METCONAZOLE (313)

First draft prepared by Dr J Heidler, Federal Institute for Risk Assessment, Germany

EXPLANATION

Metconazole is a systemic triazole fungicide and plant growth regulator for the control of a broad range of important pathogens on a wide range of crops. It acts by inhibiting ergosterol biosynthesis. Metconazole was scheduled by the Fiftieth Session of the CCPR to be evaluated for the first time by the 2019 JMPR for toxicology and residues.

The Meeting received information on identity, physicochemical properties, metabolism (plant, confined rotational crops and animals), environmental fate, field rotational crops, methods of residue analysis, freezer storage stability, registered use patterns, supervised residue trials in stone fruit (plum, peach and cherry), blueberries, banana, onion, garlic, green bean, pulses (dry bean, pea and soya bean), potato, sugar beet, cereals (wheat, rye, oat, barley), maize, sweet corn, sugar cane, pecan nuts, almonds, oilseed rape, sunflower, cotton seed and peanut, fate of residues in processing, and livestock feeding studies.

ISO common name	Metconazole
IUPAC name	(1 <i>RS</i> ,5 <i>RS</i> ;1 <i>RS</i> ,5 <i>SR</i>)–5-(4-chlorobenzyl)–2,2-dimethyl–1-(1 <i>H</i> –1,2,4-triazol–1-ylmethyl)cyclopentanol
CA nomenclature	5-[(4-chlorophenyl)methyl]–2,2-dimethyl–1-(1 <i>H</i> –1,2,4-triazol–1-ylmethyl) cyclopentanol
Synonyms	BAS 555 F
CAS No.	125116–23–6
CIPAC No.	706
Structural formula	HO HO CI CI CI CI CI CI CI CI CI CI CI CI CI
	$HO \xrightarrow{N} HO \xrightarrow$
Molecular formula	C ₁₇ H ₂₂ ClN ₃ O
Molecular mass	319.8 g/mol

IDENTITY

Specifications

Specifications for metconazole were not yet developed by FAO.

PHYSICAL AND CHEMICAL PROPERTIES

Table 1 Physical and chemical properties of pure metconazole

Property	Results	Method (test material)	Reference
Melting point	100.0–108.4 °C	Guideline No. D-63-5 Batch 8879-140 B: purity 98.6 % (83% cis-isomer and 15.7% trans-isomer) (purified a.s.)	Mangels, 1995, METCON_001
Boiling point	Boiling point: 315 °C	OECD 103 ≈ EEC A2 Batch AC12140–17: 98.1% (purified a.s.)	Daum, 2004, METCON_002
Temperature of decomposition or sublimation	Not applicable (melting and boiling point were determined)		
Relative density	$D_4^{20} = 1.14$	EEC A3 Batch AC 8879–140B purified a.s.	Bashir, 1995, METCON_003
Vapour pressure	2.1×10^{-8} Pa at 20 °C (extrapolated from measurements at 85, 90, 95 and 100 °C, five replicates at each temperature but with one considered as outlier)	EEC A.4 Batch 8879–140 B: purity 98.6 % (83% cis-isomer and 15.7% trans-isomer) (purified a.s.)	Tremain & An, 2000, METCON_004
Henry's Law Coefficient	$2.21 \times 10^{-7} \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1}$ at 20 °C calculated with: - vapour pressure at 20 °C : 2.1×10^{-8} Pa and, - water solubility at 20 °C : $30.4 \text{ mg/L} = 0.095 \text{ mol/m}^3$	Calculation Batch 8879–140 B : purity 98.6 % (83% cis-isomer and 15.7% trans-isomer) (purified a.s.)	Martin, 2002, METCON_005
Appearance	White powdered solid, odourless.	Batch AC 8879–140B : 98.6% (83% cis- isomer and 15.7% trans-isomer) (purified a.s.) 98.3% pure (84.2% of cis-isomer and 13.7% of trans-isomer) (lot AC 10575–61)	Kramer, 1996, METCON_006

Property	Results			Method	Reference	
				(test material)		
Spectra	Following spectra	were provided	1:		a.s., 98.1% pure (80%	Jones, 2001,
	UV/VIS (spectra m	easured betw	een 190–70	cis, 20% trans) (lot	METCON_007	
	IR (KBr; sample so	anned over ra	inge 4000 to	AC 12140–17);		
	¹ H-NMR (DMSO-	d6)		purified cis-isomer,	Kroehl, 2014,	
	¹³ C-NMR (DMSO-	-d6)		98.8% pure (lot AC	METCON_008	
	MS (both CI and E	I)			8879–136A);	
					purified trans-isomer,	
	The different spect	ra were found	to be in agr	eement with	98.6% pure (lot AC	
	the proposed chem	ical structures			9339–122A)	
	UV/VIS absorption	characteristi	cs :			
	2	(nm) ((I mol-	Г		
	7.n	ax (1111 <u>)</u> 1	(L.1101)			
	Acatomituila 10	6 1	7700	-		
	Accionarile 19		5000			
	solution 22		1600			
	22	0 ²	1000			
		iouider)	50			
	20		150			
	26	8	90			
		• • • •				
	at $\lambda > 290 \text{ nm} : 2 \text{ n}$	naxima (deteri	mined in pH	l'/ buffer		
	containing 0.1% ac	etonitrile; 9.6	81 10 [–] mol	/L, 290 –		
	490 nm range cfr q	uantum yield	study) :			
	at 310 nm : ɛ-value	= 2686 L.mo	$l^{-1}.cm^{-1}$			
	at 372.5 nm : ε-val	ue = 1921 L.n	nol ⁻¹ .cm ⁻¹			
Solubility in	Solubility at 20 °C	in distilled N	1illi-Q wate	er (pH ca.	EEC A.6	Madsen, 1995a,
water	7.5)				98.6% (purified a.s.)	METCON_009
	cis/trans mixture (.	AC 900768) :	30.4 mg/L		(83% cis, 15.7%	
	cis-isomers (CL 35	54801):17.1	mg/L		trans): batch AC8879-	
	trans-isomers (CL	354802):13	.6 mg/L		140B	
	A preliminary test	demonstrated	l that water	solubility is		
	not dependent on p	H.				
Solubility in	Solubility at 20 °C	(g/L):			EEC A.6	Madsen, 1995a,
organic solvents					98.6% (purified a.s.)	METCON_009
		AC	CL	CL	(83% cis, 15.7%	
		900768	354801	354802	trans): batch AC8879-	
		(cis/trans)	(cis)	(trans)	140B	
	hexane	1.40	0.929	0.483		
	toluene	103	66.2	38		
	dichloromethane	481	343	141		
	methanol	403	291	117		
	2-propanol	132	86.6	46.7		
	acetone	363	251	117		
	ethyl acetate	260	173	90.0		
Partition		200	170	9010	FFC A8	Madsen 1996b
coefficient		AC	CL	CL	98.6% (purified a s.)	METCON 010
n-octanol / water		000768	354801	354802	(83% cis 15.7%	
in octanion / water		(cis/trane)	(cis)	(trans)	trans): batch AC8879_	
	log D at	3.85	3.85	3.8	140B	
	20 °C	5.05	5.05	5.0	1.00	
		1	1			
	Test water distille	d Milli O wa	tor (nH 7)	8)		
Urideo Izz-!-	Motoong-1	u wini-Q wa	100 (pn /.2)	0) . often 120	EEC C7	Eal: 1001
nyaro1ys1s	hours) for all all	aluga to the	an 10% loss	s after 120	EEU U/	ГISK, 1991, МЕТСОМ 011
	nours) for all pH v	aiues tested (4, 7, 9) at 5	0 °C.	95.5% (purified a.s.	METCON_011
					(/9.8% cls, 15.5%)	
				trans): batch 89-01		

Property	Results	Method (test material)	Reference
Photolysis	Aqueous metconazole solutions were continuously irradiated for 30 days at 50 °C. Half-life values were: DT ₅₀ at pH 5: 28 days DT ₅₀ at pH 7: 36 days DT ₅₀ at pH 9: 36 days Hydroxy metconazole was detected at >10% AR	US-EPA, FIFRA 40 CFR part 158, Subdivision N Series 161–2 94.46% (chemical purity)	Williams & Heim, 1996, METCON_012
	It was demonstrated that metconazole is stable in water at pH 7 after continuous irradiation for up to 15 days. The amount of metconazole present was in the range 92.6–97.6% AR throughout the irradiation period. The ratio of isomers remained stable during the course of the study.	OECD 316 Phenyl label: chemical purity 92.7% (cis/trans ratio 81.4:18.6), Batch No. 1065–1029 Triazole-label: chemical purity 92.5% cis/trans ratio 82:18), Batch No. 811–1101	Knight, 2015, METCON_013
Quantum yield of direct photo- transformation	Quantum yield: 2.19e ⁻⁷	OECD GD on direct phototransformation 1997 92.2% (chemical purity), batch AC 12041–24	Knoch & Martin, 1999, METCON_014
Lifetime in the top layer of aqueous systems (calculated and real)	pH 5: $DT_{50} = 27.5 d$ pH 7: $DT_{50} = 36.3 d$ pH 9: $DT_{50} = 35.8 d$	US-EPA, FIFRA 40 CFR part 158, Subdivision N Series 161–2 94.46% (chemical purity)	Williams & Heim, 1996, METCON_015
Dissociation in water of purified active substance	pKa1 = 11.38 +- 0.03 pKa2 = 1.06 +- 0.03	OECD 112 98.6% (chemical purity): batch AC8879–140B	Madsen & Barton, 1995, METCON_016
Estimated photochemical oxidative degradation	K _{OH} =19.6914 e -12 cm ³ /molecules*sec Tropospheric half-life: 6.5 hours		Mangels, 1996, METCON_017
Surface tension	48.6 mN/m at 20 °C (90% saturated solution in pure water)The pure active ingredient metconazole was found to be a surface active material.	OECD Guideline 115, EEC A5 (Plate method) COD-001163 98.7 % (cis/trans ratio not reported)	Daum, 2015, METCON_021
Oxidizing properties	 max. burning rate of reference mixtures = 2.63 mm/s (barium nitrate/cellulose 60/40 % w/w); combustion through the whole pile max. burning rate of test mixtures = 1.82 mm/s (test substance/cellulose 10/90 % w/w); combustion at the surface of the pile only ⇒ a.s. does not present oxidizing properties 	EEC A17 96% purity (a.s. as manufactured, batch ST89/088)	van Helvoirt, 1990d, METCON_022
рН	pH: 5.81 (1% dispersion in distilled water)	Equivalent to CIPAC MT 75 Batch AC10575–61, 98.4 %	Yacoub, 2006, METCON_023
Storage stability	Metconazole was found stable at normal and elevated temperature.	OPPTS 830.6313, determination by DSC Batch AC10575–61, 98.4 %	Yacoub, 2006, METCON_023
	Metconazole is stable after storage for 14 days at 54 °C.	OPPTS 830.6313, determination by GC Batch AC10575–61, 98.4 %	Morrissey, <i>et al.</i> , 1998 METCON_024

Formulations

Metconazole is applied formulated alone or in combination with other active substances. It is formulated as emulsifiable concentrate (EC), soluble (liquid) concentrate (SL), water dispersible granules (WG), suspension concentrate (SC) and suspo-emulsion (SE) products.

Formulation type	EC	EC/ SL	WG	SC	SL	EC	SC	EC	EC	EC	SC	EC
Metconazole	60 g/L	90 g/L	50%	479 g/L	30 g/L	80 g/L	55 g/L	27.5 g/L	25 g/L	41.3 g/L	60 g/L	45 g/L
Mepiquat-					210							
Chloride					g/L							
Pyraclostrobin						130 g/L	146 g/L					
Epoxiconazole								37.5 g/L	37.5 g/L	56.3 g/L		
Boscalid											133 g/L	
Fluxapyroxad												62.5 g/L

Table 2 Examples of formulations registered containing metconazole as active ingredient

METABOLISM AND ENVIRONMENTAL FATE

Metabolism studies were conducted using either [triazole $^{-14}$ C]- or [cyclopentyl $^{-14}$ C]- or [p-chlorophenyl $^{-14}$ C]-metconazole. The position of the label for the test substances is presented in the following figure:

* [triazole-14C]-metconazole

[cyclopentyl-¹⁴C]-metconazole

+ [p-chlorophenyl-¹⁴C]-metconazole

Figure 1 Structure of metconazole and position of radiolabels

Chemical names, structures and code names of metabolites and degradation products of metconazole are shown below.

Code Names	Chemical Names (IUPAC)	Structure	Where found
			Plants (wheat, canola, banana, mandarin, pea)
M0 CL 900768 WL148271 KNF-S–			Animals (goat, hen)
4/4m		Cis-isomer	
CL 354801; WL136184 KNF-S-474c	(1 <i>RS</i> ,5 <i>RS</i> ;1 <i>RS</i> ,5 <i>SR</i>)–5-(4-chlorobenzyl)– 2,2-dimethyl–1-(1 <i>H</i> –1,2,4-triazol–1- ylmethyl)cyclopentanol	N	
<i>trans</i> -isomer: CL 354802; WL153996			
(KNF-S– 474t)			
		Trans-isomer Molar mass: 319.8 g/mol	
		N N	Plants (banana, mandarin)
M1	(1SR,2SR,5RS)-5-(4-chlorobenzyl)-2-	но	Animals (goat, hen)
CL 359451	(nydroxymethyl)=2-methyl=1-(1H=1,2,4- triazol=1-ylmethyl)cyclopentanol		
		Molar mass: 335.8 g/mol	
			mandarin)
M2 CL 359452	(1SR,2RS,5RS)–5-(4-chlorobenzyl)–2- (hydroxymethyl)–2-methyl–1-(1H–1,2,4- triazol–1-ylmethyl)cyclopentanol	CI C	Animals (goat)
M11	(1RS,5SR)5-[(SR)-(4-		Plants (wheat, canola banana)
CL 382390	dimethyl-1-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanol		
			Animals (goat, hen)
M12 (4543815) CL 359138	(1RS,2SR,3RS)-3-(4-chlorobenzyl)-2- hydroxy-1-methyl-2-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanecarboxylic acid		Rotational crops (radish)
CL 337130	ymenyijeyelopentaneearooxyne aciu	сі н соон	

Table 3 Known metabolites of metconazole

Code Names	Chemical Names (IUPAC)	Structure	Where found
		Molar mass: 349.8 g/mol	
M13 (4543816) CL 359139	(1SR,2SR,3RS)–3-(4-chlorobenzyl)–2- hydroxy–1-methyl–2-(1H–1,2,4-triazol–1- ylmethyl)cyclopentanecarboxylic acid		Animals (goat)
M15 CL 359453	(1RS,5SR)–5-(4-chloro–3- hydroxybenzyl)–2,2-dimethyl–1-(1H– 1,2,4-triazol–1-ylmethyl)cyclopentanol	HO CI HO HO HO HO HO HO HO HO HO HO HO HO HO	Animals (goat)
M19 (411113) CL 395838	(1RS,5SR)–5-(3-chloro–4- hydroxybenzyl)–2,2-dimethyl–1-(1H– 1,2,4-triazol–1-ylmethyl)cyclopentanol		Animals (goat)
M20 87084 M555F020	1,2,4-(1H)-triazole		Animals (hen) Environment (soil)
M21 CL 197130	(1RS,5SR)–5-[(RS)-(4- chlorophenyl)(hydroxy)methyl]–2,2- dimethyl–1-(1H–1,2,4-triazol–1- ylmethyl)cyclopentanol		Plants (wheat, mandarin)
M30 4110625 CL 382389 M555F030cis	(1RS,5SR)–5-(4-chlorobenzoyl)–2,2- dimethyl–1-(1H–1,2,4-triazol–1- ylmethyl)cyclopentanol		Plants (wheat) Environment (soil) Rotational crops (radish, wheat straw)

Code Names	Chemical Names (IUPAC)	Structure	Where found
M31 5968488	(1RS,3SR,5RS)–5-(4-chlorobenzyl)–2,2- dimethyl–1-(1H–1,2,4-triazol–1- ylmethyl)cyclopentane–1,3-diol		Animals (goat, hen)
M32 5968479	(1RS,3RS,5RS)–5-(4-chlorobenzyl)–2,2- dimethyl–1-(1H–1,2,4-triazol–1- ylmethyl)cyclopentane–1,3-diol		Animals (goat, hen)
M34 Triazolyl acetic acid WL 161417	2-(1,2,4-triazol–1-yl)acetic acid		Plants (wheat) Rotational crops (wheat grain)
M35 Triazolyl alanine WL161416 CL 147267	2-amino–3-(1H–1,2,4-triazol–5- yl)propanoic acid	N N H ₂ N OH	Plants (wheat, canola, pea) Rotational crops (radish, lettuce, wheat grain)
M40 M555F040	(5Z)–5-(4-chlorobenzylidene)–2,2- dimethyl–1-(1H–1,2,4-triazol–1- ylmethyl)cyclopentanol		Environment (soil)

PLANT METABOLISM

The metabolic fate in plants was investigated following foliar application of [triazole-¹⁴C]-metconazole to wheat, canola, banana, mandarins and peas; [cyclopentyl-¹⁴C]-metconazole to wheat and mandarin and [*p*-chlorophenyl-¹⁴C]-metconazole to banana, canola and pea.

In all studies metconazole was moderately degraded into its mono- or dihydroxylated metabolites or their respective glucoside conjugates. Parent metconazole was the major identified component in all matrices, except in wheat grain and pea seed treated with [triazole-¹⁴C]-metconazole. In these matrices triazolyl alanine (wheat grain and pea seed) and triazolyl acetic acid (wheat grain) were identified as the major identified components.

Mandarins

A metabolism study with mandarins (variety Wase Unshu) under greenhouse conditions was performed with [cyclopentyl-¹⁴C]- and [triazole–¹⁴C]-radiolabelled metconazole (Satoh, 2002, Metcon_031), each containing a *cis:trans* ratio of 85:15. Mandarin plants received a single foliar application at rates of 0.2 kg ai/ha (1×) per radiolabel at the fruit stage (about 2 months before maturity). Fruit and leaf samples were taken at 0 (immediately after the treatment), 28 and 56 DAT and rinsed with methanol. Additionally, fruits were separated in peel and pulp.

The rinsed sample material was homogenized and extracted with methanol/water (7:3, v/v) for peel and pulp, and methanol/water (1:1, v/v) for leaves, followed by the determination of the radioactivity using LSC. The TRR in sample material was calculated as the sum of total radioactivity in the surface rinse, extracts and post extraction solids. Further characterization was done by fractionation of the extracts using SPE on a C18 cartridge. Aliquots of the methanol fractions obtained from SPE fractionation of peel and leaf extracts (56 DAT, both labels) were subjected to acidic hydrolysis (0.1 M HCL at 100 °C for 1 day) or incubated with cellulase (37 °C for 1 day) to liberate conjugates. HPLC and TLC, against reference compounds, were applied for the identification of the radioactivity in the rinse and sample extracts, but not for pulp samples, as the radioactivity was too low.

Table 4 shows similar TRR levels for both labels with the radioactivity found in mandarin leaves 10 times higher compared to fruit.

Table 4 To	tal radioactive	residues i	n mandarins	after or	ne foliar	application	of [cycl	opentyl-1	⁴ C]- and
[triazole-14	C]-radiolabell	ed metcona	azole						

Matrix	Sampling interval DAT	TRR ^a (mg eq/kg) [cyclopentyl ⁻¹⁴ C]-metconazole [triazole ⁻¹⁴ C]-metconazole					
	0	4.2	4.8				
Leaf	28	3.5	3.7				
	56	3.1	3.3				
	0	0.10	0.13				
Fruit	28	0.097	0.099				
	56	0.11	0.072				

^a Calculated as the sum of surface rinse, peel extract and RRR, flesh extract and RRR

The radioactivity extracted from homogenized mandarin fruit and leaf samples is presented in Tables 5 and 6. Extracted radioactivity ranged between 93–100% TRR and 90–99% TRR in mandarin fruits and leaves, respectively.

Table 5 Extractability of radioactive residues from mandarin fruit samples after one foliar application of [cyclopentyl $-^{14}$ C]- and [triazole $-^{14}$ C]-radiolabelled metconazole

		Surface	Pe	eel	F	lesh	Sum ERR	Sum PES
DAT	TRR	rinse	Extract	PES	Extract	PES		Sull I LS
Dill	(mg eq/kg)	mg eq/kg	mg eq/kg	mg eq/kg	mg eq/kg	mg eq/kg	mg eq/kg	mg eq/kg
		(70 I KK)	(70 IKK)	(70 IKK)	(70 IKK)	(70 IKK)	(70 IKK)	(70 TKK)
			[tri	azole-14C]-met	conazole			
0	0.13	0.101 (84)	0.019 (15)	< 0.001 (0.7)	< 0.001 (0.3)	< 0.001 (< 0.1)	0.13 (99)	0.002 (0.8)
28	0.10	0.018 (18)	0.074 (75)	0.005 (5.2)	0.002 (1.9)	< 0.001 (< 0.1)	0.094 (95)	0.006 (5.3)
56	0.072	0.011 (15)	0.054 (76)	0.004 (6.0)	0.002 (3.0)	< 0.001 (< 0.1)	0.067 (94)	0.005 (6.1)
			[cyclo	opentyl-14C]-n	netconazole			
0	0.10	0.084 (82)	0.018 (18)	< 0.001 (0.6)	< 0.001 (0.2)	< 0.001 (< 0.1)	0.10 (100)	0.002 (0.7)
28	0.097	0.020 (20)	0.072 (74)	0.005 (4.9)	0.001 (1.3)	< 0.001 (0.2)	0.093 (95)	0.006 (5.1)
56	0.11	0.013 (12)	0.090 (80)	0.008 (6.7)	0.002 (1.5)	< 0.001 (0.1)	0.10 (93)	0.009 (6.8)

DAT	TRR	Surfa	ce rinse	Extract		Extract Sum ERR		Р	PES	
	mg eq/kg	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	
				[triazole-14	⁴ C]-metconaz	ole				
0	4.8	4.0	82	0.83	17	4.8	99	0.041	0.9	
28	3.7	2.0	56	1.3	36	3.4	92	0.30	8.3	
56	3.3	1.3	39	1.7	51	3.0	90	0.32	9.6	
			[cyclopentyl	-14C]-metcona	azole				
0	4.2	3.4	80	0.80	19	4.2	99	0.034	0.8	
28	3.5	1.8	51	1.5	43	3.3	94	0.18	5.0	
56	3.1	1.4	46	1.5	47	2.9	93	0.21	6.8	

Table 6 Extractability of radioactive residues from mandarin leaf samples after one foliar application of [cyclopentyl $^{-14}$ C]- and [triazole $^{-14}$ C]-radiolabelled metconazole

The distribution of radioactivity in mandarin fruits and leaves is presented in Table 7 and Table 8 Further analyses of the flesh extracts were not conducted due to their low radioactivity. Parent metconazole was a major identified residue all matrices accounting for 47-94% TRR (0.34–0.12 mg eq/kg) in fruit and 45-95% TRR (1.5–4.6 mg eq/kg) in leaves. As a minor metabolite, M21 was identified in fruits and leaves at levels of up to 1.8% TRR (0.002 mg eq/kg) and 2.7% TRR (0.083 mg eq/kg), respectively. Acidic hydrolysis experiments demonstrated that conjugates were cleaved to form four aglycones of which two could be assigned to M1 at up to 3.0% TRR in peels and M2 at up to 1.9% TRR in peels. The proposed metabolic pathway of metconazole is shown in Figure .

Table 5 Summary of identified/characterized residues in mandarin fruit after one foliar application of $[cyclopentyl-^{14}C]$ - and $[triazole-^{14}C]$ -radiolabelled metconazole

	Fruits					
Fraction	0 DAT		28 DAT		56 DAT	
	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
[triazole_	¹⁴ C]-metco	nazole				
TRR	0.13	100	0.10	100	0.072	100
Sum of surface rinse and peel extract (SPE organic eluate)	0.13	99	0.094	95	0.067	94
Metconazole	0.12	92	0.054	54	0.034	47
M1 ^b	-	-	-	-	0.002	3.0
M2 ^b	-	-	-	-	0.001	1.9
M21 (plus at least one unknown)	n/d		0.002	1.8	0.001	1.7
Aglycons of hydroxylated metconazole					0.008	11
metabolites	-	-	-	-	0.008	11
Others ^a	0.009	7.1	0.032	33	0.016	21
Peel extract (SPE water eluate)	< 0.001	< 0.1	0.003	2.9	0.003	4.5
Flesh extract	< 0.001	0.3	0.002	1.9	0.002	3.0
Total identified	0.12	92	0.056	56	0.038	54
Total characterized	0.009	7.4	0.037	38	0.029	39
Unextracted	0.002	0.8	0.006	5.3	0.005	6.1
Total	0.13	100	0.10	99	0.072	99
[cyclopenty]	l-14C]-met	conazole				
TRR	0.10	100	0.097	100	0.11	100
Sum of surface rinse and peel extract (SPE organic eluate)	0.10	100	0.093	95	0.10	93
Metconazole	0.097	94	0.053	54	0.055	49
M1 ^b	-	-	-	-	0.003	3.0
M2 ^b	-	-	-	-	0.002	1.8
M21 (plus at least one unknown)	n/d		0.002	1.7	0.002	1.6
Aglycons of hydroxylated metconazole					0.012	12
metabolites	-	-	-	-	0.012	12
Others ^a	0.006	5.8	0.034	36	0.027	22
Peel extract (SPE water eluate)	< 0.001	0.2	0.002	1.8	0.003	2.4
Flesh extract	< 0.001	0.2	0.001	1.3	0.002	1.5
Total identified	0.097	94	0.055	56	0.062	55

	Fruits					
Fraction	0 DAT 2		28 DAT		56 DAT	
	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
Total characterized	0.008	6.2	0.037	39	0.043	38
Unextracted	0.002	0.7	0.006	5.1	0.009	6.8
Total	0.11	101	0.098	100	0.11	100

^a Including isomers of hydroxylated metconazole as well as conjugates

^b After acidic hydrolysis

Table	8 Si	ummary	of i	dentifie	ed/chai	acterized	resid	ues	in	mandarin	leaf	samples	after	one	foliar
applica	ation	of [cycl	opent	yl-14C]- and	[triazole-	¹⁴ C]-ra	adiol	lab	elled metc	onazo	ole			

	Leaves					
Designation	0 DAT		28 DAT		56 DAT	
	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
[triazole-	¹⁴ C]-metco	onazole				
TRR	4.8	100	3.7	100	3.3	100
Sum of surface rinse and extract (SPE organic eluate)	4.8	99	3.4	92	3.0	90
Metconazole	4.6	95	2.0	54	1.5	45
M1 ^b	-	-	-	-	0.050	1.4
M2 ^b	-	-	-	-	0.025	0.69
M21 (plus at least one unknown)	0.019	0.39	0.083	2.3	0.075	2.3
Aglycons of hydroxylated metconazole					0.172	10
metabolites	-	-	-	-	0.172	4.0
Others ^a	0.28	5.7	1.2	33	1.0	32
Extract (SPE water eluate)	0.006	0.1	0.14	3.8	0.22	6.7
Total identified	4.6	95	2.1	56	1.6	47
Total characterized	0.29	5.8	1.3	37	1.4	44
Unextracted	0.041	0.9	0.30	8.3	0.316	9.6
Total	4.9	102	3.7	101	3.3	101
[cyclopenty	l-14C]-met	conazole				
TRR	4.2	100	3.5	100	3.1	100
Sum of surface rinse and extract (SPE organic eluate)	4.2	99	3.3	94	2.9	93
Metconazole	3.9	93	2.0	57	1.5	48
M1 ^b	-	-	-	-	0.056	1.4
M2 ^b	-	-	-	-	0.034	0.82
M21 (plus at least one unknown)	n/d		0.083	2.4	0.082	2.7
Aglycons of hydroxylated metconazole					0.10	1.2
metabolites	-	-	-	-	0.18	4.3
Others ^a	0.29	6.9	1.2	33	0.92	30
Extract (SPE water eluate)	0.005	0.1	0.11	3.2	0.14	4.4
Total identified	3.9	93	2.1	59	1.7	53
Total characterized	0.30	7.0	1.3	36	1.2	40
Unextracted	0.034	0.8	0.18	5.0	0.21	6.8
Total	4.3	101	3.5	100	3.1	100

^a Including isomers of hydroxylated metconazole as well as conjugates

^b After acidic hydrolysis

Banana

A metabolism study with banana (variety Dwarf Cavendish) under greenhouse conditions was performed with [triazole $^{-14}$ C]- and [*p*-chlorophenyl $^{-14}$ C]-radiolabelled metconazole, each containing a *cis:trans* ratio of about 80:20 (Kao, 1998, Metcon_030). Banana plants received five foliar applications at a rate of 0.14 kg ai/ha per application and radiolabel. The first treatment occurred at the flowering stage and every two weeks after the initial application. Banana fruits were sampled at 56 DAT1 (2 h after the last treatment, 0 DALA) and a subsample separated into peel and pulp.

The TRR in the homogenized sample material was determined by combustion followed by LSC. TRR in extracts was directly determined by LSC. To characterize and identify the radioactivity present, fruit samples were extracted three times with methanol, followed by 2% HCl in methanol. HPLC against reference compounds and LC-MS were applied for the identification of the radioactivity.

Table 9 shows similar TRR levels for both labels with the highest radioactivity found in banana peel. Levels in the pulp were about three times lower.

Table 9 Total radioactive residues in banana fruit after five foliar applications of [triazole $^{-14}$ C]- and [*p*-chlorophenyl $^{-14}$ C]-metconazole

Some ling interval		TRR determined by direct combustion, mg eq/kg				
DAT1 (DALA)	Matrix	[triazola ¹⁴ C] metconazola	[<i>p</i> -chlorophenyl- ¹⁴ C]-			
DATI (DALA)		[triazole= C]-inetconazole	metconazole			
	Fruit	1.4	0.93			
56 (0)	Peel	1.6	2.5			
	Pulp	0.61	0.78			

The radioactivity extracted from homogenized banana matrices with methanol and 2%HCl in methanol is presented in Table 10. Extracted radioactivity ranged between 96–98% TRR from all matrices. The PES radioactivity ranged between 1.7–3.6%TRR.

Table 10 Extractability of radioactive residues from banana matrices after five foliar applications of $[triazole^{-14}C]$ - and [p-chlorophenyl $^{-14}C]$ -metconazole, sampled at 0 DALA

	Radioactive residues in mg eq/kg (% TRR)								
Fraction	[triazo	ole-14C]-metcor	nazole	[p-chlorophenyl-14C]-metconazole					
	Fruit	Peel	Pulp	Fruit	Peel	Pulp			
TRR	1.4 (100)	1.6 (100)	0.61 (100)	0.93 (100)	2.5 (100)	0.78 (100)			
Methanol extracts	1.3 (93)	1.5 (94)	0.54 (89)	0.85 (92)	2.4 (93)	0.67 (86)			
2%HCl/MeOH extract	0.05 (3.4)	0.05 (2.9)	0.06 (9.0)	0.04 (4.7)	0.09 (3.4)	0.09 (12)			
ERR ^a	1.35 (96)	1.55 (97)	0.60 (98)	0.89 (97)	2.4 (96)	0.76 (98)			
Unextracted	0.05 (3.6)	0.05 (3.4)	0.011 (1.8)	0.031 (3.4)	0.086 (3.4)	0.013 (1.7)			
Total	1.4 (100)	1.6 (100)	0.61 (100)	0.93 (100)	2.5 (100)	0.77 (99)			

^a Extracted radioactive residues

The distribution of radioactivity is presented in Table . Parent metconazole was a major identified residue all matrices accounting for 86-89% TRR (0.52–2.2 mg eq/kg). As minor metabolites, M1 and M11 were identified at levels of 0.87-2.3% TRR (0.009–0.022 mg eq/kg) and 1.3-2.1% TRR (0.010–0.040 mg eq/kg), respectively. Additionally, triazolyl alanine was identified in [triazole–¹⁴C]-metconazole treated bananas, accounting for 0.64–3.5% TRR (0.010–0.021 mg eq/kg). The proposed metabolic pathway of metconazole is shown in Figure .

Table 11 Summary of identified/characterized residues in banana matrices after five foliar applications of $[triazole^{-14}C]$ - and [p-chlorophenyl $^{-14}C]$ -metconazole

	Radioactive residues in mg eq/kg (% TRR)							
Fraction	[triazole-14C]-	metconazole		[<i>p</i> -chlorophenyl-14C]-metconazole				
	Fruit	Peel	Pulp	Fruit	Peel	Pulp		
TRR	1.4 (100)	1.6 (100)	0.61 (100)	0.93 (100)	2.5 (100)	0.78 (100)		
Extracts	1.35 (96)	1.55 (97)	0.60 (98)	0.89 (97)	2.4 (96)	0.76 (98)		
Metconazole	1.2 (87)	1.4 (87)	0.52 (86)	0.80 (86)	2.2 (87)	0.70 (89)		
Triazolyl alanine	0.017 (1.2)	0.010 (0.64)	0.021 (3.5)	n/a	n/a	n/a		
M1 (CL 359451)	0.017 (1.2)	0.014 (0.87)	0.014 (2.3)	0.009 (0.96)	0.022 (0.87)	0.014 (1.7)		
M11 (CL 382390)	0.017 (1.3)	0.023 (1.4)	0.010 (1.7)	0.016 (1.7)	0.040 (1.6)	0.016 (2.1)		
Characterized by	0.076 (5.5)	0.11 (6.8)	0.018 (2.9)	0.060 (6.4)	0.19 (7.4)	0.037 (5.6)		

	Radioactive residues in mg eq/kg (% TRR)									
Fraction	[triazole-14C]-	[triazole-14C]-metconazole			[<i>p</i> -chlorophenyl ⁻¹⁴ C]-metconazole					
	Fruit	Peel	Pulp	Fruit	Peel	Pulp				
HPLC										
Total identified	1.3 (90)	1.4 (90)	0.57 (94)	0.83 (89)	2.2 (89)	0.71 (91)				
Total characterized	0.076 (5.5)	0.11 (6.8)	0.018 (2.9)	0.060 (6.4)	0.19 (7.4)	0.044 (4.8)				
Unextracted	0.05 (3.6)	0.05 (3.4)	0.011 (1.8)	0.031 (3.4)	0.086 (3.4)	0.013 (1.7)				
Total	1.4 (99)	1.6 (100)	0.60 (99)	0.92 (99)	2.5 (100)	0.77 (98)				

Peas

A metabolism study with peas (variety Kleine Rheinländerin) under field conditions was performed with [*p*-chlorophenyl $^{-14}$ C]- and [triazole $^{-14}$ C]-radiolabelled metconazole (Class & Schluter, 2002, Metcon_032). Plants received two foliar application (green pea scenario) and a third foliar application (dry pea scenario) at a rate of 0.22 kg ai/ha per application and radiolabel with a spray interval of 13–14 days. Foliage samples were taken at 0 DAT1, 0 DAT 2 (13 DAT1) and 0 DALA (27 DAT1). For the green pea scenario, peas and straw were harvested at 13 DAT 2 (26 DAT1) at BBCH 79 and for the dry pea scenario at 15 DALA (42 DAT1) at BBCH 89. The seeds were separated from the pods and the empty pods and the straw combined.

The TRR in the homogenized sample material was determined by combustion followed by LSC. TRR in extracts was directly determined by LSC. Prior to homogenization, all samples except pea seeds were surface extracted by submersion in acetone/water (7:3). All samples were homogenized with acetone, followed by an additional extraction with acetone/methanol/water (1:1:1) for forage 0 DAT1 and DAT 2, and with methanol/water (4:1), followed by water for forage at 0 DALA, straw and seeds. To liberate conjugates, aliquots of the straw extracts (15 DALA) were subjected to acidic hydrolysis (1 M HCl, refluxed for 5 h) and additionally incubated with β -glucosidase. Post extraction solids of pea straw samples from 13 DAT2 and 15 DALA were sequentially treated with 0.1 M HCl, refluxing with acetonitrile/1 mol/L HCl (9:1) and refluxing with 6 M HCl. Additionally, subsamples of pea straw PES (15 DALA) was suspended in a mixture of water and methanol (350/2.5, v/v) to extract water soluble polysaccharides and proteins, followed by solubilisation of pectin by sodium ethylene-diamino-tetra acid solution (Na2-EDTA) or pectinase, solubilisation of copper hydroxide in concentrated ammonium hydroxide. HPLC against reference compounds, TLC and LC-MS/MS were applied for the identification of the radioactivity.

TRR levels in pea matrices are shown in Table . Except for pea seeds, the radioactivity was similar in all matrices for both radiolabels with the highest level in straw at 15 DALA. In seeds the radioactivity was generally lower compared to the other matrices and differed significantly between labels ranging between 0.038–0.23 mg eq/kg and 1.6–3.9 mg eq/kg for the [*p*-chlorophenyl–¹⁴C]- and [triazole–¹⁴C]-label, respectively.

Sampling interval DAT1	Matrix	TRR measured ^a [mg eq/kg]	TRR calculated ^b [mg/kg]							
	[triazole-14C]-metconazole									
0		9.6	11							
13 (0 DAT 2)	Foliage	5.4	8.7							
27 (0 DALA)		21	11							
26 (13 DAT 2, green	Straw	10	12							
pea scenario)	Seed	1.6	1.6							
42 (15 DALA, dry pea	Straw	63	49							
scenario)	Seed	3.9	3.7							
[p-chlorophenyl-14C]-metconazole										
0	Faliana	5.1	8.8							
13 (0 DAT 2)	ronage	13	6.1							

Table 12 Total radioactive residues in pea after two or three foliar application of $[p-chlorophenyl-1^4C]$ - and $[triazole-1^4C]$ -radiolabelled metconazole

Sampling interval DAT1	Matrix	TRR measured ^a [mg eq/kg]	TRR calculated ^b [mg/kg]
27 (0 DALA)		21	8.4
26 (13 DAT 2, green	Straw	9.9	7.9
pea scenario)	Seed	0.038	0.044
42 (15 DALA, dry pea	Straw	168	60
scenario)	Seed	0.23	0.20

^a Determined by direct combustion analysis

^b Calculated as the sum of ERR and RRR

The radioactivity found in the fractions from solvent extractions and in the unextracted remainder is presented in Table 13 Extractability of radioactive residues from foliage, straw and seed ranged between 85–100% TTR.

Table 13 Extractability of radioactive residues in pea after two or three foliar application of $[p-chlorophenyl-{}^{14}C]$ - and $[triazole-{}^{14}C]$ -radiolabelled metconazole

Matrix	DAT1	TRR ^a [mg eq/kg]	Acetone/water surface rinse mg eq/kg (%TRR)	Acetone extract mg eq/kg (%TRR)	Methanol / water / extract b mg eq/kg (%TRR)	Water extract mg eq/kg (%TRR)	ERR mg eq/kg (%TRR)	PES mg eq/kg (%TRR)			
[triazole-14C]-metconazole											
	0	11	1.3 (12)	9.3 (87)	0.064 (0.6)	n/a	11 (100)	0.013 (0.1)			
Foliage	13	8.7	3.5 (40)	4.5 (52)	0.37 (4.3)	n/a	8.4 (97)	0.30 (3.4)			
	27	11	1.7 (15)	8.1 (73)	0.93 (8.3)	0.059 (0.5)	11 (97)	0.29 (2.6)			
Strow	26	12	0.37 (3.1)	10 (85)	0.42 (3.5)	0.091 (0.8)	11 (93)	0.86 (7.2)			
Suaw	42	49	2.1 (4.3)	37 (75)	4.8 (9.8)	0.77 (1.6)	45 (91)	4.4 (9.0)			
Seed	26	1.6	n/a	0.17 (11)	1.2 (78)	0.17 (11)	1.6 (100)	0.008 (0.5)			
Seeu	42	3.7	n/a	0.16 (4.3)	1.9 (51)	1.5 (40)	3.5 (95)	0.20 (5.3)			
		·	[<i>p</i>	-chlorophenyl-	¹⁴ C]-metconazo	le		<u>.</u>			
	0	8.8	0.58 (6.6)	8.1 (93)	0.043 (0.5)	n/a	8.8 (100)	0.012 (0.1)			
Foliage	13	6.1	2.4 (39)	3.5 (57)	0.11 (1.8)	n/a	6.0 (98)	0.14 (2.2)			
	27	8.4	2.3 (27)	5.8 (69)	0.19 (2.2)	0.029 (0.3) ^c	8.3 (99)	0.12 (1.5)			
Straw	26	7.9	0.21 (2.7)	7.0 (89)	0.15 (1.9)	0.035 (0.4)	7.4 (94)	0.45 (5.7)			
Straw	42	60	2.9 (4.9)	45 (75)	6.6 (11)	0.89 (1.5)	55 (92)	4.8 (8.0)			
Seed	26	0.044	n/a	0.031 (72)	0.003 (7.6)	0.002 (5.4)	0.037 (85)	0.007 (16)			
Seed	42	0.20	n/a	0.097 (48)	0.066 (32)	0.016 (8.0)	0.18 (88)	0.024 (12)			

^a Calculated as the sum of ERR and RRR

^b Foliage (0 and 13 DAFT) was extracted with a mixture of acetone, methanol and water

^c A combination of sub-extracts was not possible due to sample loss. In the 1st part 0.018 mg/kg and 0.2% TRR were recovered and in the 2nd part 0.011 mg/kg and 0.1% TRR.

The distribution of radioactivity in peas after treatment with [triazole $^{-14}$ C]- and [*p*-chlorophenyl $^{-14}$ C]-radiolabelled metconazole is presented in Tables 14 and 15. Parent metconazole was the major identified component in foliage ranging from 67–96% TRR (4.8–10 mg eq/kg), in straw ranging from 54–68% TRR (4.6–33 mg eq/kg) and in pea seed for the [*p*-chlorophenyl $^{-14}$ C]-label ranging from 21–36% TRR (0.016–0.043 g eg/kg). As a major metabolite, triazolyl alanine was identified in pea seeds for the [triazole $^{-14}$ C]-label at 75–85% TRR (1.2–3.2 mg eq/kg). Non-resolved isomers of hydroxylated metconazole as well as glucose conjugates ranged between 3.9–31% TRR (0.42–3.4 mg eq/kg) in foliage, 23–38% TRR (2.8–23 mg eq/kg) in straw and 7.5–67% TRR (0.021–0.31 mg eq/kg) in pea seed. The proposed metabolic pathway of metconazole is shown in Figure 2.

Fraction /		I	Radioactive re	sidues in mg e	q/kg (% TRR)	
Solubilizates	F	oliage		Straw		Seed	
	0 DAT1	13 DAT1	27 DAT1	26 DAT1	42 DAT1	26 DAT1	42 DAT1
TRR	11 (100)	8.7 (100)	11 (100)	12 (100)	49 (100)	1.6 (100)	3.7 (100)
Extracts	11 (100)	8.4 (97)	11 (97)	11 (93)	45 (91)	1.6 (100)	3.5 (95)
Metconazole	10 (96)	6.9 (79)	7.4 (67)	7.8 (65)	33 (68)	0.053	0.081
						(3.4)	(2.2)
Triazolyl alanine	n/d	n/d	n/d	n/d	n/d	1.2 (75)	3.2 (85)
Others ^a	0.42 (3.9)	1.6 (18)	3.4 (31)	3.4 (28)	11 (23)	0.31 (21)	0.23 (7.5)
Post extraction solids	0.013	0.30 (3.4)	0.29 (2.6)	0.86 (7.2)	4.4 (9.0)	0.008	0.20 (5.3)
	(0.1)					(0.5)	
0.1 M HCl	n/a	n/a	n/a	0.022	0.15	n/a	n/a
extract				(0.18)	(0.31)		
Acetonitrile/1 M	n/a	n/a	n/a	0.60 (5.0)	3.1 (6.3)	n/a	n/a
HCl (9:1)							
6 M HCl	n/a	n/a	n/a	0.024	0.16	n/a	n/a
				(0.2)	(0.32)		
Total identified	10 (96)	6.9 (79)	7.4 (67)	7.8 (65)	33 (68)	1.3 (78)	3.3 (87)
Total characterized	0.42 (3.9)	1.6 (18)	3.4 (31)	4.1 (33%)	15 (30)	0.31 (21)	0.23 (7.5)
Unextracted	0.013	0.30 (3.4)	0.29 (2.6)	0.22(1.8)	1.0 (2.1)	0.008	0.20 (5.3)
	(0.1)					(0.5)	
Total	11 (100)	8.8 (101)	11 (100)	12 (100)	49 (98)	1.6 (100)	3.7 (100)

Table 14 Summary of identified/characterized residues in pea after two or three foliar application of [triazole–¹⁴C]-radiolabelled metconazole

^a Including isomers of hydroxylated metconazole as well as glucose conjugates

Table 15 Summary of identified/characterized re	esidues in p	pea after	two or three	e foliar	application	of
[<i>p</i> -chlorophenyl- ¹⁴ C]-radiolabelled metconazole.	-	_				

Fraction /		Radioactive residues in mg eq/kg (% TRR)					
Solubilizates		Foliage		Stra	iw	Seed	
	0 DAT1	13 DAT1	27 DAT1	26 DAT1	42 DAT1	26 DAT1	42 DAT1
TRR	8.8 (100)	6.1 (100)	8.4 (100)	7.9 (100)	60 (100)	0.044	0.20 (100)
						(100)	
Extracts	8.8 (100)	6.0 (98)	8.3 (99)	7.4 (94)	55 (92)	0.037 (85)	0.18 (88)
Metconazole	8.2 (94)	4.8 (79)	6.7 (79)	4.6 (59)	33 (54)	0.016 (36)	0.043 (21)
Others ¹	0.51 (5.8)	1.2 (19)	1.6 (19)	2.8 (36)	23 (38)	0.021 (48)	0.14 (67)
Post extraction solids	0.14 (2.2)	0.012	0.12 (1.5)	0.45 (5.7)	4.8 (8.0)	0.007 (16)	0.024 (12)
		(0.1)					
0.1 mol/L HCl	n/a	n/a	n/a	0.014 (0.18)	0.19 (0.32)	n/a	n/a
extract							
Acetonitrile/1	n/a	n/a	n/a	0.32 (4.1)	2.9 (4.9)	n/a	n/a
mol/L HCl (9:1)							
6 M HCl	n/a	n/a	n/a	0.005 (0.07)	0.05 (0.08)	n/a	n/a
Total identified	8.2 (94)	4.8 (79)	6.7 (79)	4.6 (59)	33 (54)	0.016 (36)	0.043 (21)
Total characterized	0.51 (5.8)	1.2 (19)	1.6 (19)	3.1 (39)	26 (43)	0.021 (48)	0.14 (67)
Unextracted	0.14 (2.2)	0.012	0.12 (1.5)	0.10 (1.3)	1.7 (2.8)	0.007 (16)	0.024 (12)
		(0.1)					
Total	8.9 (102)	6.0 (98)	8.4 (100)	7.8 (99)	61 (102)	0.044	0.21 (101)
						(100)	

^a Including isomers of hydroxylated metconazole as well as glucose conjugates

Wheat

The metabolic fate of [triazole 14 C]-radiolabelled metconazole (98% *cis*-isomer) in wheat (variety Avalon) after one foliar application at 0.37 kg ai/ ha at BBCH 57–59 was investigated in the study by Edwards (1991a, METCON_026). Samples of straw and grain were taken 74 DAT.

The TRR in the homogenized samples was determined by combustion and LSC. In order to characterise and identify the radioactivity present, grain and straw samples were sequentially extracted with acetone, acetonitrile, acetonitrile/water (7/3, v/v) and two times with water. Further sub-samples of the acetonitrile phase were partitioned against either ethyl acetate or dichloromethane. Grain extracts were further treated with cellulase, β -glucuronidase, sulfatase and β -glucosidase, but did not result in the liberation of identifiable metabolites. Radioactivity in the post-extraction solids from straw was additionally extracted with either 0.1 mol/L NaOH, 2 M HCl or refluxed with water. TLC, HPLC against reference compounds, ion exchange chromatography, GC-MS and LC-MS were applied for the characterisation and identification of the radioactivity.

TRR levels in wheat grain were with 0.64–0.66 mg eq/kg generally an order in magnitude lower compared to wheat straw. A summary of the radioactive residues found is presented in Table 16.

Table 16 Total radioactive residues in wheat matrices after one foliar application of [triazole-¹⁴C]-metconazole

Sampling interval (DAT)	Matrix	TRR determined by direct combustion, mg eq/kg	TRR calculated, mg eq/kg ^a
74	Grain	0.66	0.64
	Straw	6.3	5.7

^a Sum of extracts and post-extraction residue (PES).

The radioactivity found in the fractions from the initial solvent extractions and in the unextracted remainder is presented in Table 17. Overall extractability was higher in grain at 92% TRR compared to straw at 74% TRR.

Table 17 Extractability of radioactive residues from wheat matrices after one foliar application of $[triazole^{-14}C]$ -metconazole

Enertien	(Grain	Straw		
Fraction	% TRR	mg/kg	% TRR	mg/kg	
TRR	100	0.66	100	6.3	
Acetone extract	0.8	-	40	-	
Acetonitrile extract	< 0.1	-	7.6	-	
Acetonitrile/water extract (7/3)	19	-	18	-	
Water extract 1	65	-	7.0	-	
Water extract 2	7.5	-	1.7	-	
ERR ^a	92	0.61	74	4.7	
Unextracted	4.3	0.03	16	0.99	
Total	97	0.64	89	5.7	

^a Extracted radioactive residues

The distribution of radioactivity following one foliar application at 0.37 kg ai/ha is presented in Table 18. While parent metconazole was not detected in wheat grain, it accounted for 24% TRR (1.5 mg eq/kg) in wheat straw. Major metabolites were triazolyl alanine at 69% TRR (0.46 mg eq/kg) and triazolyl acetic acid at 23% TRR (0.16 mg eq/kg) in wheat grain only. The proposed metabolic pathway of metconazole is shown in Figure 2.

Table 18 Summary of identified/characterized residues in wheat matrices after one foliar application of [triazole_¹⁴C]-metconazole

Fraction /	Radioactive residues in mg eq/kg (% TRR)				
Solubilizates	Grain	Straw			
TRR	0.66 (100)	6.3 (100)			
Solvent extracts	0.61 (92)	4.7 (74)			
Metconazole (cis-isomer)	n/d	1.2 (19)			
M2	n/d	< 0.25 (<4)			

Fraction /	Radioactive residues in mg eq/kg (% TRR)				
Solubilizates	Grain	Straw			
M11	n/d	< 0.25 (<4)			
M35 (triazolyl alanine)	0.46 (69)	n/d			
M34 (triazolyl acetic acid)	0.16 (23)	n/d			
Characterized by HPLC	n/a	2.1 (33)			
Water soluble metabolites	n/a	1.3 (21)			
Post extraction solids	0.03 (4.3)	1.2 (19)			
0.1 mol/L NaOH	n/a	0.99 (16)			
Metconazole	n/a	0.28 (4.5)			
Water soluble metabolites	n/a	0.34 (5.5)			
Total identified	0.62 (92)	2.0 (32)			
Total characterized	n/a	3.7 (60)			
Unextracted	0.03 (4.3)	0.21 (3.3)			
Total	0.65 (96)	5.9 (95)			

The metabolic fate of [cyclopentyl-¹⁴C]-radiolabelled metconazole, containing a *cis:trans* ratio of about 80:20, in wheat (variety Avalon) after one foliar application at 0.36 kg ai/ ha at BBCH 57–60 was investigated in the study by Edwards (1991b, METCON_027). Samples of straw and grain were taken 61 DAT. All samples were stored under deep freezer conditions until further processing.

The TRR in the homogenized samples was determined by combustion and LSC. In order to characterise and identify the radioactivity present, grain and straw samples were sequentially extracted with acetonitrile/water (9/1, v/v), acetonitrile/water (1/1, v/v) and water. Further subsamples of the acetonitrile phase were partitioned against either ethyl acetate or dichloromethane. Radioactivity in the post-extraction solids from straw was additionally extracted with either 0.1 M NaOH, 2 M HCl or refluxed with water. TLC, HPLC against reference compounds, GC-MS and LC-MS were applied for the characterisation and identification of the radioactivity.

TRR levels in wheat grain were with 0.074 mg eq/kg about two orders in magnitude lower compared to wheat straw. A summary of the radioactive residues found is presented in Table 9.

Table 19 Total radioactive residues in wheat matrices after one foliar application of [cyclopentyl-14C]-metconazole

Sampling interval (DAT)	Matrix	TRR determined by direct combustion, mg eq/kg	TRR calculated, mg eq/kg ^a
61	Grain	0.074	0.068
01	Straw	5.9	5.6

^a Sum of extracts and post-extraction residue (PES).

The radioactivity found in the fractions from the initial solvent extractions and in the unextracted remainder is presented in Table . Overall extractability was with 82% TRR in grain and 81% TRR in straw similar.

Table 20 Extractability of radioactive residues from wheat matrices after one foliar application of [cyclopentyl-¹⁴C]-metconazole

Enostion	Grain		Straw	
Fraction	% TRR	mg/kg	% TRR	mg/kg
TRR	100	0.074	100	5.9
Acetonitrile/water extract (9/1)	19	-	66	-
Acetonitrile/water extract (1/1)	57	-	15	-
Water extract	6.7	-	-	-
ERR ^a	82	0.061	81	4.8
PES	10	0.007	14	0.83
Total	93	0.68	95	5.6

^a Extracted radioactive residues

The distribution of radioactivity following one foliar application at 0.36 kg ai/ha is presented in Table 21. Parent metconazole accounted for 34% TRR (1.9 mg eq/kg) in wheat straw. Major metabolites were M11 at 9.8% TRR (0.58 mg eq/kg) and M21 at 9.7% TRR (0.57 mg eq/kg). The low TRR levels found in wheat grain was not further characterized. The proposed metabolic pathway of metconazole is shown in Figure 2.

Table 21 Summary of identified/characterized residues in wheat matrices after one foliar application of $[cyclopentyl-{}^{14}C]$ -metconazole

Fraction /	Radioactive residues in mg eq/kg (% TRR)
Solubilizates	Straw
TRR	5.9 (100)
Solvent extracts	4.8 (81)
Metconazole (<i>cis</i> - and <i>trans</i> -isomer, 8/2)	1.9 (32)
M1 + others	< 0.27 (4.6)
M11	0.58 (9.8)
M21	0.57 (9.7)
M30 monohydroxy	0.14 (2.4)
Characterized by HPLC	0.68 (11)
Post extraction solids	0.83 (14)
0.1 mol/L NaOH	0.58 (9.8)
Metconazole	0.14 (2.4)
Characterized by HPLC	0.30 (5.1)
Total identified	3.6 (61)
Total characterized	0.98 (16)
Unextracted	0.26 (4.4)
Total	4.8 (81)

Oilseed rape

The metabolic fate of [triazole $^{-14}$ C]-radiolabelled metconazole, containing a *cis:trans* ratio of about 80:20, in oilseed rape (variety Legend) was investigated in the study by Kao (1997a, Metcon_028). Plants received two foliar applications at a rate of 0.27 kg ai/ha per application. The first treatment occurred at the early flowering stage; while the second treatment occurred 14 days later. Oilseed rape foliage was sampled at 0, 14, 28 and 42 DAT1, while the rape pods and seeds were harvested at 44 DALA (58 DAT1).

The TRR in the homogenized samples was determined by combustion and LSC. To characterize and identify the radioactivity present, foliage samples were extracted three times with methanol, while pods were soaked in water overnight, followed by one extraction with methanol. Seeds were extracted three times with hexane, followed by four times with methanol and five times with water. The hexane phase was further partitioned against acetonitrile. Conjugates in the extracts were hydrolysed with β -glucosidase. If the post extracted solids contained more than 10% TRR, additional extraction with 2% HCl at room temperature was performed, followed by enzyme hydrolysis using pepsin, cellulose and refluxing with 6N HCl. HPLC against reference compounds and LC-MS were applied for the identification of the radioactivity.

Table 22 shows increasing TRR levels in foliage over time (up to 20 mg eq/kg at 28 DALA) indicating significant translocation of the radioactivity into the leaves. Radioactivity was high in pods as well, but about 8 times lower in seeds. The increased radioactivity in the 28 DALA (42 DAT1) foliage was explained by the loss of water in the mature plants.

Table 22 Total radioactive residues in oilseed rape plants after two foliar applications of [triazole– 14 C]-metconazole

Sampling interval DAT1 (DALA)	Matrix	TRR determined by direct combustion, mg eq/kg
0 (-14)	Faliana	8.8
14 (0)	ronage	9.9

Sampling interval DAT1 (DALA)	Matrix	TRR determined by direct combustion, mg eq/kg
28 (14)		8.6
42 (28)		20
59 (14)	Pod	20
38 (44)	Seed	2.4

The radioactivity extracted from homogenized oilseed rape matrices is presented in Table . Methanol extracted most of the radioactivity in all matrices except for seeds. The unextracted radioactivity increased with later sampling time points from 2.3% TRR at 0 DAT1 to 39% TRR at 42 DAT1.

Table 23 Extractability of radioactive residues from oilseed rape matrices after two foliar applications of [triazole–¹⁴C]-metconazole

	Radioactive residues in mg eq/kg (% TRR)					
Fraction	Foliage	Foliage	Foliage	Foliage	Pods	Seeds
Traction		14 DAT1	28 DAT1	42 DAT1	58 DAT1	58 DAT1
	0 DATT	(0 DALA)	(14 DALA)	(28 DALA)	(44 DALA)	(44 DALA)
TRR	8.8 (100)	9.9 (100)	8.6 (100)	20 (100)	20 (100)	2.4 (100)
Methanol extracts	8.6 (98)	9.4 (93)	6.5 (76)	13 (61)	12 (62)	0.86 (36)
Water/methanol (3+1) extracts	n/a	n/a	n/a	n/a	2.5 (12)	n/a
Hexane extracts	n/a	n/a	n/a	n/a	n/a	0.29 (12)
Water extracts	n/a	n/a	n/a	n/a	n/a	0.76 (32)
ERR ^a	8.6 (98)	9.2 (93)	6.5 (76)	12 (61)	15 (74)	1.9 (80)
PES	0.18 (2.3)	0.69 (6.6)	2.1 (24)	7.9 (39)	5.2 (26)	0.48 (20)
Total	8.8 (100)	9.9 (100)	8.6 (100)	20 (100)	20 (100)	2.4 (100)

^a Extracted radioactive residues

The distribution of radioactivity is presented in Table 24. Parent metconazole was a major residue in forage accounting for 51–93% TRR (4.4–10.4 mg eq/kg) and in seeds accounting for 20% TRR (0.47 mg eq/kg). As a major metabolite, triazolyl alanine was identified as well in seeds at 39% (0.92 mg eq/kg). Several glucose conjugates of metconazole and monohydroxylated metconazole metabolites where characterized by HPLC and LC-MS before and after glycosidase treatment accounting for more than 20% TRR in all sample matrices, except for foliage 0 DAT1 and 14 DAT 1. In pods, the sum of these metabolites accounted for most of the residue with 68% TRR (13 mg eq/kg). The proposed metabolic pathway of metconazole is shown in Figure 2.

Table 24 Summary of identified/characterized residues in oilseed rape matrices after two foliar applications of [triazole-¹⁴C]-metconazole

	Radioactive residues in mg eq/kg (% TRR)					
Fraction	Foliogo	Foliage	Foliage	Foliage	Pods	Seeds
Flaction	0 DAT1	14 DAT1	28 DAT1	42 DAT1	58 DAT1	58 DAT1
	0 DATT	(0 DALA)	(14 DALA)	(28 DALA)	(44 DALA)	(44 DALA)
TRR	8.8 (100)	9.9 (100)	8.6 (100)	20 (100)	20 (100)	2.4 (100)
Solvent extracts	8.6 (98)	9.2 (93)	6.5 (76)	12 (61)	15 (74)	1.9 (80) ^e
Metconazole	8.1 (93)	7.2 (73)	4.4 (51)	8.0 (40)	0.73 (3.7)	0.47 (20)
M11	n/d	n/d	0.11 (1.3)	0.29 (1.4)	0.26 (1.3)	0.07 (2.8)
M35 (triazolyl alanine)	n/d	n/d	0.19 (2.3)	0.31 (1.5)	1.2 (6.0)	0.92 (39)
Various glucose	0.10 (1.2)	0.29 (0.29)	1.6 (18)	2.7 (16)	12 (61)	0.38 (16)
conjugates of metconazole and						
monohydroxylated metconazole						
metabolites						
Others ^g	0.12 (1.4)	1.7 (17)	0.07 (0.8)	0.02 (0.1)	0.07 (0.3)	0.07 (3.0)
Unknown	0.19 (2.2)	n/d	0.14 (1.7)	0.51 (2.5)	0.42 (2.2)	0.02 (0.6)
Further extracts	0.19 (2.1) ^a	0.31 (3.1) ^a	0.66 (7.6) ^b	4.9 (24)°	1.8 (7.4) ^d	0.33 (14) ^f
Metconazole	n/d	n/d	0.38 (4.4)	2.4 (12)	0.70 (3.6)	0.11 (4.5)
M11	n/d	n/d	n/d	0.12 (0.6)	0.06 (0.3)	0.02 (1.4)

	Radioactive residues in mg eq/kg (% TRR)					
Fraction	Folioga	Foliage	Foliage	Foliage	Pods	Seeds
Traction		14 DAT1	28 DAT1	42 DAT1	58 DAT1	58 DAT1
	0 DATT	(0 DALA)	(14 DALA)	(28 DALA)	(44 DALA)	(44 DALA)
M35 (triazolyl alanine)	n/d	n/d	0.07 (0.9)	0.68 (3.4)	0.05 (0.3)	0.03 (1.5)
Various glucose	n/d	n/d	n/d	1.5 (7.3)	0.41 (1.9)	0.16 (5.0)
conjugates of metconazole and						
monohydroxylated metconazole						
metabolites						
Others ^g	n/d	n/d	0.17 (2.0)	0.27 (1.3)	0.18 (0.9)	0.04 (1.6)
Unknown	n/d	n/d	n/d	0.02 (0.1)	n/d	n/d
6 N HCl/MeOH extract	n/a	n/a	0.70 (8.1)	1.7 (8.5)	2.4 (12)	n/a
Metconazole	n/a	n/a	n/d	1.1 (5.6)	1.8 (9.1)	n/a
M11	n/a	n/a	n/d	n/d	0.02 (0.1)	n/a
M35 (triazolyl alanine)	n/a	n/a	0.18 (2.1)	0.15 (0.7)	0.06 (0.3)	n/a
Various glucose	n/a	n/a	0.30 (4.5)	0.16 (0.8)	0.38 (1.9)	n/a
conjugates of metconazole and						
monohydroxylated metconazole						
metabolites						
Others ^g	n/a	n/a	0.22 (2.5)	0.27 (1.3)	0.10 (0.5)	n/a
Unknown	n/a	n/a	n/d	0.01 (0.1)	0.01 (0.1)	n/a
Total identified	8.1 (93)	7.2(73)	5.3 (62)	13 (65)	4.9 (25)	1.6 (69)
Total characterized	0.6 (6.9)	2.3 (24)	2.5 (29)	6.0 (30)	13 (68)	0.67 (26)
Unextracted	0.02 (0.2)	0.35 (3.5)	0.76 (8.8)	1.2 (6.1)	1.3 (6.4)	0.15 (6.5)
Total	8.8 (99)	9.9 (100)	8.6 (100)	20 (101)	19 (99)	2.4 (102)

^a Acid/MeOH/pepsin extract

^b Sum of acid/pepsin/cellulase and Triton X–100 extract

^c Acid+enzyme+Triton X-100 extract

^d Sum of 2%HCl/MeOH, pepsin, water, cellulose, Triton X-100 extracts

^e Sum of hexane, methanol and water extracts

^fSum of 2%HCl/MeOH and pepsin extract

^g Multiple unresolved peak regions

A second study with oilseed rape (variety 45A71) was performed with [*p*-chlorophenyl–¹⁴C]radiolabelled metconazole, containing a *cis:trans* ratio of about 80:20 (Kao, 1997b, Metcon_029). Plants received two foliar applications at a rate of 0.26 kg ai/ha per application. The first treatment occurred at the early flowering stage; while the second treatment occurred 14 days later. Foliage was sampled at 0, 14, 28 and 42 DAT1, while pods and seeds were harvested at 50 DALA (64 DAT1). All samples were stored frozen at -11 to -33° C until further processing.

The TRR in the homogenized samples was determined by combustion, followed by LSC. To characterize and identify the radioactivity present, all samples (except canola seeds) were extracted three times with methanol (pods were soaked in water overnight prior to extraction). Canola seeds were extracted three times with hexane, followed by one time with methanol and two times with water. The hexane phase was further partitioned against acetonitrile. Conjugates in the extracts were hydrolysed with β -glucosidase. If post extraction solids contained more than 10% TRR, they were extracted additionally with one or more of the following reagent: water, 2% HCl, detergent (Triton X–100), enzymes (cellulose and pepsin) and ultimately refluxed with 6N HCl. HPLC against reference compounds and LC-MS were applied for the identification of the radioactivity.

Table 25Table shows increasing TTR levels in forage after the second application followed by decreasing levels at later sampling time points. Radioactivity was highest in pods, while lowest in seeds.

Sampling interval DAT1 (DALA)	Matrix	TRR determined by direct combustion, mg eq/kg
0 (-14)		11
14 (0)	Foliago	15
28 (14)	Foliage	5.6
42 (28)		5.9
64 (50)	Pod	21
64 (50)	Seed	1.9

Table 25 Total radioactive residues in oilseed rape pants after two foliar applications of $[p-chlorophenyl-^{14}C]$ -metconazole

The radioactivity extracted from homogenized canola matrices is presented in Table . Methanol extracted the majority of the radioactivity in all matrices except for canola seeds. The unextracted radioactivity increased with later sampling time points from 2.3% TRR at 0 DAT1 to >20% TRR at 28 and 42 DAT1.

Table 26 Extractability of radioactive residues from oilseed rape matrices after two foliar applications of [p-chlorophenyl-¹⁴C]-metconazole

	Radioactive residues in mg eq/kg (% TRR)						
Fraction	Foliage	Foliage	Foliage	Foliage	Pods	Seeds	
Traction		14 DAT1	28 DAT1	42 DAT1	64 DAT1	64 DAT1	
	0 DATT	(0 DALA)	(14 DALA)	(28 DALA)	(50 DALA)	(50 DALA)	
TRR	11 (100)	15 (100)	5.6 (100)	5.9 (100)	21 (100)	1.9 (100)	
Methanol extracts	11 (98)	14 (95)	4.1 (73)	4.4 (75)	13 (60)	0.64 (35)	
Acetone/water extracts	n/a	n/a	n/a	n/a	0.96 (4.6)	n/a	
Hexane extracts	n/a	n/a	n/a	n/a	n/a	0.27 (14)	
Water extracts	n/a	n/a	n/a	n/a	n/a	0.42 (23)	
ERR ^a	11 (98)	14 (95)	4.1 (73)	4.4 (75)	14 (65)	1.3 (72)	
PES	0.24 (2.3)	0.71 (4.7)	1.5 (27)	1.5 (25)	7.3 (35)	0.60 (28)	
Total	11 (100)	15 (100)	5.6 (100)	5.9 (100)	21 (100)	1.9 (100)	

^a Extracted radioactive residues

The distribution of radioactivity is presented in Table 27. Parent metconazole was a major identified residue in forage (foliage) accounting for 61–96% TRR (3.6–13 mg eq/kg), in pods accounting for 40% TRR (8.4 mg eq/kg) and in seeds accounting for 39% TRR (0.71 mg eq/kg). Several glucose conjugates of metconazole and monohydroxylated metconazole metabolites where characterized by HPLC and LC-MS before and after glycosidase treatment accounting for more than 25% TRR in all sample matrices, except for in foliage 0 and 14 DAT1. The proposed metabolic pathway of metconazole is shown in Figure 2.

Table 27 Summary of identified/characterized residues in oilseed rape matrices after two foliar applications of $[p-chlorophenyl-{}^{14}C]$ -metconazole

	Radioactive residues in mg eq/kg (% TRR)						
Fraction	Foliogo	Foliage	Foliage	Foliage	Pods	Seeds	
Taction	0 DAT1	14 DAT1	28 DAT1	42 DAT1	64 DAT1	64 DAT1	
	0 DATT	(0 DALA)	(14 DALA)	(28 DALA)	(50 DALA)	(50 DALA)	
TRR	11 (100)	15 (100)	5.6 (100)	5.9 (100)	21 (100)	1.9 (100)	
Solvent extracts	11 (98)	14 (95)	4.1 (73)	4.4 (75)	14 (65)	1.3 (72) ^a	
Metconazole	10 (96)	13 (85)	2.8 (49)	2.6 (45)	4.4 (21)	0.53 (29)	
M11	0.05 (0.5)	0.16 (1.1)	0.05 (0.8)	0.06 (1.1)	0.24 (1.2)	0.09 (4.9)	
Various glucose	n/d	0.96 (6.4)	1.1 (19)	1.3 (22)	8.5 (41)	0.61 (33)	
conjugates of metconazole and							
monohydroxylated metconazole							
metabolites							
Others ^e	0.13 (1.3)	0.19 (1.3)	0.20 (3.6)	0.22 (3.8)	0.18 (0.9)	0.06 (2.9)	
Unknown	n/d	0.19 (1.3)	0.02 (0.3)	0.19 (3.2)	0.11 (0.5)	0.04 (1.7)	
Further extracts	n/a	n/a	0.50 (8.7) ^b	0.35 (6.1) ^b	0.95 (4.6)°	0.40 (22) ^d	

	Radioactive residues in mg eq/kg (% TRR)					
Fraction	Foliogo	Foliage	Foliage	Foliage	Pods	Seeds
mation	0 DAT1	14 DAT1	28 DAT1	42 DAT1	64 DAT1	64 DAT1
	0 DATT	(0 DALA)	(14 DALA)	(28 DALA)	(50 DALA)	(50 DALA)
Metconazole	n/a	n/a	0.32 (5.8)	0.21 (3.5)	0.28 (1.3)	0.18 (10)
M11	n/a	n/a	n/d	n/d	0.03 (0.2)	0.04 (2.5)
Various glucose	n/a	n/a	0.02 (0.3)	0.04 (0.5)	0.23 (1.2)	0.15 (6.7)
conjugates of metconazole and						
monohydroxylated metconazole						
metabolites						
Others ^e	n/a	n/a	0.03 (0.5)	0.11 (2.0)	0.17 (0.9)	0.02 (1.3)
Unknown	n/a	n/a	0.08 (0.5)	< 0.01 (0.1)	0.16 (0.8)	0.02 (0.9)
6 N HCl/MeOH extract	n/a	n/a	0.74 (13)	0.98 (17)	4.4 (21)	n/a
Metconazole	n/a	n/a	0.70 (13)	0.76 (13)	3.7 (18)	n/a
M11	n/a	n/a	n/d	0.01 (0.2)	0.03 (0.2)	n/a
Various glucose	n/a	n/a	< 0.01 (0.1)	n/d	0.16 (0.8)	n/a
conjugates of metconazole and						
monohydroxylated metconazole						
metabolites						
Others ^e	n/a	n/a	0.01 (0.2)	0.11 (1.8)	0.15 (0.7)	n/a
Unknown	n/a	n/a	< 0.01 (0.2)	0.10 (1.6)	0.33 (1.6)	n/a
Total identified	10 (97)	13 (86)	3.9 (69)	3.7 (63)	8.7 (42)	0.84 (46)
Total characterized	0.13 (1.3)	1.3 (9.0)	1.4 (26)	2.0 (35)	10 (49)	0.77 (47)
Unextracted	0.24 (2.3)	0.71 (4.7)	0.27 (4.9)	0.17 (2.9)	1.9 (9.3)	0.13 (6.8)
Total	11 (100)	15 (100)	5.6 (100)	5.9 (101)	21 (100)	1.7 (90)

^a Sum of hexane, acetone and water extracts

 $^{\rm b}$ Sum of 2%HCl/MeOH/pepsin/cellulase and Triton X–100 extract

° Sum of 2%HCl/pepsin/cellulase and Triton X-100 extract

^d Sum of 2%HCl/MeOH, pepsin extracts

^e Multiple unresolved peak regions

Figure 3 Proposed metabolic pathway of metconazole in primary crops

ANIMAL METABOLISM

Metabolism studies were provided for lactating goats and laying hens using [cyclopentyl $^{-14}$ C]- and [triazole $^{-14}$ C]-radiolabelled metconazole.

In lactating goats the transfer of radioactivity into milk and tissues was low. In edible tissue, highest TRR levels were found in liver and kidney, while in all other tissues TRR levels were one order of magnitude lower. Parent metconazole was the predominant residue in liver, while in kidney it was found only in minor amounts. Major metabolites identified were M1 (conjugated and unconjugated) in kidney, M12 in kidney and M31 (conjugated and unconjugated) in liver and kidney.

In laying hens transfer of radioactivity into tissues and eggs was low as well. In edible tissues, highest TRR levels were found in liver, followed by kidney. In all other matrices, residues were significantly lower. Parent metconazole was identified as a major residue in fat, skin and egg yolk only. Other metabolites occurring in significant amounts were M1 (conjugated and unconjugated) in liver, M1/M31 in abdominal fat, skin with fat and egg matrices, M12 free and conjugated in liver and 1,2,4-triazole in all tissues and egg matrices.

Laboratory animals

The evaluation of the metabolism studies in rats was carried out by the WHO Core Assessment Group.

Lactating goats

A metabolism study with lactating goats was performed with [cyclopentyl -1^4 C]-metconazole containing a *cis:trans* ratio of 85:15 (Johnston, *et al.*, 1992a, METCON_033). The compound was

administered orally to two lactating goats at 14 ppm (0.47 mg/kg bw per day) for 3 consecutive days (goat 1) or at 24 ppm (0.48 mg/kg bw per day) for 4 consecutive days (goat 2). Excreta were collected once daily and milk was collected twice daily. Selected milk samples were separated in cream, curds and whey. The animals were sacrificed approximately 18 hours after the last dose and liver, kidney, muscle, fat, bile, plasma and whole blood were collected.

Total radioactivity in liquid samples such as urine, plasma milk and various extracts were directly measured by LSC. Faecal, blood, bile and tissue samples were subjected to combustion prior to the determination of total radioactivity by LSC.

Liver and kidney samples of goat 2 were homogenized followed by extraction with acetonitrile, followed by acetonitrile/water (1:1, v/v) or acetonitrile/water (9:1, v/v). Muscle sample were extracted with methanol and fat sample with dichloromethane. Samples were further partitioned against solvents and the aqueous phase hydrolysed with 2 mol/L HCl to liberate conjugates. Characterization of the extracts was carried out by TLC and HPLC against reference standards.

The total recovery of the administered radioactivity was low for both goats ranging between 54–68%. The majority of the radioactivity was found in urine (28–37% AR), followed by faeces (25–30% AR). A summary of the recovered radioactivity is presented in Table 28.

Mathia	Goat 1 (14 ppm)	Goat 2 (24 ppm)	
Matrix	% AR	mg eq/kg	% AR	mg eq/kg
Faeces	30	n/a	25	n/a
Urine	37	n/a	28	n/a
Urine of bladder	n/a	11	n/a	58
Cage wash	1.3	n/a	0.96	n/a
Milk (total of day 2–5)	n/a	0.016	n/a	0.013
Liver	n/a	0.46	n/a	0.56
Kidney	n/a	0.15	n/a	0.28
Muscle (fore leg)	n/a	0.001	n/a	0.005
Muscle (hind leg)	n/a	0.004	n/a	0.005
Renal fat	n/a	<lod< td=""><td>n/a</td><td><lod< td=""></lod<></td></lod<>	n/a	<lod< td=""></lod<>
Deep body fat	n/a	0.015	n/a	0.003
Bile	n/a	3.8	n/a	8.5
Adrenal	n/a	0.010	n/a	0.029
Blood	n/a	0.018	n/a	0.029
Plasma	n/a	0.024	n/a	0.035
Total	68		54	

Table 28 Recovered radioactive residues after oral administration of [cyclopentyl-¹⁴C]-metconazole for 3 (goat 1) or 4 (goat 2) consecutive days lactating goats

In milk the total radioactivity in both goats was very low, increasing only slightly over the whole dosing period, starting from 0.003 mg eq/kg (goat 1) and 0.001 mg eq/kg (goat 2) at day 2 (morning) to a terminal concentration of 0.004 mg eq/kg at day 4 (morning) for goat 1 and 0.004 mg eq/kg at day 5 (morning). The results are summarized in the following Table . Residue levels reached a plateau after 3 days in goat 1 (14 ppm), while no plateau was reached in goat 2 (24 ppm) after 4 days of consecutive administration of the compound.

Table 29 Recovered radioactive residues in milk after oral administration of [cyclopentyl $^{-14}$ C]-metconazole for 3 (goat 1) or 4 (goat 2) consecutive days to goats

TRR in milk Days	Goat 1 (14 ppm) TRR in mg eg/kg	Goat 2 (24 ppm) TRR in mg eq/kg
2 (morning)	0.003	0.001
2 (afternoon)	0.002	0.001
3 (morning)	0.004	0.002
3 (afternoon)	0.003	0.001
4 (morning)	0.004	0.002
4 (afternoon)	n/a	0.002
5 (morning)	n/a	0.004

Extraction with acetonitrile, followed by acetonitrile/water (1:1, v/v) released between 96% TRR from liver and 98% TRR in kidney. A summary of the results is presented in Table . Normal phase HPLC of extracts also demonstrated a shift of the *cis:trans* ratio of metconazole from 80:20 to 34:66, indicating faster metabolism of the *cis* isomer.

Table 30 Extractability of residues from liver and kidney after oral administration of [cyclopentyl-14C]-metconazole to lactating goats

	Goat 2 (24 ppm)					
Fraction	Liver		Kidney			
	%TRR	mg eq/kg	%TRR	mg eq/kg		
TRR	100	0.56	100	0.28		
Acetonitrile extract	81	0.45	79	0.22		
Acetonitrile/water (1/1, v/v)	15	0.085	10	0.052		
extract	15	0.005	17	0.032		
Total extracts	96	0.54	98	0.27		
Post extraction solids	3.7	0.021	2.5	0.007		
Total recovered radioactivity	100	0.56	100	0.28		

Parent metconazole was the major residue in liver only at 42% TRR (0.24 mg eq/kg). In all other matrices residues of metconazole were significantly lower. In kidney, identified major metabolites were M12 and M13 at 14% TRR (0.038 mg eq/kg) and 20% TRR (0.055 mg eq/kg), respectively. Other identified metabolites occurring at smaller fractions were M1 and M2/M15. Unextracted residues ranged between 4–18% TRR (<0.001–0.067 mg eq/kg) (Table). The proposed metabolic pathway of metconazole is shown in Figure 4.

Table 31 Summary of identified/characterized residues in tissues after oral administration of [cyclopentyl-¹⁴C]-metconazole to lactating goats

Fraction	Goat 2 (24 ppm) mg eq/kg (%TRR)					
Fraction	Liver	Kidney	Muscle	Fat		
TRR	0.56 (100)	0.28 (100)	0.005 (100)	0.023 (100)		
Solvent extracts ^f	0.49 (88)	0.25 (89)	0.004 (82)	< 0.012 (96)		
Metconazole	0.24 (42) ^a	0.010 (3.7)°	< 0.001 (13)	< 0.003 (14)		
M1	n/d	0.038 (14) ^e	n/d	n/d		
M2/M15	n/d	0.010 (3.6) ^e	n/d	n/d		
M12	n/d	0.055 (20)	n/d	n/d		
M13	n/d	0.003 (1.0)	n/d	n/d		
Characterized by	0.26 (46) ^b	$0.13(47)^{d}$	0.003 (69)	0.010 (82)		
HPLC	0.20 (40)	0.13 (47)	0.003 (07)	0.017 (02)		
Total identified	0.24 (42)	0.12 (42)	< 0.001 (13)	< 0.003 (14)		
Total characterized	0.26 (46)	0.13 (47)	0.003 (69)	< 0.019 (82)		
Unextracted	0.067 (12)	0.030(11)	0.001 (18)	< 0.001 (4)		
Total	0.56 (100)	0.28 (100)	0.005 (100)	0.023 (100)		

^a Sum of metconazole directly determined in extract and after acid hydrolysis (contribution: 0.026 mg eq/kg)

^b Individual components did not exceed 0.058 mg eq/ kg (10% TRR)

^c Sum of metconazole directly determined in extract and after acid hydrolysis (contribution: 0.007 mg eq/kg)

^d Individual components did not exceed 0.031 mg eq/ kg (11% TRR)

^e Probably occurring as conjugates, since detected after acidic hydrolysis.

^fAcetonitrile/water (9:1, v/v) for liver and kidney, methanol for muscle and dichloromethane for fat

A second metabolism study with lactating goats was as well performed with [cyclopentyl-¹⁴C]-metconazole as *cis*-isomer only (Richardson, 1993, METCON_034). The compound was administered orally to one lactating goat at 11 ppm (0.64 mg/kg bw per day) for 4 consecutive days. Excreta were collected once daily and milk was collected twice daily. The animal was sacrificed

approximately 18 hours after the last dose and liver, kidney, muscle, fat, bile, plasma and whole blood were collected.

Total radioactivity in liquid samples such as urine, plasma milk and various extracts were directly measured by LSC. Faecal, blood, bile and tissue samples were subjected to combustion prior to the determination of total radioactivity by LSC.

After homogenization, liver and kidney samples were extracted with acetonitrile/ water (9:1, v/v), followed by methanol. Samples were further partitioned against dichloromethane or diethyl ether and the aqueous phase hydrolysed with 2 mol/L HCl to liberate conjugates. Characterization of the extracts was carried out by TLC, HPLC against reference standards as well as GC-MS and LC-MS.

The total recovery of the administered radioactivity was equal to 101%. The majority of the radioactivity was found in faeces (46% AR), followed by urine (43% AR). Radioactive residues in the edible matrices were highest in liver and kidney at 0.32 mg eq/kg and 0.15 mg eq/kg, respectively. In milk, residues were rather low at 0.011 mg eq/kg. A summary of the recovered radioactivity is presented in Table 32 and Table 33.

Table 32 Recovered radioactive residues after oral administration of 11 ppm [cyclopentyl-¹⁴C]-metconazole (*cis*-isomer) for 4 consecutive days

Matrix	% AR
Faeces	46
Urine	43
Cage wash	0.92
GI Tract	10
Carcass	0.49
Total	101

Table 33 Total radioactive residues in matrices after oral administration of 11 ppm [cyclopentyl-¹⁴C]metconazole (*cis*-isomer) for 4 consecutive days

Matrix	TRR (mg eq/kg)
Milk (total of day 2–5)	0.011
Liver	0.32
Kidney	0.15
Muscle (fore leg)	0.004
Muscle (hind leg)	0.007
Renal fat	<lod< td=""></lod<>
Deep body fat	0.006
Bile	4.9
Adrenal	0.018
Blood	0.016
Plasma	0.019
Bladder urine	7.5

In milk, the found radioactivity was very low, ranging between 0.001-0.002 mg eq/kg. The results are summarized in the following Table 34. A plateau was reached after 3 days of consecutive administration of the compound.

Table 34 Recovered radioactive residues in milk after oral administration of 11 ppm [cyclopentyl-¹⁴C]-metconazole (*cis*-isomer) for 4 consecutive days

Day	TRR (mg eq/kg)
2 (morning)	0.002
2 (afternoon)	0.001

Day	TRR (mg eq/kg)
3 (morning)	0.002
3 (afternoon)	0.001
4 (morning)	0.002
4 (afternoon)	0.001
5 (morning)	0.002

Extraction with acetonitrile/water (9/1, v/v) followed by methanol released between 94% TRR from liver and 98% TRR in kidney. A summary of the results is presented in Table 35.

Table 35 Extractability of residues from liver and kidney after oral administration of 11 ppm [cyclopentyl-¹⁴C]-metconazole (*cis*-isomer) for 4 consecutive days

Emotion	Liver		Kidney	
Fraction	%TRR	mg eq/kg	%TRR	mg eq/kg
TRR	100	0.32	100	0.15
Acetonitrile/water (9/1, v/v)	86	0.27	96	0.14
extract		0.27	70	0.14
Methanol extract	8	0.025	4	0.006
Total extracts	94	0.30	98	0.15
Post extraction solids	6	0.019	4	0.006
Total recovered radioactivity	100	0.32	102	0.15

Parent metconazole was the major residue in liver only at 33% TRR (0.29 mg eq/kg). Additionally, major metabolites detected were M1 in kidney at 12% TRR (0.018 mg eq/kg); M12 in kidney at 13% TRR (0.020 mg eq/kg) and M31 in kidney and liver ranging between 15–20% TRR (0.022–0.063 mg eq/kg). Other identified metabolites occurring at smaller fractions were unresolved M2/M19 and M32. Unextracted residues ranged between 6–9% TRR (0.009–0.029 mg eq/kg) (Table 36). The proposed metabolic pathway of metconazole is shown in Figure 4.

Table 36 Summary of identified/characterized residues in tissues after oral administration of 11 ppm [cyclopentyl-¹⁴C]-metconazole (*cis*-isomer) for 4 consecutive days

Emotion	mg eq/kg	; (%TRR)
Fraction	Liver	Kidney
TRR	0.32 (100)	0.15 (100)
Solvent extracts	0.29 (91)	0.14 (94)
Metconazole	0.11 (33) ^a	0.003 (1.7)
M1	0.022 (6.9) ^b	0.018 (12) ^b
M2/M19	n/d	0.009 (6.0)
M12	n/d	0.020 (13)
M31	0.063 (20) ^b	0.022 (15) ^b
M32	0.013 (4.1) ^b	0.011 (7.7) ^b
Characterized by HPLC	0.072 (23)	0.057 (39)
Total identified	0.21 (64)	0.083 (56)
Total characterized	0.072 (23)	0.057 (39)
Unextracted	0.029 (9)	0.009 (6)
Total	0.31 (96)	0.15 (100)

^a Sum of metconazole directly determined in extract and after acidic hydrolysis (contribution: 0.007 mg eq/kg)

^b Probably occurring as conjugates, since detected after acidic hydrolysis.

A third metabolism study with lactating goats was performed with [triazole $^{-14}$ C]-radiolabelled metconazole containing a *cis:trans* ratio of 85:15 (Jalal, 2006a, METCON_035). The compound was administered to one lactating goat after morning and afternoon milking at a nominal daily dose of 10 ppm (0.46 mg/kg bw) for four consecutive days. Excreta were collected once daily, while milk was collected twice daily. The animal was sacrificed approximately 17 hours after the last

dose. Liver, kidney, muscle, fat (omental, perirenal and subcutaneous), bile and gastrointestinal tract contents were collected. Sample of kidney, liver muscle and fat were homogenized with dry ice.

Total radioactivity in tissue samples was determined by combustion prior to the determination of radioactivity by LSC, while liquid samples were directly measured by LSC.

Tissues samples of homogenized liver and kidney were extracted three times with acetonitrile, followed by a single extraction with water and ethanol. Samples were further hydrolysed with 6 M HCl to liberate conjugates. Characterization of the extracts and identification of its constituents was carried out by TLC and HPLC against reference standards, as well as LC-MS/MS and NMR spectroscopy.

The total recovery of the administered radioactivity was equal to 86%. The majority of the radioactivity was found in faeces (50%) and followed by urine (36%). Radioactive residues in the edible matrices were highest in liver and kidney at 0.22 mg eq/kg and 0.11 mg eq/kg, respectively. A summary of the recovered radioactivity is presented in Table 37.

Table 37 Recovered radioactive residues after oral administration of 10ppm [triazole-¹⁴C]-metconazole for 4 consecutive days to a lactating goat

Matrix	% AR	TRR in mg eq/kg
Faeces	50	18
Urine	36	10
Cage wash	n/a	0.13
Milk	< 0.1	0.017
Liver	0.3	0.22
Kidney	< 0.1	0.11
Muscle	< 0.1	0.004
Fat	< 0.1	0.003
Bile	< 0.1	4.3
Whole blood	< 0.1	0.016
Blood plasma	< 0.1	0.023
Blood cells	< 0.1	0.006
Total	86	

In milk the total radioactivity increased only slightly over the time of the study (Table 38). Residue levels in milk reached a plateau after approximated 3 days.

Table 38 Recovered radioactive residues in milk after oral administration of 10 ppm [triazole-¹⁴C]-metconazole for 4 consecutive days to a lactating goat.

TRR in milk	TPP in ma ea/ka
(days after first dose)	TKK in ing eq/kg
-1	< 0.001
1	0.003
2	0.004
3	0.005
4	0.005

The initial acetonitrile extraction released 74% TRR and 54%TRR in liver and kidney, respectively. Additionally, the water and ethanol extract released another 20% TRR from liver and 42% TRR from kidney. A summary of the results is presented in Table 39.

Table 39 Characterization of radioactivity in kidney and liver from a lactating goat dosed with 10 ppm [triazole–¹⁴C]-metconazole for 4 consecutive days

Erection	Liver		Kidney	
Fraction	mg eq/kg	%TRR	mg eq/kg	%TRR
TRR	0.23	100	0.11	100
Acetonitrile extract	0.18	74	0.063	54
Water and ethanol extract	0.048	20	0.049	42

Enostion	Liver		Kidney	
Fraction	mg eq/kg	%TRR	mg eq/kg	%TRR
Total extracts	0.23	94	0.11	96
Unextracted	0.015	6.4	0.004	3.7
Total recovered radioactivity	0.24	104	0.12	106

Characterization and identification was only done for liver and kidney, as in all other matrices the TRR was too low. The predominant residue in liver was parent metconazole accounting for 38% TRR (0.090 mg eq/kg), while in kidney parent only occurred in minor amounts. Major identified metabolites were M12 in kidney at 21% TRR (0.024 mg eq/kg), the M1 glucuronide in kidney at 12% TRR (0.014 mg eq/kg) and the M31 glucuronide in liver and kidney at 14–24% TRR (0.028–0.033 mg eq/kg). Additionally metabolites M1, M32 and their respective glucuronide conjugates were detected in minor amounts. It should be noted that 1,2,4 triazole was not detected in any of the samples. The proposed metabolic pathway of metconazole is shown in Figure 3.

Table 6: Summary of identified/characterized residues in kidney and liver from a lactating goat dosed with 10 ppm [triazole–¹⁴C]-metconazole for 4 consecutive days

Fraction	Liv	er	Ki	Kidney	
Fraction	mg eq/kg	%TRR	mg eq/kg	%TRR	
TRR	0.23	100	0.11	100	
Metconazole	0.090	38	0.002	2.3	
cis-metconazole	0.053	22	0.001	1.2	
trans-metconazole	0.037	16	0.001	1.1	
M12	0.004	1.7	0.024	21	
M1	n/s	a	0.001	0.9	
M1 (M555F001)/M31 (M555F031,	0.002	1.2			
cis)	0.003	1.5	n/a		
M31 (M555F031, trans)	0.015	6.0	n/d		
M32 (M555F032, cis)	0.002	0.8	1	n/d	
M1 glucuronide	0.011	4.4	0.014	12	
M31 glucuronide	0.033	14	0.028	24	
M32 glucuronide	0.006	2.3	0.007	5.7	
M31 glucuronide, trans	0.006	2.6	n/d		
Characterized by HPLC	0.056 ^a	23	0.036 ^b 31		
Total identified	0.17	70	0.076 65		
Total characterized	0.056	23	0.036	31	
Unextracted	0.015	6.4	0.004	3.7	
Total	0.24	101	0.011	100	

^a Individual components did not exceed 0.006 mg eq/ kg (2.6% TRR)

^b Individual components did not exceed 0.010 mg eq/ kg (8.9% TRR)

Figure 3 Proposed metabolic pathway of metconazole in lactating goats

Laying hens

A metabolism study with laying hens was performed with [cyclopentyl -1^4 C]-metconazole (Johnston, *et al.*, 1992b, METCON_036). The compound was administered for 28 consecutive days to 15 laying hens at 7 ppm (~0.60 mg/kg bw per day). Excreta were collected once daily while eggs were collected at least once daily. Three hens were sacrificed at each of the following time points: 6, 18, 48, 96 and 144 hours after the final dose. Liver, kidney, heart, muscle, skin, blood, egg (yolk, white and shell) gizzard and carcass were collected.

Total radioactivity in liquid samples such as egg, plasma, cage wash and various extracts were directly measured by LSC. All tissues and excreta samples were subjected to combustion prior to the determination of total radioactivity by LSC.

After 28 days of dosing, the majority of the radioactivity was found in excreta (91-97%) demonstrating fast elimination of the compound. The remaining radioactivity in the carcass dropped from 1.1% AR at 6 h sacrifice to 0.05% AR at 144 h sacrifice, indicating also a rapid depuration after cessation of the dosing. Radioactive residues in the edible matrices were highest in liver and kidney 6 h sacrifice at 0.60 mg eq/kg and 0.33 mg eq/kg, respectively. With prolonged depuration levels

dropped to 0.025 mg eq/kg in liver and 0.020 mg eq/kg in kidney. A summary of the recovered radioactivity is presented in Table 41 and Table 42.

Table 41 Recovered radioactive residues after oral administration of 7 ppm [cyclopentyl-¹⁴C]metconazole for 28 consecutive days to laying hens

	Recovered dose in %AR (sacrifice time after administration of the last dose)				dose)
Sample	Hen No. 1	Hen No. 4	Hen No. 7	Hen No. 10	Hen No. 13
	(6 h)	(18 h)	(48 h)	(96 h)	(144 h)
Excreta	92	91	97	97	96
Cage wash	3.4	3.4	2.2	2.9	3.2
Carcass	1.1	0.96	0.14	0.07	0.05
Total	97	96	99	100	99

Table 42 Total radioactive residues in tissue after oral administration of 7 ppm [cyclopentyl-¹⁴C]metconazole for 28 consecutive days to laying hens

Sampla	Sacrifice time following post-dosing (TRR in mg eq/kg)				
Sample	6 h	18 h	48 h	96 h	144 h
Liver	0.60	0.31	0.067	0.041	0.025
Kidney	0.33	0.16	0.045	0.025	0.020
Heart	0.063	0.024	0.004	0.000	0.000
Muscle (breast)	0.027	0.010	0.000	0.000	0.000
Skin	0.078	0.056	0.016	0.006	0.000
Blood	0.089	0.049	0.025	0.021	0.016
Gizzard	0.38	0.11	0.007	0.002	0.000
Fat	0.15	0.045	0.013	0.013	0.000

Incorporation of radioactivity into egg whites reached steady state within two days, remained fairly constant throughout the dosing period and then declined rapidly during the depuration phase. Radioactivity was incorporated more slowly into egg yolks reaching a plateau on day 8. Similar, TRR levels in whole eggs did reach a plateau after 8 days as well. A summary of the recovered radioactivity is presented in Table 43. There were no detectable levels of TRR in egg shells.

Table 43 Recovered radioactive residues in eggs after oral administration of 7 ppm [cyclopentyl-¹⁴C]metconazole for 28 consecutive days to laying hens

Callection interval [days]		Sample matrix (TRR in mg eq/kg	g)
Conection interval [days]	Egg whites	Egg yolks	Whole egg
2	0.057	0.025	0.047
4	0.090	0.098	0.093
8	0.059	0.18	0.096
12	0.052	0.18	0.091
16	0.070	0.16	0.097
20	0.065	0.18	0.099
24	0.059	0.18	0.096
28	0.048	0.17	0.083
30 (depuration)	0.008	0.15	0.055
32 (depuration)	0.001	0.11	0.034
34 (depuration)	0.000	0.051	0.001

No identification or characterization of the radioactive residues was conducted.

A second study with laying hens was performed with [cyclopentyl $^{-14}$ C]-metconazole (Johnston, *et al.*, 1992c, METCON_037). The compound was administered for 14 consecutive days to 15 laying hens at 8 ppm (0.64 mg/kg bw per day). Excreta were collected once daily while eggs were collected when observed or at least once daily. All hens were sacrificed at 6 hours after the final dose and liver, kidney, heart, muscle, skin, blood, egg (yolk, white and shell) gizzard and carcass were collected.

Total radioactivity in liquid samples such as egg white and yolk, as well as and various extracts were directly measured by LSC. All tissues and excreta samples were subjected to combustion prior to the determination of total radioactivity by LSC.

Radioactivity in egg whites and yolks, as well as in tissues was in good agreement with results previously obtained (see Table 44 vs. Table 43 and Table 45 vs. Table 42). As plateau concentrations in eggs from the previous study were reached after maximum 8 days, TRR levels reported in Table 44were already at steady state levels.

Table 44 Recovered radioactive residues in eggs after oral administration of 8 ppm [cyclopentyl-¹⁴C]metconazole for 14 consecutive days to laying hens

Collection interval [days]	TRR [mg eq/kg]								
Concetion interval [days]	Egg whites	Egg yolks	Whole egg						
8	0.069	0.18	0.10						
12	0.060	0.18	0.094						
14	0.060	0.18	0.095						

Table 45 Total radioactive residues in tissue after oral administration of 8 ppm [cyclopentyl-¹⁴C]metconazole for 14 consecutive days to laying hens

Sample	TRR [mg eq/kg]
Liver	0.66
Kidney	0.36
Muscle (breast)	0.024
Skin	0.069
Fat	0.13

Again, no identification or characterization of the radioactive residues was performed.

A third metabolism study with laying hens was performed with [cyclopentyl $^{-14}$ C]-metconazole (5 hens) at 14 ppm (0.73 mg/kg bw per day) and [triazole $^{-14}$ C]-metconazole (5 hens) at 13 ppm (0.75 mg/kg bw per day) for 4.5 consecutive days (Jalal, 2006b, METCON_038). The test material contained a *cis:trans* ratio of 85:15. Excreta were collected once daily, while eggs were collected twice daily and separated into whites and yolk. All hens were sacrificed at 4.5 hours after the final dose and samples of blood, abdominal fat, skin with fat, breast muscle, thigh muscle and liver were collected.

All tissues and excreta samples were subjected to combustion prior to the determination of total radioactivity by LSC. Total radioactivity in liquid samples was directly measured by LSC.

Samples of liver, breast muscle, thigh muscle, abdominal fat, skin with fat, egg white and egg yolk, were extracted three times with acetonitrile, followed by two times with water. Insoluble oily droplets were dissolved with hexane. The extract (cyclopentyl label only) from liver was hydrolysed with 6 M HCl. The PES from liver samples of both labels was hydrolysed with 2 M HCl and partitioned with ethyl acetate. Characterization of the extracts was carried out by TLC, HPLC against reference standards as well as LC-MS(MS) and NMR.

The majority of the radioactivity was found for both labels in excreta (11–19 mg eq/kg). Radioactive residues in the edible matrices were highest in liver at 0.75–0.97 mg eq/kg. Incorporation of radioactivity into egg whites reached steady state within 3–4 days, while the radioactivity was incorporated more slowly into egg yolks not reaching a plateau on within the study time. No information was given on kidney. A summary of the recovered radioactivity is presented in Table 46.

Table	46	Total	radioactive	residues	in	excreta,	tissues	and	eggs	after	oral	administration	of
[cyclo	pent	$yl-^{14}C$]- and [triaz	ole–1 ⁴ C]-i	radi	olabelled	metcon	azole	for 4	.5 cor	isecut	ive days to lay	ing
hens													

Materia		TRR [mg/kg]			
Matrix	Measured	Calculated ^a	Measured	Calculated ^a		
	[cyclopentyl-14C]-metconazole (14	[triazole_1 ⁴ C]-met	conazole (13 ppm)		
	pp	em)				
Breast muscle	0.030	0.031	0.14	0.15		
Thigh muscle	0.045	0.049	0.14	0.15		
Liver	0.75	0.79	0.90	0.97		
Skin	0.070	0.075	0.13	0.14		
Abdominal fat	0.093	0.091	0.13	0.14		
Egg white day -1	< 0.001		< 0.001			
Egg white day 1	< 0.001		0.017			
Egg white day 2	0.037	0.047	0.088	0.19		
Egg white day 3	0.049	0.047	0.14			
Egg white day 4	0.041		0.17			
Egg white day 5	0.046		0.17			
Egg yolk day -1	< 0.001		< 0.001			
Egg yolk day 1	< 0.001		0.005			
Egg yolk day 2	0.011	0.000	0.036	0.16		
Egg yolk day 3	0.032	0.088	0.092	0.10		
Egg yolk day 4	0.066		0.13			
Egg yolk day 5	0.096		0.16			
Blood plasma	0.078	n/a	0.18	n/a		
Blood cells	0.08	n/a	0.18	n/a		
Whole blood	0.080	n/a	0.18	n/a		
Excreta day 1	11		14			
Excreta day 2	11		17			
Excreta day 3	13	15	18	16		
Excreta day 4	15		19			
Excreta day 5	15		14			

^a Calculated as sum of ERR + RRR

The acetonitrile and water extractions released 86–99% TRR from tissues and egg matrices for both labels. A summary of the results is presented in Table 47.

Table 47 Extractability of residues from eggs and tissues after oral administration of [cyclopentyl- 14 C]- and [triazole- 14 C]-radiolabelled metconazole for 4.5 consecutive days to laying hens

Matrix	TRR (colculated)	Acetonitrile or hexane extract		Aqueous	extract	ERR		PES		
	mg/kg	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	
[cyclopentyl- ¹⁴ C]-metconazole (14 ppm)										
Breast muscle	0.031	0.028	89	0.001	4.0	0.029	93	0.002	6.6	
Thigh muscle	0.049	0.042	87	0.003	5.9	0.045	93	0.003	6.8	
Liver	0.79	0.64	81	0.081	10	0.72	91	0.068	8.6	
Skin	0.075	0.066	88	0.005	6.8	0.071	94	0.004	5.7	
Fat	0.091	0.086	94	0.004	3.9	0.089	98	0.001	1.6	
Egg white	0.047	0.045	96	0.001	2.2	0.046	98	0.001	2.0	
Egg yolk	0.088	0.070	79	0.006	7.1	0.076	86	0.012	14	
Excreta	15	9.4	63	5.3	35	15	98	0.32	2.1	
[triazole-14C]-metconazole (1	3 ppm)								<u>.</u>	
Breast muscle	0.15	0.13	88	0.013	8.6	0.14	96	0.005	3.6	
Thigh muscle	0.15	0.14	91	0.010	6.6	0.15	97	0.004	2.9	
Liver	0.97	0.80	82	0.098	10	0.90	92	0.077	7.9	
Skin	0.14	0.12	91	0.007	5.1	0.13	96	0.005	4.0	
Fat	0.14	0.13	89	0.012	8.7	0.14	98	0.003	2.0	
Egg white	0.19	0.18	98	0.003	1.6	0.19	99	0.001	0.6	

Matrix	TRR (colculated)	Acetonitrile or hexane extract		Aqueous	extract	ERR		PES	
	mg/kg	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
Egg yolk	0.16	0.14	89	0.007	4.2	0.15	93	0.011	7.1
Excreta	16	9.88	62	5.8	36	15	98	0.37	2.3

Parent metconazole was identified as a major residue for both labels in abdominal fat and skin with fat as well as for [cyclopentyl–¹⁴C]-metconazole in eggs yolk, ranging between 11–37% TRR (0.010–0.050 mg eq/kg). Metabolites occurring in significant amounts were: M1 in liver free at 13% TRR (0.10 mg eq/kg) and as the sum of free and conjugated at 16% TRR (0.13 mg eq/kg); the sum of the co-eluting metabolites M1 and M31 in abdominal fat, skin with fat and egg matrices ranging between 11–28% TRR (0.010–0.025 mg eq/kg); M12 free and conjugated in liver at 12% (0.091 mg eq/kg) and M20 (1,2,4-triazole) in all tissues and egg matrices from [triazole–¹⁴C]-dosed hens ranging between 13–77% (0.019–0.27 mg eq/kg). Moreover, sulphate conjugated mono-hydroxy metconazole was detected in egg yolk for the [cyclopentyl–¹⁴C]-label at 13% TRR (0.0012 mg eq/kg). Additional minor identified metabolites were M31 in liver, M32 (free and conjugated) in liver, muscle, fat, skin and egg. (Tables 48 to 51). The proposed metabolic pathway of metconazole is shown in Figure 4.

