | 13     | <0.01    | <0.01   | <0.01 | <0.01 | -     | -     | -     | -     | -     | -     | -     | -     | -     | <0.01 | <0.01 |
|       | 14     | <0.01    | <0.01   | <0.01 | <0.01 | -     | -     | -     | -     | -     | -     | -     | -     | -     | <0.01 | <0.01 |
|       | Mean   | <0.01    | <0.01   | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |

Table 133 Residues of fluazinam in milk

Table 134 Residues of AMPA in milk

| Dose  | Animal | Day of | treatme | ent   |        |        |        |        |        |        |        |        |        |        |        |        |
|-------|--------|--------|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| level | number | 0      | 1       | 2     | 3      | 4      | 5      | 6      | 7      | 10     | 13     | 16     | 19     | 22     | 25     | 28     |
|       |        | [mg/kg | ]       |       |        |        |        |        |        |        |        |        |        |        |        |        |
|       | 6      | <0.01  | -       | -     | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
| Mid   | 7      | <0.01  | -       | -     | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
| aroun | 8      | <0.01  | -       | -     | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
| group | Mean   | <0.01  | -       | -     | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
|       | 9      | <0.01  | <0.01   | <0.01 | 0.0112 | 0.0125 | 0.0158 | 0.0126 | 0.0133 | 0.0133 | 0.0114 | 0.0120 | 0.0121 | 0.0151 | 0.0159 | 0.0147 |
|       | 10     | <0.01  | <0.01   | <0.01 | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  |
| High  | 11     | <0.01  | <0.01   | <0.01 | <0.01  | 0.0107 | 0.0115 | <0.01  | 0.0110 | <0.01  | <0.01  | <0.01  | <0.01  | 0.0103 | 0.0137 | <0.01  |
| dose  | 12     | <0.01  | <0.01   | <0.01 | <0.01  | -      | -      | -      | -      | -      | -      | -      | -      | -      | <0.01  | <0.01  |
| group | 13     | <0.01  | <0.01   | <0.01 | <0.01  | -      | -      | -      | -      | -      | -      | -      | -      | -      | <0.01  | <0.01  |
|       | 14     | <0.01  | <0.01   | <0.01 | <0.01  | -      | -      | -      | -      | -      | -      | -      | -      | -      | <0.01  | <0.01  |
|       | Mean   | <0.01  | <0.01   | <0.01 | <0.01  | <0.01  | 0.0107 | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | 0.0101 | <0.01  | <0.01  |

| Dose  | Animal | Day of t | reatme | nt     |        |        |        |        |        |        |        |        |        |        |        |        |
|-------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| level | number | 0        | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 10     | 13     | 16     | 19     | 22     | 25     | 28     |
|       |        | [mg/kg]  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|       | 6      | <0.01    | -      | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
| Mid   | 7      | <0.01    | -      | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
| aroun | 8      | <0.01    | -      | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
| group | Mean   | <0.01    | -      | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | -      | <0.01  | <0.01  |
|       | 9      | <0.01    | <0.01  | 0.0155 | 0.0208 | 0.0239 | 0.0266 | 0.0195 | 0.0210 | 0.0202 | 0.0150 | 0.0174 | 0.0179 | 0.0216 | 0.0229 | 0.0227 |
|       | 10     | <0.01    | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  |
| High  | 11     | <0.01    | <0.01  | 0.0154 | 0.0205 | 0.0203 | 0.0186 | 0.0229 | 0.0283 | 0.0184 | 0.0112 | 0.0162 | 0.0141 | 0.0226 | 0.0331 | 0.0160 |
| dose  | 12     | <0.01    | <0.01  | <0.01  | <0.01  | -      | -      | -      | -      | -      | -      | -      | -      | -      | 0.0131 | <0.01  |
| group | 13     | <0.01    | <0.01  | <0.01  | 0.0134 | -      | -      | -      | -      | -      | -      | -      | -      | -      | <0.01  | <0.01  |
|       | 14     | <0.01    | <0.01  | <0.01  | <0.01  | -      | -      | -      | -      | -      | -      | -      | -      | -      | 0.0167 | <0.01  |
|       | Mean   | <0.01    | <0.01  | 0.0104 | 0.0143 | 0.0164 | 0.0170 | 0.0157 | 0.0178 | 0.0146 | 0.0100 | 0.0129 | 0.0120 | 0.0163 | 0.0163 | 0.0119 |

Table 135 Residues of DAPA in milk

Table 136 Residues of fluazinam, AMPA and DAPA in milk from the depuration phase

| Dose  | Animal | Study day   |        |       |              |       |       |              |       |       |
|-------|--------|-------------|--------|-------|--------------|-------|-------|--------------|-------|-------|
| level | number | 29          | 30     | 31    | 29           | 30    | 31    | 29           | 30    | 31    |
|       |        | IKF-1216 [m | ng/kg] |       | AMPA [mg/kg] |       |       | DAPA [mg/kg] |       |       |
| High  | 12     | <0.01       | -      | -     | <0.01        | -     | -     | <0.01        | -     | -     |
| dose  | 13     | <0.01       | <0.01  | <0.01 | <0.01        | <0.01 | <0.01 | <0.01        | <0.01 | <0.01 |
| group | 14     | <0.01       | <0.01  | <0.01 | <0.01        | <0.01 | <0.01 | <0.01        | <0.01 | <0.01 |

| Table 137 Distribution of residues of fluazinam | , AMPA and DAPA in skim milk and cream |
|-------------------------------------------------|----------------------------------------|
|-------------------------------------------------|----------------------------------------|

| Dose level       | Animal number | Day | Fluazinam | AMPA    | DAPA    |
|------------------|---------------|-----|-----------|---------|---------|
|                  |               |     | [mg/kg]   | [mg/kg] | [mg/kg] |
| Whole milk       |               |     |           |         |         |
|                  | 9             | 13  | <0.01     | 0.0114  | 0.0150  |
| Lligh doco group | 10            | 13  | <0.01     | <0.01   | <0.01   |
| High dose group  | 11            | 13  | <0.01     | <0.01   | 0.0112  |
|                  | Mean          |     | <0.01     | <0.01   | 0.0101  |
| Skim milk        |               |     | <u> </u>  |         |         |
|                  | 9             | 13  | <0.01     | <0.01   | <0.01   |
| Linh dooo group  | 10            | 13  | <0.01     | <0.01   | <0.01   |
| High dose group  | 11            | 13  | <0.01     | <0.01   | <0.01   |
|                  | Mean          |     | <0.01     | <0.01   | <0.01   |
| Cream            |               |     | ·         |         |         |
|                  | 9             | 13  | <0.01     | 0.0565  | 0.0860  |
|                  | 10            | 13  | <0.01     | 0.0170  | 0.0338  |
| High dose group  | 11            | 13  | <0.01     | 0.0342  | 0.0765  |
|                  | Mean          |     |           | <0.01   | 0.0654  |
| Whole milk       |               |     | ·         |         |         |
|                  | 9             | 28  | <0.01     | 0.0147  | 0.0227  |
| Likeh dess ensur | 10            | 28  | <0.01     | <0.01   | <0.01   |
| High dose group  | 11            | 28  | <0.01     | <0.01   | 0.0160  |
| l                | Mean          |     | <0.01     | <0.01   | 0.0145  |
| Skim milk        |               |     |           |         |         |
|                  | 9             | 28  | <0.01     | <0.01   | <0.01   |
|                  | 10            | 28  | <0.01     | <0.01   | <0.01   |
| High dose group  | 11            | 28  | <0.01     | <0.01   | <0.01   |
| l                | Mean          |     | <0.01     | <0.01   | <0.01   |
| Cream            |               |     | ·         |         |         |
|                  | 9             | 28  | <0.01     | 0.0582  | 0.1200  |
| High dose group  | 10            | 28  | <0.01     | 0.0215  | 0.0324  |
| ingii acco gioap | 11            | 28  | <0.01     | 0.0348  | 0.1000  |

478

| -          |      |         |
|------------|------|---------|
|            | 1127 | nnm     |
| <b>F</b> 1 | uaz  | ווומווו |
|            |      |         |

| Dose level | Animal number | Day | Fluazinam | AMPA    | DAPA    |
|------------|---------------|-----|-----------|---------|---------|
|            |               |     | [mg/kg]   | [mg/kg] | [mg/kg] |
|            | Mean          |     | <0.01     | <0.01   | 0.0841  |

Total residues of fluazinam, AMPA and DAPA in tissues are shown in Tables 138 to 141.

Since mean residues in muscle of the high dose group were below the limit of quantification (0.01 mg/kg), the muscle samples from the mid and low dose group were not analysed.

| Table 138 Distribution | of residues of fluazinam. | AMPA and DAPA in muscle |
|------------------------|---------------------------|-------------------------|
|                        | 101103luuc3 01 Huuzihum   |                         |

| Dose level       | Animal number    | Matrix       | Fluazinam<br>[mg/kg] | AMPA<br>[mg/kg] | DAPA<br>[mg/kg] |
|------------------|------------------|--------------|----------------------|-----------------|-----------------|
|                  | 9                | Loin muscle  | <0.01                | 0.0101          | 0.0179          |
|                  | 10               | Loin muscle  | <0.01                | <0.01           | <0.01           |
|                  | 11               | Loin muscle  | <0.01                | <0.01           | <0.01           |
| High dose group  | 9                | Round muscle | <0.01                | <0.01           | <0.01           |
|                  | 10               | Round muscle | <0.01                | <0.01           | <0.01           |
|                  | 11               | Round muscle | <0.01                | <0.01           | <0.01           |
|                  | Mean             |              | <0.01                | <0.01           | <0.01           |
| Depuration phase | Depuration phase |              |                      |                 |                 |
|                  | 12               | Loin muscle  | <0.01                | <0.01           | <0.01           |
|                  | 12               | Round muscle | <0.01                | <0.01           | <0.01           |
| High dose group- | 13               | Loin muscle  | <0.01                | <0.01           | <0.01           |
| depuration phase | 13               | Round muscle | <0.01                | <0.01           | <0.01           |
|                  | 14               | Loin muscle  | <0.01                | <0.01           | <0.01           |
|                  | 14               | Round muscle | <0.01                | <0.01           | <0.01           |

Table 139 Distribution of residues of fluazinam, AMPA and DAPA in fat

| Dose level      | Animal number | Matrix           | Fluazinam | AMPA    | DAPA    |
|-----------------|---------------|------------------|-----------|---------|---------|
|                 |               |                  | [mg/kg]   | [mg/kg] | [mg/kg] |
|                 | 3             | Abdominal fat    | <0.01     | <0.01   | 0.0113  |
|                 |               | Perirenal fat    | <0.01     | <0.01   | <0.01   |
|                 |               | Subcutaneous fat | <0.01     | <0.01   | <0.01   |
|                 | 4             | Abdominal fat    | <0.01     | <0.01   | <0.01   |
|                 |               | Perirenal fat    | <0.01     | <0.01   | <0.01   |
| Low doso group  |               | Subcutaneous fat | <0.01     | <0.01   | <0.01   |
| LOW dose group  | 5             | Abdominal fat    | <0.01     | 0.0169  | 0.0219  |
|                 |               | Perirenal fat    | <0.01     | 0.0145  | 0.0197  |
|                 |               | Subcutaneous fat | <0.01     | <0.01   | 0.0107  |
|                 | Mean          | Abdominal fat    | <0.01     | 0.0111  | 0.0132  |
|                 | Mean          | Perirenal fat    | <0.01     | <0.01   | 0.0111  |
|                 | Mean          | Subcutaneous fat | <0.01     | <0.01   | <0.01   |
|                 | 6             | Abdominal fat    | <0.01     | 0.0173  | 0.0253  |
|                 |               | Perirenal fat    | <0.01     | 0.0152  | 0.0195  |
|                 |               | Subcutaneous fat | <0.01     | <0.01   | <0.01   |
|                 | 7             | Abdominal fat    | <0.01     | <0.01   | <0.01   |
|                 |               | Perirenal fat    | <0.01     | 0.0331  | 0.0432  |
| Mid doco group  |               | Subcutaneous fat | <0.01     | 0.0210  | 0.0273  |
| Mid dose group  | 8             | Abdominal fat    | <0.01     | 0.0201  | 0.0223  |
| ĺ               |               | Perirenal fat    | <0.01     | 0.0218  | 0.0237  |
| ĺ               |               | Subcutaneous fat | <0.01     | 0.0146  | 0.0152  |
| ĺ               | Mean          | Abdominal fat    | <0.01     | 0.0152  | 0.0179  |
| ĺ               | Mean          | Perirenal fat    | <0.01     | 0.0234  | 0.0288  |
| <u> </u>        | Mean          | Subcutaneous fat | <0.01     | 0.0140  | 0.0174  |
|                 | 9             | Abdominal fat    | <0.01     | 0.1439  | 0.2437  |
| ĺ               |               | Perirenal fat    | <0.01     | 0.1341  | 0.1853  |
| High dose group |               | Subcutaneous fat | <0.01     | 0.1100  | 0.1757  |
| ĺ               | 10            | Abdominal fat    | <0.01     | 0.0624  | 0.0468  |
| i i             |               | Perirenal fat    | <0.01     | 0.0675  | 0.0473  |