Table 48 Summary of identified/characterized residues in liver and muscle after oral administration of 14 ppm [cyclopentyl-¹⁴C]-radiolabelled metconazole for 4.5 consecutive days to laying hens

Commonanta	Liver (pre hydrolysis	;- s)	Liver (pos hydrolysis	st- s)	Breast mu	uscle	Thigh mu	iscle
Components	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
TRR	0.79	100	0.79	100	0.031	100	0.049	100
Total metconazole	0.034	4.3	0.033	4.1	0.002	5.4	0.005	9.8
cis-metconazole	0.031	3.9	-	-	0.001	1.8	0.002	3.7
trans-metconazole	0.003	0.4	-	-	0.001	3.6	0.003	6.0
M1	0.10	13	0.13	16	-	-	-	-
M1 (+ M31)	-	-	-	-	0.006	19.9	0.008	15.7
M12 (+ CM2/3)	0.033	4.1	0.091	12	-	-	-	-
M31	0.057	7.2	0.064	8.1	-	-	-	-
M32 (+ CM–1)	0.047	5.9	0.032	4.1	-	-	-	-
M32 sulfate	0.031	3.9	-	-	0.003	10.3	0.004	7.9
CM2	-	-	-	-	0.003	8.5	0.005	10.2
DHM sulfate	0.015	1.9	-	-	0.003	9.9	0.008	16.8
MHM sulfate	0.012	1.5	-	-	0.006	18.0	0.006	12.9
MHM-4	-	-	-	-	0.002	7.7	0.003	6.1
MHM (1–2 isomers)	-	-	-	-	-	-	-	-
DCM	-	-	0.073	9.3	-	-	-	-
CHM (1–4 isomers)	0.007	0.9	0.044	5.6	-	-	-	-
DHM (2 isomers) (may contain a trace of OCM)	-	-	0.017	2.1	-	-	-	-
MHM (4–6 isomers)	0.043	5.5	0.10	13	-	-	-	-
Total identified	0.38	47	0.58	74	0.025	79.6	0.039	79.5
Unidentified conjugates	0.30	38	-	-	-	-	-	-
Hexane-soluble unidentified	0.002	0.2	-	-	-	-	-	-
Unidentified precipitate from -	0.039	5.0	-	-	-	-	-	-
Other unidentified components (>10)	-	-	0.14	17	-	-	-	-
Acetonitrile-soluble unidentified	-	-	-	-	0.003	9.8	0.004	7.8
Water-soluble unidentified	-	-	-	-	0.001	4.0	0.003	5.9
EtOAc-soluble hydrolysate	-	-	0.021	2.7	-	-	-	-
Water-soluble hydrolysate	-	-	0.031	3.9	-	-	-	-
Total characterized	0.34	44	0.19	24	0.004	13.8	0.007	13.7
Unextracted	0.068	8.6	0.016	2.0	0.002	6.6	0.003	6.8

Components	Liver (pre- hydrolysis)		Liver (pos hydrolysis	t-)	Breast mu	iscle	Thigh muscle	
	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
Total	0.79	100	0.79	100	0.031	100	0.049	100

CHM Metconazole carboxylic acid

DCM Metconazole dicarboxylic acid

DHMDi-hydroxy metconazole

MHM Mono-hydroxy metconazole

- Not applicable or not detected

1			1		1		1			
	Abdomin	al fat	Skin with	fat	Egg whit	e ^a	Egg yolk	a	Whole eg	g ^a
Components	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
TRR	0.091	100	0.075	100	0.047	100	0.088	100	0.060	100
Total metconazole	0.033	37	0.021	28	0.003	7.3	0.010	11	0.006	8.6
<i>cis</i> -metconazole	0.017	19	0.011	14	0.001	2.1	0.004	4.4	0.002	2.8
trans-	0.016	18	0.010	13	0.002	5.2	0.006	7.1	0.004	5.8
M1	-	-	-	-	-	-	-	-	-	-
M1 (+ M31)	0.025	28	0.018	24	0.007	16	0.016	18	0.010	17
M12 (+ CM2/3)	-	-	-	-	-	-	-	-	-	-
M31	-	-	-	-	-	-	-	-	-	-
M32 (+ CM1)	-	-	-	-	-	-	-	-	-	-
M32 sulfate	0.001	1.6	0.003	3.7	0.008	17	0.007	7.9	0.008	14
CM-2	0.009	9.6	0.007	9.6	0.008	17	0.006	6.6	0.007	14
DHM sulfate	-	-	0.002	2.3	-	-	0.003	2.8	0.001	0.9
MHM sulfate	0.004	4.5	0.005	6.0	0.008	16	0.012	13	0.009	15
MHM-4	0.003	3.5	0.004	5.3	-	-	-	-	-	-
MHM (1–2 isomers)	-	-	-	-	0.003	7.1	0.007	8.4	0.005	7.5
DCM	-	-	-	-	-	-	-	-	-	-
CHM (1–4 isomers)	-	-	-	-	-	-	-	-	-	-
DHM (2 isomers) (may										
contain a trace of OCM)	-	-	-	-	-	-	-	-	-	-
MHM (4–6 isomers)	-	-	-	-	-	-	-	-	-	-
Total identified	0.076	84	0.059	79	0.038	80	0.060	68	0.045	76
Unidentified conjugates	-	-	-	-	-	-	-	-	-	-
Hexane-soluble	0.009	0.1	0.002	2.5			0.001	0.6	0.0002	0.2
unidentified	0.008	9.1	0.002	2.3	-	-	0.001	0.0	0.0002	0.2
Unidentified precipitate	_	_	_	_	_	_	_	_	_	_
from -aqueous extract	-	-	-	-	-	-	-	-	-	-
Other unidentified components (>10)	-	-	-	-	-	-	-	-	-	-
Acetonitrile-soluble	0.002	1.7	0.005	6.2	0.007	16	0.009	9.7	0.008	14
Water-soluble										
unidentified	0.004	3.9	0.005	6.8	0.001	2.2	0.006	7.1	0.003	3.8
EtOAc-soluble	-	-	-	-	-	-	0.003	3.7	-	-
Water soluble hydrolysate							0.005	5.8		
Total characterized	-	- 15	-	- 15.5	-	- 18	0.003	7	-	- 18
I otal cital actel izeu Unovtroctod	0.014	15	0.012	57	0.000	2.0	0.024	47	0.010	5.0
Total	0.001	100	0.004	100	0.001	100	0.004	100	0.003	100
	0.071	1 100	0.070	1 100	0.01/	1 100	0.000	1 100	0.000	1 100

Table 49 Summary of identified/characterized residues in fat, skin and egg after oral administration of 14 ppm [cyclopentyl-¹⁴C]-radiolabelled metconazole for 4.5 consecutive days to laying hens

TRR Total radioactive residue (sum of ERR + RRR)

CHM Metconazole carboxylic acid

DCM Metconazole dicarboxylic acid

DHM Di-hydroxy metconazole

MHM Mono-hydroxy metconazole

^a Analysis was done with day 4 and day 5 samples combined

- Not applicable or not detected

Table 50 Summary of identified/characterized residues in liver, muscle and abdominal fat after oral administration of 13 ppm [triazole $^{-14}$ C]-radiolabelled metconazole for 4.5 consecutive days to laying hens

Componente	Liver (pos hydrolysis	t-)	Breast m	ıscle	Thigh mu	scle	Abdomin	al fat
Components	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]	[mg/kg]	[% TRR]
TRR	0.97	100	0.15	100	0.15	100	0.14	100
Total metconazole	0.017	1.7	0.001	0.8	0.005	3.3	0.050	35
cis-metconazole	-	-	-	-	0.003	1.7	0.025	18
trans-metconazole	-	-	0.001	0.8	0.002	1.5	0.024	17
M1	0.094	9.7	-	-	-	-	-	-
M1 (+ M31)	-	-	0.006	3.8	0.006	4.0	0.019	13
M12 (+ CM2/3)	0.081	8.3	-	-	-	-	-	-
M20 (1,2,4-triazole)	0.27	27	0.11	77	0.11	75	0.019	13
M31	0.049	5.1	-	-	-	-	-	-
M32 (+ CM1)	0.039	4.1	-	-	-	-	-	-
M32 sulfate	-	-	0.003	2.1	0.006	3.8	0.014	9.7
CM2	-	-	0.002	1.6	0.003	1.9	0.007	5.0
DHM sulfate	-	-	0.003	1.9	0.002	1.3	0.006	4.0
MHM sulfate	-	-	0.005	3.7	0.004	2.4	0.009	6.4
MHM-4	-	-	0.002	1.4	0.002	1.5	0.004	2.6
MHM (1–2 isomers)	-	-	-	-	-	-	-	-
DCM	0.070	7.2	-	-	-	-	-	-
CHM (1–4 isomers)	0.048	4.9	-	-	-	-	-	-
DHM (2 isomers) (may contain a trace of OCM)	0.018	1.9	-	-	-	-	-	-
MHM (4–6 isomers)	0.094	9.7	-	-	-	-	-	-
OCM	0.005	0.5	-	-	-	-	-	-
Total identified	0.78	80	0.13	93	0.14	93	0.13	90
Hexane-soluble unidentified	-	-	-	-	-	-	0.011	7.8
Other unidentified components	0.12	12	_	_	_	_	_	_
(>10)	0.12	12	_	_	_	_	_	_
Acetonitrile-soluble unidentified	-	-	0.002	1.6	0.003	1.7	0.001	0.5
Water-soluble unidentified	-	-	0.003	2.4	0.003	2.1	-	-
EtOAc-soluble hydrolysate	0.025	2.6	-	-	-	-	-	-
Water-soluble hydrolysate	0.036	3.7	-	-	-	-	-	-
Total characterized	0.18	18	0.006	3.9	0.006	3.8	0.012	8.4
Unextracted	0.015	1.6	0.005	3.6	0.004	2.9	0.003	2.0
Total	0.97	100	0.15	100	0.15	100	0.14	100

TRR Total radioactive residue (sum of ERR + RRR)

CHM Metconazole carboxylic acid

DCM Metconazole dicarboxylic acid

DHM Di-hydroxy metconazole

MHM Mono-hydroxy metconazole

- Not applicable or not detected
| | Skin with | fat | Egg white | e ¹ | Egg yolk | a | Whole eg | g ^a |
|--------------------------------------|-----------|------------|-----------|----------------|----------|------------|----------|----------------|
| Components | [mg/kg] | [%
TRR] | [mg/kg] | [%
TRR] | [mg/kg] | [%
TRR] | [mg/kg] | [%
TRR] |
| TRR | 0.14 | 100 | 0.19 | 100 | 0.16 | 100 | 0.18 | 100 |
| Total metconazole | 0.027 | 20 | 0.005 | 2.5 | 0.010 | 6.6 | 0.006 | 3.7 |
| cis-metconazole | 0.014 | 10 | 0.001 | 0.8 | 0.003 | 2.0 | 0.002 | 1.2 |
| trans-metconazole | 0.013 | 9.5 | 0.003 | 1.7 | 0.007 | 4.6 | 0.004 | 2.6 |
| M1 | - | - | - | - | - | - | - | - |
| M1 (+ M31) | 0.015 | 11 | 0.011 | 6.2 | 0.020 | 13 | 0.014 | 8.2 |
| M12 (+ CM2/3) | - | - | - | - | - | - | - | - |
| M20 (1,2,4-triazole) | 0.064 | 47 | 0.12 | 65 | 0.067 | 43 | 0.10 | 58 |
| M31 | - | - | - | - | - | - | - | - |
| M32 (+ CM–1) | - | - | - | - | - | - | - | - |
| M32 sulfate | 0.004 | 2.8 | 0.007 | 3.9 | 0.005 | 3.1 | 0.007 | 3.7 |
| CM2 | 0.004 | 2.6 | 0.009 | 4.8 | 0.004 | 2.8 | 0.008 | 4.2 |
| DHM sulfate | - | - | - | - | 0.002 | 1.3 | 0.001 | 0.4 |
| MHM sulfate | 0.003 | 2.5 | 0.010 | 5.3 | 0.013 | 8.3 | 0.011 | 6.3 |
| MHM4 | 0.003 | 1.9 | 0.005 | 2.5 | - | - | - | - |
| MHM (1–2 isomers) | - | - | - | - | 0.007 | 4.5 | 0.005 | 3.1 |
| DCM | - | - | - | - | - | - | - | - |
| CHM (1–4 isomers) | - | - | - | - | - | - | - | - |
| DHM (2 isomers) (may contain a trace | | | | | | | | |
| of OCM) | - | - | - | - | - | - | - | - |
| MHM (4–6 isomers) | - | - | - | - | - | - | - | - |
| OCM | - | - | - | - | - | - | - | - |
| Total identified | 0.12 | 87 | 0.17 | 90 | 0.13 | 82 | 0.16 | 88 |
| Hexane-soluble unidentified | 0.002 | 1.3 | - | - | 0.000 | 0.2 | 0.0001 | 0.1 |
| Other unidentified components (>10) | - | - | - | - | - | - | - | - |
| Acetonitrile-soluble unidentified | 0.004 | 2.8 | 0.014 | 7.8 | 0.010 | 6.2 | 0.013 | 7.3 |
| Water-soluble unidentified | 0.007 | 5.1 | 0.003 | 1.6 | 0.007 | 4.2 | 0.004 | 2.4 |
| EtOAc-soluble hydrolysate | - | - | - | - | - | - | - | - |
| Water-soluble hydrolysate | - | - | - | - | - | - | - | - |
| Total characterized | 0.013 | 9.2 | 0.018 | 9.4 | 0.017 | 11 | 0.017 | 9.7 |
| Unextracted | 0.005 | 4.0 | 0.001 | 0.6 | 0.011 | 7.1 | 0.004 | 2.6 |
| Total | 0.14 | 100 | 0.19 | 100 | 0.16 | 100 | 0.18 | 100 |

Table 51 Summary of identified/characterized residues in skin and egg after oral administration of 13 ppm [triazole–¹⁴C]-radiolabelled metconazole for 4.5 consecutive days to laying hens

TRR Total radioactive residue (sum of ERR + RRR)

CHM Metconazole carboxylic acid

DCM Metconazole dicarboxylic acid

DHM Di-hydroxy metconazole

MHM Mono-hydroxy metconazole

^a Analysis was done with Day 4 and Day 5 samples combined

- Not applicable or not detected

Figure 4 Proposed metabolic pathway of metconazole in laying hens

ENVIRONMENTAL FATE

For the investigation of the environmental fate of metconazole, the Meeting received studies on aerobic soil metabolism and degradation, soil and aqueous photolysis and on the behaviour in confined and field rotational crops. According to the use pattern, aqueous photolysis was not considered relevant here.

Aerobic soil degradation

The rate of degradation of metconazole was studied in one aerobic soil using [triazole $^{-14}$ C]-radiolabelled metconazole at a nominal application rate of 0.24 mg/kg oven dry soil, corresponding to 360 g ai/ha (Gedik & Fullard, 2002, METCON 039). Soil characteristics are shown in Table 52.

Table 52 Soil characteristics

Soil Name	Texture	Soil Origin	% Organic Matter	Organic C [%]	Cation exchange capacity [meq/100g]	pH[100 mM KCl]
PT 190	Sandy loam	Ipswich, UK	2.2	1.3	11.4	6.8

The test system was maintained in the dark at a nominal temperature of $20 \pm 2^{\circ}C$ for 120 days. Volatile organics and CO₂ were trapped with ethanediol and 0.5 M NaOH, respectively. Samples were taken at 0, 3, 7, 14, 28, 56, 91 and 120 days after application.

The soil samples were extracted three times with acetonitrile/water (7/3, v/v). Extracts were analysed by LSC for total radioactivity and by HPLC or TLC against reference standards to identify metabolites. A soil subsample from 120 day after application was additionally extracted with 0.5 M NaOH. The soil remaining after the extraction was combusted followed by LSC.

Parent metconazole declined from 96% AR to 31% AR over the study time. The only identified metabolite was M30 accounting for up to 4.6% AR at day 91 (Table 53). The radioactivity in the bound residues increased over time from 1.9% AR to 39% AR. Further analysis of the bound residues at 120 days showed 26, 10, and 1% of the applied radioactivity was associated with the humin, fulvic acid and humic acid fractions, respectively.

Table 53 Biotransformation of $[triazole-^{14}C]$ -metconazole, expressed as percentage of applied radioactivity

Degradate		Sampling time (days)							
	0	3	7	14	28	56	91	120	
Metconazole	96	92	91	86	74	61	55	31	
M30	n/d	n/d	n/d	n/d	3.3	6.3	6.5	11	
Unidentified degradates	n/d	n/d	n/d	n/d	n/d	3.0	2.5	2.5	
Total extracted radioactivity	96	92	91	88	81	75	68	47	
CO ₂	ns	0.14	0.21	0.34	0.77	2.1	4.9	10	
Volatiles organics	nd	0.01	0.03	0.06	0.03	0.06	0.09	0.08	
Unextracted	1.9	3.6	5.2	7.9	14	21	28	39	
Total	98	95	96	96	96	98	101	96	

Based on the decline rate observed for metconazole, a half-life of 84 days was estimated (single 1st order kinetics).

In a second study, the degradation of metconazole was investigated in one aerobic soil using [p-chlorophenyl–¹⁴C]-and [triazole–¹⁴C]-radiolabelled metconazole at a nominal application rate of 0.27 mg/kg dry soil, corresponding to a field application rate of 100 g ai/ha (Dalkmann & Kibat, 2015, METCON 040). Soil characteristics are shown in Table 54.

Table 54	Soil	characteristics
----------	------	-----------------

Soil Name	Texture	Soil Origin	% Organic Matter	Organic C [%]	Cation exchange capacity [meq/100g]	pH[H2O; CaCl]
LUFA 5 M	DIN: loamy sand USDA: sandy loam	Speyer, Germany	3.41	1.98	10.2	7.9; 7.4

Test systems were maintained in the dark at a nominal temperature of $20 \pm 2^{\circ}$ C for 119 days. Volatile organics and CO₂ were trapped with ethanediol and 0.5 mol/L NaOH, respectively. Samples were taken at 0, 3, 7, 14, 28, 43, 63, 91 and 119 days after application.

The soil samples were extracted three times with acetonitrile, followed by two times with acetonitrile/water 50:50, v/v). Extracts were analysed by LSC for total radioactivity and by (chiral) radio-HPLC against reference standards to identify metabolites. The soil remaining after extraction was combusted followed by LSC. Since the PES exceeded 10% AR in several soil samples, selected dry soil residues were further characterized by NaOH treatment.

The percentage recovery of the applied radioactivity soil is presented in Table 55. For both labels, parent metconazole declined from 97–98% to 50–51% over the study time. The ratio of the *cis*-and *trans*-isomer shifted only slightly over time (4.7 to 3.2). Trapped CO₂ was higher for [p-chlorophenyl–¹⁴C]-metconazole at up to 14% AR compared to [triazole–¹⁴C]-metconazole at up 1.1% AR. Identified metabolites were M20 (1,2,4-triazole) for [triazole–¹⁴C]-label at up to 1.2% AR, M30 for both labels up to 3% and M40 and/or an unknown for both labels at up to 1.8% AR. The radioactivity in the bound residues for both labels increased over time from 1.0–1.2% AR to 23–42% AR. Further analysis of the bound residues showed that the sum humins, fulvic acid and humic acid increased from 9.3–14% AR at day 28 to 22–42% AR at day 119.

Degradate		Sampling time (days)								
	0	3	7	14	28	43	63	91	119	
	[r	o-chloroph	enyl-14C]-	metconazo	le [%AR]					
Total metconazole	97	97	94	89	85	79	72	60	51	
trans-metconazole	17	17	17	16	14	14	13	13	12	
cis-metconazole	80	80	77	74	70	65	58	48	39	
M30	n/d	n/d	n/d	0.9	1.1	1.5	1.9	2.0	1.9	
M40 and/or unknown	0.5	0.2	0.6	0.6	0.3	0.9	0.9	1.3	1.8	
Unidentified degradates	n/d	n/d	n/d	0.3	0.5	0.7	1.1	1.6	2.7	
Total extracted radioactivity	98	97	95	91	87	82	76	65	57	
CO ₂	n/d	0.3	0.6	1.3	3.0	5.3	8.4	10	14	
Volatiles organics	n/d	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
Unextracted	1.0	3.9	4.5	7.0	9.2	11	15	19	23	
Total	99	102	100	100	99	99	99	94	94	
		[triazole	⊢ ¹⁴ C]-met	conazole [%AR]					
Total metconazole	98	96	92	90	84	80	72	59	50	
trans-metconazole	17	16	16	16	14	14	14	12	11	
cis-metconazole	81	80	77	74	70	66	58	48	39	
M20 (1,2,4-triazole)	n/d	n/d	n/d	n/d	n/d	n/d	n/d	0.9	1.2	
M30	1.3	1.2	1.7	1.6	2.0	2.4	3.0	2.9	2.5	
M40 and/or unknown	n/d	n/d	n/d	n/d	n/d	n/d	0.3	1.0	1.3	
Unidentified degradates	n/d	n/d	n/d	0.3	n/d	n/d	n/d	1.5	2.0	
Total extracted radioactivity	99	97	94	92	86	82	75	66	57	
CO ₂	n/d	<loq< td=""><td><loq< td=""><td>0.1</td><td>0.2</td><td>0.3</td><td>0.5</td><td>0.8</td><td>1.1</td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>0.2</td><td>0.3</td><td>0.5</td><td>0.8</td><td>1.1</td></loq<>	0.1	0.2	0.3	0.5	0.8	1.1	
Volatiles organics	n/d	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
Unextracted	1.2	3.8	5.7	9.0	13	18	23	31	42	
Total	100	101	100	101	99	100	99	97	100	

Table 55 Metabolism of metconazole, expressed as percentage of applied radioactivity in soil

Based on the decline rate observed for metconazole, a half-life time of 128 days was estimated (single 1st order kinetics).

Soil photolysis

The soil surface photolytic behaviour of *cis*-metconazole was investigated in a loamy sand soil using [triazole–¹⁴C]-radiolabelled metconazole at a nominal application rate of 5.91 mg/kg, equivalent to 5000 g ai/ha. (Baranowski & VanDijk, 1992, METCON_041). Soil characteristics are shown in Table 56.

Table 56 Soil characteristics

Soil Name	Texture	Soil Origin	Organic C [%]	Cation exchange capacity [meq/100g]	рН
LUFA 2.2	USDA: loamy sand	Speyer, Germany	2.6	10	6.0

Soil samples were prepared on glass plates (~1mm thick) and subjected to intermittent irradiation (12hours light/dark cycles) for 30 days at 22 ± 2 °C using a xenon irradiation source with filters to eliminate wavelengths of < 290 nm. Dark control samples were prepared in parallel. Volatile organics and CO₂ were trapped with ethanediol and 2 mol/L NaOH, respectively. The irradiated soil samples were analysed at 0, 2, 4, 8, 16 and 30 days.

The soil samples were extracted once with acetonitrile, followed by two times with acetonitrile/water (8/2, v/v). Additionally samples were extracted exhaustive with acetonitrile by refluxing overnight. Extracts were analysed by LSC and HPLC/TLC to determine the radioactivity and metabolite pattern, respectively. The soil remaining after extraction was combusted followed by LSC.

The percentage recovery of the applied radioactivity in moist soil is presented in Table . Parent metconazole declined from 96% to 70% over the irradiation time. At the same time, the sum of unidentified degradates, radioactivity released under enhanced condition and unextracted radioactivity increased from 2.5% to 21%.

Degradate			Incubation p	eriod [days]		_	Dark controls	
	0	2	4	8	16	30		
		[triazole-14	C]-metconaz	ole [%AR]				
cis-metconazole	96	91	89	89	74	70	88–100	
Unidentified degradates ^a	n/a	1.6	1.3	3.1	4.5	5.8	0.6–1.5	
Total extracted radioactivity	96	93	90	92	79	76	89–102	
Extracted (80 °C)	2.0	4.5	3.5	2.7	2.8	7.6	2.0-4.0	
CO ₂	n/a	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
Volatiles organics	n/a	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
Unextracted	0.5	1.4	3.5	6.7	9.7	7.8	0.5-2.0	
Total	99	98	97	101	91	92	93-106	

Table 57 Phototransformation of $[triazole^{-14}C]$ -metconazole, expressed as percentage of applied radioactivity, on moist irradiated soil samples

^a No individual unidentified component accounts for >5% AR

Based on the decline rate observed for metconazole, a half-life time of 63 days under intermittent irradiation was estimated (single 1st order kinetics) for soil.

In a second study, the soil surface photolytic behaviour of metconazole, containing a *cis:trans* ratio of 85:15, was investigated in a loamy sand soil using [triazole–¹⁴C]-radiolabelled metconazole at a nominal application rate of approximately 90 g/ha (Bissinger, 1996, METCON_042). Soil characteristics are shown in Table 58.

Table 58 Soil characteristics

Soil Name	Texture	Soil Origin	Organic C [%]	Cation exchange capacity [meq/100g]	рН
LUFA 2.2	USDA: loamy sand	Speyer, Germany	2.3	11	5.6

Soil samples were prepared on glass plates (~1mm thick) and subjected to continuous irradiation for 15 days at 20 ± 3 °C using a xenon irradiation source with filters to eliminate wavelengths of <290 nm. Dark control samples were prepared in parallel. Volatile organics and CO₂ were trapped with ethanediol and 2 mol/L NaOH, respectively. The irradiated soil samples were analysed at 0, 1, 2, 4, 7, 10 and 15 days.

The day 0 soil samples were extracted twice with acetone and once with methanol while day 1 soil samples were extracted with methanol only. All other samples were extracted twice with methanol and once with water. Extracts were analysed by LSC and TLC to determine the radioactivity and metabolite pattern, respectively. The soil remaining after extraction was combusted followed by LSC.

The percentage recovery of the applied radioactivity in moist soil is presented in Table 59. Parent metconazole declined from 91% to 57% over the irradiation time. No distinct metabolites could be identified. Up to 32% AR accounted for unresolved background on TLC plates.

Table 59 Phototransformation of [triazole–¹⁴C]-metconazole (*cis:trans* ratio: 85:15), expressed as percentage of applied radioactivity, on moist irradiated soil samples

Degradate			Ι		Dark			
-	0	1	2	4	7	10	15	controls
[triazole ^{_14} C]-metconazole [%AR]								
Metconazole	91	78	73	67	60	57	57	82–93
Unidentified degradates ^a	<loq< td=""><td><loq< td=""><td>9.5</td><td>11</td><td>8.6</td><td>11</td><td>12</td><td>n/d</td></loq<></td></loq<>	<loq< td=""><td>9.5</td><td>11</td><td>8.6</td><td>11</td><td>12</td><td>n/d</td></loq<>	9.5	11	8.6	11	12	n/d
Unresolved background ^b	9.1	22	17	23	32	32	31	7.4–19
Total extracted radioactivity	98	93	95	94	93	86	88	98-101
CO ₂	<loq< td=""><td><loq< td=""><td>0.1</td><td>0.1</td><td>0.2</td><td>0.6</td><td>1.0</td><td>n/d</td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>0.1</td><td>0.2</td><td>0.6</td><td>1.0</td><td>n/d</td></loq<>	0.1	0.1	0.2	0.6	1.0	n/d
Volatiles organics	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Unextracted	0.8	7.4	4.9	5.2	6.3	7.5	9.0	0.8 - 1.8
Total	99	100	100	99	100	94	98	98-102

^a No individual unidentified component accounts for >6.7% AR

^b Unresolved background on TLC plates

Based on the decline rate observed for metconazole, a half-life time of 36 days of continuous irradiation (equal to 73 days under the assumption of average daylight of 12 hours) was estimated (square root 2^{nd} order kinetics) for soil.

In a third study, the soil surface photolytic behaviour of metconazole containing a *cis:trans* ratio of approximately 82:18 was investigated in a loamy sand soil using [p-chlorophenyl-¹⁴C]-and [triazole-¹⁴C]-radiolabelled metconazole at a nominal application rate of 0.6 mg/kg (90 g ai/ha) (Knight, 2015, METCON 043). Soil characteristics are shown in Table 60.

Table 60 Soil characteristics

Soil Name	Texture	Soil Origin	Organic C [%]	Cation exchange capacity [meq/100g]	pH in 0.01M CaCl ₂
LUFA 5 M	DIN: loamy sand USDA: sandy loam	Speyer, Germany	0.98	16	7.3

Soil samples were prepared on glass dishes (~1 cm thick) and subjected to continuous irradiation for 15 days (equivalent to 31 days of natural sunlight) at $22 \pm 1^{\circ}$ C using a xenon irradiation source with filters to eliminate wavelengths of < 290 nm. Dark control samples were prepared in parallel. Volatile organics and CO₂ were trapped with ethanediol and 1 M KOH, respectively. Soil samples were taken at 0, 2, 5, 8, 10, 13 and 15 days after treatment.

The soil samples were extracted three times with acetonitrile, followed by up to three times with acetonitrile/water (1/1, v/v). Samples with non-extracted radioactivity greater than 5% were additionally extracted with 0.5M NaOH. Extracts analysed by LSC and HPLC to determine the radioactivity and metabolite pattern, respectively. Selected irradiated and dark control samples were additionally analysed by TLC for co-chromatography with reference standards and by LC-MS for confirmation of parent. The soil remaining after extraction was combusted followed by LSC.

For both labels, parent metconazole declined from 97–99% to 85–89% over the study time. The only identified metabolite was M30 at up to 3.7% AR in irradiated soil and 3.4% AR in dark soil indicating only a small influence on the degradation of metconazole. The ratio of the *cis*- and *trans*-isomer remained constant over time. Further analysis of the bound residues was mainly associated with humins, fulvic acid and humic acid ranging between 1.9–7.7% AR, 1.2–5.1% AR and 0.5–1.4% AR, respectively.

Degradate			Incubation p	eriod [days]			Dark controls		
	2	5	8	10	13	15			
[p-chlorophenyl- ¹⁴ C]-metconazole [%AR]									
Total metconazole	99	94	90	93	87	85	94-102		
trans-metconazole	19	15	18	17	17	16	16-20		
cis-metconazole	80	79	72	76	70	69	76-83		
M30	n/d	0.7	1.0	1.0	3.5	2.5	n/d-2.2		
Unidentified degradates ^a	n/d	0.8	3.3	1.3	3.9	6.3	n/d-0.7		
Total extracted radioactivity	99	95	94	95	95	94	94-102		
CO ₂	0.7	1.2	1.8	2.7	2.9	1.5	0.1-0.2		
Volatiles organics	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
Unextracted	2.2	5.1	4.7	6.5	6.4	7.4	0.5-5.2		
Total	102	101	101	104	104	103	98-105		
		[triazole-14	C]-metconaz	ole [%AR]		-			
Total metconazole	97	93	93	91	90	89	91-103		
trans-metconazole	16	17	14	16	17	16	14–19		
cis-metconazole	81	76	79	75	74	73	74–85		
M30	1.8	2.0	3.7	3.7	1.5	2.3	n/d-3.4		
Unidentified degradates ^a	n/d	1.2	n/d	1.1	n/d	2.4	n/d		
Total extracted radioactivity	98	96	97	96	92	93	91-103		
CO ₂	n/d	0.2	0.3	0.4	1.8	0.8	n/d-0.1		
Volatiles organics	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
Unextracted	4.4	4.7	7.3	5.8	8.8	9.0	0.9–9.8		
Total	103	101	104	102	102	103	97-107		

Table 61 Phototransformation of [p-chlorophenyl-¹⁴C]-and [triazole-¹⁴C]-radiolabelled metconazole, expressed as percentage of applied radioactivity, on moist irradiated soil samples.

^a No individual unidentified component accounts for >5% AR

Based on the decline rate observed for metconazole, a half-life time of 68 days of continuous irradiation was estimated (single 1st order kinetics) for soil.

Confined rotational crops

A confined rotational crop study was conducted with [cyclopentyl $^{-14}$ C]- and [triazole $^{-14}$ C]- radiolabelled metconazole (*cis:trans* ratio of about 80:20), each applied at a rate of 0.4 kg ai/ha to a sandy loam soil (Hill & Standen, 1993, METCON_044). After plant-back intervals (PBIs) of 30 and 120 days, the nature and level of radioactive residues were investigated in lettuce (variety Bellona),

radish (variety Cherry Belle) and wheat (variety Axona). Immature and mature crops were harvested from the 30 day PBI, while only mature crops were harvested from the 120 day PBI.

Homogenized plant samples were combusted prior to the determination of total radioactivity by LSC, while liquid samples such as extracts were directly measured by LSC. Soil samples were extracted with acetonitrile/water (7+3, v/v). In order to characterize and identify the radioactivity present, all samples were extracted with acetonitrile/water at various ratios and water. Subsequently the extracts were partitioned with ethyl acetate, dichloromethane or hexane. Conjugates present in the extracts were hydrolysed by either acid (2 mol/L HCl) or base hydrolysis (0.1 M NaOH). HPLC, TLC, LC-MS and GC-MS were applied for the characterisation and identification of the radioactivity.

Residues in soils samples decrease for both labels from 82-99% TRR at DAT 0 to 67-68% TRR at the last sampling time point at 323 DAT (Table 62).

Soil sample (Event)	[cyclopentyl- ¹⁴ C]-metconazole % TRR	[triazole ^{_14} C]-metconazole % TRR
0 DAT	99	82
30 DAT (1 st PBI)	99	92
64 DAT (harvest immature lettuce, radish)	89	81
99 DAT (harvest mature radish)	93	91
100 DAT (harvest mature lettuce)	93	77
120 DAT (2 nd PBI)	87–93	81-85
122 DAT (harvest immature wheat, 1 st PBI)	93	93
189 DAT (harvest mature radish, 2 nd PBI)	76	84
204 DAT (harvest mature lettuce, 2 nd PBI)	73	74
323 DAT (harvest immature wheat, 2 nd PBI)	68	67

Table 62 Percentage of radioactive residues in soil samples

Radioactivity for the both labels in all matrices was comparable, with the exception of wheat grain where the TRR for the [triazole–¹⁴C]-label was significantly higher. TRR levels were highest in wheat root, followed by wheat straw. At 120 days PBI, the measured TRR was often at similar or higher levels compared to the 30 day PBI (e.g. mature radish root and top or lettuce leaf) while only in immature lettuce levels dropped significantly. A summary of all TRRs found is presented in Table 63.

Table 63 Total radioactive residues in rotational crops after application of [cyclopentyl $-^{14}$ C]- and [triazole $-^{14}$ C]-radiolabelled metconazole to bare soil at 0.4 kg ai/ha.

Plant back	Sampling at days after	TRR, mg eq/kg				
interval	sowing/planting	[cyclopentyl-14C]-metconazole	[triazole-14C]-metconazole			
Immature radis	h					
30 DAT	34	0.24	0.31			
120 DAT	n/a	0.19	0.14			
Immature lettuc	e					
30 DAT	34	0.13	0.13			
120 DAT	n/a	0.04	0.06			
Immature whea	t (foliage)					
30 DAT	92	0.15	0.12			
120 DAT	n/a	0.13	0.20			
Immature whea	t (root)					
30 DAT	92	0.35	0.29			
120 DAT	n/a	0.25	0.30			
Radish top						
30 DAT	69	0.40	0.65			
120 DAT	69	0.68	0.84			
Radish root						
30 DAT	69	0.32	0.38			
120 DAT	69	0.37	0.71			
Lettuce leaf						

Plant back	Sampling at days after	TRR, mg eq/kg				
interval	sowing/planting	[cyclopentyl-14C]-metconazole	[triazole-14C]-metconazole			
30 DAT	70	0.03	0.08			
120 DAT	84	0.10	0.20			
Lettuce root						
30 DAT	70	0.36	0.50			
120 DAT	84	0.63	0.62			
Wheat grain						
30 DAT	175	0.01	0.35			
120 DAT	203	0.01	0.49			
Wheat chaff						
30 DAT	175	0.17	0.28			
120 DAT	203	0.15	0.32			
Wheat straw						
30 DAT	175	0.73	0.61			
120 DAT	203	0.70	0.73			
Wheat root						
30 DAT	175	0.90	0.85			
120 DAT	203	0.65	0.78			

The radioactivity found in the fractions from the initial acetonitrile/water and water extractions and in the unextracted remainder is presented in Table 64. At least 84% TRR or more was extracted from all crops at both PBIs.

Table 64 Extractability of radioactive residues from rotational crops after application of [cyclopentyl- 14 C]- and [triazole- 14 C]-radiolabelled metconazole to bare soil at 0.4 kg ai/ha

Plant back	TRR ^{mg/kg}	Acetoniti extr	rile/water ract	Water extract ERR ^a Post extraction		tion solids						
Interval		mg eq/kg	% TRR	mg eq/kg	% TRR	mg eq/kg	% TRR	mg eq/kg	% TRR			
			[cyc	lopentyl-14C]-metconazo	le						
	Radish root											
30 DAT	0.32	0.26	81	< 0.01	2.5	0.27	84	0.05	16			
				Radish	top							
30 DAT	0.40	0.38	94	< 0.01	1.0	0.38	95	0.02	5.1			
				Lettu	ce							
120 DAT	0.10	0.07	73	0.01	11	0.08	84	0.02	16			
				Wheat s	straw							
120 DAT	0.70	0.62	89	0.01	1.7	0.63	91	0.07	9.3			
			[tr	iazole-14C]-r	netconazole							
				Radish	root							
30 DAT	0.38	0.34	89	< 0.01	1.4	0.34	90	0.04	10			
120 DAT	0.71	0.60	84	0.04	6.2	0.64	90	0.07	9.8			
				Radish	top							
30 DAT	0.65	0.61	94	0.01	2.0	0.62	95	0.03	4.6			
120 DAT	0.84	0.74	88	0.03	4.0	0.77	92	0.07	8.2			
				Lettu	ce							
30 DAT	0.08	0.07	92	< 0.01	2.4	0.08	94	< 0.01	6.0			
120 DAT	0.20	0.15	75	0.03	17	0.18	92	0.02	8.5			
				Wheat s	straw							
30 DAT	0.61	0.55	89	< 0.01	1.1	0.55	90	0.06	9.6			
120 DAT	0.73	0.64	89	0.015	2.1	0.66	91	0.07	9.3			
				Wheat g	grain							
30 DAT	0.35	0.30	85	0.04	12	0.34	97	0.01	3.0			
120 DAT	0.49	0.41	83	0.07	14	0.48	97	0.01	2.7			

^a Extracted radioactive residues: sum of acetonitrile/water and water extracts

The results of the identification and characterization of radioactive residues are presented in Table 65. Parent metconazole was identified as the major component for radish roots and tops at 30 day PBI at up to 41% TRR (0.13 mg eq/kg) and in lettuce at 120 day PBI at 20% TRR

(0.02 mg eq/kg). Metconazole was also a major residue in radish from 120 day PBI and lettuce and wheat straw from 30 day PBI, but could not be unequivocally identified due to interference.

As major metabolites, M12 was detected in 30 day PBI radish tops at up to 14% TRR (0.09 mg eq/kg), M35 (triazolyl alanine) in radish roots, top and wheat grain at up to 59% TRR (0.29 mg eq/kg) and M34 (triazolyl acetic acid) in wheat grain at up to 20% TRR (0.10 mg eq/kg). Additionally, glycoside conjugates were identified at amounts >10% TRR in wheat straw (120 day PBI). Other identified metabolites were M30 and other 'keto' metabolites present in radish roots, tops and also in wheat straw.

Table 65 The nature of metconazole-derived residues in mature succeeding crops after treatment with [cyclopentyl $^{-14}$ C]- and [triazole $^{-14}$ C]-radiolabelled metconazole at 0.4 kg ai/ha

			mg eq/kg (% TF	RR)		
Crop	Tissue	Metabolite	[triazole-14C]		[cyclopentyl-140	C]
_			30 DAT	120 DAT	30 DAT	120 DAT
		TRR	0.38 (100)	0.71 (100)	0.32 (100)	0.37 (100)
		Metconazole	0.11 (29)	0.11 (16)*	0.13 (41)	not determined
		M30	0.01 (2.6)	0.01 (1.4)*	0.02 (6.3)	not determined
Radish	Root	Keto-metconazole	0.01 (2.6)	0.04 (5.6)*	0.02 (6.3)	not determined
		Glycoside conjugates	0.02 (5.3)		0.02 (6.3)	not determined
		M12	0.01 (2.6)		0.02 (6.3)	not determined
		M35 (triazolyl alanine)	mg eq/kg (% TRR) [triazole- ¹⁴ C] [cyclop 30 DAT 120 DAT 30 DAT 0.38 (100) 0.71 (100) 0.32 (1) 0.11 (29) 0.11 (16)* 0.13 (4) 0.01 (2.6) 0.01 (1.4)* 0.02 (6) 0.01 (2.6) 0.04 (5.6)* 0.02 (6) 0.01 (2.6) 0.04 (5.6)* 0.02 (6) 0.01 (2.6) 0.033? (47)* 0.05 (100) 0.65 (100) 0.84 (100) 0.40 (1) 0.10 (15) 0.09 (11)* 0.07 (1) 0.02 (3.1) 0.02 (2.4)* 0.02 (5) 0.03 (4.6) 0.06 (7.1)* 0.04 (1) 0.05 (100) 0.28 (33)* 0.02 (5) 0.03 (4.6) 0.06 (7.1)* 0.04 (1) 0.06 (9.2) 0.03 (1) 0.28 (33)* 0.08 (100) 0.20 (100) 0.03 (1) 0.04 (13)* 0.01 (5.0) not dettee n/d 0.03 (15) not dettee 0.02? (25)* not dettee 0.03 (4.1) not dettee 0.03 (4.9)* 0.03 (4.1) not dettee 0.03 (4.9)* 0.03 (4.1) not		not determined	
		TRR	0.65 (100)	0.84 (100)	0.40 (100)	0.68 (100)
		Metconazole	0.10 (15)	0.09 (11)*	0.07 (18)	not determined
		M30	0.02 (3.1)	0.02 (2.4)*	0.02 (5.0)	not determined
Radish	Тор	Keto-metconazole	0.03 (4.6)	0.06 (7.1)*	0.04 (10)	not determined
Crop Radish Radish Lettuce Wheat		Glycoside conjugates	0.06 (9.2)			not determined
		M12	0.09 (14)			not determined
		M35 (triazolyl alanine)	0.20 (31)	0.28 (33)*		not determined
		TRR	0.08 (100)	0.20 (100)	0.03 (100)	0.10 (100)
		Metconazole	0.01 (13)*	0.01 (5.0)	not determined	0.02 (20)
Lettuce	Leaf	Free acids	n/d	0.03 (15)	not determined	0.02 (20)
		Triazolyl conjugates?	n/d	0.12 (60)	not determined	n/d
		M35 (triazolyl alanine)	0.02? (25)*		not determined	n/d
		TRR	0.61 (100)	0.73 (100)	0.73 (100)	0.70 (100)
		Metconazole	0.07 (12)*	0.03 (4.1)	not determined	0.03 (4.3)
	Straw	M30	0.03 (4.9)*	0.03 (4.1)	not determined	0.04 (5.7)
Wheat		Free acids	n/d	0.04 (5.5)	not determined	0.08 (11)
wheat		Glycoside conjugates	n/d	0.13 (18)	not determined	0.12 (17)
		TRR	0.35 (100)	0.49 (100)	0.01 (100)	0.01 (100)
	Grain	M35 (triazolyl alanine)	0.13 (37)*	0.29 (59)	not determined	not determined
		M34 (triazolyl acetic acid)	n/d	0.10 (20)	not determined	not determined

* Identity is proposed by inference from similar HPLC retention time or TLC Rf values and is not confirmed by cochromatography.

Field rotational crop studies

In two field trial conducted during 1995 in Germany, metconazole was applied twice to bare soil a rate of 0.09 kg ai/ha with an interval of 21 days (Memmesheimer, 1996, METCON_045). Carrots (variety Napoli F1) and lamb's lettuce (variety Rosetty) were planted 30–31 DALA while winter wheat (variety Rektor) was planted 98–99 DALA. Carrots and lamb's lettuce were sampled at the earliest time the crop could be commercially used and at maturity. Winter wheat was sampled immature (whole plant, ears and rest of plant) and at maturity (grain and straw).

Homogenized plant samples were extracted with acetone/hexane (1+1, v/v), followed by liquid-liquid portioning with ethyl acetate and clean-up by gel permeation chromatography, according to methods FAMS 050-01 and FAMS 057-01. Quantification was performed by GC-NPD with a LOQ of 0.01 mg/kg, with the exception of wheat straw with an LOQ of 0.03 mg/kg. Procedural recoveries

spiked at 0.03, 0 30 and 3.0 mg/kg for wheat straw and 0.01, 0.10 and 1.0 mg/kg for all other matrices ranged for both isomers between 66–110%.

The results of the field rotational crop study are provided in Table 66. In general, residues of metconazole in crops planted at 30/31 days (carrot and lamb's lettuce) and 99 days (winter wheat) after treatment of the soil were not detectable.

Trial/ Location	Сгор	Sample	DAT	BBCH	Sum of <i>cis-</i> and <i>trans</i> metconazole (mg(kg)
		Root	97	41	< 0.01
	Carrot (31 day PBI)	Root	128	46/47	n/d
		Root	142	49	n/d
05 004 01	Lamb's lettuce (31 day PBI)	Lettuce leaf	108	49	n/d
93-094-01 Mutterstadt	Lamb's lettuce (88 day PBI)	Lettuce leaf	155	14–16	n/d
Germany		Whole plant	336	32	n/d
Germany		Ears	381	73–75	n/d
	Wheat (99 day PBI)	Rest of plant	381	73–75	n/d
		Grain	416	92	n/d
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	416	92	n/d
		Root	90	41	n/d
95-094-02	Carrot (30 day PBI)	Root	107	45	n/d
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	49	n/d	
		Lettuce leaf	94	19	n/d
95-094-02	Lamb's lettuce (30 day PBI)	Lettuce leaf	101	47	n/d
Schwabenheim,		Lettuce leaf	111	49	n/d
Germany		Whole plant	310	31	n/d
		Ears	378	77	n/d
	Wheat (99 day PBI)	Rest of plant	378	77	n/d
		Grain	415	92	n/d
		Straw	415	92	n/d

Table 66 Residues in rotational crops grown in metconazole-treated soil (2×0.09 kg ai/ha)

n/d: not detectable, 0.003 mg/kg for carrots, lamb's lettuce, wheat grain, ears, plants and 0.01 mg/kg for wheat straw

METHODS OF RESIDUE ANALYSIS

Analytical methods

For the analysis of metconazole and metabolites in various plant and animal matrices, analytical methods suitable for enforcement and data generation purposes were submitted. In the following table an overview of these methods is presented.

Table 67 Overview of analytical methods for metconazole and metabolites

Method	Matrix	Extraction	Clean-Up	Analyte, Detection, LOQ
FAMS 050-01	Cereal grain,	Acetone/hexane	Partitioning with ethyl	GC-NPD
	straw and plant	(1+1, v/v)	acetate, GPC	Confirmation: GC-MS
				ILV available
				LOQ: wheat grain:
				0.03 mg/kg (per isomer); all
				others: 0.01 mg/kg (per
				isomer)
	Cereal grain,	Acetone/hexane	Partitioning with ethyl	LC-MS/MS, ESI+, m/z
	ears, straw and	(1+1, v/v)	acetate, GPC	320→125
	plant			LOQ: 0.01 mg/kg (per
	_			isomer)
FAMS 059-01	Rape seed and	Acetonitrile	Partitioning with ethyl	GC-NPD
FAMS 059-02	oil		acetate, GPC	Confirmation: GC-MS
				LOQ: 0.01 mg/kg (per
				isomer)

Method	Matrix	Extraction	Clean-Up	Analyte, Detection, LOQ
FAMS 069-01	Dry pea seed,	Acetone/hexane	Partitioning with ethyl	GC-NPD
	pea straw	(1+1, v/v)	acetate, GPC	Confirmation: GC-MS
	1			LOQ: pea seed: 0.01 mg/kg
				(per isomer); pea straw:
				0.03 mg/kg (per isomer)
M 2722	Whole banana	1 mol/L HCl	Partitioning with	GC-NPD
	and pulp		dichloromethane, GPC	ILV available
				LOQ: 0.05 mg/kg (per
				isomer)
BASF method 550/0	Cereal forage,	Methanol/water/2	Partitioning with	LC-MS/MS, ESI+, m/z
(L0019/01)	cereal grain,	mol/L HCl	dichloromethane	320→70
	cereal straw,	(70+25+5, v/v/v)		LOQ: 0.005 mg/kg (per
	oilseed rape			isomer)
	Seed, lemon			
	fruit, pea seed,			
D) (44 G 4	tomato fruit			
RM-41C-1	Peach,	Acetonitrile/water	Partitioning with hexane,	GC-NPD
	blueberry, dry	(7+3, v/v)	partitioning with	ILV available
	bean, sunflower		acetonitrile, SPE on C18	LOQ: 0.02 mg/kg (per
	seed, meal and			isomer)
PM 41C 2 1	011 Dry been	Acetonitrila/water	Dartitioning with	LC MS/MS ESI+ m/z
1/1/1-41/0-2-1	Diy Ucall	(7+3 v/v)	hevene/ethyl acetate	$120-1010/1010, 1201^+, 111/2$ 320-125, 320-70
		(7+3, 777)	(9+1 y/y) SPE on Oasis	$I \Omega \Omega$: 0.02 mg/kg (per
			HLB	isomer)
RM-41C-2 & RM-	Straw, turfgrass	Acetonitrile/water	Partitioning with	LC-MS/MS, ESI+, m/z
41C-3	Strawy, tailigrass	(7+3, v/v)	hexane/ethyl acetate	$320 \rightarrow 125$ (metconazole).
		(, , , , , , ,	(9+1, v/v), partitioning	$m/z 336 \rightarrow 125 (M11/M21)$,
			with acetonitrile/ hexane.	$m/z 334 \rightarrow 139 (M30)$
			SPE on C18	LOQ: 0.02 mg/kg
DFG S 19	Wheat grain and	Acetone/water	Partitioning with ethyl	GC-NPD
	straw, grapes,	(2+1, v/v)	acetate/cyclohexane	Confirmation by different
	dry pea, rape		(1+1, v/v), GPC	column
	seed			LOQ: wheat straw:
				0.03 mg/kg (per isomer); all
				others: 0.01 mg/kg (per
				isomer)
	Apple, grapes,			LC-MS/MS, m/z 320 \rightarrow 125,
	wheat grain, dry			$320 \rightarrow /0$
	pea, rape seed			ILV available
				LOQ: 0.005 mg/kg (per
	Sava haan gaada	A a atom a /h awama	SDE on SCV	
$(P \land P \land 844 \ 05)$	Soya bean seeds	(1:1: y/y)	SPE OII SCA	$U \cap U \cap U$
D0604	Maize grain and	Acetonitrile/water	Partitioning with	HPLC-MS/MS
	stover cotton	$(7+3 \cdot v/v)$	hexane/ethyl acetate or	$m/z 320 \rightarrow 70 (metconazole)$
	seed and by-		hexane, SPE on SCX	$m/z 336 \rightarrow 125 (M11) m/z$
	products		,	336→125 (M21). m/z
	·			334→111 (M30), m/z
				70→43 (T), m/z 157→88
				(TA), m/z 128→70 (TAA)
				LOQ:
				Metconazole: 0.005 mg/kg
				M11, M21, M30:
				0.01 mg/kg, T, TA, TAA:
010(004004				0.01 or 0.05 mg/kg
01062/M004	Tomato,	Methanol/water	Dispersive SPE with C18	HPLC-MS/MS
	cucumber,	(4+1; v/v)		$m/z / 0 \rightarrow 43 (1), m/z$ 157 $\sqrt{70} (TA) = 128 \sqrt{70}$
	grain corect			$13 \rightarrow 10 (1A), \text{m/z} 128 \rightarrow 10$ (TAA) $\text{m/z} 158 \rightarrow 70 (\text{TLA})$
	grain, cereal			$(1AA)$, $III/2 138 \rightarrow /0 (1LA)$ $I \cap O : 0.01 mg/leg$
	oreen nlant			LOQ. 0.01 mg/kg
	orange oilseed			
	rape seed, melon			
1	1 1,	1	1	I

Method	Matrix	Extraction	Clean-Up	Analyte, Detection, LOQ
	peel, melon fruit, melon pulp, sweet pepper, dry bean seed, carrot leaf, carrot root			
Method 535/1 (L0076/01)	Wheat plant without root, wheat grain, wheat straw, lemon fruit, lettuce, oilseed rape seed, tomato, onion bulb	Methanol/water /2 mol/L HCl (70+25+5, v/v/v)	Partitioning with cyclohexane	LC-MS/MS, m/z 320→125, 320→70 LOQ: 0.01 mg/kg
Method Meth-160	Canola seed, canola oil	Methanol/water (4+1; v/v)	SPE	HPLC-MS/MS m/z 303→170 (T), m/z 409→70 (TA), m/z 184→70 (TAA) LOQ: 0.01 mg/kg
SOP-PA.0206 (based on MR0007)	Garlic, onion	Methanol	Partitioning with dichloromethane, SPE on Si-cartridge	GC-NPD LOQ: 0.01 mg/kg
DFG S 19	Milk, muscle, egg, fat Milk, muscle, egg, fat, liver, kidney	Acetone/water (2+1, v/v)	Partitioning with ethyl acetate/cyclohexane (1+1, v/v), GPC	GC-NPD Confirmation by different column ILV available LOQ: 0.01 mg/kg (per isomer) LC-MS/MS, m/z 320→125, 320→70 ILV available LOQ: 0.005 mg/kg (per isomer)
RM-41M-1 (L0408/01)	Milk Milk, cream	Ethyl acetate/methanol (2+1, v/v)	Partitioning with dichloromethane/aqueous sodium chloride solution, partitioning with acetonitrile/hexane	GC-NPD Confirmation by LC-MS/MS LOQ: 0.02 mg/kg (per isomer) LC-MS/MS, m/z 320→125, 320→70 LOQ: 0.02 mg/kg (per isomer)
RM-41M-2 (L0408/02)	Muscle, egg, fat, liver, kidney	Acetonitrile	Partitioning with hexane/ethyl acetate/aqueous sodium chloride solution, SPE on C18	LC-MS/MS, m/z 320→125, 320→70 LOQ: 0.02 mg/kg (per isomer)
RM-41M-3	Kidney	Methanol, followed by methanol/water (9+1, v/v)	Partitioning with hexane, M12: SPE on C18 M1: hydrolysis with 3 mol/L HCl, SPE on C18	LC-MS/MS, m/z 336→125 (M1), m/z 350→125 (M12) LOQ: 0.02 mg/kg
RM-41M-3a	Liver, kidney, fat, muscle	Methanol/water (9+1, v/v)	Partitioning with hexane, SPE on C18	LC-MS/MS, m/z 336→125, 336→70 (M1), m/z 350→125, 350→70 (M12) LOQ: 0.02 mg/kg
L0415/01	Liver, fat, muscle, egg	Methanol/water (8+2, v/v)	Derivatization with dansyl chloride, partitioning with ethyl acetate	LC-MS/MS, m/z 304→171, 304→182 (1,2,4 triazole) LOQ: 0.01 mg/kg

Plant materials

FAMS 050-01

The homogenized sample material was extracted with acetone/hexane (1+1, v/v), followed by centrifugation. After filtration through quartz wool, water and sodium chloride was added and the extract partitioned twice against ethyl acetate. The organic extracts were combined, evaporated to dryness and the remainder reconstituted in methanol. Further clean-up was carried out by GPC with methanol as eluent.

Final determination of metconazole was done by GC-NPD using a DB–5 column and by GC-MS for confirmation. Quantitation was done with external standards in ethyl acetate.

Table 68 Recovery data for method FAMS 050-01 measuring metconazole in cereal grain and straw using GC-NPD.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	11	87	6.9	
Analyte <i>cis</i> -Metconazole	Wheat grain	0.10	11	81	5.7	
		1.0	9	80	5.9	_
		0.01	4	84	9.0	_
	Barley grain	0.10	4	78	2.2	_
<i>cis</i> -Metconazole		1.0	4	75	1.3	-
		0.01	1	79	-	-
	Rye grain	0.10	1	73	-	-
		1.0	1	76	-	-
		0.01	1	92	-	-
	Triticale grain	0.10	1	84	-	-
cis-Metconazole		1.0	1	82	-	-
	****	0.03	11	88	15	_
	Wheat straw	0.30	9	80	6.2	-
		3.0	13	81	14	
	D 1	0.03	3	89	17	
	Barley straw	0.30	4	77	7.7	
		3.0	4	75	3.8	M
	Rye straw	0.03	1	86	-	1006
		0.30	1	78	-	METCON 046
		3.0	1	105	-	MIETCON_040
	T : 1 /	0.03	1	105	-	Memmesheimer
	I riticale straw	0.30	1	88	-	1996.
		3.0	11	82	-	METCON 047
		0.01	11	89	9.8	
	Wheat grain	0.10	11	82	4.7	-
		1.0	9	80	5.8	-
		0.01	4	88	12	-
	Barley grain	0.10	4	78	2.9	_
		1.0	4	75	1.1	
		0.01	1	89	-	
	Rye grain	0.10	1	75	-	
trans-Metconazole		1.0	1	75	-	
		0.01	1	100	-	
	Triticale grain	0.10	1	84	-	-
	Bruin	1.0	1	81	_	1
		0.03	11	9/	14	-
	Wheat strow	0.03	0	70	67	-
	wheat straw	2.0	7	19	0./	-
		3.0	13	82	15	-
	Barley straw	0.03	4	96	13	4
		0.30	4	75	12	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		3.0	4	76	4.5	
		0.03	1	87	-	
	Rye straw	0.30	1	77	-	
-		3.0	1	73	-	
		0.03	1	99	-	
	Triticale straw	0.30	1	87	-	
		3.0	1	82	-	

Table 69 Confirmatory recovery data for method FAMS 050-01 measuring metconazole in cereal grain and straw using GC-MS.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	3	100	5.6	
	Wheat grain	0.10	3	95	5.2	
oia Mataomagala		1.0	3	80	2.2	
<i>cis</i> -ivietconazole	Wheat straw	0.03	3	105	4.4	Memmesheimer, 1996, METCON_046
		0.30	3	84	1.4	
		3.0	3	80	1.4	
		0.01	3	96	9.5	Mammaghaiman
	Wheat grain	0.10	3	95	4.4	Memmesheimer, 1996, METCON_047
		1.0	3	82	2.1	
<i>trans</i> -metconazoie	Wheat straw	0.03	3	100	4.0	
		0.30	3	96	0.6	
		3.0	3	79	1.9	

Independent laboratory validation of method FAMS 050-01:

The sample extraction, clean-up and method of determination were identical to FAMS 050-01.

Table 70 Recovery data for the ILV of FAMS 050-01 measuring metconazole in cereal matrices

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Whole plant	0.01	2	103	-	
		1.0	2	84	-	
	Ears	0.01	2	102	-	
	Ears	1.0	2	88	-	
aia Mataanagala	Doct alout	0.01	2	97	-	
cis-Metconazole	Rest plant	1.0	2	74	-	
	Grain	0.01	2	84	-	
		0.10	2	82	-	Weeren, 1996,
	Straw	0.03	2	74	-	
		3.0	4	94	7.8	
	Whole plant	0.01	2	108	-	METCON_048
	whole plant	1.0	2	82	-	
	Ears	0.01	2	88	-	
	Ears	1.0	2	91	-	
trans-Metconazole	Doct alout	0.01	2	93	-	
	Rest plant	1.0	2	74	-	
	Grain	0.01	2	78	-	
		0.10	2	83	-	
	Straw	0.03	2	113	-	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		3.0	4	95	9.0	

FAMS 050-01 (using LC-MS/MS)

Sample extraction and clean-up was identical to method FAMS 059-01, but quantification was done by LC-MS/MS in positive ionization mode using a Phenomenex Aqua C18 column and monitoring the ion transition m/z 320 \rightarrow 125.

Table 71 Recovery data for method FAMS 050-01 measuring metconazole in cereal matrices using LC-MS/MS.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	4	81	3	
	Darlay whole plant	0.1	1	81	-	
	Barley whole plant	0.5	2	92	-	
		5.0	2	97	-	
	Straw	0.01	4	79	1.6	
		0.1	2	87	-	Perny, 2004, METCON_058 Perny, 2004,
		5.0	2	91	-	
Metconazole		0.01	2	74	-	
	Rest of plant	0.1	1	71	-	
	-	5.0	2	98	-	METCON_059
	Carlin	0.01	4	87	11	
	Grain	0.1	2	93	-	
	Ears	0.01	2	80	-	
		0.1	1	93	-	
		1.0	2	102	-	

FAMS 059-01 & FAMS 059-02

Rape seeds were homogenized with acetonitrile, followed by centrifugation and filtration through quartz wool. Rape oil was dissolved in hexane followed by liquid-liquid extraction using acetonitrile. After addition of water, the acetonitrile phases of both matrices were partitioned against ethyl acetate. The organic extracts were combined, evaporated to dryness and the remainder reconstituted in methanol. Further clean-up was carried out by GPC with methanol as eluent.

Final determination of metconazole was done by GC-NPD using a DB–5 column and by GC-MS for confirmation. Quantitation was done with external standards in ethyl acetate.

Table 72 Recovery data for method FAMS 059-01 & -02 measuring metconazole in rape seed and oil using GC-NPD.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	3	87	4.1	
	Oilseed rape	0.10	3	74	3.1	Memmesheimer, 1996, METCON_049 Memmesheimer, 1997, METCON_050
		1.0	3	68	3.4	
cis Metconozole		0.01	3	90	2.6	
	Rape oil	0.10	2	92	-	
		1.0	3	87	1.1	
	Oilsood rang	0.01	10	95	10	
	Oliseed rape	0.10	10	88	3.7	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		1.0	10	86	6.6	Memmesheimer, 1999, METCON_051
		0.01	3	74	2.1	
	Oilseed rape	0.10	3	75	3.5	Memmesheimer, 1996, METCON_049
		1.0	3	68	3.4	
		0.01	3	94	1.2	
trans-Metconazole	Rape oil	0.10	2	92	-	
		1.0	3	88	1.7	
		0.01	10	96	8.4	Memmesheimer, 1997,
	Oilseed rape	0.10	10	89	3.0	METCON_050
		1.0	10	86	7.0	Memmesheimer, 1999, METCON_051

Table 73 Recovery data for method FAMS 059-01 & -02 measuring metconazole in rape seed and oil using GC-MS

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	3	106	2.8	
	Oilseed rape	0.10	3	78	1.5	
		1.0	3	70	5.4	Memmesheimer, 1996,
		0.01	3	89	2.8	METCON_049
<i>cis</i> -Metconazole	Rape oil	0.10	2	97	-	
		1.0	3	87	5.0	
	Oilseed rape	0.01	2	106	-	Memmesheimer, 1997,
		0.10	3	96	7.8	METCON_050 Memmesheimer, 1999, METCON_051
		1.0	3	77	9.4	
		0.01	3	104	4.2	
	Oilseed rape	0.10	3	78	2.0	
		1.0	3	69	4.6	Memmesheimer, 1996,
		0.01	3	100	2.6	METCON_049
trans-Metconazole	Rape oil	0.10	2	97	-	
		1.0	3	88	5.0	
		0.01	2	113	-	Memmesheimer, 1997,
	Oilseed rape	0.10	3	96	6.9	METCON_050
	Ullseed rape	1.0	3	77	10	Memmesheimer, 1999, METCON_051

Independent laboratory validation of method FAMS 059-02:

The sample extraction, clean-up and method of determination were, with minor modification, identical to FAMS 059-02.

Table 74 Recovery data for the ILV of FAMS 059-02 measuring metconazole in rape seed using GC-NPD.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
<i>cis</i> -Metconazole	Oilseed rape	0.01	2	86	-	Kwasniok & Pelz, 1997 METCON_068
		0.10	2	82	-	
		1.0	2	80	-	
trans-Metconazole		0.01	2	86	-	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.10	2	80	-	
		1.0	2	80	-	

Table 75 Recovery data for the ILV of FAMS 059-02 measuring metconazole in rape seed using GC-MS.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
cis-Metconazole	Oilseed rape	0.01	1	82	-	Kwasniok & Pelz, 1997 METCON_068
		1.0	1	72	-	
trans-Metconazole		0.01	1	76	-	
		1.0	1	73	-	

FAMS 069-01

Pea seed and pea straw were homogenized with acetone/hexane (1+1, v/v). After filtration through quartz wool, water and sodium chloride was added and the extract partitioned twice against ethyl acetate. The organic extracts were combined, evaporated to dryness and the remainder reconstituted in methanol. Further clean-up was carried out by GPC with methanol as eluent.

Final determination of metconazole was done by GC-NPD using a DB–5 column and by GC-MS for confirmation. Quantitation was done with external standards in ethyl acetate.

Table 76 Recovery data for method FAMS 069-01 measuring metconazole in pea seed and straw using GC-NPD

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	3	101	5.7	
	Dry pea seeds	0.10	3	88	1.1	
		1.0	3	88	4.6	
<i>cis</i> -ivietconazoie		0.03	3	99	1.5	Memmesheimer,
	Pea straw	0.30	3	88	4.0	1997,
		3.0	3	86	5.8	METCON_052
<i>trans</i> -Metconazole		0.01	3	91	3.5	Mammashaimar
	Dry pea seeds	0.10	3	96	1.8	1997
		1.0	3	92	3.9	METCON 053
		0.03	3	108	1.4	
	Pea straw	0.30	3	88	3.4	-
		3.0	3	85	6.5	
		0.01	6	95	7.7	
	Dry pea seeds	0.10	6	85	5.0	
		1.0	6	84	4.6	
<i>cis</i> -Metconazole		0.03	7	102	7.8	
	Pea straw	0.30	8	90	9.7	
		3.0	8	83	3.6	Memmesheimer,
		0.01	6	89	4.7	1999, METCON 054
	Dry pea seeds	0.10	6	85	5.2	MILICON_054
		1.0	6	84	4.2	-
<i>trans</i> -Metconazole		0.03	8	92	5.9]
	Pea straw	0.30	8	90	9.7	1
		3.0	8	83	3.1	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.01	3	105	1.5	
	Dry pea seeds	0.10	3	92	3.9	
cis-Metconazole		1.0	3	92	3.1	
	Pea straw	0.03	3	110	2.3	Memmesheimer, 1997, METCON_052
		0.30	3	91	5.0	
		3.0	3	86	7.3	
		0.01	3	108	1.4	Memmesheimer
	Dry pea seeds	0.10	3	88	3.4	1997, METCON 053
		1.0	3	85	6.5	
trans-Metconazole	Pea straw	0.03	3	114	1.0	_
		0.30	3	92	5.0	
		3.0	3	87	7.1	

Table 77 Recovery data for method FAMS 069-01 measuring metconazole in pea seed and straw using GC-MS.

M 2722

Whole banana and banana pulp was homogenized with 1 mol/L HCl. After centrifugation, the aqueous acid extract was partitioned against dichloromethane. The organic extracts were combined, evaporated to dryness and the remainder reconstituted in methanol. Further clean-up was carried out by GPC with methanol as eluent.

Final determination of metconazole was done by GC-NPD using a DB–5 column and by GC-MS for confirmation. Quantitation was done with external standards in ethyl acetate.

Table 78 Recovery data for method M 2722 measuring metconazole in whole banana and banana pulp using GC-NPD

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Recovery [%]	Reference
<i>cis</i> -Metconazole	Whole bergene	0.05	1	81	
	whole ballalla	1.0	1	79	
	Banana pulp	0.05	1	73	
		1.0	1	79	Khunachak, 1998,
	Whole banana	0.05	1	81	METCON_055
tugua Mataanagala		1.0	1	78	
trans-Metconazoie	Domono aula	0.05	1	86	
	Banana puip	1.0	1	96	
ais Mataonazala	Whole banana	2.0	1	75	C 9
<i>cis</i> -ivieteonazoie	Banana pulp	2.0	1	77	Sweeney & Khunaahak 1008
tugua Mataonazala	Whole banana	2.0	1	73	METCON 056
<i>ir uns</i> -metconazoie	Banana pulp	2.0	1	74	WIE1CON_030

Extraction efficiency of method M 2722 was demonstrated by a radio validation with whole banana and banana pulp (Sweeney & Khunachak, 1998, METCON_056). Based on the total radioactive residue in the sample, method M 2722 showed a sufficient extractability of 76% and 78% in whole banana and pulp, respectively.

Independent laboratory validation of method M 2722:

The sample extraction, clean-up and method of determination were, with minor modification, identical to M 2722.

Table 79 Recovery data for the ILV of M 2722 measuring metconazole in whole banana and banana pulp using GC-NPD

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Recovery [%]	RSD [%]	Reference
		0.05	2	78	-	
	Whole banana	0.1	2	81	-	
oia Motoomazala		1.0	2	79	-	Sweeney & Khunachak,
<i>cis</i> -metconazore	Banana pulp	0.05	2	72	-	
		0.1	4	72	15	
		1.0	4	77	10	
		0.05	2	78	-	1998,
	Whole banana	0.1	2	82	-	METCON_067
trans-		1.0	2	78	-	
Metconazole	Banana pulp	0.05	2	87	-	
		0.1	4	80	16	
		1.0	4	92	22	

BASF method 550/0

Samples were extracted with methanol/water/2 mol/L HCl (70+25+5, v/v/v), followed by centrifugation. The supernatant was diluted with water and an aliquot partitioned against dichloromethane. The dichloromethane phase was evaporated to dryness and the remainder reconstituted in methanol/water (8+2, v/v).

Final determination of metconazole was done by LC-MS/MS in positive ionization mode using a Luna C18 column and monitoring the ion transition m/z $320 \rightarrow 70$.

Table 80 Recovery	v data for BASF	method 550/0 r	neasuring metco	nazole in pla	int matrices.
-------------------	-----------------	----------------	-----------------	---------------	---------------

Matrix	Analyte	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.005	5	97	2.4	
	cis-metconazole	0.05	5	95	1.2	
Canaal famaga		Overall	10	96	2.3	-
Cereal lorage		0.005	5	103	2.6	
	trans-	0.05	5	97	0.8	
	metconazoie	Overall	10	100	3.8	
		0.005	5	106	1.8	
	cis-metconazole	0.05	5	103	1.8	Lehmann &
C 1 .		Overall	10	105	2.2	
Cereal grain	4	0.005	5	105	1.4	
	trans-	0.05	5	102	1.2	Mackenroth,
	metconazoie	Overall	10	103	1.9	2004,
		0.005	5	103	4.9	METCON_057
	cis-metconazole	0.05	5	101	3.0	
Canaal atuarr		Overall	10	102	4.0	-
Cereal straw		0.005	5	106	1.2	
	trans-	0.05	5	101	1.4	-
	metconazoie	Overall	10	103	3.2	
		0.005	5	99	4.7	
Oilseed rape	cis-metconazole	0.05	5	98	1.7	
seed		Overall	10	98	3.4	
	trans-	0.005	5	107	1.5]

Matrix	Analyte	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	metconazole	0.05	5	101	1.7	
		Overall	10	104	3.3	
		0.005	5	88	2.5	
	cis-metconazole	0.05	5	97	2.3	
Lomon fruit		Overall	10	93	5.7	
	tuana	0.005	5	101	2.3	
	metconazole	0.05	5	98	3.7	
		Overall	10	100	3.4	
	<i>cis</i> -metconazole	0.005	5	87	1.7	
		0.05	5	97	0.7	
Dry non cood		Overall	10	92	6.2	
Dry pea seeu	tuana	0.005	5	102	1.9	
	<i>iruns</i> -	0.05	5	98	1.2	
	metconazoie	Overall	10	100	2.7	
		0.005	5	89	6.3	
	cis-metconazole	0.05	5	99	2.2	
Tomata fmuit		Overall	10	94	7.0	
	tuana	0.005	5	102	4.4	
	iruns-	0.05	5	101	1.7]
	metconazole	Overall	10	101	3.3	

Method RM-41C-1

Samples were homogenized with acetonitrile/water (7+3, v/v). After filtration the extract is evaporated to the aqueous remainder and partitioned against hexane. In a second liquid-liquid partitioning step, the hexane extract is extracts with acetonitrile. Further clean-up of the acetonitrile phase was carried out by SPE on a C18 cartridge, where the analytes were eluted with methanol/water (5+1, v/v). After evaporation to dryness, the remainder was reconstituted in toluene.

Final determination of metconazole was done by GC-NPD using a DB-1, DB-5 or DB-17 column Quantitation was done with external standards in toluene.

Table 81 Recovery data for method RM–41C–1 measuring metconazole in peaches, blueberries and dry beans using GC-NPD.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
oia Mataanazala	Daaah	0.02	3	90	3.4	
<i>cis</i> -metconazore	Peach	0.1	6	96	2.2	Fujie, 2006,
tugua Mataanagala	Decel	0.02	3	92	4.4	METCON_060
<i>trans</i> -ivietconazoie	Peach	0.1	6	97	4.9	
		0.02	6	109	45 ^a	
	Blueberry	0.04	3	90	11	
cis-metconazole		0.05	6	103	8.5	
		0.20	3	96	2.4	
		2.0	3	89	1.9	Thompson, 2010,
		0.02	6	113	19	METCON_061
		0.04	3	114	22 ¹	
trans-metconazole	Blueberry	0.05	6	103	5.3	
		0.20	3	98	2.6	
		2.0	3	96	1.6	
sia Matana ana 1a	Dentron	0.02	10	88	11	
<i>cis</i> -ivietconazoie	Dry bean	0.2	8	79	14	Corley, 2013,
	D 1	0.02	10	93	12	METCON_062
trans-Metconazole	Dry bean	0.2	8	77	15	
cis-Metconazole	Dry bean	0.02	7	108	11	Corley, 2013,

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.2	8	91	7.8	METCON_064
trans Metconazole	Dry been	0.02	7	111	11	
irans-ivieteonazoie	Dry bean	0.2	8	86	5.2	
	Sunflower	0.02	11	92	12	
	seed	0.20	10	79	8.5	
		1.0	3	80	3.7	
cis-Metconazole	Sunflower	0.02	3	97	4.7	
	meal	0.20	5	85	8.6	
	G G '1	0.02	4	98	15	
	Sunnower on	0.20	6	92	16	Corley, 2013,
	Sunflawor	0.02	11	102	15	METCON_065
	Sunnower	0.20	10	87	8.7	
	seeu	1.0	3	83	3.1	
trans-Metconazole	Sunflower	0.02	3	101	11	
	meal	0.20	5	87	12	
	G	0.02	4	94	6.9]
	Sumower on	0.20	6	91	15]

^a Fortification data not used due to unacceptable relative standard deviation.

Independent laboratory validation of method RM-41C-1:

The sample extraction, clean-up and method of determination were, with minor modification (Rtx–5 and Rtx–35), identical to RM–41C–1.

Table 82 Recovery data for the ILV of method RM-41C-1 measuring metconazole in almonds using GC-NPD.

A 1.4		Fortification	No of	Mean recovery [%]		RSI	Deferrer	
Analyte	Matrix	[mg/kg]	replicates	Rtx-5	Rtx-35	Rtx-5	Rtx-35	Kelerence
	A 1	0.02	3	103	100	6.9	6.1	
ClS- Mataonazala	Almond (nutmont)	0.04	3	105	100	0.56	0.64	
Wielcollazoie	(inutificat)	0.20	3	101	97	4.4	4.2	Noon, 2006,
tuana	Almond	0.02	3	106	95	4.9	8.3	METCON_069
Irans- Mataonazala	(nutmont)	0.04	3	104	100	1.7	0.84]
wietconazole	(numeat)	0.20	3	97	98	5.4	4.4]

Method RM-41C-2-1

Samples were homogenized with acetonitrile/water (7+3, v/v). After filtration the extract is evaporated to the aqueous remainder and partitioned against hexane/ethyl acetate (9+1, v/v). Further clean-up of the acetonitrile phase was carried out by SPE on an Oasis HLB cartridge, where the analytes were eluted with methanol/0.05% formic acid (5+1, v/v). The acetonitrile was removed by evaporation and the remainder was re-dissolved in methanol/water (1+1, v/v).

Final determination of metconazole was done by LC-MS/MS in positive ionization mode using a ACE C18 column and monitoring the ion transitions $m/z 320 \rightarrow 125$ and $m/z 320 \rightarrow 70$. Quantitation was done with external standards in methanol/water.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
<i>cis</i> -Metconazole	Durchaam	0.02	5	102	6.1	
	Dry bean	0.1	5	89	6.0	Green, 2010,
tugua Mataanazala	Dry bean	0.02	5	100	6.1	METCON_063
<i>trans</i> -ivietconazoie		0.1	5	89	4.9]
ais Mataonazala	Dryhaan	0.02	3	108	11	
<i>cis</i> -metconazore	Dry bean	0.1	3	104	10	Green, 2010,
	Dry bean	0.02	3	108	9.5	METCON_066
<i>trans</i> -metconazoie		0.1	3	106	10]

Table 83 Recovery data for method RM-41C-2-1 measuring metconazole in dry beans using LC-MS/MS.

Method RM-41C-3

The method RM-41C-3 is revised version of method RM-41C-2 with modified LC-MS/MS conditions and expanded to metabolites M11, M21 and M30. Samples were homogenized with acetonitrile/water (7+3, v/v). After filtration the extract is evaporated to the aqueous remainder and partitioned against hexane/ethyl acetate (9+1, v/v). Further clean-up of was carried out by liquid-liquid partitioning with acetonitrile/hexane, followed by SPE on a C18 cartridge.

Final determination of metconazole and metabolites M22, M21 and M30 was done by LC-MS/MS in positive ionization mode using a Luna C18 column and monitoring the ion transitions m/z $320\rightarrow125$ for metconazole, m/z $336\rightarrow125$ for M11 & M21 and m/z $334\rightarrow139$ for M30. Quantitation was done with external standards in solvent.

Table 84 Recovery data for method RM-41C-2 and RM-41C-3 measuring metconazole in plant matrices using LC-MS/MS.

Matrix	Analyte	Fortification Level [mg/kg]	Number of Replicates	Mean Recovery [%]	RSD [%]	Reference
Stuarr	Mataamagala a	0.02	4	86.9	6.1	
Straw	INTELCONAZOTE -	0.1	6	90.0	6.4	
Tumfomoso	M 1 1 b	0.02	3	103.6	1.3	
Turigrass	IVI I I -	0.1	6	86.2	7.2	Green, 2007,
Tumfomoso	M212	0.02	3	100.6	2.4	METCON_080
Turigrass	IVIZ 1 -	0.1	6	85.2	7.8	
C.	M201	0.02	4	75.9	4.0	
Suaw	1V150 ⁻	0.1	6	82.0	8.1]

^a LC-MS/MS conditions of analytical method RM-41C-2

^b LC-MS/MS conditions of analytical method RM-41C-3

DFG S19 method

Samples of high water content, acidic and dry plant matrices were homogenized in acetone/water (2+1, v/v). After addition of sodium chloride, the extract was partitioned against ethyl acetate/cyclohexane (1+1, v/v). Oily plant matrices were homogenized with acetonitrile/acetone (9:1, v/v) in the presence of Celite and Calflo E. Further clean-up for all samples were performed by GPC.

Final determination of metconazole was done by GC-NPD using a DB-1 or DB-5 column and by GC-NPD using a DB 17 column and GC-MS for confirmation. Quantitation was done with external standards in ethyl acetate.

Alternatively, final determination of metconazole was done by LC-MS/MS in positive ionization mode using a Luna C18 column and monitoring the ion transitions m/z $320 \rightarrow 125$ and m/z $320 \rightarrow 70$. Quantitation was done with external standards in methanol/water (1/1, v/v).

Table 85 Recovery data for method DFG S 19 measuring metconazole in plant matrices using GC-NPD with a DB-1 column

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Wheat grain	0.010	5	86	10	
		0.10	5	82	3	
	Grapes	0.010	5	85	19	
cis Meteorozola	Grapes	0.10	5	94	7	
	Dry neo	0.010	5	85	18	
	Diy pea	0.10	7	78	9	Class 1000
	Done seed	0.010	5	94	14	METCON 070
	Kape seed	0.10	5	92	10	METCON_070
	Wheat grain	0.010	5	91	11	Class, 2003, METCON_071
		0.10	5	83	4	
	Grapes	0.010	5	90	8	
trans Metconozole		0.10	5	92	9	
	David and	0.010	5	85	16	
	Diy pea	0.10	7	79	13	
	Dama soud	0.010	5	89	18	
	Kape seeu	0.10	5	86	12	
	Wheet grain	0.01	2	107	-	
oia Motoomorrolo	wheat gram	1.0	2	85	-	
<i>cis</i> -ivietconazore	Wheat attack	0.03	2	105	-	
	wheat straw	3.0	2	100	-	Tillkes, 1996,
	Wheat anoin	0.01	2	92	-	METCON_072
turna Mataanazala	wheat grain	1.0	2	83	-	
<i>trans</i> -ivietconazole	11.71	0.03	2	98	-]
	wheat straw	3.0	2	99	-]

Table 86 Confirmatory recovery data for method DFG S 19 measuring metconazole in wheat grain, grape, pea and rape seed using GC-NPD with a DB–17 column

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Wheat grain	0.010	1	92	-	
	wheat gram	0.10	1	77	-	
	Granas	0.010	1	101	-	
oia Mataamagala	Grapes	0.10	1	88	-	
<i>cis</i> -ivietconazole	Dry pea	0.010	1	106	-	Class, 1999, METCON_070
		0.10	1	100	-	
	Rape seed	0.010	1	77	-	
		0.10	1	102	-	
	Wheet grain	0.010	1	108	-	Class 2003
	wheat gram	0.10	1	78	-	METCON 071
	Granas	0.010	1	100	-	
turna Mataanazala	Grapes	0.10	1	90	-	
<i>trans</i> -Metconazole	During	0.010	1	105	-	
	Dry pea	0.10	1	101	-	
	Dama good	0.010	1	80	-	
	Kape seed	0.10	1	109	-]

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	. 1	0.005	5	87	4.9	
	Apple	0.05	5	82	2.2	
	Creares	0.005	5	97	5.8	
	Grapes	0.05	5	96	10	
oia Mataanazala	Wheat amin	0.005	5	92	8.7	
cis-inteleconazore	Wheat grain	0.05	5	82	7.3	
	Dry pea	0.005	5	93	5.4	
		0.05	5	79	4.1	Kuhn, 2014, METCON_073
	Rape seed	0.005	5	96	17	
		0.05	5	99	6.4	
	Annla	0.005	5	85	5.1	Richter 2014
	Apple	0.05	5	80	2.5	METCON 074
	Granas	0.005	5	100	6.3	_
	Grapes	0.05	5	97	12	
tugus Mataanazala	Wheat grain	0.005	5	92	8.9	
<i>in unis</i> -miciconazore	wheat grain	0.05	5	83	7.3	
	Durance	0.005	5	94	5.7	
1	Diy pea	0.05	5	81	4.4	
	Dana soad	0.005	5	95	17	
	Kape seed	0.05	5	100	5.6	

Table 87 Recovery data for method DFG S 19 measuring metconazole in apple, grape, wheat grain, pea and rape seed by LC-MS/MS using ion transition m/z $320 \rightarrow 70$

Table 88 Confirmatory recovery data for method DFG S 19 measuring metconazole in apple, grape, wheat grain, pea and rape seed by LC-MS/MS using ion transition m/z 320 \rightarrow 125

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Apple	0.005	5	86	4.9	
	Apple	0.05	5	82	2.6	
	Granas	0.005	5	101	4.6	
	Grapes	0.05	5	96	11	
oia Mataonagala	Wheat anaim	0.005	5	93	8.0	
<i>cis</i> -ivietconazore	wheat grain	0.05	5	82	7.9	
	Dry pea	0.005	5	92	5.9	
		0.05	5	77	5.2	W 1 2014
	Rape seed	0.005	5	97	19	Kuhn, 2014, METCON_073
		0.05	5	100	5.7	
	. 1	0.005	5	85	6.1	Dishtan 2014
	Apple	0.05	5	81	2.0	METCON 074
	Constant	0.005	5	99	6.5	
	Grapes	0.05	5	98	12	
	William to an a line	0.005	5	91	7.3	
trans-wietconazole	wheat grain	0.05	5	82	8.4	
	Descara	0.005	5	95	5.5	
	Dry pea	0.05	5	81	4.4	-
	D 1	0.005	5	96	18	
	Kape seed	0.05	5	100	6.4	

Independent laboratory validation of method DFG S19:

The sample extraction, clean-up and method of determination were identical.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Appla	0.005	5	79	8.5	
	Apple	0.05	5	78	7.9	
	Granas	0.005	5	110	2.4	
	Grapes	0.05	5	95	6.6	
ais Mataonazala	Wheat grain	0.005	5	91	5.8	
	wheat grain	0.05	5	77	16	
	Pea	0.005	5	96	13	
		0.05	5	82	7.0	
	Rape seed	0.005	5	83	18	Schemikau &
		0.05	5	75	10	
	Apple	0.005	5	73	11	METCON 075
	Apple	0.05	5	75	9.2	
	Granas	0.005	5	109	2.1	
	Orapes	0.05	5	93	5.8	
turana Mataonazala	Wheat grain	0.005	5	92	6.5	
<i>in uns</i> -metconazore	wheat grain	0.05	5	77	14	
	Dee	0.005	5	93	13	
	rea	0.05	5	80	7.3	
	Rape seed	0.005	5	84	16	
		0.05	5	75	9.8]

Table 89 Recovery data for the ILV of method DFG S19 measuring metconazole in plant matrices using LC-MS/MS using ion transition m/z $320 \rightarrow 70$

Table 90 Recovery data for the ILV of method DFG S19 measuring metconazole in plant matrices using LC-MS/MS using ion transition m/z $320 \rightarrow 125$

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	A	0.005	5	78	8.0	
	Apple	0.05	5	78	7.9	
	Granas	0.005	5	109	1.0	
	Grapes	0.05	5	95	6.6	
oia Mataanazala	Wheat and	0.005	5	91	7.9	
cis-inteleconazore	wheat grain	0.05	5	77	16	
	Pea	0.005	5	94	14	
		0.05	5	83	8.1	Schemikau &
	Rape seed	0.005	5	83	19	
		0.05	5	75	9.3	
	A	0.005	5	73	10	METCON 075
	Apple	0.05	5	75	10	
	Grapes	0.005	5	109	2.1	
	Grapes	0.05	5	93	5.8	
turing Mataopazala	Wheat grain	0.005	5	91	6.8	
<i>in unis</i> -miciconazore	wheat grain	0.05	5	78	16	
	Dee	0.005	5	93	13	
1	Pea	0.05	5	80	7.3	
	Dama good	0.005	5	83	15	
	Rape seed	0.05	5	74	10	

Method POP-PA.0223 (R-AR-844-05)

Samples of soya bean were mixed with sodium sulfate anhydrous and homogenized with acetone/hexane (1:1; v/v), followed by centrifugation. The supernatant was evaporated to dryness, the remainder dissolved in hexane and the extract further cleaned-up using SCX solid phase extraction followed by partitioning against ethyl acetate/dichloromethane (1:2; v/v).

Final determination of metconazole was done by GC-NPD.

Table 91 Recovery data for method POP-PA.0223 measuring metconazole in soya bean seeds using GC-NPD.

Matrix	Fortification level (mg/kg)	n	Recovery, mean (%)	RSD (%)	Reference
Soya bean seeds	0.01	5	99.8	8.9	Dentes 2005 METCON 076
	1.0	5	82.4	13	Dantas, 2003, METCON_070

Method D0604

Samples of corn and cotton RAC and processed commodities were homogenized with acetonitrile/water (7+3; v/v). If necessary, the extracts are subjected to further sample preparation steps for clean-up applying either liquid-liquid partition (hexane/ethyl acetate or hexane), filters or solid phase extraction.

Final determination was done by LC-MS/MS. For metconazole, M11, M21 and M30, separation was achieved using a Luna C18 column and monitoring the ion transitions m/z $320 \rightarrow 70$, m/z $336 \rightarrow 125$, m/z $336 \rightarrow 125$ and m/z $334 \rightarrow 111$, respectively. For 1,2,4-triazole (T), triazolyl alanine (TA) and triazolyl acetic acid (TAA) separation is achieved using a Hypercarb column and monitoring the ion transitions m/z $70 \rightarrow 43$, m/z $157 \rightarrow 88$ and m/z $128 \rightarrow 70$, respectively.

Table 92 Recovery data for method D0604 measuring metconazole and metabolites M11, M21, M30, T, TA, TAA in corn and cotton RAC and processed commodities.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Maina anain	0.005	5	99	4	
	Maize grain	0.05	5	100	3]
	Maina atawa	0.005	5	91	3	
	Maize slover	2.5	5	88	3]
<i>cis</i> -metconazole	G # 1	0.005	5	94	11	
	Cotton seed	0.05	5	101	8	
	G # 1 1 4	0.005	5	88	7	
	Cotton by-products	2.5	5	73	15	
	Maize grain	0.005	4	97	4	
		0.05	5	96	5	Saha, 2007, METCON_077
	Maize stover	0.005	5	87	5	
<u> </u>		2.5	5	86	4	
trans-metconazole	C # 1	0.005	5	96	12	
	Cotton seed	0.05	5	100	6	
	Cotton has not heads	0.005	5	95	5	
	Cotton by-products	2.5	5	71	13	
	Maina anain	0.01	5	82	4	
	Maize grain	0.1	5	76	6]
		0.01	5	70	8]
1411	Maize stover	1.0	5	65	5	
MIII	G # 1	0.01	5	75	9	
	Cotton seed	0.1	5	75	11	
		0.01	5	74	4	
	Cotton by-products	1.0	5	68	9	
M21	Maize grain	0.01	5	100	8]

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.1	5	94	10	
	Maize stover	0.01	5	91	12	
		1.0	5	75	12	
	Cotton seed	0.01	5	86	11	
	Cotton seed	0.1	5	94	12	
	Cotton by_products	0.01	5	85	7	
	Cotton by-products	1.0	5	77	7	
	Maize grain	0.01	5	100	5	Į
		0.1	5	91	3	Į
	Maize stover	0.01	5	87	4	
M30	Walze Stover	1.0	5	88	8	
14130	Cotton seed	0.01	5	93	9	
	Cotton seed	0.1	5	96	13]
	Cotton by products	0.01	5	77	5]
	Cotton by-products	1.0	5	77	8]
	Maiza grain	0.01	5	76	4	
	Maize grain	0.5	5	105	9	
	Maize stover	0.05	5	93	7	
		0.5	5	97	12	
Т	Cotton and	0.01	5	101	8	
	Cotton seed	0.5	5	90	2	
	C (1 1)	0.05	4	85	16	
	Cotton by-products	0.5	5	83	7	
	Cotton oil	0.01	5	90	18	
	M · ·	0.05	5	80	4	
	Maize grain	0.5	5	83	12	
		0.05	5	97	12	
T 4	Maize stover	0.5	5	98	10	
IA	Cotton and	0.05	5	79	8	
	Cotton seed	0.5	5	73	5	
		0.05	4	81	11	
	Cotton by-products	0.5	5	64	4	
	M · ·	0.01	5	91	7	
	Maize grain	0.5	5	91	3	
		0.05	5	96	4	1
	Maize stover	0.5	5	89	5	
TAA	G // 1	0.01	5	87	8	1
	Cotton seed	0.5	5	94	3	1
		0.05	4	86	10	1
	Cotton by-products	0.5	5	79	3	
	Cotton oil	0.01	5	107	3	

Method 01062/M004

Samples of various plant materials were homogenized with methanol/water (4+1; v/v). An aliquot of the extracts was filtered, concentrated and cleaned-up by dispersive SPE with C18 material.

Final determination of 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) and triazolyl lactic acid (TLA) was done by LC-MS/MS. For T, TA (only for tomato, cucumber, lettuce and carrot leaf), TAA and TLA, separation is achieved using a Aquasil C18 column, while for TA and TLA (only for dry bean seed), a Hypercarb column was used. For T, TA, TAA and TLA the mass transitions m/z 70 \rightarrow 43, m/z 157 \rightarrow 70, m/z 128 \rightarrow 70 and m/z 158 \rightarrow 70 were used, respectively. Quantitation was done with external standards in solvent.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Tomata	0.01	5	105	10	
	Tomato	1.0	5	98	5	
	Cusumbar	0.01	3	90	14	
	Cucuinder	1.0	3	100	3	
	Lettuce	0.01	3	88	8	
	Lettuce	1.0	3	102	1	
	Caraol grain	0.01	5	115	4	
	Cerear grain	1.0	5	118	5	
	Caraol strow	0.01	3	109	17	
	Celear straw	1.0	3	102	19	
	Corool groop plant	0.01	3	109	7	
	Cerear green plant	1.0	3	116	4	Class, 2011,
	Whole orange	0.01	5	100	10	
		1.0	5	100	2	
1.2.4 triagala (T)	Dama acad	0.01	5	102	7	
1,2,4-thazole (1)	Rape seed	1.0	5	93	6	METCON_078
	Malan naal	0.01	3	94	12	
	Meion peer	1.0	3	108	7	
	Malan finit	0.01	3	98	2	
	Meion Iruit	1.0	3	100	9	
	Malan mala	0.01	3	97	5	
	Meion puip	1.0	3	110	2	
	Sweet perpar	0.01	3	87	11	
	Sweet pepper	1.0	3	107	9	
	Dry been cood	0.01	5	104	8	
	Dry bean seed	1.0	5	96	8	
	Correct loof	0.01	3	112	6	
	Carrot leal	1.0	3	97	6	
	Correct root	0.01	3	90	5]
	Carrol rool	1.0	3	98	6	

Table 93 Recovery data for method 01062/M004 measuring metabolite 1,2,4-triazole (T) in various plant matrices.

Table 94 Recovery data for method 01062/M004 measuring metabolite triazolyl alanine (TA) in various plant matrices

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Tomata	0.01	5	111	14	
	Tomato	1.0	5	110	12	
	Cusumban	0.01	3	111	13	
	Cucumber	1.0	3	109	7	
	Lattuca	0.01	3	116	6	
	Lettuce	1.0	3	106	9	
	Cereal grain	0.01	5	91	12	Class, 2011,
		1.0	5	84	6	
Triozalul alarina (TA)	G 1 /	0.01	3	79	19	
Triazofyi alanine (TA)	Cereal straw	1.0	3	76	1	METCON_078
	Canaal anaan mlant	0.01	3	108	8	
	Cereal green plant	1.0	3	100	4	
	W/11	0.01	5	90	6	
	whole orange	1.0	5	100	3	
	Sunflowergood	0.01	5	101	25	-
	Sunflower seed	1.0	5	92	5	
	Melon peel	0.01	3	97	27	
		1.0	3	96	7	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Malan fruit	0.01	3	101	9	
	Weion nun	1.0	3	107	6	
	Malan nuln	0.01	3	77	29	
		1.0	3	110	7	
		0.01	3	104	21	
	sweet pepper	1.0	3	104	9	
	Dry been good	0.01	5	88	12	
	Dry bean seed	1.0	5	81	9	
	Connet loof	0.01	3	118	10	
	Carrot leal	1.0	3	110	14	
	Correct root	0.01	3	98	9]
	Carrot 1001	1.0	3	105	1]

Table 95 Recovery data for method 01062/M004 measuring metabolite triazolyl acetic acid (TAA) in various plant matrices.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Tomato	0.01	5	90	5	
	Tomato	1.0	5	101	5	
	Cucumber	0.01	3	100	10	
	Cucuinder	1.0	3	105	4	
	Lettuce	0.01	3	105	5	
	Lettuce	1.0	3	104	5	
	Cereal grain	0.01	5	97	9	
		1.0	5	80	5	
	Cereal straw	0.01	3	109	17	
	Cereal straw	1.0	3	90	9	
	Cereal green plant	0.01	3	103	7	
		1.0	3	102	5	
	Whole orange	0.01	5	92	3	
		1.0	5	92	3	
Triazolyl acetic acid	Oilseed rape seed	0.01	5	99	13	Class, 2011,
(TAA)		1.0	5	95	4	METCON_078
	Melon neel	0.01	3	92	7	
		1.0	3	96	2	
	Melon fruit	0.01	3	97	5	
		1.0	3	110	2	
	Melon nuln	0.01	3	99	3	
		1.0	3	105	7	
	Sweet penner	0.01	3	106	1	
	Sweet pepper	1.0	3	110	1	
	Dry bean seed	0.01	5	103	11	
	Dry bean seed	1.0	5	72	7	-
	Carrot leaf	0.01	3	106	11	
		1.0	3	108	3	
	Carrot root	0.01	3	104	9	
	Carlot 100t	1.0	3	105	4	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	T	0.01	5	92	13	
	Tomato	1.0	5	114	5	
	Cusumban	0.01	3	100	6	
	Cucumber	1.0	3	108	2	
	Lettuce	0.01	3	108	6	
	Lettuce	1.0	3	104	7	
	Cereal grain	0.01	5	80	3	
		1.0	5	79	5	
	Caraol strow	0.01	3	100	6	
	Cereal straw	1.0	3	85	12	
	Caraol graan plant	0.01	3	89	7	
	Cerear green plant	1.0	3	98	5	Class, 2011, METCON_078
	Whole orange	0.01	5	95	6	
		1.0	5	92	7	
Triazolyl lactic acid	Oilseed rape seed	0.01	5	82	10	
(TLA)		1.0	5	98	3	
	Melon neel	0.01	3	105	4	
	Melon peer	1.0	3	93	4	
	Melon fruit	0.01	3	106	10	
	Meion nuit	1.0	3	109	2	
	Melon nuln	0.01	3	103	10	
	Meion puip	1.0	3	108	4	
	Sweet penner	0.01	3	107	9	
	Sweet pepper	1.0	3	110	1	
	Dry bean seed	0.01	5	91	6	
	Dry bean seed	1.0	5	94	5	-
	Correct loof	0.01	3	118	6	
		1.0	3	102	4	
	Carrot root	0.01	3	105	5	
	Tomato	0.01	5	92	13	

Table 96 Recovery data for method 01062/M004 measuring metabolite triazolyl acetic acid (TAA) in various plant matrices.

Method 535/1 (L0076/01)

Samples were homogenized with methanol/water /2 mol/L HCl (70+25+5, v/v/v). After centrifugation the supernatant is partitioned against cyclohexane. The cyclohexane was removed by evaporation and the remainder was re-dissolved in methanol/water (1+1, v/v).

Final determination of metconazole was done by LC-MS/MS in positive ionization mode using a Betasil C18 column and monitoring the ion transitions m/z $320 \rightarrow 125$ and m/z $320 \rightarrow 70$. The *cis*- and *trans*-isomers of metconazole eluted together and were quantitated as total metconazole. Quantitation was done with external standards in solvent.

Table 97 Recovery data for method 535/1 measuring metconazole in various plant matrices by LC-MS/MS using ion transition m/z $320 \rightarrow 70$

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Wheat plant without root	0.010	5	94	2.6	
		0.10	5	92	6.1	
Mataamagala	Wheat grain	0.010	5	96	2.5	Mackenroin &
Metconazoie		0.10	5	92	4.3	METCON 070
	Wheat straw	0.010	5	91	3.9	METCON_079
		0.10	5	89	5.7	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Lemon fruit	0.010	5	89	3.1	
	Lemon nun	0.10	5	83	4.9	
	I atterne	0.010	5	92	2.5	
	Lettuce	0.10	5	88	5.6	
	Oilseed rape	0.010	5	97	1.8	
	seed	0.10	5	94	4.3	
	Tamata	0.010	5	94	1.2	
	Tomato	0.10	5	91	2.3	
	0 1 11	0.010	5	94	3.3	
	Onion buib	0.10	5	89	4.7	

Table 98 Confirmatory recovery data for method 535/1 measuring metconazole in various plant matrices by LC-MS/MS using ion transition m/z $320 \rightarrow 125$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Wheat plant	0.010	5	88	12	
	without root	0.10	5	88	7.0	
	Wheat and	0.010	5	94	4.2	
	wheat grain	0.10	5	94	10	
	Wheat straw	0.010	5	93	11	
	wheat straw	0.10	5	87	5.9	Mackenroth & Lehmann, 2007,
	Lemon fruit	0.010	5	93	7.5	
Mataamagala		0.10	5	83	6.7	
Metcollazole	Lattuca	0.010	5	91	8.7	
	Lettuce	0.10	5	88	13	WIETCON_079
	Oilseed rape	0.010	5	99	3.8	
	seed	0.10	5	98	13	
	Tomata	0.010	5	97	4.9	
	Tomato	0.10	5	89	4.5	
	Onion bulb	0.010	5	98	3.2	
		0.10	5	93	3.6	

Method Meth-160

Samples of canola seed were homogenized with methanol/water (4+1; v/v), while canola oil was diluted with hexane and partitioned against methanol/water. The aqueous methanolic extracts are brought to final volume with methanol/water (80/20, v/v) and aliquots for each analyte are processed separately through SPE clean-up and/or derivatization steps with dansyl chloride, which are specific for each analyte. Internal standard, specific for each analyte, is added to each aliquot prior to processing.

Final determination of 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) was done by LC-MS/MS and a Luna C18 column. For the derivatives of T, TA and TAA the mass transitions m/z $303\rightarrow 170$, m/z $409\rightarrow 70$, m/z and $184\rightarrow 70$ were used, respectively. Quantitation was done with external standards in solvent.

Table 99 Recovery data for method Meth–160 measuring metabolite 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) in various canola matrices.

Matrix	Analyte	Fortification Level [ppm]	Number of Replicates	Recoveries [%]	Overall Mean Recovery [%]	RSD [%]	Reference
Dono sood	1,2,4-Triazole	0.01	3	89, 102, 84	00	7 0	Green, 2007,
Rape seed	(T)	0.1	3	79, 86, 90	00	/.0	METCON_080

Matrix	Analyte	Fortification Level [ppm]	Number of Replicates	Recoveries [%]	Overall Mean Recovery [%]	RSD [%]	Reference
	Triazole Alanine (TA)	0.03	33	94, 85, 96 84, 86, 82	88	5.7	
	Triazolyl acetic acid (TAA)	0.01 0.1	33	91, 88, 91 83, 84, 84	87	3.7	
	1,2,4-Triazole (T)	0.01 0.1	33	87, 85, 96 85, 78, 82	86	6.0	
Rape seed	Triazole Alanine (TA)	0.01 0.1	3 3	100, 91, 97 98, 100, 97	97	3.3	
	Triazolyl acetic acid (TAA)	0.02 0.2	3	96, 96, 93 93, 92, 92	94	1.9	

Method POP-PA.0206 (based on MR0007)

Samples of garlic and onion were homogenized with methanol, followed by centrifugation. After addition of water and saturated NaCl solution to the supernatant, the mixture was partitioned against dichloromethane. The solvent was evaporated to dryness and the remainder dissolved in hexane/acetone (95+5, v/v) before further cleaned-up on a Si-cartridge. The residue is eluted through the cartridge with 10% solution of acetone in hexane. The solvent is evaporated to dryness and the residue is dissolved in methyl tert-butyl ether.