479

| Dose level            | Animal number | Matrix           | Fluazinam | AMPA    | DAPA    |
|-----------------------|---------------|------------------|-----------|---------|---------|
|                       |               |                  | [mg/kg]   | [mg/kg] | [mg/kg] |
|                       |               | Subcutaneous fat | <0.01     | 0.0476  | 0.0378  |
|                       | 11            | Abdominal fat    | <0.01     | 0.1182  | 0.2875  |
|                       |               | Perirenal fat    | <0.01     | 0.1035  | 0.2348  |
|                       |               | Subcutaneous fat | <0.01     | 0.0618  | 0.1295  |
|                       | Mean          | Abdominal fat    | <0.01     | 0.1082  | 0.1927  |
|                       | Mean          | Perirenal fat    | <0.01     | 0.1017  | 0.1558  |
|                       | Mean          | Subcutaneous fat | <0.01     | 0.0731  | 0.1143  |
| Depuration phase      |               |                  |           |         |         |
| High dose group-      | 12            | Abdominal fat    | <0.01     | 0.0575  | 0.0891  |
| depuration, study day |               | Perirenal fat    | <0.01     | 0.0398  | 0.0697  |
| 29                    |               | Subcutaneous fat | <0.01     | 0.0176  | 0.0277  |
|                       |               | Mean             | <0.01     | 0.0383  | 0.1865  |
| High dose group-      | 13            | Abdominal fat    | <0.01     | <0.01   | <0.01   |
| depuration, study day |               | Perirenal fat    | <0.01     | <0.01   | <0.01   |
| 31                    |               | Subcutaneous fat | <0.01     | <0.01   | <0.01   |
|                       |               | Mean             | <0.01     | <0.01   | <0.01   |
| High dose group-      | 14            | Abdominal fat    | <0.01     | 0.0141  | 0.0293  |
| depuration, study day |               | Perirenal fat    | <0.01     | <0.01   | 0.0107  |
| 35                    |               | Subcutaneous fat | <0.01     | 0.0121  | 0.0293  |
|                       |               | Mean             | <0.01     | 0.0121  | 0.0693  |

Table 140 Distribution of residues of fluazinam, AMPA and DAPA in liver

| Dose level                                      | Animal number                        | Matrix | Fluazinam<br>[mg/kg] <sup>a</sup> | AMPA<br>[mg/kg] <sup>a</sup> | DAPA<br>[mg/kg] <sup>b</sup> |
|-------------------------------------------------|--------------------------------------|--------|-----------------------------------|------------------------------|------------------------------|
|                                                 | 3                                    | Liver  | <0.01                             | <0.01                        | <0.01                        |
| Loui dooo maxim                                 | 4                                    | Liver  | <0.01                             | <0.01                        | <0.01                        |
| Low dose group                                  | 5                                    | Liver  | <0.01                             | <0.01                        | <0.01                        |
|                                                 | Mean                                 |        | <0.01                             | <0.01                        | <0.01                        |
|                                                 | 6                                    | Liver  | <0.01                             | <0.01                        | <0.01                        |
| Mid dooo group                                  | 7                                    | Liver  | <0.01                             | <0.01                        | 0.0222                       |
| wid dose group                                  | 8                                    | Liver  | <0.01                             | <0.01                        | <0.01                        |
|                                                 | Mean                                 |        | <0.01                             | <0.01                        | 0.0136                       |
|                                                 | 9                                    | Liver  | <0.01                             | 0.0110                       | 0.0220                       |
| Lligh doop group                                | 10                                   | Liver  | <0.01                             | <0.01                        | 0.0130                       |
| High dose group                                 | 11                                   | Liver  | <0.01                             | 0.0140                       | 0.0310                       |
|                                                 | 11 Liver <0.01 0.0140 0   Mean <0.01 | 0.0220 |                                   |                              |                              |
| Depuration phase                                |                                      |        |                                   |                              |                              |
| High dose group-<br>depuration, study day<br>29 | 12                                   | Liver  | <0.01                             | <0.01                        | <0.01                        |
| High dose group-<br>depuration, study day<br>31 | 13                                   | Liver  | <0.01                             | <0.01                        | <0.01                        |
| High dose group-<br>depuration, study day<br>35 | 14                                   | Liver  | <0.01                             | <0.01                        | <0.01                        |

<sup>a</sup> Hydrolysis procedure

<sup>b</sup> Non-hydrolysis procedure

| Table 141 Distribution of residues of fluazinam, AMPA and DAPA in kidn | iey |
|------------------------------------------------------------------------|-----|
|------------------------------------------------------------------------|-----|

| Dose level     | Animal number | Matrix | Fluazinam<br>[mg/kg] <sup>a</sup> | AMPA<br>[mg/kg] <sup>a</sup> | DAPA<br>[mg/kg] <sup>b</sup> |
|----------------|---------------|--------|-----------------------------------|------------------------------|------------------------------|
| Low dose group | 3             | Kidney | <0.01                             | <0.01                        | <0.01                        |
|                | 4             | Kidney | <0.01                             | <0.01                        | <0.01                        |
|                | 5             | Kidney | <0.01                             | <0.01                        | <0.01                        |
|                | Mean          |        | <0.01                             | <0.01                        | <0.01                        |

| Dose level                                      | Animal number | Matrix | Fluazinam<br>[mg/kg] <sup>a</sup> | AMPA<br>[mg/kg] <sup>a</sup> | DAPA<br>[mg/kg] <sup>b</sup> |
|-------------------------------------------------|---------------|--------|-----------------------------------|------------------------------|------------------------------|
|                                                 | 6             | Kidney | <0.01                             | <0.01                        | <0.01                        |
| Mid dooo aroun                                  | 7             | Kidney | <0.01                             | <0.01                        | <0.01                        |
| wid dose group                                  | 8             | Kidney | <0.01                             | <0.01                        | <0.01                        |
|                                                 | Mean          |        | <0.01                             | <0.01                        | <0.01                        |
|                                                 | 9             | Kidney | <0.01                             | <0.01                        | <0.01                        |
|                                                 | 10            | Kidney | <0.01                             | <0.01                        | <0.01                        |
| High dose group                                 | 11            | Kidney | <0.01                             | <0.01                        | <0.01                        |
|                                                 | Mean          |        | <0.01                             | <0.01                        | <0.01                        |
| Depuration phase                                |               |        |                                   |                              |                              |
| High dose group-<br>depuration, study day<br>29 | 12            | Kidney | <0.01                             | <0.01                        | <0.01                        |
| High dose group-<br>depuration, study day<br>31 | 13            | Kidney | <0.01                             | <0.01                        | <0.01                        |
| High dose group-<br>depuration, study day<br>35 | 14            | Kidney | <0.01                             | <0.01                        | <0.01                        |

<sup>a</sup> Hydrolysis procedure

<sup>b</sup> Non-hydrolysis procedure

Lactating cows were dosed for 28 days with fluazinam at feed levels of 2.91, 8.72 and 28.84 mg/kg dry weight for the low, mid and high dose group, respectively. When related to the body weight, the feeding rates were 0.67, 2.10 and 6.40 mg/kg bw/d for the low, mid and high dose group, respectively.

No residues of fluazinam were found in any milk sample (whole milk, skim milk and cream).

Mean residues of AMPA in milk were range from < 0.01 mg/kg to 0.011 mg/kg (day 5) for the high dose group. In the mid dose group residues of AMPA were < 0.01 mg/kg.

In skim milk, AMPA was < 0.01 mg/kg and in cream mean AMPA levels were 0.036 and 0.038 mg/kg for day 13 and 28, respectively.

Mean residues of DAPA in milk ranged from < 0.01 mg/kg) to 0.0178 mg/kg (day 7) for the high dose group. In the mid dose group residues were <0.01 mg/kg.

In skim milk, DAPA was <0.01 mg/kg and in cream, mean residues of DAPA levels were 0.065 and 0.084 mg/kg for day 13 and 28, respectively.

In the depuration phase of the high dose group, residues of fluazinam, AMPA and DAPA in milk were all <0.01 mg/kg.

In muscle, mean residues of fluazinam, AMPA and DAPA in muscle were <0.01 mg/kg in all samples.

In fat, residues of fluazinam were all <0.01 mg/kg. In the low dose group, mean residues of AMPA were highest in abdominal fat (0.011 mg/kg).

For the mid dose group, mean residues of AMPA were highest in the perirenal fat (0.023 mg/kg). In the high dose group, the mean AMPA levels were highest in abdominal fat (0.108 mg/kg).

In the low dose group, mean residues of DAPA were highest in abdominal fat (0.013 mg/kg). For the mid dose group, the mean residues of DAPA, was highest on perirenal phase and was 0.029 mg/kg. In the high dose group, DAPA levels were highest in abdominal fat (0.193 mg/kg).

Residues of fluazinam in liver were <0.01 mg/kg in all samples.

Mean residues of AMPA in liver were <0.01, <0.01 and 0.010 mg/kg for the low, mid and high dose group, respectively.

Mean residues of DAPA in liver were <0.01, 0.014 and 0.022 mg/kg for the low, mid and high dose group, respectively.

Residues of fluazinam, AMPA and DAPA in kidney were all <0.01 mg/kg in all samples.

# APPRAISAL

Fluazinam acts as a fungicide with activity against fungus from the class of *Oomycetes*, especially against *Phytophthora infestans*. It works protectively and needs to be applied before the disease attacks. At the Forty-eighth Session of the CCPR (2016), it was scheduled for evaluation as a new compound by the 2018 JMPR.

The Meeting received information on the identity, physical chemical properties, metabolism (plants, rotational crops and animals), environmental data, methods of analysis, freezer storage data, GAP information, supervised residue trials, fate of residues on processing and animal transfer studies.

In this document, the common names, chemical structures and chemical names of the compounds are as follows:

| Chemical name (IUPAC)                                                                                                                                                                 | Compound Name/Code     | Structure                                                                                                                                                  | Occurrence in metabolism studies                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-Chloro- <i>N</i> -(3-chloro-5-<br>trifluoromethyl-2-<br>pyridyl)- <i>a,a,a</i> -trifluoro-<br>2,6-dinitro- <i>p</i> -toluidine                                                      | Fluazinam,<br>IKF-1216 | $F_3C \longrightarrow NH \longrightarrow O_2N G_2N CI CF_3$                                                                                                | Potatoes,<br>peanut (foliage),<br>grapes,<br>apples,<br>laying hen<br>(liver, kidney,<br>muscle, fat, egg<br>yolk),<br>RAT                                         |
| 3-[[4-amino-3-[[3-chloro-<br>5-(trifluoromethyl)-2-<br>pyridyl]amino]- <i>a,a,a</i> -<br>trifluoro-6-nitro- <i>α</i> -<br>tolyl]thio]-2-(β-D-<br>glucopyranosyloxy)<br>propionic acid | AMGT                   | $\begin{array}{c} F_{3}C - \overbrace{N}^{CI} & NH - \overbrace{O_{2}N}^{CI} - CF_{3} \\ & O_{2}N & SCH_{2}CHCOOH \\ & OH & \\ & OH & \\ & OH \end{array}$ | Potatoes<br>grapes,<br>wine,<br>apples                                                                                                                             |
| 2-(6-amino-3-chloro-<br><i>a,a,a</i> -trifluoro-2-nitro- <i>p</i> -<br>toluidino)-3-chloro-5-<br>(trifluoromethyl) pyridine                                                           | АМРА                   | $F_3C \longrightarrow NH \longrightarrow CI$<br>$H_2N \longrightarrow CF_3$                                                                                | Potatoes,<br>peanut (foliage),<br>wine<br>goat (liver, kidney,<br>muscle, fat, milk),<br>laying hen (liver,<br>kidney, muscle, fat,<br>egg yolk and white),<br>RAT |
| 2-chloro-6-[(3-chloro-5-<br>(trifluoromethyl)-2-<br>pyridyl)amino]- <i>a,a,a</i> -<br>trifluoro-5-nitro- <i>m</i> -cresol                                                             | SDS-67230              | $F_3C \longrightarrow NH \longrightarrow O_2N$                                                                                                             | Grapes,<br>apples                                                                                                                                                  |
| 2-(2-amino-3-chloro-<br><i>a,a,a</i> -trifluoro-6-nitro- <i>p</i> -<br>toluidino)-3-chloro-5-<br>(trifluoromethyl) pyridine                                                           | МАРА                   | $F_3C \longrightarrow NH \longrightarrow O_2N$                                                                                                             | Laying hen (liver,<br>kidney, muscle, fat,<br>egg yolk and white)                                                                                                  |
| Trifluoroacetic acid                                                                                                                                                                  | TFAA                   | 0<br>  <br>F <sub>3</sub> C—СОН                                                                                                                            | Potatoes,<br>peanut (foliage),<br>apples<br>rotational crops:                                                                                                      |

| Chemical name (IUPAC)                                                                                                                       | Compound Name/Code | Structure                                                                 | Occurrence in metabolism studies                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                                             |                    |                                                                           | lettuce (DAT 30)<br>carrots (DAT 30)<br>barley grain:<br>DAT 120<br>DAT 365        |
| 5-[(3-chloro-5-<br>(trifluoromethyl)-2-<br>pyridyl)amino]- <i>a,a,a</i> -<br>trifluoro-4,6-dinitro- <i>o</i> -<br>cresol                    | НҮРА               | $F_3C \longrightarrow NH \longrightarrow O_2N OH$                         | Laying hen (liver,<br>kidney, muscle, fat,<br>egg yolk and white);<br>SOIL (major) |
| 3-chloro-2-(2,6-diamino-<br>3-chloro- <i>a,a,a</i> -<br>trifluoromethyl- <i>p</i> -<br>toluidino)-3-chloro-5-<br>(trifluoromethyl) pyridine | DAPA               | $F_3C \longrightarrow NH \longrightarrow CI \\ H_2N \longrightarrow CF_3$ | goat (liver, kidney,<br>muscle, fat, bile,<br>urine, milk)                         |
| (                                                                                                                                           |                    |                                                                           | laying hen (liver,<br>kidney, muscle, fat<br>egg yolk and white),<br>RAT           |
| 5-Chloro-6-(3-chloro-2,6-<br>dinitro-4-<br>trifluoromethylanilino)<br>nicotinic acid                                                        | САРА               | $HO_2C$ $NH$ $CI$ $O_2N$ $CI$ $CF_3$ $O_2N$                               | Potato<br>Hydrolysis                                                               |
| 6-(4-Carboxy-3-chloro-<br>2,6-dinitroanilino)-5-<br>chloronicotinic acid                                                                    | DCPA               |                                                                           | Hydrolysis                                                                         |
| 4,9-dichloro-6-nitro-8-<br>(trifluoromethyl)-pyrido-<br>[1,2-a]benzimidazole-2-<br>carboxylic acid                                          | G-504              |                                                                           | Hydrolysis                                                                         |

With respect to the physical and chemical properties that may impact on residues in crops, fluazinam is not regarded as volatile, it has a higher solubility in organic solvents compared to its solubility in water, the partition coefficient indicates its potential to sequester in fat, and aqueous photolysis and hydrolysis may play an important role in its degradation.