Final determination of metconazole was done by GC-NPD using a DB-5 column.

Table 100 Recovery data for method POP-PA.0206 measuring metconazole in garlic and onion using GC-NPD.

Matrix	Analyte	Fortification level [mg/kg]	No. of replicates	Mean Recovery [%]	Mean RSD [%]	Reference
Garlic	Metconazole	0.01	5	98	4.6	
		1.0	5	107	5.7	Dantas, 2005,
Onion	Metconazole	0.01	5	91	14	METCON_081
		1.0	5	76	7.3	

Animal materials

DFG S19 method

Samples of whole milk, whole egg and bovine muscle were homogenized with acetone/water (2+1, v/v). After addition of sodium chloride, the extract was partitioned against ethyl acetate/cyclohexane (1+1, v/v). Bovine fat was homogenized with acetonitrile/acetone (9:1, v/v) in the presence of Celite and Calflo E. Further clean-up for all samples was performed by GPC.

Final determination of metconazole was done by GC-NPD using a DB-1 column and by GC-NPD using a DB 17 column and GC-MS for confirmation. Quantitation was done with external standards in ethyl acetate.

Table 101 Recovery data for method DFG S 19 measuring metconazole in animal matrices using GC-NPD with a DB-1 column.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
<i>cis</i> -Metconazole	Whole milk	0.010	5	82	11	Class, 1999,
		0.10	5	79	11	METCON_070
	Bovine muscle	0.010	8	91	13	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.10	6	78	10	Class, 2003,
	Whole egg	0.010	7	99	11	METCON_071
	whole egg	0.10	8	91	14	
Davina f	Bowine fot	0.010	5	86	10	
	Dovine lat	0.10	4	82	9	
	Whole mills	0.010	5	80	7	
	whole mink	0.10	5	79	12	
	Bowine muscle	0.010	8	76	14	
tuana Mataonazala	Bovine muscle	0.10	6	78	10	
ir uns-ivieteonazoie	Whole aga	0.010	7	81	13	
	whole egg	0.10	8	87	14	
	Bovine fat	0.010	5	79	9]
		0.10	4	76	11	

Table 102 Confirmatory recovery data for method DFG S 19 measuring metconazole in animal matrices using GC-NPD with a DB-17 column.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Whole milk	0.010	1	77	-	
	whole mink	0.10	1	96	-	
	Povino musolo	0.010	1	95	-	
eia Mataonazala	Bovine muscle	0.10	1	89	-	
<i>cis</i> -metconazore	Whole aga	0.010	2	93	-	
	whole egg	0.10	1	86	-	Class, 1999, METCON_070
	Bovine fat	0.010	1	110	-	
		0.10	1	109	-	
	Whole mills	0.010	1	73	-	Class 2003
	whole mink	0.10	1	90	-	METCON 071
	Povino musolo	0.010	1	91	-	
trans Metconozole	Boville Illuscie	0.10	1	91	-	
	Whole aga	0.010	2	88	-	
	whole egg	0.10	1	85	-	
	Daving fat	0.010	1	79	-	
	Bovine lat	0.10	1	98	-	

Alternatively, final determination of metconazole was done by LC-MS/MS in positive ionization mode using a Luna C18 column and monitoring the ion transitions m/z $320 \rightarrow 125$ and m/z $320 \rightarrow 70$. Quantitation was done with external standards in methanol/water (1/1, v/v).

Table 103 Recovery data for method DFG S 19 measuring metconazole in animal matrices by LC-MS/MS using ion transition m/z $320 \rightarrow 70$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
· M (1	Vide av	0.005	5	89	3.3	
	Kidney	0.05	5	94	2.5	
<i>cis</i> -metconazore	Liver	0.005	5	94	9.7	
		0.05	5	88	2.9	Kuhn, 2010,
	Vidnov	0.005	5	88	2.6	METCON_084
trans-Metconazole	Kidney	0.05	5	92	2.4	
	Liver	0.005	5	93	9.1	
		0.05	5	87	3.1	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Mille	0.005	5	90	18	
	IVIIIK	0.05	5	109	3.4	
	Eat	0.005	5	86	11	
oia Mataamazala	га	0.05	5	93	7.1	
<i>cis</i> -metconazoie	Maat	0.005	5	97	4.8	
	wieat	0.05	5	86	6.5	Kuhn, 2014, METCON_086
	Egg	0.005	5	110	11	
		0.05	5	102	6.3	
	M.II.	0.005	5	93	19	
	IVIIIK	0.05	5	110	2.3	
	Fat	0.005	5	84	13	
tugus Mataanazala	Fat	0.05	5	93	7.0	
<i>trans</i> -Metconazole	Moot	0.005	5	96	5.6	
	Meat	0.05	5	84	5.3	
	Ess	0.005	5	110	11	
	ngg	0.05	5	102	6.0	

Table 104 Confirmatory recovery data for method DFG S 19 measuring metconazole in animal matrices by LC-MS/MS using ion transition m/z $320\rightarrow125$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Vidnov	0.005	5	90	3.7	
cis-Metconazole	Kidney	0.05	5	94	3.1	
	Liver	0.005	5	93	8.6	
	Liver	0.05	5	87	3.4	Kuhn, 2010,
	Kidney	0.005	5	88	2.4	METCON_084
trans-Metconazole	Relativy	0.05	5	92	3.5	
	Liver	0.005	5	93	9.3	
	Liver	0.05	5	87	2.8	
	Milk	0.005	5	91	18	
		0.05	5	108	4.3	
	Fat	0.005	5	87	11	
		0.05	5	92	6.6	
<i>cis</i> -Metconazole	Meat	0.005	5	98	6.7	
		0.05	5	86	6.5	
	E	0.005	5	108	13	
	Egg	0.05	5	102	6.7	Kuhn, 2014,
	N 4:11-	0.005	5	92	20	METCON_086
	IVI1IK	0.05	5	110	2.9	
	F (0.005	5	86	13	
	Fat	0.05	5	93	5.9	
trans-Metconazole		0.005	5	96	6.4	
	Meat	0.05	5	85	6.0	-
	г	0.005	5	109	12	
	Egg	0.05	5	102	6.3	7

Independent laboratory validation of method DFG S19:

The sample extraction, clean-up and method of determination were identical. However, for the determination by GC-NPD, DB-5 column was used instead of the DB-1 of the primary method.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
<i>cis</i> -Metconazole	Whole milk	0.010	5	88	14	Weeren & Pelz, 1999, METCON_082
		0.10	5	93	5.1	
	Bovine muscle	0.010	5	85	13	
		0.10	5	96	5.6	
	Whole egg	0.010	5	86	7.3	
		0.10	5	81	4.0	
	Bovine fat	0.010	5	74	10	
		0.10	5	85	6.2	
<i>trans</i> -Metconazole	Whole milk	0.010	5	88	6.7	
		0.10	5	97	3.0	
	Bovine muscle	0.010	5	102	8.1	
		0.10	5	102	6.6	
	Whole egg	0.010	5	99	9.6	
		0.10	5	85	6.4	
	Bovine fat	0.010	5	78	8.1	
		0.10	5	75	5.1	

Table 105 Recovery data for the ILV of method DFG S19 measuring metconazole in plant matrices using GC-NPD with a DB–5 column.

Table 106 Confirmatory recovery data for the ILV of method DFG S 19 measuring metconazole in animal matrices using GC-MS.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
<i>cis</i> -Metconazole	Beef tallow fat	0.010	5	96	12	Weeren & Pelz, 1999, METCON_082
		0.10	5	85	8.8	
trans-Metconazole	Beef tallow fat	0.010	5	88	11	
		0.10	5	77	13	

Table 107 Recovery data for the ILV of method DFG S 19 measuring metconazole in animal matrices by LC-MS/MS using ion transition m/z $320 \rightarrow 70$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
<i>cis</i> -Metconazole	Kidney	0.005	5	82	7.4	Toledo, 2010, METCON_085
		0.05	5	89	6.7	
	Liver	0.005	5	91	8.3	
		0.05	5	97	5.8	
<i>trans</i> -Metconazole	Kidney	0.005	5	83	8.0	
		0.05	5	84	3.7	
	Liver	0.005	5	94	9.4	
		0.05	5	97	6.3	
<i>cis</i> -Metconazole	Milk	0.005	5	109	3.3	Schemikau & Colorado, 2015, METCON_087
		0.05	5	109	7.1	
	Fat	0.005	5	97	5.7	
		0.05	5	79	2.0	
	Meat	0.005	5	110	12	
		0.05	5	98	9.0	
	Egg	0.005	5	110	3.2	
		0.05	5	94	3.5	
trans-Metconazole	Milk	0.005	5	108	3.3	
		0.05	5	107	8.1	
Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
---------	--------	-----------------------------------	------------------	----------------------	---------	-----------
	Fat	0.005	5	96	4.6	
		0.05	5	78	2.0	
	Mont	0.005	5	108	12	
	Meat	0.05	5	98	9.5	
]	Egg	0.005	5	109	3.3	
		0.05	5	92	3.3	

Table	108 Confirm	natory recover	ry data for	the ILV	of method	DFG S	19 r	measuring	metconazole	e in
anima	l matrices by	LC-MS/MS	ising ion tr	ansition	m/z 320→1	25.		-		

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Vidnov	0.005	5	84	3.2	
cis Matconazola	Kluney	0.05	5	88	5.0	
	Liver	0.005	5	95	7.3	
	Livei	0.05	5	96	6.7	Toledo, 2010,
	Kidney	0.005	5	78	5.9	METCON_085
trans-Metconazole	Klulley	0.05	5	87	3.4	
	Liver	0.005	5	91	10	
	Livei	0.05	5	95	8.0	
	Mill	0.005	5	107	3.9	
	IVIIIK	0.05	5	109	7.3	
	Fat	0.005	5	96	5.4	
		0.05	5	78	2.2	1
<i>cis</i> -Metconazole	Meat	0.005	5	109	12	
		0.05	5	98	8.8	1
	г	0.005	5	109	4.2	
	Egg	0.05	5	94	3.9	Schemikau &
	N (*11	0.005	5	108	4.6	METCON 087
	MIIK	0.05	5	108	8.2	METCON_007
	F (0.005	5	96	4.8	1
	Fat	0.05	5	78	1.7	1
<i>trans</i> -Metconazole		0.005	5	107	13	1
	Meat	0.05	5	98	9.5	
	г	0.005	5	110	5.4	1
	Egg	0.05	5	93	3.4	1

Method RM-41M-1 (L0408/01)

Milk samples were shaken with ethyl acetate/methanol (2+1, v/v). The organic phase was evaporated to an aqueous oily remainder and partitioned with dichloromethane/aqueous sodium chloride solution. The organic phase was evaporated and the remainder further cleaned-up by acetonitrile-hexane partition. The acetonitrile phase was removed by rotary evaporation and the remainder was dissolved in toluene.

Final determination of metconazole was done by GC-NPD using a HP–5 column and by LC-MS/MS using a C8 column and monitoring ion transition m/z 320 \rightarrow 125 for confirmation. Quantitation was done with external standards in solvent.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
- in		0.02	3	93	2.3	Green, 2006, METCON_083
cis-metconazoie	N (* 11	0.1	6	88	2.1	
trans-metconazole	IVI1IK	0.02	3	95	1.9	
		0.1	6	90	2.4	

Table	100 Recovery	data for method	RM_41M_1	measuring metconazo	le in	milk using	GC-NPD
rable	109 Recovery	ala foi memou	KIVI-41IVI-1	measuring metconazo	ne m	mink using	UU-MPD.

Table 110 Confirmatory recovery data for method RM-41M-1 measuring metconazole in milk by LC-MS/MS using ion transition m/z $320 \rightarrow 125$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
cis-metconazole	M:11-	0.02	3	85	3.7	Green, 2006,
trans-metconazole	WIIIK	0.02	3	84	1.3	METCON_083

Alternatively, final determination of metconazole was done by LC-MS/MS in positive ionization mode using a SB-C8 column and monitoring the ion transitions m/z $320\rightarrow125$ and m/z $320\rightarrow70$. Quantitation was done with external standards in solvent.

Table 111 Recovery data for method RM–41M–1 measuring metconazole in milk and cream by LC-MS/MS using ion transition m/z $320\rightarrow125$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Mille	0.02	5	84	3.8	
oia motoonozolo	IVI11K	0.2	5	83	1.5	Andre & Stahl, 2018, METCON_089
<i>cis</i> -metconazoie	Cream	0.02	5	89	3.9	
		0.2	5	76	4.0	
	Mille	0.02	5	84	4.1	
trans-metconazole	IVIIIK	0.2	5	84	2.1	
	Cream	0.02	5	89	3.1	
		0.2	5	76	4.3	

Table 112 Confirmatory recovery data for method RM–41M–1 measuring metconazole in milk and cream by LC-MS/MS using ion transition m/z $320\rightarrow70$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	M:11-	0.02	5	84	4.3	
oia motoonozolo	IVIIIK	0.2	5	83	1.3	
cis-metconazoie	Cream	0.02	5	89	4.1	Andre & Stahl,
		0.2	5	76	3.8	
	Mille	0.02	5	85	3.8	METCON 080
trans-metconazole	IVIIIK	0.2	5	83	2.0	MEICON_089
	Carrows	0.02	5	90	3.4	
	Cicalli	0.2	5	77	4.4	

Method RM-41M-2 (L0408/02)

Liver samples were homogenized with acetonitrile. After filtration, the extract was partitioned with hexane. The acetonitrile phase was evaporated to an oily remainder and partitioned with hexane/ethyl acetate/aqueous sodium chloride solution. The hexane/ethyl acetate phase was further cleaned-up by partitioning with acetonitrile, followed by SPE on a C18 cartridge.

Final determination of metconazole was done LC-MS/MS using a C8 column and monitoring ion transition m/z 320 \rightarrow 125. Quantitation was done with external standards in solvent.

Table 113 Recovery data for method RM-41M-2 measuring metconazole in animal matrices by LC-MS/MS using ion transitions m/z $320 \rightarrow 125$ and $320 \rightarrow 70$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.02	5	86	17	
<i>cis</i> -metconazole	T ·	0.1	6	80	3.7	Green, 2006,
1	Liver	0.02	5	87	17	METCON_083
trans-metconazole		0.1	6	81	3.6	
· , 1		0.02	3	86	1.3	
<i>cis</i> -metconazole		0.1	3	87	0.6	Green, 2008,
1	Eggs	0.02	3	86	1.3	METCON_088
trans-metconazole		0.1	3	88	1.3	
	T ·	0.02	5	80	2.6	
	Liver	0.2	5	76	1.9	
	Muscle	0.02	5	77	7.2	
		0.2	5	91	11	
aia mataanazala	Kidney	0.02	5	90	9.6	
		0.2	5	92	11	
	Fat	0.02	5	106	6.2	
		0.2	5	102	2.1	Poperechna,
	Faas	0.02	5	85	11	2018,
	Lggs	0.2	5	93	5.2	METCON_090
	Liver	0.02	5	80	0.6	
	Liver	0.2	5	76	2.9	Stahl, 2018,
	Muscle	0.02	5	76	7.3	METCON_091
	widsele	0.2	5	91	12	
trans-metconazole	Kidney	0.02	5	90	8.4	
in unis meteomazore	renancy	0.2	5	92	11	
	Fat	0.02	5	108	6.2	
	1	0.2	5	102	2.7	
	Foos	0.02	5	84	9.5	
	-553	0.2	5	90	4.1	

Table 114 Confirmatory recovery data for method RM–41M–2 measuring metconazole in animal matrices by LC-MS/MS using ion transition m/z $320\rightarrow70$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	I incom	0.02	5	81	2.0	
	Liver	0.2	5	77	2.5	D 1
	Muscle	0.02	5	77	7.5	Poperechna,
		0.2	5	91	11	2018, METCON_090
cis-metconazole	Vidnay	0.02	5	90	8.6	
	Kiulley	0.2	5	94	10	
	Fot	0.02	5	107	6.3	METCON 091
	Tat	0.2	5	102	3.0	
	Eggs	0.02	5	87	12	

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
		0.2	5	93	4.4	
	Liver	0.02	5	79	1.7	
	Liver	0.2	5	77	2.5	
	Muscle	0.02	5	77	7.6	
		0.2	5	91	12	
turne mataonazala	Vidnov	0.02	5	91	9.2	
<i>ir ans</i> -metconazore	Klulley	0.2	5	93	11	
	Fat	0.02	5	109	6.5	
	га	0.2	5	103	2.2	
	E	0.02	5	85	11	
	Eggs	0.2	5	89	2.3	

Method RM-41M-3

The method describes the determination of M–1 (conjugated + non-conjugated) and M–12 in kidney. Samples were homogenized with methanol, followed by methanol/water (9+1, v/v). The combined extracts were evaporated to the aqueous remainder, methanol and acetonitrile was added and the mixture was partitioned against hexane to remove fat. An aliquot of the acetonitrile/methanol layer was clean-up by SPE on C18 cartridge for the determination of metabolite M12. A second aliquot was hydrolysed with 3 mol/L HCl and as well cleaned-up by SPE on C18 cartridge determination of metabolite M1.

Final determination of metconazole was done LC-MS/MS using a C18 column and monitoring ion transition m/z $336 \rightarrow 125$ for M1 and m/z $350 \rightarrow 125$ for M12. Quantitation was done with external standards in solvent.

Table 115 Recovery data for method RM-41M-3 measuring metabolites M1 and M12 in kidney by LC-MS/MS.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference	
M1	Kidney	0.02	4	77	10		
		0.1	6	70	2.3	Green, 2006, METCON_083	
M12		0.02	4	74	6.0		
		0.1	6	78	3.6		

Method RM-41M-3a

The method is a revised version of method RM–41M–3 describing the determination of M–1 and M–12 in animal matrices. Samples were homogenized with methanol/water (9+1, v/v), followed by filtration. An aliquot of the extract was added to acetonitrile and partitioned with hexane to clean up oils. The acetonitrile fraction was evaporated to dryness, brought up in methanol/water (5/1, v/v) and cleaned-up on a C18 SPE cartridge. The eluent was evaporated to dryness and reconstituted in methanol/water (2/1, v/v).

Final determination of metconazole was done LC-MS/MS using a C18 column and monitoring ion transitions m/z $336 \rightarrow 125$, $336 \rightarrow 70$ for M1 and m/z $350 \rightarrow 125$, $350 \rightarrow 70$ for M12. Quantitation was done with external standards in solvent.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Liver	0.02	5	97	2,6	
M1 m/z 336→125	LIVEI	0.2	5	97	3.0	
	Videou	0.02	5	94	1.6	
	Kidney	0.2	5	96	2.5	
	Fot	0.02	5	93	4.1	
	гаі	0.2	5	94	1.3	
	Musala	0.02	5	89	4.7	
	Muscle	0.2	5	93	1.8	Bitter, 2018,
	Liver	0.02	5	103	5.5	METCON_092
		0.2	5	98	2.6	
	Videou	0.02	5	95	3.4	
M12 m/z 350→125	Kidney	0.2	5	101	1.2	
	Eat	0.02	5	101	7.1	
	гаі	0.2	5	101	1.7	
	Mussla	0.02	5	94	2.4	
	wiuscie	0.2	5	98	2.4	

Table 116 Recovery data for method RM–41M–3a measuring metabolites M1 and M12 in animal matrices by LC-MS/MS.

Table 117 Confirmatory recovery data for method RM-41M-3a metabolites M1 and M12 in animal matrices by LC-MS/MS.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Liver	0.02	5	93	4.0	
M1 m⁄z 336→70	LIVEI	0.2	5	95	1.5	
	Videou	0.02	5	92	2.8	
	Kidney	0.2	5	96	0.7	-
	Fat	0.02	5	93	2.7	
		0.2	5	94	1.1	
	Musala	0.02	5	90	2.7	
	Muscle	0.2	5	93	2.3	Bitter, 2018,
	Liver	0.02	5	102	6.8	METCON_092
		0.2	5	103	3.0	
	Videou	0.02	5	96	2.1	
M12	Kidney	0.2	5	101	1.2	
m/z 350→70	E-4	0.02	5	103	7.5	
	Fat	0.2	5	102	2.4	
	Musala	0.02	5	94	3.7	
	wiuscie	0.2	5	98	0.7	

Method L0415/01

The method describes the determination of 1,2,4 triazole in animal matrices. Samples were extracted with methanol/water (8+2, v/v). An aliquot of the extract is dosed with internal standard and treated with sodium bicarbonate and dansyl chloride for derivatization to dansyl-1,2,4-triazole. After addition of 0.5 mol/L ammonium hydroxide the residues are partitioned with ethyl acetate. The organic layer is dried over anhydrous sodium sulphate and the resulting solution is evaporated to dryness. Finally, the remainder is taken up in acetonitrile/water (3+7, v/v).

Final determination of metabolite 1,2,4 triazole was done LC-MS/MS using a C18 column and monitoring the ion transitions m/z $304\rightarrow 171$ and $304\rightarrow 182$. Quantitation was done with external standards in solvent.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Liven	0.01	5	103	4.5	
	Liver	0.1	5	94	2.7	
	Eat	0.01	5	101	2.2	Jooss S.,
1.2.4 triagrals	Fat	0.1	5	101	2.5	Tussetschlaeger,
1,2,4 triazole	Musala ^a	0.01	5	85	8.1	2018,
	Iviuscie -	0.1	5	96	4.3	METCON_093
	Faa	0.01	5	96	5.5]
	Egg	0.1	5	93	4.6	

Table 118 Recovery data for method L0415/01 measuring metabolite 1,2,4 triazole in animal matrices by LC-MS/MS using ion transition m/z $304\rightarrow 171$.

^a Recoveries were corrected for apparent residues >20% of LOQ in blank control samples.

Table 119 Confirmatory recovery data for method L0415/01 measuring metabolite 1,2,4 triazole in animal matrices by LC-MS/MS using ion transition m/z $304\rightarrow 182$.

Analyte	Matrix	Fortification level [mg/kg]	No of replicates	Mean recovery [%]	RSD [%]	Reference
	Lizzon	0.01	5	107	4.2	
	Liver	0.1	5	110	2.3	
	Fat	0.01	5	107	1.3	Jooss S.,
1.2.4 triazolo		0.1	5	108	0.8	Tussetschlaeger,
1,2,4 utazote	Muscle ^a	0.01	5	101	4.4	2018,
		0.1	5	107	1.5	METCON_093
	Egg	0.01	5	105	2.3	
		0.1	5	102	7.6	

^a Recoveries were corrected for apparent residues >20% of LOQ in blank control samples.

STABILITY OF PESTICIDE RESIS=DUES IN STORED ANALYTICAL SAMPLES

Plant matrices

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in cereal grain was determined over a period up to 12 month. (Memmesheimer, 1997, METCON 094).

Each analyte was added to homogenized samples at a rate of 0.1 mg/kg, stored deep frozen at -18 $^{\circ}$ C and analysed after 0, 1, 3, 6, 9 and 12 month. All samples were analysed in triplicates according to method FAMS 050-01.

Table 120 Storage stability of cis- and trans-metconazole in wheat grain at 0.1 mg/kg

Storage	cis-metconazole		trans-metconazole				
period	Percent remaining	Mean concurrent	Percent remaining	Mean concurrent			
(month)		recovery (%)		recovery (%)			
0	77	78	78	79			
1	81	82	82	82			
3	83	89	86	90			
6	82	85	85	88			
9	82	85	83	86			
12	77	79	82	82			

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in incurred residues of cereal green plant and straw was determined over a period up to 12 month (Memmesheimer, 1997, METCON_095).

Samples were stored deep frozen at -18 $^{\circ}$ C and analysed after 0, 3, 6, 9 and 12 month. Day 0 samples were analysed in quintuplicates and for all other days in triplicates according to method FAMS 050-01.

Table 121 Storage stability of the sum of *cis*- and *trans*-metconazole in incurred residues of rye green plant and wheat straw

Storage	Rye green plant			Wheat straw			
period (month)	Measured residue (mg/kg)	Percent remaining (day zero normalised)	Mean concurrent recovery (%)	Measured residue (mg/kg)	Percent remaining (day zero normalised)	Mean concurrent recovery (%)	
0	0.91	100	89	0.32	100	78	
3	0.95	104	86	0.31	97	80	
6	0.88	97	87	0.28	88	75	
9	0.90	99	83	0.27	84	75	
12	0.77	85	83	0.26	81	73	

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in rape seed and rape oil was determined over a period up to 12 month (Memmesheimer, 1997, METCON 096).

Each analyte was added to homogenized samples at a rate of 0.1 mg/kg, stored deep frozen at -18 °C and analysed after 0, 1, 3, 6, 9 and 12 month. All samples were analysed in triplicates according to method FAMS 059-02.

Table 122 Storage stability of cis- and trans-metconazole in rape seed and rape oil at 0.1 mg/kg

Storage	cis-metconazole		trans-metconazole		
period	Percent remaining	Mean concurrent	Percent remaining	Mean concurrent	
(month)	_	recovery (%)	_	recovery (%)	
Rape seed					
0	80	80	79	80	
1	64	80	64	81	
3	79	91	80	93	
6	78	84	81	87	
9	74	91	78	95	
12	73	89	75	93	
Rape oil					
0	98	99	97	100	
1	96	96	96	96	
3	99	99	98	98	
6	95	99	96	98	
9	95	94	98	95	
12	94	95	94	95	

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in carrots and lettuce was determined over a period up to 12 month (Memmesheimer, 1997, METCON 097).

Each analyte was added to homogenized samples at a rate of 0.1 mg/kg, stored deep frozen at -18 °C and analysed after 0, 1, 3, 6, 9 and 12 month. All samples were analysed in triplicates according to method FAMS 057-01.

1				0.0		
Storage	<i>cis</i> -metconazole		<i>trans</i> -metconazole			
period (month)	Percent remaining Mean concurrent recovery (%)		Percent remaining	Mean concurrent recovery (%)		
Carrots						
0	89	89	91	92		
1	78	88	80	90		
3	86	91	86	92		
6	82	93	83	94		
9	79	88	81	89		
12	78	91	77	91		
Lettuce						
0	89	78	87	75		
1	95	96	94	95		
3	93	88	85	83		
6	93	93	94	93		
9	85	86	84	85		
12	96	98	96	99		

Table 123 Storage stability of *cis*- and *trans*-metconazole in carrots and lettuce fortified at 0.1 mg/kg.

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in incurred residues of pea straw and pea seed fortified at 0.1 mg/kg was determined over a period up to 12 month (Müller, 1998, METCON_098).

Samples were stored deep frozen at -18 °C and analysed after 0, 2, 6, 9 and 12 month. All samples were analysed in triplicates according to method FAMS 069-01.

Table 124 Storage stability of *cis*- and *trans*-metconazole in pea seed fortified at 0.1 mg/kg.

Storage	cis-metconazole		trans-metconazole			
period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)		
0	97	86	97	85		
2	100	99	100	103		
6	90	94	90	95		
9	83	102	87	101		
12	87	102	87	102		

Table 123 Storage stability of the sum of cis- and hans-metcomazore in mounted residues of bea shav	Table	125 S	torage sta	ability o	f the	sum o	f cis	- and	trans	-metco	nazole	in	incurred	l residue	es of	pea	straw
---	-------	-------	------------	-----------	-------	-------	-------	-------	-------	--------	--------	----	----------	-----------	-------	-----	-------

Storage period (month)	Measured residue (mg/kg)	Percent remaining (day zero normalised)	Mean concurrent recovery (%)
0	1.17	100	97
3	1.07	91	98
6	1.14	97	91
9	1.08	92	90
12	1.07	91	95

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in blueberries fortified at 2 mg/kg was determined over a period up to 281 days (9.4 month) (Thompson, 2010, METCON_100). Samples were stored deep frozen at -20 °C and analysed in triplicates according to method RM-41C-1.

Table 126 Storage stability of cis- and trans-metconazole in blueberries fortified at 2 mg/kg

Storage	cis-metconazole		trans-metconazole		
period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	
9.4	84	91	84	95	

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in potatoes fortified at 2 mg/kg was determined over a period up to 959 days (approx. 31 month) (Corley, 2010, METCON_101). Samples were stored deep frozen at -20 °C and analysed in triplicates according to method RM-41C-1.

1 able 12/ Storage stability of <i>cis</i> - and <i>trans</i> -metconazole in potatoes fortified at 2 mg/k	Table	127	Storage	stability	of ci	s- and	trans	-metconazo	le ir	n potatoes	fortified	at 2	mg/k	g
--	-------	-----	---------	-----------	-------	--------	-------	------------	-------	------------	-----------	------	------	---

Storage	cis-metconazole		trans-metconazole	
period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)
31	101	100	102	101

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in dried peas fortified at 0.1 mg/kg was determined over a period up to 225 days (approx. 7.5 month) (Green, 2010, METCON_102). Samples were stored deep frozen at -20 °C and analysed in duplicate according to method RM-41C-1 after 0, 1, 2, 3, 4, 5, 6 and 7.5 months.

Table 128 Storage stability of *cis*- and *trans*-metconazole in dried peas fortified at 0.1 mg/kg.

Storage	cis-metconazole		trans-metconazole	
period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)
0	94	94	96	101
1	89	92	92	93
2	90	96	91	98
3	91	90	93	87
4	85	100	85	102
5	83	93	86	95
7.5	90	102	91	102

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in dried pea fortified at 0.2 mg/kg was determined over a period up to 419 days (approx. 14 month) (Corley, 2013, METCON_103). Samples were stored deep frozen at -20 °C and analysed in triplicates according to method RM-41C-1.

Table 129 Storage stability of *cis*- and *trans*-metconazole in dried peas fortified at 0.2 mg/kg.

Storage	cis-metconazole		trans-metconazole	
period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)
14	88	83	79	92

The storage stability of *cis*- and *trans*-metconazole and metabolites M21, M11, M30, triazole, triazolyl alanine and triazolyl acetic acid under frozen conditions in wheat (grain, straw, hay), soya bean (seed), radish or sugar beet (tops and roots) was determined over a period up to 26 month (Gooding & Saha, 2008, METCON_099).

Each analyte was added to homogenized samples at a rate of 0.1 mg/kg, stored deep frozen at about -20 °C and analysed after 0, 1, 3, 6, 12 and 26 months. All samples were analysed in duplicate or quadruplicate according to method D0508.

Table 130 Storage stability of cis-metconazole in wheat hay, soya bean seed and radish roots

	Wheat hay		Soya bean seed		Radish roots		
Storage period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	
0	95	02	98	106	89	01	
1	87	95	n/a	n/a	91	91	
3	78	86	86	106	81	77	

	Wheat hay		Soya bean seed		Radish roots		
Storage period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	
6	89	94	83	98	82	99	
12	78	87	86	88	92	88	
26	71	76	76	68	68	87	

Table 131	Storage stability	of trans-metconazo	le in wheat ha	y, soya bean see	d and radish roots
10010 101	Stornge Staothing			j, seja eenn see	

	Wheat hay		Soya bean seed		Radish roots	
Storage period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)
0	87	04	103	105	90	07
1	85	94	n/a	n/a	96	0/
3	89	83	85	105	99	84
6	95	100	91	100	94	96
12	89	81	95	86	106	83
26	78	83	83	70	75	91

Table 132 Storage stability of M11 in wheat grain, wheat hay, wheat straw, soya bean seed, sugar beet roots and radish tops

Storage	Wheat gr	ain	Wheat ha	ıy	Wheat st	raw	Soya bea	n seed	Sugar be	et roots	Radish to	ops
time		Mean		Mean								
(month	Percent	concurre	Percent	concurre								
s)	remaini	nt	remaini	nt								
	ng	recovery	ng	recovery								
		(%)		(%)		(%)		(%)		(%)		(%)
0	91	02	102	06	96	08	101	100	95	02	92	100
1	96	95	86	90	85	90	n/a	n/a	91	92	89	100
3	96	104	96	91	108	102	83	100	106	98	96	111
6	113	131	103	95	106	94	108	92	133	121	100	90
12	103	97	96	83	93	88	90	85	89	92	86	90
26	82	94	78	82	68	72	67	69	110	120	90	85

Table 133 Storage stability of M21 in wheat grain, wheat hay, wheat straw, soya bean seed, sugar beet roots and radish tops

Storage	Wheat gr	rain	Wheat ha	ау	Wheat st	raw	Soya bea	n seed	Sugar be	et roots	Radish to	ops
time		Mean		Mean								
(month	Percent	concurre	Percent	concurre								
s)	remaini	nt	remaini	nt								
	ng	recovery	ng	recovery								
		(%)		(%)		(%)		(%)		(%)		(%)
0	96	02	88	00	96	80	111	105	82	80	90	95
1	96	92	86	90	87	09	n/a	n/a	90	09	94	05
3	104	92	101	81	114	98	104	105	103	109	98	102
6	108	112	98	92	100	103	109	98	109	112	91	104
12	180	103	157	87	157	100	167	95	166	98	148	100
26	111	91	98	76	96	76	88	71	108	102	123	101

Table 134 Storage stability of M30 in wheat grain, wheat hay, wheat straw, soya bean seed, sugar beet roots and radish tops.

Storage	Wheat g	rain	Wheat ha	ау	Wheat st	raw	Soya bea	n seed	Sugar be	et roots	Radish to	ops
time		Mean		Mean		Mean		Mean		Mean		Mean
(month	Percent	concurre	Percent	concurre	Percent	concurre	Percent	concurre	Percent	concurre	Percent	concurre
s)	remaini	nt	remaini	nt	remaini	nt	remaini	nt	remaini	nt	remaini	nt
	ng	recovery	ng	recovery	ng	recovery	ng	recovery	ng	recovery	ng	recovery
		(%)		(%)		(%)		(%)		(%)		(%)
0	97	101	92	04	94	00	101	110	91	02	91	00
1	86	101	89	94	92	99	N/A	N/A	83	92	91	99
3	117	113	104	96	81	96	93	110	103	100	78	88
6	128	115	95	97	100	93	94	105	108	115	112	98
12	114	92	87	91	91	91	88	83	93	87	111	84
26	70	89	61	71	55	72	61	76	68	81	63	74

Table 135 Storage stability of triazole in soya bean seed, radish roots and tops

	Soya bean seed		Radish roots		Radish tops	
Storage period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)
0	68	69	98	115	122	122
1	n/a	n/a	101	n/a	116	122
3	61	69	78	79	72	81
6	91	115	81	77	90	85
12	78	97	73	87	93	90
26	59	85	58	97	73	104

Table 136 Storage stability of triazolyl alanine in wheat grain, soya bean seed, radish roots and tops

	Wheat grain		Soya bean se	ed	Radish roots		Radish tops		
Storage period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	
0	117	121	74 68 ¹	71 67 ^a	104	96	110	122	
1	125		n/a	n/a	80		106]	
3	88	81	76 80 ¹	71 67 ^a	101	86	81	69	
6	64	91	101	85	111	104	102	111	
12	114	113	87	86	115	102	106	104	
26	78	67	83	71	100	93	91	91	

^a Recovery determined after hydrolysis

Table 137 Storage stability of triazolyl acetic acid in wheat grain, soya bean seed, radish roots and tops

	Wheat grain	Wheat grain		Soya bean seed		Radish roots			
Storage period (month)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)	
0	90	02	95	101	110	110	108	00	
1	89	92	n/a	n/a	108	119	104	<u>99</u>	
3	83	75	87	101	93	96	95	101	
6	56	80	92	102	106	106	90	103	
12	88	101	75	92	101	92	88	98	
26	93	104	73	78	101	87	67	83	

Animal matrices

The storage stability of *cis*- and *trans*-metconazole under frozen conditions in muscle, fat and liver fortified at 0.1 mg/kg was determined over a period of 108–112 days (approx. 3 month) (Green, 2006, METCON_104). Samples were stored deep frozen at -20 °C and analysed in duplicate according to methods RM–41M–2 and RM–41M–3.

Table 138 Storage stability of *cis*- and *trans*-metconazole in animal matrices fortified at 0.1 mg/kg.

Storage	cis-metconazole		trans-metconazole		
period	Mean remaining (%)	Mean concurrent	Mean remaining (%)	Mean concurrent	
(month)		recovery (%)		recovery (%)	
Muscle					
0	86	n/a	86	n/a	
112	60	79	64	83	
Fat					
0	83	n/a	83	n/a	
111	80	83	82	82	
Liver					
0	86	n/a	87	n/a	
108	65	82	67	85	

The storage stability of metconazole metabolite M1 in liver, kidney, muscle, and fat, and M12 in liver and kidney under frozen conditions fortified at 0.1 mg/kg was determined over a period of 241–267 days (approx. 8–9 month) (Bitter & Kowalsky, 2019, METCON_175). Samples were stored deep frozen at -20 °C and analysed in duplicate according to method RM–41M–3a.

Table 139 Storage stability of metabolite M1 in liver, kidney, muscle, and fat

Storage	Liver		Kidney		Muscle		Fat	
time (months)	Percent remaining	Mean concurrent recovery (%)	Iean oncurrent ecovery (%)Percent remainingMean concurrent recovery (%)		Percent remaining Mean concurrent recovery (%)		Percent remaining	Mean concurrent recovery (%)
0	94	93	95	89	93	93	96	90
2	102	98	81	92	94	97	97	96
4	97	94	65	92	88	94	88	92
7	-	-	94	99	94	91	88	93
8	95	78	79	87	104	96	85	85
9	100	95	-	-	-	-	-	-

Table 140 Storage stability of metabolite M12 in liver and kidney

Storage time (months)	Liver		Kidney			
	Percent remaining	Mean concurrent recovery (%)	Percent remaining	Mean concurrent recovery (%)		
0	93	91	100	97		
2	97	98	95	94		
4	98	94	89	96		
7	106	84	96	101		
8	-	-	103	92		
9	100	100	-	-		

USE PATTERN

Metconazole is a systemic triazole fungicide and plant growth regulator for the control of a broad range of important pathogens. In the following table, GAP information taken from the submitted labels, for all crops supported with residue data is summarized in Table 141.

		Formulation	mulation		Application					
Crop/	G	Active	Type	Method	Rate	Water	No or Seasonal	PHI		
Commodity	Country	substance	51			volume	max. (interval)	(days)		
5		content								
Stone Fruits	USA	425 g/kg	SC	Foliar	140 g ai/ha	935-	3 (at full bloom.	14		
(Crop Group	0.011	120 8 118	~~~	spray	1 to g us nu	3700	petal fall and			
$(2-12)^{a}$		7 00 /		spray		L/ha	pre-harvest)			
)		500 g/kg	WDG			Aerial:	F)			
						>94				
						L/ha				
Bushberries ^b	USA	480 g/L	SC	Foliar	87 g ai/ha	>187	3 (applied at	7		
				sprav	· · · · · · · · · · · · · · · · · · ·	L/ha	flowering and	,		
		500 /	N/D G	-12		Aerial:	pre-harvest with			
		500 g/kg	WDG			>94	no more than			
						L/ha	two sequential			
							applications)			
Blueberries	Canada	500 g/kg	WDG	Foliar	90 g ai/ha	>200	3 (7 days)	7		
				sprav		L/ha	- (,, -)			
Banana	Mexico	90 g/L	EC	Foliar	72-90 o	125	3(14 days)	0		
Dununu	menie	90 B E	LC	spray	ai/ha	L/ha	5 (11 augs)	Ŭ		
Onion	Brazil	90 g/L	SL	Foliar	45-90 g		3 (7 days)	14		
omon	Dimbi	> ° 8 2	~2	sprav	ai/ha		<i>c</i> (, <i>uujc</i>)			
Onion	Mexico	90 g/L	EC	Foliar	68–113 σ		5(7 days)	30		
omon	menie	90 B E	LC	spray	ai/ha		5 (7 augs)	50		
Garlic	Brazil	90 g/L	SL	Foliar	45-90 g		3(7 days)	14		
Guille	Diuzii	90 g/L	5L	spray	ai/ha		5 (7 duys)	11		
Garlic	Chile	90 g/L	SL	Foliar	90 g ai/ha	200-	2 (30 days)	30		
	0	> ° 8 2	~2	spray	y o g ut the	400	= (00 aujo)	20		
				spray		L/ha				
Green beans	Brazil	90 g/L	SL	Foliar	6.8–14 g	150	3 (7 days)	15		
	Diali	> ° 8.2	~2	spray	ai/ha	L/ha	<i>c</i> (, <i>uujc</i>)	10		
Dried Shelled	USA	480 g/L	SC	Foliar	90–140 σ	>187	2(7 days)	21		
Pea and Bean	0.571	100 g/L	50	spray	ai/ha	L/ha	2 (7 duys)	21		
except Sova				opray	upilu	Aerial				
bean (Crop		500 g/kg	WDG			>47				
Subgroup 6C)						L/ha				
c						2,114				
Drv bean.	Canada	500 g/kg	WDG	Foliar	140 g ai/ha	200	2 (min. 7 days)	21		
field pea.	Cultura	000 8 1 8		sprav	1 to g us nu	L/ha	2 (mm, , aujs)			
chickpea.				-12		Aerial:				
lentil (Crop						50 L/ha				
Subgroup 6C)						00 20114				
Beans	Brazil	90 g/L	SL	Foliar	45-90 g		3 (10 days)	15		
Domino	Diali	> ° 8.2	~2	spray	ai/ha		e (10 auje)	10		
Sova beans	Brazil	90 g/L	SL	Foliar	45–54 g		3 (20 days)	14		
5				spray	ai/ha					
Soya beans	Canada	90 g/L	EC	Foliar	63 g ai/ha	>100	2 (10 days)	30		
5		U		spray	U	L/ha				
				1 5		Aerial:				
						>50				
						L/ha				
Soya beans	Columbia	80 g/L	EC	Foliar	40–60 g		2 (10 days)	14		
				spray	ai/ha					
Soya beans	USA	90 g/L	EC	Foliar	54–63 g		2 (10 days)	30		
				spray	ai/ha			(no		
								livestock		
								feeding		
								restrictions		
								for soya		
								bean forage		
								and hay)		

-	Formulation			Applicatio				
Crop/ Commodity	Country	Active substance content	Туре	Method	Rate	Water volume	No or Seasonal max. (interval)	PHI (days)
Tuberous and Corm Vegetables (Crop Subgroup 1C)[Potato] ^d	USA	480 g/L 500 g/kg	SC WDG	Foliar spray	87–140 g ai/ha	94 L/ha Aerial: >47 L/ha	4 (7 days)	1
Potato	Brazil	90 g/L	SL	Foliar spray	90 g ai/ha		3 (7 days)	14
Potato	Chile	90 g/L	SL	Foliar spray	90 g ai/ha	200– 400 L/ha	2 (15 days)	30
Potato	Canada	500 g/kg	WDG	Foliar spray	140 g ai/ha	200 L/ha Aerial: 50 L/ha	3 (7 days)	1
Potato	Mexico	90 g/L	EC	Foliar spray	68–113 g ai/ha		5 (7 days)	30
Sugar beet	Canada	90 g/L	EC	Foliar spray	90–113 g ai/ha	100 L/ha Aerial: 50 L/ha	2 (14 days)	14 (no livestock feeding restrictions)
Sugar beet	Chile	90 g/L	SL	Foliar spray	90 g ai/ha	200– 400 L/ha	2 (15 days)	42
Sugar beet	USA	90 g/L	EC	Foliar spray	59–112 g ai/ha	Not stated	2 (14 days	14
Cereals (barley, wheat, triticale, rye)	Canada	80 g/L	EC	Foliar spray	91 g ai/ha	100 L/ha Aerial: 50 L/ha	2 (10 days)	Apply no later than the end of flowering
Cereals (barley, oat, wheat, rye)	Mexico	90 g/L	EC	Foliar spray	68–90 g ai/ha	200– 300 L/ha	1	30
Cereals (barley, wheat, triticale, rye)	United Kingdom	90 g/L	EC	Foliar spray	90 g ai/ha	200– 300 L/ha	2 (21 days)	Up and including GS71
Cereals (barley, oat, wheat, triticale, rye)	USA	90 g/L	EC	Foliar spray	89–112 g ai/ha		2 (6 days)	30 (no livestock feeding restrictions for hay and straw)
Wheat	Brazil	80 g/L	EC	Foliar spray	40–60 g ai/ha		2 (not stated)	30
Wheat	Chile	90 g/L	SL	Foliar spray	90 g ai/ha	200 L/ha	2 (30–35 days)	42
Barley	Brazil	80 g/L	EC	Foliar spray	40–80 g ai/ha		2 (20–28 days)	30
Oat	Brazil	80 g/L	EC	Foliar spray	40–80 g ai/ha		2 (21–28 days)	30
Maize	Brazil	80 g/L	EC	Foliar spray	40–60 g ai/ha		$2 \pmod{100}$	45
Maize	Canada	90 g/L	EC	Foliar spray	90 g ai/ha	100 L/ha Aerial: 50 L/ha	1	20

		Formulation		Application				
Crop/	Country	Active	Туре	Method	Rate	Water	No or Seasonal	PHI
Commodity	Country	substance				volume	max. (interval)	(days)
		content						
Maize	Columbia	80 g/L	EC	Foliar	60 g ai/ha		2 (not stated)	14
				spray				
Maize	Mexico	80 g/L	EC	Foliar	40–68 g		2 (14 days)	45
				spray	ai/ha			
Maize	USA	90 g/L	EC	Foliar	92 g ai/ha		4 (7 days)	7 (forage,
				spray				sweet corn)
								20 (field
								corn grain,
Surget com	Canada	00 ~/I	EC	Falian	$0.0 \approx a^{1/2}$	100	1	Stover)
Sweet com	Callada	90 g/L	EC	rollal	90 g al/lia	I /ba	1	/ (Intechan.
				spray		Δerial·		18 (hand
						50 L/ha		harvesting)
Sweet corn	USA	90 g/L	EC	Foliar	92 g ai/ha		4 (7 days)	7
				spray			. (,, .)	,
Sugar cane	USA	80 g/L	EC	Foliar	70–91 g		4 (14 days)	14
C		U		spray	ai/ha			
Tree Nuts	USA	500 g/kg	WDG	Foliar	87–123 g	933-	4 (7 days)	25
except Filbert,				spray	ai/ha	3735		
Pecan and						L/ha		
Pistachio						Aerial:		
(Crop Group						>93		
14–12) e			w mag		07.100	L/ha		
Pecans,	USA	500 g/kg	WDG	Foliar	8/-123 g	933-	4 (7 days	25
filberts				spray	ai/ha	3/33 I/bo	filborts)	
						L/IIa Aprial:	moents)	
						>93		
						L/ha		
Pistachios	USA	500 g/kg	WDG	Foliar	140 g ai/ha	933-	4 (14 days)	25
				spray		3735	. (
				1.5		L/ha		
						Aerial:		
						>93		
						L/ha		
Rapeseed	USA	480 g/L	SC	Foliar	70–140 g	93–187	1	35
(Crop				spray	ai/ha	L/ha		
Subgroup		500 g/kg	WDG			Aerial:		
20A)[Canola]		0.0				>4/ I/ho		
Oilcood range	Canada	500 a/lea	WDG	Folior	70, 140 g	200	1	45
Oliseeu Tape	Callada	500 g/kg	WDG	rollal	70–140 g	200 L/ha	1	45
				spray	al/11a	Aerial		
						50 L/ha		
Oilseed rape	Chile	90 g/L	SL	Foliar	90 g ai/ha	100-	2 (not stated)	42
1		0		spray	0	200		
						L/ha		
						Aerial:		
						40-60		
						L/ha		
Oilseed rape	United	90 g/L	EC	Foliar	72 g ai/ha	200-	2 (14 days)	10% of
	Kingdom			spray		400		pods at final
Curr	Cana 1	500 - /1	WDC	E-1:	140 - 14	L/ha	2 (7, 1)	size
Crop	Canada	500 g/kg	WDG	Foliar	140 g ai/ha	100-	2(/ days)	21
20B				spray		200 1 /ba		
including						Aerial		
sunflower ^g						50 L/ha		
Sunflower	USA	480 g/L	SC	Foliar	87–140 g	187	2 (7 days)	21
_		6			- 0			

		Formulation		Applicatio	n			
Crop/	Country	Active	Туре	Method	Rate	Water	No or Seasonal	PHI
Commodity	Country	substance				volume	max. (interval)	(days)
		content						
(Crop		500 g/kg	WDG	spray	ai/ha	L/ha		
Subgroup						Aerial:		
20B) ^g						>47		
						L/ha		
Cotton	Brazil	90 g/L	SL	Foliar	54–63 g		3 (14 days)	14
		_		spray	ai/ha			
Cotton	USA	90 g/L	EC	Foliar	53–92 g		3 (7 days)	30
		_		spray	ai/ha			
Peanut	Brazil	90 g/L	SL	Foliar	45–68 g		3 (14 days)	7
				spray	ai/ha			
Peanut	USA	480 g/L	SC	Foliar	87–140 g	93-187	4 (14 days)	14
				spray	ai/ha	L/ha		
		500 g/kg	WDG			Aerial:		
		500 g/kg	1100			>47		
						L/ha		

^a Black cherry; capulin; Chinese Jujube; Nanking cherry; sweet cherry; tart cherry, apricot; Japanese apricot; nectarine and peach, American plum; beach plum; Canada plum; cherry plum; Chickasaw plum; Damson plum; Japanese plum; Klamath plum; plum; plumcot; prune plum; sloe, cultivars varieties and/or hybrids of these.

^b Aronia berry; blueberry, highbush; blueberry, lowbush; buffalo currant; Chilean guava; cranberry, highbush; currant, black; currant, red; elderberry; European barberry; gooseberry; honeysuckle, edible; huckleberry; jostaberry; Juneberry (Saskatoon berry); lingonberry; native currant; salal; sea buckthorn; cultivars, varieties and/or hybrids of these.

- ^c Dried cultivars of bean (Lupinus); bean (Phaseolus) (includes field bean, kidney bean, lima bean (dry), navy bean, pinto bean, tepary bean); bean (Vigna) (includes adzuki bean, blackeyed pea, catjang, cowpea, crowder pea, moth bean, mung bean, rice bean, southern pea, urd bean); broad bean (dry); chickpea; guar; lablab bean; lentil; pea (Pisum) (includes field pea); pigeon pea
- ^d Arracacha; arrowroot; artichoke, Chinese; artichoke, Jerusalem; canna, edible; cassava, (bitter and sweet); chayote (root); chufa; dasheen (taro); ginger; leren; potato; sweet potato; tanier; turmeric; yam bean; yam, true
- ^e African nut-tree; almond; beechnut; black walnut; Brazil nut; Brazilian pine; bunya; bur oak; butternut; Cajou nut; candlenut; cashew; chestnut; chinquapin; coconut; coquito nut; dika nut; English walnut; ginkgo; Guiana chestnut; heartnut; hickory nut; Japanese horse-chestnut; macadamia nut;
- mongongo nut; monkey-pot; monkey puzzle nut; Okari nut; Pachira nut; peach palm nut; pequi; Pili nut; pine nut; Sapucaia nut; tropical almond; yellowhorn; cultivars varieties and/or hybrids of these.
- ^f Borage; crambe; cuphea; echium; flax seed; gold of pleasure; hare's ear mustard; lesquerella; lunaria; meadowfoam; milkweed; mustard seed; oil radish; poppy seed; rapeseed; sesame; sweet rocket; cultivars, varieties and/or hybrids of these
- ^g Calendula; castor oil plant; euphorbia; evening primrose; Niger seed; rose hip; safflower; stokes aster; sunflower; cultivars, varieties and/or hybrids of these

RESULTS OF SUPERVISED RESIDUE TRIALS ON CROPS

Residue levels were reported as measured. Application rates were always reported as metconazole equivalents. When residues were not detected they are shown as below the LOQ, e.g., < 0.01 mg/kg. Application rates, spray concentrations and mean residue results have generally been rounded to two significant figures. Values from the trials conducted according to maximum GAP have been used for the estimation of maximum residue levels. These results are underlined.

Laboratory reports included method validation including batch recoveries with spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Field reports provided data on the sprayers used and their calibration, plot size, residue sample size and sampling date. Although trials included control plots, no control data are recorded in the tables except where residues in control samples exceeded the LOQ. Residue data are recorded unadjusted for % recovery.

The isomeric ratio of *cis*- and *trans*-metconazole is at about 85:15. During soil degradation studies and in animal metabolism studies a preferred metabolism of the *cis*-isomer was observed, shifting the ratio towards the *trans*-isomer. Therefore, in order to cover this shift in the isomeric ratio, the sum of both isomers was used for the calculation of metconazole residues.

ervised residue	trials
(ervised residue

Commodity	Indoor/Outdoor	Treatment	Countries	Table no
Stone fruit (peach, plum, cherry)	Outdoor	Foliar spray	USA	143-145
Blueberries	Outdoor	Foliar spray	Canada, USA	146
Banana	Outdoor	Foliar spray	Costa Rica, Ecuador, Honduras, Mexico	147
Onion	Outdoor	Foliar spray	Brazil	148
Garlic	Outdoor	Foliar spray	Brazil	149
Green beans	Outdoor	Foliar spray	Brazil	150
Dry beans	Outdoor	Foliar spray	Canada, USA	151-153
Dry pea	Outdoor	Foliar spray	Canada, USA	154-156
Soya bean	Outdoor	Foliar spray	Brazil, USA	157-160
Potato	Outdoor	Foliar spray	USA	161, 162
Sugar beet	Outdoor	Foliar spray	USA	163
Wheat	Outdoor	Foliar spray	Canada, USA	164-166
Rye	Outdoor	Foliar spray	Canada, USA	167-169
Barley	Outdoor	Foliar spray		170-172
Oat	Outdoor	Foliar spray		173-175
Maize	Outdoor	Foliar spray	USA	176
Sweet corn	Outdoor	Foliar spray	USA	178, 179
Sugar cane	Outdoor	Foliar spray	USA	180
Pecan	Outdoor	Foliar spray	USA	181
Almonds	Outdoor	Foliar spray	USA	182
Oilseed rape	Outdoor	Foliar spray	France, USA	183-185
Sunflower	Outdoor	Foliar spray	Canada, USA	186, 187
Cotton seed	Outdoor	Foliar spray	USA	188, 189
Peanut	Outdoor	Foliar spray	USA	190

Stone fruit

Peach

A total of 12 field trials were conducted with peaches in the USA in the 2003–2005 growing seasons (Green, 2006, METCON_105). Four trials from 2003 received 4 spray applications and had a PHI of

7 days. These trials were considered as supplemental and are not reported here. The remaining 8 trials conducted in 2004 and 2005 received three applications (at full bloom, petal fall and 14 ± 1 day before harvest). Application rates ranged between 150–160 g ai/ha. Among these trials was also one decline trial where samples were also collected at 10, 18 and 22 days after the last application. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in peaches spiked at 0.02–0.2 mg/kg were 96 ± 6.0% (n = 18) and 97 ± 9.8% (n = 18), respectively.

Table 143 Residues of *cis*- and *trans*-metconazole in peaches following foliar treatment (cGAP USA: 3×140 g ai/ha; 14 day PHI).

Location,	Application				Residues		Report/Trial			
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metcona	zole		No.,
Year		(days)		stage at			meteonu	2010		Reference,
(variety)				final			cis-	trans-	Total	Storage period
110 4 2004	150		1102	appi.	E '	1.4	0.020	< 0.02	0.040	2006/1052077
USA, 2004,	150	-	1103	BBCH	Fruit	14	0.020	< 0.02	0.040	2006/10520// V 25662.04 E
MI	150	81	1150	13-19			(0.030)	< 0.02	(0.030)	V=25002-04-1 METCON 105
(Bellaire)	150	01	1157				(0.023)	(< 0.02)	(<u>0.045</u>)	Max frozen
(Benuire)										storage: 2
										month
USA, 2004,	150	-	1197	BBCH	Fruit	14	< 0.02	< 0.02	< 0.04	2006/1052077
Athens,	150	8	1291	81			0.030	< 0.02	0.050	V-25662-04-G
GA,	150	117	1001				(0.025)	(< 0.02)	<u>(0.045</u>)	METCON_105
(Redskin)	300	-	1206	BBCH	Fruit	14	0.13	0.020	0.15	Max. frozen
	300	8	1272	81			0.090	0.020	0.11	storage: 2
LICA 2004	300	11/	1001	DDCU	Emit	1.4	(0.110)	(0.020)	(0.13)	month
USA, 2004,	100	- 12	1038	8BCH 91 95	Fruit	14	0.070	0.020	0.090	2000/10520// V 25662.04 H
C^{Δ}	150	61	1319	01-05			(0.000)	< 0.02	(0.080)	V=25002-04-H METCON 105
(Brittany	150	01	1517				(0.005)	(0.020)	(<u>0.005</u>)	Max. frozen
Lane)										storage: 2
,										month
USA, 2004,	150	-	1029	BBCH	Fruit	14	0.020	< 0.02	0.040	2006/1052077
Live Oak,	150	8	1029	85			0.020	< 0.02	0.040	V-25662-04-I
CA,	150	91	1320				(0.020)	(< 0.02)	(<u>0.040</u>)	METCON_105
(Loadel)										Max. frozen
										storage: 1
USA 2004	150		1038	Not	Fruit	14	0.030	< 0.02	0.050	2006/1052077
Marysville	150	- 7	1038	reported	Fiun	14	0.030	< 0.02	0.050	V_25662-04-I
CA.	150	87	1029	reported			(0.030)	(< 0.02)	(0.050)	METCON 105
(Stanislaus)							()		(/	Max. frozen
× ,										storage: 1
										month
USA, 2004,	150	-	1282	BBCH	Fruit	10	0.080	0.020	0.10	2006/1052077
Chula, CA,	150	9	1020	75			0.080	0.020	0.10	V-25662-04-K
(June Gold)	150	50	973			1.4	(0.080)	(0.020)	(0.10)	MEICON_105
						14	0.050	< 0.02	0.070	Max. frozen
							(0.030)	< 0.02	(0.050)	month
						18	0.030	< 0.02	(0.000)	month
						10	0.020	< 0.02	0.040	
							(0.025)	(< 0.02)	(0.045)	
						22	0.020	< 0.02	0.040	
							0.020	< 0.02	0.040	
							(0.020)	(< 0.02)	(0.040)	
USA, 2004,	150	-	1020	BBCH	Fruit	14	0.020	< 0.02	0.040	2006/1052077
Waller,	150	15	1010	81			0.030	< 0.02	0.050	V-25662-04-L
IX, (Texas	160	22	1001				(0.025)	(< 0.02)	(<u>0.045</u>)	MEICON_105
Koyai)										storage: 2
										month

Location,	Applicatio	n			Residues	(mg/kg) ^a	l			Report/Trial
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metcona	zole		No.,
Year		(days)		stage at			Wietcolla	2010	1	Reference,
(variety)				final			cis_	trans_	Total	Storage period
				appl.			<i>cus</i> -	trans-	Total	
USA, 2005,	160	-	1141	BBCH	Fruit	13	0.020	< 0.02	0.040	2006/1052077
Orefield,	160	3	1141	89			0.020	< 0.02	0.040	V-25662-05-
PA,	150	80	1029				(0.020)	(< 0.02)	(<u>0.040</u>)	М
(Garnet	(1.81									METCON_105
Beauty)	FL)									Max. frozen
	160	-	1188	BBCH	Fruit	13	0.020	< 0.02	0.040	storage: 3
	150	3	1131	89			0.020	< 0.02	0.040	month
	150	80	1038				(0.020)	(< 0.02)	(0.040)	
	(50									
	WDG)									

Plum

A total of eight field trials were conducted with plums in the USA in the 2003–2005 growing seasons (Green, 2006, METCON_106). Four trials from 2003 received 4 spray applications and had a PHI of 7 days. These trials were considered as supplemental and are not reported here. The remaining 5 trials conducted in 2004 and 2005 received three applications (at full bloom, petal fall and 14 ± 1 day before harvest). Application rates ranged between 150–160 g ai/ha. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–1with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in plums spiked at 0.02–0.25 mg/kg were $95 \pm 5.1\%$ (n = 18) and $96 \pm 7.5\%$ (n = 18), respectively.

Tabl	e 144	Residues	of cis-	and	trans-	metcon	nazole	in	plums	follow	ing	foliar	treatment	(cGAP	' USA:
3×14	0 g ai	i/ha; 14 da	ay PHI).												

Location,	Applicat	ion			Residues	(mg/kg) ^a				Report/Trial
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconaz	vole		No.,
Year		(days)		stage at			1010toonuz		1	Reference,
(variety)				final			cis-	trans-	Total	Storage period
				appl.			015	ti ano	rotur	
USA, 2004,	150	-	1225	BBCH	Fruit	14	< 0.02	< 0.02	< 0.04	2006/1052075
Selma, CA,	150	7	1244	81			< 0.02	< 0.02	< 0.04	V-25671-04-Е
(Howard	150	129	1234				(< 0.02)	(< 0.02)	<u>(< 0.04</u>)	METCON_106
Sun)										Max. frozen
										storage: 2
										month
USA, 2004,	150	-	1225	BBCH	Fruit	14	0.02	< 0.02	0.04	2006/1052075
Kerman,	150	7	1207	87			0.03	< 0.02	0.05	V-25671-04-F
CA,	150	119	1225				(0.025)	(< 0.02)	(<u>0.045</u>)	METCON_106
(French	764	-	1225	BBCH	Fruit	14	0.12	0.03	0.15	Max. frozen
Prune)	759	7	1216	87			0.12	0.03	0.15	storage: 2
	766	119	1225				(0.12)	(0.030)	(0.15)	month
USA, 2004,	160	-	1188	BBCH	Fruit	14	< 0.02	< 0.02	< 0.04	2006/1052075
Hickman,	160	6	1132	87			< 0.02	< 0.02	< 0.04	V–25671-04-G
CA, (Grand	150	133	1113				(< 0.02)	(< 0.02)	(≤ 0.04)	METCON_106
Rosa)										Max. frozen
										storage: 1
										month
USA, 2004,	150	-	966	BBCH	Fruit	14	0.02	< 0.02	0.04	2006/1052075
Live Oak,	150	5	978	85			0.02	< 0.02	0.04	V-25671-04-H
CA,	150	109	973				(0.02)	(< 0.02)	(<u>0.04</u>)	METCON_106
(French)										Max. frozen
										storage: 1
										month
USA, 2005,	150	-	1123	BBCH	Fruit	14	0.02	< 0.02	0.04	2006/1052075

Location,	Applicati	ion			Residues	(mg/kg) ^a				Report/Trial
Year	g ai/ha	Interval (days)	L/ha	Growth stage at	Sample	DALA	Metconaz	zole		No., Reference,
(variety)		× • /		final appl.			cis-	trans-	Total	Storage period
Dallas, OR,	150	17	1104	85			< 0.02	< 0.02	< 0.04	V-25671-05-J
(Moyer)	150	126	1104				(0.02)	(< 0.02)	(<u>0.04</u>)	METCON_106
	(1.81									Max. frozen
	FL)									storage: 2
	150	-	1123	BBCH	Fruit	14	< 0.02	< 0.02	< 0.04	month
	150	17	1123	85			< 0.02	< 0.02	< 0.04	
	150	126	1113				(< 0.02)	(< 0.02)	(< 0.04)	
	(50									
	WDG)									

^a Results from two replicate field samples are presented and values in parentheses represent mean values

Cherry

A total of 10 field trials were conducted with cherries in the USA in the 2003–2005 growing seasons (Green, 2006, METCON_107). Two trials from 2003 received 4 spray applications and had a PHI of 7 days. These trials were considered as supplemental and are not reported here. Of the remaining 8 trials were 7 conducted in 2004 and 2005 and received three applications (at full bloom, petal fall and 14 ± 1 day before harvest). Application rates ranged between 150–160 g ai/ha with a PHI of 13–14 days. Additionally, one decline trial from 2003 receiving 4 applications is provided where samples were taken at 3, 6, 10 and 13 DALA. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–1with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in cherries spiked at 0.02–0.75 mg/kg were 97 ± 5.8% (n = 20) and 98 ± 7.8% (n = 20), respectively.

Table 145 Residues of *cis*- and *trans*-metconazole in cherries following foliar treatment (cGAP USA: 3×140 g ai/ha; 14 day PHI).

Location,	Application				Residue	s (mg/k	g) ^a			Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metcona	azole		Reference, Storage period
							cis-	trans-	Total	
USA, 2003,	150	-	1093	90% red	Fruit	3	0.27	0.07	0.33	2006/1052076
Conklin, MI,	150	7	1051	colour			0.25	0.06	0.31	V-25654-03-B
(Montmorency)	150	44	1109				(0.26)	(0.07)	(0.32)	METCON_107
	150	7	1088			6	0.17	0.04	0.21	Max. frozen
							0.15	0.04	0.19	storage: 5 month
							(0.16)	(0.04)	(0.20)	
						10	0.07	0.02	0.09	
							0.07	0.02	0.09	
							(0.07)	(0.02)	(0.09)	
						13	0.03	< 0.02	0.05	
							0.03	< 0.02	0.05	
							(0.03)	(< 0.02)	(0.05)	
USA, 2004,	150	-	1107	80% red	Fruit	14	< 0.02	< 0.02	< 0.04	2006/1052076
Conklin, MI,	150	10	1169	colour			< 0.02	< 0.02	< 0.04	V-25654-04-D
(Montmorency)	150	44	1163				(< 0.02)	(< 0.02)	(≤ 0.04)	METCON_107
										Max. frozen
										storage: 2 month
USA, 2004,	160	-	1217	Advanced	Fruit	10	0.05	< 0.02	0.07	2006/1052076
Parkdale, OR,	150	9	1235	fruit			0.06	0.02	0.08	V-25654-04-E
(Bing)	160	69	1228	colouring			(0.06)	(0.02)	(0.08)	METCON_107
						14	0.05	< 0.02	0.07	Max. frozen
							0.04	< 0.02	0.06	storage: 2 month
							(0.05)	(< 0.02)	(<u>0.07</u>)	
						18	0.03	< 0.02	0.05	

Location,	Application				Residue	s (mg/k	(g) ^a			Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metcon	azole	1	Reference, Storage period
							cis-	trans-	Total	
						22	0.02 (0.03) 0.02 0.02 (0.02)	< 0.02 (< 0.02) < 0.02 < 0.02 (< 0.02)	$\begin{array}{c} 0.04 \\ (0.05) \\ 0.04 \\ 0.04 \\ (0.04) \end{array}$	
USA, 2004, The Dalles, OR, (Bing)	150 150 160	- 9 50	994 972 973	Red fruit	Fruit	14	0.05 0.04 (0.05)	0.02 < 0.02 (0.02)	0.07 0.05 (<u>0.06</u>)	2006/1052076 V-25654-04-F METCON_107 Max. frozen storage: 3 month
USA, 2004, Denair, CA, (Bing)	150 150 150	- 10 29	1232 1267 1264	Beginning of fruit colouring	Fruit	10 14	0.05 0.05 0.06 0.06 (0.06) 0.06	< 0.02 < 0.02 < 0.02 < 0.02 (< 0.02) < 0.02	0.07 0.07 0.08 0.08 (0.08) 0.08	2006/1052076 V-25654-04-G METCON_107 Max. frozen storage: 5 month
						18	0.05 0.07 0.07 (0.07) 0.05 0.05	< 0.02 0.02 < 0.02 (0.02) < 0.02 < 0.02	$\begin{array}{c} 0.08 \\ 0.09 \\ 0.09 \\ (\underline{0.09}) \\ 0.07 \\ 0.07 \\ 0.07 \end{array}$	
						22	$(0.05) \\ 0.04 \\ 0.04 \\ (0.04)$	(< 0.02) < 0.02 < 0.02 (< 0.02)	$(0.07) \\ 0.06 \\ 0.06 \\ (0.06)$	
USA, 2004, Kerman, CA, (Tulare)	150 150 150	- 10 22	1202 1210 1202	Advanced fruit colouring	Fruit	14	0.13 0.10 (0.12)	0.03 0.02 (0.03)	0.16 0.12 (<u>0.14</u>)	2006/1052076 V-25654-04-H METCON_107 Max. frozen storage: 3 month
USA, 2005, Williamson, NY, (Heartland)	150 160 160	- 13 30	1171 1175 1171	Advanced fruit colouring	Fruit	14	0.04 0.05 (0.05)	0.02 0.02 (0.02)	0.06 0.07 (0.07)	2006/1052076 V-25654-05-I METCON_107 Max_frozen
LISA 2005	150 150 160	13 30	1122 1175	fruit colouring	Emit	14	0.05 0.06 (0.06)	< 0.02 0.02 (0.02)	0.07 0.08 (<u>0.08</u>)	storage: 4 month
Conklin, MI, (Montmorency)	150 150 (1.81 FL)	13 40	1181 1199 1163	75% red Irun	Fruit	14	<pre>0.02 < 0.02 (0.02)</pre>	< 0.02 < 0.02 (< 0.02)	<pre>0.04 < 0.04 (0.04)</pre>	V-25654-05-J METCON_107 Max. frozen
	150 150 150 (50 WDG)	- 13 40	1182 1201 1165	75% red fruit	Fruit	14	0.03 0.03 (0.03)	< 0.02 < 0.02 (< 0.02)	0.04 0.04 (<u>0.04</u>)	storage: 4 month

Berries & other small fruits

Blueberries

A total of 11 field trials were conducted with high bush blueberries in the USA and low bush blueberries in Canada during the 2006 growing season (Thompson, 2010, METCON_100). Plants received 3 foliar applications of metconazole at nominal rates of 90 g ai/ha at bloom to late bloom, 14 days and 7 days prior to harvest. Mature blueberries were collected at 6–7 days after the last application. Additional samples from decline trials were collected at 0, 1, 3 and 10/11 days. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–1with a limit of quantification

of 0.05 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in blueberries spiked at 0.05–2.0 mg/kg were $98 \pm 7\%$ (n = 32) and $102 \pm 7\%$ (n = 32), respectively. Triazole metabolites (1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid) were determined using method Meth–160 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for 1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid in blueberries spiked at 0.02–2 mg/kg were $118 \pm 21\%$ (n = 17), $117 \pm 8\%$ (n = 17) and $141 \pm 24\%$ (n = 19), respectively. It should be noted that recoveries for triazolyl acetic acid were >120% and for 1,2,4-triazole and triazolyl acetic acid the precision was >20%.

Residues of 1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid were each below the LOQ of 0.02 mg/kg in all trials.

Table 146	Residues	of cis-	and	trans-meto	conazole	in	blueberries	following	foliar	treatment	(cGAP
Canada: 3>	<90 g ai/ha	ı; 7 day	PHI)								

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		No.,
Year	ai/ha	(days)		stage at			ais	trans	Total	Reference,
(variety)				final appl.			015-	trans-	Total	Storage period
High bush va	rieties	1		1	I		1	1		
USA,	89	-	380	Fruiting	Fruit	7	< 0.05	< 0.05	< 0.10	2010/1232553
2006,	92	37	394				< 0.05	< 0.05	< 0.10	09501.06-NC24
Castle	90	7	386				(< 0.05)	(< 0.05)	(<u>< 0.10</u>)	METCON_100
Hayne,										Max. frozen
NC,										storage: 9
(Croatan)	0.4		225	F ''	F '	7	10.05	10.05	: 0.10	month
USA,	94	-	225	Fruiting	Fruit	/	< 0.05	< 0.05	< 0.10	2010/1232553
2006, Duidanten	93	50	232				< 0.05	< 0.05	< 0.10	09501.06-INJ30
Bridgeton,	91	0	210				(< 0.05)	(< 0.05)	(<u>< 0.10</u>)	MEICON_100
NJ, (Duke)										starages 0
										storage: 9
USA	94	-	226	Fruiting	Fruit	7	0.074	< 0.05	0.12	2010/1232553
2006.	92	49	231	1 i withing	11010	,	0.087	< 0.05	0.14	09501.06-NJ31
Bridgeton.	94	7	224				(0.081)	(< 0.05)	(0.13)	METCON 100
NJ,									·/	Max. frozen
(Blueray)										storage: 9
										month
USA,	91	-	539	Fruiting	Fruit	0	0.24	< 0.05	0.29	2010/1232553
2006,	90	56	583				0.25	0.054	0.30	09501.06-MI32
Fennville,	91	14	666				(0.25)	(0.054)	(0.30)	METCON_100
MI,						1	0.23	< 0.05	0.28	Max. frozen
(Rubel)							0.24	< 0.05	0.29	storage: 9
							(0.24)	(< 0.05)	(0.29)	month
						3	0.18	< 0.05	0.23	
							0.17	< 0.05	0.22	
						-	(0.18)	(< 0.05)	(0.23)	
						1	0.15	< 0.05	0.20	
							0.13	< 0.05	0.18	
						10	(0.14)	(< 0.05)	(0.19)	
						10	0.13	< 0.05	0.18	
							(0.14)	< 0.03	(0.19)	
USA	91	-	567	Green	Fruit	7	0.11	< 0.05	0.16	2010/1232553
2006.	92	49	572	fruit, some	11010	,	0.19	< 0.05	0.24	09501.06-OR25
Aurora.	93	7	582	blue and			(0.15)	(< 0.05)	(0.20)	METCON 100
OR.		,		red			(****)	()	(<u></u>)	Max. frozen
(Bluecrop)										storage: 9
										month
Low bush var	rieties	-		-		-	-	-		
Canada,	92	-	393	Fruiting	Fruit	8	0.091	< 0.05	0.14	2010/1232553
2006,	89	27	382				0.093	< 0.05	0.14	09501.06-NB01
Peters	89	7	380				(0.092)	(< 0.05)	(<u>0.14</u>)	METCON_100
Mills, NB,										Max. frozen

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
(variety) final appl. cls ² <i>Ivans</i> ² Ivans Ivans ² Ivans ²
(Native) - 439 Fruiting Fruit 0 0.25 <0.05 0.30 2010/1232553 2006, 98 55 438 Fruiting Fruit 0 0.25 0.057 0.31 09501.06-NS01 Sheffield 100 7 447 - 1 0.26 0.051 0.31 METCON_100 Mills, NS, 100 7 447 - - 1 0.26 0.051 0.31 Max. frozen (Wild - - - - - - 0.23 <0.05
Canada, 2006, Sheffield 99 - 439 438 Fruiting Fruit (0.25) 0.25 <0.05 0.30 2010/1232553 Subeffield 100 7 447 447 0 0.25 0.057 0.31 09501.06-NS01 Mills, NS, (Wild 100 7 447 447 1 0.26 0.051 0.31 METCON_100 Max. frozen 447 447 1 0.26 0.051 0.31 Max. frozen (Wild 1 0.26 0.050 (0.30) 0.17 0.030 0.17 0.099 < 0.05
Canada, 2006, Sheffield 99 - 439 Fruiting Fruit 0 0.25 < 0.05 0.30 2010/1232553 Sheffield 100 7 447 447 0 0.25 0.057 0.31 09501.06-NS01 Mills, NS, (Wild clone) 7 447 447 1 0.26 0.051 0.31 METCON_100 3 0.12 <0.05
2006, Sheffield 98 55 438 447 0.25 0.057 0.31 09501.06-NS01 Mills, NS, (Wild clone) 100 7 447 1 0.26 0.051 0.31 09501.06-NS01 Mills, NS, (Wild 1 0.26 0.051 0.31 04700 Max. frozen (Wild 1 0.26 0.050 (0.30) 0.31 Max. frozen (Wild 1 0.26 0.050 (0.30) 0.30 Max. frozen (Wild 1 0.25 (0.050) (0.30) Max. frozen storage: 9month 1 0.299 < 0.05
Sheffield Mills, NS, (Wild clone) 100 7 447 1 0.25 (0.054) (0.31) METCON_100 1 0.26 0.051 0.31 Max. frozen (Wild clone) 3 0.12 <0.05
Mills, NS, (Wild clone) 1 0.26 0.051 0.31 Max. frozen storage: 9month 3 0.12 < 0.05
(Wild clone) 0.23 <0.05
clone) (0.25) (0.050) (0.30) (0.25) (0.050) (0.30) (0.25) (0.050) (0.30) (0.25) (0.050) (0.17) (0.099) < 0.05 0.15 (0.11) (< 0.05) (0.16) (0.11) (< 0.05) (0.16) (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.14 (0.090) < 0.05 0.11 (0.065) (< 0.05) (0.12) Canada, 99 $ 439$ FruitingFruit 7 0.26 0.063 0.33 $2010/1232553$ 2006 , 102 56 455 FruitingFruit 7 0.26 0.050 0.28 09501.06 -NS02Debert, 96 7 429 (0.25) (0.056) (0.31) METCON_100Max frozen Max frozen Max Max Max
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Canada, 99 - 439 Fruiting Fruit 7 0.26 0.063 0.33 2010/1232553 2006, 102 56 455 Fruiting Fruit 7 0.26 0.063 0.33 2010/1232553 Debert, 96 7 429 Fruit 7 0.26 0.056) (0.31) METCON_100 NS, (Wild Max frozen Max frozen Max frozen Max frozen Max frozen
Canada, 99 - 439 Fruiting Fruit 7 0.26 0.063 0.33 2010/1232553 2006, 102 56 455 429 Fruit 7 0.26 0.063 0.33 2010/1232553 Debert, 96 7 429 Fruit 7 0.26 0.056) (0.31) METCON_100 NS, (Wild Max frozen Max frozen Max frozen Max frozen Max frozen
Canada, 99 - 439 Fruiting Fruit 7 0.26 0.063 0.33 2010/1232553 2006, 102 56 455 Fruit 7 0.26 0.063 0.33 2010/1232553 Debert, 96 7 429 Fruit 7 0.26 0.056 (0.31) METCON_100 NS. (Wild Max frozen Max frozen Max frozen Max frozen Max frozen
Canada, 99 - 439 Fruiting Fruit 7 0.26 0.063 0.33 2010/1232553 2006, 102 56 455 Fruit 7 0.26 0.063 0.33 2010/1232553 Debert, 96 7 429 Fruit 7 0.26 0.056 0.28 09501.06-NS02 NS. (Wild Max frozen Max frozen Max frozen Max frozen Max frozen
Canada, 99 - 439 Fruiting Fruit 7 0.26 0.063 0.33 $2010/1232553$ 2006, 102 56 455 455 0.23 < 0.05 0.28 $09501.06-NS02$ Debert, 96 7 429 0.25 (0.056) (0.31) METCON_100 NS. (Wild 0.25 0.056 (0.31) METCON_100
2006 , 102 56 455 Debert, 96 7 429 NS. (Wild (0.25) (0.056) (0.23) METCON_100 Max frozen
Debert, 96 7 429 (0.25) (0.056) (0.31) METCON_100 Max frozen
NS. (Wild
clone) storage: 9
Month Month Canada 08 428 Emiting Emit 8 0.12 < 0.05
Canada, 96 - 456 Fruiting Fruit 6 0.12 < 0.05 0.17 $2010/125255$
2000, 100 03 444 0.092 < 0.03 0.14 0.9501.00-1805
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NS, (Wild Iviax, 10261
storage. 9
Canada 01 306 70 80% Emit 7 0.12 < 0.05 0.17 $2010/1232553$
Canada, $91 - 500 / 0 - 80 / 0$ Fint / $0.12 < 0.05 0.1 / 2010 / 125255$
2000, 0.14 < 0.05 = 0.19 = 0.000, 0.19 = 0.000, 0.100 = 0.000 = 0.100 = 0.000, 0.100 = 0.0000 = 0.0000 = 0.00000 = 0.000000 = 0.0000000 = 0.00000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
vitax. nozvi
month
Canada 92 - 308 70-80% Fruit 7 0.076 < 0.05 0.13 2010/1232553
2006 91 47 305 marketable 0.065 < 0.05 0.11 09501.06-0C10
Labrecque $86 - 8 - 296$ herries $(0.071) (< 0.05) (0.12) METCON 100$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ctorage Q
month

Assorted tropical and sub-tropical fruits – inedible peel

Banana

A total of 12 field trials were conducted with banana in Costa Rica (3), Ecuador (3), Honduras (3), and Mexico (3) during the 1997 growing season (METCON_108 to METCON_119). Plants received 7 spray applications of metconazole at nominal rates of 150–151 g ai/ha. In each trial, the first application was made at flowering and the retreatment intervals were 11–15 days. Bananas were collected immediately after the last application (0 DALA). Residues of *cis*- and *trans*-metconazole were determined using method M2722 with a limit of quantification of 0.05 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole spiked at 0.05–0.1 mg/kg in banana pulp were at $86 \pm 9\%$ (n = 24) and $86 \pm 9\%$ (n = 24) and in whole fruit at $87 \pm 8\%$ (n = 24) and $86 \pm 9\%$ (n = 24), respectively.

Table 147 Residues of *cis*- and *trans*-metconazole in banana following foliar treatment (cGAP Mexico: 3×90 g ai/ha; 0 day PHI).

Location,	Application	n			Residues	s (mg/kg)	a			Report/Trial
-	g ai/ha	Interva	L/h	Growt	Sampl	DAL	Metconaz	ole		No.,
Year (variety)		l (days)	a	h stage at final appl.	e	A	cis-	trans-	Total	Reference, Storage period
Mexico, 1997, Pichucalco,	7x150 (0.5% surfactan	12–15	22– 24	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (< 0.10)	RES 98-050 MK-714-001 METCON 10
(Grand Nain)	t Citowet plus)				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	8 Max. frozen storage: 3 month
Mexico, 1997, Teapa,	7x150 (0.5% surfactan	12–15	22– 24	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (<u>< 0.10</u>)	RES 98-048 MK-714-002 METCON_10
(Grand Nain)	t Citowet plus)				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	9 Max. frozen storage: 3 month
Mexico, 1997, Ejido Quintana	7x150 (0.5% surfactan	12–15	22– 24	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (< 0.10)	RES 98-049 MK-714-003 METCON 11
Roo, (Grand Nain)	t Citowet plus)				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	0 Max. frozen storage: 3 month
Ecuador, 1997, El Cuatro, (Giant)	131 164 160 174	14–15	17– 25	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (<0.10)	RES 98-075 MK-714-004 METCON_11
(0)	141 132 175				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	Max. frozen storage: 3 month
Honduras, 1997, Sava, (Ecuadoria	142 139 154 151	14	18– 29	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (<u>< 0.10</u>)	RES 98-096 MK-714-005 METCON_11
n Dwarf)	156 144 211				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	Max. frozen storage: 2 month
Ecuador, 1997, El Triunfo, (Giant)	180 155 151 137	13–15	18– 24	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (<0.10)	RES 98-074 MK-714-006 METCON_11 3
	156 146 167				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	Max. frozen storage: 3 month
Honduras, 1997, Sava, (Ecuadoria	244 136 158 156	14	17– 34	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (<u>< 0.10</u>)	RES 98-097 MK-714-007 METCON_11 4
n Dwarf)	146 148 151				Pulp	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	4×< 0.1 0 (< 0.10)	Max. frozen storage: 2 month
Honduras, 1997, Isleta Central,	201 143 161	14	18– 28	Mature green banana	Whole fruit	0	4×< 0.0 5 (< 0.05)	4×< 0.0 5 (< 0.05)	$4 \times < 0.1$ 0 (< 0.10)	RES 98-095 MK-714-008 METCON_11

Location,	Application	n			Residues	s (mg/kg)	a			Report/Trial
	g ai/ha	Interva	L/h	Growt	Sampl	DAL	Metconaz	ole		No.,
Year		1	а	h stage	e	А				Reference,
(variety)		(days)		at final			cis-	trans-	Total	Storage period
				appl.						
(Valery)	146				Pulp	0	4×< 0.0	4×< 0.0	4×< 0.1	5
	149						5	5	0	Max. frozen
	151						(< 0.05)	(< 0.05)	(< 0.10)	storage: 2
	149									month
Ecuador,	134	13-15	18-	Mature	Whole	0	4×< 0.0	4×< 0.0	4×< 0.1	RES 98-076
1997,	144		25	green	fruit		5	5	0	MK-714-009
Milagro,	141			banana			(< 0.05)	(< 0.05)	(<u>< 0.10</u>)	METCON_11
(Valery)	164				Puln	0	$4 \times < 0.0$	$4 \times < 0.0$	$4 \times < 0.1$	6
	182				1 uip	0	5	5	0	Max. frozen
	143						(< 0.05)	(< 0.05)	(< 0.10)	storage: 3
	177						(< 0.05)	(< 0.05)	(< 0.10)	month
Costa Rica,	7x150	11-14	19–	Mature	Whole	0	4×< 0.0	4×< 0.0	4×< 0.1	RES 98-085
1997, Rio			23	green	fruit		5	5	0	MK-714-010
Jimenez,				banana			(< 0.05)	(< 0.05)	(<u>< 0.10</u>)	METCON_11
(Enano					Pulp	0	$4 \times < 0.0$	4×< 0.0	4×< 0.1	7
Gigante)							5	5	0	Max. frozen
							(< 0.05)	(< 0.05)	(< 0.10)	storage: 3
	- 150		10		****		4 0 0	4 0 0		month
Costa Rica,	7x150	11–14	19–	Mature	Whole	0	4×< 0.0	4×< 0.0	4×< 0.1	RES 98-086
1997,			23	green	fruit		5	5	0	MK-/14-011
Bataan,				banana			(< 0.05)	(< 0.05)	(≤ 0.10)	MEICON_II
(Grand					Pulp	0	4×< 0.0	4×< 0.0	4×< 0.1	8
Nain)							5	5	0	Max. frozen
							(< 0.05)	(< 0.05)	(< 0.10)	storage: 4
Casta Dias	7-150	11 14	10	Matana	W/1 1 -	0	4×<0.0	4×<0.0	$4 \times < 0.1$	month
Losta Rica,	/x150	11-14	19-	Mature	whole	0	4×< 0.0	4×< 0.0	4×< 0.1	KES 98-08/
1997, Limon			25	bonono	Irun		(< 0.05)	(< 0.05)	(< 0.10)	METCON 11
(Valerie)				Uallalla	D 1	0	(< 0.03)	(< 0.03)	$(\underline{< 0.10})$	
(valerie)					Pulp	U	4×< 0.0	4×< 0.0	4×< 0.1	Max frozen
							$\left \begin{array}{c} \mathbf{J} \\ (< 0.05) \end{array} \right $	(< 0.05)	(< 0.10)	storage 4
							(< 0.03)	(< 0.03)	(~ 0.10)	month
										month

Bulb vegetables

Bulb onion

A total of four field trials were conducted with onion in Brazil in the 1998–2003 growing seasons (METCON_120 to METCON_127). Plants received 3 spray applications of metconazole at nominal rates of either 90 g ai/ha or 180 g ai/ha with a 7 day interval between applications, except one trial having a 30 day interval between the first and second treatment. Onion bulbs were collected at 14 days after the last application. In decline trials onion bulbs were also collected at 1, 3 and 7 DALA or at 0, 7, 14, 21 and 21 DALA. Residues of metconazole were either determined using method MK–240-001 (equivalent to method FAMS 050 01) with a limit of quantification of 0.02 mg/kg, or method SOP-PA.0206 with a limit of quantification of 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials were within 70–120% with an RSD of < 20%.

Table 148 Residues of metconazole in onion following foliar treatment (cGAP Brazil: 3×90 g ai/ha; 14 day PHI).

Location,	Applica	tion			Residues	(mg/kg)		Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period

Location,	Applica	tion			Residues	(mg/kg)		Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period
Brazil, 1998, Engenheiro Coelho-SP, (Baia	3×90	7	500	Development of bulbs	Bulbs	14	<u>< 0.02</u>	RES- CARAMBA–20 1998/3000726
Periforme)	3×180	7	500	Development of bulbs	Bulbs	14	< 0.02	METCON_120 1998/1010995 METCON_121 Max. frozen storage: not stated
Brazil, 1999, Ibiúna, SP, (Hybrid Baia	3×90	7	800	Bulb growth	Bulbs	14	<u>< 0.05</u>	RES- CARAMBA-22 2000/3000660
Dura)	3×180	7	800	Bulb growth	Bulbs	14	0.14	METCON_122 2000/1024653 METCON_123 Max. frozen storage: 5 month
Brazil, 1999, Engenheiro Coelho, SP, (Piriform Bay)	3×90	7	800	Bulb growth	Bulbs	1 3 7	< 0.05 < 0.05 <u>< 0.05</u>	RES- CARAMBA-21 2000/3000737 METCON_124 2000/1024654 METCON_125 Max. frozen storage: 4 month
Brazil, 2003, Ponta Grossa, PR, (Crioula Mercosul)	90 90 90	- 30 7	Not stated	Mature	Bulbs	0 7 14 21 28	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	RES- CARAMBA-90 2006/3000666 METCON_126 2006/1053713
	180 180 180	- 30 7	Not stated	Mature	Bulbs	14	0.04	METCON_127 Max. frozen storage: 23 month (stability not demonstrated)

Garlic

A total of 4 field trials were conducted with garlic in Brazil in the 1998–2003 growing seasons (METCON_128 to METCON_135). Plants received 3 spray applications of metconazole at nominal rates of either 90 g ai/ha or 180 g ai/ha with a 7 day interval between applications. Garlic bulbs were collected at 14 days after the last application. In decline trials, garlic bulbs were also collected at 1, 3, 7, 14 and 21 DALA. Residues of metconazole were either determined using method MK–240-001 (equivalent to method FAMS 050 01) with a limit of quantification of 0.02 mg/kg, or method SOP-PA.0206 with a limit of quantification of 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials were within 70–120% with an RSD of <20%.

Table 149 Residues of metconazole in garlic following foliar treatment (cGAP Brazil: 3×90 g ai/ha; 14 day PHI).

Location,	Applica	tion			Residues	(mg/kg)		Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period
Brazil, 1998, Engenheiro Coelho-SP,	3×90	7	500	Development of heads (bulbs)	Bulbs	14	<u>< 0.02</u>	RES-CARAMBA-13 1999/3000525 METCON_128
(Gigante)	3×180	7	500	Development of heads (bulbs)	Bulbs	14	< 0.02	1999/1015377 METCON_129 Max. frozen storage:

Location,	Applica	tion			Residues	s (mg/kg)		Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period
								3 month
Brazil, 1999,	3×90	7	800	Mature	Bulbs	1	< 0.05	RES-CARAMBA-12
Piedade, SP,						3	< 0.05	2000/30006/2 METCON 120
(Chonani)						1/	< 0.05	2000/1024649
						21	$\frac{< 0.05}{< 0.05}$	METCON 131
							0100	Max. frozen Max.
								frozen storage: 9
								month
Brazil, 1999,	3×90	7	800	Bulb growth	Bulbs	14	<u>< 0.05</u>	BR 301 00 163 J2
Pilar do Sul,								2000/3000683
SP, (Hunter)	2 100	-	000	D 11 1	D 11	1.4	0.11	METCON_132
	3×180	1	800	Bulb growth	Bulbs	14	0.11	2000/1024050 METCON 133
								Max_frozen Max
								frozen storage: 8
								month
Brazil, 2003,	3×90	7	Not	Mature	Bulbs	14	< 0.01	RES-CARAMBA-90
Ponta Grossa,			stated					2005/3000331
PR, (Roxo								METCON_134
Pérola)	3×180	7	Not	Mature	Bulbs	14	< 0.01	2005/1046040
			stated					METCON_135
								Max. frozen Max.
								month (stability not
								demonstrated)

Legume vegetables

Green bean

A total of five field trials were conducted with green bean in Brazil in the 1998 and 2003 growing seasons (METCON_136 to METCON_138). Plants received 3 spray applications of metconazole at nominal rates of either 45 g ai/ha, 90 g ai/ha or 180 g ai/ha with a 7 day interval between applications. Green beans were collected at 14–15 days after the last application. In one decline trial, green beans were also collected at 0, 7, 15, 21 and 28 DALA. Residues of metconazole were either determined using method MK–240-001 (equivalent to method FAMS 050 01) with a limit of quantification of 0.02 mg/kg, or method POP PA 0223 with a limit of quantification of 0.05 mg/kg. Overall mean procedural recoveries for metconazole spiked at 0.05–0.5 mg/kg in green beans were at $92 \pm 3\%$ (n = 6).

Table 150 Residues of metconazole in green beans following foliar treatment (cGAP Brazil: 3×14 g ai/ha; 15 day PHI).

Location,	Applica	tion			Residues	(mg/kg)		Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period
Brazil, 1998, Engenheiro Coelho-SP, (Macarrão	3×90	7	400	Formation of green beans (pods) and inflorescence	Pods with seeds	14	<u>< 0.02</u>	RES-CARAMBA-17 1999/3000524 METCON_136 2018/3003649
Favorito AG– 480)	3×180	7	400	Formation of green beans (pods) and inflorescence	Pods with seeds	14	< 0.02	METCON_137 Max. frozen storage: 3 month

Location,	Applica	tion			Residues	(mg/kg)		Report/Trial No.,		
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period		
Brazil, 2003, Ponta Grossa, PR, (Macarrão Trepador) ^a	3×45	7	500	81	Pods with seeds	0 7 15 21 28	$\begin{array}{c} 0.15 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	RES-CARAMBA–90 CD/F/2003/045/BRT 2004/3000236 METCON_138 Max. frozen storage: 6 month		
Brazil, 2003, Ponta Grossa, PR, (Macarrão	3×45	7	500	81	Pods with seeds	15	<u>< 0.05</u>	RES-CARAMBA–90 CD/F/2003/044/BRT 2004/3000236		
Trepador) ^a	3×90	7	500	81	Pods with seeds	15	< 0.05	METCON_138 Max. frozen storage: 6 month		
Brazil, 2003, Monte Mor, SP, (Carioca)	3×45	7	500	75	Pods with seeds	15	<u>< 0.05</u>	RES-CARAMBA–90 R/F/2003/047/BRU 2004/3000236		
	3×90	7	500	75	Pods with seeds	15	< 0.05	METCON_138 Max. frozen storage: 6 month		
Brazil, 2003, Uberlandia, MG,	3×45	7	1000	75	Pods with seeds	15	<u>< 0.05</u>	RES-CARAMBA–90 R/F/2003/048/BRV 2004/3000236		
(Braganca)	3×90	7	1000	75	Pods with seeds	15	< 0.05	METCON_138 Max. frozen storage: 6 month		

¹ It was noted that trial CD/F/2003/044/BRT and CD/F/2003/045/BRT were performed at the same location and year and therefore could not be considered as independent.

Pulses

Dry beans

A total of six field trials were conducted on dry beans in Canada in the 2007–2008 growing seasons (Green, 2010, METCON_139). Plants received 2 foliar applications of metconazole at nominal rates of 138–141 g ai/ha with 0.125% non-ionic surfactant. Beans were harvested at 20–22 days after the last application. Additional samples from a decline trial were collected at 8, 14, 21 and 26 days. Due to the variability in the moisture level of the samples, the analytical results were adjusted for 19% moisture content. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–2–1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in dry beans spiked at 0.02 and 0.1 mg/kg were $106 \pm 10\%$ (n = 6) and $107 \pm 9\%$ (n = 6), respectively.

Table 151 Residues of *cis*- and *trans*-metconazole in dry beans following foliar treatment (cGAP USA, Canada: 2×140 g ai/ha; 21 days PHI) in Canada.

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		No.,
Year (variety)	ai/ha	(days)		stage at	_					Reference,
				final			cis-	trans-	Total	Storage period
				appl.						
Canada, 2007,	140	-	349	BBCH	Bean	8	< 0.02	< 0.02	< 0.04	V-31583
Portage La	140	9	349	78-86	seed		< 0.02	< 0.02	< 0.04	2010/1232554
Prairie,							(< 0.02)	(< 0.02)	(< 0.04)	V-31583-07-A
Manitoba,						14	< 0.02	< 0.02	< 0.04	METCON_139
(Pintoba) ^b							< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 9
						21	< 0.02	< 0.02	< 0.04	month
							< 0.02	< 0.02	< 0.04	

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		No.,
Year (variety)	ai/ha	(days)		stage at	_					Reference,
				final			cis-	trans-	Total	Storage period
				appl.						
							(< 0.02)	(< 0.02)	(<0.04)	
						26	< 0.02	< 0.02	< 0.04	
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
Canada, 2007,	139	-	348	BBCH	Bean	22	< 0.02	< 0.02	< 0.04	V-31583
Oakville,	139	7	347	79-81	seed		< 0.02	< 0.02	< 0.04	2010/1232554
Manitoba,							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	V-31583-07-В
(Pintoba)										METCON 139
										Max. frozen
										storage: 9
										month
Canada, 2007,	140	-	349	BBCH	Bean	22	< 0.02	< 0.02	< 0.04	V-31583
Portage La	140	7	350	79-81	seed		< 0.02	< 0.02	< 0.04	2010/1232554
Prairie,							(< 0.02)	(< 0.02)	(< 0.04)	V-31583-07-C
Manitoba,										METCON_139
(Pintoba) ^b										Max. frozen
										storage: 9
										month
Canada, 2007,	140	-	350	BBCH	Bean	22	< 0.02	< 0.02	< 0.04	V-31583
Elm Creek,	139	7	348	79-81	seed		< 0.02	< 0.02	< 0.04	2010/1232554
Manitoba,							(< 0.02)	(< 0.02)	(<u><0.04</u>)	V-31583-07-D
(Pintoba)										METCON_139
										Max. frozen
										storage: 9
										month
Canada, 2007,	138	-	369	BBCH	Bean	21	< 0.02	< 0.02	< 0.04	V-31583
Taber, Alberta,	141	7	378	81	seed		< 0.02	< 0.02	< 0.04	2010/1232554
(Great Northern							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	V-31583-07-Е
White)										METCON_139
										Max. frozen
										storage: 9
										month
Canada, 2008,	140	-	401	BBCH	Bean	20	< 0.02	< 0.02	< 0.04	V-31583
Vanscoy,	140	7	401	79-82	seed		< 0.02	< 0.02	< 0.04	2010/1232554
Saskatchewan,							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	V-31583-07-F
(White										METCON_139
Mountain										Max. frozen
Pinto)										storage: 2
										month

^b It was noted that trial V-31583-07-A and V-31583-07-C were performed at the same location and year and therefore could not be considered as independent.

Additionally, a total of 13 field trials were conducted on dry beans in the USA in the 2010 growing season (Corley, 2013, METCON_140). Plants received 2 foliar applications of metconazole at nominal rates of 133–149 g ai/ha. Beans were harvested at 19–23 days after the last application. Residues of *cis-* and *trans-*metconazole were determined using method RM–41C–1with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis-* and *trans-*metconazole in dry beans spiked at 0.02 and 0.2 mg/kg were $84 \pm 13\%$ (n = 18) and $86 \pm 16\%$ (n = 18), respectively. Triazole metabolite triazolyl alanine was determined using method Meth–160 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for triazolyl alanine in dry bean spiked at 0.02–0.5 mg/kg were $83 \pm 16\%$ (n = 17).

Table	152	Residues	of cis-	and	trans-metc	onazole	in	dry	beans	following	foliar	treatment	(cGAP
USA,	Cana	da: 2×140) g ai/ha	ı; 21	days PHI) in	n the US	SA.						

Location,	Applic	ation			Residues (mg/kg) ^a					
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole	-	Reference,
Year (variety)		(days)		stage at final appl.			cis-	trans-	Total	Storage period
USA, 2010,	145	-	385	Fruiting/	Bean	19	< 0.02	< 0.02	< 0.04	10388
Parlier, CA,	141	7	374	blooming	seed		< 0.02	< 0.02	< 0.04	2013/1418322
(Ford Hook							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	10388.10-CA118
242)										METCON_140
										Max. frozen
	120		105	D 1 (11	5		0.00	0.00	0.04	storage: 5 month
USA, 2010,	139	-	187	Pod fill	Bean	22	< 0.02	< 0.02	< 0.04	10388
(Othelle pinte)	137	/	1//		seed		< 0.02	< 0.02	< 0.04	2013/1418322 10288 10 ID12
(Otheno pinto)							(< 0.02)	(< 0.02)	(<u>< 0.0+</u>)	METCON 140
										Max. frozen
										storage: 7 month
USA, 2010,	137	-	187	Pods	Bean	20	< 0.02	< 0.02	< 0.04	10388
Larned, KS,	138	8	187		seed		< 0.02	< 0.02	< 0.04	2013/1418322
(Chase pinto)							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	10388.10-KS02
										METCON_140
										Max. frozen
LICA 2010	1.40		107	р. '4'	D	21	< 0.02	< 0.02	< 0.04	storage: 6 month
USA, 2010 ,	140	-	18/	Fruiting	Bean	21	< 0.02	< 0.02	< 0.04	10388
Mavflower	144	0	190		seed		< 0.02	< 0.02	< 0.04	2013/1418522 10388 10-MI37
(Waynower navy)							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON 140
nuvy)										Max. frozen
										storage: 8 month
USA, 2010,	141	-	140	Pod filling	Bean	20	< 0.02	< 0.02	< 0.04	10388
Velva, ND,	140	7	140		seed		< 0.02	< 0.02	< 0.04	2013/1418322
(Lariat pinto)							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	10388.10-ND16
										METCON_140
										Max. frozen
USA 2010	140	_	187	Ripening	Rean	23	< 0.02	< 0.02	< 0.04	10388
Grand Island	140	- 7	178	Ripening	seed	23	< 0.02	< 0.02	< 0.04	2013/1418322
NE. (Marquis	1.0	,	170				(< 0.02)	(< 0.02)	(< 0.04)	10388.10-NE01
northern)							()	(()	METCON 140
, í										Max. frozen
										storage: 8 month
USA, 2010,	141	-	150	Fruiting	Bean	20	< 0.02	< 0.02	< 0.04	10388
Las Cruces,	140	6	168		seed		< 0.02	< 0.02	< 0.04	2013/1418322
NM(UI-196)							(< 0.02)	(< 0.02)	(≤ 0.04)	10388.10-NM10
pinto)										Max frozen
										storage: 9 month
USA, 2010,	140	-	421	Fruiting	Bean	21	< 0.02	< 0.02	< 0.04	10388
Freeville, NY,	140	7	421	0	seed		< 0.02	< 0.02	< 0.04	2013/1418322
(Hystyle)							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	10388.10-NY26
										METCON_140
										Max. frozen
LIG 4 . 0010	1.40		2(2	р. :.:	D	21	10.00	10.00	10.04	storage: 8 month
USA, 2010, Fromont, OH	149	-	262	Fruiting	Bean	21	< 0.02	< 0.02	< 0.04	10388
(French	130	0	234		seeu		< 0.02	< 0.02	< 0.04	2013/1418522 10388 10-OH*15
Horticultural)							(\ 0.02)	(\$ 0.02)	(<u> × 0.04</u>)	METCON 140
										Max. frozen
										storage: 7 month
USA, 2010,	133	-	430	Fruiting	Bean	21	< 0.02	< 0.02	< 0.04	10388
Fremont, OH,	141	6	439		seed		< 0.02	< 0.02	< 0.04	2013/1418322
(Great							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	10388.10-OH*16
northern)										METCON_140

Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial No.,
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		Reference,
Year (variety)		(days)		stage at final appl.			cis-	trans-	Total	Storage period
										Max. frozen storage: 7 month
USA, 2010, Moxee, WA, (Othelo)	140 144	- 6	168 168	Boom/ podded	Bean seed	21	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (<u>< 0.04</u>)	10388 2013/1418322 10388.10- WA*33 METCON_140 Max. frozen storage: 8 month
USA, 2010, Arlington, WI, (California early kidney)	145 144	- 8	178 178	Pods/beans	Bean seed	20	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (<u>< 0.04</u>)	10388 2013/1418322 10388.10-WI115 METCON_140 Max. frozen storage: 8 month
USA, 2010, Arlington, WI, (Montcalm dard red kidney)	146 145	- 6	468 477	Pods/beans	Bean seed	19	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (<u>< 0.04</u>)	10388 2013/1418322 10388.10-WI116 METCON_140 Max. frozen storage: 8 month

Table 153 Residues of triazolyl alanine in dry beans following foliar treatment (cGAP USA, Canada: 2×140 g ai/ha; 21 days PHI) in the USA.