## Plant metabolism

The Meeting noted that TFAA was identified in the plant metabolism studies (primary and rotational) formed as a result of ring cleavage and fragmentation. The plant metabolism studies were conducted with phenyl or pyridyl labelled fluazinam. The Meeting noted that it would not be possible to identify and quantify residues of TFAA that may have arisen from the pyridyl radiolabelled studies.

Potato

Study 1

Potatoes, grown outdoors, were treated with foliar applications of <sup>14</sup>C-fluazinam labelled in the phenyl or pyridyl ring. Two application regimes were investigated; in the low-dose regime potatoes received four applications of 0.6 kg ai/ha and in the high-dose regime potatoes received four applications at 1.8 kg ai/ha. The applications were performed 55, 76, 99 and 105 days after sowing.

Potato tubers were sampled 7 and 22 days after the last application, with the latter time period representing crop maturity. Potato tubers were separated into pulp and peel.

At 7/22 DALA the TRR for whole potato were: low dose-phenyl label (0.065/0.069 mg eq/kg), low dose-pyridyl label (0.055/0.072 mg eq/kg), high dose-phenyl label (0.11/0.11 mg eq/kg) and high dose-pyridyl label (0.105/0.10 mg eq/kg).

Initial solvent extractions were conducted with acetonitrile, acetonitrile: water (80: 20, v/v) and methanol: water (80: 20, v/v). Solvent extractable residues, in terms of whole potatoes, ranged from 30-51% TRR. Owing to the low radioactivity limited identification work was undertaken. In the peel samples (low dose, 22 DALA) all identified components, including fluazinam, were  $\leq 0.004$  mg eq/kg. A number of unidentified metabolites were found with the highest metabolite, unknown M3, occurring at a level of 0.011 mg eq/kg (0.002 mg eq/kg in terms of whole potato).

#### Study 2

Potatoes (variety *Kennebec*), grown outdoor, were treated four times, with a foliar spray, either with phenyl-labelled <sup>14</sup>C-fluazinam at a rate of 0.505 kg ai/ha or pyridyl-labelled <sup>14</sup>C-fluazinam at a rate of 0.43 kg ai/ha. Applications were made 40–41, 26–27, 15– 16 and 6–7 days before harvest.

Total radioactive residues in potato were low: 0.0097 mg eq/kg (phenyl label) and 0.0236 mg eq/kg (pyridyl label).

Initial residues were extracted with acetonitrile. The extractable residue were 36% TRR for the phenyl label and 47% TRR for the pyridyl label. Owing to the low radioactivity, limited identification work was undertaken. TFAA was identified at a level of < 0.001 mg eg/kg, AMGT (< 0.001 mg eg/kg), AMPA (< 0.001 mg eg/kg) and fluazinam (0.001 mg /kg).

The PES, accounting for 48–51% TRR, was found to be almost entirely composed of starch.

#### Grapes

Field grown grapevines (variety *Pinot Noir*) were treated twice, with a foliar spray, with <sup>14</sup>C-phenyl-fluazinam or <sup>14</sup>C-pyridyl-fluazinam at the rate of 0.75 kg ai/ha. The first application was made at 80% of petal fall and the second at bunch closure (35 days after the first application). Samples were harvested 71 days after the last application. The TRR was 1.7 mg eq/kg from grapes treated with phenyl-label and 1.7 mg eg/kg in grapes treated with pyridyl-label.

Solvent extraction (acetonitrile: water, 90: 10, v/v) extracted 57% TRR (phenyl label) and 49% TRR (pyridyl label). In the extractable residue fluazinam (max 0.36 mg/kg, 21.3% TRR) was the major component. All other identified metabolites occurred at levels of < 4% TRR.

A large portion of the radioactivity present in the solids (PES) after the initial solvent extractions was found to be associated with natural products: 52% TRR for the phenyl label and 45% TRR for the pyridyl label.

The radioactivity in wine produced from the treated grapes was also investigated. The TRR residues in wine were: 0.73 mg eq/kg (vin de presse, both labels), 0.41 mg eq/kg (vin de goutte, phenyl label) and 0.54 mg eq/kg (vin de goutte, pyridyl label). The solvent (hexane and ethyl acetate) extractable residue ranged from 24–36% TRR. The aqueous phase accounted for 45% TRR for both the phenyl and pyridyl labels. The only two metabolites identified were AMPA (0.038 mg eq/kg, 5.2% TRR) and AMGT (0.076 mg eq/kg, 10% TRR). The ethanol, produced from the fermentation process, was found to contain radioactive residues (maximum 0.043 mg eq/kg, 5.9% TRR).

## Apple

Apple trees (variety *Golden delicious*) grown outdoors were treated with a foliar spray with either phenyl or pyridyl-labelled fluazinam. A total of six applications of approximately 0.93 kg ai/ha per application were made. The first application was applied 161 days before harvest. The following five applications were made at intervals of 9, 22, 34, 34, and 30 days.

Samples were harvested 32 days after the last application.

The total radioactive residue levels in apples were 1.9 mg eq/kg and 2.8 mg eq/kg for the phenyl and pyridyl labels respectively. The apples were surface washed with acetonitrile which accounted for 36% TRR for the phenyl label and 46% TRR for the pyridyl label. Fluazinam (max 1.2 mg/kg, 42% TRR) and SDS-67230 (max 0.07 mg eq/kg, 2.5% TRR) were identified in the surface wash.

In terms of whole apple, including the surface wash, acetonitrile extracted 56% TRR for the phenyl label, and 64% TRR for the pyridyl label.

The whole apples were separated into pomace and juice.

For pomace the extraction with acetonitrile gave an extractability of 20–24% TRR (in terms of whole apple) for both labels. None of the identified metabolites (fluazinam, SDS-37230, AMGT and sugars) occurred at levels above 3% TRR in the solvent extract.

Enzymatic and acid hydrolysis of the PES of the pomace demonstrated a significant portion of the solids were associated with natural products: 26% TRR (phenyl label) and 30% TRR (pyridyl label).

In the juice, the metabolites identified (fluazinam, AMGT and sugars) were all at levels ≤ 5% TRR.

In summary, the main residue identified in apples was fluazinam, ranging from 37 to 45% of the TRR (0.69–1.2 mg/kg). The two metabolites of fluazinam that retained the basic structural form of the parent molecule, SDS-67230 and AMGT, were present at levels below 3% of the TRR (< 0.08 mg eq/kg). Radiolabelled sugars, formed by incorporation of radioactivity, accounted for 6-9% of the TRR (0.16–0.17 mg eq/kg), while structural polymeric compounds such as hemicellulose, pectin. Lignin and cellulose accounted for another 26–30% of the TRR (0.49–0.839 mg eq/kg). TFAA comprised < 1% of the TRR (0.003 mg eq/kg).

## Peanut

Peanut plants, initially grown outdoors and then grown under protection, were treated four times with a foliar spray with either phenyl-labelled or pyridyl-labelled fluazinam at a rate of 0.56 kg ai/ha per application. The first application was made 56 days after planting and then at intervals of 21, 22 and 23 days.

Peanut nutmeat, shells and foliage were collected 90 days after the last application.

The TRR distributions for the phenyl/pyridyl labels were: foliage (25 mg eq/kg/32 mg eq/kg), shells (0.87 mg eq/kg/ 4.7 mg eq/kg) and nutmeats (0.85 mg eq/kg/ 1.2 mg eq/kg).

Initial solvent extraction was performed with acetonitrile: water (80: 20, v/v) for foliage and shells, and with hexane, acetonitrile and water for the nutmeats. The extractabilities for the phenyl/pyridyl labels were: foliage (37%/ 47% TRR), shells (55% / 44% TRR) and nutmeats (51%/ 54% TRR).

In nutmeats, neither fluazinam nor any metabolites containing the phenyl-pyridyl ring structure were present in detectable amounts ( $\geq$  0.01 mg eq/kg). The major metabolites were TFAA (0.28 mg eq/kg, 38% TRR and fatty acids (0.23–0.58 mg eq/kg, 31–49% TRR).

Foliage contained detectable levels of fluazinam (1.8–2.3 mg/kg, 7.4–7.5% TRR) and the metabolite AMPA (0.24–0.4 mg eq/kg, 0.8–1.6% TRR). TFAA was also identified indicating that extensive metabolism of fluazinam had occurred.

In peanut shells, only fluazinam was identified.

The enzymatic, acid and base hydrolysis of the PES demonstrated that a significant portion of the radioactive residue was associated with natural products for the foliage and shells: foliage (49–53% TRR) and shells (40–52% TRR).

For nutmeats half of the radioactivity in the PES were found to be associated with natural products: 23–28% of the TRR.

In summary, the metabolism of fluazinam in peanuts was found to consist of extensive degradation and incorporation of the radioactivity into natural products

#### Summary of plant metabolism

In summary, the metabolism of fluazinam in primary crops of grapes, apples, potatoes and peanuts has been investigated. The metabolism of fluazinam proceeds through the reduction of one or both nitro groups to form AMPA and then replacement of the phenyl chlorine with a sulphur-containing side chain, followed by attachment of glucose to form AMGT. The metabolite SDS-67230 was also identified in apples and grapes.

Fluazinam is the main residue on plant parts such as foliage or fruit that are exposed to the spray application. However, fluazinam was not found in peanut nutmeats and only at low levels in potato tubers.

The appearance of radiolabelled natural products provides evidence that fluazinam is extensively metabolised. The presence of TFAA also supports the extensive metabolism of fluazinam and the incorporation into natural products. In potatoes, the fact that radioactivity from both phenyl ring- and pyridyl ring-labelled fluazinam appeared in starch indicated that both rings were broken down into fragments that could enter the carbon pool.

For the plant metabolites identified, only AMPA was observed in the rat metabolism studies.

#### Animal metabolism

The Meeting received animal metabolism studies with fluazinam in goats and hens. Evaluation of the metabolism studies in rats was carried out by the WHO core assessment group.

The tissues, milk and egg from the metabolism studies were stored at  $\leq$  -18 °C for up to 6 months, negating the need to generate storage stability data. However, the Meeting noted that the storage stability data, generated using fortified samples, demonstrated that fluazinam, AMPA and DAPA were unstable in a number of animal matrices.

Within the livestock metabolism studies the metabolic profiles of various samples after different storage periods were compared. The metabolic profiles of ruminant liver, time zero compared to 4 months of storage, and milk, time zero compared to 7

month of storage, were comparable. For the hen liver and egg samples, metabolic profile changes were observed from the time zero compared to 4 months of storage. The changes were most prominent for three unidentified metabolites in egg yolk.

A comparison of the metabolic profiles for stored radiolabelled muscle (hen and goat) samples, for which the greatest instability was observed for the fortified samples, were not undertaken.

The meeting decided that owing to the instability observed in the fortified samples, in particular for muscle (goat), the lack of information on the stability of radiolabelled muscle samples (hen and goat) and the changes observed in the HPLC profiles for hen liver and egg, not to use the livestock metabolism studies to recommend residue definitions for animal commodities.

## Environmental fate

The Meeting received information on the environmental fate and behaviour of fluazinam, including aerobic soil degradation, soil photolysis, aqueous photolysis and aqueous hydrolysis. Studies were also received on the behaviour of [<sup>14</sup>C]-fluazinam in rotational crops.

## Aerobic soil degradation

Soil degradation studies were conducted on two soil types at application rates ranging from 0.75-5 kg ai/ha. The primary degradates observed were MAPA (maximum 2.2% applied radioactivity (AR), 30 DAT), HYPA (maximum 14% AR, 48 DAT) and DAPA (1.9% AR, 14 DAT). The mineralisation of fluazinam into CO<sub>2</sub> accounted for up to a maximum 6% of the AR and soil bound residues accounted for up to 46% of the AR.

The  $DT_{50}$  values calculated for fluazinam ranged from 17–56 days for the sandy loam soil. A  $DT_{50}$  value of 212 days was calculated for the loamy sand soil.

For HYPA the DT<sub>50</sub> value calculated for the sandy loam soil ranged from 166–257 days.

The Meeting considered that fluazinam was moderately-medium persistent in soil under aerobic conditions.

### Soil photolysis

A photo-degradation study on a loamy sand soil was conducted with [<sup>14</sup>C]-fluazinam at a dose rate of approximately 3 mg/kg. The samples were exposed to simulated sunlight for a 12 hour light/12 hour dark cycle for 30 days.

The  $DT_{50}$  values for the net photodegradation of fluazinam were 32 and 21 days for the phenyl and pyridyl labels respectively.

Fluazinam degraded moderately in light and represented an average of 35% of the AR after 30 days. After 30 days  $CO_2$  accounted for an average of 2.4% of the AR and bound residues accounted for an average of 22% of the AR. The only metabolites identified were AMPA and HYPA, and after 30 days these metabolites accounted for an average of 4.7% and 6.2% of the AR respectively.

The Meeting considered that fluazinam was stable in soil when exposed to light.

### Aqueous photolysis

The aqueous photolysis of fluazinam was investigated for [<sup>14</sup>C]-fluazinam in sterile buffer at pH 5. The samples were exposed to simulated sunlight for a 12 hour light/12 hour dark cycle for 30 days. The only major analytes identified were G-504 (maximum 17% TRR, at day 10) and CO<sub>2</sub> (maximum 18% TRR after 30 days). The DT<sub>50</sub> value for fluazinam was 2.5 days.

The Meeting concluded that photolysis may play an important role in the degradation of fluazinam.

## Aqueous hydrolysis

Fluazinam was found to be hydrolytically stable at pH 4 for 5 days at 50 °C. At pH 7 and 9 (stored for 29 days at 25 °C and 56 days at 50 °C) fluazinam was hydrolytically unstable.

At pH 7 and 25 °C fluazinam was hydrolysed to CAPA which was present at > 90% of the AR at the end of the incubation period. At pH 7 and 50 °C fluazinam was hydrolysed to CAPA and DCPA. At the end of the incubation period DCPA accounted for up to 71% of the AR and CAPA accounted for up to 29% of the AR.`

At pH 9 hydrolysis of fluazinam was comparable to that observed at pH 7.

The  $DT_{50}$  values calculated at pH 7 and 25 °C ranged from 2.7–4.5 days. At pH 9 and 25 °C the  $DT_{50}$  values ranged from 3.5–3.9 days.

486

The Meeting concluded that hydrolysis may play an important role in the degradation of fluazinam.

### Confined rotational crop studies

A confined rotational crop study was undertaken with the application of either phenyl or pyridyl labelled fluazinam to the bare soil at an application rate of  $2 \times 1.12$  kg ai/ha with an interval of 28 days between applications. Rotational crops of barley, carrots and lettuce were planted 30, 120 and 365 days after the last application.

The TRR in the mature crops tested were 0.04–0.30 mg eq/kg (lettuce), < 0.01–0.07 mg eq/kg (carrot roots), 0.034–0.35 mg eq/kg (carrot tops), 0.075–0.93 mg eq/kg (barley forage), 0.054–0.30 mg eq/kg (barley grain) and 0.093–1.2 mg eq/kg (barley straw).

The initial extraction was undertaken with methanol: acetone (1:1, v/v). The extractabilities were 51–95% TRR (mature lettuce), 69–92% TRR (mature carrot root), 45–91% TRR (mature carrot top), 8.8–78% TRR (barley grain), 68–96% TRR (barley forage) and 41–85% TRR (barley straw).

TFAA was found in the solvent extracts from all crops and all plant back intervals. The levels ranged from 0.004 mg eq/kg (35% TRR) for carrot roots for a PBI of 365 days to 0.88 mg eq/kg (94% TRR) for barely forage from a PBI of 120 days.

HPLC analysis of the solvent extracts resulted in several distinct regions being identified. The HPLC profiles indicated each region contained multiple components. In addition, the HPLC profiles of the extracts were different for the phenyl and pyridyl labels. These two pieces of information, along with the presence of TFAA in the rotational crops indicates cleavage of the two rings and extensive fragmentation.

Cellulase hydrolysis of the PES succeeded in releasing 11% TRR. Analyses of the aqueous fractions from enzyme hydrolysis indicated two regions of radioactivity. Subsequent mild acid and strong base hydrolysis succeeded in releasing most of the radioactivity from the PES. After base hydrolysis the resulting PES-fractions were all < 10% of the TRR and < 0.01 mg eq/kg, with the exception of phenyl-label barley straw where a TRR of 0.011 mg eq/kg was obtained.

Amylase hydrolysis of the grain PES demonstrated that up to 29% TRR was associated with starch.

In summary, in rotational crops no residues of fluazinam or related compounds based on the two-ring structure of fluazinam were found. Differences in the HPLC profiles from the phenyl and pyridyl labels indicate extensive metabolism of fluazinam. The only metabolite identified was TFAA. This occurred in significant amounts in lettuce (0.45 mg eq/kg, 120 day PBI), barley grains (0.18 mg eq/kg, 365 day PBI) and carrots (0.07 mg eq/kg, 30 day PBI). Enzymatic, base and acid hydrolysis did not release fluazinam or any other structurally related two ring structures. The incorporation into natural plant products, such as starch, was demonstrated.

Overall the metabolic pattern in rotational crops is more extensive than observed in primary crops.

The Meeting agreed that residues of TFAA could occur at significant levels in rotational crops.

The meeting noted that the rotational crop metabolism study was underdosed by a factor of 2.3 when considering the crops that can be rotated and the maximum application rates considered in this Meeting. In addition, since the position of the pyridyl –radiolabel does not address formation of the TFAA, no information on its presence in the raw agricultural commodities is available for the representative samples. For the phenyl-label, the meeting noted that TFAA was quantified using LSC-detection. It remains unclear if the lower radioactivity in TFAA compared to the full phenyl-label (1 vs 6 <sup>14</sup>C-atoms) was taken into account for the quantification of residues. The Meeting concluded that the data submitted are insufficient to estimate TFAA concentrations under field conditions.

## Methods of analysis

#### Plant commodities

Residues were determined in crops using several different analytical methods. Following solvent extraction, using various solvents, and sample clean up, the majority of the methods employed GC-ECD to determine fluazinam. LC-MS/MS was also employed. An LOQ of 0.01 mg/kg was supported for fluazinam. The Meeting concluded that suitable methods are available for the determination of fluazinam in the crops under consideration.

An LC-MS/MS enforcement method was also validated for the determination of fluazinam in crops of high starch, high acid, high water, high protein and high oil content. Two ion transitions were validated and an LOQ of 0.01 mg/kg was supported for fluazinam in all five crop matrices. The method was successfully validated by an independent laboratory. The extraction efficiency of the method was not investigated. The method employed methanol: acetic acid (98: 2, v/v) as the extraction solvent compared to aqueous acetonitrile extractions employed in the plant metabolism studies.

The applicability of previous versions of FDA PAM methods for the determination of fluazinam in crops of high water content and high fat content was demonstrated.

#### Animal commodities

A method was investigated for the determination of fluazinam, AMPA and DAPA in animal matrices. This method was used in the ruminant feeding study.

In this method, milk and tissues were extracted with various solvents and then concentrated and partitioned in hexane. Following evaporation to near dryness and dissolving the residue in acetonitrile: water (1:1, v/v) final determination was achieved by GC-MS (DAPA/milk only) and LC-MS/MS (fluazinam, AMPA and DAPA).

For the determination of conjugates in liver and kidney, samples were also extracted with aqueous acetonitrile followed by an additional hydrolysis step (HCI at 37 °C for 1 hour).

Only three replicates were undertaken at each fortification level. However, the Meeting agreed the data were sufficient to conclude on the accuracy and repeatability of the method.

The Meeting agreed that the method had not been validated for all analyte/matrix combinations and in particular the recoveries were poor for fluazinam/kidney, AMPA/kidney and DAPA/liver.

The extraction efficiency of this method was not investigated.

The applicability of the hydrolysis step was investigated with analytical standards of the free form of the analytes only, standards of the conjugates were not employed. The Meeting concluded that the validation data were not acceptable for the determination of AMPA in kidney and DAPA in liver and kidney. In addition, the Meeting concluded that as the validation data were not generated using standards of the conjugates, or using samples with incurred residues (e.g. if standards of the conjugates are unstable), then the efficiency of the hydrolysis step had not been investigated.

It was noted by the Meeting that validation data had been generated for only one ion transition.

The initial ILV of the method was unsuccessful. Owing to the poor reproducibility observed in the ILV, the extraction procedure (non-hydrolysis method) was modified and a second ILV undertaken. Overall the reproducibility of the modified extraction procedure was demonstrated for the determination of fluazinam, AMPA and DAPA in liver only.

The meeting concluded that the method employed in the ruminant feeding study was not suitable and therefore the results from the ruminant feeding study could not be relied on. With respect to enforcement, reproducibility has only been demonstrated for a modified extraction procedure for the determination of fluazinam, AMPA and DAPA in liver.

### Stability of residues in stored analytical samples

#### Plant commodities

The freezer storage stability of fluazinam in homogenised plant samples fortified with fluazinam was investigated in a number of matrices. Fluazinam was found to be stable on storage in crops with high water content for at least 915 days, crops of a high acid content for at least 1144 days, crops of high starch content for at least 1096 days and crops of high oil content for at least 790 days.

Additional stability investigations were undertaken as part of a number of residue trials. In the majority of these studies both the stored samples and the residue trial samples were subjected to significant temperature variations throughout the study (maximum 0 to -40 °C). As a result of the instability of fluazinam observed in these crops (broccoli, mustard greens, snap beans, lima beans and ginseng) the Meeting concluded the trials could not be used to estimate maximum residue levels, STMRs or HR for fluazinam.

Data generated specifically on soya bean, alongside the residue trial samples, demonstrated that fluazinam was stable in soya bean under the storage conditions ( $\leq$  -10 °C for 153 days) employed in the residue trial.

#### Animal commodities

The stability of fluazinam, AMPA and DAPA in tissues and milk was investigated as part of the ruminant feeding study. Fluazinam, AMPA and DAPA were stable in milk, and fluazinam and AMPA were stable in fat, for the duration of the study. DAPA was not stable in fat, and fluazinam, AMPA and DAPA were not stable in liver and muscle. The Meeting concluded that as a result of the poor stability observed and the poor recoveries for the analytical method, the results of the ruminant feeding study could not be relied on.

#### Definition of the residue

### Plant commodities

The nature of the residue was investigated in apple, grape, potato and peanut following foliar applications. The metabolic pathway is generally similar in all crops investigated but the extent of metabolism in the edible parts investigated differs. In potatoes the TRR levels were low and significant residues were not identified.

In grapes, fluazinam was identified to be the main component of the residue accounting for up to 21% of the TRR. Fluazinam was also the main component of the residue identified in apple accounting for up to 45% of the TRR. In peanut the major compound identified was TFAA accounting for 38% of the TRR).

The nature of the residue in rotational crops was investigated in barley, carrots and lettuce. TFAA was found in significant amounts in lettuce (96% TRR), barley grains (59% of the TRR) and carrots (70% of the TRR). Concentrations were reported up to 0.45 mg eq/kg in lettuce. However, the Meeting concluded that the radio-label addressed only a portion of the total TFAA present.

The nature of the residue under simulated processing conditions was investigated. Under conditions representative of pasteurization (pH4, 90 °C, 20 minutes) fluazinam was found to be stable. However, under conditions representative of baking/brewing/boiling (pH5, 100 °C, 60 minutes) and sterilization (pH 6, 120 °C, 20 minutes) fluazinam was found to be unstable. Under conditions representative of baking/brewing/boiling fluazinam was 34–39% AR and CAPA was 51–56% AR. Under conditions representative of sterilization DCPA was 36–37% AR, G-504 was 11% AR and CAPA was 43–45% AR.

In summary, fluazinam and TFAA are the major compounds present in crops, and DCPA, G-504 and CAPA are the major degradates on processing.

TFAA can occur from several sources including other pesticides (e.g. flurtamone and saflufenacil) and as such would not be a suitable marker.

The Meeting considered that fluazinam was a suitable marker for the enforcement of MRLs for all crops.

Suitable analytical methods are available to determine fluazinam.

From a dietary risk perspective, as the WHO Core Assessment Group could not conclude on toxicological reference values for fluazinam, the Meeting was unable to consider a residue definition for dietary risk assessment.

In summary, based on the above, the Meeting recommended the following residue definitions for compliance with the MRL.

Definition of the residue for compliance with the MRL for plant commodities: fluazinam

The Meeting was unable to conclude on a residue definition for dietary risk assessment.

## Results of supervised residue trials on crops

The Meeting received residue trials data for fluazinam on apple, grape, blueberries, bulb onion, cabbage, mustard greens, broccoli, melon, cucumber, summer squashes, peppers, lettuce, beans with pods, beans without pods, soya beans, carrot, potato, ginseng, peanuts and tea.