Location,	Application Residues (mg/kg) ^a							Report/Trial No.,
	g	Interval	L/ha	Growth stage	Sample	DALA	Triazolyl	Reference,
Year (variety)	ai/ha	(days)		at final appl.			alanine	Storage period
USA, 2010, Parlier,	145	-	385	Fruiting/	Bean	19	< 0.02	10388
CA, (Ford Hook 242)	141	7	374	blooming	seed		< 0.02	2013/1418322
							(< 0.02)	10388.10-CA118
								METCON_140
								Max. frozen
								storage: 3 month
USA, 2010,	139	-	187	Pod fill	Bean	22	< 0.02	10388
Kimberley, ID,	137	7	177		seed		< 0.02	2013/1418322
(Othello pinto)							(< 0.02)	10388.10-ID13
								METCON_140
								Max. frozen
								storage: 5 month
USA, 2010, Larned,	137	-	187	Pods	Bean	20	0.023	10388
KS, (Chase pinto)	138	8	187		seed		0.021	2013/1418322
							(0.022)	10388.10-KS02
								METCON_140
								Max. frozen
								storage: 4 month
USA, 2010, Holt, MI,	140	-	187	Fruiting	Bean	21	0.35	10388
(Mayflower navy)	144	6	196		seed		0.35	2013/1418322
							(0.35)	10388.10-MI37
							Control:	METCON_140
							0.25	Max. frozen
								storage: 6 month
USA, 2010, Velva,	141	-	140	Pod filling	Bean	20	0.024	10388
ND, (Lariat pinto)	140	7	140		seed		0.031	2013/1418322
							(0.028)	10388.10-ND16
							Control:	METCON_140
							0.022	Max. frozen
								storage: 5 month

Location,	Applic	ation			Residues	(mg/kg) ^a		Report/Trial No.,
	g	Interval	L/ha	Growth stage	Sample	DALA	Triazolyl	Reference,
Year (variety)	ai/ha	(days)		at final appl.	_		alanine	Storage period
USA, 2010, Grand	140	-	187	Ripening	Bean	23	0.022	10388
Island, NE, (Marquis	140	7	178		seed		0.020	2013/1418322
northern)							(0.021)	10388.10-NE01
								METCON_140
								Max. frozen
								storage: 6 month
USA, 2010, Las	141	-	150	Fruiting	Bean	20	0.023	10388
Cruces, NM (UI-196	140	6	168		seed		0.024	2013/1418322
pinto)							(0.024)	10388.10-NM10
								METCON_140
								Max. frozen
	1.10		10.1					storage: / month
USA, 2010, Freeville,	140	-	421	Fruiting	Bean	21	< 0.02	10388
NY, (Hystyle)	140	1	421		seed		< 0.02	2013/1418322
							(< 0.02)	10388.10-NY26
								MEICON_140
								storage: 5 month
USA 2010 Fremont	1/10	_	262	Fruiting	Rean	21	< 0.02	10388
OH (French	136	6	234	Trutting	seed	21	< 0.02	2013/1418322
Horticultural)	150	0	234		secu		< 0.02	10388 10-OH*15
1101ticulturul)							(< 0.02)	METCON 140
								Max frozen
								storage: 5month
USA, 2010, Fremont,	133	-	430	Fruiting	Bean	21	< 0.02	10388
OH. (Great northern)	141	6	439	8	seed		< 0.02	2013/1418322
							(< 0.02)	10388.10-OH*16
								METCON 140
								Max. frozen
								storage: 5 month
USA, 2010, Moxee,	140	-	168	Boom/	Bean	21	< 0.02	10388
WA, (Othelo)	144	6	168	podded	seed		< 0.02	2013/1418322
							(< 0.02)	10388.10-WA*33
								METCON_140
								Max. frozen
								storage: 6 month
USA, 2010, Arlington,	145	-	178	Pods/beans	Bean	20	0.023	10388
WI, (California early	144	8	178		seed		0.026	2013/1418322
kidney)							(0.025)	10388.10-W1115
								Mer free
								storage: 6 month
USA 2010 Arlington	146		169	Pode/beens	Baan	10	0.038	10388
WI (Monteolm dord	140	-	408	1 Ous/ Dealls	seed	17	0.036	10300
red kidney)	145	0	+//		seeu		(0.030)	10388 10-WI116
ica kiancy)							Control	MFTCON 140
							0.027	Max. frozen
								storage: 5 month

Dry peas

A total of nine field trials were conducted on dry peas in Canada in the 2007–2008 growing seasons (Green, 2010, METCON_141). Plants received 2 foliar applications of metconazole at nominal rates of 136–142 g ai/ha with 0.125% non-ionic surfactant. Peas were harvested at 21 days after the last application. Additional samples from a decline trial were collected at 6, 13, 20 and 26 days. Due to the variability in the moisture level of the samples, the analytical results were adjusted for 18% moisture content. Residues of *cis*- and *trans*-metconazole were determined using method RM-41C-2–1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-

metconazole in dry beans spiked at 0.02 and 0.2 mg/kg were $96 \pm 13\%$ (n = 10) and $94 \pm 8\%$ (n = 10), respectively.

Table 154 Residues of *cis*- and *trans*-metconazole in dry peas following foliar treatment (cGAP USA, Canada: 2×140 g ai/ha; 21 days PHI) in Canada.

Location,	Applic	cation			Residues	s (mg/kg) a	ı			Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		No.,
Year (variety)	ai/ha	(days)		stage at final			cis-	trans-	Total	Reference, Storage period
G 1 0007	120		2.40	appi.	D	6				11.01570
Canada, 2007,	138	-	349	BBCH	Pea	6	< 0.02	< 0.02	< 0.04	V-315/9
Portage La	140	6	350	8/-89	seed		< 0.02	< 0.02	< 0.04	201000149
Prairie,						10	(< 0.02)	(< 0.02)	(< 0.04)	V-315/9-0/-A
Manitoba,						13	< 0.02	< 0.02	< 0.04	MEICON_141
(DS Admiral)							< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 9
						20	< 0.02	< 0.02	< 0.04	month
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
						27	< 0.02	< 0.02	< 0.04	
							0.022	< 0.02	< 0.04	
							(0.021)	(< 0.02)	(<u>0.041</u>)	
Canada, 2007,	141	-	353	BBCH	Pea	21	0.022	< 0.02	0.042	V-31579
Oakville,	141	10	351	79	seed		0.021	< 0.02	0.041	201000149
Manitoba,							(0.022)	(< 0.02)	(<u>0.042</u>)	V-31579-07-В
(DS Admiral)										METCON_141
										Max. frozen
										storage: 9
~ 1 0 00 7			250	DDGH				0.00	0.04	month
Canada, 2007,	141	-	378	BBCH	Pea	21	< 0.02	< 0.02	< 0.04	V-31579
Wakaw,	141	7	378	77	seed		< 0.02	< 0.02	< 0.04	201000149
Saskatchewan,							(< 0.02)	(< 0.02)	(≤ 0.04)	V-315/9-0/-C
(DS Admiral)										MEICON_141
										Max. frozen
										storage: 10
C 1 2007	1.40		276	DDCH	D	21	0.046	< 0.02	0.0((month
Canada, 2007 ,	140	- 7	3/6	BBCH	Pea	21	0.046	< 0.02	0.066	V-315/9 201000140
Alvena,	141	/	3//	//	seed		(0.035)	< 0.02	(0.055)	201000149 V 21570.07 D
(DS A dmiral)							(0.041)	(< 0.02)	(<u>0.001</u>)	V=313/9-0/-D METCON 141
(DS Adilital)										Max frozen
										storage: 0
										month
Canada 2007	141	-	378	BBCH	Pea	21	0.027	< 0.02	0.047	V_31579
Waldheim	140	7	374	70	read	21	0.027	< 0.02	0.047	201000149
Saskatchewan	140	/	5/4	17	seeu		(0.033)	< 0.02	(0.055)	V_31579_07_F
(Cutlass)							(0.051)	(< 0.02)	(<u>0.051</u>)	METCON 141
(Culluss)										Max frozen
										storage: 9
										month
Canada, 2007	139	-	374	BBCH	Pea	21	0.045	< 0.02	0.065	V-31579
Fort	141	7	377	83-84	seed	21	0.061	< 0.02	0.081	201000149
Saskatchewan.		,	0,,	00 01			(0.053)	(< 0.02)	(0.073)	V-31579-07-F
Alberta							(0.000)	(0.02)	(01072)	METCON 141
(Cooper)										Max. frozen
(storage: 9
										month
Canada, 2007.	141	-	376	BBCH	Pea	22	0.027	< 0.02	0.047	V-31579
Josephburg.	142	7	380	81	seed		0.028	< 0.02	0.048	201000149
Alberta	-						(0.028)	(< 0.02)	(0.048)	V-31579-07-G
(Cooper)							· · · ·		(/	METCON 141
× • /										Max. frozen
										storage: 9
										month

Location,	Applie	cation			Residues (mg/kg) ^a					Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		No.,
Year (variety)	ai/ha	(days)		stage at						Reference,
				final			cis-	trans-	Total	Storage period
				appl.						
Canada, 2007,	136	-	364	BBCH	Pea	20	< 0.02	< 0.02	< 0.04	V-31579
Mundare,	138	7	368	82	seed		< 0.02	< 0.02	< 0.04	201000149
Alberta							(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	V-31579-07-Н
(Cooper)										METCON_141
										Max. frozen
										storage: 9
										month
Canada, 2008,	183	-	342	BBCH	Pea	21	0.072	0.023	0.096	V-31579
Elm Creek,	137	7	342	79	seed		0.050	< 0.02	0.072	201000149
Manitoba,							(0.061)	(0.022)	(<u>0.084</u>)	V-31579-07-I
(Tudor)										METCON_141
										Max. frozen
										storage: 2
										month

Additionally, a total of six field trials were conducted on dry peas in the USA in the 2010 growing season (Corley, 2013, METCON_142). Plants received 2 foliar applications of metconazole at nominal rates of 139–147 g ai/ha. Peas were harvested at 20–22 days after the last application. Additional samples from a decline trial were collected at 9, 14, 21 and 28 days. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–1with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in dry beans spiked at 0.02 and 0.2 mg/kg were $99 \pm 13\%$ (n = 15) and $98 \pm 16\%$ (n = 15), respectively. Triazole metabolite triazolyl alanine was determined using method Meth–160 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for triazolyl alanine in dry bean spiked at 0.02–10 mg/kg were $88 \pm 9\%$ (n = 18).

Table 155 Residues of *cis*- and *trans*-metconazole in dry peas following foliar treatment (cGAP USA, Canada: 2×140 g ai/ha; 21 days PHI) in the USA.

Location,	Applic	ation			Residues	Report/Trial				
	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		No.,
Year (variety)	ai/ha	(days)		stage at final appl.			cis-	trans-	Total	Reference, Storage period
USA, 2010, Maricopa, AZ, (Knight)	147 142	- 7	290 281	Fruiting	Pea seed	21	0.042 0.030 (0.036)	< 0.02 < 0.02 (< 0.02)	0.062 0.050 (<u>0.056</u>)	10389 2013/1418321 10389.10- AZ*12 METCON_142 Max. frozen storage: 13 month
USA, 2010, Kimberley, ID, (Joel)	139 142	7	140 140	Maturing	Pea seed	9 14 21 28	< 0.02 < 0.02 (< 0.02) 0.035 0.035 (0.035) < 0.02 < 0.02 (< 0.02) 0.026 < 0.02 (0.023)	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.	< 0.04 < 0.04 (< 0.04) 0.055 0.055 (0.055) < 0.04 < 0.04 (< 0.04) 0.046 < 0.04 (0.043)	10389 2013/1418321 10389.10-ID14 METCON_142 Max. frozen storage: 11 month
USA, 2010, Velva, ND, (Golden) ^b	142 140	- 8	140 140	Blooming	Pea seed	22	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (<u>< 0.04</u>)	10389 2013/1418321 10389.10-ND17

Location,	Applic	ation			Residues	Residues (mg/kg) ^a					
	g	Interval	L/ha	Growth	Sample	DALA	Metcona	zole		No.,	
Year (variety)	ai/ha	(days)		stage at final appl.			cis-	trans-	Total	Reference, Storage period	
										METCON_142 Max. frozen storage: 13 month	
USA, 2010, Velva, ND, (Golden) ^b	141 141	- 8	140 140	Blooming	Pea seed	22	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (< 0.04)	10389 2013/1418321 10389.10-ND18 METCON_142 Max. frozen storage: 13 month	
USA, 2010, Grand Island, NE, (Austrian Winter)	140 141	- 7	187 187	Ripening	Pea seed	22	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (≤ 0.04)	10389 2013/1418321 10389.10-NE02 METCON_142 Max. frozen storage: 11 month	
USA, 2010, Moxee, WA, (Columbian)	141 139	- 7	206 206	Bloom/seed	Pea seed	20	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (<u>< 0.04</u>)	10389 2013/1418321 10389.10- WA*34 METCON_142 Max. frozen storage: 11 month	

^b It was noted that trial ND17 and ND18 were performed at the same location and year and therefore could not be considered as independent.

Table 156 Residues of triazoly	l alanine in dr	ry peas	following foliar	treatment ((cGAP U	JSA, (Canada:
2×140 g ai/ha; 21 days PHI) in	the USA.						

Location,	Applic	ation			Residues	(mg/kg) ^a		Report/Trial No.,
	g	Interval	L/ha	Growth stage	Sample	DALA	Triazolyl	Reference,
Year (variety)	ai/ha	(days)		at final appl.	-		alanine	Storage period
USA, 2010,	147	-	290	Fruiting	Pea	21	0.064	10389
Maricopa, AZ,	142	7	281		seed		0.076	2013/1418321
(Knight)							(0.070)	10389.10-AZ*12
							Control:	METCON_142
							0.037	Max. frozen
								storage: 14 month
USA, 2010,	139	-	140	Maturing	Pea	9	0.17	10389
Kimberley, ID, (Joel)	142	7	140		seed		0.18	2013/1418321
							(0.17)	10389.10-ID14
						14	0.18	METCON_142
							0.23	Max. frozen
							(0.20)	storage: 13 month
						21	0.16	
							0.22	
							(0.19)	
							Control:	
							0.026	
						28	0.17	
							0.18	
							(0.17)	
USA, 2010, Velva,	142	-	140	Blooming	Pea	22	1.8	10389
ND, (Golden)	140	8	140		seed		1.5	2013/1418321
							(1.6)	10389.10-ND17

Location,	Applic	ation			Residues	(mg/kg) ^a	Report/Trial No.,	
	g	Interval	L/ha	Growth stage	Sample	DALA	Triazolyl	Reference,
Year (variety)	ai/ha	(days)		at final appl.			alanine	Storage period
							Control.	METCON_142
							0.044,	Max. frozen
							0.041	storage: 13 month
USA, 2010, Velva,	141	-	140	Blooming	Pea	22	3.2	10389
ND, (Golden)	141	8	140		seed		3.1	2013/1418321
							(3.1)	10389.10-ND18
							Control:	METCON_142
							1.4, 1.2	Max. frozen
								storage: 13 month
USA, 2010, Grand	140	-	187	Ripening	Pea	22	0.60	10389
Island, NE, (Austrian	141	7	187		seed		0.58	2013/1418321
Winter)							(0.59)	10389.10-NE02
							Control:	METCON_142
							0.19	Max. frozen
								storage: 13 month
USA, 2010, Moxee,	141	-	206	Bloom/seed	Pea	20	0.45	10389
WA, (Columbian)	139	7	206		seed		0.46	2013/1418321
							(0.46)	10389.10-WA*34
							Control:	METCON_142
							0.16	Max. frozen
								storage: 11 month

Soya bean

A total of six field trials were conducted on soya beans in the USA during the 2004 growing season (Leonard, 2005, METCON_143). Plants received 2 foliar applications of metconazole at nominal rates of 80 g ai/ha with 0.25% adjuvant. Soya bean seeds were harvested 30 or 31 days after the last application. Residues of *cis-* and *trans-*metconazole were determined using method 550/0 with a limit of quantification of 0.005 mg/kg per isomer. Method validation and procedural recoveries for all trials were within 70–120% with an RSD of <20%.

Table 157 Residues of *cis*- and *trans*-metconazole in soya bean seeds following foliar treatment (cGAP Brazil: 3×54 g ai/ha; 14 day PHI) in the USA.

Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial No.,
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconazo	ole		Reference,
Year (variety)	-	(days)		stage at	·					Storage period
				final			cis-	trans-	Total	
				appl.						
USA, 2004,	80	-	207	BBCH 79	Soya	30	< 0.005	< 0.005	< 0.010	204640
Chula, GA,	80	10	206		bean		< 0.005	< 0.005	< 0.010	2004/5000755
(Dekalb					seed		(< 0.005)	(< 0.005)	(<0.010)	RCN 2004192
H7242RR)										METCON_143
										Max. frozen
										storage: 1 month
USA, 2004,	80	-	189	BBCH 79	Soya	30	< 0.005	< 0.005	< 0.010	204640
Newport, AR,	80	10	188		bean		< 0.005	< 0.005	< 0.010	2004/5000755
(Genesis					seed		(< 0.005)	(< 0.005)	(<0.010)	RCN 2004193
C444NRR)										METCON_143
										Max. frozen
										storage: 2 month
USA, 2004,	80	-	189	BBCH 79	Soya	30	< 0.005	< 0.005	< 0.010	204640
Proctor, AR,	80	10	190		bean		< 0.005	< 0.005	< 0.010	2004/5000755
(DP5634RR)					seed		(< 0.005)	(< 0.005)	(<0.010)	RCN 2004194
										METCON_143
										Max. frozen
										storage: 1 month
USA, 2004,	80	-	188	BBCH 79	Soya	30	< 0.005	< 0.005	< 0.010	204640
Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial No.,
----------------	---------	----------	------	----------	----------	----------------------	-----------	-----------	------------------	-------------------
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconazo	ole		Reference,
Year (variety)	-	(days)		stage at	-					Storage period
				final			cis-	trans-	Total	
				appl.						
Stoneville,	80	10	189		bean		< 0.005	< 0.005	< 0.010	2004/5000755
MS, (Pioneer					seed		(< 0.005)	(< 0.005)	(<0.010)	RCN 2004195
95B96)										METCON_143
										Max. frozen
										storage: 2 month
USA, 2004,	80	-	188	BBCH 79	Soya	30	0.035	0.009	0.044	204640
Arkansaw, WI,	80	10	189		bean		0.036	0.011	0.047	2004/5000755
(NK S20-G4)					seed		(0.036)	(0.010)	(<u>0.046</u>)	RCN 2004196
										METCON_143
										Max. frozen
										storage: 3 month
USA, 2004,	80	-	100	BBCH 79	Soya	31	< 0.005	< 0.005	< 0.010	204640
Carlyle, IL,	80	10	95		bean		< 0.005	< 0.005	< 0.010	2004/5000755
(BT-383CR)					seed		(< 0.005)	(< 0.005)	(<0.010)	RCN 2004197
										METCON_143
										Max. frozen
										storage: 1 month

A total of 15 field trials were conducted on soya bean in Canada and the USA during the 2005 growing season (White & Saha, 2006, METCON_144). Plants received 2 foliar applications of metconazole at nominal rates of 80 g ai/ha. Soya beans were harvested at 28–32 days after the last application. Additional samples from decline trials were collected at 23, 29–30, 36–37, and 43 44 days. Residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of *cis*- and *trans*-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Residues of metabolites M11, M21 and M30 were each below the LOQ of 0.01 mg/kg in all trials.

Table 158 Residues of *cis*- and *trans*-metconazole in soya bean seeds following foliar treatment (cGAP Brazil: 3×54 g ai/ha; 14 day PHI) in Canada and the USA.

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metconazo	ole		No.,
Year	ai/ha	(days)		stage at	_					Reference,
(variety)				final			cis-	trans-	Total	Storage period
				appl.						
USA, 2005,	80	-	176	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
Chula, GA,	80	10	180	79	bean		< 0.005	< 0.005	< 0.010	2006/7006995
(Dekalb					seed		(< 0.005)	(< 0.005)	(<0.010)	R05111
H7242RR)										METCON_144
										Max. frozen
										storage: 4.4
										month
USA, 2005,	80	-	189	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
Theilman,	80	10	187	77	bean		< 0.005	< 0.005	< 0.010	2006/7006995
MN,					seed		(< 0.005)	(< 0.005)	(<u>< 0.010</u>)	R05112
(Asgrow										METCON_144
AG1603)										Max. frozen
										storage: 5.2
										month
USA, 2005,	80	-	188	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
Dumfries,	80	10	185	77	bean		< 0.005	< 0.005	< 0.010	2006/7006995
MN,					seed		(< 0.005)	(< 0.005)	(<u>< 0.010</u>)	R05113

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
,	g	Interval	L/ha	Growth	Sample	DALA		No.,		
Year	ai/ha	(days)		stage at	F					Reference,
(variety)		(aujs)		final			cis-	trans-	Total	Storage period
× 57				appl.						0 1
(Asgrow										METCON 144
AG1603)										Max. frozen
1101000)										storage: 5.2
										month
USA, 2004,	80	-	149	BBCH	Sova	30	0.007	< 0.005	0.012	137726
Grandfork.	80	10	151	79	bean		0.005	< 0.005	0.010	2006/7006995
IL,		-	-		seed		(0.006)	(< 0.005)	(0.011)	R05114
(DKB38-									·	METCON 144
52)										Max. frozen
										storage: 4.8
										month
USA, 2005,	80	-	175	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
Carlyle, IL,	80	11	184	79	bean		< 0.005	< 0.005	< 0.010	2006/7006995
(NK 43-B1)					seed		(< 0.005)	(< 0.005)	(<u>< 0.010</u>)	R05115
										METCON_144
										Max. frozen
										storage: 3.9
										month
USA, 2005,	80	-	176	BBCH	Soya	31	< 0.005	< 0.005	< 0.010	137726
Wyoming,	80	11	175	89	bean		< 0.005	< 0.005	< 0.010	2006/7006995
IL,					seed		(< 0.005)	(< 0.005)	(≤ 0.010)	R05116
(Asgrow										METCON_144
3202)										Max. frozen
										storage: 4./
LIGA 2005	80		104	DDCH	0	20	< 0.005	< 0.005	< 0.010	month
USA, 2005,	80	-	184	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	13//20
ND	80	10	189	//	bean		< 0.003	< 0.003	< 0.010	2000/7000993 D05117
IND,					seed		(< 0.003)	(< 0.003)	(<u>< 0.010</u>)	KUJII/ METCON 144
(Ploheer)										MEICON_144
9210100)										storage: 4.8
										month
USA 2005	80	_	187	BBCH	Sova	23	< 0.005	< 0.005	< 0.010	137726
Vork NB	80	9	187	77	bean	25	0.006	< 0.005	0.011	2006/7006995
(Pioneer	00	,	107	, ,	seed		(0,01)	(< 0.005)	(0.01)	R05118
92M80)					seed	30	< 0.005	< 0.005	< 0.010	METCON 144
<i>y</i> _ 1100 <i>y</i>						20	< 0.005	< 0.005	< 0.010	Max. frozen
							(< 0.005)	(< 0.005)	(< 0.010)	storage: 5.0
						36	< 0.005	< 0.005	< 0.010	month
							< 0.005	< 0.005	< 0.010	
							(< 0.005)	(< 0.005)	(< 0.010)	
						43	0.005	< 0.005	0.010	
							< 0.005	< 0.005	< 0.010	
							(0.005)	(< 0.005)	(0.010)	
USA, 2005,	80	-	184	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
Grand	80	10	187	77	bean		< 0.005	< 0.005	< 0.010	2006/7006995
Island, NB,					seed		(< 0.005)	(< 0.005)	(<0.010)	R05119
(Dyna-Gro										METCON_144
37B28RR)										Max. frozen
										storage: 4.6
										month
Canada,	80	-	262	BBCH	Soya	32	0.023	0.006	0.029	137726
2005,	80	9	299	77	bean		0.025	0.006	0.031	2006/7006995
Branchton,					seed		(0.024)	(0.006)	(<u>0.030</u>)	R05120
ON										METCON_144
(Mycogen										Max. frozen
5140RR)										storage: 4.7
1104 2005	0.0		125	DDCU	0	21	0.007	< 0.007	0.011	month
USA, 2005,	80	-	135	BBCH	Soya	31	0.006	< 0.005	0.011	137726
wapeno,	00	10	13/	13	bean		0.007	< 0.005	0.012	2000//000993

Location,	Applic	cation			Residues	(mg/kg) ^a			Report/Trial	
	g	Interval	L/ha	Growth	Sample	DALA	Metconazo	ole		No.,
Year	ai/ha	(days)		stage at	<u>^</u>					Reference,
(variety)				final			cis-	trans-	Total	Storage period
· · · ·				appl.						
IA,					seed		(0.007)	(< 0.005)	(0.012)	R05121
(Pioneer									, <u> </u>	METCON 144
93M11)										Max. frozen
<i>,</i>										storage: 4.0
										month
USA, 2005,	80	-	138	BBCH	Soya	23	< 0.005	< 0.005	< 0.010	137726
Jefferson,	80	9	131	75	bean		< 0.005	< 0.005	< 0.010	2006/7006995
IA,					seed		(< 0.005)	(< 0.005)	(< 0.010)	R05122
(Pioneer						30	< 0.005	< 0.005	< 0.010	METCON 144
93B87)							< 0.005	< 0.005	< 0.010	Max. frozen
· ·							(< 0.005)	(< 0.005)	(<0.010)	storage: 5.3
						37	< 0.005	< 0.005	< 0.010	month
							< 0.005	< 0.005	< 0.010	
							(< 0.005)	(< 0.005)	(< 0.010)	
						44	< 0.005	< 0.005	< 0.010	
							< 0.005	< 0.005	< 0.010	
							(< 0.005)	(< 0.005)	(< 0.010)	
USA, 2005,	80	-	138	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
Keokuk,	80	10	142	75	bean		< 0.005	< 0.005	< 0.010	2006/7006995
IA,					seed		(< 0.005)	(< 0.005)	(<u>< 0.010</u>)	R05123
(DeKalb										METCON_144
3451)										Max. frozen
										storage: 4.1
										month
USA, 2005,	80	-	192	BBCH	Soya	28	< 0.005	< 0.005	< 0.010	137726
Conklin,	80	10	191	81	bean		< 0.005	< 0.005	< 0.010	2006/7006995
MI,					seed		(< 0.005)	(< 0.005)	(<u>< 0.010</u>)	R05124
(Asgrow:										METCON_144
AG1903)										Max. frozen
										storage: 4.0
										month
Canada,	80	-	228	BBCH	Soya	30	< 0.005	< 0.005	< 0.010	137726
2005, St-	80	11	215	79	bean		< 0.005	< 0.005	< 0.010	2006/7006995
Pie-de-					seed		(< 0.005)	(< 0.005)	(<u>< 0.010</u>)	R05125
Bagot, QC,										METCON_144
(26-02R										Max. frozen
RR)										storage: 4.2
										month

Table 159 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in soya bean seeds following foliar treatment (cGAP Brazil: 3×54 g ai/ha; 14 day PHI) in the Canada and the USA.

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	e		No.,
Year	ai/ha	(days)		stage at						Reference,
(variety)				final			Т	ТА	TAA	Storage period
				appl.						
USA, 2005,	80	-	176	BBCH	Soya	30	< 0.05	< 0.05	0.69	137726
Chula, GA,	80	10	180	79	bean		< 0.05	< 0.05	0.64	2006/7006995
(Dekalb					seed		(< 0.05)	(< 0.05)	(0.67)	R05111
H7242RR)								Control:		METCON_144
								0.91		Max. frozen
										storage: 4.4
										month
USA, 2005,	80	-	189	BBCH	Soya	30	< 0.05	< 0.05	< 0.05	137726
Theilman,	80	10	187	77	bean		< 0.05	< 0.05	< 0.05	2006/7006995

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
,	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	e		No.,
Year (variety)	ai/ha	(days)		stage at final appl.			Т	ТА	TAA	Reference, Storage period
MN, (Asgrow AG1603)				<u></u>	seed		(< 0.05)	(< 0.05)	(< 0.05)	R05112 METCON_144 Max. frozen storage: 5.2 month
USA, 2005, Dumfries, MN, (Asgrow AG1603)	80 80	- 10	188 185	BBCH 77	Soya bean seed	30	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	0.08 0.06 (0.07)	137726 2006/7006995 R05113 METCON_144 Max. frozen storage: 5.2 month
USA, 2004, Grandfork, IL, (DKB38– 52)	80 80	-10	149 151	BBCH 79	Soya bean seed	30	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05) Control: 0.09	0.08 0.07 (0.08)	137726 2006/7006995 R05114 METCON_144 Max. frozen storage: 4.8 month
USA, 2005, Carlyle, IL, (NK 43-B1)	80 80	- 11	175 184	BBCH 79	Soya bean seed	30	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	0.08 0.08 (0.08)	137726 2006/7006995 R05115 METCON_144 Max. frozen storage: 3.9 month
USA, 2005, Wyoming, IL, (Asgrow 3202)	80 80	- 11	176 175	BBCH 89	Soya bean seed	31	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05) Control: 0.06	0.06 0.07 (0.07)	137726 2006/7006995 R05116 METCON_144 Max. frozen storage: 4.7 month
USA, 2005, Osceola, NB, (Pioneer 92M80)	80 80	- 10	184 189	BBCH 77	Soya bean seed	30	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	0.05 0.06 (0.06)	137726 2006/7006995 R05117 METCON_144 Max. frozen storage: 4.8 month
USA, 2005, York, NB, (Pioneer 92M80)	80 80	9	187 187	BBCH 77	Soya bean seed	23 30 36 43	< 0.05 < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.0	$ \begin{array}{r} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \end{array} $	$\begin{array}{c} 0.15\\ 0.11\\ (0.13)\\ 0.07\\ 0.09\\ (0.08)\\ 0.09\\ < 0.05\\ (0.07)\\ 0.06\\ 0.06\\ (0.06) \end{array}$	137726 2006/7006995 R05118 METCON_144 Max. frozen storage: 5.0 month
USA, 2005, Grand Island, NB, (Dyna-Gro 37B28RR)	80 80	-10	184 187	BBCH 77	Soya bean seed	30	0.07 0.05 (0.07) Control: 0.06	< 0.05 < 0.05 (< 0.05) Control: 0.10	0.06 0.10 (0.07)	137726 2006/7006995 R05119 METCON_144 Max. frozen storage: 4.6 month
Canada,	80	-	262	BBCH	Soya	32	0.07	< 0.05	0.08	137726

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	e		No.,
Year (variety)	ai/ha	(days)		stage at final appl.			Т	ТА	TAA	Reference, Storage period
2005, Branchton, ON (Mycogen 5140RR)	80	9	299	77	bean seed		0.10 (0.07)	< 0.05 (< 0.05)	0.07 (0.07)	2006/7006995 R05120 METCON_144 Max. frozen storage: 4.7 month
USA, 2005, Wapello, IA, (Pioneer 93M11)	80 80	10	135 137	BBCH 75	Soya bean seed	31	0.08 0.09 (0.07) Control: 0.10	< 0.05 < 0.05 (< 0.05) Control: 0.07	0.06 0.08 (0.07)	137726 2006/7006995 R05121 METCON_144 Max. frozen storage: 4.0 month
USA, 2005, Jefferson, IA, (Pioneer 93B87)	80 80	9	138 131	BBCH 75	Soya bean seed	23 30 37 44	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.05 < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) < 0.05 (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05) (< 0.05	$\begin{array}{c} 0.11\\ 0.12\\ (0.12)\\ 0.10\\ 0.10\\ (0.10)\\ 0.09\\ 0.07\\ (0.08)\\ 0.09\\ 0.09\\ (0.09)\\ \end{array}$	137726 2006/7006995 R05122 METCON_144 Max. frozen storage: 5.3 month
USA, 2005, Keokuk, IA, (DeKalb 3451)	80 80	- 10	138 142	BBCH 75	Soya bean seed	30	0.07 0.08 (0.08)	Control: 0.06 < 0.05 < 0.05 (< 0.05) Control: 0.08	0.21 0.13 (0.17)	137726 2006/7006995 R05123 METCON_144 Max. frozen storage: 4.1 month
USA, 2005, Conklin, MI, (Asgrow: AG1903)	80 80	-10	192 191	BBCH 81	Soya bean seed	28	0.08 0.07 (0.08) Control: 0.08	< 0.05 < 0.05 (< 0.05) Control: 0.06	< 0.05 0.05 (0.05)	137726 2006/7006995 R05124 METCON_144 Max. frozen storage: 4.0 month
Canada, 2005, St- Pie-de- Bagot, QC, (26-02R RR)	80 80	- 11	228 215	BBCH 79	Soya bean seed	30	0.08 0.10 (0.09) Control: 0.08	< 0.05 < 0.05 (< 0.05) Control: 0.07	0.12 0.12 (0.12)	137726 2006/7006995 R05125 METCON_144 Max. frozen storage: 4.2 month

Additionally, total of five field trials were conducted on soya bean in Brazil during the 2005 growing season (Dantas, 2006, METCON_145). Plants received 3 foliar applications of metconazole at nominal rates of 54 g ai/ha or 108 g ai/ha. Soya beans were harvested at 14 days after the last application. Additional samples from a decline trial were collected at 0, 7, 14, 21 and 28 days. Residues of metconazole were determined using method SOP-PA.0223 with a limit of quantification of 0.01 mg/kg. Overall mean procedural recoveries for metconazole in soya beans spiked at 0.01 and 1.0 mg/kg were $100 \pm 15\%$ (n = 6).

Metconazole

Location,	Applica	tion			Residues	(mg/kg)		Report/Trial No.,
Year (variety)	g ai/ha	Interval (days)	L/ha	Growth stage at final appl.	Sample	DALA	Metconazole	Reference, Storage period
Brazil, 2005, Uberlandia, MG, (Monsoy 8329)	3×54	Not stated	Not stated	BBCH 89 BBCH 79 BBCH 77 BBCH 77 BBCH 74	Soya bean seed	0 7 14 21 28	$\begin{array}{c} 0.02 \\ < 0.01 \\ < 0.01 \\ < 0.013 \\ < 0.013 \end{array}$	Rf-1005-05 2006/1008232 EC/CD/F/2005/022/BRV/A1 METCON_145 Max. frozen storage: not stated
Brazil, 2005, Uberlandia, MG, (Monsoy 8329)	3×54 3×108	Not stated Not stated	Not stated Not stated	BBCH 77 BBCH 77	Soya bean seed Soya bean	14 14	< 0.01	Rf-1005-05 2006/1008232 EC/R/F/2005/022/BRV/A1 METCON_145 Max. frozen storage: not
Brazil, 2005, Ponta Grossa, PR. (BR–16)	3×54	Not stated	Not stated	BBCH 87	seed Soya bean seed	14	0.02	stated Rf–1005-05 2006/1008232 EC/R/F/2005/022/BRT/A1
, ()	3×108	Not stated	Not stated	BBCH 87	Soya bean seed	14	0.04	METCON_145 Max. frozen storage: not stated
Brazil, 2005, Guarapuava, PR, (Monsoy	3×54	Not stated	Not stated	BBCH 87	Soya bean seed	14	0.01	Rf-1005-05 2006/1008232 EC/R/F/2005/022/BRT/B1
8329)	3×108	Not stated	Not stated	BBCH 87	Soya bean seed	14	0.01	METCON_145 Max. frozen storage: not stated
Brazil, 2005, Campo Alegre, Goias,	3×54	Not stated	Not stated	BBCH 77	Soya bean seed	14	< 0.01	Rf-1005-05 2006/1008232 EC/R/F/2005/022/BRV/B1
(Lideranca)	3×108	Not stated	Not stated	BBCH 77	Soya bean seed	14	< 0.01	METCON_145 Max. frozen storage: not stated

Table 160 Residues of metconazole in soya beans following foliar treatment (cGAP Brazil: 3×54 g ai/ha; 14 day PHI).

Root and tuber vegetables

Potato

A total of 17 field trials were conducted on potato in the USA during the 2007 growing season (Corley, 2010, METCON_146). Plants received 4 foliar applications of metconazole at nominal rates of approximately 140 g ai/ha. Two trials also received additionally an exaggerated rate used for a processing study. Tubers were harvested at 1–2 days after the last application. Additional samples from decline trials were collected at 3, 7 and 14 days. Residues of *cis-* and *trans-*metconazole were determined using method RM–41C–1with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis-* and *trans-*metconazole in dry beans spiked at 0.02–2.0 mg/kg were within 70–120% with an RSD of <20%. Triazole metabolites (1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid) were determined using method Meth–160 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for all metabolites spiked at 0.02–2.0 mg/kg were within 70–120% with an RSD of <20%.

Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial
· · ·	g	Interval	L/ha	Growth	Sample	DALA	Metconaz	ole		No.,
Year	ai/ha	(days)		stage at	-		aia	tuana	Total	Reference,
(variety)				final appl.			cis-	trans-	Total	Storage period
USA, 2007,	144	-	269	Natural	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Freeville,	140	7	263	senescence			< 0.02	< 0.02	< 0.04	07-NY10
NY,	142	8	265				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
(Yukon	141	6	264							Max. frozen
Gold)										storage: 3
										months
USA, 2007,	139	-	201	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Wooster,	138	7	195				< 0.02	< 0.02	< 0.04	07-OH*11
OH,	140	7	197				(< 0.02)	(< 0.02)	(≤ 0.04)	METCON_146
(Norland	141	7	202							Max. frozen
Red) ^b										storage: 2.3
110 4 2007	120		201	T T *	- T 1	1			.0.04	months
USA, 2007,	139	-	201	Vegetative	Tuber	I	< 0.02	< 0.02	< 0.04	2010/1232552
Wooster,	140	/	195				< 0.02	< 0.02	< 0.04	0/-OH*12
OH, (Seen emisers) h	139	/	197				(< 0.02)	(< 0.02)	(< 0.04)	MEICON_146
(Superior)	141	/	202							Max. Irozen
										storage. 2.1
USA 2007	141	_	238	Senescing	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Bridgeton	141	- 7	230	Scheseing	Tuber	1	< 0.02	< 0.02	< 0.04	07-NI26
NI	140	7	251				(< 0.02)	(< 0.02)	(< 0.04)	METCON 146
(Superior)	138	7	251				(• 0.02)	(• 0.02)	(<u>•0.01</u>)	Max frozen
(Superior)	150	,	201							storage: 1.7
										months
USA, 2007,	142	-	180	Fully	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Salisbury,	142	7	180	mature			< 0.02	< 0.02	< 0.04	07-MD14
MD,	141	7	179				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
(Kennebec)	141	7	179							Max. frozen
										storage: 2.1
110 4 2007	1.47		106		TT 1	1	10.00	< 0.02	10.04	months
USA, 2007, Citro El	14/	- 7	196	Mature	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552 07 EL 18
(Fabula)	149	7	197	tubers			< 0.02	< 0.02	< 0.04	METCON 146
(1 abula)	149	7	198				(< 0.02)	(< 0.02)	(<u>< 0.0+</u>)	Max frozen
	177	'	170							storage: 4.2
										months
USA, 2007,	143	-	194	Tuber	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Arlington,	143	8	198	bulking			< 0.02	< 0.02	< 0.04	07-WI21
WI,	146	6	205	_			(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
(Superior)	148	7	215							Max. frozen
										storage: 2.3
										months
USA, 2007,	140	-	166	Early	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Fargo, ND,	140	0	166	senescence			< 0.02	< 0.02	< 0.04	0/-NDI0
(Red Norland)	140	0	10/			2	(< 0.02)	(< 0.02)	(≤ 0.04)	MEICON_140
Norland)	140	0	100			3	< 0.02	< 0.02	< 0.04	storage: 2.6
							< 0.02	< 0.02	< 0.04	months
						7	< 0.02	< 0.02	< 0.04	monuis
						,	< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
						14	< 0.02	< 0.02	< 0.04	
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
USA, 2007,	141	-	205	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
Weslaco,	140	7	200	-			< 0.02	< 0.02	< 0.04	07-TX28
TX,	141	7	202				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
(Atlantic)	140	7	199							Max. frozen

Table 161 Residues of *cis*- and *trans*-metconazole in potato tubers following foliar treatment (cGAP USA: 4×140 g ai/ha; 1 days PHI)

general (varie) interval (day) Lina (formul stage of final appl.) Sample (formul stage of final appl.) Deletee (formul stage of final appl.) Meaconarce (formul stage of final appl.) Reference, Storage period Reference, Storage period Reference, Storage period Storage (formul stage of final appl.) Reference, Storage period Reference, Storage period Storage (formul stage of final appl.) Reference, Storage period Storage (formul stage of final appl.) Reference, Storage period Storage (formul stage of final appl.) Reference, Storage period Storage (formul stage of final appl.) Reference, Storage period Storage (formul stage of final appl.) Reference, Storage (formul stage of final appl.) Storage (formul stage of final appl.) Reference, Storage (formul stage of final stage of final appl.) Reference, Storage (formul	Location,	Appli	cation			Residues	(mg/kg) ^a	l			Report/Trial
Year (variety) niha (a) (a) (a) isage at initial appl. cib name. Total Reference, Storage period 704 - 205 Vegetative 100 Tuber 1 <0.02		g	Interval	L/ha	Growth	Sample	DALA	Metconaz	ole		No.,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Year (variety)	ai/ha	(days)		stage at final appl.			cis-	trans-	Total	Reference, Storage period
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		704	-	205	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	storage: 1.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		704	7	201	0			< 0.02	< 0.02	< 0.04	months
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		706	7	202				(< 0.02)	(< 0.02)	(< 0.04)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		700	7	200							
$ \begin{array}{c} 1a Suff, c. , 146 \\ Co, (Russet law) \\ Norkotah) \\ I49 \\ Norkotah) \\ I49 \\ Norkotah) \\ I49 \\ T \\ 140 \\ T \\ $	USA, 2007.	152	-	203	Vegetative.	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	La Salle,	146	7	195	senescing		-	< 0.02	< 0.02	< 0.04	07-CO13
Norkolah) 149 7 193 Post File Pile Pile Max. frozen storage: 2.5 months LSA, 2007, While) 141 7 235 Post. flowering Tuber 1 < 0.02	CO, (Russet	150	7	200	U			(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
USA, 2007, Iverside, CA, ICal 141 - 235 Post- flowering Tuber 1 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Norkotah)	149	7	193							Max. frozen
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											storage: 2.5
Riverside, CA, ICal 144 7 235 flowering 240 <0.02	USA, 2007,	141	-	235	Post-	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
CA, (cal) 144 7 240 (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) (< 0.02) <td>Riverside,</td> <td>141</td> <td>7</td> <td>235</td> <td>flowering</td> <td></td> <td></td> <td>< 0.02</td> <td>< 0.02</td> <td>< 0.04</td> <td>07-CA63</td>	Riverside,	141	7	235	flowering			< 0.02	< 0.02	< 0.04	07-CA63
While) 146 7 241 Amounts Max. frozen storage: 1.8 months USA, 2007, 139 7 239 Vegetative Tuber 1 < 0.02	CA, (Cal	144	7	240				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	While)	146	7	241							Max. frozen
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											storage: 1.8 months
Moxee, (Russet Burbank) 139 139 8 237 237 - 154 158 Vegetative (Southownois) Tuber For ser. Burbank) 1 <0.02 (<0.02) <0.02 (<0.02) <0.04 (<0.02) 0.7WA*18 (<0.02) METCON_146 Max. frozen storage: 2.5 months USA, 2007, Moxee, Moxee, Moxee, Max, Prosser, Burbank) ^b 140 7 157 Vegetative Prosser, Burbank) ^b Tuber 1 <0.02 (<0.02)	USA, 2007,	139	-	239	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Moxee,	139	7	239	-			< 0.02	< 0.02	< 0.04	07-WA*18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WA,	139	8	237				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	METCON_146
Burbank) USA, 2007, Prosser, Burbank) ^b 137 - 154 Vegetative Vegetative Tuber Full 1 < 0.02 (0.02) < 0.04 (0.02) < 0.04 (0.04)	(Russet	139	6	239							Max. frozen
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Burbank)										storage: 2.5 months
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	USA, 2007,	137	-	154	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Moxee,	140	7	158				< 0.02	< 0.02	< 0.04	07-WA*19
	WA,	142	7	160				(< 0.02)	(< 0.02)	(<u><0.04</u>)	METCON_146
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Pontiac)	140	/	157							storage: 2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											months
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	USA, 2007,	145	-	277	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prosser,	144	7	275				< 0.02	< 0.02	< 0.04	07-WA*20
	WA,	142	6	275				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	MEICON_146
USA, 2007, Prosser, WA, Gold) ^b 139 141 - 7 272 270 Vegetative Vegetative Tuber Tuber 1 1 < 0.02 < 0.02 < 0.04 < 0.02 2010/1232552 Gold) ^b 141 7 270 274 Vegetative Tuber 1 < 0.02 < 0.02	Burbank) ^b	171	0	275							storage: 2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											months
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	USA, 2007,	139	-	272	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prosser,	141	7	270				< 0.02	< 0.02	< 0.04	07-WA*33 Metcon 146
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Yukon	141	6	274				(< 0.02)	(< 0.02)	(<0.04)	Max. frozen
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gold) ^b	688	-	272	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.04	storage: 2.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		706	7	270							months
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		703	6	209							
Kimberly, ID, (Red Norland) b1427189 192 Norland) b1406192 192 Norland) b1406187 N187 Norland) b1406187 Norland) b1406187 Norland) b1406187 Norland) b137 Norland) b-228 Norland) bMaturing Norland) bTuber1 < 0.02 $< 0.02< 0.02< 0.02< 0.04< 0.02< 0.04METCON_146Max. frozenstorage: 2.6monthsUSA, 2007,Kimberly,1D, (RedNorland) b1426238238Tuber1< 0.02< 0.02$	USA, 2007,	137	-	183	Maturing	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kimberly,	142	7	189				< 0.02	< 0.02	< 0.04	07-ID11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ID, (Red Norland) ^b	144	6	192				(< 0.02)	(< 0.02)	(<u>< 0.04</u>)	MEICON_146
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Norrand)	140	0	10/							storage: 2.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											months
Kimberly, ID, (Red Norland) b142/236 238Norland) b1426238 237 $A = 142$ 6237	USA, 2007,	137	-	228	Maturing	Tuber	1	< 0.02	< 0.02	< 0.04	2010/1232552
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kimberly,	142	6	236				< 0.02	< 0.02	< 0.04	07-ID10 METCON 146
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ID, (Keu Norland) ^b	143	6	230			4	(< 0.02)	(< 0.02)	(< 0.04)	Max_frozen
$ \begin{array}{ c c c c c c c c } 8 & (<0.02) & (<0.02) & (<0.04) \\ <0.02 & <0.02 & <0.04 \\ <0.02 & <0.02 & <0.04 \\ (<0.02) & (<0.02) & (<0.04) \\ (<0.02) & (<0.02) & (<0.04) \\ <0.02 & <0.02 & <0.04 \\ <0.02 & <0.02 & <0.04 \\ <0.02 & <0.02 & <0.04 \\ (<0.02) & (<0.02) & (<0.04) \\ \end{array} $	(toriand)	112	0	237				< 0.02	< 0.02	< 0.04	storage: 2.2
$ \begin{array}{ c c c c c c c c } 8 & < 0.02 & < 0.02 & < 0.04 \\ < 0.02 & < 0.02 & < 0.04 \\ (< 0.02) & (< 0.02) & (< 0.04) \\ < 0.02 & < 0.02 & < 0.04 \\ < 0.02 & < 0.02 & < 0.04 \\ < 0.02 & < 0.02 & < 0.04 \\ (< 0.02) & (< 0.02) & (< 0.04) \\ \end{array} $								(< 0.02)	(< 0.02)	(< 0.04)	months
$\begin{vmatrix} < 0.02 \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.02) \\ (< 0.04) \end{vmatrix}$							8	< 0.02	< 0.02	< 0.04	
$ \begin{vmatrix} (< 0.02) & (< 0.02) & (< 0.04) \\ < 0.02 & < 0.02 & < 0.04 \\ < 0.02 & < 0.02 & < 0.04 \\ < 0.02 & (< 0.02) & (< 0.04) \\ (< 0.02) & (< 0.02) & (< 0.04) \end{vmatrix} $								< 0.02	< 0.02	< 0.04	
$\begin{vmatrix} 1.5 \\ < 0.02 \\ < 0.02 \\ (< 0.02) \\ < 0.02 \\ (< 0.02) \\ (< 0.04) \\ (< 0.04) \end{vmatrix}$							15	(< 0.02)	(< 0.02)	(< 0.04)	
(< 0.02) (< 0.02) (< 0.04)							15	< 0.02	< 0.02	< 0.04	
								(< 0.02)	(< 0.02)	(< 0.04)	

Metconazole

^a Results from 2 replicate field samples are presented and values in parentheses represent mean values

^b It was noted that trials OH*11 and OH*12, ID10 and ID11 and WA*20 and WA*33 were performed at the same location and year and therefore could not be considered as independent.

Table 162	Residues	of	1,2,4-tria	azole,	triazolyl	alanine,	and	triazolyl	acetic	acid	in	potato	tubers
following f	oliar treati	nent	t (cGAP	USA:	4×140 g	ai/ha; 1 d	ays F	PHI).					

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA				No.,
Year	ai/ha	(days)		stage at			Т	ТА	TAA	Reference,
(variety)				final appl.						Storage period
USA	144	-	269	Natural	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007	140	7	263	senescence	1 4001	1	< 0.02	< 0.02	< 0.02	07-NV10
Ereeville	140	8	265	senescence			(< 0.02)	(< 0.02)	(< 0.02)	METCON 146
NV	142	6	203				(< 0.02)	(< 0.02)	(< 0.02)	Max frozon
(Vulton	141	0	204							storoggy 17
(Tukon Gald)										months
	120		201	N/	Testern	1	< 0.02	< 0.02	< 0.02	2010/1222552
USA, 2007	139	- 7	201	vegetative	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1252552 07 OU*11
2007, Waastar	130	7	195				< 0.02	< 0.02	< 0.02	U/-UH'II METCON 14(
wooster,	140	7	197				(< 0.02)	(< 0.02)	(< 0.02)	MEICON_140
OH,	141	/	202							Max. Irozen
(Norland										storage: 1 /
Red)	100		201					0.00		months
USA,	139	-	201	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007,	140	7	195				< 0.02	< 0.02	< 0.02	07-OH*12
Wooster,	139	7	197				(< 0.02)	(< 0.02)	(< 0.02)	METCON_146
OH,	141	1	202							Max. frozen
(Superior)										storage: 17
										months
USA,	141	-	238	Senescing	Tuber	1	< 0.02	0.031	< 0.02	2010/1232552
2007,	141	7	239				< 0.02	0.031	< 0.02	07-NJ26
Bridgeton,	140	7	251				(< 0.02)	(0.031)	(< 0.02)	METCON_146
NJ,	138	7	251						Control:	Max. frozen
(Superior)									0.013	storage: 17
										months
USA,	142	-	180	Fully	Tuber	1	< 0.02	0.074	< 0.02	2010/1232552
2007,	142	7	180	mature			< 0.02	0.075	< 0.02	07-MD14
Salisbury,	141	7	179				(< 0.02)	(0.075)	(< 0.02)	METCON_146
MD,	141	7	179						Control:	Max. frozen
(Kennebec)									0.038	storage: 18
										months
USA,	147	-	196	Mature	Tuber	1	< 0.02	0.029	< 0.02	2010/1232552
2007, Citra,	149	7	197	tubers			< 0.02	0.022	< 0.02	07-FL18
FL,	149	7	198				(< 0.02)	(0.026)	(< 0.02)	METCON_146
(Fabula)	149	7	198						Control:	Max. frozen
									0.006	storage: 18
										months
USA,	143	-	194	Tuber	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007,	143	8	198	bulking			< 0.02	< 0.02	< 0.02	07-WI21
Arlington,	146	6	205	-			(< 0.02)	(< 0.02)	(< 0.02)	METCON_146
WI,	148	7	215							Max. frozen
(Superior)										storage: 17
										months

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
,	g	Interval	L/ha	Growth	Sample	DALA				No.,
Year	ai/ha	(days)		stage at	-		Т	TA	TAA	Reference,
(variety)				final appl.						Storage period
USA,	140	-	166	Early	Tuber	1	< 0.02	0.022	< 0.02	2010/1232552
2007,	140	6	166	senescence			< 0.02	0.022	< 0.02	07-ND10
Fargo, ND,	140	7	167				(< 0.02)	(0.022)	(< 0.02)	METCON_146
(Red	140	8	166			3	< 0.02	0.025	< 0.02	Max. frozen
Norland)							< 0.02	0.027	< 0.02	storage: 16
						7	(< 0.02)	(0.026)	(< 0.02)	months
						/	< 0.02	0.028	< 0.02	
							< 0.02	(0.020)	< 0.02	
						14	< 0.02	0.024	< 0.02	
							< 0.02	0.028	< 0.02	
							(< 0.02)	(0.026)	(< 0.02)	
									Control:	
									0.013	
USA,	141	-	205	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007,	140	7	200				< 0.02	< 0.02	< 0.02	07-TX28
Weslaco,	141	7	202				(< 0.02)	(< 0.02)	(< 0.02)	MEICON_146
1A, (Atlantic)	704	/	205	Vagatativa	Tubor	1	< 0.02	< 0.02	< 0.02	storage: 21
(Atlantic)	704	- 7	203	vegetative	Tuber	1	< 0.02	< 0.02	< 0.02	months
	704	7	201				(< 0.02)	(< 0.02)	(< 0.02)	montilis
	700	7	200				(0.02)	(0.02)	(0.02)	
	703	5	203							
USA,	152	-	204	Vegetative,	Tuber	1	< 0.02	0.049	< 0.02	2010/1232552
2007, La	146	7	195	senescing			< 0.02	0.043	< 0.02	07-CO13
Salle, CO,	150	7	200				(< 0.02)	(0.046)	(< 0.02)	METCON_146
(Russet	149	7	193						Control:	Max. frozen
Norkotah)									0.014	storage: 18
USA	1/1	_	235	Post-	Tuber	1	< 0.02	0.048	< 0.02	2010/1232552
2007.	141	7	235	flowering	Tuber	1	< 0.02	0.050	< 0.02	07-CA63
Riverside,	144	7	240	novering			(< 0.02)	(0.049)	(< 0.02)	METCON 146
CA, (Cal	146	7	241						Control:	Max. frozen
While)									0.025	storage: 14
										month
USA,	139	-	239	Vegetative	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007,	139	7	239				< 0.02	< 0.02	< 0.02	07-WA*18
Moxee,	139	8	237				(< 0.02)	(< 0.02)	(< 0.02)	MEICON_146
WA,	139	0	239							storage: 16
Burbank)										months
USA,	137	-	154	Vegetative	Tuber	1	< 0.02	0.020	< 0.02	2010/1232552
2007,	140	7	158	0			< 0.02	0.022	< 0.02	07-WA*19
Moxee,	142	7	160				(< 0.02)	(0.021)	(< 0.02)	METCON_146
WA,	140	7	157						Control:	Max. frozen
(Pontiac)									0.022	storage: 17
LICA	1.4.5		077	X 7 / /	TT 1	1	10.00	0.050	< 0.02	months
USA,	145	- 7	277	Vegetative	Tuber	1	< 0.02	0.050	< 0.02	2010/1232552
2007, Prosser	144	7	273				< 0.02	(0.028)	< 0.02	07-WA ⁺ 20 METCON 146
WA	141	6	275				(< 0.02)	(0.037)	(< 0.02) Control:	Max frozen
(Russet	111	Ū	215						0.069	storage: 16
Burbank)										months
USA,	139	-	272	Vegetative	Tuber	1	< 0.02	0.054	< 0.02	2010/1232552
2007,	141	7	270				< 0.02	0.055	< 0.02	07-WA*33
Prosser,	141	7	269				(< 0.02)	(0.055)	(< 0.02)	METCON_146
WA,	141	6	274						Control:	Max. frozen
(Yukon					l		l		0.042	storage: 16

Location,	Applic	cation			Residues	(mg/kg) ^a		Report/Trial		
	g	Interval	L/ha	Growth	Sample	DALA				No.,
Year	ai/ha	(days)		stage at	-		Т	TA	TAA	Reference,
(variety)				final appl.						Storage period
Gold)	688	-	272	Vegetative	Tuber	1	< 0.02	0.066	< 0.02	months
	706	7	270	-					Control:	
	703	7	269						0.039	
	702	6	274							
USA,	137	-	183	Maturing	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007,	142	7	189				< 0.02	< 0.02	< 0.02	07-ID11
Kimberly,	144	6	192				(< 0.02)	(< 0.02)	(< 0.02)	METCON_146
ID, (Red	140	6	187							Max. frozen
Norland)										storage: 17
										months
USA,	137	-	228	Maturing	Tuber	1	< 0.02	< 0.02	< 0.02	2010/1232552
2007,	142	7	236				< 0.02	< 0.02	< 0.02	07-ID10
Kimberly,	143	6	238				(< 0.02)	(< 0.02)	(< 0.02)	METCON_146
ID, (Red	142	6	237			4	< 0.02	< 0.02	< 0.02	Max. frozen
Norland)							< 0.02	< 0.02	< 0.02	storage: 16
							(< 0.02)	(< 0.02)	(< 0.02)	months
						8	< 0.02	< 0.02	< 0.02	
							< 0.02	< 0.02	< 0.02	
							(< 0.02)	(< 0.02)	(< 0.02)	
						15	< 0.02	< 0.02	< 0.02	
							< 0.02	< 0.02	< 0.02	
							(< 0.02)	(< 0.02)	(< 0.02)	1

Sugar beet

A total of 12 field trials were conducted on sugar beet in the USA during the 2005 growing season (Jordan & Saha, 2006, METCON_147). Plants received 2 foliar applications of metconazole at nominal rates of 110–120 g ai/ha or 160–170 g ai/ha. Sugar beet roots were harvested at 13–15 days after the last application. Additional samples from decline trials were collected at 1, 7, 14–15, 21, and 27–28days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Residues of metabolites M11, M21, M30, 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid were each below their respective LOQs of 0.01 or 0.05 mg/kg mg/kg in all trials.

Table 163 Residues of *cis*- and *trans*-metconazole in sugar beet roots following foliar treatment (cGAP Canada: 2×113 g ai/ha; 14 days PHI).

Location,	Applica	ition			Residues	(mg/kg)	a			Report/Trial No.,
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		Reference,
Year (variety)	-	(days)		stage at			cis-	trans-	Total	Storage period
				final appl.			C15	tr ans	Total	
USA, 2005,	114	-	189	Crop cover	Root	14	< 0.005	< 0.005	< 0.010	137714
Dumfries, MN,	113	14	190	complete			0.006	< 0.005	0.011	2006/7006726
(VDH66556 8232				_			(0.005)	(< 0.005)	(<u>0.010</u>)	RCN R05085
Medium)	170	-	188	Crop cover	Root	14	< 0.005	< 0.005	0.011	METCON_147
	168	14	189	complete			0.006	< 0.005	< 0.010	Max. frozen
				-			(0.005)	(< 0.005)	(0.010)	storage: 5.7 month
USA, 2005,	113	-	188	Crop cover	Root	14	< 0.005	< 0.005	(< 0.010	137714
Theilman, MN,	111	14	188	complete			0.005	< 0.005	0.010	2006/7006726
(VDH66556 8232				-			(0.005)	(< 0.005)	(<u>0.010</u>)	RCN R05086

g air h Interval (days) Interval (days) Reserve (more server) Medium) Reserve (more server) Reserve(more server) <	Location,	Applica	tion			Residues	(mg/kg)	a			Report/Trial No.,
Year (variety) (days) stage at final appl. cis rams. Total Some period Medium) 170 - 188 Crop cover complete 14 0.011 < 0.005		g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole	-	Reference,
Medium) 170	Year (variety)		(days)		stage at final appl.			cis-	trans-	Total	Storage period
Its 14 Its 15 187 Crop cover complete Roat 1 <0.005 <0.005 <0.0013 Max. more (0.0101) VDH60556 8232 11 15 187 Crop cover complete Roat <0.005	Medium)	170	-	188	Crop cover	Root	14	0.011	< 0.005	0.016	METCON_147
USA, 2005, Arkansaw, WI, (UDH66556 8232) 110 187 Crop cover Root complete 1 0.0005 0.0003 0.0013		168	14	189	complete			0.008	< 0.005	0.013	Max. frozen
USA, 2005. 110 - 187 Crop cover (Root) 1 < 0.003	LIG A 2005	110		107	C	D (1	(0.010)	(< 0.005)	(0.015)	storage: 5. / month
HAMMAN, WI, 112 1.2 1.5 1.67 Comparent of the second of the secon	USA, 2005, Arkonsow WI	110	-	18/	Crop cover	Root	1	< 0.005	< 0.005	< 0.010	13//14
Medium) Production of the second	(VDH66556 8232	112	15	10/	compiete			< 0.003	< 0.003	< 0.010	2000/7000720 RCN R05087
Section 2005 < 0.005	(VD1100550 0252 Medium)						7	< 0.005	< 0.005	< 0.010	METCON 147
Image: space of the system of the s							,	< 0.005	< 0.005	< 0.010	Max. frozen
Image: heat of the second se								(< 0.005)	(< 0.005)	(< 0.010)	storage: 6.3 month
VDA, 2005, Fitchburg, WI, VDH 66556) ¹⁶ 113 200 Crop cover (Copplete Root (Copplete Crop cover (Copplete Root (Copplete Crop cover (Copplete Root (Copplete Crop cover (Copplete Root (Copplete Root (Coppl							14	< 0.005	< 0.005	< 0.010	
Visit Action 113								< 0.005	< 0.005	< 0.010	
Image: Section of the sectio							21	(< 0.005)	(< 0.005)	(< 0.010)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							21	< 0.003	< 0.005	< 0.010	
Image: heat of the second se								(< 0.005)	(< 0.005)	(< 0.010)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							28	< 0.005	< 0.005	< 0.010	
Inflag Inflag Crop cover (complete Root I <0.005 <0.005 <0.010 (colors) 169 15 188 Complete Complete (colors) <0.005								< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						_		(< 0.005)	(< 0.005)	(< 0.010)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		168	-	189	Crop cover	Root	1	< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		169	15	188	complete			< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							7	< 0.003)	< 0.003)	< 0.010)	
kin							,	< 0.005	< 0.005	< 0.010	
kin								(< 0.005)	(< 0.005)	(< 0.010)	
kink kink <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>14</td><td>< 0.005</td><td>< 0.005</td><td>< 0.010</td><td></td></td<>							14	< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							21	(< 0.005)	(< 0.005)	(< 0.010)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							21	< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.003 (< 0.005)	< 0.003 (< 0.005)	< 0.010 (< 0.010)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							28	< 0.005	< 0.005	< 0.010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								< 0.005	< 0.005	< 0.010	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								(< 0.005)	(< 0.005)	(< 0.010)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	USA, 2005,	113	-	209	Crop cover	Root	13	0.031	0.008	0.039	137714
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fitchburg, WI,	112	15	226	complete			(0.018)	< 0.005	(0.023)	2006/7006726 PCN P05088
In 100000 107 1 207 Clop Euver Root 13 0.0210 0.003 0.003 0.003 strate form 1111 111 111	$(Value fiave VDH 66556)^{b}$	167		207	Crop cover	Poot	12	0.025)	0.000	(0.031)	METCON 147
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(DII 00550)	164	-	207	complete	KOOL	15	0.020	0.005	0.031	Max. frozen
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		101	10	220	compiete			(0.025)	(0.006)	(0.030)	storage: 5.3 month
Fitchburg, WI, (VanderhaveVDH 114 13 217 complete 0.039 (0.036) 0.009 (0.008) 0.048 (0.044) 2006/7006726 RCN R05089 66556) ^b 166 - 217 Crop cover complete Root 14 0.067 0.015 0.082 METCON_147 66556) ^b 166 - 217 Crop cover complete Root 14 0.067 0.015 0.082 METCON_147 0.43 13 13 204 complete Root 14 0.067 0.015 0.082 METCON_147 Max. frozen (0.069) (0.015) (0.083) storage: 5.3 month USA, 2005, 114 - 186 Root Root 14 0.012 (0.005) 0.024 137714 172 13 185 Root Root 14 0.012 (0.005) 0.017 METCON_147 USA, 2005, 112 - 190 Canopy Root 14 0.005 0.005 0.010 0.011 <td>USA, 2005,</td> <td>113</td> <td>-</td> <td>220</td> <td>Crop cover</td> <td>Root</td> <td>14</td> <td>0.032</td> <td>0.007</td> <td>0.040</td> <td>137714</td>	USA, 2005,	113	-	220	Crop cover	Root	14	0.032	0.007	0.040	137714
(VanderhaveVDH 66556) b Image: Construct of the second secon	Fitchburg, WI,	114	13	217	complete			0.039	0.009	0.048	2006/7006726
66556) b 166 - 217 Crop cover complete Root 14 0.067 0.015 0.082 METCON_147 USA, 2005, 114 - 186 Root Root 14 0.067 0.015 0.082 Max. frozen USA, 2005, 114 - 186 Root Root 14 0.019 <0.005	(VanderhaveVDH							(0.036)	(0.008)	(<u>0.044</u>)	RCN R05089
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	66556) ^b	166	-	217	Crop cover	Root	14	0.067	0.015	0.082	METCON_147
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		163	13	204	complete			0.070	0.015	0.084	Max. Irozen
$ \begin{array}{c} \text{Eldridge, ND,} \\ \text{(66453)} \\ & \begin{array}{c} 113 \\ \text{Eldridge, ND,} \\ \text{(66453)} \\ \hline 175 \\ 172 \\ 13 \\ \hline 172 \\ 13 \\ \hline 185 \\ 1$	LISA 2005	114		106	Deet	Deet	14	(0.069)	(0.015)	(0.083)	127714
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	USA, 2005, Eldridge ND	114	- 13	183	harvestable	KOOL	14	0.019	< 0.003	0.024	2006/7006726
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(66453)	115	15	105	size			(0.010)	(0.005)	(0.013)	RCN R05090
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	()	175	-	190	Root	Root	14	0.012	< 0.005	0.017	METCON 147
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		172	13	185	harvest-			0.016	(0.005)	0.021	Max. frozen
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					able size			(0.014)		(0.019)	storage: 6.0 month
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	USA, 2005,	112	-	190	Canopy	Root	14	< 0.005	< 0.005	< 0.010	137714
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Levelland, TX,	113	13	188	80%			(< 0.005)	0.006	0.011	2006/7006726
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Eagle R)				closed				(0.005)	(<u>0.010</u>)	RCN R05091
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		168	-	188	Canopy	Root	14	0.005	< 0.005	0.014	Max frozen
USA, 2005, Pavillion, MT, (Treasure) 171 168 171 168 Fully 168 Root mature 14 0.009 0.014 0.014 0.023 137714 0.006 0.008 0.014 2006/7006726 0.001 0.001 0.002 RCN R05092		170	15	189	80% closed			0.009	(0.00)	(0.013)	storage: 5.3 month
Pavillion, MT, 168 14 168 14 168 nature 14 0.009 0.014 0.023 $137/14$ Pavillion, MT, 168 14 168 nature 0.006 0.008 0.014 2006/7006726 (Treasure) 0.014 0.023 RCN R05092 0.014 0.023 0.014	USA 2005	171	-	171	Fully	Root	14	0.007	0.014	0.014)	137714
(Treasure) (0.01) (0.01) (0.02) RCN R05092	Pavillion. MT.	168	14	168	mature	1001	17	0.009	0.008	0.023	2006/7006726
	(Treasure)							(0.01)	(0.01)	(0.02)	RCN R05092

Location,	Applica	ition			Residues	(mg/kg)	a			Report/Trial No.,
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metconaz	zole		Reference,
Year (variety)		(days)		stage at final appl.	-		cis-	trans-	Total	Storage period
	158	-	156	Fully	Root	14	0.018	0.005	0.024	METCON 147
	172	14	172	mature			0.035	0.007	0.043	Max. frozen
							(0.03)	(0.01)	(0.03)	storage: 5.8 month
USA, 2005,	113	-	236	Crop cover	Root	14	0.01	0.016	0.026	137714
Hughson, CA,	114	14	238	complete			< 0.005	0.007	0.012	2006/7006726
(Unknown)							(0.01)	(0.01)	(<u>0.02</u>)	RCN R05093
	169	-	235	Crop cover	Root	14	0.006	0.008	0.013	METCON_147
	169	14	235	complete			< 0.005	0.007	0.012	Max. frozen
							(0.01)	(0.01)	(0.01)	storage: 5.8 month
USA, 2005,	112	-	234	Crop cover	Root	14	0.013	0.021	0.034	137714
Hickamn, CA,	109	14	228	complete			0.013	< 0.005	0.018	2006/7006726
(Unknown)							(0.01)	(0.02)	(<u>0.03</u>)	RCN R05094
	171	-	238	Crop cover	Root	14	0.01	0.016	0.025	METCON_147
	165	14	230	complete			0.015	< 0.005	0.02	Max. frozen
							(0.01)	(0.02)	(0.02)	storage: 5.8 month
USA, 2005,	114	-	286	Root	Root	1	0.008	< 0.005	0.013	137714
Payette, ID, (HM	111	14	278	harvest-			0.007	< 0.005	0.012	2006/7006726
WS91)				able size			(0.01)	(< 0.005)	(0.01)	RCN R05095
						7	0.025	< 0.005	0.03	METCON_147
							0.013	< 0.005	0.018	Max. frozen
							(0.02)	(< 0.005)	(0.02)	storage: 6.0 month
						15	0.014	< 0.005	0.019	
							0.009	< 0.005	0.014	
						0.1	(0.01)	(< 0.005)	(0.02)	
						21	0.006	< 0.005	0.011	
							< 0.005	< 0.005	< 0.01	
						27	(0.01)	(< 0.005)	(0.01)	
						27	0.000	< 0.005	0.011	
							(0.007)	< 0.005	(0.012)	
	166		278	Poot	Poot	1	0.011	< 0.003	(0.01)	-
	164	14	278	harvestable	KOOL	1	0.011	< 0.005	0.010	
	104	14	2/4	size			(0.000)	< 0.003	(0.011)	
				5120		7	0.023	< 0.005	0.028	
						/	0.023	< 0.005	0.020	
							(0.02)	(< 0.005)	(0.03)	
						15	0.015	< 0.005	0.02	
							0.023	< 0.005	0.028	
							(0.02)	(< 0.005)	(0.02)	
						21	0.013	< 0.005	0.018	
							0.009	< 0.005	0.014	
							(0.01)	(< 0.005)	(0.02)	
						27	0.009	< 0.005	0.014	
							0.008	< 0.005	0.013	
							(0.01)	(< 0.005)	(0.01)	
USA, 2005,	113	-	177	Root	Root	14	0.018	< 0.005	0.023	137714
Jerome, ID, (Beta	111	14	180	harvestable			0.015	< 0.005	0.020	2006/7006726
8422)				size			(0.02)	(< 0.005)	(<u>0.022</u>)	RCN R05096
	171	-	178	Root	Root	14	0.032	0.007	0.039	METCON_147
	169	14	196	harvestable			0.034	0.007	0.041	Max. frozen
				size			(0.03)	(0.01)	(0.04)	storage: 6.0 month

^b It was noted that trial RCN R05088 and RCN R05089 were performed at the same location and year and therefore could not be considered as independent.

Cereal grains

Wheat

A total of 15 field trials were conducted on wheat in the Canada and the USA during the 2004-05 growing seasons (White & Saha, 2006, METCON_152). Plants received 2 foliar applications of metconazole at nominal rates of 110 g ai/ha. Wheat grain was harvested at 20–22 days after the last application. Additional samples from a decline trial were collected at 14, 21–22, 28 and 35–36 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Table 164 Residues of *cis*- and *trans*-metconazole in wheat grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applica	ition		Crearville ato ac			Residues	found [n	ng/kg] ª	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	at final appl.	DALA	Sample	Metcona <i>cis</i>	zole trans	Total	Reference, Storage period
USA, 2005, Sunsweet, GA (Pioneer 26R24)	2 × 110	8	134 140	85	21	Grain	0.030 0.027 (0.029)	0.007 0.007 (0.007)	0.037 0.035 (0.036)	137711 2006/7006723 RCN R05044 METCON_152 Max. frozen storage: 7.9 month
USA, 2005, Newport, AK (Genesis R033)	2 × 0.11	6	187 189	75	21	Grain	0.076 0.083 (0.080)	0.011 0.017 (0.014)	0.087 0.10 (0.094)	137711 2006/7006723 RCN R05045 METCON_152 Max. frozen storage: 7.6 month
USA, 2005, York, NE, (Millenium)	2 × 0.11	7	186 188	83	20	Grain	0.012 0.016 (0.014)	0.005 < 0.005 (0.005)	0.017 0.021 (0.019)	137711 2006/7006723 RCN R05046 METCON_152 Max. frozen storage: 6.5 month
USA, 2005, Carlyle, IL, (Excel 201)	2 × 0.11	7	115	83	14 21 28 35	Grain Grain Grain Grain	0.028 0.040 (0.034) 0.065 0.051 (0.058) 0.042 0.046 (0.044) 0.031 0.039 (0.035)	0.007 < 0.005 (0.006) 0.011 0.010 (0.011) 0.008 < 0.005 (0.007) < 0.005 0.009 (0.007)	0.034 0.045 (0.040) 0.077 0.062 (0.070) 0.051 0.051 (0.051) 0.036 0.048 (0.042)	137711 2006/7006723 RCN R05047 METCON_152 Max. frozen storage: 7.2 month
USA, 2005, Grand Island, NE (Jagalene HRW)	2 × 0.11	7	188 189	77	22	Grain	0.012 0.008 (0.010)	< 0.005 < 0.005 (< 0.005)	0.017 0.013 (0.015)	137711 2006/7006723 RCN R05048 METCON_152

Location,	Applica	ation		Growth stage			Residues	s found [n	ng/kg] ^a	Report/Trial No.,
Year (varietv	g ai/ha	Interval (days)	L/ha	at final appl.	DALA	Sample	Metcona	zole	Total	Reference, Storage period
										Max. frozen storage: 6.5 month
USA, 2005, Velva	2 × 0.11	7	113	75	20	Grain	0.031	0.009	0.039	137711
ND (Dapps)			113				0.032 (0.032)	0.009 (0.009)	0.040 (0.040)	2006/7006723 RCN R05049 METCON_152 Max. frozen storage: 5.7 month
USA, 2005, Gardner, ND	2 × 0.12	6	152	77	14	Grain	0.013	< 0.005	0.018	137711 2006/7006723 RCN R05050
(Knudson)			1 + /		22	Grain	$\begin{array}{c} 0.017 \\ (0.015) \\ 0.009 \\ 0.011 \\ (0.010) \end{array}$	(< 0.005) (< 0.005) < 0.005 < 0.005 (< 0.005)	(0.022) (0.020) 0.014 0.016 (0.015)	METCON_152 Max. frozen storage: 5.5 month
					28	Grain	0.008	< 0.005	0.013	
					36	Grain	$\begin{array}{c} (0.008) \\ 0.007 \\ 0.008 \\ (0.008) \end{array}$	(< 0.005) < 0.005 < 0.005 (< 0.005)	$\begin{array}{c} (0.013) \\ 0.012 \\ 0.013 \\ (0.013) \end{array}$	
USA, 2005, Hinton, OK (Jagalene)	2 × 0.11	7	122 126	85	22	Grain	0.006 0.006 (0.006)	< 0.005 < 0.005 (< 0.005)	0.011 0.011 (0.011)	137711 2006/7006723 RCN R05051 METCON_152 Max. frozen storage: 7.5 month
USA, 2005, Colony,	1 × 0.11	7	128	85	21	Grain	0.097	0.019	0.12	137711
OK (Jagger)	1 × 0 09		105				0.063	0.013	0.075	2006/7006723
(365501)	0.02						(0.080)	(0.016)	(0.096)	RCN R05052 METCON_152 Max. frozen storage: 7.5 month
USA, 2005, Lubbock,	2 × 0.11	8	141	87	21	Grain	0.026	0.005	0.032	137711
TX (TAM 200)			138				0.031 (0.029)	0.006 (0.006)	0.037 (0.035)	2006/7006723 RCN R05053 METCON_152 Max. frozen storage: 7.2 month
USA, 2005, Pavette.	2 × 0.11	6	278	87	21	Grain	0.043	0.008	0.051	137711
ID (Penawawa)	0.11		283				0.038 (0.041)	0.007 (0.008)	0.045 (0.048)	2006/7006723 RCN R05054 METCON_152 Max. frozen storage: 5.3 month
Canada, 2005, Laird	2×0.11	6	125	85	21	Grain	0.019	< 0.005	0.024	137711
SK (Bounty)	0.11		149				0.017 (0.018)	< 0.005 (< 0.005)	0.022 (0.023)	2006/7006723 RCN R05055

Location,	Applica	ition		Countly stores			Residues	found [n	ng/kg] ^a	Report/Trial No.,
	σai/ha	Interval	L/ha	at final appl	DALA	Sample	Metcona	zole	Total	Reference,
Year (variety	5 ul liu	(days)	L# Hu	at fillar uppl.			cis	trans	rotur	Storage period
										METCON_152
										Max. frozen
										storage: 4.7
~ 1 ^	2				0.4					month
Canada, 2005, Minto,	2 × 0.11	6	218	85	21	Grain	0.020	< 0.005	0.025	137711
MB			197				0.023	< 0.005	0.028	2006/7006723
(AC Barrie)							(0.022)	(< 0.005)	(0.027)	RCN R05056
										METCON_152
										Max. frozen
										storage: 4.9
										month
Canada, 2005, Innisfail,	2 × 0.11	7	226	85	21	Grain	0.022	0.005	0.028	137711
AB			233				0.022	0.005	0.027	2006/7006723
(AC Intrepid)							(0.022)	(0.005)	(0.028)	RCN R05057
										METCON_152
										Max. frozen
										storage: 4.1
G 1 0005	2	-			0.1					month
Canada, 2005, Innisfail,	2 × 0.11	7	202	85	21	Grain	0.044	0.010	0.054	137/11
AB			225				0.044	0.010	0.054	2006/7006723
(5700PR)							(0.044)	(0.010)	(0.054)	RCN R05058
										METCON_152
										Max. frozen
										storage: 4.2
										month

Table 165 Residues of metabolites M11, M21 and M30 in wheat grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applicat	ion		Crowth store			Residues	found [n	ng/kg] ^{ab}	Report/Trial No.,
	a ai/ha	Interval	I /ha	at final appl	DALA	Sample	M11	M21	M30	Reference,
Year (variety	g al/lla	(days)	L/ 114	at mai appi.			14111	19121	10150	Storage period
USA, 2005,	2×0.11	8	134	85	21	Grain	0.02	< 0.01	< 0.01	137711
Sunsweet,			140				0.02	< 0.01	< 0.01	2006/7006723
GA							(0.02)	(< 0.01)	(< 0.01)	RCN R05044
(Pioneer										METCON_152
26R24)										Max. frozen
										storage: 7.9
										month
USA, 2005,	2×0.11	6	187	75	21	Grain	< 0.01	< 0.01	< 0.01	137711
Newport,			189				< 0.01	< 0.01	< 0.01	2006/7006723
AK							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05045
(Genesis R033)										METCON_152
										Max. frozen
										storage: 7.6
										month
USA, 2005,	2×0.11	7	186	83	20	Grain	< 0.01	< 0.01	< 0.01	137711
York,			188				< 0.01	< 0.01	< 0.01	2006/7006723
NE,							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05046
(Millenium)										METCON_152
										Max. frozen
										storage: 6.5
										month
USA, 2005,	2×0.11	7	115	83	14	Grain	0.01	< 0.01	< 0.01	137711
Carlyle,]		158				0.02	< 0.01	< 0.01	2006/7006723

Location,	Applicati	ion	1	Growth stage			Residues	found [n	ng/kg] ^{ab}	Report/Trial No.,
V (· · ·	g ai/ha	Interval	L/ha	at final appl.	DALA	Sample	M11	M21	M30	Reference,
Y ear (variety	2	(days)					(0, 02)	(< 0.01)	(< 0.01)	Storage period
IL, (Excel 201)					21	Grain	(0.02)	(< 0.01)	(< 0.01)	METCON 152
(Exect 201)					21	Oram	0.03	< 0.01	< 0.01	Max. frozen
							(0.03)	(< 0.01)	(< 0.01)	storage: 7.2
					28	Grain	0.02	< 0.01	< 0.01	month
							0.02	< 0.01	< 0.01	
							(0.02)	(< 0.01)	(< 0.01)	
					35	Grain	0.04	< 0.01	< 0.01	
							0.04	< 0.01	< 0.01	
		_					(0.04)	(< 0.01)	(< 0.01)	
USA, 2005,	2×0.11	7	188	77	22	Grain	< 0.01	< 0.01	< 0.01	137711
Grand Island,			189				< 0.01	< 0.01	< 0.01	2006/7006723 PCN P05048
(Jagalene							(< 0.01)	(< 0.01)	(< 0.01)	METCON 152
(Juguiene HRW)										Max. frozen
,										storage: 6.5
										month
USA, 2005,	2×0.11	7	113	75	20	Grain	< 0.01	< 0.01	< 0.01	137711
Velva,			113				< 0.01	< 0.01	< 0.01	2006/7006723
ND (Denne)							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05049
(Dapps)										Max_frozen
										storage: 5.7
										month
USA, 2005,	2 × 0.12	6	152	77	14	Grain	< 0.01	< 0.01	< 0.01	137711
Gardner,			147				< 0.01	< 0.01	< 0.01	2006/7006723
ND							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05050
(Knudson)					22	Grain	< 0.01	< 0.01	< 0.01	METCON_152
							< 0.01	< 0.01	< 0.01	storage: 5.5
					20	<u> </u>	(< 0.01)	(< 0.01)	(< 0.01)	month
					28	Grain	< 0.01	< 0.01	< 0.01	
							(0.010)	< 0.01	< 0.01	
					36	Grain	0.01	< 0.01	< 0.01	
							0.01	< 0.01	< 0.01	
							(0.01)	(< 0.01)	(< 0.01)	
USA, 2005,	2×0.11	7	122	85	22	Grain	< 0.01	< 0.01	< 0.01	137711
Hinton,			126				< 0.01	< 0.01	< 0.01	2006/7006723
OK							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05051
(Jagalene)										MEICON_152
										storage: 7.5
										month
USA, 2005,	1×0.11	7	128	85	21	Grain	0.020	< 0.01	< 0.01	137711
Colony,	1×0.09		105				0.010	< 0.01	< 0.01	2006/7006723
OK							(0.025)	(< 0.01)	(< 0.01)	RCN R05052
(Jagger)										METCON_152
										Max. frozen
										storage: 7.5
LISA 2005	2×0.11	0	1.4.1	07	01	Crain	< 0.01	< 0.01	< 0.01	month
USA, 2005, Lubbock	2 ^ 0.11	0	141	07	21	Orain	< 0.01	< 0.01	< 0.01	2006/7006723
TX			130				< 0.01	< 0.01	< 0.01	RCN R05053
(TAM 200)							(. 0.01)	(. 0.01)	(. 0.01)	METCON 152
· /										Max. frozen
										storage: 7.2
										month
USA, 2005,	2×0.11	6	278	87	21	Grain	< 0.01	< 0.01	< 0.01	137711
Payette,			283				< 0.01	< 0.01	< 0.01	2006/7006723
ID							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05054

Location,	Applicat	ion		Constant and a second			Residues	found [n	ng/kg] ^{ab}	Report/Trial No.,
	g ai/ha	Interval	L/ha	at final appl.	DALA	Sample	M11	M21	M30	Reference,
Year (variety	8	(days)		11						Storage period
(Penawawa)										METCON_152
										Max. frozen
										storage: 5.3
										month
Canada, 2005,	2×0.11	6	135	85	21	Grain	< 0.01	< 0.01	< 0.01	137711
Laird,			149				< 0.01	< 0.01	< 0.01	2006/7006723
SK							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05055
(Bounty)										METCON_152
										Max. frozen
										storage: 4.7
										month
Canada, 2005,	2×0.11	6	218	85	21	Grain	0.020	< 0.01	< 0.01	137711
Minto,			197				0.020	< 0.01	< 0.01	2006/7006723
MB							(0.020)	(< 0.01)	(< 0.01)	RCN R05056
(AC Barrie)										METCON_152
										Max. frozen
										storage: 4.9
										month
Canada, 2005,	2×0.11	7	226	85	21	Grain	< 0.01	< 0.01	< 0.01	137711
Innisfail,			233				< 0.01	< 0.01	< 0.01	2006/7006723
AB							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05057
(AC Intrepid)										METCON_152
										Max. frozen
										storage: 4.1
										month
Canada, 2005,	2×0.11	7	202	85	21	Grain	0.020	0.010	< 0.01	137711
Innisfail,			225				0.020	< 0.01	< 0.01	2006/7006723
AB							(0.020)	(0.010)	(< 0.01)	RCN R05058
(5700PR)										METCON_152
										Max. frozen
										storage: 4.2
										month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Table 166 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in wheat grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applicat	ion		Growth stage			Residues	found [m	ıg/kg] ª	Residues found
Year (variety	g ai/ha	Interval (days)	L/ha	at final appl.	DALA	Sample	Т	ТА	TAA	[mg/kg] ^{1, 2}
USA, 2005, Sunsweet, GA (Pioneer 26R24)	2 × 0.11	8	134 140	85	21	Grain	< 0.05 < 0.05 (< 0.05)	0.69 0.61 (0.65)	0.36 0.32 (0.34)	137711 2006/7006723 RCN R05044 METCON_152 Max. frozen storage: 7.9 month
USA, 2005, Newport, AK (Genesis R033)	2 × 0.11	6	187 189	75	21	Grain	< 0.05 < 0.05 (< 0.05)	0.091 0.086 (0.089)	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05045 METCON_152 Max. frozen storage: 7.6 month
USA, 2005, York,	2×0.11	7	186 188	83	20	Grain	< 0.05 < 0.05	0.13 0.14	0.081 0.11	137711 2006/7006723

Location,	Applicat	ion		Growth stage			Residues	found [m	ng/kg] ^a	Residues found
Vear (variety	g ai/ha	Interval	L/ha	at final appl.	DALA	Sample	Т	TA	TAA	$[mg/kg]^{1,2}$
NE, (Millenium)	-	(days)					(< 0.05)	(0.14) Control: 0.079	(0.09) Control: 0.061	RCN R05046 METCON_152 Max. frozen
										storage: 6.5 month
USA, 2005, Carlyle, IL,	2 × 0.11	7	115 158	83	14	Grain	< 0.05 < 0.05 (< 0.05)	< 0.05 0.059 (0.055)	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05047
(Excel 201)					21	Grain	< 0.05 < 0.05 (< 0.05)	0.060 < 0.05 (0.055)	< 0.05 0.054 (0.052)	METCON_152 Max. frozen storage: 7.2
					28	Grain	< 0.05 < 0.05 (< 0.05)	0.060 < 0.05 (0.055)	0.051 < 0.05 (0.051) < 0.051	montii
	0 0 11		100	22	35	Grain	< 0.05 < 0.05 (< 0.05)	< 0.05 0.053 (0.050)	< 0.05 < 0.05 (< 0.05)	105511
USA, 2005, Grand Island, NE (Jagalene HRW)	2 × 0.11		188		22	Grain	< 0.05 < 0.05 (< 0.05)	0.11 0.068 (0.091) Control: 0.076	0.088 0.056 (0.072)	137/11 2006/7006723 RCN R05048 METCON_152 Max. frozen storage: 6.5 month
USA, 2005, Velva, ND (Dapps)	2 × 0.11	7	113 113	75	20	Grain	< 0.05 < 0.05 (< 0.05)	0.11 0.14 (0.13) Control: 0.058	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05049 METCON_152 Max. frozen storage: 5.7 month
USA, 2005, Gardner, ND (Knudson)	2 × 0.12	6	152 147	77	14 22	Grain Grain	< 0.05 < 0.05 (< 0.05) < 0.05	0.15 0.15 (0.15) 0.15	0.093 0.080 (0.087) 0.076	137711 2006/7006723 RCN R05050 METCON 152
					28	Grain	< 0.05 (< 0.05) < 0.05	0.14 (0.15) 0.13	0.076 (0.076) 0.068	Max. frozen storage: 5.5 month
					36	Grain	< 0.05 (< 0.05) < 0.05 < 0.05 (< 0.05)	(0.14) (0.13) (0.15) (0.13) (0.14) Control: (0.12)	(0.069) 0.063 0.071 (0.070) Control: 0.073	
USA, 2005, Hinton, OK (Jagalene)	2 × 0.11	7	122 126	85	22	Grain	< 0.05 < 0.05 (< 0.05)	$\frac{0.12}{0.053}$ < 0.05 (0.052)	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05051 METCON_152 Max. frozen storage: 7.5
USA, 2005, Colony, OK (Jagger)	1×0.11 1×0.09	7	128 105	85	21	Grain	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05052 METCON_152 Max. frozen storage: 7.5
USA, 2005, Lubbock,	2 × 0.11	8	141 138	87	21	Grain	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	137711 2006/7006723

Location,	Applicati	ion		Growth stage			Residues	g/kg] a	Desidues found	
Year (variety	g ai/ha	Interval (days)	L/ha	at final appl.	DALA	Sample	Т	ТА	ТАА	[mg/kg] ^{1, 2}
TX (TAM 200)							(< 0.05)	(< 0.05)	(< 0.05)	RCN R05053 METCON_152 Max. frozen storage: 7.2 month
USA, 2005, Payette, ID (Penawawa)	2 × 0.11	6	278 283	87	21	Grain	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05054 METCON_152 Max. frozen storage: 5.3 month
Canada, 2005, Laird, SK (Bounty)	2 × 0.11	6	135 149	85	21	Grain	< 0.05 < 0.05 (< 0.05)	0.097 0.095 (0.096) Control: 0.057	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05055 METCON_152 Max. frozen storage: 4.7 month
Canada, 2005, Minto, MB (AC Barrie)	2 × 0.11	6	218 197	85	21	Grain	< 0.05 < 0.05 (< 0.05)	0.61 0.66 (0.64) Control: 0.30	0.27 0.29 (0.28) Control: 0.12	137711 2006/7006723 RCN R05056 METCON_152 Max. frozen storage: 4.9 month
Canada, 2005, Innisfail, AB (AC Intrepid)	2 × 0.11	7	226 233	85	21	Grain	< 0.05 < 0.05 (< 0.05)	0.068 0.078 (0.073)	< 0.05 < 0.05 (< 0.05)	137711 2006/7006723 RCN R05057 METCON_152 Max. frozen storage: 4.1 month
Canada, 2005, Innisfail, AB (5700PR)	2 × 0.11	7	202 225	85	21	Grain	< 0.05 < 0.05 (< 0.05)	0.25 0.23 (0.24) Control: 0.16	0.18 0.18 (0.18) Control: 0.12	137711 2006/7006723 RCN R05058 METCON_152 Max. frozen storage: 4.2 month

Rye

A total of five field trials were conducted on rye in the Canada and the USA during the 2004-05 growing seasons (Jordan & Saha, 2006, METCON_151). Plants received 2 foliar applications of metconazole at nominal rates of 112 g ai/ha. Rye grain was harvested at 20–22 days after the last application. Additional samples from a decline trial were collected at 14, 21, 28 and 34 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120%.

Table 167 Residues of *cis*- and *trans*-metconazole in rye grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Application	Growth	DALA S	Sample	Residues found	[mg/kg] ^a	Report/Trial No.,

Metconazole

Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.			Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
USA, 2005, Chula, GA (Wrens Abruzzi)	2 × 110	7	136 127	Soft dough	21	Grain	0.044 0.032 (0.038)	0.011 0.008 (0.010)	0.055 0.040 (0.048)	137720 2006/7006725 R05145 METCON_151 Max. frozen storage: 12 month
USA, 2005, York, NE, (VNS Winter Rye)	2 × 110	7	188 188	Late milk	22	Grain	0.048 0.066 (0.057)	0.009 0.013 (0.011)	0.057 0.079 (0.068)	137720 2006/7006725 R05146 METCON_151 Max. frozen storage: 10 month
USA, 2005, Eldridge, ND, (Dahcold)	1× 110 1× 120	6	143 149	Late milk	14 21	Grain Grain	0.051 0.067 (0.059) 0.053 0.057 (0.055)	0.011 0.015 (0.013) 0.012 0.013 (0.013)	0.062 0.082 (0.072) 0.064 0.070 (0.067)	137720 2006/7006725 R05147 METCON_151 Max. frozen storage: 9.6
					28 34	Grain Grain	0.052 0.045 (0.049) 0.057 0.064 (0.061)	0.012 0.010 (0.011) 0.013 0.014 (0.014)	0.064 0.055 (0.060) 0.070 0.078 (0.074)	month
Canada, 2005, Rosthern, SK (Gazelle)	2 × 110	8	204 200	Soft dough	20	Grain	0.074 0.074 (0.074)	0.019 0.018 (0.019)	0.093 0.092 (0.093)	137720 2006/7006725 R05148 METCON_151 Max. frozen storage: 7.7 month
Canada, 2005, Minto, MB (Common Rye Seed)	2 × 110	7	207 206	Hard dough	22	Grain	0.13 0.12 (0.13)	0.026 0.023 (0.025)	0.16 0.14 (0.15)	137720 2006/7006725 R05149 METCON_151 Max. frozen storage: 8.9 month

Table 168 Residues of metabolites M11, M21 and M30 in rye grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, Chula, GA (Wrens Abruzzi)	2 × 110	7	136 127	Soft dough	21	Grain	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	137720 2006/7006725 R05145 METCON_151 Max. frozen storage: 12 month
USA, 2005, York, NE, (VNS Winter Rye)	2 × 110	7	188 188	Late milk	22	Grain	0.02 0.03 (0.025)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	137720 2006/7006725 R05146 METCON_151 Max. frozen

Location,	Applic	ation		Growth			Residues for	ound [mg/kg] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
										storage: 10 month
USA, 2005, Eldridge, ND, (Dahcold)	1×110 1×120	6	143 149	Late milk	14	Grain	0.01 0.02 (0.015)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	137720 2006/7006725 R05147
					21	Grain	$0.04 \\ 0.04 \\ (0.04)$	< 0.01 < 0.01 (< 0.01)	< 0.01 0.01 (0.01)	METCON_151 Max. frozen storage: 9.6
					28	Grain	$0.04 \\ 0.04 \\ (0.04)$	< 0.01 < 0.01 (< 0.01)	0.01 0.01 (0.01)	month
					34	Grain	0.06 0.06 (0.06)	0.01 0.01 (0.01)	0.01 0.01 (0.01)	
Canada, 2005, Rosthern, SK (Gazelle)	2 × 110	8	204 200	Soft dough	20	Grain	0.01 0.01 (0.01)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	137720 2006/7006725 R05148 METCON_151 Max. frozen storage: 7.7 month
Canada, 2005, Minto, MB (Common Rye Seed)	2 × 110	7	207 206	Hard dough	22	Grain	0.04 0.04 (0.04)	0.01 0.01 (0.01)	< 0.01 < 0.01 (< 0.01)	137720 2006/7006725 R05149 METCON_151 Max. frozen storage: 8.9 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Table 169 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in rye grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation		Growth			Residues for	ound [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
USA, 2005, Chula, GA (Wrens Abruzzi)	2 × 110	7	136 127	Soft dough	21	Grain	< 0.05 < 0.05 (< 0.05)	1.7 1.6 (1.7) Control: 1.8	1.3 1.1 (1.2) Control: 1.3	137720 2006/7006725 R05145 METCON_151 Max. frozen storage: 12 month
USA, 2005, York, NE, (VNS Winter Rye)	2 × 110	7	188 188	Late milk	22	Grain	< 0.05 < 0.05 (< 0.05)	0.15 0.12 (0.14) Control: 0.08	0.08 0.06 (0.07) Control: 0.06	137720 2006/7006725 R05146 METCON_151 Max. frozen storage: 10 month
USA, 2005, Eldridge, ND, (Dahcold)	1×110 1×120	6	143 149	Late milk	14 21	Grain Grain	< 0.05 < 0.05 (< 0.05) < 0.05 < 0.05 (< 0.05)	0.06 0.06 (0.06) 0.07 0.07 (0.07)	< 0.05 < 0.05 (< 0.05) < 0.05 < 0.05 (< 0.05)	137720 2006/7006725 R05147 METCON_151 Max. frozen storage: 9.6

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	TA	ТАА	Reference, Storage period
					28 34	Grain Grain	< 0.05 < 0.05 (< 0.05) < 0.05 < 0.05 (< 0.05)	0.07 0.07 (0.07) 0.07 0.07 (0.07)	< 0.05 < 0.05 (< 0.05) < 0.05 < 0.05 (< 0.05)	month
Canada, 2005, Rosthern, SK (Gazelle)	2 × 110	8	204 200	Soft dough	20	Grain	< 0.05 < 0.05 (< 0.05)	0.08 0.08 (0.08)	< 0.05 < 0.05 (< 0.05)	137720 2006/7006725 R05148 METCON_151 Max. frozen storage: 7.7 month
Canada, 2005, Minto, MB (Common Rye Seed)	2 × 110	7	207 206	Hard dough	22	Grain	< 0.05 < 0.05 (< 0.05)	0.06 0.06 (0.06)	< 0.05 < 0.05 (< 0.05)	137720 2006/7006725 R05149 METCON_151 Max. frozen storage: 8.9 month

Barley

A total of 12 field trials were conducted on barley in the Canada and the USA during the 2004-05 growing seasons (White & Saha, 2006, METCON_148). Plants received 2 foliar applications of metconazole at nominal rates of 112–123 g ai/ha. Barley grain was harvested at 20–21 days after the last application. Additional samples from a decline trial were collected at 14, 21, 28 and 35 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%, except for triazole in grain spiked at 0.05 mg/kg which had a mean recovery of 125%.