Due to the storage stability issues observed in the residue trials for broccoli, mustard greens, snap beans, lima beans and ginseng the Meeting concluded that maximum residue levels, STMRs and HRs could not be estimated for these crops.

TFAA was not included in the analysis of the samples from the residue trials considered in this Meeting.

## Apples

The critical GAP in the USA is for ten foliar applications of 0.504 kg ai/ha with a re-treatment interval of 7 days and a PHI of 28 days. Trials conducted in Canada and the USA were provided.

Residues of fluazinam in apple approximating the GAP in rank order were (n = 13): 0.03, 0.03, 0.04, 0.12, 0.13, 0.14, 0.14, 0.14, 0.15, 0.16, 0.18, 1.4 and 1.5 mg/kg with the highest analytical result reported as 1.7 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 3 mg/kg for apples.

## Grapes

GAP information was provided from Chile, Hungary and Italy. None of the trials matched the GAP for these countries. The Meeting concluded that a maximum residue level, a STMR and HR could not be estimated for grapes.

### Subgroup of Bush berries

The critical GAP in the USA (Subgroup of Blueberries) is for a maximum of six foliar applications at a rate of 0.73 kg ai/ha. The retreatment interval between applications is 7 days with a PHI of 30 days. Trials conducted in the USA were provided.

Residues of fluazinam in blueberries in rank order were (n = 9): 0.19, 0.25, 0.47, 0.53, 0.67, 1.1, 1.4, 1.7 and 1.8 mg/kg with the highest analytical result reported as 2 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 4 mg/kg. The maximum residue level applies to the Subgroup of Bushberries.

## Subgroup of Bulb Onion

The critical GAP in the USA (Subgroup Bulb Onion) is for 6 foliar applications at 0.583 kg ai/ha with a re-treatment interval of 7 days and a PHI of 7 days. Trials conducted in the USA matching GAP were provided.

Residues of fluazinam in bulb onion in rank order were (n = 9): < 0.01, < 0.01, < 0.01, 0.012, 0.016, 0.017, 0.032, 0.04 and 0.098 mg/kg with the highest analytical result reported as 0.10 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.15 mg/kg. The maximum residue level applies to the Subgroup of Bulb Onions.

## Cabbage

The critical GAP in the USA is for a soil drench followed by foliar treatment. The soil drench treatment is 0.025 kg ai/hL with 100 mL of this solution being applied per plant (i.e. 0.025 kg ai/1000 plants) applied at or just after transplantation. The foliar use has a maximum individual application rate of 0.561 kg ai/ha with a total application rate of 3.36 kg ai/ha. The interval between applications is 7 days with a PHI of 7 days. Trials conducted in the USA were provided.

Residues of fluazinam in cabbage in rank order were (n = 8): 0.13, 0.23, 0.28, 0.39, 0.53, 0.67, 1.5 and 1.5 mg/kg with the highest analytical result reported as 1.7 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 3 mg/kg for cabbage.

### Lettuce

The critical GAP in the USA is for one foliar application at 0.87 kg ai/ha with a PHI of 30 days. Six trials, conducted in the USA, can be regarded as supporting the GAP. These trials were all conducted on leaf lettuces. In addition, as the application rate in these trials were outside the 25% limit then the application rate and resulting residue levels needed to be scaled using the proportionality principle.

Residues of fluazinam in lettuce (unscaled) in rank order were (n = 6): < 0.01, 0.02, 0.02, 0.02, 0.16 and 1.6 mg/kg with the highest analytical result reported as 1.7 mg/kg.

Residues of fluazinam in lettuce were scaled using scaling factors ranging from 1.26–1.32.

Residues of fluazinam in lettuce (scaled) in rank order were (n = 6): < 0.01, 0.015, 0.015, 0.015, 0.12 and 1.2 mg/kg with the highest analytical result reported as 1.3 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 3 mg/kg for lettuce, leaf.

## Subgroup of Fruiting Vegetables, Cucurbits–Melon, Pumpkins and Winter squashes

The critical GAP in the USA (Subgroup of Fruiting vegetables, Cucurbits–Melon, Pumpkins and Winter squashes), is for a maximum foliar application rate of 0.876 kg ai/ha with a total application of 5.26 kg ai/ha. The interval between applications is 7 days with a PHI of 30 days. Trials conducted in the USA matching this GAP were provided.

Residues of fluazinam in melon in rank order were (n = 8): < 0.01, < 0.01, 0.011, 0.014, 0.02, 0.021, 0.024 and 0.048 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.07 mg/kg. The maximum residue level applies to the subgroup of Fruiting Vegetables, Cucurbits–Melons, Pumpkins and Winter squashes.

## Subgroup of Fruiting Vegetables, Cucurbits –Cucumbers and Summer squashes

The critical GAP is for the USA (Subgroup of Fruiting Vegetables, Cucurbits-Cucumber and Summer squashes), is for four foliar applications of 0.876 kg ai/ha, with an interval between applications of 7 days and a PHI of 7 days.

A total of six trials, conducted on cucumber, and six trials, conducted on summer squash, were provided. The trials were conducted in the USA. Two of the trials conducted on summer squash cannot be used as the storage interval from sampling to analysis is not supported. One trial in cucumber was regarded as an overdosed trial, but as the residue was < 0.01 mg/kg it is
regarded as supporting the GAP. The remaining trials do not reflect the GAP as 5 applications were made. The first application was a drench treatment and the Meeting agreed that the contribution of this treatment to the overall residue would be low and therefore the trials could be used to support the GAP.

Residues of fluazinam in cucumber and summer squash approximating the GAP in rank order were (n = 10): < 0.01 (7), 0.012, 0.013 and 0.027 mg/kg

For fluazinam the Meeting estimated a maximum residue level of 0.04 mg/kg. The maximum residue level applies to the Subgroup of Fruiting Vegetables, Cucurbits–Cucumbers and Summer squashes.

### Subgroup of Peppers and Subgroup of Eggplant

The critical GAP in the USA (subgroup of Peppers and Subgroup of Eggplant), is for a maximum individual foliar application of 0.876 kg ai/ha with a total application rate of 5.26 kg ai/ha. The interval between applications is 7 days with a PHI of 30 days. The first application may be a soil drench treatment. Trials conducted in the USA were provided.

The trials do not reflect the GAP as the first two applications were a soil drench treatment. The Meeting concluded that the drench treatments early in the growing season are unlikely to impact on the final residue level and therefore the trials can be regarded as supporting the GAP. In five of the trials the interval between two of the applications exceeded the range of 7 days and was up to 55 days. As the residues from all trials were comparable the Meeting concluded all trials could be used to support the GAP.

Residues of fluazinam in peppers approximating the GAP in rank order were (n = 12): < 0.01 (5), 0.011, 0.015, 0.015, 0.016, 0.019, 0.03 and 0.054 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.07 mg/kg for peppers. The maximum residue level applies to the subgroup of peppers, except martynia, okra and roselle, and the Subgroup of eggplant.

Based on a drying factor of 10 the Meeting estimated a maximum residue level of 0.7 mg/kg for dried chili peppers.

### Soya bean (dry)

The critical GAP in the USA is for a maximum individual dose of 0.583 kg ai/ha, a total maximum application of 1.17 kg ai/ha, 10 days between applications and a latest time of application at early pod formation. Trials conducted in the USA were provided. Residues of fluazinam in soya bean in rank order were (n = 16): < 0.01 (16) mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.01 mg/kg for soya bean.

#### Carrots

The critical GAP in the USA, is for maximum individual treatment rate of 0.583 kg ai/ha, with a maximum yearly application total of 2.33 kg ai/ha, a 7 day re-treatment interval and a PHI of 7 days. The GAP also specifies that no more than 4 applications can be made. Trials conducted in the USA were provided.

Within the trials submitted, several were regarded as replicate trials and hence the highest residue from the replicates has been selected.

Residues of fluazinam in carrot in rank order were (n = 8): < 0.02, 0.09, 0.1, 0.13, 0.13, 0.23, 0.37 and 0.51 mg/kg with the highest analytical result reported as 0.56 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.9 mg/kg for carrot.

#### Potato

The critical GAP in the USA, is for a total seasonal maximum application amount of 2.04 kg ai/ha with a maximum individual application rate of 0.292 kg ai/ha, 7–10 days between applications and a PHI of 14 days. Trials conducted in the USA were provided.

In a majority of the trials two replicate trials were undertaken to investigate different application regimes. In terms of the GAP the Meeting concluded that there were 8 trials that support the GAP. There was one further trial that represented an overdosed trial compared to the GAP. However, as the residue in the potato tuber was < 0.01 mg/kg it was regarded as supporting the GAP.

Residues of fluazinam in potato approximating the GAP in rank order were (n = 9): < 0.01 (9) mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.01 mg/kg for potatoes.

#### Peanut

The critical GAP in the USA, is for a seasonal maximum application total of 2.34 kg ai/ha with a maximum individual application rate of 0.874 kg ai/ha, 21–28 days between applications and a PHI of 30 days. Trials conducted in the USA were provided.

Six trials support the GAP. A further three trials are regarded as overdosed trials compared to the GAP. However, as residues in the nutmeats were < 0.01 mg/kg then the trials were regarded as supporting the GAP.

Residues of fluazinam in peanut approximating the GAP in rank order were (n = 9): < 0.01 (9) mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 0.01 mg/kg for peanut.

#### Tea, green, black (black, fermented and dried)

The critical GAP in Japan is for one foliar application at a rate of 0.025 kg ai/hL with a PHI of 14 days. The trials were conducted in Japan.

The samples were stored frozen for up to 6 months prior to analysis. Storage stability data supports a storage period of 5 months. However, no degradation was observed at 5 months of storage and therefore the Meeting concluded that the data were sufficient to cover the 6 months of storage.

Residues of fluazinam in tea in rank order were (n = 7): 0.4, 0.64, 0.67, 2.4, 2.6, 3.1 and 9.0 mg/kg with the highest analytical result reported as 10 mg/kg.

For fluazinam the Meeting estimated a maximum residue level of 15 mg/kg for tea, green, black (black, fermented and

dried).

## Animal feeds

### Soya bean forage and hay, and Peanut hay

For soya bean and peanut the authorised label from the USA does not permit the feeding of animal feed items to livestock. Therefore the animal feed items from soya bean and peanut were not considered further.

### Rotational crops

The Meeting noted that significant residues of TFAA could occur in rotational crops. However, rotational crop field trial data for TFAA were not provided to the Meeting.

## Fate of residues during processing

### High temperature hydrolysis

In the high temperature hydrolysis study, fluazinam was found to be stable under conditions representative of pasteurisation (pH 4, 90 °C, 20 minutes). However, under conditions representative of baking/brewing/boiling (pH 5, 100 °C, 60 minutes) and sterilisation (pH 6, 120 °C and 20 minutes) fluazinam was degraded to CAPA (maximum 56% AR), G-504 (maximum 11% AR) and DCPA (maximum 37% AR).

### Processing

The Meeting received information on the effects of processing on the magnitude of fluazinam residue levels for apple, grape, soya beans, potato and peanuts. The major degradates identified on hydrolysis (CAPA, G-504 and DCPA) were not investigated. Data on residue levels of TFAA in processed commodities was not provided to the Meeting.

As residues in the raw agricultural commodities of potato tubers and peanut were < 0.01 mg/kg no processing factors could be derived. The processing factors (PF) determined for the other commodities, the best estimate PF, and the STMR-P and HR-P values estimated by the Meeting for fluazinam are outlined below:

| Commodity                  | Individual processing factors for fluazinam | Best estimate PF for fluazinam | STMR-P for<br>fluazinam<br>(mg/kg) | HR-P for<br>fluazinam<br>(mg/kg) | Comment                                                      |
|----------------------------|---------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------------|
| Apple, Juice (raw)         | 0.33                                        | -                              | 0.0462                             | 0.55                             | -                                                            |
| Apple, Juice (pasteurised) | 0.33                                        | -                              | 0.0462                             | 0.55                             | -                                                            |
| Apple, wet pomace          | 2.33                                        | -                              | 0.33                               | -                                | -                                                            |
| Apple, dry pomace          | 3                                           | -                              | -                                  | -                                | -                                                            |
| Grape, wet pomace          | 6.9, 5.13                                   | 6                              | -                                  | -                                | Median PF                                                    |
| Grape, dry pomace          | 12.8, 6.25                                  | 9.53                           | -                                  | -                                | -                                                            |
| Grape, juice               | < 0.01, 0.25                                | 0.25                           | 0.15                               | 1.78                             | Highest PF as 10<br>fold difference<br>between two<br>values |
| Raisins                    | 0.25, 0.25                                  | 0.25                           | 0.15                               | 1.78                             | Mean PF                                                      |
| Grape, wine                | 0.39, 0.55, 0.38, 0.39,                     | 0.39                           | 0.23                               | 2.77                             | Median PF                                                    |

492

| Commodity         | Individual processing | Best estimate PF for | STMR-P for | HR-P for  | Comment |
|-------------------|-----------------------|----------------------|------------|-----------|---------|
|                   | factors for fluazinam | fluazinam            | fluazinam  | fluazinam |         |
|                   |                       |                      | (mg/kg)    | (mg/kg)   |         |
| Grape, red wine   | < 0.02, 0.33, 0.5     | 0.33                 | 0.20       | 2.34      | -       |
| Grape, white wine | < 0.05                | -                    |            |           | -       |

### Residues in animal commodities

The Meeting received a lactating dairy cow feeding study which provided information on residue levels of fluazinam arising in tissues and milk when dairy cows were fed at rates of 2.5, 7.5 and 25 ppm. The Meeting concluded that as residues were not stable in all analyte/matrix combinations and the recovery data for the analytical method were poor, the feeding study could not be relied on.

## RECOMMENDATIONS

Definition of the residue for compliance with the MRL for plant commodities: *fluazinam* The Meeting was unable to conclude on a residue definition for dietary risk assessment for plant commodities.

### DIETARY RISK ASSESSMENT

No Maximum residue levels are recommended, nor are levels estimated for use in long-term and acute dietary exposure assessments as the Meeting could not reach a conclusion on the residue definition for dietary risk assessment for plant commodities. In addition, the Meeting could not reach a conclusion on the residue levels of TFAA in the crops considered in this Meeting.

### REFERENCES

| Study reference      | Author         | Year  | Study title                                                                                                                                                            |
|----------------------|----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2005.4004.EXP        | Angly H.       | 2005  | Determination of the explosive properties of Fluazinam TGAI (IKF-1216)<br>Institute of Safety and Security, Switzerland; Report No.: 2005.4004.EXP<br>GLP, unpublished |
| 1216-90-06303-1      | Asai, N.       | 1991a | IKF-1216 (TGAI)-Determination of Physical State.<br>Ishihara Sangyo Kaisha, Ltd., Japan; Report No.: 1216-90-06303-1<br>Non GLP, unpublished                           |
| 1216-90-06304-1      | Asai, N.       | 1991b | IKF-1216 (TGAI)-Determination of Odor.<br>Ishihara Sangyo Kaisha, Ltd., Japan; Report No.: 1216-90-06304-1<br>Non GLP, unpublished                                     |
| AAFC03-066R          | Ballantine, J. | 2010a | Fluazinam: Magnitude of the Residue on Cabbage<br>Agriculture and Agri-Food Canada, Canada; Report No.: AAFC03-066R<br>GLP, unpublished                                |
| AAFC07-042R          | Ballantine, J. | 2010b | Fluazinam: Magnitude of the Residue on Ginseng<br>Agriculture and Agri-Food Canada, Canada; Report No.: AAFC07-042R<br>GLP, unpublished                                |
| IR-4 PR No.<br>07094 | Barney, W.P.   | 2007  | Fluazinam: Magnitude of the Residue on Carrot<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 07094<br>GLP, unpublished                    |
| IR-4 PR No.<br>07093 | Barney, W.P.   | 2014a | Fluazinam: Magnitude of the Residue on Cabbage<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 07093<br>GLP, unpublished                                    |
| IR-4 PR No.<br>09238 | Barney, W.P.   | 2014b | Fluazinam: Magnitude of the Residue on Cucumber<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 09238<br>GLP, unpublished                                   |

| Study reference      | Author                          | Year    | Study title                                                                                                                                                                                                                                                                                        |
|----------------------|---------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IR-4 PR No.<br>08916 | Barney, W.P.                    | 2014c   | Fluazinam: Magnitude of the Residue on Squash (Summer)<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 08916<br>GLP, unpublished                                                                                                                                                        |
| RJ0444B              | Bharti, H. and<br>Bewick, D.W   | 1985    | B-1216 (PP192): Degradation in Soil.<br>ICI Plant Protection Division, UK; Report No.: RJ0444B<br>GLP, unpublished                                                                                                                                                                                 |
| 341189               | Brekelmans,<br>M.J.C.           | 2002    | IKF-1216 PAI, Determination of the Water Solubility at 3 pH Values.<br>Notox B.V. The Netherlands; Report No.: 341189<br>GLP, unpublished                                                                                                                                                          |
| RJ1107B              | Burke, S.R. and Sapiets, A.     | 1992a   | Fluazinam: Residue levels in grapes from trials carried out in France during 1991<br>ICI Agrochemicals, UK; Report No. RJ1107B<br>GLP, unpublished                                                                                                                                                 |
| RJ1133B              | Burke, S.R. and Sapiets, A.     | 1992b   | Fluazinam: Residue levels in grapes and wine from trials carried out in France<br>during 1991<br>ICI Agrochemicals, UK; Report No. RJ1133B<br>GLP, unpublished                                                                                                                                     |
| RJ1147B              | Burke, S.R. and Sapiets, A.     | 1992c   | Fluazinam: Residue levels in grapes and wine from trials carried out in France<br>during 1991<br>ICI Agrochemicals, UK; Report No. RJ1147B<br>GLP, unpublished                                                                                                                                     |
| IR-4 PR No.<br>07092 | Carpenter, D.H.                 | 2008a   | Fluazinam: Magnitude of the Residue on Onion (Dry Bulb)<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 07092<br>GLP, unpublished                                                                                                                                                       |
| IR-4 PR No.<br>06892 | Carpenter, D.H.                 | 2008b   | Fluazinam: Magnitude of the Residue on Lettuce (Head & Leaf)<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 06892<br>GLP, unpublished                                                                                                                                                  |
| PL/15/007            | Chambers, J.G.<br>and Frake, E. | 2016a   | MAPA: Partition Coefficient n-octanol/water (logPow) by HPLC Method (OECD<br>117)<br>Battelle UK Ltd., UK; Report No. PL/15/007<br>GLP, unpublished                                                                                                                                                |
| PL/15/008            | Chambers, J.G.<br>and Frake, E. | 2016b   | AMPA: Partition Coefficient n-octanol/water (logPow) by HPLC Method (OECD<br>117)<br>Battelle UK Ltd., UK; Report No. PL/15/008<br>GLP, unpublished                                                                                                                                                |
| PL/15/009            | Chambers, J.G.<br>and Frake, E. | 2016c   | AMGT: Partition Coefficient n-octanol/water (logPow) by HPLC Method (OECD<br>117)<br>Battelle UK Ltd., UK; Report No. PL/15/009<br>GLP, unpublished                                                                                                                                                |
| PL/15/010            | Chambers, J.G.<br>and Frake, E. | 2016d   | G-504: Partition Coefficient n-octanol/water (logPow) by HPLC Method (OECD<br>117)<br>Battelle UK Ltd., UK; Report No. PL/15/010<br>GLP, unpublished                                                                                                                                               |
| HWI 6241-102         | Cheng, T.                       | 1993/94 | Nature of the Residue of <sup>14</sup> C- Fluazinam (IKF-1216) in Lactating Goats<br>(Part 1: Animal Dosing, Sample Collection and Radiochemical Analysis; Part 2:<br>Metabolite Identification and Characterization)<br>Hazleton Wisconsin Inc., USA; Report No. HWI 6241-102<br>GLP, unpublished |
| HWI 6241-107         | Cheng, T.                       | 1995    | Nature of the Residue of <sup>14</sup> C- Fluazinam (IKF-1216) in Laying Hens<br>Hazleton Wisconsin Inc., USA; Report No.: HWI 6241-107<br>GLP, unpublished                                                                                                                                        |

| Study reference         | Author                               | Year  | Study title                                                                                                                                                                                                                                                                  |
|-------------------------|--------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IR-4 PR No.<br>08791    | Corley, J.                           | 2006  | Fluazinam: Magnitude of the Residue on Ginseng<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 08791<br>GLP, unpublished                                                                                                                         |
| IBE1216-<br>PC0507-02   | De Smet B.                           | 2005  | Determination of the partitioning coefficient (n-Octanol/water) of IKF-1216 at pH<br>4-10<br>ISK Biosciences Europe S.A., Belgium; Report No.: IBE1216-PC0507-02<br>Non GLP, unpublished                                                                                     |
| PL/15/002               | Doble, M and<br>Roohi, A             | 2017  | [ <sup>14</sup> C]-Fluazinam: High temperature hydolysis<br>No: PI/15/002<br>GLP, unpublished                                                                                                                                                                                |
| 6649-96-0022-<br>CR-001 | Dvorak, R.S. and<br>Kenyon, R.G.     | 1996  | Magnitude of the Residue of Fluazinam and Metabolite AMGT in Grapes-Greece-<br>1995<br>Ricerca Inc., USA; Report No.: 6649-96-0022-CR-001<br>GLP, unpublished                                                                                                                |
| 59321101                | Eichler, M.                          | 2010  | Independent Laboratory Validation of an analytical method for the determination<br>of fluazinam and its metabolites (AMPA-FLUAZINAM and AMGT) in crops<br>Institut für Biologische Analytik und Consulting IBACON GmbH, Germany; Report<br>No.: 59321101<br>GLP, unpublished |
| 59322101                | Eichler, M.                          | 2011  | Independent Laboratory Validation of an analytical method for the determination<br>of fluazinam and its metabolites (AMPA-FLUAZINAM and AMGT) in crops<br>Institut für Biologische Analytik und Consulting IBACON GmbH, Germany; Report<br>No.: 59322101<br>GLP, unpublished |
| 2127-91-0434-<br>CR-001 | Fitzgerald, T.J.                     | 1992  | Magnitude of Residues of Fluazinam in Grapes and Processing Fractions-1991<br>Ricerca Inc., USA; Report No.: 2127-91-0434-CR-001<br>GLP, unpublished                                                                                                                         |
| 5349-92-0253-<br>CR-001 | Fitzgerald, T.J.                     | 1994  | Determination of Residues of Fluazinam on Potatoes-1992<br>Ricerca Inc., USA; Report No.: 5349-92-0253-CR-001<br>GLP, unpublished                                                                                                                                            |
| 5197-92-0047-<br>CR-001 | Fitzgerald, T.J.<br>and Kenyon, R.G. | 1994  | Magnitude of Residues of Fluazinam on Potatoes Treated with Fluazinam 500F-<br>Ohio-1992<br>Ricerca Inc., USA; Report No.: 5197-92-0047-CR-001<br>GLP, unpublished                                                                                                           |
| 5878-93-0345-<br>CR-001 | Fitzgerald, T.J.<br>and McFall, D.D. | 1995  | Magnitude of Residues of Fluazinam on Apples and Processed Fractions-1993<br>Ricerca Inc., USA; Report No.: 5878-93-0345-CR-001<br>GLP, unpublished                                                                                                                          |
| 5878-93-0345-<br>CR-002 | Fitzgerald, T.J.<br>and McFall, D.D. | 1996a | Magnitude of Residues of the Fluazinam Metabolite AMGT in Apples and<br>Processed Fractions-1993<br>Ricerca Inc., USA; Report No.: 5878-93-0345-CR-002<br>GLP, unpublished                                                                                                   |
| 6103-95-0025-<br>CR-001 | Fitzgerald, T.J.<br>and McFall, D.D. | 1996b | Magnitude of Residues of Fluazinam and Metabolite AMGT in Apples-1994<br>Ricerca Inc., USA; Report No.: 6103-95-0025-CR-001<br>GLP, unpublished                                                                                                                              |
| 5706-93-0105-<br>FR-001 | Fitzgerald, T.J.<br>and McFall, D.D. | 1996c | Magnitude of Residues of Fluazinam In Potatoes And Processed Fractions-1993<br>Ricerca Inc., USA; Report No.: 5706-93-0105-FR-001<br>GLP, unpublished                                                                                                                        |