Table 170 Residues of cis- and trans-metconazole in barley grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Application			Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
USA, 2005, North Rose,	2 × 120	8	231	71	20	Grain	0.19	0.03	0.23	137714
NY (Chapais)			230				0.17 (0.18)	0.03 (0.03)	0.20 (0.21)	2006/7006917 RCN R05155 METCON_148 Max. frozen storage: 6.2 month
USA, 2005, Belleville,	1× 0.11	7	117	69	14	Grain	1.5	0.362	2.0	137714 2006/7006917
IL (Not stated)	1× 0.12		157				1.1	0.164	1.2	RCN R05156 METCON_148
					21		(1.3) 1.2 0.8 (1.0)	(0.26) 0.18 0.13 (0.15) 0.136	(1.5) 1.4 0.9 (1.2)	Max. frozen storage: 7.6 month

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
N 7 (· ·)	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Y ear (Variety		(days)		final appl.			cis	trans	0.70	Storage period
					35		0.62 (0.72) 0.56 0.61 (0.50)	(0.11) 0.086 0.095	0.72 (0.83) 0.65 0.70 (0.68)	
USA, 2005, York, NE, (Robust Barley)	2 × 0.11	7	185 186	58	21	Grain	0.17 0.14 (0.16)	0.04 0.03 (0.03)	0.21 0.17 (0.19)	137714 2006/7006917 RCN R05157 METCON_148 Max. frozen storage: 6.5
110.4 2005			112		ļ					month
USA, 2005, Velva, ND (Excel)	2 × 0.11	7	113	69	20	Grain	0.14 0.15 (0.14)	0.03 0.03 (0.03)	0.16 0.17 (0.17)	137714 2006/7006917 RCN R05158 METCON_148 Max. frozen storage: 6.1 month
USA, 2005, Grand Island, NE (Robust Barley)	2 × 0.11	7	187 188	58	21	Grain	0.43 0.40 (0.42)	0.07 0.06 (0.06)	0.50 0.46 (0.48)	137714 2006/7006917 RCN R05159 METCON_148 Max. frozen storage: 6.5 month
USA, 2005, Young Ward, UT (Baroness)	2 × 0.12	8	161 160	87	20	Grain	0.49 0.47 (0.48)	0.09 0.10 (0.10)	0.58 0.57 (0.57)	137714 2006/7006917 RCN R05160 METCON_148 Max. frozen storage: 5.4 month
USA, 2005, Madera, CA, UT (Farmers Best)	2 × 0.11	7	280 279	87	21	Grain	0.88 1.3 (1.1)	0.20 0.27 (0.23)	1.1 1.6 (1.3)	137714 2006/7006917 RCN R05161 METCON_148 Max. frozen storage: 7.3 month
USA, 2005, Payette, ID (Baronesse)	1× 0.11 1×0.12	7	282 280	58	21	Grain	0.58 0.52 (0.55)	0.11 0.11 (0.11)	0.69 0.63 (0.66)	137714 2006/7006917 RCN R05162 METCON_148 Max. frozen storage: 5.8 month
Canada, 2005, Rosthern, SK (AC Metcalfe)	2 × 0.11	6	205 204	73	21	Grain	0.09 0.10 (0.10)	0.02 0.02 (0.02)	0.11 0.12 (0.12)	137714 2006/7006917 RCN R05163 METCON_148 Max. frozen storage: 4.9 month
Canada, 2005, Minto, MB (AC	,2 × 0.11	8	207 195	75	20	Grain	0.27 0.19 (0.23)	0.04 0.03 (0.04)	0.31 0.23 (0.27)	137714 2006/7006917 RCN R05164

Location,	Applic	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo <i>cis</i>	le trans	Total	Reference, Storage period
Metcalfe)										METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	,2 × 0.11	7	226 233	61	21	Grain	0.48 0.46 (0.47)	0.10 0.10 (0.10)	0.58 0.56 (0.57)	137714 2006/7006917 RCN R05165 METCON_148 Max. frozen storage: 4.4 month
Canada, 2005 Innisfail, AB (CDC Bold)	2 × 0.11	7	202 226	57	21	Grain	0.40 0.40 (0.40)	0.08 0.07 (0.07)	0.48 0.47 (0.48)	137714 2006/7006917 RCN R05166 METCON_148 Max. frozen storage: 4.5 month

Table 171 Residues of metabolites M11, M21 and M30 in barley grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applica	ation		Growth			Residues fo	ound [mg/kg] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, North Rose,	2 × 0.12	8	231	71	20	Grain	0.120	0.010	0.040	137714
NY			230				0.120	0.010	0.030	2006/7006917
(Chapais)							(0.12)	(0.01)	(0.04)	RCN R05155
										METCON 148
										Max. frozen
										storage: 6.2
										month
USA, 2005, Belleville,	1× 0.11	7	117	69	14	Grain	0.40	0.10	0.060	137714 2006/7006917
IL (Not stated)	1× 0.12		157				0.29	0.07	0.05	RCN R05156 METCON_148
							(0.35)	(0.09)	(0.06)	Max. frozen
					21		0.30	0.08	0.05	storage: 7.6
							0.33	0.06	0.04	month
							(0.32)	(0.07)	(0.05)	
					28		0.25	0.06	0.04	
							0.19	0.05	0.04	
							(0.22)	(0.06)	(0.04)	
					35		0.18	0.04	0.03	
							0.28	0.05	0.04	
							(0.23)	(0.05)	(0.04)	
USA, 2005, York,	2 × 0.11	7	185	58	21	Grain	0.03	< 0.01	< 0.01	137714 2006/7006917
NB,			186				0.03	< 0.01	< 0.01	RCN R05157
(Robust							(0.03)	(< 0.01)	(< 0.01)	METCON_148
Barley)										Max. frozen
										storage: 6.5
										month
USA, 2005,	2 ×	7	113	69	20	Grain	0.02	< 0.01	< 0.01	137714
Velva,	0.11				Ē v	Sium	0.02	0.01	0.01	2006/7006917

Location,	Applica	ation		Growth			Residues fo	und [mg/kg] ab	Report/Trial No.,
Veor (voriety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	M11	M21	M30	Reference, Storage period
ND		(days)	111	imai appi.			0.02	< 0.01	< 0.01	RCN R05158
(Excel)							(0.02)	(< 0.01)	(< 0.01)	METCON_148
										Max. frozen
										storage: 6.1
LISA 2005	2 ×	7	187							
Grand Island,	0.11	/	107	58	21	Grain	0.05	0.01	0.01	2006/7006917
NB			188				0.05	0.01	0.01	RCN R05159
(Robust							(0.05)	(0.01)	(0.01)	METCON_148
Darley)										Max. frozen
										month
USA, 2005,	2 ×	8	161	87	20	Grain	< 0.01	< 0.01	< 0.01	137714
Young Ward,	0.12		1.00	07	20	Orain	< 0.01	< 0.01	< 0.01	2006/7006917
UI (Baroness)			160				< 0.01	< 0.01	< 0.01	RCN R05160 Metcon 148
(Buroness)							(< 0.01)	(< 0.01)	(< 0.01)	Max. frozen
										storage: 5.4
1124 2005	2	-	200							month
USA, 2005, Madera, CA.	2 × 0.11	/	280	87	21	Grain	0.01	0.01	< 0.01	137714 2006/7006917
UT			279				0.01	0.02	< 0.01	RCN R05161
(Farmers							(0.01)	(0.02)	(< 0.01)	METCON_148
Best)										Max. frozen
										month
USA, 2005, Pavatta	1×	7	282	58	21	Grain	< 0.01	0.01	< 0.01	137714
ID	1×0.12		280				< 0.01	0.01	< 0.01	2006/7006917
(Baronesse)							<(0.01)	(0.01)	(< 0.01)	RCN R05162
										METCON_148
										Max. frozen
										month
Canada, 2005.	2 × 0.11	6	205	73	21	Grain	0.01	0.01	< 0.01	137714
Rosthern,			204				0.02	< 0.01	< 0.01	2006/7006917
SK							(0.02)	(0.01)	(< 0.01)	RCN R05163
(AC Metcalfe)										METCON_148 Max_frozen
										storage: 4.9
										month
Canada, 2005	2 × 0 11	8	207	75	20	Grain	0.04	0.01	0.01	137714
Minto,	0.11		195				0.03	0.01	0.01	2006/7006917
MB							(0.04)	(0.01)	(0.01)	RCN R05164
(AC Metcalfe)										METCON_148
wieleane)										storage: 6.0
										month
Canada, 2005.	2 × 0.11	7	226	61	21	Grain	0.07	0.05	0.01	137714
Innisfail,			233				0.07	0.04	0.01	2006/7006917
AB (CDC Bald)							(0.07)	(0.05)	(0.01)	RCN R05165
										MEICON_148 Max_frozen
										storage: 4.4
		_	2.05							month
Canada, 2005,	2 × 0.11	/	202	57	21	Grain	0.06	0.04	< 0.01	137714

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
Innisfail, AB (CDC Bold)			226				0.07 (0.07)	0.04 (0.04)	< 0.01 (< 0.01)	2006/7006917 RCN R05166 METCON_148 Max. frozen storage: 4.5 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Table 172 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in barley grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applica	ation		Growth			Residues f	ound [mg/kg	g] ^a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	ТАА	Reference, Storage period
USA, 2005, North Rose,	2 × 0.12	8	231	71	20	Grain	< 0.05	0.090	0.180	137714
NY (Chapais)			230				< 0.05 (< 0.05)	0.080 (0.085) Control: 0.34	0.180 (0.180) Control: 0.14	2006/7006917 RCN R05155 METCON_148 Max. frozen storage: 6.2 month
USA, 2005, Belleville,	1× 0.11	7	117	69	14	Grain	< 0.05	0.060	0.070	137714 2006/7006917
IL (Not stated)	1× 0.12		157				< 0.05	0.050	0.070	RCN R05156 METCON_148
					21		(< 0.05) < 0.05 < 0.05 (< 0.05) < 0.05	(0.055) < 0.05 0.060 (0.055) 0.070	(0.070) 0.060 0.060 (0.060) 0.070	Max. frozen storage: 7.6 month
					35		< 0.05 < 0.05 (< 0.05) < 0.05 < 0.05 (< 0.05)	 < 0.070 < 0.05 (0.060) < 0.05 0.060 (0.055) Control: 0.06 	0.070 0.060 (0.065) 0.060 (0.065) Control: 0.07	
USA, 2005, Vork	2 × 0 11	7	185	58	21	Grain	< 0.05	0.060	0.140	137714
NB, (Robust Barley)	0.11		186				< 0.05 (< 0.50)	< 0.05 (0.055) Control: 0.11	0.120 (0.130)	RCN R05157 METCON_148 Max. frozen storage: 6.5 month
USA, 2005, Velva,	2 × 0.11	7	113	69	20	Grain	< 0.05	< 0.05	0.100	137714 2006/7006917
ND (Excel)			111				< 0.05 (< 0.50)	< 0.05 (0.050) Control: 0.06	0.100 (0.100)	RCN R05158 METCON_148 Max. frozen storage: 6.1 month
USA, 2005, Grand Island, NB (Robust	2 × 0.11	7	187 188	58	21	Grain	< 0.05 < 0.05 (< 0.50)	< 0.05 < 0.05 (0.050)	0.090 0.080 (0.085)	137714 2006/7006917 RCN R05159 METCON 148

Location,	Applica	ation		Growth			Residues fo	und [mg/kg	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
Barley)								Control: 0.07		Max. frozen storage: 6.5 month
USA, 2005, Young Ward, UT (Baroness)	2 × 0.12	8	161	87	20	Grain	< 0.05 < 0.05 (< 0.50)	< 0.05 < 0.05 (0.050)	< 0.05 < 0.05 (0.050)	137714 2006/7006917 RCN R05160 METCON_148 Max. frozen storage: 5.4 month
USA, 2005, Madera, CA, UT (Farmers Best)	2 × 0.11	7	280 279	87	21	Grain	< 0.05 < 0.05 (< 0.50)	< 0.05 < 0.05 (0.050)	< 0.05 < 0.05 (0.050)	137714 2006/7006917 RCN R05161 METCON_148 Max. frozen storage: 7.3 month
USA, 2005, Payette, ID (Baronesse)	1× 0.11 1×0.12	7	282 280	58	21	Grain	< 0.05 < 0.05 (< 0.50)	< 0.05 < 0.05 (0.050)	< 0.05 < 0.05 (0.050)	137714 2006/7006917 RCN R05162 METCON_148 Max. frozen storage: 5.8 month
Canada, 2005, Rosthern, SK (AC Metcalfe)	2 × 0.11	6	205 204	73	21	Grain	< 0.05 < 0.05 (< 0.50)	< 0.05 < 0.05 (0.050)	< 0.05 0.050 (0.050)	137714 2006/7006917 RCN R05163 METCON_148 Max. frozen storage: 4.9 month
Canada, 2005, Minto, MB (AC Metcalfe)	2 × 0.11	8	207 195	75	20	Grain	< 0.05 < 0.05 (< 0.50)	0.180 0.180 (0.180) Control: 0.27	0.450 0.420 (0.435) Control: 0.11	137714 2006/7006917 RCN R05164 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	7	226 233	61	21	Grain	< 0.05 < 0.05 (< 0.50)	< 0.05 < 0.05 (0.050) Control: 0.07	0.050 < 0.05 (0.050)	137714 2006/7006917 RCN R05165 METCON_148 Max. frozen storage: 4.4 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	7	202 226	57	21	Grain	< 0.05 < 0.05 (< 0.50)	0.070 0.060 (0.065) Control: 0.43	0.310 0.320 (0.315) Control: 0.08	137714 2006/7006917 RCN R05166 METCON_148 Max. frozen storage: 4.5 month

Metconazole

0at

A total of 12 field trials were conducted on oat in the Canada and the USA during the 2004-05 growing seasons (Jordan & Saha, 2006, METCON_149). Plants received 2 foliar applications of metconazole at nominal rates of 112–123 g ai/ha. Oat grain was harvested at 20–21 days after the last application. Additional samples from a decline trial were collected at 14, 21, 28 and 36 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%. However one recovery of the 1 mg/kg fortification level in grain for M11, M21 and M30 was >120% and therefore excluded from the calculation of the mean recovery.

Location,	Applic	ation		Growth			Residues	found [mg/l	(g] ^a	Report/Trial No.,
	a ai/ha	Interval	L/ha	stage at	DALA	Sample	Metcona	zole	Tatal	Reference,
Year (variety	g ai/na	(days)	L/na	final appl.			cis	trans	Total	Storage period
USA, 2005, North Rose,	2 × 0.11	8	227	83	20	Grain	0.31	0.049	0.36	137717 2006/7006724
NY (AC Alymer)			233				0.30 (0.30)	0.048 (0.049)	0.35 (0.35)	RCN R05126 METCON_149 Max. frozen storage: 9.8 month
USA, 2005, Sunsweet,	2 × 0.11	7	131	85	21	Grain	0.49	0.069	0.56	137717 2006/7006724
GA (Horizon 314)			136				0.43 (0.46)	0.060 (0.065)	0.49 (0.53)	RCN R05127 METCON_149 Max. frozen storage: 12 month
USA, 2005, Carlyle,	1× 0.12	7	166	85	21	Grain	0.48	0.091	0.57	137717 2006/7006724
IL, (Seed oats)	1× 0.11		167				0.47	0.068	0.54	RCN R05128 METCON 149
							(0.48)	(0.080)	(0.56)	Max. frozen storage: 11 month
USA, 2005, Arkansaw	1× 0.12	7	188	75	20	Grain	0.32	0.044	0.37	137717
WI, (Vista)	1× 0.11		189				0.36	0.068	0.43	2006/7006724 RCN R05129
	0.11						(0.34)	(0.056)	(0.40)	METCON_149 Max. frozen storage: 9.7 month
USA, 2005, Eldridge, ND,	2 × 0.11	7	186	75	21	Grain	0.10	0.024	0.13	137717 2006/7006724
(Morton)			142				0.12 (0.11)	0.027 (0.026)	0.15 (0.14)	RCN R05130 METCON_149 Max. frozen storage: 9.4 month
USA, 2004, Grand Island, NF	1× 0.12 1×	7	189	85	21	Grain	0.15	0.029	0.18	137717 2006/7006724 RCN R05131
(Jerry)	0.11		109				(0.16)	(0.033)	(0.19	METCON_149
							(0.10)	(0.031)	(0.17)	storage: 10 month

Table 173 Residues of cis- and trans-metconazole in oat grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location, App		ation		Growth			Residues	found [mg/l	(g] ^a	Report/Trial No.,
	a ai/ha	Interval	I /ba	stage at	DALA	Sample	Metconaz	ole	Total	Reference,
Year (variety	g al/lla	(days)	L/IIa	final appl.			cis	trans	TOTAL	Storage period
USA, 2005,	1×	6	149	75	14	Grain	0.15	0.032	0.18	137717
Gardner,	0.12			15	14	Orain				2006/7006724
ND			149				0.17	0.034	0.21	RCN R05132
(Morton)							(0.16)	(0.033)	(0.19)	METCON_149
					21		0.12	0.027	0.14	Max. frozen
							0.11	0.029	0.14	storage: 9.2
							(0.12)	(0.028)	(0.14)	month
					28		0.18	0.039	0.22	
							0.15	0.034	0.19	
							(0.17)	(0.037)	(0.21)	
					36		0.16	0.031	0.19	
							0.11	0.025	0.14	
							(0.13)	(0.028)	(0.16)	
USA, 2005.	2 ×	7	126		2.6	. ·	0.28	0.070	0.35	
Hinton.	0.11			11	26	Grain				137717
OK			132				0.22	0.050	0.27	2006/7006724
(Jerry)							(0.25)	(0.060)	(0.31)	RCN R05133
								()		METCON_149
										Max. frozen
										storage: 11 month
Canada,	$1 \times$	7	202	07	21	Curin	0.34	0.092	0.43	105515
2005,	0.12			87	21	Grain				13//17
St-Cesaire,	$1 \times$		228				0.57	0.11	0.68	2006/7006724 DCN/D05124
SK	0.11									KUN KUSI 34 METCON 140
(Rigodon)							(0.45)	(0.10)	(0.56)	METCON_149
										storage: 8 2
										month
										montin
Canada,	2 ×	8	204	83	20	Grain	0.18	0.036	0.22	137717
2005,	0.11			05	20	Gruin				2006/7006724
Rosthern,			200				0.14	0.028	0.17	RCN R05135
SK							(0.16)	(0.032)	(0.19)	METCON_149
(Furlong)										Max. frozen
										storage: 7.6
-	-									month
Canada,	$2 \times$	1	208	87	20	Grain	0.041	0.22	0.26	137717
2005,	0.11				-					2006/7006724
Minto,			199				0.19	0.050	0.24	RCN R05136
MB (T · 1							(0.12)	(0.13)	(0.25)	METCON_149
(Triple										Max. frozen
Crown)										storage: 8.2
-	-									month
Canada,	$2 \times$	7	226	85	21	Grain	0.23	0.042	0.28	137717
2005,	0.11									2006/7006724
innistail,			234				0.20	0.042	0.24	RCN R05137
AB							(0.22)	(0.042)	(0.26)	METCON_149
(AC LU)										Max. trozen
	1									storage: 7.4
	1									month

Table 174 Residues of metabolites M11, M21 and M30 in oat grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Application	Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,	
Year (variety	g ai/ha Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period

Location,	Applic	ation		Growth			Residues for	und [mg/kg]	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, North Rose, NY (AC Alymer)	2 × 0.11	8	227 233	83	20	Grain	0.15 0.17 (0.16)	0.040 0.040 (0.040)	0.020 0.030 (0.025)	137717 2006/7006724 RCN R05126 METCON_149 Max. frozen storage: 9.8 month
USA, 2005, Sunsweet, GA (Horizon 314)	2 × 0.11	7	131 136	85	21	Grain	0.08 0.07 (0.075)	0.030 0.020 (0.025)	0.010 0.010 (0.010)	137717 2006/7006724 RCN R05127 METCON_149 Max. frozen storage: 12 month
USA, 2005, Carlyle, IL, (Seed oats)	1× 0.12 1× 0.11	7	166 167	85	21	Grain	0.16 0.16 (0.16)	0.040 0.030 (0.035)	0.020 0.020 (0.020)	137717 2006/7006724 RCN R05128 METCON_149 Max. frozen storage: 11 month
USA, 2005, Arkansaw, WI, (Vista)	1× 0.12 1× 0.11	7	188 189	75	20	Grain	0.20 0.24 (0.22)	0.030 0.040 (0.035)	0.040 0.050 (0.045)	137717 2006/7006724 RCN R05129 METCON_149 Max. frozen storage: 9.7 month
USA, 2005, Eldridge, ND, (Morton)	2 × 0.11	7	186 142	75	21	Grain	0.010 0.020 (0.015)	0.020 0.020 (0.020)	< 0.01 < 0.01 (< 0.01)	137717 2006/7006724 RCN R05130 METCON_149 Max. frozen storage: 9.4 month
USA, 2004, Grand Island, NE (Jerry)	1× 0.12 1× 0.11	7	189 189	85	21	Grain	0.030 0.030 (0.030)	0.020 0.020 (0.020)	< 0.01 < 0.01 (< 0.01)	137717 2006/7006724 RCN R05131 METCON_149 Max. frozen storage: 10 month
USA, 2005, Gardner, ND (Morton)	1× 0.12	6	149 149	75	14 21 28 36	Grain	0.010 0.020 (0.015) 0.020 0.020 (0.020) 0.070 0.040 (0.055) 0.080 0.070	0.020 0.020 (0.020) 0.020 0.020 (0.020) 0.030 0.020 (0.025) 0.030 0.030	< 0.01 < 0.01 (< 0.010) < 0.01 < 0.010 (< 0.010) 0.010 < 0.01 (0.010) 0.020 0.020	137717 2006/7006724 RCN R05132 METCON_149 Max. frozen storage: 9.2 month
USA, 2005, Hinton,	2 × 0.11	7	126	77	26	Grain	(0.075) 0.20	(0.030) 0.060	(0.020) 0.040	137717 2006/7006724

Location,	Applic	ation		Growth			Residues for	ound [mg/kg] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
OK (Jerry)			132				0.16 (0.18)	0.050 (0.055)	0.030 (0.035)	RCN R05133 METCON_149 Max. frozen storage: 11 month
Canada, 2005, St-Cesaire, SK (Rigodon)	1× 0.12 1× 0.11	7	202 228	87	21	Grain	0.19 0.34 (0.27)	0.050 0.060 (0.060)	0.040 0.060 (0.050)	137717 2006/7006724 RCN R05134 METCON_149 Max. frozen storage: 8.3 month
Canada, 2005, Rosthern, SK (Furlong)	2 × 0.11	8	204 200	83	20	Grain	0.020 0.020 (0.020)	0.020 0.020 (0.020)	< 0.01 < 0.01 (< 0.01)	137717 2006/7006724 RCN R05135 METCON_149 Max. frozen storage: 7.6 month
Canada, 2005, Minto, MB (Triple Crown)	2 × 0.11	7	208 199	87	20	Grain	0.090 0.10 (0.095)	0.020 0.030 (0.025)	0.010 0.020 (0.015)	137717 2006/7006724 RCN R05136 METCON_149 Max. frozen storage: 8.2 month
Canada, 2005, Innisfail, AB (AC Lu)	2 × 0.11	7	226 234	85	21	Grain	0.020 0.020 (0.020)	0.020 0.020 (0.020)	< 0.01 < 0.01 (< 0.01)	137717 2006/7006724 RCN R05137 METCON_149 Max. frozen storage: 7.4 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	TA	TAA	Reference, Storage period
USA, 2005, North Rose, NY (AC Alymer)	2 × 0.11	8	227 233	83	20	Grain	< 0.05 < 0.05 (< 0.05)	0.48 0.51 (0.50) Control: 0.51	0.16 0.18 (0.17) Control: 0.20	137717 2006/7006724 RCN R05126 METCON_149 Max. frozen storage: 9.8 month
USA, 2005, Sunsweet, GA (Horizon 314)	2 × 0.11	7	131 136	85	21	Grain	< 0.05 < 0.05 (< 0.05)	1.1 1.1 (1.1) Control: 0.76	0.38 0.40 (0.39) Control: 0.30	137717 2006/7006724 RCN R05127 METCON_149 Max. frozen storage: 12 month

Table 175 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in oat grain following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
USA, 2005, Carlyle, IL, (Seed oats)	1× 0.12 1× 0.11	7	166 167	85	21	Grain	< 0.05 < 0.05	0.25 0.26	0.070 0.080	137717 2006/7006724 RCN R05128 METCON_149
							(< 0.05)	(0.26) Control: 0.18	(0.075) Control: 0.08	storage: 11 month
USA, 2005, Arkansaw, WL (Vista)	1× 0.12 1×	7	188 189	75	20	Grain	< 0.05	0.090	< 0.05	137717 2006/7006724
	0.11						(< 0.05)	(0.085) Control: 0.12	(< 0.05) Control: 0.06	RCN R05129 METCON_149 Max. frozen storage: 9.7 month
USA, 2005, Eldridge	2 × 0 11	7	186	75	21	Grain	< 0.05	0.14	< 0.05	137717
ND, (Morton)	0.11		142				< 0.05 (< 0.05)	0.16 (0.15) Control: 0.17	< 0.05 (< 0.05) Control: 0.08	2006/7006724 RCN R05130 METCON_149 Max. frozen storage: 9.4 month
USA, 2004, Grand Island.	1× 0.12	7	189	85	21	Grain	< 0.05	0.16	0.050	137717
NE (Jerry)	1× 0.11		189				< 0.05	0.15	< 0.05	2006/7006724 PCN P05121
(Jerry)	0.11						(< 0.05)	(0.16) Control: 0.09	(0.05)	METCON_149 Max. frozen storage: 10 month
USA, 2005, Gardner, ND	1× 0.12	6	149 149	75	14	Grain	< 0.05 < 0.05	0.15 0.17	< 0.05 < 0.05	137717 2006/7006724 RCN R05132
(Morton)					21		(< 0.05) 0.080 0.060	(0.16) 0.16 0.17	(< 0.05) < 0.05 < 0.05	METCON_149 Max. frozen storage: 9.2 month
					28		(0.070) 0.050 0.060	(0.17) 0.15 0.16	(< 0.05) < 0.05 < 0.05	
					36		(0.055) 0.050 0.070 (0.060) Control: 0.06	(0.16) 0.14 0.13 (0.14) Control: 0.07	(< 0.05) < 0.05 < 0.05 (< 0.05)	
USA, 2005, Hinton	2 ×	7	126	77	26	Grain	< 0.05	1.1	0.34	137717
OK (Jerry)	0.11		132				< 0.05 (< 0.05)	1.2 (1.1) Control: 0.55	0.36 (0.35) Control: 0.20	2006/7006724 RCN R05133 METCON_149 Max. frozen storage: 11 month
Canada, 2005, St-Cesaire,	1× 0.12 1×	7	202 228	87	21	Grain	< 0.05 < 0.05	0.12 0.10	< 0.05 < 0.05	137717 2006/7006724 RCN R05134
SK (Rigodon)	0.11						(< 0.05) Control: 0.05	(0.11)	(< 0.05)	METCON_149 Max. frozen storage: 8.3 month

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	ТАА	Reference, Storage period
Canada, 2005, Rosthern, SK (Furlong)	2 × 0.11	8	204 200	83	20	Grain	< 0.05 < 0.05 (< 0.05)	0.09 0.10 (0.10)	< 0.05 < 0.05 (< 0.05)	137717 2006/7006724 RCN R05135 METCON_149 Max. frozen storage: 7.6 month
Canada, 2005, Minto, MB (Triple Crown)	2 × 0.11	7	208 199	87	20	Grain	< 0.05 < 0.05 (< 0.05)	1.1 0.98 (1.1) Control: 0.58	0.40 0.37 (0.39) Control: 0.26	137717 2006/7006724 RCN R05136 METCON_149 Max. frozen storage: 8.2 month
Canada, 2005, Innisfail, AB (AC Lu)	2 × 0.11	7	226 234	85	21	Grain	< 0.05 < 0.05 (< 0.05)	0.06 0.06 (0.060) Control: 0.07	< 0.05 < 0.05 (< 0.05)	137717 2006/7006724 RCN R05137 METCON_149 Max. frozen storage: 7.4 month

Maize

A total of 20 field trials were conducted on maize in the USA during the 2006 growing season (Carringer, 2006, METCON_150). Plants received 4 foliar applications of metconazole at nominal rates of 110 g ai/ha. Maize grain was harvested at 20–22 days after the last application. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Residues of metabolites M11, M21 and M30, were each below their LOQ of 0.01 mg/kg in all trials.

Table 176 Residues of *cis*- and *trans*-metconazole in maize grain following foliar treatment (cGAP USA: 4×92 g ai/ha; 7 days PHI).

Location,	Application			Growth			Residues found [mg/kg] ^a			Report/Trial No.,
Vear (variety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le	Total	Reference, Storage period
I cal (vallety		(days)		imai appi.		<u> </u>	CIS	trans		Storage period
USA, 2006, Germansville.	4× 110	7	290	87	21	Grain	< 0.005	< 0.005	< 0.01	254314
PA			290				< 0.005	< 0.005	< 0.01	2006/7012839
(TA5750)			281				(< 0.005)	(< 0.005)	(< 0.01)	RCN R06426
1			290							METCON_150
										Max. frozen
										storage: 2.3
										month
USA, 2006,	4×	7	271	87	21	Grain	< 0.005	< 0.005	< 0.01	254314
Seven	110		2/1	07	21	Ofaili	< 0.005	< 0.005	< 0.01	2006/7012839
Springs, NC			271				< 0.005	< 0.005	< 0.01	RCN R06427
(Garst 8377)			271				(< 0.005)	(< 0.005)	(< 0.01)	METCON_150
			271							Max. frozen

Location,	Application			Growth			Residues found [mg/kg] ^a			Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo <i>cis</i>	le trans	Total	Reference, Storage period
										storage: 3.0 month
USA, 2006, New Holland, OH (Crows 7R154)	4× 110	6–9	196 196 206 196	87	20	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06429 METCON_150 Max. frozen storage: 1.8 month
USA, 2006, Atlanta, OH (Crows 5151)	4× 110	6–9	150 150 150 150	87	20	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06430 METCON_150 Max. frozen storage: 1.8 month
USA, 2006, Carlyle, IL, (BT 6516 RR 2YG)	4× 110	7	131 215 224 178	R6	21	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06431 METCON_150 Max. frozen storage: 2.1 month
USA, 2006, Mason, IL, (Burrus 664 RWR-PX4)	4× 110	6–8	159 140 159 159	87–89	21	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06432 METCON_150 Max. frozen storage: 2.3 month
USA, 2006, Wyoming, IL, (Burrus 644 RWR)	4× 110	6–7	159 159 159 150	R5	22	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06433 METCON_150 Max. frozen storage: 2.0 month
USA, 2006, Danville, IN (Wyffels W5531)	4× 110	7	140 140 150 159	87–89	21	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06434 METCON_150 Max. frozen storage: 2.5 month
USA, 2006, Bellmore, IN (Wyffels W5531)	4× 110	6-8	159 159 159 159	87	21	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06435 METCON_150 Max. frozen storage: 1.7 month
USA, 2006, Richland, IO (Golden Harvest HX 9323)	4× 110	7	150 150 150 178	R5	21	Grain	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06436 METCON_150 Max. frozen

Location,	Application			Growth			Residues found [mg/kg] ^a			Report/Trial No.,
/	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Year (variety	5 41/114	(days)	L/ IIu	final appl.			cis	trans	Total	Storage period
										storage: 2.1 month
USA, 2006,	4×	7–8	159	R5	21	Grain	< 0.005	< 0.005	< 0.01	254314
Hedrick,	110		150				< 0.005	< 0.005	< 0.01	2006/7012839
(Pioneer			159				< 0.005	< 0.005	(< 0.01)	RCN R06437
34A16)			140				(*0.005)	(*0.005)	<u>(• 0.01)</u>	METCON 150
										Max. frozen
										storage: 2.5
	4	7								month
OSA, 2006, Ollie	4× 110	/	159	R5	21	Grain	< 0.005	< 0.005	< 0.01	254514
IO	110		150				< 0.005	< 0.005	< 0.01	2006/7012839
(Middlekoop			159				(< 0.005)	(< 0.005)	<u>(< 0.01</u>)	RCN R06438
2212)			178							METCON_150
										Max. frozen
										storage: 2.1
USA, 2006.	4×	7		. .		. ·	0.010	0.00 .	0.010	254314
Bagley,	110		206	85	21	Grain	0.013	< 0.005	0.018	
IO			206				0.006	< 0.005	0.011	2006/7012839
(33P65)			224				(0.095)	(< 0.005)	(<u>0.015</u>)	RCN R06439
			215							METCON_150 Max_frozen
										storage: 2.6
										month
USA, 2006 Delavan WI	4× 110	6–7	159	R5	21	Grain	< 0.005	< 0.005	< 0.01	254314
(DKC52-40	110		159				< 0.005	< 0.005	< 0.01	2006/7012839
(RR2/YGPL))			168				(< 0.005)	(< 0.005)	(< 0.01)	RCN R06440
			159							METCON_150
										Max. frozen
										storage: 2.3
USA, 2006	4×	6–7	150	D5/D(21	Cusin	< 0.005	< 0.005	< 0.01	254314
Ellendale,	110		139	K3/K0	21	Grain	< 0.005	< 0.005	< 0.01	
MN (D:			150				< 0.005	< 0.005	< 0.01	2006/7012839
(Pioneer 38H66)			168				(< 0.005)	(< 0.005)	<u>(< 0.01)</u>	RCN R06441
561100)			139							METCON_150 Max_frozen
										storage: 1.9
										month
USA, 2006	4×	6–7	159	R5/R6	21	Grain	< 0.005	< 0.005	< 0.01	254314
Geneva, MN (Pioneer	110		159				< 0.005	< 0.005	< 0.01	2006/7012839
38H66)			168				(< 0.005)	(< 0.005)	(< 0.01)	RCN R06442
,			159				(,	()	<u>, </u>	METCON 150
										Max. frozen
										storage: 1.9
USA 2006	4×	6_7								month 254314
York, NE	110	0-7	187	87	21	Grain	< 0.005	< 0.005	< 0.01	254514
(Pioneer			187				< 0.005	< 0.005	< 0.01	2006/7012839
34N45			187				(< 0.005)	(< 0.005)	<u>(< 0.01)</u>	RCN R06443
кк/¥G)			187							METCON_150
										storage: 2.7
										month
USA, 2006,	4×	7	178	87	21	Grain	< 0.005	< 0.005	< 0.01	254314
Grand Island,	110		1/0	07	<u>~1</u>	Jiaili	~ 0.005	~ 0.005	~ 0.01	
Location,	Applic	ation		Growth			Residues found [mg/kg] ^a			Report/Trial No.,
---------------------------	-----------	----------	-------	-------------	------	--------	-------------------------------------	-----------	----------------	-------------------
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Year (variety	g al/lla	(days)	L/IIa	final appl.			cis	trans	10141	Storage period
NE			187				< 0.005	< 0.005	< 0.01	2006/7012839
(NK N73-F7			187				(< 0.005)	(< 0.005)	(< 0.01)	RCN R06444
RR/LL/YG)			187							METCON_150
										Max. frozen
										storage: 2.7
										month
USA, 2006, Osceola, NE	4× 110	6–8	187	87	21	Grain	< 0.005	< 0.005	< 0.01	254314
(NK N73-F7)			187				< 0.005	< 0.005	< 0.01	2006/7012839
			187				(< 0.005)	(< 0.005)	(< 0.01)	RCN R06445
			187							METCON_150
										Max. frozen
										storage: 2.6
										month
USA, 2006, Dill, OK	4× 110	6–9	196	87	21	Grain	0.005	< 0.005	0.01	254314
(DK C48–53			206				< 0.005	< 0.005	< 0.01	2006/7012839
AF2)			196				(0.005)	(< 0.005)	(<u>0.01)</u>	RCN R06446
			196							METCON_150
										Max. frozen
										storage: 2.5
										month

Location,	Applic	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	ТАА	Reference, Storage period
USA, 2006, Germansville, PA (TA5750)	4× 110	7	290 290 281 290	87	21	Grain	< 0.01 < 0.01 (< 0.01)	0.11 0.10 (0.11)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06426 METCON_150 Max. frozen storage: 2.3 month
USA, 2006, Seven Springs, NC (Garst 8377)	4× 110	7	271 271 271 271 271	87	21	Grain	< 0.01 < 0.01 (< 0.01)	0.07 0.07 (0.07) Control: 0.07	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06427 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, New Holland, OH (Crows 7R154)	4× 110	6–9	196 196 206 196	87	20	Grain	< 0.01 < 0.01 (< 0.01)	< 0.05 < 0.05 (< 0.05)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06429 METCON_150 Max. frozen storage: 1.8 month
USA, 2006, Atlanta, OH (Crows 5151)	4× 110	6–9	150 150 150 150	87	20	Grain	< 0.01 < 0.01 (< 0.01)	0.07 0.05 (0.06)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06430 METCON_150 Max. frozen storage: 1.8 month
USA, 2006,	4×110	7	131	R6	21	Grain	< 0.01	< 0.05	< 0.01	254314

Table 177 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in maize grain following foliar treatment (cGAP USA: 4×92 g ai/ha; 7 days PHI).

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg]	a	Report/Trial No.,
N (1)	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Т	ТА	ТАА	Reference,
Year (variety	0	(days)		fınal appl.			-		0.01	Storage period
Carlyle,			215				< 0.01	< 0.05	< 0.01	2006//012839
IL, (DT 6516 DD			170				(< 0.01)	(< 0.05)	(< 0.01)	KUN KU6431 Metcon 150
(BI 0510 KK)			1/8					Control:		METCON_150
210)								0.06		storage: 2.1
										month
USA, 2006,	4×110	6–8	159	87–89	21	Grain	< 0.01	0.10	< 0.01	254314
Mason,			140				< 0.01	0.10	< 0.01	2006/7012839
IL,			159				(< 0.01)	(0.10)	(< 0.01)	RCN R06432
(Burrus 664			159					Control:		METCON_150
RWR-PX4)								0.05		Max. frozen
										storage: 2.3
LIGA 2006	4, 110	67	150	D.5	22	G ·	< 0.01	0.00	< 0.01	month
USA, 2006, Wyoming	4× 110	0-/	159	КЭ	22	Grain	< 0.01	0.08	< 0.01	234314
w yonning, II			159				< 0.01	(0,09)	< 0.01	RCN R06433
(Burrus 644			159				(< 0.01)	(0.09)	(< 0.01)	METCON 150
RWR)			150							Max. frozen
)										storage: 2.0
										month
USA, 2006,	4× 110	7	140	87–89	21	Grain	< 0.01	0.10	< 0.01	254314
Danville,			140				< 0.01	0.09	< 0.01	2006/7012839
IN (IV) and			150				(< 0.01)	(0.10)	(< 0.01)	RCN R06434
(Wyffels			159							METCON_150
w5531)										Max. frozen
										storage: 2.5
	4 110	6.0	150	07	21	Cusin	< 0.01	0.07	< 0.01	month
USA, 2000, Ballmora	4^ 110	0-8	159	07	21	Grain	0.01	0.07	0.01	234314
IN			159				< 0.01	(0.005)	< 0.01	2000/7012839 RCN R06435
(Wyffels			159				(< 0.01)	(0.075)	(< 0.01)	METCON 150
W5531)			157							Max frozen
,										storage: 1.7
										month
USA, 2006,	4× 110	7	150	R5	21	Grain	< 0.01	0.05	< 0.01	254314
Richland,			150				< 0.01	< 0.05	< 0.01	2006/7012839
IO (Golden			150				(< 0.01)	(0.05)	(< 0.01)	RCN R06436
Harvest HX			178					Control:		METCON_150
9323)								0.06		Max. frozen
										storage: 2.1
USA 2006	4× 110	7 0	150	D 5	21	Grain	< 0.01	0.10	< 0.01	month $25/21/$
USA, 2000, Hedrick	4^ 110	/-0	159	KJ	21	Ofalli	< 0.01	0.10	< 0.01	234314
IO			159				< 0.01	(0.13)	(< 0.01)	RCN R06437
(Pioneer			140				(< 0.01)	Control.	(< 0.01)	METCON 150
34A16)			1.0					0.10		Max. frozen
										storage: 2.5
										month
USA, 2006,	4× 110	7	159	R5	21	Grain	< 0.01	0.09	< 0.01	254314
Ollie,			150				< 0.01	0.09	< 0.01	2006/7012839
IO			159				(< 0.01)	(0.09)	(< 0.01)	RCN R06438
(Middlekoop			178							METCON_150
2212)										Max. frozen
										storage: 2.1
	4 1 1 0	7	207	0.5	21	Curi	< 0.01	< 0.05	< 0.01	month
USA, 2006, Paglay	4× 110	/	206	85	21	Grain	< 0.01	< 0.05	< 0.01	234314
Dagiey,			200 224				> 0.01	(< 0.05)	(< 0.01)	2000//012839 DCN D06420
(33P65)			224 215				(~ 0.01)	(> 0.03)	(< 0.01)	METCON 150
()			215					0.06		Max frozen
	J	I	I	I	I	I	1	0.00	I	

Location,	Applica	ation		Growth			Residues for	ound [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	ТАА	Reference, Storage period
										storage: 2.6 month
USA, 2006 Delavan, WI (DKC52–40 (RR2/YGPL))	4× 110	6–7	159 159 168 159	R5	21	Grain	< 0.01 < 0.01 (< 0.01)	0.06 0.06 (0.06) Control: 0.06	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06440 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 Ellendale, MN (Pioneer 38H66)	4× 110	6–7	159 150 168 159	R5/R6	21	Grain	< 0.01 < 0.01 (< 0.01)	< 0.05 < 0.05 (< 0.05)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06441 METCON_150 Max. frozen storage: 1.9 month
USA, 2006 Geneva, MN (Pioneer 38H66)	4× 110	6–7	159 159 168 159	R5/R6	21	Grain	< 0.01 < 0.01 (< 0.01)	0.09 0.10 (0.10) Control: 0.06	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06442 METCON_150 Max. frozen storage: 1.9 month
USA, 2006 York, NE (Pioneer 34N45 RR/YG)	4× 110	6–7	187 187 187 187	87	21	Grain	< 0.01 < 0.01 (< 0.01)	0.08 0.08 (0.08) Control: 0.07	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06443 METCON_150 Max. frozen storage: 2.7 month
USA, 2006, Grand Island, NE (NK N73-F7 RR/LL/YG)	4× 110	7	178 187 187 187	87	21	Grain	< 0.01 < 0.01 (< 0.01)	0.09 0.09 (0.09) Control: 0.06	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06444 METCON_150 Max. frozen storage: 2.7 month
USA, 2006, Osceola, NE (NK N73-F7)	4× 110	6–8	187 187 187 187	87	21	Grain	< 0.01 < 0.01 (< 0.01)	0.22 0.20 (0.21)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06445 METCON_150 Max. frozen storage: 2.6 month
USA, 2006, Dill, OK (DK C48–53 AF2)	4× 110	6–9	196 206 196 196	87	21	Grain	< 0.01 < 0.01 (< 0.01)	0.06 < 0.05 (0.06) Control: 0.06	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06446 METCON_150 Max. frozen storage: 2.5 month

Sweet corn (Corn-on -the-cob)

A total of 12 field trials were conducted on sweet corn in the USA during the 2006 growing season (Carringer, 2006, METCON_150). Plants received 4 foliar applications of metconazole at nominal rates of 110 g ai/ha. Sweet corn was harvested at 6–7 days after the last application. Residues of cis-

and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Residues of metabolites M11, M21 and M30, were each below their LOQ of 0.01 mg/kg in all trials.

Table	178	Residues	of cis-	and	trans-m	etconazole	in	sweet	corn	following	foliar	treatment	(cGAP
USA:	4×92	g ai/ha;	7 days F	PHI).									

Location,	Applic	ation		Growth			Residues fo	und [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ho	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	g ai/na	(days)	L/na	final appl.		_	cis	trans	Total	Storage period
USA, 2006, South Sodus, NY (Speedy sweet)	4× 110	6–8	290 281 281 281	59–71	7	Kernels plus cob with husk removed	< 0.005 0.006 (0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 0.011 (<u>0.010</u>)	254314 2006/7012839 RCN R06425 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Germansville, PA (TA5750)	4× 110	6–7	290 290 281 290	Milk stage	7	Kernels plus cob with husk removed	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06426 METCON_150 Max. frozen storage: 3.7 month
USA, 2006, Seven Springs, NC (Garst 8377)	4× 110	6–8	150 159 196 281	67	7	Kernels plus cob with husk removed	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06427 METCON_150 Max. frozen storage: 5.7 month
USA, 2006, O'Brien, FL (8102 R Bicolor)	4× 110	7	215 224 224 234	75	7	Kernels plus cob with husk removed	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06428 METCON_150 Max. frozen storage: 1.9 month
USA, 2006, New Holland, OH (Crows 7R154)	4× 110	6–7	196 196 196 206	73	7	Kernels plus cob with husk removed	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06429 METCON_150 Max. frozen storage: 4.0 month
USA, 2006, Wyoming, IL, (Burrus 644 RWR)	4× 110	6–8	131 131 131 150	R3	6	Kernels plus cob with husk removed	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06433 METCON_150 Max. frozen storage: 3.8 month
USA, 2006, Bellmore, IN (Wyffels W5531)	4× 110	7	178 159 168 150	71-73	7	Kernels plus cob with husk removed	< 0.005 < 0.005 (< 0.005)	< 0.005 < 0.005 (< 0.005)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06435 METCON_150 Max. frozen storage: 3.7 month
USA, 2006,	4× 110	/-8	1139	K4	1/	Kernels	< 0.005	< 0.005	≤ 0.01	234314

Location,	Applica	ation	ion Growth Residues found [mg/kg] ^a R					Report/Trial No.,		
	a ai/ha	Interval	T/ha	stage at	DALA	Sample	Metconazol	e	Tatal	Reference,
Year (variety	g al/na	(days)	L/na	final appl.		_	cis	trans	Total	Storage period
Ollie,			122			plus cob	< 0.005	< 0.005	< 0.01	2006/7012839
IA			131			with husk	(< 0.005)	(< 0.005)	(< 0.01)	RCN R06438
(Middlekoop			168			removed				METCON_150
2212)										Max. frozen
										storage: 4.0
										month
USA, 2006	4×110	5–7	178	R3	7	Kernels	< 0.005	< 0.005	< 0.01	254314
Delavan, WI			168			plus cob	< 0.005	< 0.005	< 0.01	2006/7012839
(DKC52–40			168			with husk	(< 0.005)	(< 0.005)	(< 0.01)	RCN R06440
(RR2/YGPL))			159			removed				METCON_150
										Max. frozen
										storage: 3.5
										month
USA, 2006,	4× 110	7–8	290	78	7	Kernels	< 0.005	< 0.005	< 0.01	254314
Porterville,			290			plus cob	< 0.005	< 0.005	< 0.01	2006/7012839
CA			290			with husk	(< 0.005)	(< 0.005)	(< 0.01)	RCN R06447
(Bodacious)			290			removed				METCON_150
										Max. frozen
										storage: 4.6
	4 110	-	1.40	72	-	17 1	. 0.005	. 0. 005	.0.01	month
USA, 2006,	4× 110	7	140	/3	/	Kernels	< 0.005	< 0.005	< 0.01	254314
Ephrata, WA			140			plus cob	< 0.005	< 0.005	< 0.01	2006/7012839
(Golden Jubilee)			140			with husk	(< 0.005)	(< 0.005)	(<u>< 0.01</u>)	RCN R06448
Jublice)			140			removed				MEICON_150
										Max. frozen
										storage: 4.0
USA 2006	4× 110	7	122	72	7	Varnala	< 0.005	< 0.005	< 0.01	254214
OSA, 2000,	4^ 110	/	122	13	/	nlug oob	0.005	0.005	0.01	234314
(Super Sweet			122			pius cob	< 0.003	< 0.003	< 0.01	DCN D06440
Jubilee Plus)			122			removed	(~ 0.005)	(< 0.005)	(-0.01)	METCON 150
s a s 1100 1 103)			122			removed				Max frozen
										storage: 2 5
										month
										Max. frozen storage: 3.5 month

Table 179 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic ad	cid
(TAA) in sweet corn following foliar treatment (cGAP USA: 4×92 g ai/ha; 7 days PHI).	

Location,	Applica	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
USA, 2006,	4×110	6–8	290	59–71	7	Kernels	< 0.01	0.15	< 0.01	254314
South Sodus,			281			plus cob	< 0.01	0.15	< 0.01	2006/7012839
NY			281			with husk	(< 0.01)	(0.15)	(< 0.01)	RCN R06425
(Speedy			281			removed		Control:		METCON_150
sweet)								0.10, 0.11		Max. frozen
										storage: 3.2
										month
USA, 2006,	4×110	6–7	290	Milk	7	Kernels	< 0.01	0.06	< 0.01	254314
Germansville,			290	stage		plus cob	< 0.01	0.06	< 0.01	2006/7012839
PA			281			with husk	(< 0.01)	(0.06)	(< 0.01)	RCN R06426
(TA5750)			290		7	removed				METCON_150
										Max. frozen
										storage: 3.7
										month
USA, 2006,	4× 110	6–8	150	67	7	Kernels	< 0.01	0.05	< 0.01	254314
Seven			159			plus cob	< 0.01	0.06	< 0.01	2006/7012839

Location,	Applica	ation		Growth			Residues fo	und [mg/kg	a	Report/Trial No.,
Vear (variety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Т	ТА	TAA	Reference, Storage period
Springs NC		(days)	106	iillai appi.		with husk	(< 0.01)	(0.06)	(< 0.01)	RCN R06427
(Garst 8377)			281			removed	(< 0.01)	(0.00)	(< 0.01)	METCON 150
(Max. frozen
										storage: 5.7
110 1 0007	4 110	-	015		_	77 1	. 0. 01	0.00	. 0. 0.1	month
USA, 2006, O'Drian, EI	4× 110	7	215	/5	/	Kernels	< 0.01	0.30	< 0.01	254314
(8102 R)			224 224			pius cob	< 0.01	(0.31)	< 0.01	2000/7012839 RCN R06428
Bicolor)			224 234			removed	(< 0.01)	Control.	(< 0.01)	METCON 150
,								0.19		Max. frozen
										storage: 1.9
USA 2006	4× 110	67	106	72	7	Kamala	< 0.01	0.08	< 0.01	month
New Holland	4^ 110	0-/	190	/3	/	nlus coh	< 0.01	0.08	< 0.01	234314 2006/7012839
OH			196			with husk	(< 0.01)!	(0.08)	(< 0.01)	RCN R06429
(Crows			206			removed	((****)	()	METCON_150
7R154)										Max. frozen
										storage: 4.0
USA 2006	4× 110	6_8	131	R3	6	Kernels	< 0.01	0.10	< 0.01	254314
Wyoming,	T/ 110	0 0	131	105	0	plus cob	< 0.01	0.10	< 0.01	2006/7012839
IL,			131			, with husk	(< 0.01)	(0.10)	(< 0.01)	RCN R06433
(Burrus 644			150			removed				METCON_150
RWR)										Max. frozen
										month
USA, 2006,	4×110	7	178	71–73	7	Kernels	< 0.01	0.16	< 0.01	254314
Bellmore,			159			plus cob	< 0.01	0.15	< 0.01	2006/7012839
IN (IV COL			168			with husk	(< 0.01)	(0.16)	(< 0.01)	RCN R06435
(Wyffels W5531)			150			removed				METCON_150
w 3331)										Max. frozen
										month
USA, 2006,	4×110	7–8	159	R4	7	Kernels	< 0.01	0.09	< 0.01	254314
Ollie,			122			plus cob	< 0.01	0.12	< 0.01	2006/7012839
IA			131			with husk	(< 0.01)	(0.11)	(< 0.01)	RCN R06438
(Middlekoop			168			removed				METCON_150
2212)										Max. frozen
										month
USA, 2006	4×110	5–7	178	R3	7	Kernels	< 0.01	< 0.05	< 0.01	254314
Delavan, WI			168			plus cob	< 0.01	< 0.05	< 0.01	2006/7012839
(DKC52-40			168			with husk	(< 0.01)	(< 0.05)	(< 0.01)	RCN R06440
(RR2/YGPL))			159			removed				METCON_150
										Max. frozen
										month
USA, 2006,	4×110	7–8	290	78	7	Kernels	< 0.01	0.08	< 0.01	254314
Porterville,			290			plus cob	< 0.01	0.07	< 0.01	2006/7012839
CA			290			with husk	(< 0.01)	(0.08)	(< 0.01)	RCN R06447
(Bodacious)			290			removed				METCON_150
										storage: 4.6
										month
USA, 2006,	4× 110	7	140	73	7	Kernels	< 0.01	0.06	< 0.01	254314
Ephrata, WA			140			plus cob	< 0.01	0.06	< 0.01	2006/7012839
(Golden Jubilee)			140			with husk	(< 0.01)	(0.06)	(< 0.01)	RCN R06448
Jublice)			140			removed				METCON_150
										storage 4 0
										month

Location,	Application			Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	TA	TAA	Reference, Storage period
USA, 2006,	4× 110	7	122	73	7	Kernels	< 0.01	0.17	< 0.01	254314
(Super Sweet			122			pius cob with husk	< 0.01 (< 0.01)	0.21 (0.19)	< 0.01 (< 0.01)	RCN R06449
Jubilee Plus)			122			removed		Control:	~ /	METCON_150
								0.20		Max. frozen
										month

Grasses for sugar or syrup production

Sugar cane

A total of eight field trials were conducted on sugar cane in the USA during the 2008 growing seasons (White, 2013, METCON_153). Plants received 4 foliar applications of metconazole at nominal rates of 92 g ai/ha. Two trial also received an exaggerated rate of 4 times 460 g ai/ha. Sugar cane samples were harvested at 13–14 and 27–28 days after the last application. Residues of cis- and transmetconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30, 1,2,4-triazole and triazolyl acetic acid was at 0.01 mg/kg, and for metabolites triazolyl alanine at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20.

Residues of metabolites M11, M21, M30, 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid were each below their respective LOQs of 0.01 or 0.05 mg/kg in all trials.

Table 180 Residues of *cis*- and *trans*-metconazole in sugar cane following foliar treatment (cGAP USA: 4×91 g ai/ha; 14 days PHI).

Location,	ation, Application Growth					Residues fo	ound [mg/kg	[] ^a	Report/Trial No.,	
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazo	le	Tatal	Reference,
Year (variety	g ai/na	(days)	L/na	final appl.		_	cis	trans	Totai	Storage period
USA, 2008,	4×100	14	221	Bloom	14	Cane	0.017	< 0.005	0.022	09901
Belle Glade,			213				0.014	< 0.005	0.019	2013/7001632
FL			207				(0.015)	(< 0.005)	(0.020)	08-FL30
(CP88–1762)			210		28	Cane	0.016	0.005	0.021	METCON_153
							0.013	0.005	0.018	Max. frozen
							(0.015)	(< 0.005)	(0.020)	storage: 26 months
USA, 2008,	4×100	14	217	Bloom	14	Cane	< 0.005	< 0.005	< 0.01	09901
Belle Glade,			208				< 0.005	< 0.005	< 0.01	2013/7001632
FL			208				(< 0.005)	(< 0.005)	(< 0.01)	08-FL31
(CP96–1252)			213		28	Cane	< 0.005	< 0.005	< 0.01	METCON_153
i							< 0.005	< 0.005	< 0.01	Max. frozen
1							(< 0.005)	(< 0.005)	(< 0.01)	storage: 26 months
USA, 2008,	4×100	14	205	Bloom	14	Cane	< 0.005	< 0.005	< 0.01	09901
Belle Glade,			206				< 0.005	< 0.005	< 0.01	2013/7001632
FL			207				(< 0.005)	(< 0.005)	(< 0.01)	08-FL32
(CP89–2143)			208		28	Cane	< 0.005	< 0.005	< 0.01	METCON_153
1							< 0.005	< 0.005	< 0.01	Max. frozen
1							(< 0.005)	(< 0.005)	(< 0.01)	storage: 26 months
1	4×500	14	205	Bloom	14	Cane	0.013	< 0.005	0.018	1 -
1			205				0.012	< 0.005	0.017	
1			206				(0.013)	(< 0.005)	(0.018)	
1			207		28	Cane	0.0061	< 0.005	0.011	
1							0.0062	< 0.005	0.011	
1							(0.0062)	(< 0.005)	(0.011)	

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg	a a	Report/Trial No.,
	: /1	Interval	т /1	stage at	DALA	Sample	Metconazo	le	T-4-1	Reference,
Year (variety	g ai/na	(days)	L/na	final appl.		Î	cis	trans	Total	Storage period
USA, 2008,	4×100	14	182	Vegetative	13	Cane	0.030	0.005	0.035	09901
St. Gabriel,			164				0.030	0.005	0.036	2013/7001632
LA			157				(0.030)	(0.005)	(0.036)	08-TX20
(НоСР96-			156		27	Cane	0.013	< 0.005	0.018	METCON_153
540)							0.015	< 0.005	0.020	Max. frozen
							(0.014)	(< 0.005)	(0.019)	storage: 18 months
USA, 2008,	4×100	14	254	Vegetative	13	Cane	0.016	< 0.005	0.021	09901
St. Gabriel,			175				0.016	< 0.005	0.021	2013/7001632
LA			171				(0.016)	(< 0.005)	(0.021)	08-TX21
(HoCP95–			167		27	Cane	0.0055	< 0.005	0.011	METCON_153
988)							0.012	< 0.005	0.017	Max. frozen
							(0.0086)	(< 0.005)	(0.014)	storage: 18 months
USA, 2008,	4×100	14	168	Vegetative	13	Cane	0.012	< 0.005	0.017	09901
St. Gabriel,			163				0.016	< 0.005	0.021	2013/7001632
LA			145				(0.014)	(< 0.005)	(0.019)	08-TX22
(HoCP00–			160		27	Cane	0.011	< 0.005	0.016	METCON_153
950)							0.011	< 0.005	0.016	Max. frozen
							(0.011)	(< 0.005)	(0.016)	storage: 18 months
USA, 2008,	4×100	14	167	Vegetative	13	Cane	0.023	< 0.005	0.028	09901
St. Gabriel,			162				0.027	< 0.005	0.032	2013/7001632
LA			168				(0.025)	(0.005)	(0.030)	08-TX23
(L97–128)			177		27	Cane	0.013	< 0.005	0.018	METCON_153
							0.017	< 0.005	0.022	Max. frozen
							(0.015)	(< 0.005)	(0.020)	storage: 18 months
USA, 2008,	4×100	14	206	Vegetative	14	Cane	0.023	< 0.005	0.028	09901
Weslaco,			209				0.012	< 0.005	0.017	2013/7001632
TX			204				(0.018)	(< 0.005)	(0.023)	08-TX24
(TCP87–			205		28	Cane	0.011	< 0.005	0.016	METCON_153
3388)							0.012	< 0.005	0.017	Max. frozen
							(0.011)	(< 0.005)	(0.016)	storage: 18 months
	4×510	13	203	Vegetative	13	Cane	0.12	0.022	0.14	
			208				0.093	0.018	0.11	
			204				(0.10)	(0.020)	(0.12)	
			205		28	Cane	0.11	0.022	0.13	
							0.058	0.011	0.069	
							(0.084)	(0.016)	(0.10)	

Tree nuts

Pecan

A total of three field trials were conducted on pecans in the USA during the 2004-05 growing seasons (Green, 2006, METCON_154). Plants received 2 foliar applications of metconazole at rates of 268–306 g ai/ha. Pecans were harvested at 25–32 days after the last application. Residues of *cis*- and *trans*-metconazole were determined using method RM-41C-1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in pecans spiked at 0.02 and 0.1 mg/kg were $95 \pm 8\%$ (n = 4) and $96 \pm 8\%$ (n = 4), respectively.

Table 181 Residues of metconazole in pecan nuts following foliar treatment (cGAP USA: 4×123 g ai/ha; 25 days PHI).

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	stage at	DALA	Sample	Metconazo	le	Tatal	Reference,	
Year (variety	g ai/na	(days)	L/na	final appl.			cis	trans	Total	Storage period
USA, 2004,	285	178	1094	Beginning	25	Nut meat	< 0.02	< 0.02	< 0.04	V200600111
Chula,	277	277 1016		shuck split			< 0.02	< 0.02	< 0.04	2006/7017434

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	le trans	Total	Reference, Storage period
GA (TN 0672 Sumners)							(< 0.02)	(< 0.02)	<u>(< 0.04)</u>	V–27211-04-A METCON_154 Max. frozen storage: 4.3 months
USA, 2004, Anton, TX (TN 0672 Western Schley)	273 268	153	1151 1130	Beginning shuck split	25	Nut meat	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (< 0.04)	V200600111 2006/7017434 V-27211-04-D METCON_154 Max. frozen storage: 4.0 months
USA, 2004, Caldwell, TX (TN 0672 Cheyenne)	287 306	145	1197 1179	Hard dough	25	Nut meat	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 <u>(< 0.04)</u>	V200600111 2006/7017434 V–27211-05-I METCON_154 Max. frozen storage: 3.5 months

Almonds

A total of seven field trials were conducted on almonds in the USA during the 2003 and 2005 growing seasons (Green, 2006, METCON_155). Plants received 2 foliar applications of metconazole at nominal rates of 304 g ai/ha. Two trial also received an exaggerated rate of 2 application at 608 g ai/ha. Additional samples from a decline trial were collected at 15, 20, 25 and 30 DALA. Almonds were harvested at 25 days after the last application. Residues of *cis*- and *trans*-metconazole were determined using method RM-41C-1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in pecans spiked from 0.02 to 4.0 mg/kg were $93 \pm 8\%$ (n = 17) and $94 \pm 6\%$ (n = 17), respectively.

Table 182 Residues of metconazole in almonds following foliar treatment (cGAP USA: 4×123 g ai/ha; 25 days PHI).

Location,	Applica	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo cis	le trans	Total	Reference, Storage period
USA, 2003, Orland, CA (TN 0660 Non-Pareil)	307 306 608	155 155	1034 1038 1031	100% hull split 100% hull	25 25	Nut meat Nut meat	< 0.02 < 0.02 (< 0.02) < 0.02	< 0.02 < 0.02 (< 0.02) < 0.02	< 0.04 < 0.04 (< 0.04) < 0.04	V200600153 2006/7017431 V–25700-03-A METCON_155
	607		1038	split			< 0.02 (< 0.02)	< 0.02 (< 0.02)	< 0.04 (< 0.04)	Max. frozen storage: 7.5 months
USA, 2003, Madera, CA (TN 0660 Non-Pareil)	308 306	138	1313 1307	Formed almond full	15 20	Nut meat	< 0.02 < 0.02 (< 0.02) < 0.02 < 0.02	< 0.02 < 0.02 (< 0.02) < 0.02 < 0.02	< 0.04 < 0.04 (< 0.04) < 0.04 < 0.04	V200600153 2006/7017431 V–25700-03-B METCON_155 Max. frozen storage: 8.7 months
					25		< 0.02 < 0.02 < 0.02 (< 0.02) < 0.02	< 0.02 < 0.02 < 0.02 (< 0.02) < 0.02	< 0.04 < 0.04 < 0.04 (< 0.04) < 0.04	

Location,	Applica	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
	~ oi/ho	Interval	T /ho	stage at	DALA	Sample	Metconazo	le	Tatal	Reference,
Year (variety	g al/na	(days)	L/na	final appl.		_	cis	trans	10(a)	Storage period
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
USA, 2003,	304	138	934	Hull split	25	Nut meat	< 0.02	< 0.02	< 0.04	V200600153
Yuba City,	304		936				< 0.02	< 0.02	< 0.04	2006/7017431
CA (TN 0660							(< 0.02)	(< 0.02)	(< 0.04)	V-25700-03-С
Non-Pareil)										METCON_155
										Max. frozen
										storage: 8.3
								2.02	2.04	months
USA, 2003,	304	144	1209	Hull split	25	Nut meat	< 0.02	< 0.02	< 0.04	V200600153
Kerman, CA	304		1208	10%			< 0.02	< 0.02	< 0.04	2006/7017431
(IN 0660							(< 0.02)	(< 0.02)	(< 0.04)	V-25700-03-D
Non-Pareil)										METCON_155
										Max. frozen
										storage: 8.0
LIG A 2002	200	126	1 402	TT 11 1'	h.5		10.00	. 0. 00	10.04	months
USA, 2003, Tama Dalla	308	136	1402	Hull split	25	Nut meat	< 0.02	< 0.02	< 0.04	V200600153
$C_{\rm A}$ (TN 0660	305		1338				< 0.02	< 0.02	< 0.04	2006/7017431 N. 25700.02 F
CA (IN 0000 Non Pareil)							(< 0.02)	(< 0.02)	(< 0.04)	V-25/00-03-E
Non-r aren)										METCON_155
										Max. frozen
										storage: 8.4
USA 2005	153	149	1032	Hull split	25	Nut meat	< 0.02	< 0.02	< 0.04	W200600153
Glenn CA	305	177	1309	i iun spin	23	i vut moat	< 0.02	< 0.02	< 0.04	200000133
(TN 0660	505		1507				(< 0.02)	(< 0.02)	(< 0.04)	V_25700-03-F
Non-Pareil)	152	149	1031	Hull split	2.5	Nut meat	< 0.02	< 0.02	< 0.04	METCON 155
<i>,</i>	304	1.12	1310	from opini	20	1,000 11100	< 0.02	< 0.02	< 0.04	Max. frozen
	50.		1010							storage: 2.5
							(< 0.02)	(< 0.02)	(< 0.04)	months
USA, 2005,	150	133	1109	Hull split	25	Nut meat	< 0.02	< 0.02	< 0.04	V200600153
Kerman, CA	299		1102	*			< 0.02	< 0.02	< 0.04	2006/7017431
(TN 0660							(< 0.02)	(< 0.02)	(< 0.04)	V-25700-03-G
Non-Pareil)	151	133	1114	Hull split	25	Nut meat	< 0.02	< 0.02	< 0.04	METCON 155
	299		1106	-			< 0.02	< 0.02	< 0.04	Max. frozen
										storage: 3.1
							(< 0.02)	(< 0.02)	(< 0.04)	months

Oilseed

Oilseed rape

A total of 18 field trials were conducted on oilseed rape in the France during the 1995, 1996 and 1998 growing seasons (METCON_156 to METCON_161). Plants received 2 foliar applications of metconazole at nominal rates of 90 g ai/ha, one at first petal fall and the second 14 days later. For two trials the application rates were lower at 79 g ai/ha. Seeds were harvested at 28–70 days after the last application. Residues of *cis-* and *trans-*metconazole were determined using method FAMS 059-01 or FAMS 059-02 with a limit of quantification of 0.01 mg/kg. Overall mean procedural recoveries for *cis-* and *trans-*metconazole in oilseed rape seed were between 70–120% with an RDS of <20% for both methods and all analytes.

Table 183 Residues of metconazole in oilseed rape seeds following foliar treatment (cGAP Chile: 2×90 g ai/ha; 42 days PHI).

Location,	Application		Growth	DALA Samula	Residues found [mg/kg]	Report/Trial No.,
	g ai/ha Interval	g ai/ha Interval L/ha		DALA Sample	Metconazole	Total	Reference,

					-					
Year (variety ^a)		(days)		final appl.			cis	trans		Storage period
France, 1995, Le Plessis Herbert (Gazelle)	2 × 90	14	400 400	Z71 [Zadoks]	62	Seeds	< 0.01	< 0.01	< 0.02	MK-FR-95-122 MK-750-003 95-122-396 METCON_156 Max. frozen storage: 4 months
France, 1995, Le Plessis Herbert (Synergy)	2 × 90	14	400 400	Z71 [Zadoks]	70	Seeds	< 0.01	< 0.01	< 0.02	MK-FR-95-122 MK-750-003 95-122-397 METCON_156 Max. frozen
France, 1996, Carniac et St. denis (Synergy)	2 × 90	14	400 400	69	57	Seeds	0.040	< 0.01	<u>0.05</u>	MK-FR-96-217 MK-750-004 96-217-297 METCON_157 Max. frozen storage: 5 months
France, 1996, Martres (Groeland)	2 × 90	14	400 400	69	57	Seeds	0.010	< 0.01	0.020	MK-FR-96-217 MK-750-004 96-217-298 METCON_157 Max. frozen storage: 5 months
France, 1996, Martres (Synergy)	2 × 90	14	400 400	69	57	Seeds	0.010	< 0.01	0.020	MK-FR-96-217 MK-750-004 96-217-299 METCON_157 Max. frozen storage: 5 months
France, 1996, Velleron (Capitole)	2 × 90	14	367 367	69	39	Seeds	0.080	0.010	0.090	MK-FR-96-217 MK-750-004 96-217-603 METCON_157 Max. frozen storage: 5 months
France, 1996, Boncourt (Capitole)	2 × 90	14	364 364	69–71	65	Seeds	< 0.01	< 0.01	<u>< 0.02</u>	MK-FR-96-216 MK-750-005 96-216-318 METCON_158 Max. frozen storage: 4 months
France, 1996, Pignicourt (Goeland)	2 × 90	16	300 300	71	56	Seeds	0.050	< 0.01	0.060	MK-FR-96-216 MK-750-005 96-216-420 METCON_158 Max. frozen storage: 4 months
France, 1996, Caillouet (Goeland)	2 × 90	14	364 364	69/71	65	Seeds	< 0.01	< 0.01	< 0.02	MK-FR-96-215 MK-750-006 96-215-316 METCON_159 Max. frozen storage: 4 months
France, 1996, Pacy sur eure Orgeville (Goeland)	2 × 90	14	364 364	69/71	65	Seeds	< 0.01	< 0.01	<u>< 0.02</u>	MK-FR-96-215 MK-750-006 96-215-317 METCON_159 Max. frozen storage: 4 months
France, 1996,	2×90	16	300	71	56	Seeds	0.030	< 0.01	0.040	MK-FR-96-215

Location,	Applic	ation		Current			Residues fo	und [mg/kg]	Report/Trial No.,
		Interval		Growth store at		Sample	Metconazol	e		Reference,
Year (variety ^a)	g ai/ha	(days)	L/ha	final appl.	DALA	Sample	cis	trans	Total	Storage period
Epoye (Synergy)			300							MK-750-006 96-215-318 METCON_159 Max. frozen storage: 4 months
France, 1996, Pignicourt (Goeland)	2 × 90	16	300 300	69	56	Seeds	0.060	0.010	0.070	MK-FR-96-215 MK-750-006 96-215-319 METCON_159 Max. frozen storage: 4 months
France, 1996, Velleron (Capitole)	2 × 90	14	367 367	69	39	Seeds	0.040	< 0.010	0.050	MK-FR-96-218 MK-750-007 96-218-604 METCON_160 Max. frozen storage: 7 months
France, 1996, Carniac et St. denis (Synergy)	2 × 90	14	400 400	75	57	Seeds	0.030	< 0.010	0.040	MK-FR-96-218 MK-750-007 96-218-294 METCON_160 Max. frozen storage: 7 months
France, 1996, Martres (Groeland)	2 × 90	14	400 400	75	57	Seeds	0.020	< 0.01	0.030	MK-FR-96-218 MK-750-007 96-218-295 METCON_160 Max. frozen storage: 7 months
France, 1996, Martres (Synergy)	2 × 90	14	400 400	75	56	Seeds	0.090	0.002	0.11	MK-FR-96-218 MK-750-007 96-218-296 METCON_160 Max. frozen storage: 7 months
France, 1998, Martres (Synergy)	2×79	15	431 431	69–71	62	Seeds	< 0.01	< 0.01	< 0.02	MK-FR-98-103 MK-750-009 98-103-283
	2×79	13	431 431	75–77	28	Seeds	0.010	< 0.01	0.020	METCON_161 Max. frozen storage: 7 months
France, 1998, St. Brice (Synergy)	2×79	14	431 431	67–69	63	Seeds	0.020	< 0.01	0.020	MK-FR-98-103 MK-750-009 98-103-284
	2×79	14	431 431	75–77	29	Seeds	0.050	< 0.01	0.060	METCON_161 Max. frozen storage: 7 months

^a It was noted that several trials were performed at the same location and year and therefore could not be considered as independent. Hence, the highest residue value from each of these locations was selected.

Additionally, a total of eight field trials were conducted on oilseed rape in the USA during the 2006 growing season (Green, 2006, METCON_162). Plants received a single foliar application of metconazole at nominal rates of 139–146 g ai/ha. Two trial also received an exaggerated rate of one application at 274–280 g ai/ha ($2\times$) and 1 trial at 708 g ai/ha ($5\times$). Oilseed rape seeds were cut at 35–49 DALA harvested at 49–56 days after the last application. One site (trial D) had samples that were cut 21, 28, 35, and 42 DALA; with sample collection 35, 42, 49, and 56 DALA. Residues of *cis*- and

trans-metconazole were determined using method RM-41C-1 or RM-41C-3 with a limit of quantification of 0.02 mg/kg, while residues of the triazole metabolites (1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid) were determined using method Meth-160 with a limit of quantification of 0.02 mg/kg. It should be noted that for the determination of triazole metabolites, samples from more than one trial were pooled. Procedural recoveries for all trials and analytes were within 70-120% with an RSD of <20%.

Table	184	Residues	of	metconazole	in	oilseed	rape	following	foliar	treatment	(cGAP	USA:
1×140	g ai/l	ha; 35 days	s PF	II).								

Location,	Applica	ation		Growth			Residues for	ound [mg/kg	g] ^a	Report/Trial No.,
	g ai/ha	Interval	L/ha	stage at	b b	Sample	Metconazo	le	Total	Reference,
Year (variety)	0	(days)		tinal appl.			cis	trans	- 0 111	Storage period
USA, 2006,	140	-	375	Bloom	49/49	Seeds	< 0.02	< 0.02	< 0.04	29989
Campbell,							< 0.02	< 0.02	< 0.04	2007/00642
MN							(< 0.02)	(< 0.02)	(< 0.04)	V–29989-06-A
(Marksman)	280	-	376	Bloom	49/49	Seeds	< 0.02	< 0.02	< 0.04	METCON_162
							< 0.02	< 0.02	< 0.04	Max. frozen
							(+ 0, 00)	(+ 0, 02)	(. 0.04)	storage: 3.4
	120		270	(0)	25/20	G 1	(< 0.02)	(< 0.02)	(< 0.04)	months
USA, 2006, Northwood	139	-	370	60	35/39	Seeds	< 0.02	< 0.02	< 0.04	29989
ND (Pioneer							(0.02)	< 0.02	(0.04)	2007/00042 V 20080.06 P
45H21)							(0.02)	(< 0.02)	(0.04)	V=29989-00-D METCON 162
101121)										Max_frozen
										storage: 4.0
										months
USA. 2006.	143	-	345	10% bloom	35/50	Seeds	< 0.02	< 0.02	< 0.04	29989
Velva, ND	-						< 0.02	< 0.02	< 0.04	2007/00642
(Invigor							(< 0.02)	(< 0.02)	(< 0.04)	V-29989-06-C
5630)										METCON 162
										Max. frozen
										storage: 3.7
										months
USA, 2006,	142	-	341	Start of	21/35	Seeds	< 0.02	< 0.02	< 0.04	29989
Velva, ND				bloom			< 0.02	< 0.02	< 0.04	2007/00642
(Hyola 357	1.4.5		2.40	500/	00/40	G 1	(< 0.02)	(< 0.02)	(< 0.04)	V-29989-06-D
KK Magnum)	145		348	50%	28/42	Seeds	< 0.02	< 0.02	< 0.04	METCON_162
				bloom			< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 5.8
	146		352	30%	35/49	Seeds	< 0.02	< 0.02	< 0.04	
	-			bloom			< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
	144		348	5% bloom	42/56	Seeds	< 0.02	< 0.02	< 0.04	
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
USA, 2006,	141	-	377	61–62	35/47	Seeds	< 0.02	< 0.02	< 0.04	29989
Ephrata, WA							< 0.02	< 0.02	< 0.04	2007/00642
(Monsanto							(< 0.02)	(< 0.02)	(< 0.04)	V–29989-06-Е
4//55/6503/)										METCON_162
										Max. frozen
										storage: 4.4
USA 2006	1/1		340	66	10/56	Seeda	0.04	< 0.02	0.06	nontris
Jerome ID	141	-	540	00	40/30	seeus	0.04	0.02	0.00	29989
(Phoenix)°							(0.04)	(< 0.02)	(0.00)	V_29989_06_F
(,							(0.0 1)	(0.02)	(0.00)	METCON 162
										Max. frozen
										storage: 3.5
										months
USA, 2006,	145	-	369	Late	37/49	Seeds	0.02	< 0.02	0.04	29989

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ba	stage at	DALA	Sample	Metconazol	le	Total	Reference,
Year (variety)	g al/na	(days)	L/IIa	final appl.		_	cis	trans	Total	Storage period
American				flowering			< 0.02	< 0.02	< 0.04	2007/00642
Falls, ID				_			(0.02)	(< 0.02)	(0.04)	V–29989-06-G
(Hylite–618	274	-	348	Late	37/49	Seeds	0.02	< 0.02	0.04	METCON_162
CL)				flowering			0.02	< 0.02	0.04	Max. frozen
							(0.02)	(< 0.02)	(0.04)	storage: 3.2 months
USA, 2006,	144	-	345	40%	35/49	Seeds	< 0.02	< 0.02	< 0.04	29989
Velva, ND				bloom			< 0.02	< 0.02	< 0.04	2007/00642
(Invigor							(< 0.02)	(< 0.02)	(< 0.04)	V–29989-06-Н
5550)	708	-	340	40%	35/49	Seeds	< 0.02	< 0.02	< 0.04	METCON_162
				bloom			< 0.02	< 0.02	< 0.04	Max. frozen
							< 0.02	< 0.02	< 0.04	storage: 4.0 months
							(< 0.02)	(< 0.02)	(< 0.04)	

^b Days after last application; cut / collected

^c Sample not clean seed (probably contained fragments of the shell of the pods). Not commercial quality.

'	Table	185 Residues	s of metabolites	1,2,4-triazole	(T), triazoly	l alanine (T	ΓA), and tı	iazolyl	acetic	acid
((TAA)) in oilseed ra	pe following fol	iar treatment (cGAP Chile	: 2×90 g ai/	ha; 42 day	s PHI).		

Location,	ation, Application			Growth	DALA	61-	Residues fo	ound [mg/kg] a	Report/Trial No., Reference,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	b	Sample	Т	TA	TAA	Storage period
USA, 2006, Campbell, MN (Marksman)	140	-	375	Bloom	49/49	Seeds	< 0.01 < 0.01 (< 0.01)	0.18 0.18 (0.18)	< 0.01 < 0.01 (< 0.01)	29989 2007/00642 V–29989-06-A
USA, 2006, Northwood, ND (Pioneer 45H21)	139	-	370	60	35/39					V–29989-06-B METCON_162 Max. frozen storage: 9.4 months
USA, 2006, Velva, ND (Invigor 5630)	143	-	345	10% bloom	35/50	Seeds	< 0.01 < 0.01 (< 0.01)	0.25 0.30 (0.27)	< 0.01 < 0.01 (< 0.01)	29989 2007/00642 V–29989-06-C
USA, 2006, Velva, ND (Hyola 357 RR Magnum)	142	-	341 348	Start of bloom 50%	21/35					V–29989-06-D V–29989-06-H METCON_162 Max_frozen
USA, 2006, Velva, ND (Invigor 5550)	145	-	369	Late flowering	37/49					storage: 9.4 months
USA, 2006, Ephrata, WA (Monsanto 47755/65037)	141	-	377	61–62	35/47	Seeds	< 0.01 < 0.01 (< 0.01	0.47 0.50 (0.49)	< 0.01 < 0.01 (< 0.01)	29989 2007/00642 V–29989-06-E V–29989-06-G
USA, 2006, American Falls, ID (Hylite–618 CL)	145	-	369	Late flowering	37/49					METCON_162 Max. frozen storage: 10 months

^a Results from 2 replicate field samples are presented and values in parentheses represent mean values

^b Days after last application; cut / collected

Sunflower

A total of 11 field trials were conducted on sunflowers in Canada and the USA in the 2010 growing season (Corley, 2013, METCON_163). Plants received 2 foliar applications of metconazole at nominal rates of 140 g ai/ha. At one site an exaggerated rate of 700 g ai/ha was used additionally. Sunflower seeds were harvested at 20–21 days after the last application. Additional samples for decline determination were collected from one trial at 7, 14 and 27 DALA. Residues of *cis*- and *trans*-metconazole were determined using method RM–41C–1with a limit of quantification of 0.02 mg/kg. The triazole metabolite triazolyl alanine was determined using method Meth–160 with a limit of quantification of 0.02 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Table 186 Residues of metconazole in sunflower seeds following foliar treatment (cGAP USA, Canada: 2×140 g ai/ha; 21 days PHI).

Location,	Applic	ation		Cuorreth			Residues for	ound [mg/kg	[] ^a	Report/Trial No.,
		Interval		stage at		Sample	Metconazo	le		Reference,
Year (variety) ^b	g ai/ha	(days)	L/ha	final appl.	DALA	Sample	cis	trans	Total	Storage period
USA, 2010	140	7	140	Seed filling	21	Whole	0.81	0.16	0.97	10390
Velva, ND	150		150			seed	0.33	0.06	0.39	2013/1418320
(Triumph							(0.57)	(0.11)	(0.68)	ND19
655)										METCON_163
										Max. frozen
										storage: 12 months
USA, 2010	140	7	140	Seed	21	Whole	0.18	0.032	0.21	10390
Velva, ND	150		150	formation		seed	0.16	0.027	0.19	2013/1418320
(Triumph							(0.17)	(0.030)	(0.20)	ND20
655)							Control:			METCON_163
							0.022			Max. frozen
										storage: 12 months
USA, 2010	140	7	112	20% green	21	Whole	< 0.02	< 0.02	< 0.04	10390
Fargo, ND	140		112	tissue		seed	0.0260	< 0.02	0.046	2013/1418320
(06 DMR,							(0.023)	(< 0.02)	(0.043)	ND21
NS)	710	7	112	10% green	21	Whole	0.170	0.0362	0.206	METCON_163
	710		112	tissue		seed				Max. frozen
										storage: 12 months
USA, 2010	140	7	281	20% green	7	Whole	< 0.02	< 0.02	< 0.04	10390
Fargo, ND	140		271	tissue		seed	0.025	< 0.02	0.045	2013/1418320
(4651 NS)							(0.023)	(< 0.02)	(0.043)	ND22
					14		< 0.02	< 0.02	< 0.04	METCON_163
							< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 13 months
					21		< 0.02	< 0.02	< 0.04	
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
					27		< 0.02	< 0.02	< 0.04	
							0.0218	< 0.02	0.042	
							(0.021)	(< 0.02)	(0.041)	
USA, 2010	140	7	140	Seed	20	Whole	0.11	< 0.02	0.13	10390
Grand Island,	140		140	ripening		seed	0.041	< 0.02	0.061	2013/1418320
NE (3080							(0.076)	(< 0.02)	(0.096)	NE03
DMR, NS)										METCON_163
										Max. frozen
										storage: 13 months
USA, 2010	140	7	281	Mature	20	Whole	< 0.02	< 0.02	0.04	10390
Grand Island,	140		281			seed	0.030	< 0.02	0.05	2013/1418320
NE (115422)							(0.025)	(< 0.02)	(0.045)	NE04
										METCON_163

Location,	Applica	ation		Growth			Residues for	ound [mg/kg	[] a	Report/Trial No.,
Year (variety) ^b	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo cis	e trans	Total	Reference, Storage period
										Max. frozen storage: 13 months
USA, 2010 Las Cruces, NM (S–678)	140 140	7	196 206	Late blooming	20	Whole seed	0.020 < 0.02 (0.020)	< 0.02 < 0.02 (< 0.02)	0.040 < 0.04 (0.040)	10390 2013/1418320 NM11 METCON_163 Max. frozen storage: 14 months
USA, 2010 Aurora, SD (Garst 4596 HO)	140 140	7	215 224	R8, mature	21	Whole seed	< 0.02 < 0.02 (< 0.02)	< 0.02 < 0.02 (< 0.02)	< 0.04 < 0.04 (< 0.04)	10390 2013/1418320 SD06 METCON_163 Max. frozen storage: 14 months
Canada, 2010 Scott, SK (Pioneer 63A21)	140 140	7	108 109	Flowering	21	Whole seed	0.21 0.22 (0.22)	< 0.02 < 0.02 (< 0.02)	0.23 0.24 (0.24)	10390 2013/1418320 SK01 METCON_163 Max. frozen storage: 13 months
Canada, 2010 Scott, SK (Pioneer 63A21)	140 140	7	108 109	Flowering declining	21	Whole seed	0.17 0.18 (0.18)	< 0.02 < 0.02 (< 0.02)	0.19 0.20 (0.20)	10390 2013/1418320 SK02 METCON_163 Max. frozen storage: 13 months
Canada, 2010 Vansony, SK (63A21- N434)	140 140	8	97 99	85–87	21	Whole seed	0.052 0.077 (0.064)	0.021 0.027 (0.024)	0.073 0.10 (0.089)	10390 2013/1418320 SK03 METCON_163 Max. frozen storage: 14 months

^b It was noted that several trials (ND19 and ND20, ND21 and ND22, NE03 and NE04, SK01 and SK02) were performed at the same location and that application dates were the same or differed by one week or less. Therefore trials could not be considered as independent and the highest residue value from each of these locations was selected.

Location, Year (variety	Applica g ai/ha	tion Interval	L/ha	Growth stage at final appl.	DALA	Sample	Residues found [mg/kg] ª TA	Report/Trial No., Reference, Storage period
USA, 2010 Velva, ND (Triumph 655)	140 150	7	140 150	Seed filling	21	Whole seed	0.051 0.053 (0.052)	10390 2013/1418320 ND19 METCON_163 Max. frozen storage: 13 months
USA, 2010 Velva, ND (Triumph 655)	140 150	7	140 150	Seed formation	21	Whole seed	0.24 0.25 (0.24)	10390 2013/1418320 ND20 METCON_163 Max. frozen storage: 13 months

Table 187 Residues of triazole metabolite triazolyl alanine (TA) in sunflower seeds following foliar treatment (cGAP USA, Canada: 2×140 g ai/ha; 21 days PHI).

Location,	Applica	ition		Growth		Samula	Residues found	Report/Trial No.,
Tear (Variety	g ai/ha	Interval (days)	L/ha	appl.	DALA	Sample	TA	Storage period
USA, 2010 Fargo, ND (06 DMR, NS)	140 140	7	112 112	20% green tissue	21	Whole seed	0.021 0.022 (0.021)	10390 2013/1418320 ND21
	710 710	7	112 112	10% green tissue	21	Whole seed	0.020 0.058 < 0.02	METCON_163 Max. frozen storage: 13 months
USA, 2010 Fargo, ND (4651 NS)	140 140	7	281 271	20% green tissue	7	Whole seed	< 0.02 < 0.02 (< 0.02) < 0.02	10390 2013/1418320 ND22 METCON 163
					21		< 0.02 < 0.02 (< 0.02) < 0.02	Max. frozen storage: 14 months
					27		< 0.02 (< 0.02) < 0.02 < 0.02 (< 0.02)	
USA, 2010 Grand Island, NE (3080 DMR, NS)	140 140	7	140 140	Seed ripening	20	Whole seed	0.067 0.066 (0.066)	10390 2013/1418320 NE03 METCON_163 Max. frozen storage: 14 months
USA, 2010 Grand Island, NE (115422)	140 140	7	281 281	Mature	20	Whole seed	0.041 0.043 (0.042)	10390 2013/1418320 NE04 METCON_163 Max. frozen
USA, 2010 Las Cruces, NM (S–678)	140 140	7	196 206	Late blooming	20	Whole seed	0.063 0.068 (0.065)	10390 2013/1418320 NM11 METCON_163 Max. frozen
USA, 2010 Aurora, SD (Garst 4596 HO)	140 140	7	215 224	R8, mature	21	Whole seed	0.075 0.071 (0.073)	10390 2013/1418320 SD06 METCON_163 Max. frozen storage: 15 months
Canada, 2010 Scott, SK (Pioneer 63A21)	140 140	7	108 109	Flowering	21	Whole seed	0.059 0.054 (0.056)	10390 2013/1418320 SK01 METCON_163 Max. frozen storage: 14 months
Canada, 2010 Scott, SK (Pioneer 63A21)	140 140	7	108 109	Flowering declining	21	Whole seed	0.023 0.026 (0.024)	10390 2013/1418320 SK02 METCON_163 Max. frozen storage: 14 months
Canada, 2010 Vansony, SK (63A21-N434)	140 140	8	97 99	85–87	21	Whole seed	0.026 0.025 (0.025)	10390 2013/1418320 SK03 METCON_163

Location, Year (variety	Applica	tion		Growth stage at final	DALA	Sample	Residues found [mg/kg] ª	Report/Trial No., Reference,
	g ai/ha	(days)	L/ha	appi.			ТА	Storage period
								Max. frozen storage: 15 months

^a Results from 2 replicate field samples are presented and values in parentheses represent mean values

Cotton seed

A total of 12 field trials were conducted on cotton in the USA during the 2006 growing season (Carringer, 2007, METCON_164). Plants received 3 foliar applications of metconazole at nominal rates of 110 g ai/ha. Additionally, one trial received an exaggerated rate at 3×550 g ai/ha. Cotton seeds were harvested at 29–32 days after the last application. Residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Residues of metabolites M11, M21 and M30, were each below their LOQ of 0.01 mg/kg in all trials.

Table 188 Residues of *cis*- and *trans*-metconazole in cotton seeds following foliar treatment (cGAP USA: 3×92 g ai/ha; 30 days PHI).

Location,	Applicat	ion		Growth			Residue	es found [r	ng/kg] ª	Report/Trial No.,
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metcon	azole	Total	Reference,
Year (variety	g al/lla	(days)	L/IIa	final appl.			cis	trans	10(a)	Storage period
USA, 2006,	3×110	-	178	50% open	30	Seeds	0.062	0.015	0.077	254317
Chula,		7	187	bolls			0.048	0.011	0.059	2007/7001663
GA		7	178				(0.055)	(0.013)	(0.068)	RCN R06450
(PHY 480										METCON_164
WR)										Max. frozen
										storage: 3.0 months
USA, 2006,	3×110	-	94	81	30	Seeds	0.017	0.005	0.022	254317
Newport, AR		6	94				0.020	0.006	0.026	2007/7001663
(DP444		7	94				(0.019)	(0.006)	(0.024)	RCN R06451
BG/RR)										METCON_164
										Max. frozen
										storage: 4.2 months
USA, 2006,	3×110	F	159	81	29	Seeds	0.020	0.006	0.026	254317
Cheneyville,		7	215				0.021	0.006	0.027	2007/7001663
LA		7	215				(0.021)	(0.006)	(0.027)	RCN R06452
(PHY 485										METCON_164
WRF)										Max. frozen
										storage: 4.0 months
USA, 2006,	3×110	-	122	15% open	30	Seeds	0.017	0.006	0.023	254317
Proctor AR		7	122	bolls			0.012	< 0.005	0.017	2007/7001663
(DP444BR)		7	122				(0.015)	(0.006)	(0.020)	RCN R06453
										METCON_164
										Max. frozen
										storage: 4.5 months
USA, 2006,	3×110	-	131	81	31	Seeds	0.011	< 0.005	0.016	254317
Uvalde, TX		7	140				0.023	0.005	0.028	2007/7001663
(DPL 444)		7	131				(0.017)	(0.005)	(0.022)	RCN R06454
	3×550	-	140	81	31	Seeds	0.029	0.12	0.14	METCON_164
		7	140				0.023	0.097	0.12	Max. frozen
		7	140				(0.026)	(0.11)	(0.13)	storage: 6.4 month
USA, 2006,	3×110	-	140	79–80	30	Seeds	0.023	0.006	0.030	254317

Location,	Applicati	ion		Growth			Residue	s found [r	ng/kg] ª	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metcon <i>cis</i>	azole <i>trans</i>	Total	Reference, Storage period
Levelland, TX (FM9063 B2F)		8 7	140 140				0.042 (0.033)	0.011 (0.009)	0.053 (0.042)	2007/7001663 RCN R06455 METCON_164 Max. frozen storage: 2.8 month
USA, 2006, Wolfforth, TX (Fiber Max 960 BG II)	3 × 110	- 6 8	140 140 140	79	30	Seeds	0.065 0.050 (0.058)	0.015 0.012 (0.014)	0.080 0.062 (<u>0.071)</u>	254317 2007/7001663 RCN R06456 METCON_164 Max. frozen storage: 2.9 month
USA, 2006, Hinton, OK (DG 2242 B2RF)	3 × 110	- 7 7	112 196 206	87	32	Seeds	0.063 0.058 (0.061)	0.016 0.014 (0.015)	0.078 0.071 (<u>0.075)</u>	254317 2007/7001663 RCN R06457 METCON_164 Max. frozen storage: 3.4 month
USA, 2006, Dill City, OK (FM 960 B2R)	3 × 110	- 7 7	206 196 196	5% open bolls	31	Seeds	0.016 0.014 (0.015)	0.006 < 0.005 (0.006)	0.022 0.019 (0.021)	254317 2007/7001663 RCN R06458 METCON_164 Max. frozen storage: 3.3 month
USA, 2006, Tulare, CA (Sierra RR)	3 × 110	- 7 7	187 187 187	76	30	Seeds	0.028 0.053 (0.041)	0.007 0.012 (0.010)	0.036 0.065 (<u>0.051)</u>	254317 2007/7001663 RCN R06459 METCON_164 Max. frozen storage: 3.9 month
USA, 2006, Terra Bella, CA (Roundup Ready)	3 × 110	- 7 7	206 196 206	76	30	Seeds	0.017 0.019 (0.018)	0.005 0.005 (0.005)	0.023 0.025 (0.024)	254317 2007/7001663 RCN R06460 METCON_164 Max. frozen storage: 3.7 month
USA, 2006, Yuma, AZ (450001 G)	3 × 110	- 7 7	234 234 234	50% open bolls	29	Seeds	0.18 0.20 (0.19)	0.041 0.047 (0.044)	0.22 0.26 (0.23)	254317 2007/7001663 RCN R06460 METCON_164 Max. frozen storage: 4.1 month

Table 189 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in cotton seed following foliar treatment (cGAP USA: 3×92 g ai/ha; 30 days PHI).

Location,	Applicati	on		Growth	DALA	Commlo	Residues	found [mg	/kg] ^a	Report/Trial No., Reference.
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	TA	TAA	Storage period
USA, 2006, Chula, GA (PHY 480 WR)	3 × 110	- 7 7	178 187 178	50% open bolls	30	Seeds	< 0.01 < 0.01 (< 0.01)	0.40 0.36 0.38	< 0.01 < 0.01 (< 0.01)	254317 2007/7001663 RCN R06450 METCON_164 Max. frozen storage: 3.0 months
USA, 2006, Newport, AR	3 × 110	- 6	94 94	81	30	Seeds	< 0.01 < 0.01	0.130 0.110	< 0.01 < 0.01	254317 2007/7001663

Location,	Applicati	ion		Growth			Residues	found [mg	/kg] ^a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Storage period
(DP444 BG/RR)		7	94				(< 0.01)	(0.120)	(< 0.01)	RCN R06451 METCON_164 Max. frozen storage: 4.2 months
USA, 2006, Cheneyville, LA (PHY 485 WRF)	3 × 110	- 7 7	159 215 215	81	29	Seeds	< 0.01 < 0.01 (< 0.01)	0.060 0.060 (0.060)	< 0.01 < 0.01 (< 0.01)	254317 2007/7001663 RCN R06452 METCON_164 Max. frozen storage: 4.0 months
USA, 2006, Proctor AR (DP444BR)	3 × 110	- 7 7	122 122 122	15% open bolls	30	Seeds	< 0.01 < 0.01 (< 0.01)	0.070 0.070 (0.070)	< 0.01 < 0.01 (< 0.01)	254317 2007/7001663 RCN R06453 METCON_164 Max. frozen storage: 4.5 months
USA, 2006, Uvalde, TX (DPL 444)	$\frac{3 \times 110}{3 \times 550}$	- 7 7 - 7	131 140 131 140 140	81	31 31	Seeds Seeds	< 0.01 0.040 (0.040) < 0.01 < 0.01	< 0.05 < 0.05 (< 0.05) 0.13 0.13 (0.12)	< 0.01 < 0.01 (< 0.01) < 0.01 < 0.01	254317 2007/7001663 RCN R06454 METCON_164 Max. frozen storage: 6.4 month
USA, 2006, Levelland, TX (FM9063 B2F)	3 × 110	- 8 7	140 140 140 140	79–80	30	Seeds	< 0.01 < 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	< 0.05 < 0.05 < 0.05 (< 0.05)	254317 2007/7001663 RCN R06455 METCON_164 Max. frozen storage: 2.8 month
USA, 2006, Wolfforth, TX (Fiber Max 960 BG II)	3 × 110	- 6 8	140 140 140	79	30	Seeds	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	< 0.05 < 0.05 (< 0.05)	254317 2007/7001663 RCN R06456 METCON_164 Max. frozen storage: 2.9 month
USA, 2006, Hinton, OK (DG 2242 B2RF)	3 × 110	- 7 7	112 196 206	87	32	Seeds	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	0.13 0.15 (0.14)	254317 2007/7001663 RCN R06457 METCON_164 Max. frozen storage: 3.4 month
USA, 2006, Dill City, OK (FM 960 B2R)	3 × 110	- 7 7	206 196 196	5% open bolls	31	Seeds	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	0.10 0.10 (0.10)	254317 2007/7001663 RCN R06458 METCON_164 Max. frozen storage: 3.3 month
USA, 2006, Tulare, CA (Sierra RR)	3 × 110	- 7 7	187 187 187	76	30	Seeds	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	< 0.05 < 0.05 (< 0.05)	254317 2007/7001663 RCN R06459 METCON_164 Max. frozen storage: 3.9 month
USA, 2006, Terra Bella, CA (Roundup Ready)	3 × 110	- 7 7	206 196 206	76	30	Seeds	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	0.110 0.120 (0.115)	254317 2007/7001663 RCN R06460 METCON_164 Max. frozen storage: 3.7 month
USA, 2006,	3×110	-	234	50% open	29	Seeds	< 0.01	< 0.01	< 0.05	254317

Location,	Applicati	Application				G 1	Residues	found [mg	/kg] ^a	Report/Trial No., Reference,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	TA	TAA	Storage period
Yuma, AZ (450001 G)		7 7	234 234	bolls			< 0.01 (< 0.01)	< 0.01 (< 0.01)	< 0.05 (< 0.05)	2007/7001663 RCN R06460 METCON_164 Max. frozen storage: 4.1 month

Peanut

A total of 14 field trials were conducted on peanuts in the USA during the 2005 and 2006 growing seasons (Green, 2006, METCON_165). Plants received 2 foliar applications of metconazole at rates of 270–290 g ai/ha. Three trial also received an exaggerated rate of 2 applications at 560 g ai/ha ($2\times$) and 1 trial at 1400 g ai/ha ($5\times$). Peanuts were harvested at 13–15 days after the last application. For most of the trials, peanuts were dug 13–15 days after the final application. In two trials (trial C and trial L) peanuts were dug 10, 14, 19 (or 17), and 22 DALA to provide a decline curve. For trial N, peanuts were dug 18 DALA due to wet weather. After the peanuts were dug, they were allowed to dry in the field (typically 5 to 9 days) before being collected. Residues of *cis-* and *trans-*metconazole were determined using method RM–41C–1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for cis- and trans-metconazole in peanut meat spiked at 0.02 mg/kg and 0.1 mg/kg were $100 \pm 4\%$ (n = 20) and $100 \pm 6\%$ (n = 20), respectively.

Table 190 Residues of *cis*- and *trans*-metconazole in peanuts following foliar treatment (cGAP USA: 4×140 g ai/ha; 14 day PHI).

Location,	Applicat	tion		Growth			Residues	found [mg	g/kg] ^a	Report/Trial No.,
	• /1	Interval	тл	stage at	DALA	Sample	Metconaz	zole	T (1	Reference,
Year (variety	g ai/ha	(days)	L/ha	final appl.		1	cis	trans	Total	Storage period
USA, 2004,	292	14	205	Mature	14	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Sunbury, NC	284		217				< 0.02	< 0.02	< 0.04	2006/1051359
(NC-V11)							(< 0.02)	(< 0.02)	(< 0.04)	V-25689-04-A
	586	14	206	Mature	14	Nutmeat	< 0.02	< 0.02	< 0.04	METCON_165
	565		219				< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 3.8 months
USA, 2005,	287	14	194	Near	13	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Suffolk, VA	286		193	maturity			< 0.02	< 0.02	< 0.04	2006/1051359
(Gregory							(< 0.02)	(< 0.02)	(< 0.04)	V-25689-05-В
Lot# W–818)										METCON_165
										Max. frozen
										storage: 3.7 months
USA, 2005,	282	15	184	Near	10	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Elko, SC	282		180	maturity			< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia							(< 0.02)	(< 0.02)	(< 0.04)	V-25689-05-C
Green)					14		< 0.02	< 0.02	< 0.04	METCON_165
							< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 3.7 months
					19		< 0.02	< 0.02	< 0.04	
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
					22		< 0.02	< 0.02	< 0.04	
							< 0.02	< 0.02	< 0.04	
							(< 0.02)	(< 0.02)	(< 0.04)	
USA, 2005, Athens, GA	279	14	192	70% mature	14	Nutmeat	< 0.02	< 0.02	< 0.04	25689
(Georgia	279		187	pods			< 0.02	< 0.02	< 0.04	2006/1051359
Green)				F			(< 0.02)	(< 0.02)	(< 0.04)	V–25689-05-D

Location,	Applicat	ion		Growth			Residues	found [mg	g/kg] ^a	Report/Trial No.,
	σai/ha	Interval	L/ha	stage at	DALA	Sample	Metconaz	zole	Total	Reference,
Year (variety	g al/lla	(days)	L/IIu	final appl.			cis	trans	Total	Storage period
	556	14	191	70% mature	14	Nutmeat	< 0.02	< 0.02	< 0.04	METCON_165
	561		187	pods			< 0.02	< 0.02	< 0.04	Max. frozen
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 3.7 months
USA, 2005,	280	14	187	Mature	15	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Sycamore, GA	282		184	peanut			< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia Green)							(< 0.02)	(< 0.02)	<u>(< 0.04)</u>	V-25689-05-E
Green)										METCON_105
										storage: 4.0 months
USA, 2005,	283	13	191	Pod fill	14	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Chula, GA	283		184				< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia							(< 0.02)	(< 0.02)	(< 0.04)	V-25689-05-F
Green)										METCON_165
										Max. frozen
USA 2005	270	14	192	Dod fill	14	Nutmoot	< 0.02	< 0.02	< 0.04	storage: 4.2 months
Gordon, AL	270	14	183	rou III	14	Nutificat	< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia	270		105				(< 0.02)	(< 0.02)	(< 0.04)	V-25689-05-G
Green)							()	()		METCON 165
										Max. frozen
										storage: 4.3 months
USA, 2005,	277	14	181	Pod fill	14	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Columbia, AL	270		179				< 0.02	< 0.02	< 0.04	2006/1051359
(Carver s)							(< 0.02)	(< 0.02)	<u>(< 0.04)</u>	V-23089-03-H METCON 165
										Max frozen
										storage: 4.3 months
USA, 2005,	282	15	188	Mature	15	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Columbia, AL	283		184	peanut			< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia							(< 0.02)	(< 0.02)	(< 0.04)	V–25689-05-I
Green)										METCON_165
										Max. Irozen
USA 2005	285	15	190	Mature	15	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Greenville, FL	283	15	185	peanut	10	i (atilioat	< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia				1			(< 0.02)	(< 0.02)	(< 0.04)	V–25689-05-J
Green)										METCON_165
										Max. frozen
110 4 2005	202	1.4	100	75	1.5		< 0.02	< 0.02	< 0.04	storage: 4.0 months
USA, 2005, East Bernard	283	14	190	/5	15	Nutmeat	< 0.02	< 0.02	< 0.04	25689
TX	270		100				< 0.02 (< 0.02)	< 0.02 (< 0.02)	< 0.04	V-25689-05-K
(TAMSPAN90)	571	14	191	75	15	Nutmeat	< 0.02	< 0.02	< 0.04	METCON 165
	558		186				0.02	< 0.02	0.04	Max. frozen
							0.055	< 0.02	0.07	storage: 4.2 months
							0.02	< 0.02	0.04	
LIG A 2005	070	1.4	107	T ,	10		(0.025)	(< 0.02)	(0.045)	25(00
USA, 2005, Stephenville	279	14	18/	Late	10	Nutmeat	< 0.02	< 0.02	< 0.04	25689
TX (Tamrun	203		109	pegging			< 0.02	< 0.02	< 0.04	2000/1031339 V_25689-05-1
96)							(*0.02)	(*0.02)	<u>(· 0.01)</u>	METCON 165
										Max. frozen
										storage: 4.0 months
USA, 2005,	281	14	188	Late	13	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Levelland, TX	277		186	pegging			< 0.02	< 0.02	< 0.04	2006/1051359
(Spanco)							(< 0.02)	(< 0.02)	<u>(< 0.04)</u>	V-23689-05-M
										Max_frozen
	J	I	I	I	I	I	I.	I	I	110ZCII

Location,	Applicat	ion		Growth			Residues	found [mg	g/kg] ^a	Report/Trial No.,
	a ai/ha	Interval	T/ha	stage at	DALA	Sample	Metconaz	ole	Tatal	Reference,
Year (variety	g al/na	(days)	L/na	final appl.			cis	trans	Total	Storage period
										storage: 4.2 months
USA, 2005,	276	13	185	Flowering	18	Nutmeat	< 0.02	< 0.02	< 0.04	25689
Greenville, MS	284		190				< 0.02	< 0.02	< 0.04	2006/1051359
(Georgia							(< 0.02)	(< 0.02)	(< 0.04)	V-25689-05-N
Green)	1389	13	185	Flowering	18	Nutmeat	0.04	< 0.01	0.04	METCON_165
	1410		188				0.05	< 0.01	0.05	Max. frozen
							0.06	< 0.01	0.06	storage: 4.2 months
							(0.05)	(< 0.01)	(0.05)	

Animal feed items

Soya bean forage

A total of six field trials were conducted on soya beans in the USA during the 2004 growing season (Leonard, 2005, METCON_143). Plants received 2 foliar applications of metconazole at nominal rates of 80 g ai/ha with 0.25% adjuvant. Soya bean forage was harvested 7 days after the last application. Residues of *cis*- and *trans*-metconazole were determined using method 550/0 with a limit of quantification of 0.005 mg/kg per isomer. Method validation and procedural recoveries for all trials were within 70–120% with an RSD of < 20%.

Table 191 Residues of *cis*- and *trans*-metconazole in soya bean forage following foliar treatment (cGAP USA: 2×63 g ai/ha; 14 day PHI).