| Study reference         | Author                              | Year  | Study title                                                                                                                                                                                                                                                |
|-------------------------|-------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B72685                  | Franke, J.                          | 2009  | HYPA-Determination of the Partition coefficient (n-Octanol/water)<br>Harlan Laboratories Ltd., Switzerland; Report No.: B72685<br>GLP, unpublished                                                                                                         |
| 259176                  | Galicia, H.                         | 1991  | <sup>14</sup> C-Fluazinam: Plant Metabolism Study in Field Grown Potoato<br>RCC Umweltchemie, Switzerland; Report No.: 259176<br>GLP, unpublished                                                                                                          |
| 4039-91-0387-<br>AS-001 | Gallacher, A.C.                     | 1992  | Fluazinam (IKF-1216) (ASC-66825)-Dissociation Constant<br>Ricerca, Inc., USA; Report No.: 4039-91-0387-AS-001<br>GLP, unpublished                                                                                                                          |
| S10-03542               | Gemrot, F.                          | 2011a | Validation of an analytical method for the determination of fluazinam and its<br>metabolites AMPA-fluazinam and AMGT in onions, dry beans and oil seed rape.<br>Eurofins ADME Bioanalyses, France; Report No.: S10-03542<br>GLP, unpublished               |
| S10-00193               | Gemrot, F.                          | 2011b | Fluazinam: At Harvest Residue Study with Ohayo 50 SC (Containing 500 g/L<br>Fluazinam) In Table Grapes At Two Locations In Greece, 2010<br>Eurofins ADME Bioanalyses, France; Report No.: S10-00193<br>GLP, unpublished                                    |
| S10-02337               | Gemrot, F.                          | 2011c | Fluazinam: Production of grape samples (At Harvest) for residue analysis of<br>Fluazinam and its metabolites AMPA-FLUAZINAM and AMGT<br>Eurofins ADME Bioanalyses, France; Report No.: S10-02337<br>GLP, unpublished                                       |
| S10-02338               | Gemrot, F.                          | 2011d | Fluazinam: Production of grape samples (decline) for residue analysis of<br>Fluazinam and its metabolites AMPA-FLUAZINAM and AMGT<br>Eurofins ADME Bioanalyses, France; Report No.: S10-02338<br>GLP, unpublished                                          |
| EA950132                | Grolleau, G. and<br>Kenyon, R.G.    | 1996  | Magnitude of the Residue of Fluazinam in Grapes Raw Agricultural Commodity<br>and Wine France, Germany, Italy, Spain -1995 Chile-1995-1996<br>European Agricultural Services, France; Report No.: EA950132<br>GLP, unpublished                             |
| 91120IHS-001            | Haga, T.                            | 1991  | IKF-1216-Determination of Solubility<br>Ishihara Sangyo Kaisha Ltd., Japan; Report. No.: 91120IHS-001<br>Non-GLP, unpublished                                                                                                                              |
|                         | Hagi, I                             | 1986  | Central Research institution pesticide residues report, Japan;<br>Non-GLP, unpublished                                                                                                                                                                     |
| 5012-91-0330-<br>EF-002 | Hartman, D.A.                       | 1995  | A Peanut Plant Metabolism Study with [ <sup>14</sup> C]IKF-1216 (Fluazinam)<br>Ricerca Inc., USA; Report No.: 5012-91-0330-EF-002<br>GLP, unpublished                                                                                                      |
| 5879-93-0335-<br>CR-001 | Hayes, P.C. Jr.<br>and Kenyon, R.G. | 1994  | Magnitude of Residues of Fluazinam in peanuts-1993<br>Ricerca Inc., USA; Report No.: 5879-93-0335-CR-001<br>GLP, unpublished                                                                                                                               |
| ISK/FLU/08002           | Heilaut, C.                         | 2008  | Validation of an analytical method for the determination of residues of fluazinam<br>and its metabolites AMPA-FLUAZINAM and AMGT in potato tubers and grape<br>bunches<br>Eurofins ADME Bioanalyses, France; Report No.: ISK/FLU/08002<br>GLP, unpublished |
| ISK/FLU/08001           | Heilaut, C.                         | 2009  | Fluaziniam: At harvest residue study with OHAYO 50 SC (containing 500 g/L<br>Fluazinam) in grapes at two locations in Greece, 2008<br>Eurofins ADME Bioanalyses, France; Report No.: ISK/FLU/08001<br>GLP, unpublished                                     |

| Study reference             | Author          | Year  | Study title                                                                                                                                                                                                                                   |
|-----------------------------|-----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6106-95-0012-<br>CR-001     | Jablonski, J.E. | 1995a | Magnitude of the Residue of Fluazinam and Metabolite AMGT in Grapes from USA<br>and Canada-1994<br>Ricerca Inc., USA; Report No.: 6106-95-0012-CR-001<br>GLP, unpublished                                                                     |
| 6245-95-0001-<br>CR-001     | Jablonski, J.E. | 1995b | Fluazinam: Magnitude of the Residue Study: Metabolite AMGT in Grapes, France,<br>1992<br>Ricerca Inc., USA; Report No.: 6245-95-0001-CR-001<br>GLP, unpublished                                                                               |
| 6245-95-0001-<br>CR-003     | Jablonski, J.E. | 1995c | Fluazinam: Magnitude of the Residue Study: Fluazinam and Metabolite AMGT in<br>Grapes, Greece, 1994<br>Ricerca Inc., USA; Report No.: 6245-95-0001-CR-003<br>GLP, unpublished                                                                 |
| 6106-95-0012-<br>CR-003     | Jablonski, J.E. | 1996  | Magnitude of the Residue of Fluazinam and Metabolite AMGT in Processed Grape<br>Fractions<br>Ricerca Inc., USA; Report No.: 6106-95-0012-CR-003<br>GLP, unpublished                                                                           |
| 6775-96-0053-<br>EF-001     | Jentoft, N. H.  | 1997  | [ <sup>14</sup> C]IKF-1216 (Fluazinam) Plant Metabolism Study in Potatoes<br>Ricerca Inc., USA; Report No. 6775-96-0053-EF-001<br>GLP, unpublished                                                                                            |
| 62P-1-20                    | Kato, S         | 1987  | Pesticide Residue Analysis Report<br>Japan Food research Laboratories, Japan; Report No.: 62P-1-20<br>Non-GLP, unpublished                                                                                                                    |
| 2106-91-0309-<br>CR-001-001 | Kenyon, R.G.    | 1992a | Determinations of Residues of Fluazinam in Grapes Treated with ASC-66825-199<br>Contains Report Amendment<br>Ricerca Inc., USA; Report No.: 2106-91-0309-CR-001-001<br>GLP, unpublished                                                       |
| 2105-91-0307-<br>CR-001     | Kenyon, R.G.    | 1992b | Fluazinam Technical: Analytical Method for and Determinations of Fluazinam<br>Residues in Peanut Nut Meats From Fields Treated with Fluazinam 50% WP (ASC<br>66825)<br>Ricerca Inc., USA; Report No.: 2105-91-0307-CR-001<br>GLP, unpublished |
| 2105-91-0307-<br>CR-001-002 | Kenyon, R.G.    | 1993  | Fluazinam: Determinations of Fluazinam in Treated peanuts-1991<br>Amendments to MRID #42270614<br>Ricerca Inc., USA; Report No.: 2105-91-0307-CR-001-002<br>GLP, unpublished                                                                  |
| 2126-91-0426-<br>CR-001-001 | Kenyon, R.G.    | 1994  | Fluazinam: Determinations of Residues in peanuts and Processing Fractions<br>Ricerca Inc., USA; Report No.: 2126-91-0426-CR-001<br>GLP, unpublished                                                                                           |
| 6936-96-0228-<br>CR-001     | Kenyon, R.G.    | 1996  | Fluazinam: Magnitude of the Residue Study: Fluazinam in Grapes and Wine,<br>France, 1992<br>Ricerca Inc., USA; Report No.: 6936-96-0228-CR-001<br>GLP, unpublished                                                                            |
| 7074-96-0287-<br>CR-001     | Kenyon, R.G.    | 1997a | Magnitude of the Residue of Fluazinam in Grapes-France-1996<br>Ricerca Inc., USA; Report No.: 7074-96-0287-CR-001<br>GLP, unpublished                                                                                                         |

| Study reference         | Author                          | Year  | Study title                                                                                                                                                                                                              |
|-------------------------|---------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7074-97-0059-<br>CR-001 | Kenyon, R.G.                    | 1997b | Magnitude of the Residue of AMGT in Grapes-France-1996<br>Ricerca Inc., USA; Report No.: 7074-97-0059-CR-001<br>GLP, unpublished                                                                                         |
| 7074-97-0068-<br>CR-001 | Kenyon, R.G.                    | 1997c | Magnitude of the Residue of Fluazinam in Wine-France-1996<br>Ricerca Inc., USA; Report No.: 7074-97-0068-CR-001<br>GLP, unpublished                                                                                      |
| 7074-97-0067-<br>CR-001 | Kenyon, R.G.                    | 1997d | Magnitude of the Residue of AMGT in Wine-France-1996<br>Ricerca Inc., USA; Report No.: 7074-97-0067-CR-001<br>GLP, unpublished                                                                                           |
| 6512-95-0125-<br>CR-002 | Kenyon, R.G.                    | 1999a | Stability of Fluazinam, AMGT and AMPA in Grapes and Wine after Freezer<br>Storage-Final Report<br>Ricerca Inc., USA; Report No.: 6512-95-0125-CR-002<br>GLP, unpublished                                                 |
| 6166-94-0147-<br>CR-003 | Kenyon, R.G.                    | 1999b | Stability of Fluazinam in Peanuts and Processed Fractions after Freezer Storage-<br>Final Report<br>Ricerca Inc., USA; Report No.: 6166-94-0147-CR-003<br>GLP, unpublished                                               |
| 91 0508KT               | Kimura, T.                      | 1991a | IKF-1216 (Pure Grade)-Determination of Physical State.<br>Ishihara Sangyo Kaisha, Ltd., Japan; Report No. 91 0508KT<br>Non GLP, unpublished                                                                              |
| 91 0509KT               | Kimura, T.                      | 1991b | IKF-1216 (Pure Grade)-Determination of Color.<br>Ishihara Sangyo Kaisha, Ltd., Japan; Report No.: 91 0509KT<br>Non GLP, unpublished                                                                                      |
| 91 0510KT               | Kimura, T.                      | 1991c | IKF-1216 (Pure Grade)-Determination of Odor.<br>Ishihara Sangyo Kaisha, Ltd., Japan; Report No.: 91 0510KT<br>Non GLP, unpublished                                                                                       |
| 4-110                   | Komatsu, K. and<br>Yabusaki, T. | 1993  | Pesticide Residue Analysis Report<br>Japan Food research Laboratories, Japan; Report No.: 4-110<br>Non-GLP, unpublished                                                                                                  |
| 9-340                   | Komatsu, K. and<br>Yabusaki, T. | 1997  | Pesticide Residue Analysis Report<br>Japan Food research Laboratories, Japan; Report No.: 9-340<br>Non-GLP, unpublished                                                                                                  |
| 9-340                   | Kondo, K.                       | 1997  | Pesticide Residue Analysis Report<br>Ishihara Sangyo Kaisha Ltd., Japan; Report No.: 9-340<br>Non-GLP, unpublished                                                                                                       |
| ISK-0504V               | Lakaschus, S.                   | 2006  | Validation of a residue analytical method for fluazinam (IKF-1216) in anaimal<br>tissues and products (muscle, liver, fat, milk and eggs).<br>Eurofins Analytik GmbH, Germany; Report No.: ISK-0504V<br>GLP, unpublished |
| 5312-94-0119-<br>EF-002 | Lentz, N.R. and<br>Korsch, B.H. | 1995  | A Photolysis Study of IKF-1216 (Fluazinam) in Water at pH 5.<br>Ricerca, Inc., USA; Report No.: 5312-94-0119-EF-002<br>GLP, unpublished                                                                                  |
| 5313-95-0011-<br>EF-002 | Lentz, N.R. and<br>Korsch, B.H. | 2001  | A Photolysis Study of IKF-1216 (Fluazinam) on Soil.<br>Ricerca Inc., USA; Report No.: 5313-95-0011-EF-002<br>GLP, unpublished                                                                                            |
| 844056                  | Mawad, N.                       | 2003  | Metabolism And Degradation Of <sup>14</sup> C-Fluazinam In One Soil Incubated Under<br>Aerobic Conditions.<br>RCC Ltd., Switzerland; Report No.: 844056<br>GLP, unpublished                                              |

| Study reference             | Author           | Year  | Study title                                                                                                                                                                                                                                                            |
|-----------------------------|------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6021-94-0050-<br>EF-001     | McClanahan, R.H. | 1996  | <sup>14</sup> C-IKF-1216 (Fluazinam): Plant Metabolism Study in Apple Trees<br>Ricerca Inc., USA; Report No.: 6021-94-0050-EF-001<br>GLP, unpublished                                                                                                                  |
| F-150-A                     | McFadden, J.J.   | 2000  | Henry's Law Constant for Fluazinam.<br>Ricerca, Inc., USA;Report No.: F-150-A<br>Non GLP, unpublished                                                                                                                                                                  |
| 6107-95-0013-<br>CR-001     | McFall, D.D.     | 1995  | Magnitude of Residues of Fluazinam in Peanuts-1994<br>Ricerca Inc., USA; Report No.: 6107-95-0013-CR-001<br>GLP, unpublished                                                                                                                                           |
| 5347-95-0245-<br>CR-001-001 | McFall, D.D.     | 1996a | Report Amendment Number One: Magnitude of Residues of AMGT on Apples-1992<br>Includes Original Report: Magnitude of Residues of Fluazinam on Apples-1992<br>Ricerca Inc., USA; Report No.: 5347-95-0245-CR-001-001<br>GLP, unpublished                                 |
| 5880-93-0342-<br>CR-001     | McFall, D.D.     | 1996b | Magnitude of Residues of Fluazinam on Potatoes-1993 and 1994<br>Ricerca Inc., USA; Report No.: 5880-93-0342-CR-001<br>GLP, unpublished                                                                                                                                 |
| 6166-94-0148-<br>CR-002     | McFall, D.D.     | 1999a | Stability of Fluazinam in Potatoes and Potato Processed fractions after Freezer<br>Storage-Final Report<br>Ricerca Inc., USA; Report No.: 6166-94-0148-CR-002<br>GLP, unpublished                                                                                      |
| 6166-94-0150-<br>CR-002     | McFall, D.D.     | 1999b | Stability of Fluazinam and AMGT in Apples and Processed Fractions after Freezer<br>Storage-Final Report<br>Ricerca Inc., USA; Report No.: 6166-94-0150-CR-002<br>GLP, unpublished                                                                                      |
| 5431-92-0423-<br>EF-003     | Neal, T.R.       | 1996  | <sup>14</sup> C-Fluazinam: Plant Metabolism Study in Field Grown Grape; Study A [Analytical<br>phase]<br>Ricerca Inc., USA; Report No.: 5431-92-0423-EF-003<br>GLP, unpublished                                                                                        |
| 1216-90-06302-1             | Oguri, M.        | 1991  | IKF-1216 (Pure Grade)-Determination of Color.<br>Ishihara Sangyo Kaisha, Ltd., Japan; Report No.: 1216-90-06302-1<br>Non GLP, unpublished                                                                                                                              |
| 4-110                       | Ohyama, J.       | 1993  | Pesticide Residue Analysis Report<br>Ishihara Sangyo Kaisha Ltd., Japan; Report No.: 4-110<br>Non-GLP, unpublished                                                                                                                                                     |
| R1520424-1                  | Reichert, M.     | 2016  | Fluazinam-Calculation of persistence, modelling half-lives and formation fractions<br>from laboratory soil degradation studies for fluazinam and its metabolite HYPA<br>according to FOCUS kinetics<br>Rifcon, Germany; Report No.: R1520424-1<br>Non-GLP, unpublished |
| 6582-95-0190-EF             | Rhoads, W.D.     | 1995  | PAM I Multiresidue Testing For Fluazinam<br>Colorado Analytical Research & Development Corporation, USA; Report No.: 6582-<br>95-0190-EF<br>GLP, unpublished                                                                                                           |
| 6582-95-0191-EF             | Rhoads, W.D.     | 1996a | PAM I Multiresidue Testing For Fluazinam: Metabolite AMGT<br>Colorado Analytical Research & Development Corporation, USA; Report No.: 6582-<br>95-0191-EF<br>GLP, unpublished                                                                                          |
| 6582-95-0192-EF             | Rhoads, W.D.     | 1996b | PAM I Multiresidue Testing For Fluazinam: Metabolite AMPA<br>Colorado Analytical Research & Development Corporation, USA; Report No.: 6582-<br>95-0192-EF<br>GLP. unpublished                                                                                          |