Location,	Applic	cation			Residues	(mg/kg)				Report/Trial
	g	Interval	L/ha	Growth stage	Sample	DALA	Metcon	azole		No.,
Year	ai/ha	(days)		at final appl.			cis-	trans-	Total	Reference,
(variety)							015	ti ans	rotur	Storage period
USA, 2004,	80	-	207	BBCH 79	Soya	7	1.6	0.33	2.0	204640
Chula, GA,	80	10	206		bean		1.5	0.32	1.9	2004/5000755
(Dekalb					forage		(1.6)	(0.33)	<u>(1.9)</u>	RCN 2004192
H/242KK										MEICON_143
										Max. Irozen
										storage: 2
USA 2004	80	-	189	BBCH 79	Sova	7	0.82	0.18	1.0	204640
Newport.	80	10	188	bben //	bean	'	1.1	0.23	1.4	2004/5000755
AR. (Genesis					forage		(0.98)	(0.21)	(1.2)	RCN 2004193
C444NRR)					0		()	(-)	·	METCON 143
,										Max. frozen
										storage: 2
										month
USA, 2004,	80	-	189	BBCH 79	Soya	7	1.5	0.29	1.8	204640
Proctor, AR,	80	10	190		bean		1.7	0.33	2.0	2004/5000755
(DP5634RR)					forage		(1.6)	(0.31)	<u>(1.9)</u>	RCN 2004194
										METCON_143
										Max. frozen
										storage: 2
USA 2004	80	-	188	BBCH 79	Sova	7	12	0.25	15	204640
Stoneville	80	10	189	bben //	bean	/	1.2	0.23	23	2004/5000755
MS. (Pioneer	00	10	105		forage		(1.6)	(0.32)	(1.9)	RCN 2004195
95B96)					Toruge		(110)	(0.02)	<u>(11) /</u>	METCON 143
,										Max. frozen
										storage: 2
										month
USA, 2004,	80	-	188	BBCH 79	Soya	7	1.0	0.20	1.2	204640
Arkansaw,	80	10	189		bean		1.0	0.21	1.2	2004/5000755

WI, (NK					forage		(1.0)	(0.21)	(1.2)	RCN 2004196
S20-G4)										METCON_143
										Max. frozen
										storage: 3
										month
USA, 2004,	80	-	100	BBCH 79	Soya	7	1.6	0.34	1.9	204640
Carlyle, IL,	80	10	95		bean		2.0	0.39	2.4	2004/5000755
(BT-383CR)					forage		(1.8)	(0.37)	(2.2)	RCN 2004197
										METCON_143
										Max. frozen
										storage: 3
										month

Additionally, a total of 15 field trials were conducted on soya bean in Canada and the USA during the 2005 growing season (White & Saha, 2006, METCON_144). Plants received 2 foliar applications of metconazole at nominal rates of 80 g ai/ha. Soya bean forage was harvested at 6–8 days after the last application. Residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of *cis*- and *trans*-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Table 192 Residues of *cis*- and *trans*-metconazole in soya bean forage following foliar treatment (cGAP USA: 2×63 g ai/ha; 14 day PHI).

Location,	Applic	cation			Residues (mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		No.,
Year	ai/ha	(days)		stage at final	_		oia	tuana	Tatal	Reference,
(variety)				appl.			cis-	trans-	Total	Storage period
USA, 2005,	80	-	176	BBCH 79	Soya	7	0.89	0.20	1.1	137726
Chula, GA,	80	10	180		bean		0.79	0.18	0.97	2006/7006995
(Dekalb					forage		(0.84)	(0.19)	<u>(1.0)</u>	R05111
H7242RR)										METCON_144
										Max. frozen
										storage: 5.2
										month
USA, 2005,	80	-	189	BBCH 77	Soya	7	0.56	0.11	0.67	137726
Theilman,	80	10	187		bean		0.65	0.14	0.79	2006/7006995
MN,					forage		(0.60)	(0.13)	<u>(0.73</u>)	R05112
(Asgrow										METCON_144
AG1603)										Max. frozen
										storage: 6
110.4 000.5	0.0		100	DDGU	<i></i>	-	0.00	0.16	1.0	month
USA, 2005,	80	-	188	BBCH //	Soya	1	0.88	0.16	1.0	137726
Dumfries,	80	10	185		bean		(0.82)	0.1/	1.0	2006/7006995
MIN,					Iorage		(0.85)	(0.16)	<u>(1.0)</u>	KUSIIS METCON 144
(Asgrow										MEICON_144
AG1005)										storage: 6
										storage. 0
USA 2004	80	_	149	BBCH 79	Sova	7	0.78	0.15	0.93	137726
Grandfork	80	10	151	bben //	bean	/	0.70	0.15	0.99	2006/7006995
IL (DKB38-	00	10	1.51		forage		(0.82)	(0.17)	(0.96)	R05114
52)					loluge		(0.00)	(0.10)	<u>(0.20</u>)	METCON 144
<i>c_</i>)										Max. frozen
										storage: 5.7
										month
USA, 2005,	80	-	175	BBCH 79	Soya	7	0.89	0.17	1.1	137726
Carlyle, IL,	80	11	184		bean		0.91	0.18	1.1	2006/7006995
(NK 43-B1)					forage		(0.90)	(0.17)	(1.1)	R05115
					-					METCON_144
										Max. frozen
										storage: 5.4

Location,	Applic	cation			Residues (mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		No.,
Year	ai/ha	(days)		stage at final			cis-	trans-	Total	Reference,
(variety)				appl.			0.05		1000	Storage period
										month
USA, 2005,	80	-	176	BBCH 89	Soya	7	1.7	0.30	2.0	137726
Wyoming,	80	11	175		bean		1.9	0.41	2.3	2006/7006995
IL, (Asgrow					forage		(1.8)	(0.37)	<u>(2.2)</u>	R05116
5202)										METCON_144
										storage: 5.4
										month
USA, 2005,	80	-	184	BBCH 77	Soya	7	0.92	0.18	1.1	137726
Osceola, NB,	80	10	189		bean		1.1	0.23	1.4	2006/7006995
(Pioneer					forage		(1.0)	(0.20)	<u>(1.2)</u>	R05117
92M80)										METCON_144
										Max. frozen
										storage: 0.5
USA 2005	80	_	187	BBCH 77	Sova	7	13	0.29	1.6	137726
York, NB,	80	9	187	22011 / /	bean	,	1.3	0.32	1.7	2006/7006995
(Pioneer					forage		(1.3)	(0.30)	(1.6)	R05118
92M80)										METCON_144
										Max. frozen
										storage: 6.2
LISA 2005	80		18/	BBCH 77	Sova	8	0.60	0.12	0.72	137726
Grand	80	10	187	bben //	bean	0	0.59	0.12	0.72	2006/7006995
Island, NB,	00	10	10,		forage		(0.59)	(0.12)	(0.71)	R05119
(Dyna-Gro					U			. ,		METCON_144
37B28RR)										Max. frozen
										storage: 6.3
Canada	80		2(2	DDCU 77	C	7	1.2	0.25	1.4	month
2005	80 80	- 9	202	DDCT //	bean	/	1.2	0.23	1.4	2006/7006995
Branchton.	00	,	277		forage		(1.1)	(0.23)	(1.3)	R05120
ON					0			()	<u></u>	METCON 144
(Mycogen										Max. frozen
5140RR)										storage: 6.4
LICA 2005	80		125	DDCU 75	C	(1.2	0.25	1.5	month
USA, 2005, Wanello, IA	80 80	- 10	135	BBCH /2	Soya	6	1.2	0.25	1.5	137720
(Pioneer	80	10	137		forage		(1.5)	(0.30)	(1.9)	R05121
93M11)					loluge		(1.5)	(0.51)	<u>(1.)</u>)	METCON 144
,										Max. frozen
										storage: 5.2
										month
USA, 2005,	80	-	138	BBCH 75	Soya	7	1.5	0.30	1.8	137726
Jefferson,	80	9	131		forage		1.5 (1.5)	(0.31)	1.8 (1.8)	2006/7006995 P05122
93B87)					lolage		(1.5)	(0.51)	<u>(1.0)</u>	METCON 144
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										Max. frozen
										storage: 5.3
										month
USA, 2005,	80	-	138	BBCH 75	Soya	8	1.1	0.23	1.4	137726
Keokuk, IA,	80	10	142		bean		$\frac{1.7}{(1.4)}$	0.34	2.1	2006/7006995 P05122
(Dekalo 3451)					lotage		(1.4)	(0.28)	<u>(1./)</u>	METCON 144
5751)										Max. frozen
										storage: 5.2
										month
USA, 2005,	80	-	192	BBCH 81	Soya	7	1.2	0.20	1.4	137726
Conklin, MI,	80	10	191		bean		1.2	0.21	1.4	2006/7006995
(Asgrow:					forage		(1.2)	(0.20)	<u>(1.4)</u>	KUS124 METCON 144
AU1903)										WIETCON_144

Location,	Applic	cation			Residues (mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		No.,
Year (variety)	ai/ha	(days)		stage at final appl.			cis-	trans-	Total	Reference, Storage period
										Max. frozen storage: 5.1 month
Canada, 2005, St-Pie- de-Bagot, QC, (26-02R RR)	80 80	- 11	228 215	BBCH 79	Soya bean forage	7	0.55 0.40 (0.48)	0.09 0.07 (0.08)	0.64 0.47 <u>(0.56)</u>	137726 2006/7006995 R05125 METCON_144 Max. frozen storage: 5.3 month

Table 193 Residues of metabolites M11, M21 and M30 in soya bean forage following foliar treatment (cGAP USA: 2×63 g ai/ha; 14 day PHI).

Location,	Applic	ation			Residues	(mg/kg) ^a		Report/Trial		
	g	Interval	L/ha	Growth	Sample	DALA	Metabo	lite		No.,
Year	ai/ha	(days)		stage at			M11	M21	M30	Reference,
(variety)				final appl.			14111	10121	WIJ0	Storage period
USA, 2005,	80	-	176	BBCH 79	Soya	7	0.02	0.01	< 0.01	137726
Chula, GA,	80	10	180		bean		0.03	0.01	< 0.01	2006/7006995
(Dekalb					forage		(0.03)	(0.01)	(< 0.01)	R05111
H7242RR)										METCON_144
										Max. frozen
										storage: 5.2
										month
USA, 2005,	80	-	189	BBCH 77	Soya	7	0.01	0.01	< 0.01	137726
Theilman,	80	10	187		bean		0.02	0.01	< 0.01	2006/7006995
MN,					forage		(0.02)	(0.01)	(< 0.01)	R05112
(Asgrow										METCON_144
AG1603)										Max. frozen
										storage: 6
LICA 2005	80		100	DDCIL 77	C	7	0.02	0.01	< 0.01	month
USA, 2003, Dumfries	80	-	100	DDCT //	been	/	0.02	0.01	< 0.01	137720
MNI	80	10	105		forage		(0.02)	(0.01)	< 0.01	2000/7000995 D05113
IVIIN,					lotage		(0.02)	(0.01)	(< 0.01)	METCON 144
AG1603)										Max frozen
1101005)										storage: 6
										month
USA, 2004,	80	-	149	BBCH 79	Soya	7	0.05	0.01	0.01	137726
Grandfork,	80	10	151		bean		0.06	0.02	0.01	2006/7006995
IL,					forage		(0.06)	(0.02)	(0.01)	R05114
(DKB38-					Ũ		· /		· · ·	METCON 144
52)										Max. frozen
										storage: 5.7
										month
USA, 2005,	80	-	175	BBCH 79	Soya	7	0.03	0.01	< 0.01	137726
Carlyle, IL,	80	11	184		bean		0.03	0.01	0.01	2006/7006995
(NK 43-B1)					forage		(0.03)	(0.01)	(0.01)	R05115
										METCON_144
										Max. frozen
										storage: 5.4
										month
USA, 2005,	80	-	176	BBCH 89	Soya	7	0.08	0.02	0.01	137726
Wyoming,	80	11	175		bean		0.09	0.03	0.01	2006//006995
IL, (Asgrow					forage		(0.09)	(0.03)	(0.01)	R05116
3202)										METCON_144
										Max. frozen

Location,	Applic	ation			Residues (mg/kg) ^a					Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabo	lite		No.,
Year	ai/ha	(days)		stage at			M11	M21	M30	Reference,
(variety)				final appl.			10111	11121	10150	Storage period
										storage: 5.4
						_				month
USA, 2005,	80	-	184	BBCH 77	Soya	7	< 0.01	< 0.01	< 0.01	137726
Osceola,	80	10	189		bean		0.01	< 0.01	< 0.01	2006//006995
NB, (Diamaan					Iorage		(0.01)	(< 0.01)	(< 0.01)	KUSII/ METCON 144
(FIONEER 92M80)										METCON_144 Max_frozen
<i>J</i> 21 v 100 <i>)</i>										storage: 63
										month
USA, 2005,	80	-	187	BBCH 77	Soya	7	0.02	0.02	< 0.01	137726
York, NB,	80	9	187		bean		0.03	0.02	0.01	2006/7006995
(Pioneer					forage		(0.03)	(0.02)	(0.01)	R05118
92M80)										METCON_144
										Max. frozen
										storage: 6.2
LISA 2005	80		18/	BBCH 77	Sovo	8	0.01	0.01	< 0.01	month 137726
Grand	80	10	184	BBCII //	bean	0	0.01	0.01	< 0.01	2006/7006995
Island NB	00	10	107		forage		(0.01)	(0.01)	(< 0.01)	R05119
(Dyna-Gro					longe		(0.01)	(0.01)	(0.01)	METCON 144
37B28RR)										Max. frozen
, í										storage: 6.3
										month
Canada,	80	-	262	BBCH 77	Soya	7	0.05	0.02	0.01	137726
2005,	80	9	299		bean		0.05	(0.02)	< 0.01	2006/7006995
Branchton,					forage		(0.05)	(0.02)	(0.01)	K05120
(Mycogen										METCON_144 May frozen
5140RR)										storage: 6.4
51 lold()										month
USA, 2005,	80	-	135	BBCH 75	Soya	6	0.02	0.02	0.01	137726
Wapello,	80	10	137		bean		0.04	0.03	0.01	2006/7006995
IA, (Pioneer					forage		(0.03)	(0.03)	(0.01)	R05121
93M11)										METCON_144
										Max. frozen
										storage: 5.2
USA 2005	80	-	138	BBCH 75	Sova	7	0.03	0.02	0.01	137726
Jefferson,	80	9	131	22011,0	bean	,	0.03	0.03	0.01	2006/7006995
IA, (Pioneer			-		forage		(0.03)	(0.03)	(0.01)	R05122
93B87)									, í	METCON_144
										Max. frozen
										storage: 5.3
110 4 2005	80		120	DDCU 75	S	0	0.02	0.02	< 0.01	month
USA, 2005,	80	-	138	BBCH /5	Soya	8	0.02	0.02	< 0.01	13//26
IA	80	10	142		forage		(0.03)	(0.02)	< 0.01	2000/7000993 R05123
(DeKalb					lolage		(0.05)	(0.02)	(< 0.01)	METCON 144
3451)										Max. frozen
0.01)										storage: 5.2
										month
USA, 2005,	80	-	192	BBCH 81	Soya	7	0.04	0.02	0.01	137726
Conklin,	80	10	191		bean		0.04	0.01	0.01	2006/7006995
MI,					forage		(0.04)	(0.02)	(0.01)	R05124
(Asgrow:										METCON_144
AG1903)										storage: 5 1
										month
Canada,	80	-	228	BBCH 79	Soya	7	0.01	< 0.01	< 0.01	137726
2005, St-	80	11	215		bean		< 0.01	< 0.01	< 0.01	2006/7006995
Pie-de-					forage		(0.01)	(< 0.01)	(< 0.01)	R05125

Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabo	lite		No.,
Year	ai/ha	(days)		stage at		1	M11	1421	M20	Reference,
(variety)				final appl.		1	IVIII	IVIZ I	M30	Storage period
Bagot, QC,			[METCON 144
(26-02R						1				Max. frozen
RR)						1				storage: 5.3
			1			1 '				month

^a Results from 2 replicate field samples are presented and values in parentheses represent mean values

Table 194 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in soya bean forage following foliar treatment (cGAP USA: 2×63 g ai/ha; 14 day PHI).

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metaboli	te		No.,
Year	ai/ha	(days)		stage at			_			Reference,
(variety)				tinal			Т	TA	TAA	Storage period
110 4 2005	80		17(appi.	C	7	< 0.05	< 0.05	0.22	127726
USA, 2005, Chula GA	80	-	1/0	70 BBCH	Soya bean	/	< 0.05	< 0.05	0.23	137720
(Dekalh	80	10	100	17	forage		< 0.05	< 0.05	(0.22)	R05111
H7242RR)					loiuge		(* 0.05)	(• 0.05)	(0.23)	METCON 144
,										Max. frozen
										storage: 5.2
										month
USA, 2005,	80	-	189	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Theilman,	80	10	187	11	bean		< 0.05	< 0.05	< 0.05	2006//006995 D05112
MIN,					lorage		(< 0.05)	(< 0.03)	(< 0.05)	METCON 144
AG1603)										Max. frozen
1101000)										storage: 6 month
USA, 2005,	80	-	188	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Dumfries,	80	10	185	77	bean		< 0.05	< 0.05	< 0.05	2006/7006995
MN,					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05113
(Asgrow										MEICON_144
A01003)										storage: 6
										month
USA, 2004,	80	-	149	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Grandfork,	80	10	151	79	bean		< 0.05	< 0.05	< 0.05	2006/7006995
IL,					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05114
(DKB38–										METCON_144
52)										storage: 5.7
										month
USA, 2005,	80	-	175	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Carlyle, IL,	80	11	184	79	bean		< 0.05	< 0.05	< 0.05	2006/7006995
(NK 43-B1)					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05115
								Control:		METCON_144
								0.17		storage: 5.4
										month
USA, 2005,	80	-	176	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Wyoming,	80	11	175	89	bean		< 0.05	< 0.05	< 0.05	2006/7006995
IL, (Asgrow					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05116
3202)										METCON_144
										Max. frozen
										month
USA, 2005.	80	-	184	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Osceola,	80	10	189	77	bean		< 0.05	< 0.05	< 0.05	2006/7006995
NB,					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05117
(Pioneer										METCON 144

Location,	Applic	cation			Residues	(mg/kg) ^a				Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	e		No.,
Year	ai/ha	(days)		stage at						Reference,
(variety)				final			Т	TA	TAA	Storage period
				appl.						
92M80)										Max. frozen
										storage: 6.3
										month
USA, 2005,	80	-	187	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
York, NB,	80	9	187	77	bean		< 0.05	< 0.05	< 0.05	2006/7006995
(Pioneer					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05118
92M80)										METCON_144
										Max. frozen
										storage: 0.2
LISA 2005	80		104	DDCU	Carro	0	< 0.05	< 0.05	< 0.05	127726
USA, 2003, Grand	80	-	104	DDСП 77	boon	0	< 0.03	< 0.05	< 0.03	137720
Island NB	80	10	10/	//	forage		< 0.03	< 0.03	< 0.03	2000/7000993 R05119
(Dyna-Gro					lolage		(< 0.05)	(< 0.03) Control:	(< 0.05)	METCON 144
37B28RR)								0.05		Max. frozen
										storage: 6.3
										month
Canada,	80	-	262	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
2005,	80	9	299	77	bean		< 0.05	< 0.05	< 0.05	2006/7006995
Branchton,					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05120
ON										METCON_144
(Mycogen										Max. frozen
5140RR)										storage: 6.4
	0.0		105	DD GU	~		0 0 -	0 0 -	0 0 7	month
USA, 2005,	80	-	135	BBCH	Soya	6	< 0.05	< 0.05	< 0.05	137726
Wapello, IA,	80	10	137	/5	bean		< 0.05	< 0.05	< 0.05	2006/7006995 D05121
(Ploneer 02M11)					lorage		(< 0.05)	(< 0.05)	(< 0.05)	KUSIZI METCON 144
9510111)										METCON_144 Max_frozen
										storage: 5.2
										month. (TA: 5.7
										month)
USA, 2005,	80	-	138	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Jefferson,	80	9	131	75	bean		< 0.05	< 0.05	< 0.05	2006/7006995
IA, (Pioneer					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05122
93B87)										METCON_144
										Max. frozen
										storage: 5.3
										month, $(TA: 5.7)$
LISA 2005	80		120	DDCU	Sava	0	< 0.05	< 0.05	< 0.05	$\frac{127726}{127726}$
USA, 2003, Keekuk IA	80	-	130	DDUП 75	been	0	< 0.03	< 0.03	< 0.05	137720
(DeKalh	00	10	172	15	forage		< 0.05	< 0.03	< 0.05	R05123
3451)					ioiuge		(• 0.05)	(• 0.05)	(• 0.05)	METCON 144
0.01)										Max. frozen
										storage: 5.2
										month, (TA: 5.6
										month)
USA, 2005,	80	-	192	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Conklin, MI,	80	10	191	81	bean		< 0.05	< 0.05	< 0.05	2006/7006995
(Asgrow:					forage		(< 0.05)	(< 0.05)	(< 0.05)	R05124
AG1903)										METCON_144
										Max. trozen
										storage: 5.1
										month) $(1A: 3.3)$
Canada	80		228	BBCH	Sova	7	< 0.05	< 0.05	< 0.05	137726
2005 St-	80	- 11	215	79	bean	/	< 0.05	< 0.05	< 0.05	2006/7006995
Pie-de-	00	11	213	17	forage		(< 0.05)	(< 0.05)	(< 0.05)	R05125
Bagot, OC.					101450		(. 0.05)	(0.00)	(0.00)	METCON 144
, . .,					1					

Location,	Application				Residues	(mg/kg) ^a		Report/Trial		
	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	te		No.,
Year	ai/ha	(days)		stage at						Reference,
(variety)				final			Т	TA	TAA	Storage period
				appl.						
(26-02R										Max. frozen
RR)										storage: 5.3
										month, (TA: 5.8
										month)

^a Results from 2 replicate field samples are presented and values in parentheses represent mean values

Soya bean hay

A total of six field trials were conducted on soya bean hay in the USA during the 2004 growing season (Leonard, 2005, METCON_143). Plants received 2 foliar applications of metconazole at nominal rates of 80 g ai/ha with 0.25% adjuvant. Soya bean hay was harvested 7 days after the last application and left to dry on the field for 2–7 days. Residues of *cis*- and *trans*-metconazole were determined using method 550/0 with a limit of quantification of 0.005 mg/kg per isomer. Method validation and procedural recoveries for all trials were within 70–120% with an RSD of < 20% (except one outlier).

Table 195 Residues of *cis*- and *trans*-metconazole in soya bean hay following foliar treatment (cGAP USA: 2×63 g ai/ha; 21 day PHI) in the USA.

Location,	Application Residues (mg/kg) ^a							Report/Trial No.,		
	g	Interval	L/ha	Growth	Sample	DALA	Metco	nazole		Reference,
Year (variety)	ai/ha	(days)		stage at			cis_	trans_	Total	Storage period
				final appl.			015-	truns-	Total	
USA, 2004,	80	-	207	BBCH 79	Soya	7	2.8	0.56	3.4	204640
Chula, GA,	80	10	206		bean		2.6	0.59	3.2	2004/5000755
(Dekalb					hay		(2.7)	(0.58)	<u>(3.3)</u>	RCN 2004192
H7242RR)										MEICON_143
										Max. frozen
LICA 2004	80		190	DDCIL 70	C	7	1.2	0.24	1.5	storage: 2 month
USA, 2004, Newport AP	80	-	189	BBCH /9	Soya	/	1.2	0.24	1.5	204040
Genesis	80	10	100		hav		(1.1)	(0.21)	(1.3)	2004/3000/33 RCN 200/193
C444NRR)					nay		(1.2)	(0.23)	(1.7)	METCON 143
e military										Max. frozen
										storage: 3 month
USA, 2004,	80	-	189	BBCH 79	Soya	7	1.9	0.37	2.3	204640
Proctor, AR,	80	10	190		bean		1.5	0.31	1.8	2004/5000755
(DP5634RR)					hay		(1.7)	(0.34)	(2.0)	RCN 2004194
										METCON_143
										Max. frozen
717 A 800 A			100	DD GU EA	~	_	•	0.40		storage: 2 month
USA, 2004,	80	-	188	BBCH 79	Soya	1	2.0	0.40	2.4	204640
Stoneville, MS,	80	10	189		bean		2.4	0.41	2.8	2004/5000755 DCN 2004105
(Pioneer 95B96)					hay		(2.2)	(0.41)	<u>(2.6)</u>	RCN 2004195 METCON 142
										METCON_145 Max_frozen
										storage: 2 month
USA, 2004.	80	-	188	BBCH 79	Sova	7	1.9	0.32	2.2	204640
Arkansaw, WI.	80	10	189	bben //	bean	,	2.5	0.54	3.1	2004/5000755
(NK S20-G4)		-			hay		(2.2)	(0.43)	(2.6)	RCN 2004196
· · · · ·					2			. ,	·	METCON 143
										Max. frozen
										storage: 3 month
USA, 2004,	80	-	100	BBCH 79	Soya	7	2.0	0.40	2.4	204640
Carlyle, IL, (BT-	80	10	95		bean		2.3	0.48	2.8	2004/5000755
383CR)					hay		(2.2)	(0.44)	<u>(2.6)</u>	RCN 2004197
										METCON_143
										Max. trozen

Location,	Applic	Application				(mg/kg) ^a		Report/Trial No.,		
	g	Interval	L/ha	Growth	Sample	DALA	Metco	nazole		Reference,
Year (variety)	ai/ha	(days)		stage at			aia	tuana	Total	Storage period
				final appl.			cis-	trans-	Total	
										storage: 2 month

Additionally, a total of 15 field trials were conducted on soya bean in Canada and the USA during the 2005 growing season (White & Saha, 2006, METCON_144). Plants received 2 foliar applications of metconazole at nominal rates of 80 g ai/ha. Soya bean hay was harvested at 6–8 days after the last application. Additional samples from decline trials were collected at 0, 7, 14, and 20 days. Residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of *cis*- and *trans*-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Table 196 Residues of *cis*- and *trans*-metconazole in soya bean hay following foliar treatment (cGAP USA: 2×63 g ai/ha; 21 day PHI).

Location,	Application Residues (mg/kg) ^a							Report/Trial No.,		
	g	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		Reference,
Year (variety)	ai/ha	(days)		stage at	_					Storage period
				final			cis-	trans-	Total	
				appl.						
USA, 2005,	80	-	176	BBCH	Soya	7	1.7	0.34	2.0	137726
Chula, GA,	80	10	180	79	bean		1.6	0.33	2.0	2006/7006995
(Dekalb					hay		(1.7)	(0.33)	<u>(2.0)</u>	R05111
H7242RR)										METCON_144
										Max. frozen
										storage: 4.4
110 4 2005	0.0		100	DDCU	0	7	2.4	0.(2	4.0	month
USA, 2005,	80	-	189	BBCH	Soya	/	3.4	0.63	4.0	13//26
Theilman, MN,	80	10	187	//	bean		2.3	0.49	2.8	2006/7006995
(Asgrow					nay		(2.9)	(0.56)	<u>(3.4)</u>	KUJIIZ METCON 144
A01003)										METCON_144 Max_frozen
										storage: 5.4
										month
USA, 2005.	80	-	188	BBCH	Sova	7	3.2	0.67	3.9	137726
Dumfries, MN,	80	10	185	77	bean	,	3.4	0.61	4.0	2006/7006995
(Asgrow					hay		(3.3)	(0.64)	(3.9)	R05113
AG1603)					5					METCON 144
-										Max. frozen
										storage: 5.4
										month
USA, 2004,	80	-	149	BBCH	Soya	7	1.1	0.20	1.3	137726
Grandfork, IL,	80	10	151	79	bean		1.2	0.23	1.4	2006/7006995
(DKB38–52)					hay		(1.2)	(0.22)	<u>(1.4)</u>	R05114
										METCON_144
										Max. frozen
										storage: 5.1
USA 2005	80	-	175	BBCH	Sova	7	14	0.30	17	137726
Carlyle II	80	- 11	184	79	bean	/	2.1	0.30	2.6	2006/7006995
(NK 43-B1)	00	11	101	15	hav		(1.8)	(0.35)	(2.1)	R05115
(111 15 51)					indy		(1.0)	(0.55)	<u>(2.1)</u>	METCON 144
										Max. frozen
										storage: 4.7
										month
USA, 2005,	80	-	176	BBCH	Soya	7	1.8	0.34	2.1	137726
Wyoming, IL,	80	11	175	89	bean		1.8	0.29	2.0	2006/7006995
(Asgrow 3202)					hay		(1.8)	(0.31)	<u>(2.1)</u>	R05116

Location,	Applic	ation	Residues (mg/kg) ^a						Report/Trial No.,	
	g	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		Reference,
Year (variety)	ai/ha	(days)		stage at final appl.			cis-	trans-	Total	Storage period
										METCON_144 Max. frozen storage: 5.0 month
USA, 2005, Osceola, NB, (Pioneer 92M80)	80 80	- 10	184 189	BBCH 77	Soya bean hay	7	1.6 2.2 (1.9)	0.33 0.50 (0.41)	1.9 2.7 (2.3)	137726 2006/7006995 R05117 METCON_144 Max. frozen storage: 5.9 month
USA, 2005, York, NB, (Pioneer 92M80)	80 80	9	187 187	BBCH 77	Soya bean hay	0 7 14 20	8.0 8.8 (8.4) 3.9 3.6 (3.8) 2.2 2.3 (2.3) 0.90 0.97 (0.94)	$\begin{array}{c} 1.5\\ 1.6\\ (1.6)\\ 0.81\\ 0.72\\ (0.77)\\ 0.46\\ 0.45\\ (0.46)\\ 0.18\\ 0.20\\ (0.19)\end{array}$	9.5 10 (10) 4.7 4.3 (4.5) 2.6 2.8 (2.7) 1.1 1.2 (<u>1.1)</u>	137726 2006/7006995 R05118 METCON_144 Max. frozen storage: 5.8 month
USA, 2005, Grand Island, NB, (Dyna-Gro 37B28RR)	80 80	- 10	184 187	BBCH 77	Soya bean hay	8	1.3 1.5 (1.4)	0.30 0.31 (0.30)	1.6 1.8 <u>(1.7)</u>	137726 2006/7006995 R05119 METCON_144 Max. frozen storage: 5.9 month
Canada, 2005, Branchton, ON (Mycogen 5140RR)	80 80	9	262 299	BBCH 77	Soya bean hay	7	2.6 2.7 (2.7)	0.49 0.57 (0.53)	3.1 3.2 (3.2)	137726 2006/7006995 R05120 METCON_144 Max. frozen storage: 5.6 month
USA, 2005, Wapello, IA, (Pioneer 93M11)	80 80	- 10	135 137	BBCH 75	Soya bean hay	6	2.4 2.4 (2.4)	0.55 0.55 (0.55)	2.9 3.0 (3.0)	137726 2006/7006995 R05121 METCON_144 Max. frozen storage: 5.1 month
USA, 2005, Jefferson, IA, (Pioneer 93B87)	80 80	9	138 131	BBCH 75	Soya bean hay	0 7 14 20	5.5 5.3 (5.4) 2.6 3.2 (2.9) 1.9 1.9 (1.9) 0.47 0.52 (0.50)	$\begin{array}{c} 1.1 \\ 1.1 \\ (1.1) \\ 0.55 \\ 0.61 \\ (0.58) \\ 0.35 \\ 0.38 \\ (0.36) \\ 0.10 \\ 0.11 \\ (0.10) \end{array}$	$\begin{array}{c} 6.6 \\ 6.5 \\ (6.6) \\ 3.2 \\ 3.8 \\ (3.5) \\ 2.2 \\ 2.2 \\ (2.2) \\ 0.57 \\ 0.64 \\ \underline{(0.60)} \end{array}$	137726 2006/7006995 R05122 METCON_144 Max. frozen storage: 5.8 month
USA, 2005, Keokuk, IA, (DeKalb 3451)	80 80	- 10	1 <u>38</u> 142	BBCH 75	Soya bean hay	8	2.4 2.8 (2.6)	0.48 0.73 (0.61)	2.9 3.5 (<u>3.2</u>)	137726 2006/7006995 R05123 METCON_144

Location,	Application Residues (mg/kg) ^a							Report/Trial No.,		
	g	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		Reference,
Year (variety)	ai/ha	(days)		stage at			oia	tuana	Tatal	Storage period
				appl.			cis-	trans-	Total	
										Max. frozen
										storage: 5.0
										month
USA, 2005,	80	-	192	BBCH	Soya	7	1.2	0.19	1.3	137726
Conklin, MI,	80	10	191	81	bean		1.2	0.20	1.4	2006/7006995
(Asgrow:					hay		(1.2)	(0.19)	(1.4)	R05124
AG1903)										METCON_144
										Max. frozen
										storage: 4.9
										month
Canada, 2005,	80	-	228	BBCH	Soya	7	1.0	0.17	1.2	137726
St-Pie-de-	80	11	215	79	bean		1.3	0.21	1.5	2006/7006995
Bagot, QC, (26-					hay		(1.1)	(0.19)	(1.3)	R05125
02R RR)										METCON_144
										Max. frozen
										storage: 5.1
					1					month

Table 197 Residues of metabolites M11, M21 and M30 in soya bean hay following foliar treatment (cGAP USA: 2×63 g ai/ha; 21 day PHI).

Location,	Application Residues (mg/kg) ^a						Report/Trial			
	g	Interval	L/ha	Growth	Sample	DALA	Metabo	lite		No.,
Year	ai/ha	(days)		stage at						Reference,
(variety)				final			M11	M21	M30	Storage period
				appl.						
USA, 2005,	80	-	176	BBCH	Soya	7	0.06	0.04	0.02	137726
Chula, GA,	80	10	180	79	bean		0.06	0.03	0.02	2006/7006995
(Dekalb					hay		(0.06)	(0.04)	(0.02)	R05111
H7242RR)										METCON_144
										Max. frozen
										storage: 4.4
										month
USA, 2005,	80	-	189	BBCH	Soya	7	0.07	0.06	0.02	137726
Theilman,	80	10	187	77	bean		0.06	0.04	0.02	2006/7006995
MN,					hay		(0.07)	(0.05)	(0.02)	R05112
(Asgrow										METCON_144
AG1603)										Max. frozen
										storage: 5.4
										month
USA, 2005,	80	-	188	BBCH	Soya	7	0.10	0.06	0.03	137726
Dumfries,	80	10	185	77	bean		0.13	0.07	0.04	2006/7006995
MN,					hay		(0.12)	(0.07)	(0.04)	R05113
(Asgrow										METCON_144
AG1603)										Max. frozen
										storage: 5.4
										month
USA, 2004,	80	-	149	BBCH	Soya	7	0.06	0.03	0.02	137726
Grandfork,	80	10	151	79	bean		0.09	0.03	0.02	2006/7006995
IL, (DKB38–					hay		(0.08)	(0.03)	(0.02)	R05114
52)										METCON_144
										Max. frozen
										storage: 5.1
										month
USA, 2005,	80	-	175	BBCH	Soya	7	0.04	0.03	0.02	137726
Carlyle, IL,	80	11	184	79	bean		0.07	0.04	0.03	2006/7006995
(NK 43-B1)					hay		(0.06)	(0.04)	(0.03)	R05115

Location.	Applica	tion			Residues	(mø/kø) ^a				Report/Trial
20000000,	σ	Interval	L/ha	Growth	Sample	DALA	Metabo	lite		No
Year (variety)	ai/ha	(days)	2,114	stage at final	Sumpre	211211	M11	M21	M30	Reference, Storage period
				uppi.						METCON_144 Max. frozen storage: 4.7 month
USA, 2005, Wyoming, IL, (Asgrow 3202)	80 80	- 11	176 175	BBCH 89	Soya bean hay	7	0.09 0.10 (0.10)	0.03 0.03 (0.03)	0.01 0.01 (0.01)	137726 2006/7006995 R05116 METCON_144 Max. frozen storage: 5.0 month
USA, 2005, Osceola, NB, (Pioneer 92M80)	80 80	10	184 189	BBCH 77	Soya bean hay	7	0.02 0.02 (0.02)	0.02 0.02 (0.02)	0.01 0.02 (0.02)	137726 2006/7006995 R05117 METCON_144 Max. frozen storage: 5.9 month
USA, 2005, York, NB, (Pioneer 92M80)	80 80	9	187 187	BBCH 77	Soya bean hay	0 7	$\begin{array}{c} 0.07 \\ 0.08 \\ (0.08) \\ 0.08 \\ 0.08 \\ (0.08) \end{array}$	$\begin{array}{c} 0.05 \\ 0.05 \\ (0.05) \\ 0.05 \\ 0.05 \\ (0.05) \end{array}$	$\begin{array}{c} 0.02 \\ 0.03 \\ (0.03) \\ 0.03 \\ 0.03 \\ (0.03) \end{array}$	137726 2006/7006995 R05118 METCON_144 Max. frozen storage: 5.8
						14 20	$\begin{array}{c} (0.08) \\ 0.05 \\ 0.05 \\ (0.05) \\ 0.03 \\ 0.03 \\ (0.03) \end{array}$	$\begin{array}{c} (0.03) \\ 0.04 \\ 0.04 \\ (0.04) \\ 0.02 \\ 0.02 \\ (0.02) \end{array}$	$\begin{array}{c} (0.03) \\ 0.02 \\ 0.02 \\ (0.02) \\ < 0.01 \\ 0.01 \\ (0.01) \end{array}$	month
USA, 2005, Grand Island, NB, (Dyna- Gro 37B28RR)	80 80	10	184 187	BBCH 77	Soya bean hay	8	0.03 0.04 (0.04)	0.02 0.03 (0.03)	0.01 0.02 (0.02)	137726 2006/7006995 R05119 METCON_144 Max. frozen storage: 5.9 month
Canada, 2005, Branchton, ON (Mycogen 5140RR)	80 80	9	262 299	BBCH 77	Soya bean hay	7	0.20 0.19 (0.20)	0.07 0.08 (0.08)	0.03 0.04 (0.04)	137726 2006/7006995 R05120 METCON_144 Max. frozen storage: 5.6 month
USA, 2005, Wapello, IA, (Pioneer 93M11)	80 80	10	135 137	BBCH 75	Soya bean hay	6	0.06 0.06 (0.06)	0.04 0.04 (0.04)	0.02 0.02 (0.02)	137726 2006/7006995 R05121 METCON_144 Max. frozen storage: 5.1 month
USA, 2005, Jefferson, IA, (Pioneer 93B87)	80 80	9	138 131	BBCH 75	Soya bean hay	0 7 14	$\begin{array}{c} 0.11 \\ 0.09 \\ (0.10) \\ 0.07 \\ 0.08 \\ (0.08) \\ 0.10 \\ 0.10 \end{array}$	$\begin{array}{c} 0.05 \\ 0.04 \\ (0.05) \\ 0.05 \\ 0.05 \\ (0.05) \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ \end{array}$	0.03 0.02 (0.03) 0.02 0.03 (0.03) 0.03 0.03	137726 2006/7006995 R05122 METCON_144 Max. frozen storage: 5.8 month
							(0.10)	(0.05)	(0.03)	

Location,	Applica	ition			Residues	(mg/kg) ^a	L			Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabo	olite		No.,
Year	ai/ha	(days)		stage at	_					Reference,
(variety)				final			M11	M21	M30	Storage period
				appl.						
						20	0.02	0.01	< 0.01	
							0.02	0.01	< 0.01	
							(0.02)	(0.01)	(< 0.01)	
USA, 2005,	80	-	138	BBCH	Soya	8	0.04	0.03	0.02	137726
Keokuk, IA,	80	10	142	75	bean		0.04	0.04	0.02	2006/7006995
(DeKalb					hay		(0.04)	(0.04)	(0.02)	R05123
3451)										METCON_144
										Max. frozen
										storage: 5.0
										month
USA, 2005,	80	-	192	BBCH	Soya	7	0.05	0.02	0.01	137726
Conklin, MI,	80	10	191	81	bean		0.06	0.02	0.01	2006/7006995
(Asgrow:					hay		(0.06)	(0.02)	(0.01)	R05124
AG1903)										METCON_144
										Max. frozen
										storage: 4.9
										month
Canada,	80	-	228	BBCH	Soya	7	0.02	0.01	< 0.01	137726
2005, St-Pie-	80	11	215	79	bean		0.02	0.01	< 0.01	2006/7006995
de-Bagot,					hay		(0.02)	(0.01)	(< 0.01)	R05125
QC, (26-02R										METCON_144
RR)										Max. frozen
										storage: 5.1
	1	1					1	1		month

Table 198 Residues	s of metabolites 1,2,4	4-triazole (T), triazol	lyl alanine (TA), ar	nd triazolyl acetic	acid
(TAA) in soya bean	hay following folia	r treatment (cGAP US	SA: 2×63 g ai/ha; 2	21 day PHI).	

Location,	Applic	cation Residues (mg/kg) ^a								Report/Trial
	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	te		No.,
Year (variety)	ai/ha	(days)		stage at final appl.	-		Т	ТА	TAA	Reference, Storage period
USA, 2005, Chula, GA, (Dekalb H7242RR)	80 80	- 10	176 180	BBCH 79	Soya bean hay	7	< 0.05 0.053 (0.052)	0.08 0.07 (0.08)	< 0.05 < 0.05 (< 0.05)	137726 2006/7006995 R05111 METCON_144 Max. frozen storage: 3.9 month
USA, 2005, Theilman, MN, (Asgrow AG1603)	80 80	- 10	189 187	BBCH 77	Soya bean hay	7	0.052 0.061 (0.06)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	137726 2006/7006995 R05112 METCON_144 Max. frozen storage: 4.9 month
USA, 2005, Dumfries, MN, (Asgrow AG1603)	80 80	- 10	188 185	BBCH 77	Soya bean hay	7	< 0.05 0.081 (0.066)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	137726 2006/7006995 R05113 METCON_144 Max. frozen storage: 4.9 month
USA, 2004, Grandfork, IL,	80 80	- 10	149 151	BBCH 79	Soya bean hay	7	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	137726 2006/7006995 R05114

Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial
,	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	e		No.,
Year	ai/ha	(days)		stage at	1					Reference,
(variety)				final			Т	TA	TAA	Storage period
(DVD29				appi.						METCON 144
(DKB38- 52)										MEICON_144 Max_frozen
52)										storage: 4.6
										month
USA, 2005,	80	-	175	BBCH	Sova	7	0.078	< 0.05	< 0.05	137726
Carlyle, IL,	80	11	184	79	bean		0.076	< 0.05	< 0.05	2006/7006995
(NK 43-B1)					hay		(0.077)	(< 0.05)	(< 0.05)	R05115
										METCON_144
										Max. frozen
										storage: 4.2
			1 - 2	DDGH	~	-	0 0 -	0 0 -	0 0 -	month
USA, 2005,	80	-	176	BBCH	Soya	1	< 0.05	< 0.05	< 0.05	137726
Wyoming,	80	11	1/5	89	bean		< 0.05	< 0.05	< 0.05	2006/7000995 P05116
3202)					пау		(< 0.05)	(< 0.05)	(< 0.05)	METCON 144
5202)										Max. frozen
										storage: 5.0
										month
USA, 2005,	80	-	184	BBCH	Soya	7	0.066	< 0.05	< 0.05	137726
Osceola,	80	10	189	77	bean		0.080	< 0.05	< 0.05	2006/7006995
NB,					hay		(0.073)	(< 0.05)	(< 0.05)	R05117
(Pioneer										METCON_144
92M80)										Max. frozen
										storage: 5.4
USA, 2005.	80	-	187	BBCH	Sova	0	< 0.05	< 0.05	< 0.05	137726
York, NB,	80	9	187	77	bean	Ũ	< 0.05	< 0.05	< 0.05	2006/7006995
(Pioneer					hay		(< 0.05)	(< 0.05)	(< 0.05)	R05118
92M80)						7	< 0.05	< 0.05	< 0.05	METCON_144
							< 0.05	< 0.05	< 0.05	Max. frozen
							(< 0.05)	(< 0.05)	(< 0.05)	storage: 5.9
						14	< 0.05	< 0.05	< 0.05	month
							< 0.05	< 0.05	< 0.05	
						20	(< 0.03)	(< 0.03)	(< 0.03)	
						20	< 0.05	< 0.05	< 0.05	
							(< 0.05)	(< 0.05)	(< 0.05)	
USA, 2005,	80	-	184	BBCH	Soya	8	0.072	< 0.05	< 0.05	137726
Grand	80	10	187	77	bean		0.060	< 0.05	< 0.05	2006/7006995
Island, NB,					hay		(0.066)	(< 0.05)	(< 0.05)	R05119
(Dyna-Gro										METCON_144
37B28RR)										Max. frozen
										storage: 5.4
Canada	80	_	262	BBCH	Sova	7	0.075	< 0.05	< 0.05	137726
2005.	80	9	299	77	bean	'	0.084	< 0.05	< 0.05	2006/7006995
Branchton.		-			hay		(0.080)	(< 0.05)	(< 0.05)	R05120
ON										METCON 144
(Mycogen										Max. frozen
5140RR)										storage: 5.1
			10.5	DROU		6				month
USA, 2005,	80	-	135	BBCH	Soya	6	< 0.05	< 0.05	< 0.05	137726
Wapello,	80	10	13/	15	bean hay		< 0.05 (< 0.05)	< 0.05 (< 0.05)	< 0.05 (< 0.05)	2000//000995 R05121
93M11					пау		(< 0.05)	(~0.03)	(~0.03)	METCON 144
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										Max. frozen
										storage: 5.1
										month
USA, 2005,	80	-	138	BBCH	Soya	0	< 0.05	< 0.05	< 0.05	137726
Jefferson,	80	9	131	75	bean	[< 0.05	< 0.05	< 0.05	2006/7006995
Location,	Applic	ation			Residues	(mg/kg) ^a				Report/Trial
--------------	--------	----------	------	----------	----------	----------------------	-----------	----------	----------	----------------
	g	Interval	L/ha	Growth	Sample	DALA	Metabolit	te		No.,
Year	ai/ha	(days)		stage at						Reference,
(variety)				final			Т	TA	TAA	Storage period
				appl.						
IA, (Pioneer					hay		(< 0.05)	(< 0.05)	(< 0.05)	R05122
93B87)						7	< 0.05	< 0.05	< 0.05	METCON_144
							< 0.05	< 0.05	< 0.05	Max. frozen
							(< 0.05)	(< 0.05)	(< 0.05)	storage: 5.8
						14	< 0.05	< 0.05	< 0.05	month
							< 0.05	< 0.05	< 0.05	
							(< 0.05)	(< 0.05)	(< 0.05)	
						20	< 0.05	< 0.05	< 0.05	
							< 0.05	< 0.05	< 0.05	
							(< 0.05)	(< 0.05)	(< 0.05)	
USA, 2005,	80	-	138	BBCH	Soya	8	< 0.05	< 0.05	< 0.05	137726
Keokuk, IA,	80	10	142	75	bean		< 0.05	< 0.05	< 0.05	2006/7006995
(DeKalb					hay		(< 0.05)	(< 0.05)	(< 0.05)	R05123
3451)										METCON_144
										Max. frozen
										storage: 5.0
										month
USA, 2005,	80	-	192	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
Conklin,	80	10	191	81	bean		< 0.05	< 0.05	< 0.05	2006/7006995
MI,					hay		(< 0.05)	(< 0.05)	(< 0.05)	R05124
(Asgrow:										METCON_144
AG1903)										Max. frozen
										storage: 4.9
										month
Canada,	80	-	228	BBCH	Soya	7	< 0.05	< 0.05	< 0.05	137726
2005, St-	80	11	215	79	bean		< 0.05	< 0.05	< 0.05	2006/7006995
Pie-de-					hay		(< 0.05)	(< 0.05)	(< 0.05)	R05125
Bagot, QC,										METCON_144
(26-02R										Max. frozen
RR)										storage: 5.1
										month

Sugar beet tops

A total of 12 field trials were conducted on sugar beet in the USA during the 2005 growing season (Jordan & Saha, 2006, METCON_147). Plants received 2 foliar applications of metconazole at nominal rates of 110–120 g ai/ha or 160–170 g ai/ha. Sugar beet tops were harvested at 13–15 days after the last application. Additional samples from decline trials were collected at 1, 7, 14–15, 21, and 27–28 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Residues of metabolites 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid were each below their LOQs of 0.05 mg/kg mg/kg in all trials.

Table 199 Residues of *cis*- and *trans*-metconazole in sugar beet tops following foliar treatment (cGAP Canada: 2×113 g ai/ha; 14 days PHI).

Location,	Applica	tion			Residues	(mg/kg) ^a	a			Report/Trial No.,
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		Reference,
Year (variety)		(days)		stage at final appl.			cis-	trans-	Total	Storage period

Location,	Applica	tion			Residues	(mg/kg)	a			Report/Trial No.,
,	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		Reference,
Year (variety)		(days)		stage at final appl.			cis-	trans-	Total	Storage period
USA, 2005,	114	-	189	Crop cover	Tops	14	1.0	0.17	1.2	137714
Dumfries, MN,	113	14	190	complete			1.0	0.18	1.2	2006/7006726
(VDH66556 8232							(1.0)	(0.18)	<u>(1.2)</u>	RCN R05085
Medium)	170	-	188	Crop cover	Tops	14	1.7	0.34	2.0	METCON_147
	168	14	189	complete			2.1	0.43	2.5	Max. frozen
			100				(1.9)	(0.38)	(2.3)	storage: 5.8 month
USA, 2005,	113	-	188	Crop cover	Tops	14	0.87	0.15	1.0	137714
Theilman, MN,	111	14	188	complete			0.93	(0.15)	1.1	2006/7006726
(VDH00550 8252 Medium)	170		100	C	т	1.4	(0.90)	(0.15)	(1.0)	METCON 147
Wiediulii)	1/0	-	188	Crop cover	Tops	14	0.81	0.15	0.94	Max_frozen
	108	14	109	complete			(0.93)	(0.13)	(1.0)	storage: 5.8 month
USA 2005	110	_	187	Crop cover	Tops	1	1.0	0.33	(1.0)	137714
Arkansaw WI	112	15	187	complete	10ps	1	23	0.33	2.2	2006/7006726
(VDH66556 8232	112	10	107	compiete			(2.1)	(0.36)	(2.4)	RCN R05087
Medium)						7	1.4	0.25	1.6	METCON 147
,							1.3	0.25	1.5	Max. frozen
							(1.4)	(0.25)	(1.6)	storage: 6.5 month
						14	0.72	0.11	0.84	
							1.1	0.15	1.2	
							(0.89)	(0.13)	(1.0)	
						21	0.79	0.11	0.91	
							(0.74)	(0.11)	0.85	
						28	(0.77)	(0.11)	(0.88)	
						20	0.62	0.10	0.92	
							(0.66)	(0.03)	(0.74)	
	168	-	189	Crop cover	Tops	1	2.9	0.52	3.4	
	169	15	188	complete	1		2.5	0.47	2.9	
							(2.7)	(0.49)	(3.2)	
						7	2.4	0.41	2.8	
							2.8	0.49	3.3	
							(2.6)	(0.45)	(3.0)	
						14	1.6	0.22	1.8	
							1.8	(0.32)	2.1	
						21	(1.7)	(0.27)	(2.0)	
						21	1.3	0.15	1.7	
							(1.4)	(0.17)	(1.5)	
						28	0.72	0.11	0.82	
							1.2	0.15	1.3	
							(0.94)	(0.13)	(1.1)	
USA, 2005,	113	-	209	Crop cover	Tops	13	0.014	0.12	0.13	137714
Fitchburg, WI,	112	15	226	complete			0.015	0.14	0.15	2006/7006726
(VanderhaveVDH							(0.015)	(0.13)	<u>(0.14)</u>	RCN R05088
00220) °	167	-	207	Crop cover	Tops	13	0.030	0.005	0.035	METCON_147
	164	15	220	complete			0.026	0.20	0.23	storage: 5.5 month
LIG A 2005	112		220	G	T	1.4	(0.028)	(0.10)	(0.13)	127714
USA, 2003, Fitabburg, WI	115	-	220	Crop cover	Tops	14	0.034	0.006	0.04	15//14
NumberbayeVDU	114	15	21/	complete			(0.031)	(0.000	(0.03)	2000/7000720 RCN R05080
66556) ^b	166		217	Crop cover	Tops	14	0.05	0.01	0.06	METCON 147
	163	13	204^{217}	complete	Tops	17	0.05	0.011	0.071	Max. frozen
	105	1.5	207	compiete			(0.06)	(0.01)	(0.07)	storage: 5.5 month
USA, 2005.	114	-	186	Root	Tops	14	0.021	0.16	0.19	137714
Eldridge, ND.	113	13	183	harvestable	1.552	· ·	0.055	0.011	0.066	2006/7006726
(66453)				size			(0.04)	(0.09)	(0.13)	RCN R05090
	175	-	190	Root	Tops	14	0.057	0.011	0.068	METCON_147
	172	13	185	harvestable	1		0.024	0.19	0.22	Max. frozen
				size			(0.04)	(0.10)	(0.14)	storage: 6.0 month

Location,	Applica	tion			Residues	(mg/kg) ^a	1			Report/Trial No.,
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metcon	azole		Reference,
Year (variety)	2	(days)		stage at final			cis-	trans-	Total	Storage period
LISA 2005	112		100	appi.	Tops	14	0.01	0.070	0.080	127714
USA, 2005, Levelland TX	112	- 13	190	closed	rops	14	0.01	0.079	0.089	2006/7006726
(Fagle R)	115	15	100	ciosed			(0.01)	(0.002)	(0.092)	RCN R05091
(Lugie IC)	168		188	Canony 80%	Tons	14	0.010	(0.00)	0.162	METCON 147
	170	13	189	closed	1005	17	0.019	0.151	0.102 0.17	Max. frozen
	170	15	107	elosea			(0.02)	(0.15)	(0.17)	storage: 5.5 month
USA, 2005.	171	-	171	Fully mature	Tops	14	0.014	0.132	0.146	137714
Pavillion, MT,	168	14	168	,			0.017	0.133	0.15	2006/7006726
(Treasure)							(0.02)	(0.13)	(0.15)	RCN R05092
	158	-	156	Fully mature	Tops	14	0.043	0.008	0.052	METCON_147
	172	14	172	-	-		0.042	0.008	0.05	Max. frozen
							(0.04)	(0.01)	(0.05)	storage: 6.0 month
USA, 2005,	113	-	236	Crop cover	Tops	14	0.012	0.098	0.11	137714
Hughson, CA,	114	14	238	complete			0.014	0.096	0.109	2006/7006726
(Unknown)							(0.01)	(0.10)	<u>(0.11)</u>	RCN R05093
	169	-	235	Crop cover	Tops	14	0.019	0.164	0.183	METCON_147
	169	14	235	complete			0.021	0.171	0.193	Max. frozen
							(0.02)	(0.17)	(0.19)	storage: 6.0 month
USA, 2005,	112	-	234	Crop cover	Tops	14	0.495	0.068	0.564	137714
Hickamn, CA,	109	14	228	complete			0.522	0.075	0.597	2006/7006726
(Unknown)	171		220	0	T	1.4	(0.51)	(0.07)	<u>(0.58)</u> 1.12	KUN KU5094 METCON 147
	1/1	-	238	Crop cover	Tops	14	0.985	0.145	1.13	Max_frozen
	105	14	230	complete			0.930	(0.142)	(1, 1, 1, 1)	storage: 6.2 month
USA 2005	114		286	Poot	Tons	1	(0.97)	(0.14)	(1.11)	127714
DSA, 2005, Pavette ID (HM	114	14	280	harvestable	rops	1	0.020	< 0.005	0.031	2006/7006726
WS91)	111	1 1	270	size			(0.03)	(< 0.005)	(0.03)	RCN R05095
				511.0		7	0.021	0.176	0.197	METCON 147
						-	0.02	0.176	0.196	Max. frozen
							(0.02)	(0.18)	(0.20)	storage: 6.3 month
						15	0.015	0.109	0.124	
							0.012	0.095	0.107	
						~ /	(0.01)	(0.10)	(0.12)	
						21	0.008	< 0.005	0.013	
							(0.011)	(0.10)	(0,00)	
						27	(0.01)	(0.08) 0.073	(0.09)	
						21	0.011	0.082	0.093	
							(0.01)	(0.08)	(0.09)	
	166	-	278	Root	Tops	1	0.035	0.006	0.041	
	164	14	274	harvestable	1		0.034	0.006	0.041	
				size			(0.03)	(0.01)	(0.04)	
						7	0.026	< 0.005	0.031	
							0.029	0.201	0.23	
						1.5	(0.03)	(0.20)	(0.13)	
						15	0.014	0.135	0.149	
							(0.017)	(0.13)	(0.154)	
						21	(0.02)	(0.14) 0.132	(0.13) 0.149	
						21	0.02	0.132	0.194	
							(0.02)	(0.15)	(0.17)	
						27	0.016	0.13	0.146	
							0.013	0.098	0.111	
							(0.01)	(0.11)	(0.13)	
USA, 2005,	113	-	177	Root	Tops	14	0.783	0.116	0.899	137714
Jerome, ID, (Beta	111	14	180	harvestable			0.868	0.164	1.032	2006/7006726
ō422)	171		1.70	size	TT.	1.4	(0.83)	(0.14)	(0.9/)	KCN KU5096
	1/1	-	178	Koot	Tops	14	1.812	0.262	2.074	Max frozen
	109	14	196	narvestable			1.4/1	(0.218)	1.089	storage: 6.1 month
			<u> </u>	size			(1.04)	(0.24)	(1.88)	storage. 0.1 monul

Metconazole

^a Results from 2 replicate field samples are presented and values in parentheses represent mean values

^b It was noted that trial RCN R05088 and RCN R05089 were performed at the same location and year and therefore could not be considered as independent.

Table 200 Residues of metabolites M11, M21 and M30 in sugar beet tops following foliar treatment (cGAP Canada: 2×113 g ai/ha; 14 days PHI).

Location,	Applic	ation			Residues	(mg/kg) ^a	l			Report/Trial
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metaboli	tes		No.,
Year (variety)	0	(days)		stage at final appl.	-		M11	M21	M30	Reference, Storage period
USA, 2005,	114	-	189	Crop cover	Tops	14	< 0.01	< 0.01	< 0.01	137714
Dumfries, MN.	113	14	190	complete			< 0.01	< 0.01	< 0.01	2006/7006726
(VDH66556 8232	_			1			(< 0.01)	(< 0.01)	(< 0.01)	RCN R05085
Medium)	170	-	188	Crop cover	Tops	14	< 0.01	0.01	< 0.01	METCON 147
,	168	14	189	complete	rops	1.	< 0.01	0.02	< 0.01	Max. frozen
	100	1.	105	compiete			(< 0.01)	(0, 02)	(< 0.01)	storage: 5.8
							(* 0.01)	(0.02)	(* 0.01)	month
USA, 2005,	113	-	188	Crop cover	Tops	14	< 0.01	< 0.01	< 0.01	137714
Theilman, MN,	111	14	188	complete			< 0.01	< 0.01	< 0.01	2006/7006726
(VDH66556 8232							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05086
Medium)	170	-	188	Crop cover	Tops	14	< 0.01	< 0.01	< 0.01	METCON_147
	168	14	189	complete			< 0.01	< 0.01	< 0.01	Max. frozen
							(< 0.01)	(< 0.01)	(< 0.01)	storage: 5.8
										month
USA, 2005,	110	-	187	Crop cover	Tops	1	< 0.01	< 0.01	< 0.01	137714
Arkansaw, WI,	112	15	187	complete			< 0.01	0.01	< 0.01	2006/7006726
(VDH66556 8232						_	(< 0.01)	(0.01)	(< 0.01)	RCN R05087
Medium)						7	< 0.01	0.01	< 0.01	MEICON_147
							< 0.01	0.01	< 0.01	Max. frozen
						1.4	(< 0.01)	(< 0.01)	(< 0.01)	storage: 6.5
						14	< 0.01	< 0.01	< 0.01	month
							< 0.01	0.01	< 0.01	
						21	(< 0.01)	(< 0.01)	(< 0.01)	
						21	< 0.01	< 0.01	< 0.01	
							< 0.01	(< 0.01)	< 0.01	
						28	< 0.01	0.01	< 0.01	
						20	< 0.01	< 0.01	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
	168	-	189	Crop cover	Tops	1	< 0.01	0.01	< 0.01	•
	169	15	188	complete		-	< 0.01	0.01	< 0.01	
	107	10	100	- compress			(< 0.01)	(< 0.01)	(< 0.01)	
						7	< 0.01	0.01	< 0.01	
							< 0.01	0.02	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
						14	< 0.01	0.02	< 0.01	
							< 0.01	0.02	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
						21	< 0.01	0.01	< 0.01	
							< 0.01	0.01	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
						28	< 0.01	< 0.01	< 0.01	
							< 0.01	< 0.01	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
USA, 2005,	113	-	209	Crop cover	Tops	13	< 0.01	< 0.01	< 0.01	137714
Fitchburg, WI,	112	15	226	complete			< 0.01	< 0.01	< 0.01	2006/7006726
(VanderhaveVDH							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05088
66556)	167	-	207	Crop cover	Tops	13	< 0.01	0.01	< 0.01	METCON_147
	164	15	220	complete			< 0.01	0.01	< 0.01	Max. frozen
							(< 0.01)	(< 0.01)	(< 0.01)	storage: 5.5
	1		1	1			1			month

Location,	Applic	ation			Residues	(mg/kg) ^a	l			Report/Trial
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metaboli	tes		No.,
Year (variety)	-	(days)		stage at final	-		M11	M21	M20	Reference,
				appl.			IVI I I	IVI2 I	M30	Storage period
USA, 2005,	113	-	220	Crop cover	Tops	14	< 0.01	0.01	< 0.01	137714
Fitchburg, WI,	114	13	217	complete	1		< 0.01	0.01	< 0.01	2006/7006726
(VanderhaveVDH				, î			(< 0.01)	(< 0.01)	(< 0.01)	RCN R05089
66556)	166	-	217	Crop cover	Tops	14	< 0.01	0.01	< 0.01	METCON 147
,	163	13	204	complete	1		< 0.01	0.02	< 0.01	Max. frozen
		-		1			(< 0.01)	(0.02)	(< 0.01)	storage: 5.5
							()	()		month
USA, 2005,	114	-	186	Root	Tops	14	< 0.01	< 0.01	< 0.01	137714
Eldridge, ND,	113	13	183	harvestable	_		0.01	0.02	< 0.01	2006/7006726
(66453)				size			(0.01)	(0.02)	(< 0.01)	RCN R05090
	175	-	190	Root	Tops	14	0.02	0.02	< 0.01	METCON_147
	172	13	185	harvestable			< 0.01	< 0.01	< 0.01	Max. frozen
				size			(0.02)	(0.02)	(< 0.01)	storage: 6.0
										month
USA, 2005,	112	-	190	Canopy	Tops	14	0.01	< 0.01	< 0.01	137714
Levelland, TX,	113	13	188	80% closed			< 0.01	< 0.01	< 0.01	2006/7006726
(Eagle R)							(0.01)	(< 0.01)	(< 0.01)	RCN R05091
	168	-	188	Canopy	Tops	14	0.02	0.02	< 0.01	METCON_147
	170	13	189	80% closed			0.02	0.01	< 0.01	Max. frozen
							(0.02)	(0.02)	(< 0.01)	storage: 5.5
										month
USA, 2005,	171	-	171	Fully mature	Tops	14	< 0.01	< 0.01	< 0.01	137714
Pavillion, MT,	168	14	168				< 0.01	< 0.01	< 0.01	2006/7006726
(Treasure)							(< 0.01)	(< 0.01)	(< 0.01)	RCN R05092
	158	-	156	Fully mature	Tops	14	< 0.01	0.02	< 0.01	METCON_147
	172	14	172				< 0.01	0.02	< 0.01	Max. frozen
							(< 0.01)	(< 0.01)	(< 0.01)	storage: 6.0
LIG A 2005	112		226	a	T	1.4	0.01	0.01	10.01	month
USA, 2005,	113	-	236	Crop cover	Tops	14	0.01	0.01	< 0.01	13//14
Hughson, CA,	114	14	238	complete			0.02	0.01	< 0.01	2006//006/26
(Unknown)	1.60		225	G	T	1.4	(0.02)	(0.01)	(< 0.01)	KUN KUSU95
	169	-	235	Crop cover	Tops	14	0.03	0.02	< 0.01	MEICON_14/
	169	14	235	complete			0.02	(0.02)	< 0.01	storage: 6.0
							(0.03)	(0.02)	(< 0.01)	storage: 0.0
LISA 2005	112	_	234	Crop cover	Tons	14	0.02	< 0.01	< 0.01	13771/
Hickamn CA	109	14	224	complete	10ps	17	0.02	0.01	< 0.01	2006/7006726
(Unknown)	107	17	220	complete			(0.02)	(0.01)	(< 0.01)	RCN R05094
(Olikilowil)	171		228	Crop cover	Tong	14	(0.02)	0.02	< 0.01	METCON 147
	1/1	-	230	crop cover	Tops	14	0.03	0.02	< 0.01	Max frozen
	105	14	230	complete			(0.02)	(0.02)	< 0.01	storage: 6.2
							(0.03)	(0.02)	(< 0.01)	month
USA, 2005.	114	-	286	Root	Tops	1	< 0.01	< 0.01	< 0.01	137714
Payette, ID, (HM	111	14	278	harvestable	r-		< 0.01	< 0.01	< 0.01	2006/7006726
WS91)			-	size			(< 0.01)	(< 0.01)	(< 0.01)	RCN R05095
-)						7	< 0.01	< 0.01	< 0.01	METCON 147
							< 0.01	< 0.01	< 0.01	Max. frozen
							(< 0.01)	(< 0.01)	(< 0.01)	storage: 6.3
						15	< 0.01	< 0.01	< 0.01	month
							< 0.01	< 0.01	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
						21	< 0.01	< 0.01	< 0.01	
							< 0.01	< 0.01	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
						27	< 0.01	< 0.01	< 0.01	
							< 0.01	< 0.01	< 0.01	
							(< 0.01)	(< 0.01)	(< 0.01)	
	166	-	278	Root	Tops	1	< 0.01	< 0.01	< 0.01	
	164	14	274	harvestable			< 0.01	< 0.01	< 0.01	
				size			(< 0.01)	(< 0.01)	(< 0.01)	
						7	< 0.01	0.01	< 0.01	

Location,	Applic	ation			Residues	(mg/kg) a	ι			Report/Trial
	g ai/ha	Interval	L/ha	Growth	Sample	DALA	Metaboli	tes		No.,
Year (variety)		(days)		stage at final appl.			M11	M21	M30	Reference, Storage period
						15 21	< 0.01 (< 0.01) < 0.01 < 0.01 (< 0.01) 0.01 (0.01) (0.01)	< 0.01 (< 0.01) < 0.01 < 0.01 (< 0.01) < 0.01 (< 0.01) (< 0.01)	< 0.01 (< 0.01) < 0.01 < 0.01 (< 0.01) < 0.01 (< 0.01) (< 0.01)	
						27	0.01 < 0.01 (0.01)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	
USA, 2005, Jerome, ID, (Beta 8422)	113 111	- 14	177 180	Root harvestable size	Tops	14	< 0.01 0.01 (0.01)	< 0.01 0.01 (0.01)	< 0.01 < 0.01 (< 0.01)	137714 2006/7006726 RCN R05096
	171 169	- 14	178 196	Root harvestable size	Tops	14	0.02 0.01 (0.02)	0.02 0.02 (0.02)	< 0.01 < 0.01 (< 0.01)	METCON_147 Max. frozen storage: 6.1 month

Wheat hay

A total of 15 field trials were conducted on wheat in Canada and the USA during the 2004-05 growing seasons (White & Saha, 2006, METCON_152). Plants received 2 foliar applications of metconazole at nominal rates of 89–112 g ai/ha. Wheat hay was harvested at 6–8 days after the last application and left to dry on the field or a sheltered location for up to 14 days. Additional samples from a decline trial were collected at 0, 7–8 and 14 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Table 201 Residues of *cis*- and *trans*-metconazole in wheat hay following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applicati	ion		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
USA, 2005, Sunsweet, GA (Pioneer 26R24)	2 × 0.11	8	171 162	39	7	Нау	3.2 3.8 (3.5)	0.63 0.74 (0.68)	3.8 4.5 (<u>4.2</u>)	137711 2006/7006723 RCN R05044 METCON_152 Max. frozen storage: 8.3 month
USA, 2005, Newport, AK (Genesis R033)	2 × 0.11	7	189 187	65	7	Нау	5.1 5.4 (5.3)	0.87 0.94 (0.90)	6.0 6.4 (<u>6.2</u>)	137711 2006/7006723 RCN R05045 METCON_152 Max. frozen storage: 7.6 month
USA, 2005, York, NE, (Millenium)	2 × 0.11	7	185 186	69	8	Hay	1.2 1.2 (1.2)	0.17 0.18 (0.17)	1.3 1.4 (<u>1.4</u>)	137711 2006/7006723 RCN R05046 METCON_152 Max. frozen

Location,	Applicati	on		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
										storage: 6.4
USA, 2005, Carlyle, IL, (Excel 201)	2 × 0.11	7	133 152	65	0 7	Hay Hay	9.0 9.9 (9.4) 6.7 5.6 (6.2)	1.5 1.5 (1.5) 1.2 1.0 (1.1)	10.5 11.3 (10.9) 7.9 6.7 (7.3)	137711 2006/7006723 RCN R05047 METCON_152 Max. frozen storage: 7.2
				mature	14	Hay	4.9 3.8 (4.4)	0.82 0.82 (0.82)	5.8 4.6 (5.2)	montn
USA, 2005, Grand Island, NE (Jagalene HRW)	2 × 0.11	8	185 181	69	7	Hay	1.8 1.5 (1.7)	0.36 0.31 (0.33)	2.2 1.8 (<u>2.0</u>)	137711 2006/7006723 RCN R05048 METCON_152 Max. frozen storage: 6.5 month
USA, 2005, Velva, ND (Dapps)	2 × 0.11	7	113 114	65	8	Нау	4.1 5.9 (5.0)	0.74 1.1 (0.92)	4.8 7.0 (<u>5.9</u>)	137711 2006/7006723 RCN R05049 METCON_152 Max. frozen storage: 5.8 month
USA, 2005, Gardner, ND (Knudson)	1 × 0.12 1 × 0.11	6	153 150	73	0 8 14	Hay Hay Hay	10.0 10.3 (10.2) 5.1 5.2 (5.1) 3.2 3.5 (2.2)	1.8 1.6 (1.7) 0.87 0.94 (0.90) 0.59 0.64 (0.62)	11.8 11.9 (11.8) 5.9 6.1 (6.0) 3.8 4.1 (2.0)	137711 2006/7006723 RCN R05050 METCON_152 Max. frozen storage: 5.3 month
USA, 2005, Hinton, OK (Jagalene)	2 × 0.11	8	126 129	71	7	Нау	(3.3) 6.7 5.7 (6.2)	(0.02) 1.1 1.0 (1.1)	7.9 6.7 (<u>7.3</u>)	137711 2006/7006723 RCN R05051 METCON_152 Max. frozen storage: 7.4 month
USA, 2005, Colony, OK (Jagger)	2 × 0.11	6	125 129	77	6	Нау	8.5 8.1 (8.3)	1.4 1.4 (1.4)	9.9 9.5 (<u>9.7</u>)	137711 2006/7006723 RCN R05052 METCON_152 Max. frozen storage: 7.4 month
USA, 2005, Lubbock, TX (TAM 200)	2 × 0.11	6	141 140	59	7	Нау	8.4 9.5 (9.0)	1.6 1.7 (1.7)	10.1 11.2 (<u>11</u>)	137711 2006/7006723 RCN R05053 METCON_152 Max. frozen storage: 7.6 month
USA, 2005, Payette, ID (Penawawa)	1×0.12 1×0.11	7	284 283	65	7	Нау	4.9 5.3 (5.1)	0.92 0.74 (0.83)	5.8 6.0 (<u>5.9</u>)	137711 2006/7006723 RCN R05054 METCON_152 Max. frozen

Location,	Applicati	ion		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Vaan (wanisty	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazol	e L	Total	Reference,
rear (variety		(days)		final appl.			CIS	trans		Storage period
										storage: 6.3
Canada	2×0.11	7	130	65	7	Hav	11.0	17	12.7	137711
2005	2 ~ 0.11	/	134	05	<i>'</i>	IIay	10.9	1.7	12.7	2006/7006723
Laird.			151				(10.9)	(1.6)	(13)	RCN R05055
SK							(10.))	(1.0)	(<u>15</u>)	METCON 152
(Bounty)										Max. frozen
										storage: 4.9
										month
Canada,	2×0.11	7	199	71	7	Hay	5.5	0.96	6.5	137711
2005,			200				5.2	0.82	6.1	2006/7006723
Minto,							(5.4)	(0.89)	(<u>6.3</u>)	RCN R05056
MB										METCON_152
(AC Barrie)										Max. frozen
										storage: 5.6
Canada	2×0.11	7	242	(1	7	TT	4.0	0.74	<i>E E</i>	month
Canada, 2005	2 ^ 0.11	/	245	01	/	пау	4.0	0.74	5.5 5.5	137711
2005, Innisfail			243				4.7 (4.7)	0.04	(5,5)	2000/7000723 PCN P05057
AB							(/)	(0.00)	(<u>J.J</u>)	METCON 152
(AC Intrepid)										Max frozen
										storage: 5.2
										month
Canada,	2×0.11	7	241	65	7	Hay	5.5	1.0	6.5	137711
2005,			226			-	6.0	0.82	6.8	2006/7006723
Innisfail,							(5.7)	(0.92)	(<u>6.7</u>)	RCN R05058
AB										METCON_152
(5700PR)										Max. frozen
										storage: 5.2
										month

Table 202 Residues of metabolites M11, M21 and M30 in wheat hay following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applicati	ion		Growth			Residues for	ound [mg/kg] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, Sunsweet, GA (Pioneer 26R24)	2 × 0.11	8	171 162	39	7	Hay	0.020 0.020 (0.020)	0.040 0.050 (0.040)	< 0.01 < 0.01 (< 0.01)	137711 2006/7006723 RCN R05044 METCON_152 Max. frozen storage: 8.3 month
USA, 2005, Newport, AK (Genesis R033)	2 × 0.11	7	189 187	65	7	Hay	0.050 0.050 (0.050)	0.060 0.060 (0.060)	0.010 0.010 (0.010)	137711 2006/7006723 RCN R05045 METCON_152 Max. frozen storage: 7.6 month
USA, 2005, York, NE, (Millenium)	2 × 0.11	7	185 186	69	8	Hay	0.13 0.13 (0.13)	0.080 0.090 (0.085)	0.040 0.030 (0.035)	137711 2006/7006723 RCN R05046 METCON_152 Max. frozen storage: 6.4 month

Location,	Applicati	on	1	Growth			Residues fo	und [mg/kg] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, Carlyle, IL,	2 × 0.11	7	133 152	65	0	Нау	0.030 0.030 (0.030)	0.060 0.050 (0.055)	< 0.01 < 0.01 (< 0.01)	137711 2006/7006723 RCN R05047
(Excel 201)					7	Нау	0.050 0.030 (0.040)	0.070 0.060 (0.065)	0.010 0.010 (0.010)	METCON_152 Max. frozen storage: 7.2
				mature	14	Нау	0.060 0.050 (0.055)	0.070 0.070 (0.070)	0.020 0.010 (0.015)	month
USA, 2005, Grand Island, NE (Jagalene HRW)	2 × 0.11	8	185 181	69	7	Hay	0.020 0.020 (0.020)	0.030 0.030 (0.030)	< 0.01 < 0.01 (< 0.01)	137711 2006/7006723 RCN R05048 METCON_152 Max. frozen storage: 6.5 month
USA, 2005, Velva, ND (Dapps)	2 × 0.11	7	113 114	65	8	Hay	< 0.01 0.010 (0.010)	0.040 0.050 (0.045)	< 0.01 < 0.01 (< 0.01)	137711 2006/7006723 RCN R05049 METCON_152 Max. frozen storage: 5.8 month
USA, 2005, Gardner, ND (Knudson)	1 × 0.12 1 × 0.11	6	153 150	73	0 8	Hay Hay Hay	0.040 0.040 (0.040) 0.36 0.37 (0.37) 0.00	0.070 0.060 (0.065) 0.13 0.13 (0.13) 0.080	0.010 0.010 (0.010) 0.050 0.040 (0.045) 0.020	137711 2006/7006723 RCN R05050 METCON_152 Max. frozen storage: 5.3 month
					14	пау	0.09 0.10 (0.095)	0.080 0.080 (0.080)	0.020 0.020 (0.020)	
USA, 2005, Hinton, OK (Jagalene)	2 × 0.11	8	126 129	71	7	Hay	0.13 0.14 (0.14)	0.17 0.17 (0.17)	0.040 0.040 (0.04)	137711 2006/7006723 RCN R05051 METCON_152 Max. frozen storage: 7.4 month
USA, 2005, Colony, OK (Jagger)	2 × 0.11	6	125 129	77	6	Hay	0.090 0.080 (0.09)	0.12 0.11 (0.12)	0.020 0.020 (0.020)	137711 2006/7006723 RCN R05052 METCON_152 Max. frozen storage: 7.4 month
USA, 2005, Lubbock, TX (TAM 200)	2 × 0.11	6	141 140	59	7	Hay	0.070 0.070 (0.070)	0.080 0.070 (0.075)	0.020 0.020 (0.020)	137711 2006/7006723 RCN R05053 METCON_152 Max. frozen storage: 7.6 month
USA, 2005, Payette, ID (Penawawa)	$\frac{1 \times 0.12}{1 \times 0.11}$	7	2 <mark>84</mark> 283	65	7	Hay	0.030 0.030 (0.030)	0.080 0.080 (0.080)	0.010 0.010 (0.010)	137711 2006/7006723 RCN R05054 METCON_152 Max. frozen storage: 6.3 month

Location,	Applicat	ion		Growth			Residues fo	und [mg/kg	ab	Report/Trial No.,
V (g ai/ha	Interval	L/ha	stage at	DALA	Sample	M11	M21	M30	Reference,
Year (variety	-	(days)		final appl.						Storage period
Canada,	2×0.11	7	139	65	7	Hay	0.030	0.080	0.020	137711
2005,			134				0.030	0.080	0.020	2006/7006723
Laird,							(0.030)	(0.080)	(0.020)	RCN R05055
SK										METCON_152
(Bounty)										Max. frozen
										storage: 4.9
										month
Canada,	2×0.11	7	199	71	7	Hay	0.060	0.080	0.020	137711
2005,			200				0.050	0.080	0.020	2006/7006723
Minto,							(0.060)	(0.080)	(0.020)	RCN R05056
MB										METCON_152
(AC Barrie)										Max. frozen
										storage: 5.6
										month
Canada,	2×0.11	7	243	61	7	Hay	0.11	0.13	0.030	137711
2005,			245				0.13	0.13	0.030	2006/7006723
Innisfail,							(0.12)	(0.13)	(0.030)	RCN R05057
AB										METCON_152
(AC Intrepid)										Max. frozen
										storage: 5.2
										month
Canada,	2×0.11	7	241	65	7	Hay	0.19	0.16	0.040	137711
2005,			226				0.48	0.19	0.060	2006/7006723
Innisfail,							(0.34)	(0.18)	(0.050)	RCN R05058
AB										METCON_152
(5700PR)										Max. frozen
										storage: 5.2
										month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Barley hay

A total of 12 field trials were conducted on barley in the USA during the 2004-05 growing seasons (White & Saha, 2006, METCON_148). Plants received 2 foliar applications of metconazole at nominal rates of 112–123 g ai/ha. Barley hay was harvested at 7–8 days after the last application and left to dry on the field for up to 14 days. Additional samples from a decline trial were collected at 0, 7 and 14 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%, except for *cis*-metconazole in hay spiked at 0.5 mg/kg which had an RSD of 21%.

Table 203 Residues of cis- and trans-metconazole in barley hay following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation	Growth			Residues found [mg/kg] ^a		a	Report/Trial No.,	
	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	6 al 11a	(days)	2,110	final appl.			cis	trans	1000	Storage period
USA, 2005,	2 ×	7	236	85	7	How	2.5	0.30	20	137714
North Rose,	0.12			05	/	11ay	2.5	0.39	2.9	2006/7006917
NY			237				2.7	0.49	3.2	RCN R05155
(Chapais)							(2.6)	(0.44)	(<u>3.0</u>)	METCON_148
										Max. frozen
										storage: 6.0

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg]	a	Report/Trial No.,
Voor (voriety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le L	Total	Reference,
rear (variety		(days)		final appl.			CIS	trans		Storage period
USA, 2005,	2 ×	7	138	85	0	Нау	9.40	1.57	10.9	137714
Belleville, II	0.11		153				9.38	1.54	10.9	2006/7006917 RCN R05156
(Not stated)				69	7		2.3 2.5	0.41 0.50	2.7 2.9	METCON_148 Max. frozen
							(2.4)	(0.5)	(2.8)	storage: 6.0 month
					14		1.34 1.25 (1.3)	0.22 0.22 (0.22)	1.6 1.5 (<u>1.5)</u>	
USA, 2005, York,	2 × 0.11	7	188	85	7	Hay	0.73	0.13	0.86	137714 2006/7006917
NB (Robust Barley)			185				0.64 (0.68)	0.09 (0.11)	0.73 (<u>0.79</u>)	RCN R05157 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Velva	2 × 0 11	7	112	85	8	Hay	0.76	0.12	0.88	137714
ND (Excel)	0.11		113				1.3 (1.0)	0.18 (0.15)	1.5 (<u>1.2</u>)	RCN R05158 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Grand Island	2 × 0 11	7	181	85	7	Hay	0.68	0.11	0.79	137714 2006/7006917
NB (Robust Barley)	0.11		187				0.76 (0.72)	0.09 (0.10)	0.85 (<u>0.82</u>)	RCN R05159 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Young Ward,	2 × 0.11	7	176	87	7	Hay	1.9	0.33	2.2	137714 2006/7006917
UT (Baroness)			178				1.7 (1.8)	0.37 (0.35)	2.1 (<u>2.2</u>)	RCN R05160 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Madera, CA,	2 × 0.11	7	281		7	Hay	2.6	0.58	3.2	137714 2006/7006917
UT (Farmers Best)			281	87			2.8 (2.7)	0.50 (0.54)	3.3 (<u>3.2</u>)	RCN R05161 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Payette,	2 × 0.11	7	284	87	7	Hay	2.6	0.48	3.0	137714 2006/7006917
ID (Baronesse)		-	279				2.7 (2.6)	0.57 (0.52)	3.3 (<u>3.2</u>)	RCN R05162 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Rosthern, SK (AC Metcalfe)	2 × 0.11	7	201 196	85	7	Hay	3.3 3.6 (3.5)	0.52 0.72 (0.62)	3.8 4.4 (<u>4.1</u>)	137714 2006/7006917 RCN R05163 METCON_148 Max. frozen storage: 6.0

Location,	Applic	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo	le trans	Total	Reference, Storage period
										month
Canada, 2005,	2 × 0.11	7	206	87	7	Hay	2.6	0.44	3.0	137714 2006/7006917
Minto, MB (AC Metcalfe)			207				2.75 (2.7)	0.50 (0.47)	3.3 (<u>3.1</u>)	RCN R05164 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	7	244 243	85	7	Нау	2.8 3.1 (3.0)	0.53 0.66 (0.59)	3.3 3.8 (3.6)	137714 2006/7006917 RCN R05165 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	7	248 230	87	7	Нау	3.7 3.7 (3.7)	0.74 0.63 (0.68)	4.4 4.3 (<u>4.4</u>)	137714 2006/7006917 RCN R05166 METCON_148 Max. frozen storage: 6.0 month

Table	204	Residues	of metabolites	M11,	M21	and	M30	in	barley	hay	following	foliar	treatment
(cGA	P US.	A: 2×112	g ai/ha; 30 days	PHI).									

Location,	Applica	ation		Growth			Residues fo	und [mg/kg] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, North Rose,	2 × 0.11	7	236	85	7	Hay	0.05	0.04	0.01	137714 2006/7006917
NY (Chapais)			237				0.04 (0.05)	0.04 (0.04)	< 0.01 (0.01)	RCN R05155 METCON_148 Max. frozen storage: 6.0
USA, 2005,	2 × 0.11	7	138	85	0	Нау	0.05	0.04	0.01	137714 2006/7006917
Belleville, IL			153				0.05 (0.05)	0.04 (0.04)	0.01 (0.01)	RCN R05156 METCON_148
(Not stated)				69	7		0.06 0.07 (0.07)	0.03 0.04 (0.04)	0.01 0.01 (0.01)	Max. frozen storage: 6.0 month
					14		0.19 0.15 (0.17)	0.05 0.05 (0.05)	0.03 0.03 (0.03)	
USA, 2005, York, NB	2 × 0.11	7	188 185	85	7	Hay	< 0.01	< 0.01	< 0.01	137714 2006/7006917 RCN R05157
(Robust Barley)							(< 0.01)	(< 0.01)	(< 0.01)	METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Velva, ND (Excel)	2 × 0.11	7	112 113	85	8	Hay	< 0.01 < 0.01 (< 0.01)	0.01 0.02 (0.02)	< 0.01 < 0.01 (< 0.01)	137714 2006/7006917 RCN R05158 METCON_148

Location,	Applica	ation	1	Growth			Residues fo	ound [mg/kg] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
										Max. frozen storage: 6.0 month
USA, 2005, Grand Island, NB (Robust Barley)	2 × 0.11	7	181	85	7	Нау	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	137714 2006/7006917 RCN R05159 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Young Ward, UT (Baroness)	2 × 0.11	7	176 178	87	7	Hay	0.06 0.06 (0.06)	0.07 0.07 (0.07)	0.01 0.01 (0.01)	137714 2006/7006917 RCN R05160 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Madera, CA, UT (Farmers Best)	2 × 0.11	7	281 281	87	7	Нау	0.02 0.02 (0.02)	0.03 0.03 (0.03)	< 0.01 < 0.01 (< 0.01)	137714 2006/7006917 RCN R05161 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Payette, ID (Baronesse)	2 × 0.11	7	284 279	87	7	Hay	0.04 0.04 (0.04)	0.05 0.05 (0.05)	0.01 0.01 (0.01)	137714 2006/7006917 RCN R05162 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Rosthern, SK (AC Metcalfe)	2 × 0.11	7	201 196	85	7	Hay	0.06 0.04 (0.05)	0.08 0.06 (0.07)	0.01 0.01 (0.01)	137714 2006/7006917 RCN R05163 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Minto, MB (AC Metcalfe)	2 × 0.11	7	206 207	87	7	Нау	0.12 0.11 (0.12)	0.07 0.06 (0.07)	0.03 0.03 (0.03)	137714 2006/7006917 RCN R05164 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	7	244 243	85	7	Нау	0.15 0.13 (0.14)	0.13 0.12 (0.13)	0.03 0.03 (0.03)	137714 2006/7006917 RCN R05165 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	7	248 230	87	7	Нау	0.38 0.33 (0.36)	0.20 0.19 (0.20)	0.07 0.06 (0.07)	137714 2006/7006917 RCN R05166 METCON_148 Max. frozen storage: 6.0 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Oat hay

A total of 12 field trials were conducted on oat in Canada and the USA during the 2004-05 growing seasons (Jordan & Saha, 2006, METCON_149). Plants received 2 foliar applications of metconazole at nominal rates of 112–123 g ai/ha. Oat hay was harvested at 6–8 days after the last application and left to dry on the field for up to 29 days. Additional samples from a decline trial were collected at 0, 7 and 14 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Table 205 Residues of cis- and trans-metconazole in oat hay following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg	[] a	Report/Trial No.,
Vear (variety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
USA, 2005, North Rose, NY (AC Alymer)	2 × 0.11	(days) 7	234 233	71	7	Hay	<i>cis</i> 7.9 8.1 (8.0)	1.4 1.5 (1.5)	9.3 9.6 (<u>9.4</u>)	137717 2006/7006724 RCN R05126 METCON_149 Max. frozen
USA, 2005, Sunsweet,	1× 0.11 1×	8	172	45	7	Нау	3.2	0.63	3.8	month 137717 2006/7006724 RCN R05127
(Horizon 314)	0.12		157				(3.1)	(0.60)	(<u>3.7</u>)	METCON_149 Max. frozen storage: 12 month
USA, 2005, Carlyle, IL, (Seed oats)	2 × 0.11	8	118 156	73	7	Нау	3.5 3.0 (3.2)	0.72 0.39 (0.56)	4.2 3.4 (<u>3.8</u>)	137717 2006/7006724 RCN R05128 METCON_149 Max. frozen storage: 10 month
USA, 2005, Arkansaw, WI, (Vista)	2 × 0.11	7	188 188	61	7	Нау	10.0 9.2 (9.6)	1.7 1.7 (1.7)	11.7 10.8 (<u>11</u>)	137717 2006/7006724 RCN R05129 METCON_149 Max. frozen storage: 9.5 month
USA, 2005, Eldridge, ND, (Morton)	2 × 0.11	8	95 117	39	8	Hay	6.8 4.1 (5.5)	1.3 0.93 (1.1)	8.1 5.1 (<u>6.6</u>)	137717 2006/7006724 RCN R05130 METCON_149 Max. frozen storage: 9.4 month

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol cis	e trans	Total	Reference, Storage period
USA, 2004, Grand Island, NE (Jerry)	2 × 0.11	7	188 187	61	6	Нау	2.2 6.0 (4.1)	0.43 1.0 (0.71)	2.7 7.0 (<u>4.8</u>)	137717 2006/7006724 RCN R05131 METCON_149 Max. frozen storage: 10 month
USA, 2005, Gardner, ND (Morton)	1× 0.12	7	160 149	39	0 7 14	Hay Hay Hay	7.9 7.8 (7.8) 3.0 3.6 (3.3) 1.7 2.3 (2.0)	1.5 1.4 (1.5) 0.60 0.64 (0.62) 0.37 0.53 (0.45)	9.4 9.2 (9.3) 3.6 4.2 (3.9) 2.0 2.8 (2.4)	137717 2006/7006724 RCN R05132 METCON_149 Max. frozen storage: 9.8 month
USA, 2005, Hinton, OK (Jerry)	2 × 0.11	7	128 126	71	6	Нау	5.0 5.2 (5.1)	0.96 1.1 (1.0)	<u>(2.4)</u> 6.0 (6.2 (<u>6.1</u>)	137717 2006/7006724 RCN R05133 METCON_149 Max. frozen storage: 11 month
Canada, 2005, St-Cesaire, SK (Rigodon)	2 × 0.11	7	234 227	87	7	Нау	4.3 3.8 (4.1)	0.87 0.78 (0.83)	5.2 4.6 (<u>4.9</u>)	137717 2006/7006724 RCN R05134 METCON_149 Max. frozen storage: 8.3 month
Canada, 2005, Rosthern, SK (Furlong)	2 × 0.11	7	201 196	61	7	Нау	7.9 7.8 (7.9)	1.5 1.4 (1.5)	9.4 9.3 (<u>9.4</u>)	137717 2006/7006724 RCN R05135 METCON_149 Max. frozen storage: 7.9 month
Canada, 2005, Minto, MB (Triple Crown)	2 × 0.11	7	209 205	69	7	Нау	4.4 5.5 (4.9)	0.98 1.1 (1.1)	5.3 6.6 (<u>6.0</u>)	137717 2006/7006724 RCN R05136 METCON_149 Max. frozen storage: 8.4 month
Canada, 2005, Innisfail, AB (AC Lu)	2 × 0.11	6	252 223	69	7	Нау	1.9 2.4 (2.1)	0.43 0.52 (0.48)	2.3 2.9 (<u>2.6</u>)	137717 2006/7006724 RCN R05137 METCON_149 Max. frozen storage: 7.7 month

Table 206 Residues of metabolites M11, M21 and M30 in oat hay following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location, Application	Growth	DALA Sample	Residues found [mg/kg] ^{ab}	Report/Trial No.,
-----------------------	--------	-------------	--------------------------------------	-------------------

Metconazole

	g ai/ha	Interval	L/ha	stage at			M11	M21	M30	Reference,
Year (variety	5 2 ~	(days) 7	224	final appl.			0.02	0.11	0.010	Storage period
USA, 2003, North Rose	0.11	/	234	71	7	Hay	0.05	0.11	0.010	13//1/ 2006/7006724
NY	0.11		233				0.04	0.12	0.020	RCN R05126
(AC Alymer)							(0.035)	(0.12)	(0.015)	METCON 149
										Max. frozen
										storage: 9.7
LIGA 2005	1	0	170				0.010	0.020	< 0.01	month
USA, 2005, Sunsweet	1^{\times}	8	1/2	45	7	Hay	0.010	0.030	< 0.01	137717
GA	1×		159				0.010	0.030	< 0.01	RCN R05127
(Horizon 314)	0.12									METCON_149
							(0.010)	(0.030)	(< 0.01)	Max. frozen
										storage: 12 month
USA, 2005,	$2 \times$	8	118	73	7	Hav	0.020	0.060	< 0.01	137717
Carlyle,	0.11		150	,	ľ		0.010	0.050	< 0.01	2006/7006724
IL, (Seed oats)			150				(0.010)	(0.050)	< 0.01	METCON 149
(Beed outs)							(0.015)	(0.055)	(< 0.01)	Max. frozen
										storage: 10 month
11GA 2005	2	7	100				0.000	0.12	0.020	
USA, 2005, Arkansaw	2 × 0 11	/	188	61	7	Hay	0.080	0.12	0.020	137717
WI, (Vista)	0.11		188				0.080	0.12	0.020	RCN R05129
							(0.080)	(0.12)	(0.020)	METCON_149
										Max. frozen
										storage: 9.5
USA, 2005.	2 ×	8	95	2.0			0.030	0.080	0.010	137717
Eldridge, ND,	0.11	~		39	8	Нау				2006/7006724
(Morton)			117				0.020	0.050	< 0.01	RCN R05130
							(0.025)	(0.065)	(0.010)	METCON_149
										Max. frozen
										month
USA, 2004,	2 ×	7	188	61	6	Hav	< 0.01	0.040	< 0.01	137717
Grand Island,	0.11		197		Ĩ		0.020	0.100	- 0.01	2006/7006724
(Jerry)			10/				(0.020)	(0.070)	(< 0.01)	RCN R05131
							(0.015)	(0.070)	(* 0.01)	METCON_149
										storage: 10 month
LIGA 2005	1 ~	7	160				0.050	0.080	0.020	127717
Gardner,	0.12	/	100	39	0	Hay	0.030	0.080	0.020	2006/7006724
ND			149				0.040	0.080	0.020	RCN R05132
(Morton)							(0.045)	(0.080)	(0.020)	METCON_149
					7	Hay	0.020	0.030	< 0.01	Max. frozen
							(0.020)	(0.040)	< 0.01	month
					14	Hav	0.020	0.030	< 0.01	
							0.020	0.030	< 0.01	
		_					(0.020)	(0.030)	(< 0.01)	
USA, 2005, Hinton	2 × 0 11	7	128	71	6	Hay	0.33	0.10	0.050	137717
OK	0.11		126				0.29	0.12	0.050	2006/7006724
(Jerry)							(0.31)	(0.11)	(0.050)	RCN R05133
										Max. frozen
										storage: 11 month
			1	1	1					

Location,	Application			Growth		Residues found [mg/kg] ^{ab}			ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
Canada, 2005,	2 × 0.11	7	234	87	7	Hay	0.43	0.11	0.040	137717 2006/7006724
St-Cesaire, SK (Rigodon)			227				0.39 (0.41)	0.10 (0.11)	0.040 (0.040)	RCN R05134 METCON_149 Max_frozen
(Rigodoli)										storage: 8.3 month
Canada, 2005,	2 × 0.11	7	201	61	7	Hay	0.050	0.11	0.020	137717 2006/7006724
Rosthern, SK (Furlong)			196				0.070 (0.060)	0.11 (0.11)	0.020 (0.020)	RCN R05135 METCON_149 Max. frozen storage: 7.9 month
Canada, 2005, Minto.	2 × 0.11	7	209 205	69	7	Нау	0.11 0.07	0.10 0.090	0.030 0.020	137717 2006/7006724 RCN R05136
MB (Triple Crown)							(0.09)	(0.095)	(0.025)	METCON_149 Max. frozen storage: 8.4 month
Canada, 2005, Innisfail, AB (AC Lu)	2 × 0.11	6	252 223	69	7	Нау	0.16 0.18 (0.17)	0.090 0.10 (0.095)	0.020 0.030 (0.025)	137717 2006/7006724 RCN R05137 METCON_149 Max. frozen
										month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Wheat straw

A total of 15 field trials were conducted on wheat in Canada and the USA during the 2004-05 growing seasons (White & Saha, 2006, METCON_152). Plants received 2 foliar applications of metconazole at nominal rates of 89–112 g ai/ha. Wheat straw was harvested at 20–22 days after the last application. Additional samples from a decline trial were collected at 14, 21–22, 28 and 35–36 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%, with the exception of M11 where the RSD was 26%.

Table 207 Residues of *cis*- and *trans*-metconazole in wheat straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applicati	ion		Growth			Residues fo	und [mg/kg]] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
USA, 2005,	2×0.11	8	134	85	21	Straw	1.2	0.27	1.5	137711
Sunsweet,			140				1.6	0.35	2.0	2006/7006723
GA							(1.4)	(0.31)	(1.7)	RCN R05044
(Pioneer										METCON_152
26R24)										Max. frozen
										storage: 6.4

Location,	Applicati	on		Growth			Residues for	ound [mg/kg	a	Report/Trial No.,
,	• /1	Interval	т /1	stage at	DALA	Sample	Metconazo	le	T (1	Reference,
Year (variety	g ai/ha	(days)	L/ha	final appl.		1	cis	trans	Total	Storage period
										month
USA, 2005.	2×0.11	6	187	75	21	Straw	6.5	1.1	7.6	137711
Newport.		°	189	10			6.8	1 3	8 1	2006/7006723
AK			107				(6.7)	(1.2)	(7.9)	RCN R05045
(Genesis							(0.7)	(1.2)	(7.5)	METCON 152
R033)										Max frozen
10000)										storage: 6.4
										month
USA, 2005,	2×0.11	7	186	83	20	Straw	3.3	0.55	3.9	137711
York,			188				5.8	1.0	6.7	2006/7006723
NE,							(4.6)	(0.78)	(5.3)	RCN R05046
(Millenium)							()	(()	METCON 152
										Max. frozen
										storage: 5.1
										month
USA, 2005,	2×0.11	7	115	83	14	Straw	2.5	0.52	3.0	137711
Carlyle,			158				3.1	0.58	3.7	2006/7006723
IL,							(2.8)	(0.55)	(3.4)	RCN R05047
(Excel 201)					21	Straw	3.9	0.82	4.7	METCON_152
							3.8	0.74	4.5	Max. frozen
							(3.8)	(0.78)	(4.6)	storage: 5.7
					28	Straw	3.7	0.74	4.4	month
							4.3	0.85	5.1	
							(4.0)	(0.80)	(4.8)	
					35	Straw	3 7	0.74	4.4	
					55	Stiutt	43	0.85	5.1	
							(4.0)	(0.80)	(4.8)	
USA 2005	2×0.11	7	188	77	22	Straw	1 4	0.31	<u>1.0</u>) 1.7	137711
Grand Island	2 0.11	<i>'</i>	189	, ,	22	Stiuw	2 3	0.54	2.9	2006/7006723
NE			109				(1.9)	(0.42)	(2,3)	RCN R05048
(Jagalene							(1.))	(0.42)	(2.5)	METCON 152
HRW)										Max. frozen
										storage: 5.0
										month
USA, 2005,	2×0.11	7	113	75	20	Straw	2.0	0.35	2.4	137711
Velva,			113				2.2	0.41	2.6	2006/7006723
ND							(2.1)	(0.38)	(2.5)	RCN R05049
(Dapps)										METCON_152
										Max. frozen
										storage: 4.5
										month
USA, 2005,	2×0.12	6	152	77	14	Straw	1.1	0.18	1.3	137711
Gardner,			147				1.1	0.17	1.3	2006/7006723
ND							(1.1)	(0.17)	(1.3)	RCN R05050
(Knudson)					22	Straw	1.3	0.16	1.4	METCON_152
							0.94	0.13	1.1	Max. frozen
							(1.1)	(0.14)	(1.2)	storage: 4.3
					28	Straw	1.0	0.15	1.2	month
							1.0	0.15	1.2	
							(1.0)	(0.15)	(1.2)	
					36	Straw	0.66	0.097	0.76	
							0.86	0.12	0.98	
							(0.76)	(0.11)	(0.87)	
USA, 2005,	2×0.11	7	122	85	22	Straw	0.22	0.048	0.27	137711
Hinton,			126				0.50	0.070	0.57	2006/7006723
OK							(0.36)	(0.059)	(0.42)	RCN R05051
(Jagalene)							ľ í	ľ í	·	METCON_152
										Max. frozen
										storage: 6.2
										month
USA, 2005,	1×0.11	7	128	85	21	Straw	8.2	1.4	9.6	137711

Location,	Applicati	ion		Growth			Residues fo	und [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	g al/lla	(days)	L/11a	final appl.			cis	trans	Total	Storage period
Colony,	1 × 0.09		105				8.4	1.5	9.8	2006/7006723
OK							(8.3)	(1.4)	(9.7)	RCN R05052
(Jagger)										METCON_152
										Max. frozen
										storage: 6.3
										month
USA, 2005,	2×0.11	8	141	87	21	Straw	3.1	0.56	3.7	137711
Lubbock,			138				3.9	0.76	4.6	2006/7006723
TX (TALK 200)							(3.5)	(0.66)	(4.1)	RCN R05053
(TAM 200)										METCON_152
										Max. frozen
										storage: 6.0
										month
USA, 2005,	2×0.11	6	278	87	21	Straw	0.63	3.5	4.2	137711
Payette,			283				0.91	4.7	5.6	2006/7006723
ID D							(0.77)	(4.1)	(4.9)	RCN R05054
(Penawawa)										METCON_152
										Max. frozen
										storage: 4.0
~ 1	2 0 1 1	-	105		A 1	~	0.1.5	1.0	1.0	month
Canada,	2×0.11	6	135	85	21	Straw	0.15	1.0	1.2	137/11
2005, Laind			149				0.16	1.0	1.2	2006/7006723
Laird,							(0.16)	(1.0)	(1.2)	RCN R05055
(Bounty)										METCON_152
(Bounty)										Max. Irozen
										storage: 3.3
Canada	2×0.11	6	219	05	01	Strow	0.42	2.0	0.5	1101111 127711
Callada, 2005	2 ^ 0.11	0	107	05	21	Suaw	0.42	2.0	2.5	2006/7006722
2005, Minto			197				(0.30)	(2, 2)	(2.6)	2000/7000723 PCN P05056
MB							(0.39)	(2.2)	(2.0)	METCON 152
(AC Barrie)										Max frozen
(110 20010)										storage: 3.6
										month
Canada.	2×0.11	7	226	85	21	Straw	0.35	2.1	2.4	137711
2005.	2 0.11	<i>'</i>	233	05	- 1	Suun	0.40	2.1	2.5	2006/7006723
Innisfail,							(0.38)	(2.1)	(2.5)	RCN R05057
AB							(0.20)	(2.1.)	(2.0)	METCON 152
(AC Intrepid)										Max. frozen
										storage: 2.7
										month
Canada,	2×0.11	7	202	85	21	Straw	0.55	2.8	3.4	137711
2005,			225				0.55	3.1	3.6	2006/7006723
Innisfail,							(0.55)	(2.9)	(3.5)	RCN R05058
AB							ľ í		Í	METCON 152
(5700PR)										Max. frozen
										storage: 2.9
										month

Table	208	Residues	of metabo	lites M1	l, M21	and	M30	in	wheat	straw	following	foliar	treatment
(cGA	PUS	A: 2×112	g ai/ha; 30	days PH).								

Location,	Applicati	ion		Growth			Residues fo	und [mg/kg]] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, Sunsweet,	2 × 0.11	8	134 140	85	21	Straw	0.86 1.3	0.090 0.12	0.080 0.11	137711 2006/7006723

Location,	Applicati	on		Growth			Residues fo	und [mg/kg] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (davs)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
GA (Pioneer 26R24)							(1.1)	(0.11)	(0.10)	RCN R05044 METCON_152 Max. frozen storage: 6.4 month
USA, 2005, Newport, AK (Genesis R033)	2 × 0.11	6	187 189	75	21	Straw	0.39 0.38 (0.39)	0.19 0.21 (0.20)	0.050 0.050 (0.050)	137711 2006/7006723 RCN R05045 METCON_152 Max. frozen storage: 6.4 month
USA, 2005, York, NE, (Millenium)	2 × 0.11	7	186 188	83	20	Straw	0.56 0.76 (0.66)	0.21 0.32 (0.27)	0.10 0.12 (0.11)	137711 2006/7006723 RCN R05046 METCON_152 Max. frozen storage: 5.1 month
USA, 2005, Carlyle, IL, (Excel 201)	2 × 0.11	7	115 158	83	14 21	Straw Straw	0.48 0.50 (0.49) 0.93 0.78	0.14 0.16 (0.15) 0.30 0.23	0.050 0.070 (0.060) 0.14 0.11	137711 2006/7006723 RCN R05047 METCON_152 Max. frozen
					28 35	Straw Straw	(0.86) 1.2 1.2 (1.2) 1.5	(0.27) 0.38 0.44 (0.41) 0.47	(0.13) 0.17 0.18 (0.18) 0.22	storage: 5.7 month
							1.6 (1.6)	0.37 (0.42)	0.23 (0.23)	
USA, 2005, Grand Island, NE (Jagalene HRW)	2 × 0.11	7	188 189	77	22	Straw	0.45 0.59 (0.52)	0.14 0.20 (0.17)	0.080 0.12 (0.10)	137711 2006/7006723 RCN R05048 METCON_152 Max. frozen storage: 5.0 month
USA, 2005, Velva, ND (Dapps)	2 × 0.11	7	113 113	75	20	Straw	0.070 0.070 (0.070)	0.080 0.090 (0.085)	0.020 0.020 (0.020)	137711 2006/7006723 RCN R05049 METCON_152 Max. frozen storage: 4.5 month
USA, 2005, Gardner, ND (Knudson)	2 × 0.12	6	152 147	77	14 22	Straw Straw	0.12 0.12 (0.12) 0.17	0.060 0.060 (0.060) 0.070	0.020 0.020 (0.020) 0.030	137711 2006/7006723 RCN R05050 METCON_152
					28	Straw	0.14 (0.16) 0.17 0.18	0.070 (0.070) 0.07 0.07	0.030 0.030 0.040 0.040	Max. frozen storage: 4.3 month
					36	Straw	(0.18) 0.14 < 0.01 (0.080)	(0.07) 0.050 0.060 (0.055)	(0.040) 0.030 0.040 (0.035)	
USA, 2005, Hinton, OK (Jagalene)	2 × 0.11	7	122 126	85	22	Straw	0.080 0.11 (0.10)	0.040 0.060 (0.050)	0.020 0.030 (0.025)	137711 2006/7006723 RCN R05051 METCON_152

Location,	Applicati	on		Growth			Residues f	ound [mg/kg	g] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
										Max. frozen storage: 6.2 month
USA, 2005, Colony, OK (Jagger)	1 × 0.11 1 × 0.09	7	128 105	85	21	Straw	0.91 0.86 (0.89)	0.45 0.45 (0.45)	0.12 0.12 (0.12)	137711 2006/7006723 RCN R05052 METCON_152 Max. frozen storage: 6.3 month
USA, 2005, Lubbock, TX (TAM 200)	2 × 0.11	8	141 138	87	21	Straw	0.18 0.40 (0.29)	0.050 0.080 (0.065)	0.040 0.050 (0.045)	137711 2006/7006723 RCN R05053 METCON_152 Max. frozen storage: 6.0 month
USA, 2005, Payette, ID (Penawawa)	2 × 0.11	6	278 283	87	21	Straw	0.030 0.040 (0.035)	0.050 0.060 (0.055)	0.010 0.010 (0.010)	137711 2006/7006723 RCN R05054 METCON_152 Max. frozen storage: 4.0 month
Canada, 2005, Laird, SK (Bounty)	2 × 0.11	6	135 149	85	21	Straw	0.060 0.070 (0.065)	0.070 0.070 (0.070)	0.010 0.010 (0.010)	137711 2006/7006723 RCN R05055 METCON_152 Max. frozen storage: 3.3 month
Canada, 2005, Minto, MB (AC Barrie)	2 × 0.11	6	218 197	85	21	Straw	0.14 0.14 (0.14)	0.12 0.13 (0.13)	0.030 0.030 (0.030)	137711 2006/7006723 RCN R05056 METCON_152 Max. frozen storage: 3.6 month
Canada, 2005, Innisfail, AB (AC Intrepid)	2 × 0.11	7	226 233	85	21	Straw	0.080 0.070 (0.075)	0.080 0.090 (0.085)	0.010 0.010 (0.010)	137711 2006/7006723 RCN R05057 METCON_152 Max. frozen storage: 2.7 month
Canada, 2005, Innisfail, AB (5700PR)	2 × 0.11	7	202 225	85	21	Straw	0.45 0.43 (0.44)	0.20 0.21 (0.21)	0.040 0.040 (0.040)	137711 2006/7006723 RCN R05058 METCON_152 Max. frozen storage: 2.9 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Rye straw

A total of five field trials were conducted on rye in Canada and the USA during the 2004-05 growing seasons (Jordan & Saha, 2006, METCON_151). Plants received 2 foliar applications of metconazole at nominal rates of 112 g ai/ha. Rye straw was harvested at 20–22 days after the last application. Additional samples from a decline trial were collected at 14, 21, 28 and 34 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120%.

Table 209 Residues of *cis*- and *trans*-metconazole in rye straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applica	ation		Growth			Residues fo	und [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	g al/lia	(days)	L/IIa	final appl.			cis	trans	Total	Storage period
USA, 2005, Chula, GA (Wrens Abruzzi)	2 × 0.11	7	136 127	Soft dough	21	Straw	3.6 3.5 (3.6)	0.87 0.82 (0.85)	4.4 4.3 (4.4)	137720 2006/7006725 R05145 METCON_151 Max. frozen storage: 12 month
USA, 2005, York, NE, (VNS Winter Rye)	2 × 0.11	7	188 188	Late milk	22	Straw	2.0 2.3 (2.2)	0.14 0.16 (0.15)	2.2 2.4 (<u>2.3</u>)	137720 2006/7006725 R05146 METCON_151 Max. frozen storage: 10 month
USA, 2005, Eldridge, ND, (Dahcold)	1× 0.11 1× 0.12	6	143 149	Late milk	14 21 28 34	Straw Straw Straw Straw	4.0 3.8 (3.9) 3.8 2.8 (3.3) 2.6 3.1 (2.9) 3.6 4.6 (4.1)	0.90 0.83 (0.87) 0.92 0.60 (0.76) 0.58 0.72 (0.65) 0.82 1.0 (0.91)	4.9 4.7 (4.8) 4.7 3.5 (4.1) 3.2 3.8 (3.5) 4.5 5.6 (5.0)	137720 2006/7006725 R05147 METCON_151 Max. frozen storage: 9.7 month
Canada, 2005, Rosthern, SK (Gazelle)	2 × 0.11	8	204 200	Soft dough	20	Straw	1.8 2.0 (1.9)	0.13 0.16 (0.15)	1.9 2.2 (2.1)	137720 2006/7006725 R05148 METCON_151 Max. frozen storage: 7.9 month
Canada, 2005, Minto, MB (Common Rye Seed)	2 × 0.11	7	207 206	Hard dough	22	Straw	7.4 7.0 (7.2)	1.4 1.2 (1.3)	8.8 8.2 (<u>8.5</u>)	137720 2006/7006725 R05149 METCON_151 Max. frozen storage: 9.0 month

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, Chula, GA (Wrens Abruzzi)	2 × 0.11	7	136 127	Soft dough	21	Straw	0.57 0.19 (0.38)	0.04 0.04 (0.04)	0.03 0.02 (0.025)	137720 2006/7006725 R05145 METCON_151 Max. frozen storage: 12 month
USA, 2005, York, NE, (VNS Winter Rye)	2 × 0.11	7	188 188	Late milk	22	Straw	0.69 0.18 (0.44)	0.06 0.06 (0.06)	0.04 0.04 (0.04)	137720 2006/7006725 R05146 METCON_151 Max. frozen storage: 10 month
USA, 2005, Eldridge, ND, (Dahcold)	1× 0.11 1× 0.12	6	143 149	Late milk	14	Straw	0.18 0.17 (0.18)	0.08 0.07 (0.075)	0.03 0.03 (0.030)	137720 2006/7006725 R05147 METCON_151 Max. frozen
					21	Straw	0.91 0.60 (0.76)	0.11 0.14 (0.13)	0.04 0.06 (0.05)	storage: 9.6 month
					28	Straw	0.72 1.1 (0.91)	0.08 0.10 (0.09)	0.04 0.06 (0.05)	
					34	Straw	1.5 1.7 (1.6)	0.14 0.17 (0.16)	0.07 0.08 (0.075)	
Canada, 2005, Rosthern, SK (Gazelle)	2 × 0.11	8	204 200	Soft dough	20	Straw	0.05 0.06 (0.055)	0.04 0.05 (0.045)	0.01 0.01 (0.010)	137720 2006/7006725 R05148 METCON_151 Max. frozen storage: 7.7 month
Canada, 2005, Minto, MB (Common Rye Seed)	2 × 0.11	7	207 206	Hard dough	22	Straw	0.68 0.19 (0.44)	0.13 0.12 (0.13)	0.04 0.04 (0.04)	137720 2006/7006725 R05149 METCON_151 Max. frozen storage: 8.9 month

Table 210 Residues of metabolites M11, M21 and M30 in rye straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Barley straw

A total of 12 field trials were conducted on barley in the USA during the 2004-05 growing seasons (White & Saha, 2006, METCON_148). Plants received 2 foliar applications of metconazole at nominal rates of 112–123 g ai/ha. Barley straw was harvested at 20–21 days after the last application. Additional samples from a decline trial were collected at 14, 21, 28 and 35 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites

Metconazole

M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Table 211 Residues of cis- and trans-metconazole in barley straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation		Growth			Residues fo	und [mg/kg] a	Report/Trial No.,
	σai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	5 ul 11u	(days)	L, nu	final appl.			cis	trans	Total	Storage period
USA, 2005, North Rose,	2 × 0.12	2 × 0.12	8	71	20	Straw	0.85	0.12	0.97	137714 2006/7006917
NY (Chanaia)							0.74	0.11	0.85	RCN R05155
(Chapais)							(0.79)	(0.12)	(0.91)	METCON_148 Max_frozen
										storage: 6.0
										month
USA, 2005,	1×	1× 0.11	7	69	14	Straw	3.0	0.72	3.7	137714
Belleville, IL	0.11 1×	10.10					2.2	0.70	1.0	2006/7006917 RCN R05156
(Not stated)	0.12	1× 0.12					3.3	0.70	4.0	METCON_148
							(3.2)	(0.71)	(3.9)	Max. frozen
					21	Straw	2.7	0.59	3.31	storage: 6.0
							2.5	0.52	(3, 0)	montin
					28	Straw	2.0)	(0.30) 0.57	(3.2)	
					20	Shaw	1.7	0.38	2.1	
							(2.1)	(0.47)	(2.6)	
					35	Straw	1.46	0.29	1.8	
							1.42	0.29	1.7	
LICA 2005			7				(1.4)	(0.29)	(1.7)	105514
USA, 2005, Vork	2 × 0 11	2×0.11	/	58	21	Straw	1.628	0.21	1.8	137714
NB	0.11						1.8	0.34	2.1	RCN R05157
(Robust							(1.7)	(0.28)	(2.0)	METCON 148
Barley)										Max. frozen
										storage: 6.0
USA 2005	2 ×		7							month
USA, 2005,	0.11	2×0.11	/	69	20	Straw	1.8	0.33	2.1	137714
Velva,							1.3	0.18	1.5	2006/7006917
ND							(1.5)	(0.26)	(1.8)	RCN R05158
(Excel)										MEICON_148 Max_frozen
										storage: 6.0
										month
USA, 2005, Grand Island	2 × 0 11	2×0.11	7	58	21	Straw	2.7	0.53	3.2	137714
NB	0.11						3.1	0.56	3.6	2000/7000917 RCN R05159
(Robust							(2.9)	(0.55)	(3.4)	METCON 148
Barley)								· /		Max. frozen
										storage: 6.0
LIG 4 0005	2		0							month
USA, 2005, Voung Word	2 × 0 12	2×0.12	ð	87	20	Straw	3.5	0.68	4.2	137714
UT	0.12						3 5	0.67	4.2	2006/7006917 RCN R05160
(Baroness)							(3.5)	(0.68)	(4.2)	METCON 148
							()	()		Max. frozen
										storage: 6.0
	-		-							month
USA, 2005, Madera, CA	2 × 0 11	2×0.11	7	87	21	Straw	3.9	0.71	4.7	137714
UT	0.11						3.7	0.78	4.5	2000/700091/ RCN R05161
(Farmers							(3.8)	(0.75)	(4.6)	METCON_148

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Year (variety	g al/lla	(days)	L/IId	final appl.			cis	trans	10141	Storage period
Best)			1							Max. frozen
										storage: 6.0
										month
USA, 2005,	$1 \times$	1×0.11	7	58	21	Straw	2.8	0.57	33	137714
Payette,	0.11	1 ~ 0.11		50	<u> </u>	Stiaw	2.0	0.57	5.5	2006/7006917
ID	1×0.12	1×0.12					2.4	0.48	2.9	RCN R05162
(Baronesse)							(2.6)	(0.52)	(3.1)	METCON_148
										Max. frozen
										storage: 6.0
			<u> </u>							month
Canada, 2005,	2 × 0.11	2×0.11	6	73	21	Straw	0.54	0.09	0.64	137714 2006/7006917
Rosthern,							0.59	0.10	0.70	RCN R05163
SK							(0.57)	(0.10)	(0.67)	METCON 148
(AC										Max. frozen
Metcalfe)										storage: 6.0
										month
Canada, 2005	2 × 0 11	2×0.11	8	75	20	Straw	2.7	0.49	3.1	137714
2005, Minto	0.11						3.0	0.54	3.5	2006/7006917 DCN D05164
MB							(2.8)	(0.54)	(3,3)	METCON 148
(AC							(2.0)	(0.50)	(3.3)	Max_frozen
Metcalfe)										storage: 6.0
,										month
Canada,	2 ×	2×0.11	7	61	21	Straw	1.6	0.33	2.0	137714
2005,	0.11	2 0.11		01	21	Stituw	1.0	0.55	2.0	2006/7006917
Innisfail,							1.9	0.37	2.2	RCN R05165
AB							(1.7)	(0.35)	(2.1)	METCON_148
(CDC Bold)										Max. frozen
										storage: 6.0
<u> </u>			<u> </u>							month
Canada,	$2 \times$	2×0.11	7	57	21	Straw	3.5	0.81	4.3	137714
2005, Immiafail	0.11						2 7	0.02	4.5	2006/7006917
							5.7	0.82	4.5	RCN R05166
CDC Bold)							(3.0)	(0.82)	(4.4)	Max frozon
										storage: 6.0
										month
	1	1	1	1	1	1	1	1	1	111011111

Table 212 Residues of metabolites M11, M21 and M30 in barley straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applica	ation		Growth			Residues fo	ound [mg/kg	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, North Rose, NY (Chapais)	2 × 0.12	2 × 0.12	8	71	20	Straw	0.540 0.480 (0.51)	0.070 0.060 (0.07)	0.070 0.070 (0.07)	137714 2006/7006917 RCN R05155 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Belleville, IL (Not stated)	1× 0.11 1× 0.12	1× 0.11 1× 0.12	7	69	14	Straw	0.90 0.81 (0.86)	0.42 0.40 (0.41)	0.14 0.13 (0.14)	137714 2006/7006917 RCN R05156 METCON_148 Max. frozen

Location,	Applica	ation		Growth			Residues f	ound [mg/k	g] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
					21 28 35	Straw Straw Straw	1.1 0.95 (1.02) 1.1 0.95 (1.1) 0.87 0.97	0.46 0.40 (0.43) 0.48 0.36 (0.42) 0.36 0.32	0.15 0.14 (0.15) 0.17 0.14 (0.16) 0.14 0.15	storage: 6.0 month
USA, 2005, York, NB (Robust Barley)	2 × 0.11	2 × 0.11	7	58	21	Straw	(0.92) 0.50 0.51 (0.51)	(0.34) 0.12 0.12 (0.12)	(0.15) 0.06 (0.06) (0.06)	137714 2006/7006917 RCN R05157 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Velva, ND (Excel)	2 × 0.11	2 × 0.11	7	69	20	Straw	0.10 0.08 (0.09)	0.07 0.06 (0.07)	0.02 0.02 (0.02)	137714 2006/7006917 RCN R05158 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Grand Island, NB (Robust Barley)	2 × 0.11	2 × 0.11	7	58	21	Straw	0.49 0.54 (0.52)	0.13 0.14 (0.14)	0.06 0.07 (0.07)	137714 2006/7006917 RCN R05159 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Young Ward, UT (Baroness)	2 × 0.12	2 × 0.12	8	87	20	Straw	0.11 0.11 (0.11)	0.11 0.11 (0.11)	0.03 0.03 (0.03)	137714 2006/7006917 RCN R05160 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Madera, CA, UT (Farmers Best)	2 × 0.11	2 × 0.11	7	87	21	Straw	0.03 0.03 (0.03)	0.05 0.05 (0.05)	0.01 0.01 (0.01)	137714 2006/7006917 RCN R05161 METCON_148 Max. frozen storage: 6.0 month
USA, 2005, Payette, ID (Baronesse)	1× 0.11 1×0.12	1×0.11 1×0.12	7	58	21	Straw	0.040 0.030 (0.04)	0.060 0.040 (0.05)	0.010 0.010 (0.01)	137714 2006/7006917 RCN R05162 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Rosthern, SK (AC Metcalfe)	2 × 0.11	2 × 0.11	6	73	21	Straw	0.09 0.10 (0.10)	0.09 0.09 (0.09)	0.030 0.03 (0.03)	137714 2006/7006917 RCN R05163 METCON_148 Max. frozen storage: 6.0 month
Canada,	2 ×	2×0.11	8	75	20	Straw	0.68	0.36	0.08	137714

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
2005, Minto, MB (AC Metcalfe)	0.11						0.55 (0.62)	0.33 (0.35)	0.08 (0.08)	2006/7006917 RCN R05164 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	2 × 0.11	7	61	21	Straw	0.33 0.36 (0.35)	0.13 0.13 (0.13)	0.05 0.05 (0.05)	137714 2006/7006917 RCN R05165 METCON_148 Max. frozen storage: 6.0 month
Canada, 2005, Innisfail, AB (CDC Bold)	2 × 0.11	2 × 0.11	7	57	21	Straw	0.75 0.85 (0.80)	0.42 0.41 (0.42)	0.05 0.05 (0.05)	137714 2006/7006917 RCN R05166 METCON_148 Max. frozen storage: 6.0 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Oat straw

A total of 12 field trials were conducted on oat in Canada and the USA during the 2004-05 growing seasons (Jordan & Saha, 2006, METCON_149). Plants received 2 foliar applications of metconazole at nominal rates of 112–123 g ai/ha. Oat straw was harvested at 20–21 days after the last application. Additional samples from a decline trial were collected at 14, 21, 28 and 36 days. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0508. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Table 213 Residues of cis- and trans-metconazole in oat straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applica	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
USA, 2005, North Rose,	2 × 0.11	8	227	83	20	Straw	1.3	0.27	1.5	137717 2006/7006724
NY (AC Alymer)			233				1.2 (1.2)	0.19 (0.23)	1.4 (1.5)	RCN R05126 METCON_149 Max. frozen storage: 9.5 month
USA, 2005, Sunsweet, GA (Horizon 314)	2 × 0.11	7	131 136	85	21	Straw	1.8 1.8 (1.8)	0.42 0.43 (0.42)	2.2 2.2 (2.2)	137717 2006/7006724 RCN R05127 METCON_149 Max. frozen storage: 12 month

Location,	Applica	ation		Growth			Residues fo	und [mg/kg] a	Report/Trial No.,
	α ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	g al/lla	(days)	L/IId	final appl.			cis	trans	Total	Storage period
USA, 2005, Carlyle,	1× 0.12	7	166	85	21	Straw	1.4	0.30	1.7	137717 2006/7006724
IL,	1×0.11		167				1.5	0.31	1.8	RCN R05128
(Seed oals)							(1.4)	(0.31)	(1.7)	METCON_149 Max_frozen
										storage: 10 month
										8
USA, 2005,	1×	7	188		20	G.	4.6	0.79	5.4	
Arkansaw,	0.12			/5	20	Straw				137717
WI, (Vista)	1× 0.11		189				5.1	0.87	6.0	RCN R05129
	0.11						(4.8)	(0.83)	(5.7)	METCON_149
							, ,			Max. frozen
										month
	2	_	107				1.5		1.0	montin
USA, 2005, Eldridge ND	2 × 0 11	/	186	75	21	Straw	1.5	0.22	1.8	137717
(Morton)	0.11		142				0.95	0.15	1 1	2006/7006724 PCN P05130
(Worton)			172				(1,3)	(0.19)	(1.1)	METCON 149
							(1.5)	(0.15)	(111)	Max. frozen
										storage: 9.1
										month
USA, 2004,	1×	7	189	85	21	Straw	2.7	0.61	3.3	137717
Grand Island,	0.12		190				2.0	0.49	0.4	2006/7006724
(Jerry)	0.11		169				2.0	0.48	2.4	RCN R05131
(00119)	0.11						(2.3)	(0.55)	(2.9)	METCON_149
							()	(****)	()	Max. frozen
										storage: 9.5
		-								
USA, 2005,	1×	6	149	75	14	Straw	2.6	0.62	3.2	137717
Gardner,	0.12		140				2.4	0.40	28	2006/7006724 RCN R05132
(Morton)			149				(2.5)	(0.56)	(3.0)	METCON 149
< <i>,</i>					21		1.1	0.16	1.2	Max. frozen
							1.1	0.20	1.3	storage: 9.4
							(1.1)	(0.18)	(1.2)	month
					28		1.3	0.21	1.5	
							1.7	0.42	2.1	
					26		(1.5)	(0.31)	(1.8)	
					50		1.5	0.18	1.5	
							(1.0)	(0.15)	(1.2)	
USA, 2005,	2 ×	7	126		26	G.	0.83	0.16	0.99	
Hinton,	0.11			//	26	Straw				137717
OK			132				0.85	0.16	1.0	2000/7000724 RCN R05133
(Jerry)							(0.84)	(0.16)	(<u>1.0</u>)	METCON 149
										Max. frozen
										storage: 10 month
Canada,	1×	7	202	07	21	G.	1.2	0.21	1.4	
2005,	0.12			8/	21	Straw				137717
St-Cesaire,	$1 \times$		228				1.5	0.19	1.7	2000//006/24 RCN R05134
SK	0.11						(1.4)	(0.00)	0.0	METCON 149
(Kigodon)							(1.4)	(0.20)	(1.6)	Max. frozen
										storage: 8.1
										month
Canada,	2 ×	8	204	0.2	20	C.	1.2	0.21	1.4	137717
2005,	0.11			83	20	Straw				2006/7006724

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo <i>cis</i>	le <i>trans</i>	Total	Reference, Storage period
Rosthern, SK (Furlong)			200				1.4 (1.3)	0.30 (0.26)	1.6 (1.5)	RCN R05135 METCON_149 Max. frozen storage: 7.4 month
Canada, 2005, Minto, MB (Triple Crown)	2 × 0.11	7	208 199	87	20	Straw	2.1 2.7 (2.4)	0.51 0.58 (0.54)	2.7 3.3 (3.0)	137717 2006/7006724 RCN R05136 METCON_149 Max. frozen storage: 7.9 month
Canada, 2005, Innisfail, AB (AC Lu)	2 × 0.11	7	226 234	85	21	Straw	2.0 2.2 (2.1)	0.45 0.54 (0.49)	2.4 2.7 (2.6)	137717 2006/7006724 RCN R05137 METCON_149 Max. frozen storage: 7.1 month

Table 214 Residues of metabolites M11, M21 and M30 in oat straw following foliar treatment (cGAP USA: 2×112 g ai/ha; 30 days PHI).

Location,	Applic	ation		Growth			Residues	found [mg/k	[g] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2005, North Rose, NY (AC Alymer)	2 × 0.11	8	227 233	83	20	Straw	0.30 0.37 (0.34)	0.050 0.040 (0.045)	0.040 0.040 (0.040)	137717 2006/7006724 RCN R05126 METCON 149
× • ·								(,	(,	Max. frozen storage: 9.5 month
USA, 2005, Sunsweet, GA (Horizon 314)	2 × 0.11	7	131 136	85	21	Straw	0.42 0.43 (0.43)	0.060 0.060 (0.060)	0.030 0.030 (0.030)	137717 2006/7006724 RCN R05127 METCON_149 Max. frozen storage: 12 month
USA, 2005, Carlyle, IL, (Seed oats)	1× 0.12 1× 0.11	7	166 167	85	21	Straw	0.52 0.55 (0.54)	0.070 0.070 (0.070)	0.050 0.050 (0.050)	137717 2006/7006724 RCN R05128 METCON_149 Max. frozen storage: 10 month
USA, 2005, Arkansaw, WI, (Vista)	1× 0.12 1× 0.11	7	188 189	75	20	Straw	2.2 2.5 (2.3)	0.44 0.49 (0.47)	0.15 0.18 (0.17)	137717 2006/7006724 RCN R05129 METCON_149 Max. frozen storage: 9.4 month
USA, 2005, Eldridge, ND,	2×0.11	7	186	75	21	Straw	0.08	0.04	0.01	137717 2006/7006724

Location,	Applic	ation		Growth			Residues fo	ound [mg/kg] ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
(Morton)			142				0.04 (0.060)	0.03 (0.035)	< 0.01 (0.010)	RCN R05130 METCON_149 Max. frozen storage: 9.1 month
USA, 2004, Grand Island, NE (Jerry)	1× 0.12 1× 0.11	7	189 189	85	21	Straw	0.28 0.19 (0.24)	0.12 0.09 (0.11)	0.040 0.030 (0.035)	137717 2006/7006724 RCN R05131 METCON_149 Max. frozen storage: 9.3 month
USA, 2005, Gardner, ND (Morton)	1× 0.12	6	149 149	75	14 21 28 36	Straw	0.040 0.040 (0.040) 0.020 0.030 (0.025) 0.090 0.11 (0.10) 0.18 0.15 (0.17)	0.050 0.040 (0.045) 0.020 (0.020) 0.040 0.040 (0.040) 0.040 0.040 (0.035)	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 (< 0.01) 0.020 (0.015) 0.020 (0.025)	137717 2006/7006724 RCN R05132 METCON_149 Max. frozen storage: 9.4 month
USA, 2005, Hinton, OK (Jerry)	2 × 0.11	7	126 132	77	26	Straw	0.42 0.43 (0.43)	0.070 0.080 (0.075)	0.050 0.050 (0.050)	137717 2006/7006724 RCN R05133 METCON_149 Max. frozen storage: 10 month
Canada, 2005, St-Cesaire, SK (Rigodon)	1× 0.12 1× 0.11	7	202 228	87	21	Straw	0.37 0.47 (0.42)	0.060 0.070 (0.065)	0.040 0.050 (0.045)	137717 2006/7006724 RCN R05134 METCON_149 Max. frozen storage: 8.1 month
Canada, 2005, Rosthern, SK (Furlong)	2 × 0.11	8	204 200	83	20	Straw	0.050 0.050 (0.050)	0.030 0.040 (0.035)	< 0.01 < 0.01 (< 0.01)	137717 2006/7006724 RCN R05135 METCON_149 Max. frozen storage: 7.4 month
Canada, 2005, Minto, MB (Triple Crown)	2 × 0.11	7	208 199	87	20	Straw	0.33 0.49 (0.41)	0.15 0.34 (0.25)	0.050 0.060 (0.055)	137717 2006/7006724 RCN R05136 METCON_149 Max. frozen storage: 7.9 month_
Canada, 2005, Innisfail, AB (AC Lu)	2 × 0.11	7	226 234	85	21	Straw	0.060 0.070 (0.065)	0.050 0.060 (0.055)	< 0.01 0.01 (0.010)	137717 2006/7006724 RCN R05137 METCON_149 Max. frozen_

Location,	Application		Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,	
Year (variety	g ai/ha Interval (days) L/ha		stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period	
										storage: 7.1 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Maize forage

A total of 25 field trials were conducted on maize and sweet corn in the USA during the 2006 growing season (Carringer, 2006, METCON_150). Plants received 4 foliar applications of metconazole at nominal rates of 110 g ai/ha. Maize forage was harvested at 6–7 days after the last application for the sweet corn trials and at the late dough/early dent stage for the maize trials. Residues of cis- and transmetconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and transmetconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of <20%.

Table 215 Residues of *cis*- and *trans*-metconazole in maize forage following foliar treatment (cGAP USA: 4×92 g ai/ha; 7 days PHI).

Location,	Applic	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo cis	le trans	Total	Reference, Storage period
USA, 2006, South Sodus,	4× 0.11	6–8	290	59–71	7	Forage	0.02	0.01	0.03	254314
NY (Speedy sweet)			281 281 281				0.03 (0.03)	0.01 (0.01)	0.04 (0.04)	2006/7012839 RCN R06425 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Germansville,	4× 0.11	6–7	290	Milk	7	Forage	0.71	0.13	0.83	254314
PA (TA5750)			290 281 290	stage			0.66 (0.69)	0.14 (0.14)	0.80 (<u>0.82)</u>	2006/7012839 RCN R06426 METCON_150 Max. frozen storage: 3.4 month
USA, 2006, Seven	4× 0.11	6–8	150	67	7	Forage	1.5	0.44	1.9	254314 2006/7012839
Springs, NC (Garst 8377)			159 196 281				1.4 (1.5)	0.45 (0.45)	1.8 (<u>1.9)</u>	RCN R06427 METCON_150 Max. frozen storage: 5.2 month
USA, 2006, O'Brien, FL (8102 R Bicolor)	4× 0.11	7	215 224 224 234	75	7	Forage	0.89 1.00 (0.95)	0.19 0.21 (0.20)	1.1 1.2 (<u>1.2</u>)	254314 2006/7012839 RCN R06428 METCON_150 Max. frozen storage: 2.1 month
USA, 2006, New Holland, OH	4× 0.11	6–7	196 196	73	7	Forage	0.010	0.090 0.090	0.10 0.10	254314 2006/7012839 RCN R06429

Location,	Applica	ation		Growth			Residues for	und [mg/kg] a	Report/Trial No.,
Vear (variety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le tuana	Total	Reference, Storage period
(Crows		(days)	106	linal appl.			cis	trans	(0.10)	METCON 150
(C10W3 7R154)			206				(0.010)	(0.070)	(0.10)	Max. frozen
,										storage: 3.7
		<u> </u>								month
USA, 2006,	4× 0.11	6–8	150	85	7	Forage	1.2	0.30	1.5	254314
(Crows 5151)	0.11		150				1.2	0.27	1.5	2006/7012839 RCN R06430
, ,			150				(1.2)	(0.29)	(1.5)	METCON_150
			150							Max. frozen
										storage: 3.0 month
USA, 2006,	4×	7	168	R3_R/	7	Forage	0.36	0.17	0.53	254314
Carlyle,	0.11		150	10-104	/	i orage	0.50	0.17	0.55	2006/7012839
1L, (BT 6516 RR			159 178				0.36	(0.17)	0.53	RCN R06431 Metcon 150
2YG)			168				(0.50)	(0.17)	<u>(0.55)</u>	Max. frozen
										storage: 3.7
LICA 2006	4.2	6 9								month
USA, 2006, Mason,	4× 0.11	0-8	159	85	7	Forage	0.20	0.96	1.2	254314 2006/7012839
IL,			150				0.29	1.1	1.3	RCN R06432
(Burrus 664) RWR-PX4			150				(0.25)	(1.0)	<u>(1.3)</u>	METCON_150
K ((K-1 /X+)			139							storage: 3.2
										month
USA, 2006,	4×	6–8	131	R3	6	Forage	0.02	0.17	0.19	254314
Wyoming, IL	0.11		131			U	0.01	0.13	0.14	2006/7012839 RCN R06433
(Burrus 644			131				(0.02)	(0.15)	(0.17)	METCON 150
RWR)			150				Ì,			Max. frozen
										storage: 3.5
USA, 2006,	4×	6–8	170	0.2	7	г	1.2	0.12	1.2	254314
Danville,	0.11		1/8	83	/	Forage	1.2	0.13	1.3	
IN (Wyffels			159				0.88	0.17	1.1	2006/7012839
(Wyneis W5531)			130				(1.0)	(0.13)	<u>(1.2)</u>	METCON 150
,										Max. frozen
										storage: 3.4
USA, 2006.	4×	7	. = 0							month 254314
Bellmore,	0.11	,	178	71–73	7	Forage	0.90	0.06	0.96	201011
IN (W. C. 1			159				0.76	0.09	0.85	2006/7012839
(wyneis W5531)			168				(0.83)	(0.08)	<u>(0.91)</u>	RCN R06435 Metcon 150
			150							Max. frozen
										storage: 3.4
USA 2006	4 ×									month 254314
Richland,	0.11	7	150	R4	7	Forage	0.31	0.07	0.38	254514
IO (Golden			122				0.45	0.11	0.57	2006/7012839
Harvest HX			131				(0.38)	(0.09)	<u>(0.48)</u>	RCN R06436
,525)			1/8							METCON_150 Max_frozen
										storage: 3.4
	4.2	(7								month
USA, 2006, Hedrick.	4× 0.11	0-/	150	R4	7	Forage	0.45	0.11	0.56	254314
IO			150				0.32	0.16	0.48	2006/7012839
(Pioneer]		150				(0.39)	(0.14)	(0.52)	RCN R06437

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazo cis	le trans	Total	Reference, Storage period
34A16)			159							METCON_150 Max. frozen storage: 3.4 month
USA, 2006, Ollie, IO (Middlekoop	4× 0.11	7–8	159 122 131	R4	7	Forage	0.95 0.66 (0.81)	0.14 0.19 (0.17)	1.1 0.85 (<u>0.97)</u>	254314 2006/7012839 RCN R06438
2212)			168							METCON_150 Max. frozen storage: 3.7 month
USA, 2006, Bagley,	4× 0.11	7	187	75	7	Forage	0.73	0.10	0.83	254314
IO (33P65)			196 206 206				0.65 (0.69)	0.11 (0.11)	0.76 (<u>0.80)</u>	2006/7012839 RCN R06439 METCON_150 Max. frozen storage: 3.7month
USA, 2006 Delavan WI	4× 0.11	5–7	178	R3	7	Forage	1.0	0.19	1.2	254314
(DKC52–40 (RR2/YGPL))	0.11		168 168 159				0.92 (0.97)	0.17 (0.18)	1.1 (1.2)	2006/7012839 RCN R06440 METCON_150 Max. frozen storage: 3.1
USA 2006	4×	6.8								month
Ellendale,	0.11	0-0	150	R4	7	Forage	0.96	0.18	1.1	234314
MN (Pioneer 38H66)			159 159 159				1.1 (1.0)	0.30 (0.24)	1.4 (<u>1.3</u>)	2006/7012839 RCN R06441 METCON_150 Max. frozen storage: 3.2 month
USA, 2006 Geneva MN	4× 0.11	6–8	150	R4	7	Forage	0.92	0.18	1.1	254314
(Pioneer 38H66)			159 159 159				0.84 (0.88)	0.16 (0.17)	1.0 (1.1)	2006/7012839 RCN R06442 METCON_150 Max. frozen storage: 3.2 month
USA, 2006 York. NE	4× 0.11	6–8	187	85	7	Forage	0.01	0.09	0.10	254314
(Pioneer 34N45 RR/YG)			178 187 187				0.01 (0.01)	0.10 (0.10)	0.11 (0.11)	2006/7012839 RCN R06443 METCON_150 Max. frozen storage: 3.6 month
USA, 2006, Grand Island	4× 0.11	6–8	187	85	7	Forage	0.01	0.09	0.10	254314
NE (NK N73-F7 RR/LL/YG)			178 178 187				0.01 (0.01)	0.08 (0.090	0.09 (0.10)	2006/7012839 RCN R06444 METCON_150 Max. frozen storage: 3.2 month

Location,	Applica	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
	α ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	g al/lla	(days)	L/ IIa	final appl.			cis	trans	10141	Storage period
USA, 2006, Osceola, NE	4× 0.11	6–8	187	85	7	Forage	0.01	0.08	0.09	254314
(NK N73-F7)			187				0.01	0.07	0.08	2006/7012839
			187				(0.01)	(0.08)	(0.09)	RCN R06445
			187							METCON_150
										Max. frozen
										storage: 3.6
		6.0								month
USA, 2006, Dill, OK	4× 0.11	6–8	187	87	21	Forage	1.8	0.13	2.0	254314
(DK C48–53			187				1.5	0.16	1.6	2006/7012839
AF2)			206				(1.6)	(0.15)	(1.8)	RCN R06446
			196							METCON_150
										Max. frozen
										storage: 3.1
										month
USA, 2006, Porterville,	4× 0.11	7–8	290	78	7	Forage	2.2	0.46	2.6	254314
CA			290				2.2	0.54	2.7	2006/7012839
(Bodacious)			290				(2.2)	(0.50)	(2.7)	RCN R06447
			290							METCON_150
										Max. frozen
										storage: 4.2
										month
USA, 2006, Ephrata, WA	4× 0.11	7	140	73	7	Forage	0.02	0.14	0.16	254314
(Golden			140				0.02	0.20	0.22	2006/7012839
Jubilee)			140				(0.02)	(0.17)	(0.19)	RCN R06448
			140							METCON_150
										Max. frozen
										storage: 3.8
										month
USA, 2006, Corvallis, OR	4× 0.11	7	122	73	7	Forage	1.0	0.17	1.2	254314
(Super Sweet			122				0.91	0.16	1.1	2006/7012839
Jubilee Plus)			122				(0.96)	(0.17)	(1.2)	RCN R06449
			122							METCON_150
										Max. frozen
										storage: 3.1
				1						month

Table 216 Residues of metabolites M11, M21 and M30 in maize forage following foliar treatment (cGAP USA: 4×92 g ai/ha; 7 days PHI).

Location,	Application			Growth			Residues found [mg/kg] ^{ab}			Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
USA, 2006, South Sodus,	4× 0.11	6–8	290	59–71	7	Forage	< 0.01	0.02	< 0.01	254314
NY			281				< 0.01	0.03	< 0.01	2006/7012839
(Speedy			281				(< 0.01)	(0.03)	(< 0.01)	RCN R06425
sweet)			281							METCON_150
										Max. frozen
										storage: 3.0
										month
USA, 2006, Cormonavilla	4× 0.11	6–7	290	Milk	7	Forage	< 0.01	0.040	< 0.01	254314
PA	0.11		290	stage			0.02	0.060	< 0.01	2006/7012839

Location,	Application			Growth			Residues f	ound [mg/kg] ^{ab}	Report/Trial No.,
Year (varietv	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
(TA5750)		(((())))	281 290				(0.02)	(0.050)	(< 0.01)	RCN R06426 METCON_150 Max. frozen storage: 3.4 month
USA, 2006, Seven Springs, NC (Garst 8377)	4× 0.11	6–8	150 159 196 281	67	7	Forage	0.02 0.03 (0.03)	0.04 0.04 (0.04)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06427 METCON_150 Max. frozen storage: 5.2 month
USA, 2006, O'Brien, FL (8102 R Bicolor)	4× 0.11	7	215 224 224 234	75	7	Forage	0.02 0.02 (0.02)	0.04 0.04 (0.04)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06428 METCON_150 Max. frozen storage: 2.1 month
USA, 2006, New Holland, OH (Crows 7R154)	4× 0.11	6–7	196 196 196 206	73	7	Forage	0.02 0.03 (0.03)	0.02 0.02 (0.02)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06429 METCON_150 Max. frozen storage: 3.7 month
USA, 2006, Atlanta, OH (Crows 5151)	4× 0.11	6–8	150 150 150 150	85	7	Forage	0.20 0.19 (0.20)	0.05 0.05 (0.05)	0.03 0.03 (0.03)	254314 2006/7012839 RCN R06430 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Carlyle, IL, (BT 6516 RR 2YG)	4× 0.11	7	168 159 178 168	R3-R4	7	Forage	0.04 0.05 (0.05)	0.02 0.03 (0.03)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06431 METCON_150 Max. frozen storage: 3.7 month
USA, 2006, Mason, IL, (Burrus 664 RWR-PX4)	4× 0.11	6–8	159 150 150 159	85	7	Forage	0.13 0.11 (0.12)	0.04 0.04 (0.04)	0.02 0.02 (0.02)	254314 2006/7012839 RCN R06432 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Wyoming, IL, (Burrus 644 RWR)	4× 0.11	6–8	131 131 131 150	R3	6	Forage	0.04 0.04 (0.04)	0.04 0.04 (0.04)	0.01 0.01 (0.01)	254314 2006/7012839 RCN R06433 METCON_150 Max. frozen storage: 3.5 month
USA, 2006, Danville, IN (Wyffels W5531)	4× 0.11	6–8	178 159 150 140	83	7	Forage	0.03 0.04 (0.04)	0.03 0.03 (0.03)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06434 METCON_150 Max. frozen

Location,	Application			Growth			Residues found [mg/kg] ^{ab}			Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
										storage: 3.4 month
USA, 2006, Bellmore, IN (Wyffels W5531)	4× 0.11	7	178 159 168 150	71–73	7	Forage	0.02 0.02 (0.02)	0.03 0.04 (0.04)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06435 METCON_150
USA, 2006, Richland, IO (Golden Harvest HX 9323)	4× 0.11	7	150 122 131 178	R4	7	Forage	0.03 0.05 (0.04)	0.02 0.02 (0.02)	< 0.01 < 0.01 (< 0.01)	Max. frozen storage: 3.4 month 254314 2006/7012839 RCN R06436 METCON_150 Max_frozen
										storage: 3.4 month
USA, 2006, Hedrick,	4× 0.11	6–7	150	R4	7	Forage	0.04	0.01	< 0.01	254314
IO (Pioneer 34A16)			150 150 159				0.06 (0.05)	0.02 (0.02)	0.01 (0.01)	2006/7012839 RCN R06437 METCON_150 Max. frozen storage: 3.4 month
USA, 2006, Ollie.	4× 0.11	7–8	159	R4	7	Forage	0.02	0.03	< 0.01	254314
IO (Middlekoop 2212)			122 131 168				0.02 (0.02)	0.04 (0.04)	< 0.01 (< 0.01)	2006/7012839 RCN R06438 METCON_150 Max. frozen storage: 3.7 month
USA, 2006,	4×	7	187	75	7	Forage	0.02	0.03	< 0.01	254314
Ваднеу, IO (33Р65)	0.11		196 206 206				0.02 (0.02)	0.02 (0.03)	< 0.01 (< 0.01)	2006/7012839 RCN R06439 METCON_150 Max. frozen storage: 3.7month
USA, 2006 Delayan WI	4× 0.11	5–7	178	R3	7	Forage	0.03	0.04	< 0.01	254314
(DKC52–40 (RR2/YGPL))	0.11		168 168 159				0.04 (0.04)	0.03 (0.04)	< 0.01 (< 0.01)	2006/7012839 RCN R06440 METCON_150 Max. frozen storage: 3.1 month
USA, 2006 Ellendale	4× 0.11	6–8	150	R4	7	Forage	0.05	0.03	0.01	254314
MN (Pioneer 38H66)	0.11		159 159 159				0.07 (0.06)	0.03 (0.03)	0.01 (0.01)	2006/7012839 RCN R06441 METCON_150 Max. frozen storage: 3.2 month
USA, 2006 Geneva MN	4× 0.11	6–8	150	R4	7	Forage	0.04	0.02	0.01	254314
(Pioneer	J.11		159				0.05	0.02	0.02	2006/7012839
Location, Application Growth					Residues for	ound [mg/kg	Report/Trial No.,			
--	------------	--------------------	--------------------------	-------------------------	--------------	-------------	------------------------------	--------------------------	------------------------------	--
Year (variety	g ai/ha	Interval (davs)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
38H66)			159 159				(0.05)	(0.02)	(0.02)	RCN R06442 METCON_150 Max. frozen storage: 3.2 month
USA, 2006 York, NE (Pioneer 34N45 RR/YG)	4× 0.11	6-8	187 178 187 187	85	7	Forage	0.05 0.06 (0.06)	0.02 0.02 (0.02)	0.01 0.02 (0.02)	254314 2006/7012839 RCN R06443 METCON_150 Max. frozen storage: 3.6 month
USA, 2006, Grand Island, NE (NK N73-F7 RR/LL/YG)	4× 0.11	6–8	187 178 178 187	85	7	Forage	0.05 0.05 (0.05)	0.02 0.01 (0.02)	0.01 0.01 (0.01)	254314 2006/7012839 RCN R06444 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Osceola, NE (NK N73-F7)	4× 0.11	6–8	187 187 187 187	85	7	Forage	0.06 0.04 (0.05)	0.01 < 0.01 (0.01)	0.02 0.01 (0.02)	254314 2006/7012839 RCN R06445 METCON_150 Max. frozen storage: 3.6 month
USA, 2006, Dill, OK (DK C48–53 AF2)	4× 0.11	6-8	187 187 206 196	87	21	Forage	0.08 0.09 (0.09)	0.02 0.02 (0.02)	0.02 0.02 (0.02)	254314 2006/7012839 RCN R06446 METCON_150 Max. frozen storage: 3.1 month
USA, 2006, Porterville, CA (Bodacious)	4× 0.11	7–8	290 290 290 290	78	7	Forage	0.01 0.02 (0.02)	0.04 0.04 (0.04)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06447 METCON_150 Max. frozen storage: 4.2 month
USA, 2006, Ephrata, WA (Golden Jubilee)	4× 0.11	7	140 140 140 140	73	7	Forage	< 0.01 < 0.01 (< 0.01)	0.01 0.02 (0.02)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06448 METCON_150 Max. frozen storage: 3.8 month
USA, 2006, Corvallis, OR (Super Sweet Jubilee Plus)	4× 0.11	7	122 122 122 122	73	7	Forage	0.02 0.03 (0.03)	0.02 0.02 (0.02)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06449 METCON_150 Max. frozen

Location,	Application			Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
										storage: 3.1 month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

'	Table 217 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid
(TAA) in maize forage following foliar treatment (cGAP USA: 4×92 g ai/ha; 7 days PHI).

Location,	Application			Growth			Residues found [mg/kg] ^a			Report/Trial No.,	
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period	
USA, 2006, South Sodus,	4× 0.11	6–8	290	59–71	7	Forage	< 0.05	0.06	< 0.05	254314	
NY			281				< 0.05	0.08	< 0.05	2006/7012839	
(Speedy			281				(< 0.05)	(0.07)	(< 0.05)	RCN R06425	
sweet)			281							METCON_150	
										Max. frozen	
										storage: 3.0 month	
USA, 2006, Germansville,	4× 0.11	6–7	290	Milk	7	Forage	< 0.05	< 0.05	< 0.05	254314	
PA			290	stage			< 0.05	< 0.05	< 0.05	2006/7012839	
(TA5750)			281				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06426	
			290							METCON_150	
										Max. frozen	
										storage: 3.4 month	
USA, 2006, Seven	4× 0.11	6–8	150	67	7	Forage	< 0.05	< 0.05	< 0.05	254314 2006/7012839	
Springs, NC			159				< 0.05	< 0.05	< 0.05	RCN R06427	
(Garst 8377)			196				(< 0.05)	(< 0.05)	(< 0.05)	METCON_150	
			281							Max. frozen	
										storage: 5.2 month	
USA, 2006, O'Brien, FL	4× 0.11	7	215	75	7	Forage	< 0.05	0.12	< 0.05	254314 2006/7012839	
(8102 R			224		1		< 0.05	0.12	< 0.05	RCN R06428	
Bicolor)			224				(< 0.05)	(0.12)	(< 0.05)	METCON_150	
			234							Max. frozen	
										storage: 2.1 month	
USA, 2006, New Holland,	4× 0.11	6–7	196	73	7	Forage	< 0.05	< 0.05	< 0.05	254314 2006/7012839	
OH			196				< 0.05	< 0.05	< 0.05	RCN R06429	
(Crows			196		1		(< 0.05)	(< 0.05)	(< 0.05)	METCON 150	
7R154)			206					, í	Ť.	Max. frozen	
										storage: 3.7 month	
USA, 2006, Atlanta, OH	4× 0.11	6–8	150	85	7	Forage	< 0.05	< 0.05	< 0.05	254314 2006/7012839	
(Crows 5151)			150				< 0.05	< 0.05	< 0.05	RCN R06430	
			150				(< 0.05)	(< 0.05)	(< 0.05)	METCON_150	
			150							Max. frozen	
										storage: 3.0 month	

Location,	Application Growth Residues found [mg/kg] ^a					a	Report/Trial No.,			
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	ТАА	Reference, Storage period
USA, 2006, Carlvle,	4× 0.11	7	168	R3-R4	7	Forage	< 0.05	< 0.05	< 0.05	254314 2006/7012839
IL,			159				< 0.05	< 0.05	< 0.05	RCN R06431
(BT 6516 RR			178				(< 0.05)	(< 0.05)	(< 0.05)	METCON_150
2YG)			168							Max. frozen
										storage: 3.7 month
USA, 2006, Mason,	4× 0.11	6–8	159	85	7	Forage	< 0.05	0.06	< 0.05	254314 2006/7012839
IL,			150				< 0.05	0.07	< 0.05	RCN R06432
(Burrus 664			150				(< 0.05)	(0.07)	(< 0.05)	METCON_150
RWR-PX4)			159							Max. frozen
										storage: 3.2
	4	6.0	_							month
USA, 2006, Wyoming,	4× 0.11	6–8	131	R3	6	Forage	< 0.05	< 0.05	< 0.05	254314 2006/7012839
IL, December (44			131				< 0.05	< 0.05	< 0.05	RCN R06433
$(Burrus 644 \mathbf{DWP})$			131				(< 0.05)	(< 0.05)	(< 0.05)	METCON_150
KVVK)			150							Max. frozen
										month
USA, 2006, Danville	4× 0.11	6–8	178	83	7	Forage	< 0.05	0.08	< 0.05	254314
IN	0.11		159				< 0.05	0.06	< 0.05	2006/7012839
(Wyffels			150				(< 0.05)	(0.07)	(< 0.05)	RCN R06434
W5531)			140		1			()		METCON 150
										Max. frozen
										storage: 3.4 month
USA, 2006, Bellmore,	4× 0.11	7	178	71–73	7	Forage	< 0.05	< 0.05	< 0.05	254314
IN			159				0.08	0.08	< 0.05	2006/7012839
(Wyffels			168				(0.07)	(0.08)	(< 0.05)	RCN R06435
W5531)			150							METCON_150
			_							Max. frozen
										storage: 3.4 month
USA, 2006, Richland,	4× 0.11	7	150	R4	7	Forage	< 0.05	< 0.05	< 0.05	254314
IO (Golden			122				< 0.05	< 0.05	< 0.05	2006/7012839
Harvest HX			131				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06436
9323)			178							METCON_150
										Max. frozen
										storage: 3.4 month
USA, 2006, Hedrick,	4× 0.11	6–7	150	R4	7	Forage	< 0.05	0.08	< 0.05	254314
IO			150				< 0.05	0.06	< 0.05	2006/7012839
(Pioneer			150				(< 0.05)	(0.07)	(< 0.05)	RCN R06437
34A16)			159							METCON_150
			_							Max. frozen
										storage: 3.4 month
USA, 2006, Ollie,	4× 0.11	7–8	159	R4	7	Forage	< 0.05	0.06	< 0.05	254314
IO			122	1			< 0.05	< 0.05	< 0.05	2006/7012839
(Middlekoop			131				(< 0.05)	(0.06)	(< 0.05)	RCN R06438
2212)			168							METCON_150
										Max. frozen

Location,	Application Growth Residues found [mg/kg] ^a						Report/Trial No.,			
	o ai/ha	Interval	L/ha	stage at	DALA	Sample	т	ТА	ТАА	Reference,
Year (variety	5 11/114	(days)	L/ IIu	final appl.			1	171	1747	Storage period
										storage: 3.7 month
USA, 2006, Baglev,	4× 0.11	7	187	75	7	Forage	< 0.05	0.05	< 0.05	254314
IO			196				< 0.05	< 0.05	< 0.05	2006/7012839
(33P65)			206				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06439
			206					T T		METCON_150
										Max. frozen
										storage: 3.7month
USA, 2006 Delavan, WI	4× 0.11	5–7	178	R3	7	Forage	< 0.05	< 0.05	< 0.05	254314
(DKC52-40			168				< 0.05	< 0.05	< 0.05	2006/7012839
(RR2/YGPL))			168				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06440
			159					T T		METCON_150
										Max. frozen
										storage: 3.1 month
USA, 2006 Ellendale,	4× 0.11	6–8	150	R4	7	Forage	< 0.05	< 0.05	< 0.05	254314
MN			159				< 0.05	< 0.05	< 0.05	2006/7012839
(Pioneer			159				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06441
38H66)			159							METCON_150
										Max. frozen
										storage: 3.2 month
USA, 2006 Geneva, MN	4× 0.11	6–8	150	R4	7	Forage	< 0.05	0.09	< 0.05	254314
(Pioneer			159				< 0.05	0.10	< 0.05	2006/7012839
38H66)			159				(< 0.05)	(0.10)	(< 0.05)	RCN R06442
			159							METCON_150
										Max. frozen
										storage: 3.2 month
USA, 2006 York, NE	4× 0.11	6–8	187	85	7	Forage	< 0.05	0.06	< 0.05	254314
(Pioneer			178				< 0.05	0.05	< 0.05	2006/7012839
34N45			187				(< 0.05)	(0.06)	(< 0.05)	RCN R06443
RR/YG)			187							METCON_150
										Max. frozen
										storage: 3.6
		6.0								month
USA, 2006, Grand Island,	4× 0.11	6–8	187	85	7	Forage	< 0.05	0.06	< 0.05	254314
NE NK NZA DZ	<u> </u>		178				< 0.05	< 0.05	< 0.05	2006/7012839
(NK N/3-F/			178				(< 0.05)	(0.06)	(< 0.05)	KCN R06444
((1))	<u> </u>		18/				+	+		METCON_150
										Max. Irozen
										storage: 3.2 month
USA, 2006, Osceola, NE	4× 0.11	6–8	187	85	7	Forage	< 0.05	0.12	< 0.05	254314
(NK N73-F7)	<u> </u>		187				< 0.05	0.13	< 0.05	2006/7012839
			187				(< 0.05)	(0.12)	(< 0.05)	KCN R06445
			187				+	+		METCON_150
	<u> </u>									Wax. trozen
										storage: 3.6 month
USA, 2006, Dill, OK	4× 0.11	6–8	187	87	21	Forage	< 0.05	< 0.05	< 0.05	254314
(DK C48–53			187				< 0.05	< 0.05	< 0.05	2006/7012839

Location,	Application			Growth			Residues f	ound [mg/kg	g] ^a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
AF2)			206				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06446
			196							METCON_150
										Max. frozen
										storage: 3.1 month
USA, 2006, Porterville,	4× 0.11	7–8	290	78	7	Forage	< 0.05	< 0.05	< 0.05	254314
CA			290				< 0.05	< 0.05	< 0.05	2006/7012839
(Bodacious)			290				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06447
			290							METCON_150
										Max. frozen
										storage: 4.2 month
USA, 2006, Ephrata, WA	4× 0.11	7	140	73	7	Forage	< 0.05	< 0.05	< 0.05	254314
(Golden			140				< 0.05	< 0.05	< 0.05	2006/7012839
Jubilee)			140				(< 0.05)	(< 0.05)	(< 0.05)	RCN R06448
			140							METCON_150
										Max. frozen
										storage: 3.8 month
USA, 2006, Corvallis, OR	4× 0.11	7	122	73	7	Forage	< 0.05	0.08	< 0.05	254314
(Super Sweet			122				< 0.05	0.07	< 0.05	2006/7012839
Jubilee Plus)			122				(< 0.05)	(0.08)	(< 0.05)	RCN R06449
			122					Control:		METCON_150
								0.07		Max. frozen
										storage: 3.1 month

Maize stover

A total of 20 field trials were conducted on maize in the USA during the 2006 growing season (Carringer, 2006, METCON_150). Plants received 4 foliar applications of metconazole at nominal rates of 110 g ai/ha. Maize stover was collected at 20–22 days after the last application. Residues of cis- and trans-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Table 218 Residues of *cis*- and *trans*-metconazole in maize stover following foliar treatment (cGAP USA: 4×92 g ai/ha; 20 days PHI).

Location,	Applica	ation	Growth			Residues found [mg/kg] ^a			Report/Trial No.,	
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	e trans	Total	Reference, Storage period
USA, 2006, Germansville, PA (TA5750)	4× 0.11	7	290 290 281 290	87	21	Stover	0.74 1.0 (0.88)	0.18 0.36 (0.27)	0.93 1.4 (1.2)	254314 2006/7012839 RCN R06426 METCON_150 Max. frozen storage: 2.5 month

Location,	Applica	ation		Growth		A. C	Residues fo	und [mg/kg]	а	Report/Trial No.,
/ - /	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	5 ur nu	(days)	Linia	final appl.			cis	trans	Totui	Storage period
USA, 2006, Seven Springs, NC (Garst 8377)	4× 0.11	7	271 271 271 271	87	21	Stover	0.11 0.11 (0.11)	0.03 0.03 (0.03)	0.14 0.14 (<u>0.14</u>)	254314 2006/7012839 RCN R06427 METCON_150 Max. frozen storage: 3.3 month
USA, 2006, New Holland, OH (Crows 7R154)	4× 0.11	6–9	196 196 206 196	87	20	Stover	1.7 1.7 (1.7)	0.34 0.39 (0.37)	2.0 2.0 (<u>2.0)</u>	254314 2006/7012839 RCN R06429 METCON_150 Max. frozen storage: 2.7 month
USA, 2006, Atlanta, OH (Crows 5151)	4× 0.11	6–9	150 150 150 150	87	20	Stover	1.2 1.5 (1.3)	0.21 0.35 (0.28)	1.4 1.8 (<u>1.6)</u>	254314 2006/7012839 RCN R06430 METCON_150 Max. frozen storage: 2.2 month
USA, 2006, Carlyle, IL, (BT 6516 RR 2YG)	4× 0.11	7	131 215 224 178	R6	21	Stover	2.6 1.9 (2.2)	0.54 0.37 (0.46)	3.1 2.2 (<u>2.7)</u>	254314 2006/7012839 RCN R06431 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Mason, IL, (Burrus 664 RWR-PX4)	4× 0.11	6–8	159 140 159 159	87–89	21	Stover	1.2 1.1 (1.2)	0.22 0.21 (0.22)	1.4 1.4 <u>(1.4)</u>	254314 2006/7012839 RCN R06432 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Wyoming, IL, (Burrus 644 RWR)	4× 0.11	6–7	159 159 159 150	R5	22	Stover	1.6 1.8 (1.7)	0.37 0.43 (0.40)	2.0 2.2 (<u>2.1)</u>	254314 2006/7012839 RCN R06433 METCON_150 Max. frozen storage: 2.2 month
USA, 2006, Danville, IN (Wyffels W5531)	4× 0.11	7	140 140 150 159	87–89	21	Stover	1.1 1.9 (1.5)	0.21 0.39 (0.30)	1.3 2.3 <u>(1.8)</u>	254314 2006/7012839 RCN R06434 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Bellmore, IN (Wyffels W5531)	4× 0.11	6–8	159 159 159 159	87	21	Stover	2.8 2.4 (2.6)	0.69 0.54 (0.62)	3.5 2.9 (<u>3.2</u>)	254314 2006/7012839 RCN R06435 METCON_150 Max. frozen storage: 2.0 month
USA, 2006, Richland,	4× 0.11	7	150	R5	21	Stover	1.1	0.32	1.5	254314

Location,	Application			Growth		A Sample	Residues found [mg/k] a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metconazol <i>cis</i>	le trans	Total	Reference, Storage period
IO (Golden Harvest HX 9323)			150 150 178				1.2 (1.2)	0.32 (0.32)	1.5 (1.5)	2006/7012839 RCN R06436 METCON_150 Max. frozen storage: 2.5 month
USA, 2006, Hedrick, IO (Pioneer 34A16)	4× 0.11	7-8	159 159 159 140	R5	21	Stover	1.3 1.7 (1.5)	0.19 0.35 (0.27)	1.5 2.0 (<u>1.8</u>)	254314 2006/7012839 RCN R06437 METCON_150 Max. frozen storage: 3.3 month
USA, 2006, Ollie, IO (Middlekoop 2212)	4× 0.11	7	159 150 159 178	R5	21	Stover	2.2 1.7 (1.9)	0.44 0.34 (0.39)	2.6 2.0 (2.3)	254314 2006/7012839 RCN R06438 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Bagley, IO (33P65)	4× 0.11	7	206 206 224 215	85	21	Stover	1.9 1.4 (1.6)	0.37 0.22 (0.30)	2.3 1.6 (1.9)	254314 2006/7012839 RCN R06439 METCON_150 Max. frozen storage: 2.5 month
USA, 2006 Delavan, WI (DKC52–40 (RR2/YGPL))	4× 0.11	6–7	159 159 168 159	R5	21	Stover	1.2 1.8 (1.5)	0.22 0.33 (0.28)	1.4 2.1 (1.8)	254314 2006/7012839 RCN R06440 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 Ellendale, MN (Pioneer 38H66)	4× 0.11	6–7	159 150 168 159	R5/R6	21	Stover	2.1 2.4 (2.3)	0.47 0.48 (0.48)	2.6 2.8 (2.7)	254314 2006/7012839 RCN R06441 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 Geneva, MN (Pioneer 38H66)	4× 0.11	6–7	159 159 168 159	R5/R6	21	Stover	1.8 1.3 (1.6)	0.41 0.28 (0.35)	2.3 1.6 (1.9)	254314 2006/7012839 RCN R06442 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 York, NE (Pioneer 34N45 RR/YG)	4× 0.11	6–7	187 187 187 187	87	21	Stover	1.4 1.2 (1.3)	0.22 0.20 (0.21)	1.6 1.4 (<u>1.5)</u>	254314 2006/7012839 RCN R06443 METCON_150 Max. frozen

Location,	Applic	ation		Growth	wth Residues found [mg] a	Report/Trial No.,
	σ ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Year (variety	5 11/114	(days)	L, na	final appl.			cis	trans	Totul	Storage period
										storage: 3.5
										month
USA, 2006, Grand Island.	4× 0.11	7	178	87	21	Stover	0.84	0.16	1.0	254314
NE			187				0.73	0.14	0.88	2006/7012839
(NK N73-F7			187				(0.79)	(0.15)	(0.94)	RCN R06444
RR/LL/YG)			187							METCON_150
										Max. frozen
										storage: 3.0
										month
USA, 2006, Osceola, NE	4× 0.11	6–8	187	87	21	Stover	1.6	0.32	1.9	254314
(NK N73-F7)			187				1.8	0.34	2.1	2006/7012839
			187				(1.7)	(0.33)	(2.0)	RCN R06445
			187							METCON_150
										Max. frozen
										storage: 3.5
										month
USA, 2006, Dill, OK	4× 0.11	6–9	196	87	21	Stover	1.7	0.35	2.1	254314
(DK C48–53			206				2.4	0.45	2.8	2006/7012839
AF2)			196				(2.0)	(0.40)	(2.5)	RCN R06446
			196							METCON_150
										Max. frozen
										storage: 2.5
										month

Table 219 Residues of metabolites M11, M21 and M30 in maize stover following foliar treatment (cGAP USA: 4×92 g ai/ha; 20 days PHI).

Year (varietyg ai/haInterval (days)L/hastage at final appl.DALASampleM11M21M30Reference, Storage perUSA, 2006, $4 \times$ Germansville,72908721Stover0.090.030.01254314PA2902810.070.040.012006/70128(TA5750)2810.080.040.01RCN R0642	g] ^{ab} Report/Trial No.,	
USA, 2006, 4× Germansville, 0.11 PA (TA5750) (TA	riod	
PA 290 0.07 0.04 0.01 2006/70128 (TA5750) 281 0.08 0.04 0.01 RCN R0642		
(TA5750) 281 0.08 0.04 0.01 RCN R064	339	
	26	
290 METCON	150	
Max. frozer	a	
storage: 2.5	;	
month		
USA, 2006, 4×7 Seven 0.11 7 271 87 21 Stover 0.10 0.03 0.05 $\frac{254314}{2006/70128}$	339	
Springs, NC 271 0.11 0.03 0.04 RCN R0642	27	
(Garst 8377) 271 (0.11) (0.03) (0.05) METCON_	150	
271 Max. frozer	a	
storage: 3.3 month	i.	
USA, 2006, $4\times$ 6–9 196 87 20 Stover 0.48 0.14 0.07 254314		
OH 196 0.47 0.13 0.06 PCN P064	559 20	
(Crows = 206 = 0.47 = 0.13 = 0.00 = RCN R004.	29 150	
(0.14) (0.14) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)	_150 n	
storage: 2.7	7	
month		
USA, 2006, $4 \times 6 - 9$ 150 87 20 Stover 0.43 0.07 0.05 254314	220	
(Crows 5151) 150 0.49 0.08 0.06 RCN R064	559 30	

Location,	Applic	ation	1	Growth			Residues	found [mg/k	g] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
			150 150				(0.46)	(0.08)	(0.06)	METCON_150 Max. frozen storage: 2.2 month
USA, 2006, Carlyle, IL, (BT 6516 RR 2YG)	4× 0.11	7	131 215 224 178	R6	21	Stover	2.4 1.7 (2.0)	0.40 0.34 (0.37)	0.30 0.27 (0.29)	254314 2006/7012839 RCN R06431 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Mason, IL, (Burrus 664 RWR-PX4)	4× 0.11	6–8	159 140 159 159	87–89	21	Stover	0.26 0.34 (0.30)	0.09 0.11 (0.10)	0.05 0.06 (0.06)	254314 2006/7012839 RCN R06432 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Wyoming, IL, (Burrus 644 RWR)	4× 0.11	6–7	159 159 159 150	R5	22	Stover	0.16 0.17 (0.17)	0.05 0.05 (0.05)	0.03 0.03 (0.03)	254314 2006/7012839 RCN R06433 METCON_150 Max. frozen storage: 2.2 month
USA, 2006, Danville, IN (Wyffels W5531)	4× 0.11	7	140 140 150 159	87–89	21	Stover	0.32 0.50 (0.41)	0.14 0.21 (0.18)	0.07 0.08 (0.08)	254314 2006/7012839 RCN R06434 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Bellmore, IN (Wyffels W5531)	4× 0.11	6–8	159 159 159 159	87	21	Stover	0.47 0.38 (0.43)	0.13 0.09 (0.11)	0.06 0.05 (0.06)	254314 2006/7012839 RCN R06435 METCON_150 Max. frozen storage: 2.0 month
USA, 2006, Richland, IO (Golden Harvest HX 9323)	4× 0.11	7	150 150 150 178	R5	21	Stover	0.36 0.32 (0.34)	0.05 0.07 (0.06)	0.04 0.05 (0.05)	254314 2006/7012839 RCN R06436 METCON_150 Max. frozen storage: 2.5 month
USA, 2006, Hedrick, IO (Pioneer 34A16)	4× 0.11	7–8	159 159 159 140	R5	21	Stover	0.14 0.26 (0.20)	0.07 0.09 (0.08)	0.03 0.04 (0.04)	254314 2006/7012839 RCN R06437 METCON_150 Max. frozen storage: 3.3 month
USA, 2006, Ollie, IO	4× 0.11	7	159 150	R5	21	Stover	0.14 0.12	0.09 0.08	0.03 0.03	254314 2006/7012839

Location,	Applic	ation		Growth	1		Residues for	ound [mg/kg	g] ^{ab}	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
(Middlekoop 2212)			159 178				(0.13)	(0.09)	(0.03)	RCN R06438 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Bagley, IO (33P65)	4× 0.11	7	206 206 224 215	85	21	Stover	0.16 0.12 (0.14)	0.07 0.06 (0.07)	0.03 0.02 (0.03)	254314 2006/7012839 RCN R06439 METCON_150 Max. frozen
USA, 2006 Delavan, WI (DKC52–40 (RR2/YGPL))	4× 0.11	6–7	159 159 168	R5	21	Stover	0.15 0.23 (0.19)	0.06 0.08 (0.07)	0.02 0.03 (0.03)	storage: 2.5 month 254314 2006/7012839 RCN R06440
USA, 2006	4×	6–7	159	P.5/P.6	21	Stavon	0.51	0.06	0.05	METCON_150 Max. frozen storage: 2.3 month 254314
Ellendale, MN (Pioneer 38H66)	0.11		159 150 168 159	K3/K0	21	Slover	0.55 (0.53)	0.07 (0.07)	0.05 (0.05)	2006/7012839 RCN R06441 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 Geneva, MN (Pioneer 38H66)	4× 0.11	6–7	159 159 168 159	R5/R6	21	Stover	0.31 0.27 (0.29)	0.05 0.04 (0.05)	0.04 0.03 (0.04)	254314 2006/7012839 RCN R06442 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 York, NE (Pioneer 34N45 RR/YG)	4× 0.11	6–7	187 187 187 187	87	21	Stover	0.15 0.16 (0.16)	0.08 0.07 (0.08)	0.04 0.04 (0.04)	254314 2006/7012839 RCN R06443 METCON_150 Max. frozen storage: 3.5 month
USA, 2006, Grand Island, NE (NK N73-F7 RR/LL/YG)	4× 0.11	7	178 187 187 187	87	21	Stover	0.09 0.08 (0.09)	0.03 0.03 (0.03)	0.02 0.02 (0.02)	254314 2006/7012839 RCN R06444 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Osceola, NE (NK N73-F7)	4× 0.11	6–8	187 187 187 187	87	21	Stover	0.35 0.38 (0.37)	0.10 0.10 (0.10)	0.08 0.08 (0.08)	254314 2006/7012839 RCN R06445 METCON_150 Max. frozen

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	ab	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Reference, Storage period
										storage: 3.5 month
USA, 2006, Dill, OK	4× 0.11	6–9	196	87	21	Stover	0.30	0.07	0.07	254314
(DK C48–53			206				0.31	0.09	0.06	2006/7012839
AF2)			196				(0.31)	(0.08)	(0.07)	RCN R06446
			196							METCON_150
										Max. frozen
										storage: 2.5
										month

^b Residues of metabolites M11, M21 and M30 are expressed as parent equivalent (conversion factors 0.95, 0.95 and 0.96, respectively). For calculations, 0.01 mg/kg was used for residues below or at the LOQ for metabolites M11, M21 and M30.

Table 220 Residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in maize stover following foliar treatment (cGAP USA: 4×92 g ai/ha; 20 days PHI).

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
USA, 2006, Germansville,	4× 0.11	7	290	87	21	Stover	< 0.05	< 0.05	< 0.05	254314
PA (TA5750)			290 281 290				< 0.05 (< 0.05)	< 0.05 (< 0.05)	< 0.05 (< 0.05)	2006/7012839 RCN R06426 METCON_150 Max. frozen storage: 2.5 month
USA, 2006, Seven Springs, NC (Garst 8377)	4× 0.11	7	271 271 271 271	87	21	Stover	< 0.05 < 0.05 (< 0.05)	0.05 0.06 (0.06)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06427 METCON_150 Max. frozen storage: 3.3 month
USA, 2006, New Holland, OH (Crows 7R154)	4× 0.11	6–9	196 196 206 196	87	20	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06429 METCON_150 Max. frozen storage: 2.7 month
USA, 2006, Atlanta, OH (Crows 5151)	4× 0.11	6–9	150 150 150 150	87	20	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06430 METCON_150 Max. frozen storage: 2.2 month
USA, 2006, Carlyle, IL, (BT 6516 RR 2YG)	4× 0.11	7	131 215 224 178	R6	21	Stover	< 0.01 < 0.01 (< 0.01)	< 0.05 < 0.05 (< 0.05)	< 0.01 < 0.01 (< 0.01)	254314 2006/7012839 RCN R06431 METCON_150 Max. frozen storage: 3.0 month

Location,	Applic	ation		Growth			Residues fo	und [mg/kg]	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	ТАА	Reference, Storage period
USA, 2006, Mason, IL, (Burrus 664 RWR-PX4)	4× 0.11	6–8	159 140 159 159	87–89	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06432 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Wyoming, IL, (Burrus 644 RWR)	4× 0.11	6–7	159 159 159 150	R5	22	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06433 METCON_150 Max. frozen storage: 2.2 month
USA, 2006, Danville, IN (Wyffels W5531)	4× 0.11	7	140 140 150 159	87–89	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06434 METCON_150 Max. frozen storage: 3.2 month
USA, 2006, Bellmore, IN (Wyffels W5531)	4× 0.11	6–8	159 159 159 159	87	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06435 METCON_150 Max. frozen storage: 2.0 month
USA, 2006, Richland, IO (Golden Harvest HX 9323)	4× 0.11	7	150 150 150 178	R5	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06436 METCON_150 Max. frozen storage: 2.5 month
USA, 2006, Hedrick, IO (Pioneer 34A16)	4× 0.11	7–8	159 159 159 140	R5	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06437 METCON_150 Max. frozen storage: 3.3 month
USA, 2006, Ollie, IO (Middlekoop 2212)	4× 0.11	7	159 150 159 178	R5	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06438 METCON_150 Max. frozen storage: 3.0 month_
USA, 2006, Bagley, IO (33P65)	4× 0.11	7	206 206 224 215	85	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06439 METCON_150 Max. frozen

Location,	Applic	ation		Growth			Residues for	ound [mg/kg	a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Т	ТА	TAA	Reference, Storage period
										storage: 2.5
USA, 2006 Delavan, WI (DKC52–40 (RR2/YGPL))	4× 0.11	6–7	159 159 168 159	R5	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06440 METCON_150 Max. frozen storage: 2.3
USA, 2006 Ellendale, MN (Pioneer 38H66)	4× 0.11	6–7	159 150 168 159	R5/R6	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06441 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 Geneva, MN (Pioneer 38H66)	4× 0.11	6–7	159 159 168 159	R5/R6	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06442 METCON_150 Max. frozen storage: 2.3 month
USA, 2006 York, NE (Pioneer 34N45 RR/YG)	4× 0.11	6–7	187 187 187 187	87	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06443 METCON_150 Max. frozen storage: 3.5 month
USA, 2006, Grand Island, NE (NK N73-F7 RR/LL/YG)	4× 0.11	7	178 187 187 187	87	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06444 METCON_150 Max. frozen storage: 3.0 month
USA, 2006, Osceola, NE (NK N73-F7)	4× 0.11	6–8	187 187 187 187	87	21	Stover	< 0.05 < 0.05 (< 0.05)	0.07 0.07 (0.07)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06445 METCON_150 Max. frozen storage: 3.5 month
USA, 2006, Dill, OK (DK C48–53 AF2)	4× 0.11	6–9	196 206 196 196	87	21	Stover	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	< 0.05 < 0.05 (< 0.05)	254314 2006/7012839 RCN R06446 METCON_150 Max. frozen storage: 2.5 month

Almond hulls

A total of seven field trials were conducted on almonds in the USA during the 2003 and 2005 growing seasons (Green, 2006, METCON_155). Plants received 2 foliar applications of metconazole at nominal rates of 304 g ai/ha. Two trial also received an exaggerated rate of 2 application at 608 g ai/ha. Additional samples from a decline trial were collected at 15, 20, 25 and 30 DALA. Samples of almond hulls were taken at 25 days after the last application. Residues of *cis*- and *trans*-metconazole were determined using method RM-41C-1 with a limit of quantification of 0.02 mg/kg. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in pecans spiked from 0.02 to 4.0 mg/kg were $93 \pm 8\%$ (n = 17) and $94 \pm 6\%$ (n = 17), respectively.

Table 221 Residues of metconazole in almonds following foliar treatment (cGAP USA: 4×123 g ai/ha; 25 days PHI).

Location,	Applica	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
-	• /1	Interval	т /1	stage at	DALA	Sample	Metconazol	le	T (1	Reference,
Year (variety	g ai/na	(days)	L/na	final appl.		_ ^	cis	trans	Totai	Storage period
USA, 2003,	307	155	1034	100% hull	25	Hulls	0.98	0.22	1.2	V200600153
Orland, CA	306		1038	split			1.2	0.25	1.5	2006/7017431
(TN 0660				1			(1.1)	(0.24)	(1.3)	V-25700-03-A
Non-Pareil)	608	155	1031	100% hull	25	Hulls	2.1	0.44	2.5	METCON 155
	607		1038	split			2.0	0.42	2.4	Max. frozen
				1			(2.0)	(0.43)	(2.5)	storage: 8.0 month
USA, 2003,	308	138	1313	Formed	15	Hulls	0.68	0.14	0.82	V200600153
Madera, CA	306		1307	almond full	L		0.57	0.12	0.69	2006/7017431
(TN 0660							(0.63)	(0.13)	(0.76)	V-25700-03-В
Non-Pareil)					20		0.59	0.11	0.70	METCON_155
							0.59	0.12	0.71	Max. frozen
							(0.59)	(0.12)	(0.71)	storage: 8.9 month
					25		0.42	0.08	0.50	Ũ
							0.51	0.10	0.61	
							(0.47)	(0.09)	(0.56)	
					30		0.66	0.13	0.79	
							0.66	0.13	0.79	
							(0.66)	(0.13)	(0.79)	
USA, 2003,	304	138	934	Hull split	25	Hulls	0.60	0.12	0.72	V200600153
Yuba City,	304		936	· ·			0.46	0.09	0.55	2006/7017431
CA (TN 0660							(0.53)	(0.11)	(0.64)	V-25700-03-C
Non-Pareil)										METCON 155
										Max. frozen
										storage: 4.5 month
USA, 2003,	304	144	1209	Hull split	25	Hulls	1.5	0.32	1.8	V200600153
Kerman, CA	304		1208	10%			2.9	0.60	3.5	2006/7017431
(TN 0660							1.9	0.44	2.4	V-25700-03-D
Non-Pareil)							3.0	0.65	3.7	METCON 155
							1.7	0.39	2.1	Max. frozen
							2.8	0.60	3.4	storage: 9.4 month
							(2.3)	(0.50)	(2.8)	ũ
USA, 2003,	308	136	1402	Hull split	25	Hulls	0.65	0.12	0.77	V200600153
Terra Bella,	305		1338				0.65	0.13	0.78	2006/7017431
CA (TN 0660							(0.65)	(0.13)	(0.78)	V-25700-03-Е
Non-Pareil)										METCON 155
										Max. frozen
										storage: 8.8 month
USA, 2005,	153	149	1032	Hull split	25	Hulls	0.35	0.08	0.43	V200600153
Glenn, CA	305		1309	· ·			0.30	0.07	0.37	2006/7017431
(TN 0660							(0.33)	(0.08)	(0.40)	V-25700-03-F
Non-Pareil)	152	149	1031	Hull split	2.5	Hulls	< 0.02	< 0.02	< 0.04	METCON 155
	304		1310	1			< 0.02	< 0.02	< 0.04	Max. frozen

Location,	Applic	ation		Growth			Residues fo	und [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconazol	e	Total	Reference,
Year (variety	g ai/na	(days)	L/na	final appl.		_	cis	trans	Total	Storage period
							(< 0.02)	(< 0.02)	(< 0.04)	storage: 2.5 month
USA, 2005,	150	133	1109	Hull split	25	Hulls	0.61	0.15	0.76	V200600153
Kerman, CA	299		1102				0.62	0.13	0.75	2006/7017431
(TN 0660							(0.62)	(0.14)	(0.76)	V–25700-03-G
Non-Pareil)	151	133	1114	Hull split	25	Hulls	1.3	0.28	1.6	METCON_155
	299		1106				1.7	0.33	2.0	Max. frozen
							(1.5)	(0.31)	(1.8)	storage: 3.1 month

Rape seed forage

A total of seven field trials were conducted on oilseed rape in France during the 1995, 1996 and 1998 growing seasons (METCON_156 to METCON_161). Plants received 2 foliar applications of metconazole at nominal rates of 90 g ai/ha, one at first petal fall and the second 14 days later. Additional samples from decline trials were collected at -0, 0, 14, 29/39 and 39–57 DALA. Rape plants were harvested at intervals ranging between 39–70 days after the last application. Residues of *cis-* and *trans-*metconazole were determined using method FAMS 059-01 or FAMS 059-02 with a limit of quantification of 0.01 mg/kg. Overall mean procedural recoveries for *cis-* and *trans-*metconazole in oilseed rape plants were between 70–120% with an RDS of <20% for both methods and all analytes.

Table 222 Residues of metconazole in oilseed rape plants following foliar treatment (cGAP Chile: 2×90 g ai/ha; 42 days PHI).

Location,	Applica	ation		Growth			Residues for	ound [mg/kg] a	Report/Trial No.,
	a ai/ha	Interval	I /ho	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Year (variety	g al/lla	(days)	L/IIa	final appl.			cis	trans	Total	Storage period
France, 1996,	2×90	14	400	69	-0	Plants	0.34	0.050	0.39	MK-FR-96-217
Carniac et St.			400		0		0.83	0.16	0.99	MK-750-004
denis					14		0.20	0.040	0.24	96–217–297
(Synergy)					29		0.12	0.020	0.14	METCON_157
					39		0.080	0.010	0.09	Max. frozen
										storage: 5 months
France, 1996,	2 × 90	14	400	69	-0	Plants	0.12	0.020	0.14	MK-FR-96-217
Martres			400		0		0.73	0.15	0.88	MK-750-004
(Groeland)					14		0.14	0.030	0.17	96–217–298
					29		0.050	0.010	0.060	METCON_157
					39		0.060	0.010	0.070	Max. frozen
										storage: 5 months
France, 1996,	2×90	14	400	69	-0	Plants	0.14	0.030	0.17	MK-FR-96-217
Martres			400		0		1.6	0.33	1.90	MK-750-004
(Synergy)					14		0.35	0.070	0.42	96–217–299
					39		0.090	0.020	0.11	METCON_157
					57		0.11	0.020	0.13	Max. frozen
										storage: 5 months
France, 1996,	2×90	14	364	69/71	-0	Plants	0.49	0.090	0.58	MK-FR-96-215
Caillouet			364		0		1.6	0.34	1.91	MK-750-006
(Goeland)					14		0.64	0.12	0.76	96–215–316
					29		0.11	0.020	0.13	METCON_159
					41		0.040	< 0.01	0.050	Max. frozen
										storage: 6 months
France, 1996,	2 × 90	14	364	69/71	-0	Plants	0.49	0.090	0.58	MK-FR-96-215
Pacy sur eure			364		0		1.70	0.35	2.05	MK-750-006
Orgeville					14		0.32	0.060	0.38	96–215–317
(Goeland)					29		0.090	0.020	0.11	METCON_159
					41		0.050	0.010	0.060	Max. frozen
										storage: 6 months

Location,	Applica	ation		Growth			Residues fo	ound [mg/kg] a	Report/Trial No.,
Voor (voriety	g ai/ha	Interval	L/ha	stage at	DALA	Sample	Metconazo	le	Total	Reference,
Teal (vallety		(days)		imai appi.			CIS	trans		Storage period
France, 1996,	2×90	16	300	71	-0	Plants	0.39	0.080	0.47	MK-FR-96-215
Epoye			300		0		1.0	0.22	1.24	MK-750-006
(Synergy)					15		0.34	0.070	0.41	96–215–318
					29		0.13	0.030	0.16	METCON_159
					40		0.11	0.020	0.13	Max. frozen
										storage: 6 months
France, 1996,	2 × 90	16	300	69	-0	Plants	0.17	0.030	0.20	MK-FR-96-215
Pignicourt			300		0		1.80	0.36	2.16	MK-750-006
(Goeland)					15		0.23	0.050	0.28	96-215-319
					29		0.14	0.030	0.17	METCON 159
					40		0.10	0.020	0.12	Max. frozen
										storage: 6 months

Cotton gin by-products

A total of six field trials were conducted on cotton in Canada and the USA during the 2006 growing season (Carringer, 2007, METCON_164). Plants received 3 foliar applications of metconazole at nominal rates of 110 g ai/ha. Additionally, one trial received an exaggerated rate at 3×550 g ai/ha. Cotton gin by-products were sampled at 29–32 days after the last application. Residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA were determined using method D0604. The limit of quantification for the sum of cis- and trans-metconazole and metabolites M11, M21, M30 was at 0.01 mg/kg, and for metabolites T, TAA and TA at 0.01 mg/kg or 0.05 mg/kg. Procedural recoveries for all trials and analytes were within 70–120% with an RSD of < 20%.

Residues of metabolites 1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid, were each below their LOQ of 0.05 mg/kg mg/kg in all trials.

Table 223 Residues of *cis*- and *trans*-metconazole in cotton gin by-products following foliar treatment (cGAP USA: 3×92 g ai/ha; 30 days PHI).

Location,	Applicati	on		Growth			Residues	found [mg	/kg] ^a	Report/Trial No.,
	a ai/ha	Interval	I /ha	stage at	DALA	Sample	Metconaz	cole	Total	Reference,
Year (variety	g al/lla	(days)	L/IIa	final appl.			cis	trans	TOTAL	Storage period
USA, 2006, Newport, AR (DP444 BG/RR)	3 × 110	- 6 7	94 94 94	81	30	Gin by- products	1.9 2.1 (2.0)	0.49 0.51 (0.50)	2.4 2.6 (<u>2.5)</u>	254317 2007/7001663 RCN R06451 METCON_164 Max. frozen storage: 5.8 months
USA, 2006, Proctor AR (DP444BR)	3×110	- 7 7	122 122 122	15% open bolls	30	Gin by- products	0.14 0.15 (0.14)	0.034 0.036 (0.035)	0.17 0.18 (<u>0.18)</u>	254317 2007/7001663 RCN R06453 METCON_164 Max. frozen storage: 6.1 months
USA, 2006, Uvalde, TX (DPL 444)	3 × 110	- 7 7	131 140 131	81	31	Gin by- products	0.15 0.16 (0.14)	0.027 0.037 (0.032)	0.14 0.20 (<u>0.17)</u>	254317 2007/7001663 RCN R06454 METCON_164 Max. frozen storage: 5.5 month
USA, 2006, Levelland, TX (FM9063	3×110	- 8	140 140	79–80	30	Gin by- products	3.0 3.8	0.70 0.86	3.7 4.6	254317 2007/7001663 RCN R06455

Location,	Applicati	ion		Growth			Residues	found [mg	g/kg] ^a	Report/Trial No.,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	Metcona: cis	zole <i>trans</i>	Total	Reference, Storage period
B2F)		7	140				(3.4)	(0.78)	<u>(4.1)</u>	METCON_164 Max. frozen storage: 2.8 month
USA, 2006, Wolfforth, TX (Fiber Max 960 BG II)	3 × 110	- 6 8	140 140 140	79	30	Gin by- products	3.2 3.1 (3.2)	0.53 0.50 (0.52)	3.7 3.6 (<u>3.7)</u>	254317 2007/7001663 RCN R06456 METCON_164 Max. frozen storage: 4.5 month
USA, 2006, Hinton, OK (DG 2242 B2RF)	3 × 110	- 7 7	112 196 206	87	32	Gin by- products	2.1 2.5 (2.3)	0.51 0.55 (0.53)	2.6 3.0 (<u>2.8)</u>	254317 2007/7001663 RCN R06457 METCON_164 Max. frozen storage: 4.8 month

Table 224 Residues of metabolites M11, M21 and M30 in cotton gin by-products following foliar treatment (cGAP USA: 3×92 g ai/ha; 30 days PHI)

Location,	Location, Application			Growth			Residues	found [m	g/kg] ª	Report/Trial No., Reference.
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Storage period
USA, 2006, Newport, AR (DP444 BG/RR)	3 × 110	- 6 7	94 94 94	81	30	Gin by- products	0.12 0.14 (0.13)	0.040 0.040 (0.040)	0.020 0.020 (0.020)	254317 2007/7001663 RCN R06451 METCON_164 Max. frozen storage: 5.8 months
USA, 2006, Proctor AR (DP444BR)	3 × 110	- 7 7	122 122 122	15% open bolls	30	Gin by- products	0.020 0.020 (0.020)	< 0.01 < 0.01 (< 0.01)	< 0.01 < 0.01 (< 0.01)	254317 2007/7001663 RCN R06453 METCON_164 Max. frozen storage: 6.1 months
USA, 2006, Uvalde, TX (DPL 444)	3 × 110	- 7 7	131 140 131	81	31	Gin by- products	0.010 0.020 (0.015)	0.020 0.030 (0.025)	< 0.01 < 0.01 (< 0.01)	254317 2007/7001663 RCN R06454 METCON_164 Max. frozen storage: 5.5 month
USA, 2006, Levelland, TX (FM9063 B2F)	3 × 110	- 8 7	140 140 140	79–80	30	Gin by- products	0.060 0.080 (0.070)	0.040 0.040 (0.040)	0.010 0.010 (0.010)	254317 2007/7001663 RCN R06455 METCON_164 Max. frozen storage: 2.8 month
USA, 2006, Wolfforth, TX (Fiber Max 960 BG II)	3 × 110	- 6 8	140 140 140	79	30	Gin by- products	0.060 0.070 (0.065)	0.040 0.040 (0.040)	0.01 0.01 (0.010)	254317 2007/7001663 RCN R06456 METCON_164

Location,	Applicati	on		Growth		<u></u>	Residues	found [mg	/kg] ^a	Report/Trial No., Reference,
Year (variety	g ai/ha	Interval (days)	L/ha	stage at final appl.	DALA	Sample	M11	M21	M30	Storage period
										Max. frozen storage: 4.5 month
USA, 2006, Hinton, OK (DG 2242 B2RF)	3 × 110	- 7 7	112 196 206	87	32	Gin by- products	0.11 0.13 (0.12)	0.030 0.030 (0.030)	0.020 0.020 (0.020)	254317 2007/7001663 RCN R06457 METCON_164 Max. frozen storage: 4.8 month

FATE OF RESIDUES IN STORAGE AND PROCESSING

Nature of residue during processing

Cis-isomer specific radiolabelled [triazole $^{-14}$ C]-metconazole was incubated in aqueous acetate buffer solutions at concentrations of about 0.36 mg/L under three sets of conditions, each designed to simulate an appropriate process: 90 °C (pH 4, 20 minutes) to simulate pasteurisation, 100 °C (pH 5, 60 minutes), to simulate boiling, baking and brewing, and 120 °C (pH 6, 20 minutes) to simulate sterilisation (Adam, 2013, METCON_166).

Total recovered radioactivity was measured for each test solution by LSC. Radioactive components were characterised by fractionation and co-chromatography with authenticated reference compounds using HPLC-UV. Selected samples were also analysed by TLC as confirmatory method.

Table 225 Hydrolysis of <i>cis</i> -metconazole under simulated processing cond	litions.
---	----------

Compound	% applied radioactivity recovered	as							
	Total	cis-metconazole	trans-metconazole						
pH 4 90°C 20 mins									
Before test 100 98 1.6									
After test	95	94	1.1						
pH 5 100°C 60 mins									
Before test	100	98	1.7						
After test	97	96	1.5						
pH 6 120°C 20 m	iins								
Before test	100	98	1.6						
After test	97	96	1.6						

Residues after processing

The fate of metconazole during processing of raw agricultural commodity (RAC) was investigated in plums, soya bean, potato, sugar beet, barley, oat, maize, wheat, sugar cane, oilseed rape seed, cotton seed and peanut. As a measure of the transfer of residues into processed products, a processing factor was used, which is defined as:

Processing factor = Residue in processed product $(mg/kg) \div$ Residue in raw agricultural commodity (mg/kg)

If residues in the RAC were below the LOQ, no processing factor could be derived. In case of residues below the LOQ in the processed product, the numeric value of the LOQ was used for the calculation and the PF was expressed as "less than" (e.g. < 0.5).

Plum

The transfer of residues of metconazole into processed commodities was investigated in plums from one supervised field trial conducted in the USA (Green, 2006, METCON_106). The trial was performed with an exaggerated rate of 3×750 g ai/ha with an interval of 7 and 119 days and harvest at 14 DALA. Plums were oven dried using common commercial practices. All samples were analysed according to method RM-41C-1. Overall mean procedural recoveries for *cis*- and *trans*-metconazole in plums spiked at 0.02–1.0 mg/kg were 94% (n = 4) and 96% (n = 4), respectively.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	mmodity or trix Total Rate (g ai/ha) PHI (days		Sum of <i>cis</i> - and <i>trans</i> - metconazole (mg/kg) ^a	Processing Factor
2006/1052075 V-25671-04-F	Plum/	Plum (RAC)	2250	14	0.13	-
(Kerman, CA, USA, 2004)	French Prune	Dried plum	2230	14	0.29	2.3

Table 226 Summary of metconazole residues in dried plums.

RAC: raw agricultural commodity

^a Mean of two replicate field samples

Soya bean

The transfer of residues of metconazole into processed commodities was investigated in soya beans from four supervised field trial conducted in the USA (White & Saha, 2006, METCON_167). The trials were performed at an exaggerated rate of $2 \times 392-403$ g ai/ha (5×) with an interval of 8–11 days and harvest at 27–31 DALA. Soya beans were processed to meal, hulls, crude oil and refined oil using common commercial practices (drying of the bean, separation into hulls and kernels, hot hexane extraction, removal of hexane by heat, alkalin refinement). All samples were analysed for residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA using method D0508. Procedural recoveries for all trials and analytes were within 70–120%. Samples of the RAC and processed commodities were stored frozen up to 2.8 month.

Residues of metabolites M11, M21 and M30, were each below their LOQ of 0.01 mg/kg in soya bean RAC and processed commodities.

Table 227 Summary of the sum of *cis*- and *trans*-metconazole residues in soya bean processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or MatrixTotal Rate (g ai/ha)PHI (days)		PHI (days)	Sum of <i>cis</i> - and <i>trans</i> -metconazole (mg/kg)	Processing Factor
		Seed RAC			< 0.01	-
R05188	Soya bean/	Hulls			0.022	N/A
(Pepin, WI, USA,	Asgrow	Meal	790	31	< 0.01	N/A
2005)	AG1603	Crude oil			< 0.01	N/A
		Refined oil			< 0.01	N/A
	C 1	Seed RAC			0.021	-
R05189		Hulls			0.018	0.86
(York, NW, USA,	Accrow	Meal	790	31	0.010	0.48
2005)	2703 RR	Crude oil			0.016	0.76
	2703 KK	Refined oil			< 0.01	< 0.48
	G 1	Seed RAC			0.019	-
R05190	Soya bean	Hulls			0.049	2.6
(Cass, ND, USA,	/ 0401721	Meal	780	27	< 0.01	< 0.53
2005)	(Mycogen)	Crude oil			0.016	0.84
	(Wiycogen)	Refined oil			< 0.01	< 0.53
R05191	Soya bean	Seed RAC			0.016	-
(Clinton, IL, USA,	/	Hulls	780	29	0.020	1.3
2005)	NK 43 B1	Meal			0.011	0.69

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Sum of <i>cis</i> - and <i>trans</i> -metconazole (mg/kg)	Processing Factor
		Crude oil			0.016	1.0
		Refined oil			0.011	0.69

RAC: raw agricultural commodity

Table 228 St	ummary of	residues	of metabolites	1,2,4-triazole	(T), tria	azolyl	alanine	(TA),	and t	riazolyl
acetic acid (TAA) in soy	ya bean p	processed comm	nodities.						

Trial Identification					Т		TA		TAA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Seed RAC			< 0.05	-	< 0.05	-	< 0.05	-
R05188	Soya bean/	Hulls			< 0.05	N/A	0.15	N/A	< 0.05	N/A
(Pepin, WI,	Asgrow	Meal	790	31	< 0.05	N/A	0.05	N/A	< 0.05	N/A
USA, 2005)	AG1603	Crude oil			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Refined oil			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Seed RAC			< 0.05	-	0.12	-	< 0.05	-
							Control:			
R05189							0.06			
	Sova been	Hulls			< 0.05	N/A	< 0.05	< 0.4	< 0.05	N/A
	/						Control:			
(York, NW,	Asorow		790	31			0.07			
USA, 2005)	2703 RR	Meal			< 0.05	N/A	0.21	1.8	< 0.05	N/A
							Control.			
							0.11			
		Crude oil			< 0.05	N/A	< 0.05	< 0.4	< 0.05	N/A
		Refined oil			< 0.05	N/A	< 0.05	< 0.4	< 0.05	N/A
	Sova bean	Seed RAC			< 0.05	-	0.10	-	< 0.05	-
R05190	/	Hulls			< 0.05	N/A	0.13	1.3	< 0.05	N/A
(Cass, ND,	0491731	Meal	780	27	< 0.05	N/A	0.12	1.2	< 0.05	N/A
USA, 2005)	(Mycogen)	Crude oil			< 0.05	N/A	< 0.05	< 0.5	< 0.05	N/A
	(11) 00 801)	Refined oil			< 0.05	N/A	< 0.05	< 0.5	< 0.05	N/A
		Seed RAC			< 0.05	-	0.16	-	< 0.05	-
R05191	Soya bean	Hulls			< 0.05	N/A	0.08	0.5	< 0.05	N/A
(Clinton, IL,	/	Meal	780	29	< 0.05	N/A	0.17	1.1	< 0.05	N/A
USA, 2005)	NK 43 B1	Crude oil			< 0.05	N/A	< 0.05	< 0.3	< 0.05	N/A
		Refined oil			< 0.05	N/A	< 0.05	< 0.3	< 0.05	N/A

RAC: raw agricultural commodity

Potato

The transfer of residues of metconazole into processed commodities was investigated in potato from two supervised field trial conducted in the USA (Corley, 2010, METCON_146). The trials were performed with 4 or 5 applications using an exaggerated rate of 700 g ai/ha with an interval of 5–7 days and harvest at 1 DALA. Potatoes were processed to potato flakes/granules, potato chips, and wet peel using common commercial practices. All samples were analysed according to method RM-41C-1 for the determination of *cis*- and *trans*-metconazole and according to method Meth-160 for the determination of triazole metabolites. Overall mean procedural recoveries for all metabolites spiked at 0.02-2.0 mg/kg were within 70–120% with an RSD of < 20%.

Since no residues of metconazole or its triazole metabolites were detected in the RAC at levels >LOQ, processed commodities were not further analysed.

Sugar beet

The transfer of residues of metconazole into processed commodities was investigated in sugar beet from four supervised field trial conducted in the USA (Jordan & Saha, 2006, METCON_168). The trials were performed at an exaggerated rate of $2 \times 549-571$ g ai/ha ($5 \times$) with an interval of 13–15 days and harvest at 14–15 DALA. Sugar beets were processed to extracted pulp, dried pulp, pressed water, raw juice, lime sludge (mud), thin juice, thick juice, molasses, raw sugar and refined sugar using common commercial practices. All samples were analysed for residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA using method D0508. Procedural recoveries for all trials and analytes were mostly within 70–120%, but never below 63% (M30 in raw sugar). Samples of the RAC and processed commodities were stored frozen up to 1.4 months.

Residues of metabolites M11, M21 and M30, were each below their LOQ of 0.01 mg/kg in sugar beet RAC and processed commodities.

Table 229 Summary of the sum of *cis*- and *trans*-metconazole residues in sugar beet processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Roots (RAC)			0.018	-
		Pulp (ext.)	1		0.013	0.7
		Dried pulp	1		0.078	4.4
	G 1 1	Water	1		< 0.01	< 0.6
R05097	Sugar beet/	Raw juice	1		< 0.01	< 0.6
(Pepin, WI, USA,	VDH66556	Lime sludge	1110	14	< 0.01	< 0.6
2005)	0252 Modium	Thin juice	1		< 0.01	< 0.6
	Wedium	Thick juice	1		< 0.01	< 0.6
		Molasses	1		0.019	1.0
		Raw sugar	1		0.017	0.9
		Ref. sugar	1		< 0.01	< 0.6
		Roots (RAC)			< 0.01	-
		Pulp (ext.)	1		< 0.01	N/A
		Dried pulp	1		0.014	N/A
	G 1 //	Water	1		< 0.01	N/A
R05098	Sugar beet/	Raw juice	1		< 0.01	N/A
(Brown, SD, USA,	VanDer Have HH811	Lime sludge	1120	14	< 0.01	N/A
2005)		Thin juice			< 0.01	N/A
		Thick juice	1		< 0.01	N/A
		Molasses	-		0.015	N/A
		Raw sugar			< 0.01	N/A
		Ref. sugar	1		< 0.01	N/A
		Roots (RAC)			0.022	-
		Pulp (ext.)			0.085	3.9
		Dried pulp			0.91	41.3
		Water			0.030	1.4
R05099	Courses 1 and/	Raw juice	1		0.032	1.5
(Fresno, CA, USA,	Sugar beel/	Lime sludge	1130	14	0.018	0.8
2005)	SSIND / K	Thin juice	1		0.045	2.1
		Thick juice	1		0.054	2.5
		Molasses	1		0.083	3.9
		Raw sugar	1		0.094	4.4
		Ref. sugar	1		0.027	1.2
		Roots (RAC)			0.023	-
		Pulp (ext.)	1		0.023	1.0
D05100		Dried pulp	1		0.21	9.2
K05100	Sugar beet/	Water	1120	1.5	< 0.01	< 0.4
(Payette, ID, USA,	HM WS91	Raw juice	1120	15	0.011	0.5
2003)		Lime sludge]		0.011	0.5
		Thin juice	1		< 0.01	< 0.4
		Thick juice	1		0.018	0.8

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Molasses			0.030	1.3
		Raw sugar			0.027	1.2
		Ref. sugar			0.012	0.5

RAC: raw agricultural commodity

Table 230 Summary of residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), and triazolyl acetic acid (TAA) in soya bean processed commodities.

Trial					Т		ТА		TAA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Roots (RAC)			< 0.05	-	< 0.05	-	< 0.05	-
		Pulp (ext.)			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Dried pulp			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
	Sugar beat/	Water			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
R05097	VDH66556	Raw juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
(Pepin, WI,	8232	Lime sludge	1110	14	< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
USA, 2005)	Medium	Thin juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
	Wiedium	Thick juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Molasses			< 0.05	N/A	0.06	N/A	< 0.05	N/A
		Raw sugar			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Ref. sugar			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Roots (RAC)			< 0.05	-	< 0.05	-	< 0.05	-
		Pulp (ext.)			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Dried pulp			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
	Sugar beet/ VanDer Have HH811	Water	1120	14	< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
R05098 (Brown, SD, USA, 2005)		Raw juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Lime sludge			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Thin juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Thick juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Molasses			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Raw sugar			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Ref. sugar			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Roots (RAC)			< 0.05	-	< 0.05	-	< 0.05	-
		Pulp (ext.)			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Dried pulp			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Water			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
R05099	Course hard/	Raw juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
(Fresno, CA,	Sugar beel/	Lime sludge	1130	14	< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
USA, 2005)	SSIND / K	Thin juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Thick juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Molasses			< 0.05	N/A	0.17	N/A	< 0.05	N/A
		Raw sugar			< 0.05	N/A	0.14	N/A	< 0.05	N/A
		Ref. sugar			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Roots (RAC)			< 0.05	-	< 0.05	-	< 0.05	-
		Pulp (ext.)			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Dried pulp			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Water			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
R05100	a 1 1	Raw juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
(Payette, ID,	Sugar beet/	Lime sludge	1120	15	< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
USA, 2005)	HM WS91	Thin juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
. ,		Thick juice			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A
		Molasses			< 0.05	N/A	0.11	N/A	< 0.05	N/A
		Raw sugar			< 0.05	N/A	0.09	N/A	< 0.05	N/A
		Ref. sugar			< 0.05	N/A	< 0.05	N/A	< 0.05	N/A

Barley

The transfer of residues of metconazole into processed commodities was investigated in barley from four supervised field trial conducted in Germany (Plier, 2015, METCON_169). The trials were performed at an exaggerated rate of 2×270 g ai/ha (2×) with an interval of 17–23 days and harvest at 44–59 DALA. Barley was processed into pot barley, flour, bran, brewing malt, malt sprouts, beer, brewer's grain (dried) and brewer's yeast using common commercial practices. All samples were analysed for residues of *cis*- and *trans*-metconazole and its metabolites 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) and triazole lactic acid (TLA) using method L0019/01. Overall mean procedural recoveries for all commodities and analytes were within 70–120% with an RSD of < 20%.