| Study reference         | Author                                 | Year  | Study title                                                                                                                                                                                                                                                                                 |
|-------------------------|----------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2296                    | Robaugh, D.A.                          | 2011  | PAM I Multiresidue Protocol Testing for DAPA<br>Pyxant Labs Inc., USA; Report No.: 2296<br>GLP, unpublished                                                                                                                                                                                 |
| RPT00207                | Robinson, R.A.<br>and Hoffman,<br>B.A. | 1994  | Confined Rotational Crop Study on Fluazinam (IKF-1216)<br>Part 1: Total Radioactive Residue Determination, Residue Extraction and Profiling,<br>and Isolation and Identification of Trifluoroacetic Acid<br>XenoBiotic Laboratories Inc, USA; Report No.: RPT00207<br>GLP, unpublished      |
| RPT00244                | Robinson,<br>R.A.and Hoffman,<br>B.A.  | 1995  | Confined Rotational Crop Study on Fluazinam (IKF-1216)<br>XenoBiotic Laboratories Inc, USA; Report No.: RPT00244<br>GLP, unpublished                                                                                                                                                        |
| M53785                  | Ryan, J. and<br>Sapiets, A.            | 1991a | Fluazinam: Residue levels in grapes and Wine from trials carried out in France<br>during 1990<br>ICI Agrochemicals, UK; Report No. M53785<br>GLP, unpublished                                                                                                                               |
| M5377B                  | Ryan, J. and<br>Sapiets, A.            | 1991b | Fluazinam: Residue levels in grapes from trials carried out in France during 1990<br>ICI Agrochemicals, UK; Report No. M5377B<br>GLP, unpublished                                                                                                                                           |
| RJ1391B                 | Ryan, J. and<br>Sapiets, A.            | 1992a | Fluazinam: Laboratory Soil Degradation Study (BBA).<br>ICI Agrochemicals, UK; Report No.: RJ1391B<br>GLP, unpublished                                                                                                                                                                       |
| RJ1112B                 | Ryan, J. and<br>Sapiets, A.            | 1992b | Fluazinam: Residue levels in grapes from a trial carried out in France during 1991<br>ICI Agrochemicals, UK; Report No. RJ1112B<br>GLP, unpublished                                                                                                                                         |
| RJ1538B                 | Ryan, J. and<br>Sapiets, A.            | 1993  | Fluazinam: Storage Stability of the Residues in Frozen Crop SamplesFinal<br>Report<br>Zeneca, UK; Report No.: RJ1538B<br>GLP, unpublished                                                                                                                                                   |
| 4039-91-0386-<br>AS-001 | Sanders, J.M.                          | 1992  | Fluazinam (IKF-1216) (ASC-66825)-Octanol/Water Partition Coefficient<br>Ricerca Inc., USA; Report No.: 4039-91-0386-AS-001<br>GLP, unpublished                                                                                                                                              |
| 4039-91-0384-<br>AS-001 | Sanders, J.M.                          | 1993  | Fluazinam (IKF-1216) (ASC-66825)—Solubility.<br>Ricerca, Inc., USA; Report No.: 4039-91-0384-AS-001<br>GLP, unpublished                                                                                                                                                                     |
| 343631                  | Schanné, C.                            | 1994  | Determination of the residue of Fluazinam on grapes, grape juice and wine (MAAG<br>trial no. 92.3.205.053)<br>RCC Umweltchemie AG, Switzerland; Report No. 343631<br>GLP, unpublished                                                                                                       |
| 100342                  | Schoenau, E.A.                         | 2010  | Independent Laboratory Validation of ISK Biosciences (ISK) Enforcement Method<br>for the Analysis of Fluazinam and its metabolites AMPA and DAPA in Milk and<br>Meat (Document Number: IB-2009-JLW-005-01)<br>Golden Pacific Laboratories LLC., USA; Report No.: 100342<br>GLP, unpublished |
| 604372                  | Schulz, M. and<br>Ullrich-Mietzel, A.  | 1996  | Determination of the Residues of Fluazinam and its Metabolites AMGT and AMPA<br>in Grapes, Must and Wine Following Applications of IKF-1216 (Fluazinam) under<br>Field Conditions in France 1995.<br>RCC Umweltchemie AG, Switzerland; Report No. 604372<br>GLP, unpublished                |

500

| Study reference        | Author                     | Year  | Study title                                                                                                                                                                                                                                                                                                                                |
|------------------------|----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2K8-ADPEN-023-<br>0808 | Smith, M. and<br>Perez, R. | 2009  | Independent Laboratory Validation of PTRL Method 1676W "Analytical Method for<br>Determination of Fluazinam and Metabolites, AMPA and DAPA in Animal Tissues<br>and Milk by LC/MS/MS Including Validation Data." On Beef Liver, Beef Fat, and<br>Milk.<br>ADPEN Laboratories Inc., USA; Report No.: 2K8-ADPEN-023-0808<br>GLP, unpublished |
| IR-4 PR No.<br>07602   | Starner, V.R.              | 2006a | Fluazinam: Magnitude of the Residue on Succulent Bean (Snap)<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 07602<br>GLP, unpublished                                                                                                                                                                         |
| IR-4 PR No.<br>08798   | Starner, V.R.              | 2006b | Fluazinam: Magnitude of the Residue on Lima Beans<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 08798<br>GLP, unpublished                                                                                                                                                                                    |
| IR-4 PR No.<br>06129   | Thompson, D.C.             | 2006a | Fluazinam: Magnitude of the Residue on Blueberry<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 06129<br>GLP, unpublished                                                                                                                                                                                     |
| IR-4 PR No.<br>08795   | Thompson, D.C.             | 2006b | Fluazinam: Magnitude of the Residue Broccoli<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 08795<br>GLP, unpublished                                                                                                                                                                                         |
| IR-4 PR No.<br>08796   | Thompson, D.C.             | 2006c | Fluazinam: Magnitude of the Residue Cabbage<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 08796<br>GLP, unpublished                                                                                                                                                                                          |
| IR-4 PR No.<br>08797   | Thompson, D.C.             | 2006d | Fluazinam: Magnitude of the Residue on Mustard Greens<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 08797<br>GLP, unpublished                                                                                                                                                                                |
| IR-4 PR No.<br>06369   | Thompson, D.C.             | 2006e | Fluazinam: Magnitude of the Residue on Bean (Dry)<br>Rutger, The State University of New Jersey, USA; Report No.: IR-4 PR No. 06369<br>GLP, unpublished                                                                                                                                                                                    |
| IR-4 PR No.<br>07097   | Thompson, D.C.             | 2011a | Fluazinam: Magnitude of the Residue on Cantaloupe<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 07097<br>GLP, unpublished                                                                                                                                                                                                     |
| IR-4 PR No.<br>09556   | Thompson, D.C.             | 2011b | Fluazinam: Magnitude of the Residue on Pepper (Bell & Non-Bell)<br>IR-4 Project Headquarters, USA; Report No.: IR-4 PR No. 09556<br>GLP, unpublished                                                                                                                                                                                       |
| AAFC03-018             | Ure, G.B.                  | 2006  | Fluazinam: Magnitude of the Residue on Broccoli<br>Agriculture and Agri-Food Canada, Canada; Report No.: AAFC03-018<br>GLP, unpublished                                                                                                                                                                                                    |
|                        | USA                        | 2017  | eCFR – Code of Federal Regulations<br>Title 40, Chapter I, Subchapter E, Part 180, Subpart C, §180.574                                                                                                                                                                                                                                     |
| 846211                 | van der Gaauw, A.          | 2003  | <sup>14</sup> C-Fluazinam: Hydrolysis at Three Different pH Values.<br>RCC Ltd., Switzerland; Report No.: 846211<br>GLP, unpublished                                                                                                                                                                                                       |
| 089033                 | van Helvoirt,<br>J.A.M.W., | 1993a | Determination of the Melting Point/Melting Range of IKF-1216 (PAI).<br>RCC NOTOX, The Netherlands; Report No.: 089033<br>GLP, unpublished                                                                                                                                                                                                  |
| 089044                 | van Helvoirt,<br>J.A.M.W., | 1993b | On the Determination of the Boiling Point/Boiling Range of IKF-1216 (PAI).<br>RCC NOTOX, The Netherlands; Report No.: 089044<br>GLP, unpublished                                                                                                                                                                                           |

| Study reference           | Author                  | Year  | Study title                                                                                                                                                                                                                                                            |
|---------------------------|-------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 341123                    | van Rijsbergen,<br>L.M. | 2002a | Determination of the Density of IKF-1216 PAI.<br>Notox B.V., The Netherlands; Report No.: 341123<br>GLP, unpublished                                                                                                                                                   |
| 341191                    | van Rijsbergen,<br>L.M. | 2002b | Determination of the Flammability of IKF-1216 TGAI.<br>Notox B.V., The Netherlands; Report No.: 341191<br>GLP, unpublished                                                                                                                                             |
| 341202                    | van Rijsbergen,<br>L.M. | 2002c | Determination of the Relative Self-Ignition Temperature of IKF-1216 TGAI.<br>Notox B.V., The Netherlands; Report No.: 341202<br>GLP, unpublished                                                                                                                       |
| RIC1726                   | Wadley, A.M.            | 1992  | Fluazinam: Quantum Yield Calculation.<br>ICI Agrochemicals, UK; Report No.: RIC1726<br>non-GLP, unpublished                                                                                                                                                            |
| 734387                    | Wais, A.                | 2000  | Determination of residues of Fluazinam in/on vine (RAC grapes) and processing<br>products following treatment with Sekoya (YF 8053) from two field trials (harvest<br>trials) in Southern France; 1999<br>RCC Ltd., Switzerland; Report No. 734387<br>GLP, unpublished |
| B85397                    | Weissenfeld, M.         | 2008  | Determination of the Partition Coefficient (n-Octanol/Water) including Effect of pH<br>RCC Ltd., Switzerland; Report No.: B85397<br>GLP, unpublished                                                                                                                   |
| IB-2006-JLW-<br>002-00-01 | Wiedmann, J.L.          | 2008a | Magnitude of Residues of Fluazinam on Apples-USA & Canada in 2006<br>ISK Biosciences Corporation, USA; Report No.: IB-2006-JLW-002-00-01<br>GLP, unpublished                                                                                                           |
| IB-2007-JLW-<br>004-00-01 | Wiedmann, J.L.          | 2008b | Magnitude of Fluazinam Residues in Bovine Tissues and Milk from a 28-Day<br>Feeding Study<br>ISK Biosciences Corporation, USA; Report No.: IB-2007-JLW-004-00-01<br>GLP, unpublished                                                                                   |
| IB-2010-JLW-<br>006-00-01 | Wiedmann, J.L.          | 2011  | Magnitude of Residues of Fluazinam on Soybeans-USA & Canada in 2010<br>ISK Biosciences Corporation, USA; Report No.: IB-JLW-006-00-01<br>GLP, unpublished                                                                                                              |
| 4039-92-0500-<br>AS-001   | Wojcieck, B.C.          | 1993  | Fluazinam (IKF-1216)-Color, Physical State, Odor, Melting Point, Bulk Density,<br>Oxidation-Reduction, Impact Explodability<br>Ricerca Inc., USA; Report No.: 4039-92-0500-AS-001<br>GLP, unpublished                                                                  |
| 4039-91-0385-<br>AS-001   | Yoder, S.J.             | 1992  | Fluazinam (IKF-1216) (ASC-66825)-Vapour Pressure<br>Ricerca Inc., USA; Report No.: 4039-91-0385-AS-001<br>GLP, unpublished                                                                                                                                             |