Table 231 Summary of the sum of *cis-* and *trans-*metconazole residues in barley processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Grain (RAC)			0.078	-
		Pot barley			0.037	0.47
		Flour			0.12	1.54
L120187	D 1 /	Bran			0.20	2.56
(Motterwitz,	Barley/	Brewing malt	540	44	0.049	0.63
Germany, 2012)	Marthe	Malt sprouts			0.046	0.59
		Beer			< 0.01	< 0.13
		Brewer's grain (dried)			0.17	2.18
		Brewer's yeast			0.029	0.37
		Grain (RAC)			0.14	-
		Pot barley			0.072	0.51
		Flour			0.32	2.29
L120188	D 1 /	Bran			0.38	2.71
(Trossin, Germany,	Barley/	Brewing malt	540	50	0.083	0.59
2012)	Tocada	Malt sprouts			0.051	0.36
		Beer			< 0.01	< 0.07
		Brewer's grain (dried)			0.27	1.93
		Brewer's yeast			0.027	0.19
		Grain (RAC)			0.024	-
		Pot barley			0.013	0.54
		Flour			0.068	2.83
L120189	Donlary/	Bran			0.097	4.04
(Neubukow,	Durneh	Brewing malt	540	55	0.016	0.67
Germany, 2012)	Quellell	Malt sprouts			0.017	0.71
		Beer			< 0.01	< 0.42
		Brewer's grain (dried)			0.052	2.17
		Brewer's yeast			0.013	0.54
		Grain (RAC)			4.5	-
		Pot barley			0.39	0.09
		Flour			13	2.89
L120190 (Donnersdorf,	Donlary/	Bran			22	4.89
	Darley/ Morgret	Brewing malt	540	59	0.70	0.16
Germany, 2012)	Margiet	Malt sprouts			0.86	0.19
		Beer]		< 0.01	< 0.002
	B	Brewer's grain (dried)]		1.7	0.38
		Brewer's yeast			0.21	0.05

RAC: raw agricultural commodity

Table	232	Summary	of residues	of metabolites	1,2,4-triazole	(T),	triazolyl	alanine	(TA),	triazolyl
acetic a	acid	(TAA) and	l triazole lact	tic acid (TLA) in	n barley proces	ssed o	commodit	ties.		

Trial			T 1		Т		TA		TAA		TLA	
Identification (City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	mg/kg	mg/kg	PF	mg/kg	PF
		Grain			< 0.01	-	0.17	-	0.14	-	< 0.01	-
		Pot barley			< 0.01	N/A	0.14	0.82	0.11	0.79	< 0.01	N/A
		Flour			< 0.01	N/A	0.66	3.88	0.42	3.00	0.022	N/A
		Bran			< 0.01	N/A	0.27	1.59	0.30	2.14	0.029	N/A
L120187	D 1 /	malt			< 0.01	N/A	0.22	1.29	0.16	1.14	< 0.01	N/A
(Motterwitz, Germany,	Barley/ Marthe	Malt	540	44	< 0.01	N/A	2.1	12	1.4	10	0.14	N/A
2012)		sprouts Beer			< 0.01	N/A	0.057	0.34	0.030	0.21	< 0.01	N/A
		Brewer's			0.01	1011	0.027	0.51	0.020	0.21	0.01	1011
		grain			< 0.01	N/A	0.021	0.12	0.012	0.09	< 0.01	N/A
		(dried) Brewer's										
		yeast			< 0.01	N/A	0.062	0.36	0.023	0.16	< 0.01	N/A
		Grain (RAC)			< 0.01	-	0.49	-	0.29	-	0.012	-
		Pot barley			< 0.01	N/A	0.54	1.10	0.23	0.79	< 0.01	< 0.83
		Flour			< 0.01	N/A	1.7	3.47	0.84	2.90	0.037	3.08
		Brawing			< 0.01	N/A	0.65	1.33	0.65	2.24	0.042	3.50
L120188	D	malt			< 0.01	N/A	0.66	1.35	0.32	1.10	0.028	<2.33
(Trossin, Germany, 2012)	Barley/ Tocada	Malt sprouts	540	50	< 0.01	N/A	5.3	11	2.5	8.62	0.34	28
		Beer			< 0.01	N/A	0.17	0.35	0.067	0.23	< 0.01	< 0.83
		Brewer's grain (dried)			< 0.01	N/A	0.070	0.14	0.030	0.10	< 0.01	< 0.83
		Brewer's yeast			< 0.01	N/A	0.16	0.33	0.051	0.18	< 0.01	< 0.83
		Grain (RAC)			< 0.01	-	0.090	-	0.069	-	< 0.01	-
		Pot barley			< 0.01	N/A	0.082	0.91	0.060	0.87	< 0.01	N/A
		Flour			< 0.01	N/A	0.45	5.00	0.30	4.35	0.010	N/A
		Bran			< 0.01	N/A	0.24	2.67	0.20	2.90	< 0.01	N/A
L120189 (Neubukow	Barley/	malt			< 0.01	N/A	0.088	0.98	0.073	1.06	< 0.01	N/A
Germany,	Quench	Malt sprouts	540	55	< 0.01	N/A	0.80	8.89	0.54	7.83	0.043	N/A
2012)		Beer			< 0.01	N/A	0.027	0.30	0.017	0.25	< 0.01	N/A
		Brewer's grain (dried)			< 0.01	N/A	< 0.01	< 0.11	< 0.01	< 0.14	< 0.01	N/A
		Brewer's yeast			< 0.01	N/A	0.033	0.37	0.013	0.19	< 0.01	N/A
		Grain (RAC)			< 0.01	-	0.41	-	0.19	-	< 0.01	-
		Pot barley			< 0.01	N/A	0.42	1.02	0.16	0.84	< 0.01	N/A
L120190		Flour			< 0.01	N/A	1.2	2.93	0.55	2.89	0.027	N/A
(Donnersdorf,	Barley/	Bran	540	59	< 0.01	N/A	0.64	1.56	0.43	2.26	0.038	N/A
Germany, 2012)	wargret	malt	- 540	59 -	< 0.01	N/A	0.43	1.05	0.20	1.05	0.018	N/A
		Malt sprouts			< 0.01	N/A	3.2	7.80	1.3	6.84	0.18	N/A
		Beer			< 0.01	N/A	0.11	0.27	0.045	0.24	< 0.01	N/A

Trial Identification			Total		Т		TA		TAA		TLA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	mg/kg	mg/kg	PF	mg/kg	PF
		Brewer's grain (dried)			< 0.01	N/A	0.049	0.12	0.023	0.12	< 0.01	N/A
		Brewer's yeast			< 0.01	N/A	0.11	0.27	0.037	0.19	< 0.01	N/A

RAC: raw agricultural commodity

0at

The transfer of residues of metconazole into processed commodities was investigated in oat from four supervised field trial conducted in Germany (Plier, 2015, METCON_170). The trials were performed at an exaggerated rate of 2×270 g ai/ha ($2 \times$) with an interval of 20–26 days and harvest at 43–50 DALA. Oat was processed into flour, groats/rolled oats, husks, dust and bran using common commercial practices. All samples were analysed for residues of *cis-* and *trans-*metconazole and its metabolites 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) and triazole lactic acid (TLA) using method L0019/01. Overall mean procedural recoveries for all commodities and analytes were within 70–120% with an RSD of < 20%.

	Table 233 Summar	y of the sum	of <i>cis</i> - and <i>trans</i> -	-metconazole residue	es in oat proce	essed commodities.
--	------------------	--------------	------------------------------------	----------------------	-----------------	--------------------

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Grain (RAC)			0.14	-
T 120182		Flour			0.019	0.14
(Motterwitz	Oat/	Groats/rolled oats	540	50	0.010	0.07
Germany 2012)	Flocke	Husks	540	50	0.31	2.2
Germany, 2012)		Dust			0.23	1.6
		Bran			0.022	0.16
		Grain (RAC)			0.063	-
T 120194		Flour			0.014	0.22
(Braitanharn	Oat/	Groats/rolled oats	540	19	0.011	0.17
(Breneniu 2012)	Flocke	Husks	540	40	0.28	4.4
Germany, 2012)		Dust			0.29	4.6
		Bran			0.027	0.43
		Grain (RAC)			0.11	-
T 100105		Flour			0.022	0.20
LI20185	Oat/	Groats/rolled oats	540	12	0.013	0.12
(Tuetzpatz, Cormony, 2012)	Flocke	Husks	340	45	0.44	4.0
Germany, 2012)		Dust			0.41	3.7
		Bran			0.055	0.50
		Grain (RAC)			0.067	-
1 120107		Flour			0.011	0.16
L120186	Oat/	Groats/rolled oats	540	10	< 0.01	< 0.15
(Goeppersdorf,	Flocke	Husks	540	48	0.14	2.1
Germany, 2012)		Dust]		0.27	4.0
		Bran			0.021	0.31

RAC: raw agricultural commodity

Trial Identification	Crop/	Commodity	Total Rate	PHI	Т		ТА		ТАА		TLA	
(City, State/ Region, Country, Year)	Variety	or Matrix	(g ai/ha)	g (days) i/ha)	mg/kg	PF	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Grain (RAC)			< 0.01	-	0.26	-	0.093	-	< 0.01	-
1 120192		Flour			< 0.01	N/A	0.34	1.31	0.093	1.00	< 0.01	N/A
L120185	Oat/	Groats/rolled			< 0.01	NI/A	0.26	1 2 9	0.000	0.07	< 0.01	NI/A
(Motterwitz,	Ual/ Electro	oats	540	50	< 0.01	IN/A	0.50	1.38	0.090	0.97	< 0.01	IN/A
2012	гюске	Husks			< 0.01	N/A	0.025	0.10	0.042	0.45	< 0.01	N/A
2012)		Dust			< 0.01	N/A	0.41	1.58	0.11	1.18	0.014	N/A
		Bran			< 0.01	N/A	0.46	1.77	0.12	1.29	< 0.01	N/A
		Grain (RAC)			0.010	-	0.64	-	0.18	-	< 0.01	-
T 120194		Flour			0.014	1.40	0.61	0.95	0.17	0.94	< 0.01	N/A
(Breitenborn, Germany, 2012)	Oat/	Groats/rolled			0.017	1 70	0.67	1.05	0.22	1 22	< 0.01	NI/A
	Ual/ Ela alva	oats	540	48	0.017	1.70	0.07	1.05	0.22	1.22	< 0.01	IN/A
	FIOCKE	Husks			< 0.01	1.00	0.040	0.06	0.081	0.45	< 0.01	N/A
		Dust			0.014	1.40	0.67	1.05	0.22	1.22	0.019	N/A
		Bran			0.019	1.90	0.98	1.53	0.29	1.61	< 0.01	N/A
		Grain (RAC)			< 0.01	-	0.56	-	0.15	-	< 0.01	-
T 120195		Flour			0.010	N/A	0.64	1.14	0.16	1.07	< 0.01	N/A
(Tuetzpatz,	Oat/	Groats/rolled oats	540	43	0.012	N/A	0.70	1.25	0.17	1.13	< 0.01	N/A
Germany,	Гюске	Husks			< 0.01	N/A	0.028	0.05	0.058	0.39	< 0.01	N/A
2012)		Dust			0.013	N/A	0.77	1.38	0.21	1.40	0.021	N/A
		Bran			0.014	N/A	1.0	1.79	0.25	1.67	0.011	N/A
		Grain (RAC)			< 0.01	-	0.66	-	0.20	-	< 0.01	-
1 120106		Flour			< 0.01	N/A	0.68	1.03	0.17	0.85	< 0.01	N/A
L120186 (Goeppersdorf, Germany, 2012)		Groats/rolled			0.011	NT/A	0.72	1 1 1	0.22	1 10	< 0.01	
	Dat/	oats	540	48	0.011	IN/A	0.75	1.11	0.22	1.10	< 0.01	IN/A
	гюске	Husks	- 340		< 0.01	N/A	0.024	0.04	0.086	0.43	0.015	N/A
		Dust			0.012	N/A	0.71	1.08	0.23	1.15	0.031	N/A
		Bran			0.012	N/A	1.1	1.67	0.33	1.65	< 0.01	N/A

Table 234 Summary of residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) and triazole lactic acid (TLA) in oat processed commodities.

RAC: raw agricultural commodity

Maize

The transfer of residues of metconazole into processed commodities was investigated in maize from one supervised field trial conducted in the USA (Carringer, 2007, METCON_150). The trial was performed with 4 applications using an exaggerated rate of 560 g ai/ha with an interval of 6–7 days and harvest at 21 DALA. Maize was processed to grits, meal, flour, starch and refined oil (dry and wet milling) using common commercial practices. All samples were analysed for residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA using method D0604. Procedural recoveries for all trials and analytes were within 70–120%. Samples of the RAC and processed commodities were stored frozen up to 1.8 months.

Residues of metabolites M11, M21, M30, 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid were each below their LOQ of 0.01 or 0.05 mg/kg in maize RAC and processed commodities.

Table 235 Summary of the sum of *cis-* and *trans-*metconazole residues in maize processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
RCN R 06431	Maize/	Grain (RAC)	2240	21	< 0.01	-
(Carlyle, IL, USA,	BT 6516	Grits	2240	21	< 0.01	N/A

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
2006)	RR 2YG	Meal			< 0.01	N/A
		Flour			< 0.01	N/A
		Refined oil (dry milling)			< 0.01	N/A
		Starch			< 0.01	N/A
		Refined oil (wet milling)			0.011	N/A

Wheat

The transfer of residues of metconazole into processed commodities was investigated in wheat from four supervised field trial conducted in the USA (White & Saha, 2006, METCON_171). The trials were performed at an exaggerated rate of 2×560 g ai/ha ($5 \times$) with an interval of 6–7 days and harvest at 20–22 DALA. Wheat grains were processed to cleaned grain, aspirated grain fraction, epidermis/husk, coarse bran, straight flour, fine bran, middlings, shorts, germ, low grade meal, white flour, whole meal flour and bread using common commercial practices. All samples were analysed for residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA using method D0508. Procedural recoveries for all trials and analytes were within 70–120%. Samples of the RAC and processed commodities were stored frozen up to 2.6 months.

Table 236 Summary of the sum of *cis-* and *trans-*metconazole residues in wheat processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Grain (RAC)			0.40	-
		Agf			25.7	64
		Cleaned grain			0.37	0.94
		Epidermis/husk			12	29
		Coarse bran			0.81	2.0
DOLDOS104		Straight flour			0.057	0.14
RCN R05184	Wheat/	Fine bran	1120	0.1	0.87	2.2
(Pepin, WI, USA,	Ingot	Middlings	1120	21	0.32	0.81
2003)	_	Shorts			0.89	2.2
		Germ			0.37	0.92
		Low grade meal	1		0.26	0.66
		White flour	1		0.071	0.18
		Whole meal flour	1		0.36	0.91
		Bread			0.25	0.63
		Grain (RAC)			0.41	-
		Cleaned grain			0.46	1.1
		Epidermis/husk			23	56
		Coarse bran			0.65	1.6
		Straight flour			0.056	0.14
RCN R05185	Wheat/	Fine bran			0.66	1.6
(Clinton, IL, USA,	Excel 201	Middlings	1120	20	0.47	1.1
2004)	Excel 201	Shorts			0.98	2.4
		Germ			0.26	0.64
		Low grade meal			0.32	0.78
		White flour			0.087	0.21
		Whole meal flour			0.25	0.60
		Bread			0.18	0.44
DCN D05196		Grain (RAC)			0.24	-
(Case ND USA	Wheat/	Cleaned grain	1120	22	0.21	0.89
(Cass, ND, USA, 2005)	Knudson	Epidermis/husk	7 1120 22		83	347
2003)		Coarse bran			0.43	1.8

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Straight flour			0.074	0.31
		Fine bran	1		0.51	2.1
		Middlings			1.2	5.1
		Shorts			0.53	2.2
		Germ			0.29	1.2
		Low grade meal			0.19	0.81
		White flour			0.10	0.42
		Whole meal flour			0.21	0.88
		Bread			0.17	0.70
		Grain (RAC)			0.37	-
		Cleaned grain			0.33	0.90
		Epidermis/husk			19	53
		Coarse bran			0.76	2.1
		Straight flour			0.086	0.23
RCN R05187	Wheat/	Fine bran			0.65	1.8
(York, NE, USA,	Millenium	Middlings	1120	20	0.36	0.98
2004)	HRW	Shorts			0.54	1.5
		Germ			0.39	1.1
		Low grade meal			0.21	0.56
		White flour			0.089	0.24
		Whole meal flour			0.14	0.39
		Bread			0.21	0.58

RAC: raw agricultural commodity

Table 237 Summary of residues of metabolites M11, M21 and M30 in wheat processed commodities

Trial			Total		M11		M21		M30	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate PHI (g (days) m		mg/kg	PF	mg/kg	PF	mg/kg	PF
		Grain (RAC)			0.10	-	0.01	-	0.03	-
		Agf			7.15	71.5	1.71	171	1.44	48
		Cleaned grain			0.10	1.0	0.02	2.0	0.03	1
		Epidermis/husk			3.9	39	0.82	82	0.77	26
		Coarse bran			0.23	2.3	0.03	3.0	0.07	2.3
DCN D05194		Straight flour			0.01	0.10	< 0.01	<1.0	< 0.01	< 0.33
(Donin WI	Wheat/	Fine bran	1120	21	0.23	2.3	0.03	3.0	0.08	2.7
(Fepili, wi,)	Ingot	Middlings	1120	21	0.08	0.80	0.01	1.0	0.02	0.67
Identification (City, State/ Region, Country, Year) RCN R05184 (Pepin, WI, USA, 2005) RCN R05185 (Clinton, IL, USA, 2004)		Shorts			0.12	1.2	0.02	2.0	0.04	1.3
		Germ			0.10	1.0	0.02	2.0	0.03	1.0
		Low grade meal			0.10	1.0	< 0.01	<1.0	0.02	0.67
		White flour			0.02	0.20	< 0.01	<1.0	< 0.01	< 0.33
		Whole meal flour			0.09	0.90	0.01	1.0	0.03	1.0
		Bread			0.06	0.60	0.01	1.0	0.02	0.67
		Grain (RAC)			0.04	-	0.01	-	0.01	-
		Cleaned grain			0.08	2.0	0.02	2.0	0.02	2.0
		Epidermis/husk			1.2	31	0.56	56	0.21	21
		Coarse bran			0.09	2.3	0.02	2.0	0.02	2.0
		Straight flour			< 0.01	< 0.25	< 0.01	<1.0	< 0.01	<1.0
RCN R05185	W/haat/	Fine bran			0.11	2.75	0.03	3.0	0.03	3.0
(Clinton, IL,	Excel 201	Middlings	1120	20	0.03	0.75	0.01	1.0	< 0.01	<1.0
(Clinton, IL, USA, 2004)	Excel 201	Shorts			0.06	1.5	0.02	2.0	0.01	1.0
		Germ			0.03	0.75	< 0.01	<1.0	< 0.01	<1.0
		Low grade meal			0.04	1.0	0.01	1.0	0.01	1.0
		White flour			< 0.01	< 0.25	< 0.01	<1.0	< 0.01	<1.0
		Whole meal flour			0.04	1.0	0.01	1.0	< 0.01	<1.0
		Bread			0.02	0.50	< 0.01	<1.0	< 0.01	<1.0

Trial			Total		M11		M21		M30	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Grain (RAC)			0.09	-	0.01	-	0.03	-
		Cleaned grain			0.07	0.78	0.01	1.0	0.02	0.67
		Epidermis/husk			9.2	103	2.2	220	1.2	39
		Coarse bran			0.20	2.2	0.03	3.0	0.07	2.3
		Straight flour			0.01	0.11	< 0.01	<1.0	< 0.01	< 0.33
RCN R05186	W 71+/	Fine bran			0.18	2.0	0.03	3.0	0.06	2.0
(Cass, ND,	Wheat/	Middlings	1120	22	0.15	1.7	0.04	4.0	0.02	0.67
USA, 2005)	Knudson	Shorts			0.07	0.78	0.02	2.0	0.02	0.67
		Germ			0.05	0.56	0.02	2.0	0.01	0.33
		Low grade meal			0.04	0.44	< 0.01	<1.0	0.01	0.33
		White flour			0.03	0.33	< 0.01	<1.0	< 0.01	< 0.33
		Whole meal flour			0.07	0.78	0.01	1.0	0.02	0.67
		Bread			0.04	0.44	< 0.01	<1.0	0.01	0.33
		Grain (RAC)			0.06	-	0.01	-	0.02	-
		Cleaned grain			0.06	1.0	< 0.01	<1.0	0.02	1.0
		Epidermis/husk			1.4	23	0.65	65	0.21	10.5
		Coarse bran			0.18	3.0	0.03	3.0	0.04	2.0
		Straight flour			< 0.01	< 0.17	< 0.01	<1.0	< 0.01	< 0.50
RCN R05187	Wheat/	Fine bran			0.18	3.0	0.03	3.0	0.04	2.0
(York, NE,	Millenium	Middlings	1120	20	0.04	0.67	0.02	2.0	0.01	0.5
USA, 2004)	HRW	Shorts			0.06	1.0	0.01	1.0	0.02	1.0
		Germ			0.06	1.0	0.01	1.0	0.02	1.0
		Low grade meal			0.03	0.5	< 0.01	<1.0	< 0.01	< 0.50
		White flour			0.01	0.17	< 0.01	<1.0	< 0.01	< 0.50
	V	Whole meal flour	·		0.06	1.0	0.01	1.0	0.02	1.0
		Bread			0.04	0.67	< 0.01	<1.0	< 0.01	< 0.50

Table 238 Summary of residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA) and triazolyl acetic acid (TAA) in wheat processed commodities.

Trial Identification	Crop/	Commodity or	Total Rate	PHI	Т		ТА		TAA	
(City, State/ Region, Country, Year)	Variety	Matrix	(g ai/ha)	(days)	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Grain RAC			< 0.05	-	0.08	-	0.05	-
		Agf			< 0.05	N/A	< 0.05	< 0.6	0.08	1.6
		Cleaned grain			< 0.05	N/A	0.07	0.9	< 0.05	<1.0
		Epidermis/husk			< 0.05	N/A	0.09	1.1	< 0.05	<1.0
		Coarse bran			< 0.05	N/A	0.15	1.9	< 0.05	<1.0
DCN D05184		Straight flour			< 0.05	N/A	< 0.05	< 0.6	< 0.05	<1.0
(Pepin, WI, USA, 2005)	Wheat/ Ingot	Fine bran	1120	21	< 0.05	N/A	0.15	1.9	< 0.05	<1.0
		Middlings		21	< 0.05	N/A	0.07	0.9	< 0.05	<1.0
		Shorts			< 0.05	N/A	0.11	1.4	< 0.05	1.0
		Germ			< 0.05	N/A	0.2	2.5	0.06	1.2
		Low grade meal			< 0.05	N/A	0.08	1.0	< 0.05	<1.0
		White flour			< 0.05	N/A	< 0.05	< 0.6	< 0.05	<1.0
		Whole meal flour			< 0.05	N/A	0.06	0.8	< 0.05	<1.0
		Bread			< 0.05	N/A	< 0.05	< 0.6	< 0.05	<1.0
		Grain RAC			< 0.05	-	0.09	-	0.06	-
		Cleaned grain			< 0.05	N/A	0.1	1.1	0.06	1.0
RCN R05185 (Clinton, IL, USA, 2004)	W/haat/	Epidermis/husk			< 0.05	N/A	0.07	0.8	< 0.05	< 0.8
	Exact 201	Coarse bran	1120	20	< 0.05	N/A	0.2	2.2	0.08	1.3
	Excel 201	Straight flour			< 0.05	N/A	< 0.05	< 0.6	< 0.05	< 0.8
	1	Fine bran			< 0.05	N/A	0.26	2.9	0.08	1.3
		Middlings			< 0.05	N/A	< 0.05	< 0.6	< 0.05	< 0.8

Trial			Total		Т		ТА		TAA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Shorts			< 0.05	N/A	0.13	1.4	0.06	1.0
		Germ			< 0.05	N/A	0.32	3.6	0.07	1.2
		Low grade meal			< 0.05	N/A	0.12	1.3	0.06	1.0
		White flour			< 0.05	N/A	< 0.05	< 0.6	< 0.05	< 0.8
		Whole meal flour			< 0.05	N/A	0.08	< 0.9	< 0.05	< 0.8
		Bread			< 0.05	N/A	< 0.05	< 0.6	< 0.05	< 0.8
		Grain RAC			< 0.05	-	0.31	-	0.09	-
		Cleaned grain			< 0.05	N/A	0.28	0.9	0.08	0.9
		Epidermis/husk			< 0.05	N/A	0.09	0.3	0.09	1.0
		Coarse bran			< 0.05	N/A	0.56	1.8	0.12	1.3
		Straight flour			< 0.05	N/A	0.13	0.4	0.07	0.8
RCN R05186	XX 71 4/	Fine bran			< 0.05	N/A	0.56	1.8	0.1	1.1
(Cass, ND, USA, 2005)	w neat/	Middlings	1120	22	< 0.05	N/A	0.18	0.6	0.08	0.9
	Knudson	Shorts			< 0.05	N/A	0.27	0.9	0.08	0.9
		Germ			< 0.05	N/A	0.46	1.5	0.09	1.0
		Low grade meal			< 0.05	N/A	0.23	0.7	0.08	0.9
		White flour			< 0.05	N/A	0.17	0.5	0.07	0.8
		Whole meal flour			< 0.05	N/A	0.25	0.8	0.07	0.8
		Bread			< 0.05	N/A	0.15	0.5	0.06	0.7
		Grain RAC			< 0.05	-	0.2	-	0.1	-
		Cleaned grain			< 0.05	N/A	0.19	1.0	0.1	1.0
		Epidermis/husk			< 0.05	N/A	0.14	0.7	0.11	1.1
		Coarse bran			< 0.05	N/A	0.6	3.0	0.11	1.1
		Straight flour			< 0.05	N/A	0.07	0.4	0.09	0.9
RCN R05187	Wheat/	Fine bran			< 0.05	N/A	0.58	2.9	0.12	1.2
(York, NE,	Millenium	Middlings	1120	20	< 0.05	N/A	0.12	0.6	0.09	0.9
USA, 2004)	HRW	Shorts			< 0.05	N/A	0.2	1.0	0.1	1.0
		Germ			< 0.05	N/A	0.44	2.2	0.1	1.0
		Low grade meal			< 0.05	N/A	0.15	0.8	0.09	0.9
		White flour	1		< 0.05	N/A	0.09	0.5	0.09	0.9
		Whole meal flour			< 0.05	N/A	0.19	1.0	0.09	0.9
		Bread			< 0.05	N/A	0.12	0.6	0.07	0.7

Sugar cane

The transfer of residues of metconazole into processed commodities was investigated in sugar cane from one supervised field trial conducted in the USA (White, 2013, METCON_153). The trial was performed at an exaggerated rate of 4×500 g ai/ha ($5 \times$) with an interval of 13-14 days and harvest at 14 DALA. Sugar cane stalks were processed to refined sugar, blackstrap molasses using common commercial practices. All samples were analysed for residues of *cis-* and *trans-*metconazole and its metabolites M11, M21, M30, T, TAA and TA using method D0604. Procedural recoveries for all trials and analytes were within 70–120%. Samples of the RAC and processed commodities were stored frozen up to 18 months.

Residues of metabolites M11, M21, M30, 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid were each below their LOQ of 0.01 or 0.05 mg/kg in maize RAC and processed commodities.

Table 239 Summary of the sum of *cis-* and *trans-*metconazole residues in sugar cane processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
08-TX24	Sugar	RAC	2000	14	0.098	-
(Weslaco, TX, USA,	cane/	Ref. sugar	2000	14	< 0.01	< 0.10

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
2005) USA, 2008)	TCP87– 3388	Molasses			0.12	1.3

Oilseed rape

The transfer of residues of metconazole into processed commodities was investigated in oilseed rape from four supervised field trial conducted in Germany (Tandy, 2013, METCON_172). The trials were performed at an exaggerated rate of 2×240 g ai/ha ($2 \times$) with an interval of 12-17 days and harvest at 65–78 DALA. Oilseed rape seeds were processed into meal, crude oil (hot hexane extraction), refined oil, soap stock and press cake using common commercial practices. All samples were analysed for residues of *cis*- and *trans*-metconazole using method No 535/1, while for metabolites 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) and triazole lactic acid (TLA) method 01062/M003 was used. Overall mean procedural recoveries for all commodities and analytes were within 70–120% with an RSD of < 20%.

Table 240 Summary of the sum of *cis*- and *trans*-metconazole residues in oilseed rape processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
		Seed (RAC)			0.23	-
I 110202	0:11	Meal			0.21	0.91
LIIU292 (Wiashhafan	Uliseed	Crude oil	190	76	0.37	1.61
(wischnaten, Cormony 2011)	Vichy	Refined oil	460	/0	0.37	1.61
Germany, 2011)	visoy	Soap stock			0.064	0.28
		Press cake			0.28	1.22
		Seed (RAC)			0.047	-
I 110202	0:11	Meal			0.051	1.09
(Plumborg	Uliseed	Crude oil	480	67	0.074	1.57
(Bluilloeig, Cormony 2011)	Tape/	Refined oil	400	07	0.069	1.47
Germany, 2011)	1 6001	Soap stock			< 0.01	0.21
		Press cake			0.059	1.26
		Seed (RAC)			0.10	-
I 110204	0:11	Meal			0.10	1.00
(Öllarana Dämi	Oliseed	Crude oil	490	70	0.16	1.60
(Oldronn-Durn,	rape/	Refined oil	460	/0	0.16	1.60
Germany, 2011)	Altoga	Soap stock			0.033	0.30
		Press cake			0.13	1.30
		Seed (RAC)			0.24	-
T 110205	01 1	Meal	1		0.22	0.92
L110295	Oilseed	Crude oil	490	(5	0.43	1.79
(Apensen, Germany, 2011)	rape/	Refined oil	480	65	0.43	1.79
2011)	Visby S	Soap stock			0.052	0.21
		Press cake			0.29	1.21

RAC: raw agricultural commodity

Table 241 Summary of residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA) and triazole lactic acid (TLA) in oilseed rape processed commodities.

Trial Identification			Total		Т		ТА		TAA		TLA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF	mg/kg	PF

Trial Identification			Total		Т		ТА		TAA		TLA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF	mg/kg	PF
		Seed (RAC)			< 0.01	-	0.34	-	< 0.01	-	< 0.01	-
L110292	Oiland	Meal			< 0.01	N/A	0.59	1.74	< 0.01	N/A	0.024	N/A
(Wischhafen,	Unseed	Crude oil	190	76	< 0.01	N/A	< 0.01	< 0.03	< 0.01	N/A	< 0.01	N/A
Germany,	Visby	Refined oil	460	70	< 0.01	N/A	< 0.01	< 0.03	< 0.01	N/A	< 0.01	N/A
2011)	v 180 y	Soap stock			< 0.01	N/A	< 0.01	< 0.03	< 0.01	N/A	< 0.01	N/A
		Press cake			< 0.01	N/A	0.53	1.56	< 0.01	N/A	0.016	N/A
		Seed (RAC)			< 0.01	-	1.5	-	0.015	-	0.034	-
L110293	0.1 1	Meal			< 0.01	N/A	3.1	2.07	0.032	2.13	0.084	2.47
(Blumberg, Oils	Oilseed	Crude oil	480	67	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.67	< 0.01	< 0.29
Germany,	rape/ Dotrol	Refined oil	480		< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.67	< 0.01	< 0.29
2011)	1 6001	Soap stock			< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.67	< 0.01	< 0.29
		Press cake			< 0.01	N/A	2.2	1.47	0.020	1.33	0.057	1.68
1 1 1 0 2 0 4		Seed (RAC)			< 0.01	-	0.94	-	< 0.01	-	0.040	-
L110294	0.1 1	Meal			< 0.01	N/A	1.7	1.81	0.014	N/A	0.068	1.70
(Olbronn-	Ullseed	Crude oil	190	70	< 0.01	N/A	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.25
Durn, Cormony	Tape/	Refined oil	460	/0	< 0.01	N/A	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.25
2011	Altoga	Soap stock			< 0.01	N/A	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.25
2011)		Press cake			< 0.01	N/A	1.4	1.49	0.011	N/A	0.061	1.53
		Seed (RAC)			< 0.01	-	0.30	-	< 0.01	-	< 0.01	-
L110295	0:11	Meal			< 0.01	N/A	0.67	1.96	< 0.01	N/A	0.019	N/A
(Apensen,	Ullseed	Crude oil	190	65	< 0.01	N/A	< 0.01	< 0.02	< 0.01	N/A	< 0.01	N/A
Germany,	Tape/ Wishy	Refined oil	460	03	< 0.01	N/A	< 0.01	< 0.02	< 0.01	N/A	< 0.01	N/A
2011)	v 150 y	Soap stock			< 0.01	N/A	< 0.01	< 0.02	< 0.01	N/A	< 0.01	N/A
		Press cake			< 0.01	N/A	0.56	1.60	< 0.01	N/A	0.018	N/A

RAC: raw agricultural commodity

A second processing study with oilseed rape seeds was performed from one supervised field trial conducted in the USA (Green, 2006, METCON_162). The trial was performed with an exaggerated rate of 1 ×700 g ai/ha (5×) with harvest and collection at 35 DALA and 49 DALA, respectively. Oilseed rape seeds were processed into meal and refined oil using common commercial practices. All samples were analysed for *cis*- and *trans*-metconazole according to method RM-41C-1 and for the triazole metabolites (1,2,4-triazole, triazolyl alanine, and triazolyl acetic acid) according to method Meth-160. Overall mean procedural recoveries for all commodities and analytes were within 70–120% with an RSD of < 20%. However, recoveries for the triazole metabolites were corrected for blank values. Samples of the RAC and processed commodities were stored frozen up to 2.2 months for the analysis of metconazole and up to 7.4 months for analysis of the triazole metabolites.

Table 242 Summary of the sum of *cis*- and *trans*-metconazole residues in oilseed rape processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days) ^a	Total Residues (mg/kg)	Processing Factor (STMR)
V-29989-06-H	0.1 1 /	Seed (RAC)			< 0.02	-
(Velva, ND, USA,	Uniseed rape/	Meal	708	35/49	< 0.02	N/A
2006)	myigor 5550	Refined oil			< 0.02	N/A

RAC: raw agricultural commodity

^a Days after last application; cut / collected

Trial Identification			Total		Т		ТА		TAA	
(City, State/ Region, Country, Year)		Commodity or Matrix	Rate (g ai/ha)	PHI (days) ^a	mg/kg	PF	mg/kg	PF	mg/kg	PF
	01 1	Seed (RAC)			< 0.003	-	0.61 Control: 0.39	-	0.008 Control: 0.006	-
V–29989-06-H (Velva, ND, USA, 2006)	Oilseed rape/ Invigor	Meal	708	35/49	< 0.007	N/A	1.3 Control: 0.99	2.1	0.011 Control: 0.011	1.4
	5550	Refined oil			< 0.003	N/A	< 0.003	< 0.005	0.007 Control: 0.007	1.0

Table 243 Summary of residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA) and triazolyl acetic acid (TAA) in oilseed rape processed commodities.

RAC: raw agricultural commodity

^a Days after last application; cut / collected

Cotton seed

The transfer of residues of metconazole into processed commodities was investigated in cotton seed from one supervised field trial conducted in the USA (Carringer, 2007, METCON_164). The trial was performed with 3 applications using an exaggerated rate of 550 g ai/ha with an interval of 7 days and harvest at 31 DALA. Cotton seeds were processed to meal, hulls and refined oil (hot hexane extraction, followed by refining) using common commercial practices. All samples were analysed for residues of *cis*- and *trans*-metconazole and its metabolites M11, M21, M30, T, TAA and TA using method D0604. Procedural recoveries for all commodities and analytes were within 70–120%. Samples of the RAC and processed commodities were stored frozen up to 6.4 months.

Residues of metabolites M11, M21 and M30 were each below their LOQ of 0.01 mg/kg in cotton seed RAC and processed commodities.

Table 24	4 Sumr	nary o	of the	sum	of	cis-	and	trans-metconazo	le	residues	in	cotton	seed	processed
commodi	ties.													

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days)	Total Residues (mg/kg)	Processing Factor
	0.4	Cotton seed RAC			0.13	-
RCN R06454	Cotton	Meal	1650	21	< 0.01	< 0.076
(Uvalde, TX, USA, 2006)	DDI 444	Hulls	1050	51	0.016	0.12
	DFL 444	Refined oil			0.016	0.12

RAC: raw agricultural commodity

Table 245 Summary of residues of metabolites 1,2,4-triazole (T), triazolyl alanine (TA) and triazolyl acetic acid (TAA) in cotton seed processed commodities.

Trial Identification			Total		Т		ТА		TAA	
(City, State/ Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Rate (g ai/ha)	PHI (days)	mg/kg	PF	mg/kg	PF	mg/kg	PF
RCN R06454 (Uvalde, TX, USA, 2006)	Cotton seed/ DPL 444	Cotton seed RAC	1650	31	< 0.01	-	0.13	-	< 0.01	-
		Meal			< 0.01	N/A	0.16	1.2	< 0.01	N/A
		Hulls			< 0.01	N/A	< 0.05	< 0.4	< 0.01	N/A
		Refined oil			< 0.01	N/A	< 0.05	< 0.4	< 0.01	N/A

Peanut

The transfer of residues of metconazole into processed commodities was investigated in peanuts from one supervised field trial conducted in the USA (Green, 2006, METCON_165). The trial was performed with an exaggerated rate of 2×1400 g ai/ha ($5 \times$) with an interval of 13 days and harvest at 18 DALA. Peanuts were processed into meal and refined oil using common commercial practices. All samples were analysed according to method RM-41C-1. Overall mean procedural recoveries for *cis*-and *trans*-metconazole in all commodities were within 70–120% and < 20% RSD. Samples of the RAC and processed commodities were stored frozen up to 4.2 months.

Table 246 Summary of the sum of *cis-* and *trans-*metconazole residues in peanut processed commodities.

Trial Identification (City, State/Region, Country, Year)	Crop/ Variety	Commodity or Matrix	Total Rate (g ai/ha)	PHI (days) ^a	Total Residues (mg/kg)	Processing Factor (STMR)
V-25689-05-N	Peanut/	Seed (RAC)			0.06	-
(Greenville, MS, USA,	Georgia	Meal	2800	18	0.05	0.8
2005)	Green	Refined oil			0.08	1.4

RAC: raw agricultural commodity

^a Average of 3 analyses

Raw commodity	Processed commodity	Individual processing factors	Median or best estimate processing factor
Plum	Dried plum	2.3	2.3
Soya bean	Hulls	0.86, 1.3, 2.6	1.3
	Meal	0.48, < 0.53, 0.69	0.53
	Crude oil	0.76, 0.84, 1.0	0.84
	Refined oil	< 0.48, < 0.53, 0.69	
Sugar beet	Pulp (ext.)	0.7, 1.0, 3.9	1.0
	Dried pulp	4.4, 9.2, 41	9.2
	Water	< 0.4, < 0.6, 1.4	0.6
	Raw juice	0.5, < 0.6, 1.5	0.6
	Lime sludge	0.5, < 0.6, 0,8	0.6
	Thin juice	< 0.4, < 0.6, 2.1	0.6
	Thick juice	< 0.6, 0.8, 2.5	0.8
	Molasses	1.0, 1.3, 3.9	1.3
	Raw sugar	0.9, 1.2, 4.4	1.2
	Ref. sugar	0.5, < 0.6, 1.2	0.6
Barley	Pot barley	0.09, 0.47, 0.51, 0.54	0.49
	Flour	1.5, 2.3, 2.8, 2.9	2.6
	Bran	2.6, 2.7, 4.0, 4.9	3.4
	Brewing malt	0.16, 0.59, 0.63, 0.67	0.61
	Malt sprouts	0.19, 0.36, 0.59, 0.71	0.48
	Beer	< 0.002, < 0.07, < 0.13, < 0.42	0.1
	Brewer's grain (dried)	0.38, 1.9, 2.2, 2.2	2.1
	Brewer's yeast	0.05, 0.19, 0.37, 0.54	0.28
Oat	Flour	0.14, 0.16, 0.20, 0.22	0.18
	Groats/rolled oats	0.07, 0.12, < 0.15, 0.17	0.14
	Husks	2.2, 2.1, 4.0, 4.4	3.1

Table 247 Overview of processing factors for MRL and STMR-P calculation.

Raw commodity	Processed commodity	Individual processing factors	Median or best estimate processing factor
	Dust	1.6, 3.7, 4.0, 4.6	3.9
	Bran	0.16, 0.31, 0.43, 0,50	0.37
Maize	Grits	N/A	N/A
	Meal	N/A	N/A
	Flour	N/A	N/A
	Refined oil (dry milling)	N/A	N/A
	Starch	N/A	N/A
	Refined oil (wet milling)	N/A	N/A
	Agf	64	64
	Cleaned grain	0.89, 0.90, 0.94, 1.1	0.92
	Epidermis/husk	29, 53, 56, 347	55
	Straight flour	0.14, 0.14, 0.23, 0.31	0.19
	Coarse bran	1.6, 1.8, 2.0, 2.1	1.9
	Fine bran	1.6, 1.8, 2.1, 2.2	2.0
Wheat	Whole meal flour	0.39, 0.60, 0.88, 0.91	0.74
	Flour	0.18, 0.21, 0.24, 0.42	0.23
	Germ	0.64, 0.92, 1.1, 1.2	1.0
	Middlings	0.81, 0.98, 1.1, 5.1	1.0
	Shorts	1.5, 2.2, 2.2, 2.4	2.2
	Low grade meal	0.56, 0.66, 0.78, 0.81	0.72
	Bread	0.44, 0.58, 0.63, 0.70	0.61
	Ref. sugar	< 0.10	< 0.10
Sugar cane	Molasses	1.3	1.3
	Meal	0.91, 0.92, 1.0, 1.1	0.96
	Crude oil	1.6, 1.6, 1.6, 1.8	1.6
Oil seed rape	Refined oil	1.5, 1.6, 1.6, 1.8	1.6
	Soap stock	0.21, 0.21, 0.28, 0.30	0.25
	Press cake	1.2, 1.2, 1.3, 1.3	1.3
Cotton seed	Meal	< 0.076	0.076
	Hulls	0.12	0.12
	Refined oil	0.12	0.12
D. (Meal	0.8	0.8
Peanut	Refined oil	1.4	1.4

RESIDUES IN ANIMAL COMMODITIES

Farm animal feeding studies

Lactating cows

The transfer of residues of metconazole into animal matrices was investigated in a study with dairy cows (Green, 2006, METCON_174). The study was conducted at treatment rates of 5 (1×), 15 (3×), and 50 (10×) ppm (0.20, 0.57 and 1.7 mg/kg bw) for 28 days.

The cows in the treatment groups (three animals per group) were treated with metconazole in gelatin capsules once daily. Milk samples were collected twice daily and pooled. On day 24, whole milk samples were centrifuged to obtain skim milk and cream samples. One animal dropped out of the $1 \times$ group at day 11. Hence, samples were only collected up to this day. All cows were sacrificed

within 24 hours of administration of the last dose. Samples of liver, kidney, muscle, and fat were collected and taken for analysis.

Milk and cream samples were analysed for *cis*- and *trans*-metconazole using method RM-41M-1 with an LOQ of 0.02 mg/kg and 0.04 mg/kg, respectively. Tissues samples were analysed according to method RM-41M-2 for *cis*- and *trans*-metconazole and according to method RM-41M-3 for metabolites M1 (free and conjugated) and M12, both methods with a LOQ of 0.02 mg/kg. Maximum storage time of milk and tissue samples for the analysis of cis- and trans-metconazole was 50 days, while for the analysis of M1 and M12 in tissues the maximum frozen storage period was 181 days.

In milk, skim milk and cream residues of *cis*- and *trans*-metconazole were <LOQ in the 10× dosing group throughout the study. The findings in tissues are summarized inTable 248.

	$\mathbf{D} = (1 + 1) \mathbf{c} + (1 + 1) \mathbf{c}$					
	Residues found in mg/kg (mean)					
Dosing group	Sum of cis- and trans-	M1 (free and	M12 (free)			
	metconazole	conjugated)	· · · · · · · · · · · · · · · · · · ·			
Milk		(conjugated)				
$10 \times (50 \text{ ppm})$	3×< 0.04	-	-			
Muscle						
10× (50 ppm)	3×< 0.04	-	-			
Fat			•			
10× (50 ppm)	3×< 0.04	-	-			
Kidney						
1× (5 ppm)	-	3×< 0.02	3×< 0.02			
3× (15 ppm)	-	3×< 0.02	0.02, 2×< 0.02			
			(0.02)			
10× (50 ppm)	3×< 0.04	< 0.02, 0.03, 0.02	< 0.02, 0.06, 0.04			
		(0.02)	(0.04)			
Liver						
1× (5 ppm)	-	3×< 0.02	-			
3× (15 ppm)	3×< 0.04	3×< 0.02	3×< 0.02			
10× (50 ppm)	3×< 0.04	< 0.02, 0.05, < 0.02	3×< 0.02			
		(0.03)				

Table 248 Residues of metconazole and metabolites M1 and M12 in cow tissues

Laying hens

The transfer of residues of metconazole into animal matrices was investigated in a study with laying hens (Green, 2008, METCON_173). The study was conducted at treatment rates of 2 (1×), 6 (3×), and 20 (10×) ppm (2.1, 6.2 and 20 mg/kg bw) for 28 days.

The hens in the treatment groups (12 animals per group) were treated with metconazole via a balling gun twice daily. Eggs were collected twice daily throughout the study period. All hens were sacrificed on the day after the last dose and samples of liver, muscle and fat were collected and taken for analysis.

Egg and tissue samples were analysed for *cis*- and *trans*-metconazole using method RM–41M–2, while metabolites M1 (free and conjugated) and M12 (free) in tissues were analysed using method RM–41M–3 with a limit of quantification of 0.02 mg/kg. Triazole metabolites were analysed using method Meth–160, revision 2 with and LOQ of 0.01 mg/kg. Maximum storage time of milk and tissue samples for the analysis of *cis*- and *trans*-metconazole was 26 days, while for the analysis of the triazole metabolites maximum storage was 135 days. For the analysis of M1 and M12 in tissues the maximum frozen storage period was 246 days.

The residue levels in eggs and tissues are summarized in Table 249 and Table 250 respectively. In eggs, residue levels reached a plateau in the 20 ppm group after approximately 6 days, (Figure 5). Residues of triazole metabolites occurring in poultry diet were up to < 0.003 mg/kg,
0.026 mg/kg and < 0.003 mg/kg for 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid, respectively.

Sampling Interval (days)	Residues in mg/kg (mean)						
	2 pr	m	6 pr	om	20 ppm		
	Sum of <i>cis</i> - and <i>trans</i> - metconazole	1,2,4- triazole	Sum of <i>cis</i> - and <i>trans</i> - metconazole	1,2,4- triazole	Sum of <i>cis</i> - and <i>trans</i> - metconazole	1,2,4- triazole	
-1	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	
1	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	$\begin{array}{c} 0.013 \\ < 0.01 \\ < 0.01 \\ (0.01) \end{array}$	
3	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	0.027 0.074 0.033 (0.043)	-	
7	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	$\begin{array}{c} 0.034 \\ 0.045 \\ 0.058 \\ (0.045) \end{array}$	0.022 0.021 0.019 (0.021)	
10	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	$\begin{array}{c} 0.042 \\ 0.049 \\ 0.080 \\ (0.055) \end{array}$	0.019 0.021 0.017 (0.019)	
14	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	0.050 0.086 0.048 (0.054)	0.022 0.021 0.017 (0.020)	
17	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	$\begin{array}{c} 0.027 \\ 0.070 \\ 0.066 \\ (0.053) \end{array}$	-	
20	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	0.043 0.075 0.077 (0.062)	0.017 0.015 0.015 (0.016)	
24	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	0.035 0.034 0.054 (0.041)	-	
26	3×< 0.04 (< 0.04)	-	3×< 0.04 (< 0.04)	-	0.031 0.037 0.035 (0.034)	-	
28	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	0.038 0.034 0.045 (0.039)	0.023 0.026 0.023 (0.024)	

Table 249 Residues of metconazole in eggs.

Table 250 Residues of metconazole metabolites in poultry tissues.

 Dosing group
 Residues found in mg/kg (mean)

	Sum of <i>cis</i> - and <i>trans</i> - metconazole	1,2,4-triazole	M1 (free and conjugated)	M12 (free)
Muscle				
1× (2 ppm)	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	-	-
3× (6 ppm)	3×< 0.04 (< 0.04)	$\begin{array}{c} 0.011 \\ < 0.01 \\ 0.011 \\ (0.010) \end{array}$	-	-
10× (20 ppm)	3×< 0.04 (< 0.04)	0.031 0.026 0.029 (0.028)	3×< 0.02 (< 0.02)	-
Fat				
1× (2 ppm)	3×< 0.04 (< 0.04)	-	-	-
3× (6 ppm)	3×< 0.04 (< 0.04)	-	-	-
10× (20 ppm)	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	3×< 0.02 (< 0.02)	-
Liver				
1× (2 ppm)	3×< 0.04 (< 0.04)	3×< 0.01 (< 0.01)	3×< 0.02 (< 0.02)	-
3× (6 ppm)	3×< 0.04 (< 0.04)	$\begin{array}{c} 0.010 \\ < 0.01 \\ 0.011 \\ (0.010) \end{array}$	< 0.02 < 0.02 0.03 (0.02)	-
10× (20 ppm)	3×< 0.04 (< 0.04)	0.030 0.026 0.032 (0.029)	0.03 0.05 0.05 (0.04)	3×< 0.02 (< 0.02)

Figure 5 Time course of the concentrations of metconazole in eggs.

APPRAISAL

Metconazole is a systemic triazole fungicide and plant growth regulator. It acts by inhibiting ergosterol biosynthesis. Metconazole was scheduled by the Fiftieth Session of the CCPR for first evaluation by the 2019 JMPR for toxicology and residues.

The Meeting received information on identity, physicochemical properties, metabolism (plant, confined rotational crops and animals), environmental fate, field rotational crops, methods of residue analysis, freezer storage stability, registered use patterns, supervised residue trials, fate of residues in processing, and livestock feeding studies.

The IUPAC name of metconazole is (1RS,5RS;1RS,5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol. The isomeric ratio of cis- and trans-metconazole is at about 80–85:15–20 (molecular weight of metconazole is 319.8).

Table 1 Overview of metabolites referred to in the appraisal

Code Names	Chemical Names (IUPAC)	Structure
M1 CL 359451	(1SR,2SR,5RS)-5-(4-chlorobenzyl)-2- (hydroxymethyl)-2-methyl-1-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanol (Molecular weight of M1 is 335.8)	HO HO CI

Code Names	Chemical Names (IUPAC)	Structure
M11 CL 382390	(1RS,5SR)5-[(SR)-(4- chlorophenyl)(hydroxy)methyl]-2,2-dimethyl-1-(1H- 1,2,4-triazol-1-ylmethyl)cyclopentanol	
M12 (4543815) CL 359138	(1RS,2SR,3RS)-3-(4-chlorobenzyl)-2-hydroxy-1- methyl-2-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanecarboxylic acid (Molecular weight of M12 is 349.8)	
M20 87084 M555F020	1,2,4-(1H)-triazole	
M21 CL 197130	(1RS,5SR)-5-[(RS)-(4- chlorophenyl)(hydroxy)methyl]-2,2-dimethyl-1-(1H- 1,2,4-triazol-1-ylmethyl)cyclopentanol	
M30 4110625 CL 382389 M555F030cis	(1RS,5SR)-5-(4-chlorobenzoyl)-2,2-dimethyl-1-(1H- 1,2,4-triazol-1-ylmethyl)cyclopentanol	
M31 5968488	(1RS,3SR,5RS)-5-(4-chlorobenzyl)-2,2-dimethyl-1- (1H-1,2,4-triazol-1-ylmethyl)cyclopentane-1,3-diol	
M34 Triazolyl acetic acid WL 161417	2-(1,2,4-triazol-1-yl)acetic acid	

Code Names	Chemical Names (IUPAC)	Structure
M35 Triazolyl alanine WL161416 CL 147267	2-amino-3-(1H-1,2,4-triazol-5-yl)propanoic acid	N N H ₂ N OH
M40 M555F040	(5Z)-5-(4-chlorobenzylidene)-2,2-dimethyl-1-(1H- 1,2,4-triazol-1-ylmethyl)cyclopentanol	HO HO CI

PHYSICAL AND CHEMICAL PROPERTIES

Metconazole is not volatile. It generally has a higher solubility in organic solvents in comparison to water. The n-octanol water partition coefficient log P_{ow} is 3.8 at 20 °C, suggesting that the parent has the potential to partition into fat. Metconazole was shown to be hydrolytically stable at pH 4, 7 and 9.

Plant metabolism

The Meeting received plant metabolism studies in wheat, canola, banana, mandarins and peas following application of either [triazole-¹⁴C]-, [cyclopentyl-¹⁴C]- or [p-chlorophenyl-¹⁴C]- metconazole.

Mandarin

On <u>mandarins</u>, [cyclopentyl-¹⁴C]- and [triazole-¹⁴C]-radiolabelled metconazole were applied in a single foliar application at a rate equivalent to 0.2 kg ai/ha at the fruit stage (about 2 months before maturity). Fruit and leaf samples were taken at 0 (immediately after the treatment), 28 and 56 days after treatment (DAT). A subset of fruits were also separated into peel and pulp.

TRRs were highest in leaves ranging between 3.1–4.8 mg eq/kg, while levels in fruits were significantly lower ranging between 0.072–0.13 mg eq/kg.

Mandarin leaves and fruits were surface rinsed with methanol, followed by extraction with methanol/water (1:1, v/v) for the leaves and methanol/water (7:3, v/v) for peel and pulp. Conjugates in extracts were hydrolyzed by treatment with either 0.1 mol/L HCl (100 °C, 1 d) or cellulase. Radioactivity in the surface rinse from fruits dropped from > 80% TRR at 0 DAT to 12–15% TRR at 56 DAT. Total extracted radioactivity (rinse + extract) in the leaves and whole fruits ranged between 90–99% TRR and 93–100% TRR, respectively.

Parent metconazole was the predominant residue in mandarin fruits accounting for 47–94% TRR (0.034–0.12 mg eq/kg) and in leaves accounting for 45–95% (1.5–4.6 mg eq/kg). No major metabolites were identified. The sum of other metabolites, including isomers of hydroxylated metconazole as well as conjugates, accounted for 32–36% TRR (0.024–0.039 mg eq/kg) in 28 and 56 DAT fruits and 33–37% TRR (1.1–1.2 mg eq/kg) in leaves.

Banana

On <u>banana</u>, [triazole-¹⁴C]- and [*p*-chlorophenyl-¹⁴C]-radiolabelled metconazole were applied in five foliar applications at 14-day intervals from flowering, at a rate equivalent to 0.14 kg ai/ha per

application. Banana fruits were sampled at 0 DALA (56 DAT1) and a subsample separated into peel and pulp.

TRRs were highest in banana peel ranging between 1.6-2.5 mg eq/kg, while levels in banana pulp were significantly lower ranging between 0.61-0.78 mg eq/kg.

Banana samples were extracted with methanol, followed by 2% HCl in methanol. Extracted radioactivity in the whole fruit, as well as in peel and pulp ranged between 96–98% TRR.

Parent metconazole was the predominant residue in all matrices accounting for 86–89% TRR (0.52–2.2 mg eq/kg). No major metabolites were identified.

Peas

On <u>peas</u>, [triazole-¹⁴C]- and [*p*-chlorophenyl-¹⁴C]-radiolabelled metconazole were applied in two (green pea scenario) or three (dry pea scenario) foliar applications at a rate equivalent to 0.22 kg ai/ha per application and a retreatment interval of 13–14 days. Foliage samples were taken after each treatment at 0, 13, 27 DAT1. For the green pea scenario (peas and foliage) samples were harvested at 26 DAT1 (13 DAT2) (BBCH 79) and for the dry pea scenario (peas and straw) at 42 DAT1 (15 DALA) (BBCH 89).

TRRs were highest in pea straw (dry pea scenario) ranging between 49-168 mg eq/kg, followed by foliage (green pea scenario) at up to 21 mg eq/kg. In pea seed, the TRR was higher in the dry pea scenario with 0.2–3.9 mg eq/kg compared to the green pea scenario with 0.038–1.6 mg eq/kg.

All samples except pea seeds were surface extracted by submersion in acetone/water (7:3), followed by extraction with acetone and acetone/methanol/water (1:1:1) for forage 0 and 13 DAT1 and with methanol/water (4:1) and water for forage 27 DAT1, straw and seeds. To liberate conjugates, aliquots of the straw extracts (15 DALA) were subjected to acidic hydrolysis (1 mol/L HCl, refluxed for 5 h) and additionally incubated with β -glucosidase. Extracted radioactivity ranged between 97–100% TRR in foliage, 91–94% in straw (both scenarios) and 85–100% TRR in seeds (both scenarios).

In both scenarios, parent metconazole was a major residue in foliage, straw and seeds (*p*-chlorophenyl-label only) accounting for 67-96% TRR (4.8–10 mg eq/kg), 54–68% TRR (4.6–33 mg eq/kg) and 21–36% TRR (0.016–0.043 mg eq/kg), respectively. The only major identified metabolite was triazolyl alanine in pea seeds at 75–85% TRR (1.2–3.2 mg eq/kg). Additionally, a mixture of isomers of hydroxylated metconazole as well as conjugates were identified at up to 38% TRR (23 mg eq/kg) in pea straw.

Wheat

On <u>wheat</u>, [triazole-¹⁴C]- or [cyclopentyl-¹⁴C]-metconazole were applied in one foliar application at BBCH 57–60 using a rate equivalent to 0.36–0.37 kg ai/ha. Samples of straw and grain were taken at 61 or 74 DAT.

Maximum TRR levels for both labels ranged between 5.9-6.3 mg eq/kg in straw, and in grain were 0.074 mg eq/kg (cyclopentyl-label) and 0.66 mg eq/kg (triazole-label).

Samples were sequentially extracted with acetone and acetonitrile (triazole-label only), as well as with acetonitrile/water (at various ratios) and water. Extracted radioactivity was equal to 82–92% TRR in grain and 74–81% TRR in straw.

While parent metconazole was not detected in wheat grain, it accounted for 19-32% TRR (1.2–1.9 mg eq/kg) in wheat straw. In wheat grain, major identified metabolites were triazolyl alanine at 69% TRR (0.46 mg eq/kg) and triazolyl acetic acid at 23% TRR (0.16 mg eq/kg). In wheat straw, major identified metabolites were M11 at 9.8% TRR (0.58 mg eq/kg) and M21 at 9.7% TRR (0.57 mg eq/kg).

Rape seed

On <u>rape seed</u>, [triazole-¹⁴C]- or [p-chlorophenyl-¹⁴C]-metconazole were applied in two foliar applications at a rate equivalent to 0.26-0.27 kg ai/ha per application. The first treatment occurred at BBCH 65 (full flowering); while the second treatment occurred 14 days later at BBCH 67 (flowering declining). Oilseed rape foliage was sampled at 0 DAT1, 0 DALA (14 DAT1), 14 DALA (28 DAT1) and 28 DALA (42 DAT1), while the pods and seeds were harvested at 44–50 DALA.

TRRs were highest in foliage (28 DALA) at up to 20 mg eq/kg and in pods at up to 21 mg eq/kg, while levels in seeds were significantly lower ranging between 1.9–2.4 mg eq/kg.

Foliage and pods were extracted with methanol (pods were soaked in water overnight prior to extraction), while seeds were extracted with hexane, followed by methanol and water. Extracted radioactivity ranged between 61–98% TRR in foliage, 65–74% in pods and 72–80% TRR in seeds.

Parent metconazole was the predominant residue in foliage, pods (*p*-chlorophenyl-label only) and seeds accounting for 40–96% TRR (2.6–13 mg eq/kg), 21% TRR (4.4 mg eq/kg) and 20–29% TRR (0.47–0.53 mg eq/kg), respectively. The only major identified metabolite was triazolyl alanine in oilseed rape seeds at 39% TRR (0.92 mg eq/kg). Additionally, a mixture of glucose conjugates of metconazole and monohydroxylated metconazole metabolites were identified at up to 63% TRR (12 mg eq/kg) in pods.

In summary, metconazole was only moderately metabolized in studies performed with wheat, oilseed rape, banana, mandarin and pea. Parent metconazole was a major residue (19–96% TRR) in all crops, except wheat grain where it was not detected. Major identified metabolites were triazolyl alanine accounting for 39–69% TRR in wheat grain, oilseed rape seed and pea seed, as well as triazolyl acetic acid accounting for 23% TRR in wheat grain. In wheat straw, metabolites M11 accounted for 9.8% TRR and M21 for 9.7% TRR. Additionally, significant residues of hydroxylated metconazole metabolites and/or their conjugates were detected in mandarin fruit, pea seed and oilseed rape seed, ranging between 19–67% TRR.

Animal metabolism

The Meeting received studies on the metabolism of metconazole in laboratory animals, lactating goats and laying hens. The evaluation of the metabolism studies in rats was carried out by the WHO Core Assessment Group.

Goats

In <u>lactating goats</u>, the metabolic fate of metconazole was investigated using [cyclopentyl-¹⁴C]-or [triazole-¹⁴C]-metconazole. In two studies [cyclopentyl-¹⁴C]-metconazole was administered orally at different isomeric ratios: a) a *cis:trans* ratio of 85:15 was administered to two lactating goats at 14 ppm (0.47 mg/kg bw per day) and 24 ppm (0.48 mg/kg bw per day) for 3–4 consecutive days; b) the *cis*-isomer only was administered to one goat at 11 ppm (0.64 mg/kg bw per day) for 4 consecutive days. Moreover, in a third study, [triazole-¹⁴C]-radiolabelled metconazole containing a *cis:trans* ratio of 85:15 was administered to one goat at 10 ppm (0.46 mg/kg bw per day) for 4 consecutive days.

For both labels most of the administered radioactivity was recovered from urine (28-43% AR) and faeces (25-50% AR). In edible tissues residues were low in all studies. The highest TRRs were found in liver ranging from 0.22 mg eq/kg (10 ppm dose rate) to 0.56 mg eq/kg (24 ppm dose rate) and in kidney ranging from 0.11 mg eq/kg (10 ppm dose rate) to 0.28 mg eq/kg (24 ppm dose rate); while in other edible tissues residue levels were significantly lower (0.001–0.015 mg eq/kg).

In milk, the radioactive residues ranged between 0.011-0.017 mg eq/kg for both labels. A plateau was reached after approximately 3 days in the studies dosed at 10-14 ppm. However, for the study using [cyclopentyl-¹⁴C]-metconazole dosed at 24 ppm, no plateau was reached after 4 days.

Tissue samples of the [cyclopentyl-¹⁴C]-metconazole dosed goats were extracted with acetonitrile, followed by acetonitrile/water 1:1, v/v) or acetonitrile/ water (9:1, v/v), followed by

methanol, while tissues of the [triazole-¹⁴C]-metconazole dosed goat were extracted with acetonitrile, followed by a single extraction with water and ethanol. Resulting extraction rates were 94–96% TRR in liver and 96–98% TRR in kidney. To liberate conjugates, extracts of the [cyclopentyl-¹⁴C]- and [triazole-¹⁴C]-metconazole dosed goats were hydrolysed with 2 mol/L HCl or 6 mol/L HCl, respectively.. It was also recognized that a shift of the *cis:trans* ratio of metconazole indicated a faster metabolism of the *cis* isomer.

Identification and characterization of the radioactivity in liver and kidney was done in all studies and in one study additionally in muscle and fat. Metconazole (sum of free and conjugated) was the major identified residue in liver, accounting for 33–42% TRR (0.09–0.24 mg eq/kg), with the contribution of conjugated metconazole being about 6–10%. Additionally, several metabolites were detected for both labels at significant levels: M1 (conjugated) in kidney ranging between 12–14% TRR (0.014–0.038 mg eq/kg); M12 (free) in kidney ranging between 13–21% TRR (0.020–0.055 mg eq/kg) and M31 (free and conjugated) in liver and kidney ranging between 15–24% TRR (0.022–0.063 mg eq/kg). Levels of M1 and M12 in kidney were 4–12 times higher compared to parent, while levels of M31 were similar, or below parent. 1,2,4-triazole was not detected in any of the samples from the [triazole-¹⁴C]-metconazole dosed goat.

Laying hens

In <u>laying hens</u>, the metabolic fate of metconazole was investigated using [cyclopentyl-¹⁴C]-or [triazole-¹⁴C]-metconazole. In three separate studies, [cyclopentyl-¹⁴C]-metconazole was administered orally to laying hens at 7 ppm (0.6 mg/kg bw per day) for 28 consecutive days, at 8 ppm (0.64 mg/kg bw per day) for 14 consecutive days or at 14 ppm (0.73 mg/kg bw per day) for 4.5 consecutive days. In the third study, [triazole-¹⁴C]-radiolabelled metconazole was also administered to laying hens at 13 ppm (0.75 mg/kg bw per day) for 4.5 consecutive days.

Most of the administered radioactivity was recovered from excreta (91–97% AR). In egg whites the radioactive residues ranged between < 0.001-0.09 mg eq/kg (cyclopentyl-label) and < 0.001-0.17 mg eq/kg (triazole-label) and in egg yolk between < 0.001-0.18 mg eq/kg (cyclopentyl-label) and < 0.001-0.16 mg eq/kg (triazole-label). TRR levels in eggs did reach a plateau after 8 days. In edible tissues the highest TRRs were found in liver at 0.60–0.79 mg eq/kg (cyclopentyl-label) and 0.97 mg eq/kg (triazole-label) and in kidney at 0.33–0.36 mg eq/kg (cyclopentyl-label); while in other edible tissues residue levels were significantly lower at 0.024–0.13 mg eq/kg (cyclopentyl-label) and 0.14–0.19 mg eq/kg (triazole-label).

In the third study, dosing [cyclopentyl-¹⁴C]-metconazole at 14 ppm and [triazole-¹⁴C]metconazole at 13 ppm for 4.5 days, samples were extracted for the purpose of characterization of the radioactive residue. Samples of liver, breast muscle, thigh muscle, abdominal fat, skin with fat, egg white and egg yolk, were extracted three times with acetonitrile, followed by two times with water. Insoluble oily droplets were dissolved with hexane. The extract (cyclopentyl label only) and PES from liver samples of both labels was hydrolysed with 6 mol/L and 2 mol/L HCl, respectively. Extractability ranged for all matrices between 86–99% TRR.

Parent metconazole was identified as a major residue for both labels in abdominal fat at 35-37% TRR (0.033–0.050 mg eq/kg) and skin with fat at 20-28% TRR (0.021–0.027 mg eq/kg), as well as for [cyclopentyl-¹⁴C]-metconazole in egg yolk at 11% TRR (0.010 mg eq/kg). In tissues of hens treated with the [triazole-¹⁴C]-metconazole, metabolite 1,2,4-triazole was also quantified in all tissues at levels ranging between 27-77% TRR (0.019–0.27 mg eq/kg). Several additional metabolites were detected for both labels at significant levels: M1 (free and conjugated) in liver at 16% TRR (0.13 mg eq/kg) and M12 (free and conjugated) in liver at 12% TRR (0.091 mg eq/kg). The sum of the co-eluting metabolites M1 and M31 in abdominal fat, skin with fat and egg yolk, as well as whole egg accounted for 11–28% TRR (0.010–0.025 mg eq/kg).

In summary, extensive metabolic degradation of metconazole was observed with similar pathways in lactating goats and laying hens. Parent metconazole (mostly unconjugated) was quantified at major amounts in goats (liver) and hens (fat, skin and egg yolk), accounting for 11–42%

TRR. Major metabolites were M1 at 12–16% TRR and M12 at 12–21% TRR in goats (kidney) and hens (liver), as well as M31 at 15–24% TRR in goats (liver & kidney). The sum of metabolites M1 and M31 accounted for 11–28% TRR in hens (fat, skin and egg yolk). Metabolite 1,2,4-triazole was quantified in all tissues of laying hens at 27–77% TRR.

ENVIRONMENTAL FATE IN SOIL

The Meeting received studies on aerobic soil degradation, soil photolysis, confined rotational crop metabolism and field rotational crops.

Aerobic soil degradation

In <u>aerobic soil degradation studies</u>, moderate degradation of ¹⁴C-metconazole was observed with estimated half-lives in various soils ranging from 84–128 days. The only identified metabolites were M30 at up to 4.9% AR, M40 (and/or unknown) at up to 1.8% AR and 1,2,4-triazole at up to 1.2% AR.

Half-lives of ¹⁴C-metconazole for <u>soil photolysis</u> under the assumption of an average daylight period of 12 hours were estimated at 63–136 days (1st order kinetics) and 73 days (square root 2nd order kinetics). The only identified metabolite was M30 at up to 3.7% AR. The Meeting concluded that photolysis does not represent a significant degradation pathway for metconazole.

Confined rotational crops

A <u>confined rotational crop metabolism</u> study was conducted with [cyclopentyl-¹⁴C]- and [triazole-¹⁴C]-radiolabelled metconazole applied at a rate equivalent to 0.4 kg ai/ha to a sandy loam soil. After plant-back intervals (PBIs) of 30 and 120 days the nature and level of radioactive residues were investigated in lettuce, radish and wheat.

At 120-days PBI, the measured TRR was often at similar or higher levels compared to the 30day PBI. At harvest, the highest total radioactive residues were found in wheat straw (0.61-0.73 mg eq/kg). In edible commodities radioactive residues were highest in radish root, up to 0.71 mg eq/kg (triazole-label, 120 DAT) and 0.37 mg eq/kg (cyclopentyl-label, 120 DAT), followed by wheat grain, up to 0.49 mg eq/kg (triazole-label, 120 DAT), and lettuce leaf up to 0.2 mg eq/kg (triazole-label, 120 DAT) and 0.10 mg eq/kg (cyclopentyl-label, 120 DAT).

All samples were extracted with acetonitrile/water at various ratios and water. Subsequently the extracts were partitioned with ethyl acetate, dichloromethane or hexane. Conjugates present in the extracts were hydrolyzed by either acid (2 mol/L HCl) or base hydrolysis (0.1 mol/L NaOH). For both labels and PBIs, the extracted radioactivity in radish (root and tops), lettuce, wheat straw and wheat grain ranged between 84–97% TRR.

Parent metconazole was identified as the major component in radish roots and tops at the 30day PBI at 15–41% TRR (0.07–0.13 mg eq/kg) and in lettuce at the 120-day PBI at 20% TRR (0.02 mg eq/kg). Metconazole was also a major residue in radish from the 120-day PBI and lettuce and wheat straw from the 30-day PBI, but could not be unequivocally identified due to interference.

Metabolite M35 (triazolyl alanine) was a major residue in the 30-day PBI radish roots and tops, as well as in the 120-day wheat grain making up 18–59% TRR (0.07–0.29 mg eq/kg), while M34 (triazolyl acetic acid) was found at up to 20% TRR (0.10 mg eq/kg) in the 120–day PBI wheat grain. Metabolite M12 was a significant residue in the 30-day PBI radish tops at up to 14% TRR (0.09 mg eq/kg), but was not found in the 120-day PBI samples. Additionally, glycoside conjugates were detected at up to 18% TRR (0.13 mg eq/kg) in wheat straw at the 120-day PBI.

In two <u>field rotational crop</u> trials, conducted in Germany, metconazole was applied twice to bare soil a rate of 0.09 kg ai/ha with an interval of 21 days. Carrots and lamb's lettuce were planted 30-31 DALA while winter wheat was planted 98–99 DALA. Carrots and lamb's lettuce were sampled at the earliest time the crop could be commercially used and at maturity. Winter wheat was sampled immature (whole plant, ears and rest of plant) and at maturity (grain and straw).

Residues of metconazole in crops planted at 30/31 days (carrot and lamb's lettuce) and 99 days (winter wheat) after treatment of the soil were not quantifiable (LOQ: 0.01 mg/kg; straw: 0.03 mg/kg).

The Meeting noted that residues of metconazole are moderately persistent in soil (DT_{50} up to 128 days). In the confined rotational crop metabolism study performed at 0.4 kg ai/ha, metconazole was the predominant residue in all plant commodities, except wheat grain. Also, the concentrations in the 30– and 120-day PBI samples were in the same range or increased with time, reaching up to 0.13 mg eq/kg in edible parts.

The two field rotational crop studies performed at 2×0.09 kg ai/ha did not result in any detectable residues of metconazole in succeeding crops. Data from field trials on potato treated at a rate of 4×0.14 kg ai/ha (approx. 3 times higher compared to the available field rotational crop data) resulted in no residues >LOQ. The Meeting concluded that there is no concern for carry over of metconazole residues in rotational crops.

In addition to parent metconazole, the metabolites triazolyl alanine and triazolyl acetic acid, common to the whole group of triazole fungicides, were found.

METHODS OF RESIDUE ANALYSIS

The Meeting received analytical methods for the determination of metconazole and metabolites M11, M21 and M30 in plant matrices, as well as for the triazole metabolites 1,2,4-triazole, triazolyl alanine, triazolyl acetic acid and triazolyl lactic acid.

For matrices of plant origin, most methods employed extraction with acetone/hexane, acetone/water, acetonitrile, acetonitrile/water, methanol or methanol/water. Clean-up was done by either liquid-liquid partitioning alone or in combination with GPC or SPE. Parent metconazole was determined by LC-MS/MS, GC-NPD or GC-MS, while all metabolites were determined by LC-MS/MS only. Among all available methods, the validated LOQ for parent metconazole ranged between 0.005–0.05 mg/kg. For the metabolites M11, M21 and M30, the LOQ was at 0.01 mg/kg or 0.02 mg/kg, and for the triazole metabolites at 0.01 mg/kg, except for one method for triazolyl acetic acid where the LOQ was also at 0.05 mg/kg. Mean recoveries were, with few exceptions, within the acceptable range of 70–120% with a RSD of < 20%.

For animal matrices, methods were provided for parent metconazole and metabolites M1, M12 and 1,2,4-triazole.

In animal matrices, most methods employed extraction with acetone/water, ethyl acetate/methanol, acetonitrile, methanol or methanol/water. Clean-up was done by either liquid-liquid partitioning alone or in combination with SPE. Conjugates of M1 were additionally cleaved by acidic hydrolysis using 3 mol/L HCl. Parent metconazole was determined by LC-MS/MS or GC-NPD, while all metabolites were determined by LC-MS/MS only. The method for 1,2,4-triazole also involved a derivatization step with dansyl chloride. Among the available methods, the validated LOQ for parent metconazole ranged between 0.005–0.02 mg/kg. For metabolites M1 and M12 the validated LOQ was equal to 0.02 mg/kg and for 1,2,4-triazole equal to 0.01 mg/kg. Mean recoveries were within the acceptable range of 70–120% with a RSD of < 20%.

The Meeting concluded that suitable data generation and monitoring methods are available to measure residues of metconazole and metabolites M11, M21 and M30, 1,2,4-triazole, triazolyl alanine, triazolyl acetic acid and triazolyl lactic acid in plants, as well as parent metconazole and metabolites M1, M12 and 1,2,4-triazole in animal commodities.

The Meeting also noted that with the DFG S19 method, a suitable multi-residue method for the monitoring of metconazole residues in plant and animal matrices is available.

Stability of residues in stored analytical samples

The Meeting received information on the storage stability of *cis*- and *trans*-metconazole and metabolites M21, M11, M30, 1,2,4-triazole, triazolyl alanine and triazolyl acetic acid in a variety of plant matrices stored under frozen conditions.

Residues of *cis*- and *trans*-metconazole were stable in high starch matrices for at least 12 months (wheat grain and carrot), for at least 31 months (potato) and at least 26 months (radish root); in high protein matrices for at least 14 months (pea seed); in high water matrices for least 12 months (lettuce); in high oil matrices for at least 12 months (rape seed and oil) and for at least 26 months (soya bean seed); and in blueberries for least 9 months. Additionally, storage stability in wheat hay was demonstrated for at least 26 months.

Metabolites M11 and M21 were stable in high starch matrices (wheat grain, sugar beet root), high water content matrices (radish tops) and high oil matrices (soya bean seed) for at least 26 months. Additionally, storage stability in wheat straw and hay was demonstrated for at least 26 months.

Metabolite M30 was stable in high starch matrices for at least 26 months (wheat gain) and up to 12 months (sugar beet root). In high water content matrices (radish tops) and high oil matrices (soya bean seed), as well as in wheat straw and hay M30 was stable for up to 12 months.

Metabolite 1,2,4-triazole was stable in high water content matrices (radish tops) for at least 26 months, and in high starch matrices (radish root) as well as in high oil content matrices (soya bean seed) for up to 12 months.

Metabolites triazolyl alanine and triazolyl acetic acid were stable in high starch matrices (wheat gain, radish roots), high water content matrices (radish tops) and high oil matrices (soya bean seed) for at least 26 months.

For animal matrices, the Meeting received information on the storage stability of *cis*- and *trans*-metconazole and metabolites M1 and M12 in animal matrices stored at -20 °C.

Residues of *cis*- and *trans*-metconazole were not stable in muscle and liver, but stable in fat for up to 3 months. Metabolite M1 was stable in liver for at least 9 months and in kidney, muscle, and fat for at least 8 months. Metabolite M12 was stable in liver and kidney for at least 8 and 9 months, respectively.

DEFINITION OF THE RESIDUE

In the <u>plant metabolism studies</u> conducted on wheat, canola, banana, mandarins and peas, the predominant residue was parent metconazole at 20–29% TRR in rape seeds, 86-89% TRR in banana, 47-94% TRR in mandarins and 21-36% TRR in pea. Only in wheat grain were no parent metconazole or metconazole specific metabolites detected (parent metconazole was detected frequently in cereal grain from field trials). In feed matrices, residues of metconazole ranged from 19–32% TRR in wheat straw, 40-96% TRR in rape forage, 67-96% TRR in pea foliage (vines) and 54–68% TRR in pea straw (hay/fodder).

Analytical methods are capable of monitoring metconazole in all plant matrices.

The Meeting concluded that parent metconazole (sum of *cis* and *trans* isomer) is a major residue in plants and is a suitable marker compound for compliance with MRLs.

On deciding which compounds should be included in the residue definition for risk assessment, the Meeting considered the likely occurrence of the compounds and the toxicological properties of the candidates M11, M21 and M30. All three metabolites were analysed in various food and feed commodities from supervised field trials, but residues were only found in cereal commodities. These metabolites were also identified in plant metabolism studies, but always as minor components of the residue (up to 30% of parent).

Metabolites M11, M21 and M30 were either not detected in the rat or only at small amounts (M21 at < 1-6% AD), and no indications of genotoxicity were identified. Therefore, the TTC approach for a Cramer Class III compound was applied.

Estimated long-term exposures were based on uses in plant and animal commodities and using maximum values found in supervised field trials. Actual measured concentrations from field trials were used where metabolites M11, M21, and M30 were analysed in the field trials. In trials where only metconazole was measured, a maximum value was estimated assuming 30% contribution of each metabolite relative to parent. The estimated long-term maximum dietary exposures for metabolites M11, M21 and M30 were 0.81 μ g/kg bw per day –for each metabolite.

The Meeting noted that the estimated exposures for metabolites M11, M21 and M30 are each below the threshold of toxicological concern for Cramer Class III compounds (1.5 μ g/kg bw per day), and concluded that dietary exposure to these metabolites is unlikely to present a public health concern.

Triazole derived metabolites were found in significant amounts in wheat grain, oilseed rape seed and pea seed (triazolyl alanine), as well as in wheat grain (triazolyl acetic acid) from primary plant metabolism studies. Moreover, these two metabolites were also frequently detected in crops from supervised field trials (e.g. cereal grains). The Meeting concluded that these metabolites can arise from other sources and have toxicities known to be different from metconazole. These metabolites should be assessed separately, considering their source and respective toxicities, and were not further considered in the current evaluation.

In primary metabolism studies, significant residues of unidentified hydroxylated metconazole metabolites and/or their conjugates were detected in mandarin fruit, pea seed and oilseed rape seed, ranging between 19–67% TRR. These metabolites occurred at lower or similar levels relative to parent metconazole, except for pea seed. Since no genotoxicity was indicated for hydroxylated metconazole metabolites, the TTC approach for Cramer Class III compounds was applied. Estimated long-term exposure was based on consumption of plant and animal commodities and using maximum values of parent metconazole found in supervised field trials corrected for the estimated fraction of the hydroxylated metconazole metabolites.

The following factors were derived from results in metabolism studies (mandarin, pea, oilseed rape) comparing parent and total hydroxylated metconazole metabolites (free and conjugated) and assigning them to associated crops to reflect their nature, where possible. If a crop could not be assigned to a matching matrix from the metabolism studies, the most conservative factor of 3.6 was applied (e.g. bulb and root vegetables).

	Stone fruit, blueberries:	0.6 (mandarin fruit, 28 DAT)					
	Banana		0.06	(mandarin	fruit,	0	
DAI)							
	Green beans, sweet corn:		3.6 (g	reen pea)			
	Dried peas, soya beans, cereal grain, maize:		3.0 (d	ry pea)			
	Sugar cane, soya bean forage, sugar beet tops,						
	maize forage, rape forage:		0.8 (n	handarin leaf)		
	Oilseeds (oilseed rape, sunflower, cotton seed), peanuts,						
	tree nuts:		2.1 (ra	ape seed)			
	Straw, hay, stover, almond hulls, cotton gin by-product:		0.5 (p	ea straw)			
	Bulb onion, garlic, potato, sugar beet:		3.6 (u	nassigned)			

The estimated long-term maximum dietary exposure, calculated for the total of hydroxylated metconazole metabolites, was $0.75 \ \mu g/kg$ bw per day.

The Meeting noted that the estimated exposure is below the threshold of toxicological concern for Cramer Class III compounds (1.5 μ g/kg bw per day) and concluded that dietary exposure to these metabolites is unlikely to present a public health concern.

The Meeting agreed the definition of the residue for dietary risk assessment for plant commodities should be: metconazole (sum of cis and trans isomer)

In <u>animal metabolism studies</u> performed with lactating goats and laying hens, parent metconazole (mostly unconjugated) was quantified at major amounts in goats (liver) and hens (fat, skin and egg yolk), accounting for 11–42% TRR. Major metabolites were M1 (free and conjugated) at 12–16% TRR and M12 (free and conjugated) at 12–21% TRR in goats (kidney) and hens (liver), as well as M31 (free and conjugated) at 15–24% TRR in goats (liver & kidney). The sum of metabolites M1 and M31 accounted for 11–28% TRR in hens (fat, skin and egg yolk). Additionally, metabolite 1,2,4-triazole was quantified in all tissues of laying hens at 27–77% TRR.

A <u>cow feeding study</u> was conducted at treatment rates of 5, 15 and 50 ppm in the diet. In milk no residues >LOQ (0.02 mg/kg) were detected in all dose groups. Residues of parent metconazole were <LOQ (0.04 mg/kg) in muscle, fat, liver and kidney in the highest dose group. Metabolite M1 (free and conjugated) was quantified in the highest dose group in kidney and liver at up to 0.02 mg/kg and 0.03 mg/kg, respectively. Additionally, metabolite M12 (free) was quantified only in kidney from the 15 ppm dose group at 0.02 mg/kg and from the 50 ppm dose group at 0.04 mg/kg.

A <u>poultry feeding study</u> was conducted at treatment rates of 2, 6 and 20 ppm. While residues of parent metconazole in eggs were <LOQ in the lower dose groups, residues ranged between 0.043–0.062 mg/kg at the highest dose group. In tissues, no residues of parent metconazole were detected >LOQ in any dose group. Metabolite M1 was quantified in liver only at the 6 ppm level at 0.02 mg/kg and at the 20 ppm level at 0.04 mg/kg. Additionally, metabolite 1,2,4-triazole was quantified in eggs in the 20 ppm dose group ranging between 0.010–0.024 mg/kg as well as in muscle and liver at 0.028 mg/kg and at 0.029 mg/kg, respectively.

Parent metconazole was identified as a major residue in liver, fat skin and egg yolk during animal metabolism studies. Additionally, it was the only identified compound in eggs during a poultry feeding study. While no suitable marker compound could be identified for all matrices, parent was generally present. Hence, the Meeting decided to include only metconazole (sum of cis and trans isomers) into the residue definition for compliance with MRLs. Analytical methods are capable of measuring metconazole in animal matrices.

In muscle and fat tissues of all animals investigated, residue concentrations were of similar proportions. The log P_{ow} of metconazole is 3.8. The Meeting concluded that residues are not fat-soluble.

On deciding which compounds should be included in the residue definition for risk assessment, the Meeting considered the likely occurrence of the compound and its toxicological properties for the candidates M1, M12 and M31. The three metabolites were detected in animal metabolism studies in their free and conjugated (conjugated fraction: M1: 83–100%; M12: 0% (ruminant); 64% (poultry); M31: 72–100%) forms in liver and kidney. However, levels of M1 (free and conjugated) and M12 (free) in their free form found in liver and kidney during ruminant and poultry feeding studies were low. Since the method used in the feeding studies did not include a hydrolysis step, residue levels could be underestimated for total free and conjugated M12 in poultry. M1 and M12 were observed in the rat and are of no greater toxicity than parent metconazole and are covered by its toxicological reference values. Therefore, the Meeting decided to include the metabolites into the residue definition for dietary exposure purposes. Metabolite M31 was not detected in the rat and no indications on genotoxicity were identified. Therefore, the TTC approach for a Cramer Class III compound was applied. Potential long-term exposure to M31 was estimated using the maximum values found in liver and kidney in the metabolism studies.

The estimated long-term maximum dietary exposure, calculated for metabolite M31 was 0.01 μ g/kg bw per day.

The Meeting noted that the estimated dietary exposure to M31 is below the threshold of toxicological concern for Cramer Class III compounds (1.5 μ g/kg bw per day) and concluded that dietary exposure to this metabolite is unlikely to be of public health concern.

Triazole metabolite 1,2,4-triazole was found in significant amounts in a poultry metabolism study and feeding study. The Meeting concluded that triazole metabolites, such as 1,2,4-triazole, can arise from other sources and have toxicities known to be different from metconazole. These metabolites should be assessed separately, considering their source and respective toxicities and were not further considered in the current evaluation.

For dietary exposure purposes for animal commodities, based on the results of the animal metabolism studies, the Meeting decided to include metabolites M1 and M12 (free and conjugated) in the residue definition, together with parent metconazole (sum of *cis* and *trans* isomer).

Definition of the residue for compliance with the MRL for plant and animal commodities: *Metconazole (sum of cis and trans isomer)*

Definition of the residue for dietary risk assessment for plant commodities: *Metconazole (sum of cis and trans isomer)*

Definition of the residue for dietary risk assessment for animal commodities: Sum of metconazole (cis and trans-isomer) and metabolites (1SR,2SR,5RS)-5-(4-chlorobenzyl)-2-(hydroxymethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol (M1; free and conjugated) and (1RS,2SR,3RS)-3-(4-chlorobenzyl)-2-hydroxy-1-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanecarboxylic acid (M12; free and conjugated), expressed as metconazole

The residue is not fat-soluble.

RESULTS OF SUPERVISED RESIDUE TRIALS ON CROPS

Stone fruit (peach, plum, cherry)

The critical GAP for stone fruit in the USA allows three foliar applications of metconazole at 140 g ai/ha, at full bloom, petal fall and pre-harvest and a PHI of 14 days.

The ranked order of residues in <u>peach</u> approximating GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 8): 0.040(2), <u>0.045(3)</u>, 0.050, 0.060, 0.085 mg/kg.

The Meeting estimated a maximum residue level of 0.2 mg/kg, a STMR of 0.045 mg/kg and a HR of 0.09 mg/kg (highest individual value) for metconazole in the subgroup of peaches.

The ranked order of residues in <u>plum</u> approximating GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 5): < 0.04(2), 0.040(2), 0.045 mg/kg.

The Meeting estimated a maximum residue level of 0.1 mg/kg, a STMR of 0.040 mg/kg and a HR of 0.05 mg/kg (highest individual value) for metconazole in the subgroup of plums.

The ranked order of residues in <u>cherry</u> approximating GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 7): < 0.04, 0.040, 0.060, <u>0.070</u>, 0.080, 0.090, 0.14 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg, a STMR of 0.07 mg/kg and a HR of 0.16 mg/kg (highest individual value) for metconazole in the subgroup of cherries.

Blueberries

The critical GAP for blueberries in Canada allows three foliar applications of metconazole at 90 g ai/ha applied at flowering and pre-harvest with no more than two sequential applications and a PHI of 7 days.

Field trials conducted with blueberries in Canada and the USA were performed with three foliar applications of metconazole at rates of 90–100 g ai/ha with a RTI of 27–63 days between the first and second treatment and 6–14 days between the second and third treatment.

The ranked order of residues approximating GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 11): < 0.10(2), 0.12, 0.13, 0.14(2), 0.16, 0.18, 0.19, 0.20, 0.31 mg/kg.

The Meeting estimated a maximum residue level of 0.5 mg/kg, a STMR of 0.14 mg/kg and HR of 0.33 mg/kg (highest individual value) for metconazole in blueberries.

Banana

The critical GAP for banana in Mexico allows three foliar applications of metconazole at 90 g ai/ha with a RTI of 14 days and a PHI of 0 days.

Field trials conducted with banana in the Costa Rica (3), Ecuador (3), Honduras (3), and Mexico (3)were performed with seven foliar applications of metconazole at rates of 150 g ai/ha with an RTI of 11–15 days. Bananas were harvested at 0 DALA.

The ranked order of residues in these trials for estimating maximum residue levels and dietary risk assessment was (n = 12): < 0.10(12) mg/kg.

Although the number of applications in field trials was 7 instead of 3, the Meeting concluded that recommendations could be given since all residues even at the higher number of applications were <LOQ and estimated a maximum residue level of 0.1(*) mg/kg and a STMR and HR of 0.1 mg/kg in banana.

Bulb onions, Subgroup of

The critical GAP for bulb onion and garlic in Brazil allows three foliar applications of metconazole at 90 g ai/ha with a RTI of 7 days and a PHI of 14 days.

Bulb onion

Field trials conducted with bulb onion in Brazil were performed approximating the GAP.

The ranked order of residues in bulb onions following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 3): < 0.02, < 0.05(2) mg/kg.

Garlic

Field trials conducted with garlic in Brazil were performed approximating the GAP.

The ranked order of residues in garlic following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 3): < 0.02, < 0.05(2) mg/kg.

The Meeting decided to combine the data sets from bulb onions and garlic to mutually support maximum residue levels for bulb onion and garlic. The ranked order of residues following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 6): $< 0.02(2), \le 0.05(4)$ mg/kg.

The Meeting estimated a maximum residue level of 0.05(*) mg/kg, a STMR and HR of 0.05 mg/kg for metconazole in bulb onion and garlic.

Beans with pods (Phaseolus spp.) (immature pods and succulent seeds)

The critical GAP for green beans in Brazil allows three foliar applications of metconazole at 14 g ai/ha with a RTI of 7 days and a PHI of 15 days.

Field trials conducted with green beans in Brazil were performed with three foliar applications of metconazole at considerably higher rates of 45–180 g ai/ha with a RTI of 7 days and PHI of 14–15 days.

The ranked order of residues for estimating maximum residue levels and dietary risk assessment was (n = 4): < 0.02, < 0.05(3) mg/kg.

The Meeting noted that green beans fall under category 3 of the minor crop classification, requiring a minimum of five supervised field trials to estimate maximum residue levels. Although the number of trials was only 4, the Meeting estimated a maximum residue level of 0.05(*) mg/kg and a STMR and HR of 0 mg/kg, since no residues >LOQ were detected at a considerably higher treatment rates.

Dry beans (except soya beans), Subgroup of

The critical GAP for dry beans except soya beans in Canada and the USA allows two foliar applications of metconazole at 140 g ai/ha with a RTI of 7 days and a PHI of 21 days.

In field trials conducted with dry beans in Canada and the USA, the ranked order of residues following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 18): < 0.04(18) mg/kg.

The Meeting noted that the GAP covers the subgroup of dry beans except soya beans and estimated a maximum residue level of 0.04(*) mg/kg, and a STMR of 0.04 mg/kg for metconazole in the subgroup of dry beans (except soya bean).

Soya beans

The critical GAP for soya beans in the USA allows two foliar applications of metconazole at 63 g ai/ha with a RTI of 10 days and a PHI of 30 days.

In field trials conducted with soya beans in the USA, the ranked order of residues for estimating maximum residue levels and dietary risk assessment was (n = 21): < 0.01(17), 0.011, 0.012, 0.030, 0.046 mg/kg. Using scaling a factor of 0.8, scaled residues in ranked order were (n = 21): < 0.01(17), 0.01(2), 0.024, 0.037

The Meeting estimated a maximum residue level of 0.04 mg/kg, and a STMR of 0.01 mg/kg for metconazole in soya beans.

Dry peas, Subgroup of

The critical GAP for dry peas in Canada and the USA allows two foliar applications of metconazole at 140 g ai/ha with a RTI of 7 days and a PHI of 21 days.

In field trials conducted with dry peas in Canada and the USA, the ranked order of residues following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 14): < 0.04(5), 0.041, 0.042, 0.043, 0.048, 0.051, 0.056, 0.061, 0.073, 0.084 mg/kg.

The Meeting noted that the GAP covers the subgroup of dry peas and estimated a maximum residue level of 0.15 mg/kg, and a STMR of 0.0425 mg/kg for metconazole in the subgroup of dry peas.

Tuberous and corm vegetables, Subgroup of

The critical GAP for the subgroup of tuberous and corm vegetables in the USA allows four foliar applications of metconazole at 140 g ai/ha with a RTI of 7 days and a PHI of 1 day.

In field trials conducted with potato in the USA, the ranked order of residues following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 14): < 0.04(14) mg/kg.

The Meeting noted that the GAP covers the subgroup of tuberous and corm vegetables and estimated a maximum residue level of 0.04(*) mg/kg, and a STMR and HR of 0 mg/kg for metconazole in the subgroup of tuberous and corm vegetables, including potato.

Sugar beet

The critical GAP for sugar beet in Canada allows two outdoor foliar applications of metconazole at 113 g ai/ha with a RTI of 14 days and a PHI of 14 days.

In field trials conducted with sugar beet in the USA, the ranked order of residues following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 11): < 0.01, 0.010(3) 0.020(3), 0.022, 0.030(2), 0.044 mg/kg.

The Meeting estimated a maximum residue level of 0.07 mg/kg and a STMR of 0.02 mg/kg for metconazole in sugar beet.

Barley, oats, rye, wheat

The critical GAP for barley, oat, rye, triticale and wheat in the USA allows two outdoor foliar applications of metconazole at 112 g ai/ha with a RTI of 6 days and a PHI of 30 days.

The ranked order of residues in <u>barley</u> following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 1): 0.83 mg/kg.

The Meeting concluded that no maximum residue level could be estimated for metconazole in barley.

The ranked order of residues in <u>oats</u> following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 2): 0.21, 0.31 mg/kg.

The Meeting concluded that no maximum residue level could be estimated for metconazole in oat.

The ranked order of residues in <u>rye</u> following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 3): 0.068, 0.074, 0.15 mg/kg.

The Meeting concluded that no maximum residue level could be estimated for metconazole in rye.

The ranked order of residues in <u>wheat</u> following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 4): 0.011, 0.013, 0.015, 0.051 mg/kg.

The Meeting concluded that no maximum residue level could be estimated for metconazole in wheat.

Since the residue populations were significantly different according to the Kruskal-Wallis Htest between cereals, the Meeting decided that it was not possible to combine the data for mutual support.

Maize

The critical GAP for maize in the USA allows four foliar applications of metconazole at 92 g ai/ha with a RTI of 7 days and a PHI of 20 days.

In field trials conducted with maize in the USA, the ranked order of residues following GAP treatment ($\pm 25\%$) for estimating maximum residue levels and dietary risk assessment was (n = 20): < 0.01(18), 0.010, 0.015 (highest individual value: 0.018) mg/kg.

The Meeting estimated a maximum residue level of 0.015 mg/kg, and a STMR of 0.01 mg/kg for metconazole in maize.

Sweet corn (Corn-on-the-cob)

The critical GAP for sweet corn in the USA allows four foliar applications of metconazole at 92 g ai/ha with a RTI of 7 days and a PHI of 7 days.

In field trials conducted with sweet corn in the USA the ranked order of residues following GAP treatment ($\pm 25\%$) for estimating maximum residue levels and dietary risk assessment was (n = 12): < <u>0.01(11)</u>, 0.01 mg/kg.

The Meeting estimated a maximum residue level of (*)0.015 mg/kg, and a STMR and HR of 0.01 mg/kg for metconazole in sweet corn (Corn-on-the-cob).

Sugar cane

The critical GAP for sugar cane in the USA allows four foliar applications of metconazole at 91 g ai/ha with a RTI of 14 days and a PHI of 14 days.

In field trials conducted with sugar cane in the USA, the ranked order of residues following GAP treatment ($\pm 25\%$) for estimating maximum residue levels and dietary risk assessment was (n = 8): < 0.01(2), 0.019, 0.020, 0.021, 0.023, 0.030, 0.036 mg/kg.

The Meeting estimated a maximum residue level of 0.06 mg/kg, a STMR of 0.0205 mg/kg and HR of 0.036 mg/kg for metconazole in sugar cane.

Tree nuts

The critical GAP for tree nuts in the USA allows four foliar applications of metconazole at 123 g ai/ha (pistachios: 140 g ai/ha) with a RTI of 7 days (14 days filberts and pistachios) and a PHI of 25 days.

Pecan nuts

Field trials with pecan nuts conducted in the USA were performed with 2 foliar applications of metconazole at rates of 268–306 g ai/ha with a 145–178 day interval between applications and harvested at 25 DALA.

The ranked order of residues in these trials for estimating maximum residue levels and dietary risk assessment was (n = 3): < 0.04(3) mg/kg.

Almonds

Field trials with <u>almonds</u> conducted in the USA were performed with 2 foliar applications of metconazole at rates of 153–307 g ai/ha and one trial at an exaggerated rate of 607–608 g ai/ha with a 133–155 day interval between applications and harvested at 25 DALA.

The ranked order of residues in these trials for estimating maximum residue levels and dietary risk assessment was (n = 7): < 0.04(7) mg/kg.

The Meeting noted that all trials for pecan and almonds were overdosed with the last application according to the PHI of the critical GAP and all residues were <LOQ, and decided to estimate a maximum residue level of 0.04(*) mg/kg and a STMR and HR of 0 mg/kg for the group of tree nuts.

Rape seed

The Meeting noted a GAP from the USA involving one single application of metconazole at 140 g ai/ha with a 35 day PHI. However, residue levels observed in oilseed rape from corresponding field trials in the USA indicated that this was not the most critical GAP available. Therefore, the Meeting based its recommendations on a more critical GAP as reflected in the European field trials.

The critical GAP for oilseed rape in Chile allows two foliar applications of metconazole at 90 g ai/ha with a PHI of 42 days.

Field trials conducted with oilseed rape in France were performed with two foliar applications of metconazole at rates of 90 g ai/ha (RTI not stated) and harvest at 39–70 DALA.

The ranked order of residues in rape seed following GAP treatment ($\pm 25\%$) for estimating maximum residue levels and dietary risk assessment was (n = 2): 0.050, 0.090 mg/kg.

The critical GAP for oilseed rape in the United Kingdom allows a maximum of two foliar applications of metconazole at 72 g ai/ha at up to BBCH 71 (10% of pods at final size) with a RTI of 14 days.

In field trials conducted with oilseed rape in France, the ranked order of residues in rape seed following GAP treatment (\pm 25%) for estimating maximum residue levels and dietary risk assessment was (n = 11): < 0.02(5), 0.02(2), 0.04, 0.05, 0.07, 0.09 mg/kg.

Based on the UK GAP, which was supported with a sufficient number of supervised field trials, the Meeting estimated a maximum residue level of 0.15 mg/kg and a STMR of 0.02 mg/kg for metconazole in rape seed.

Sunflower seeds, Subgroup of

The critical GAP for sunflower in Canada and the USA allows two foliar applications of metconazole at 140 g ai/ha with a RTI of 7 days and a PHI of 21 days.

In field trials conducted with sunflower in Canada and the USA, the ranked order of residues in sunflower seeds following GAP treatment ($\pm 25\%$) for estimating maximum residue levels and dietary risk assessment was (n = 7): < 0.04, 0.040, 0.043, <u>0.089</u>, 0.096, 0.24, 0.68 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg, and a STMR of 0.089 mg/kg for metconazole in the subgroup of sunflower seeds.

Cotton seed

The critical GAP for cotton seed in the USA allows three foliar applications of metconazole at 92 g ai/ha with a RTI of 7 days and a PHI of 30 days.

In field trials conducted with cotton in the USA, the ranked order of residues in cotton seed following GAP treatment ($\pm 25\%$) for estimating maximum residue levels and dietary risk assessment was (n = 12): 0.020, 0.021, 0.022, 0.024(2), 0.027, 0.042, 0.051, 0.068, 0.071, 0.075, 0.23 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg, and a STMR of 0.0345 mg/kg for metconazole in cotton seed.

Peanuts

The critical GAP for peanuts in the USA allows four foliar applications of metconazole at 140 g ai/ha with a RTI of 14 days and a PHI of 14 days.

Field trials conducted with peanuts in the USA were performed with two foliar applications of metconazole at rates of 270–290 g ai/ha and harvest at 13–15 DALA. Since no residues occurred at a $2\times$ application rate, the Meeting assumed that four application at $1\times$, would also not result in residues >LOQ. Residue levels from additional trials performed at a $4\times$ or $10\times$ application rate were also <LOQ or only slightly above.

The ranked order of residues in peanut for estimating maximum residue levels and dietary risk assessment was (n = 14): < 0.04 mg/kg.

The Meeting estimated a maximum residue level of 0.04(*) mg/kg, and a STMR of 0.04 mg/kg for metconazole in peanuts.

Animal feed items

Soya bean forage

The critical GAP for soya bean forage in the USA allows two outdoor foliar applications of metconazole at 63 g ai/ha with no livestock feeding restrictions.

Field trials conducted with soya bean forage in the USA, were performed with two foliar applications of metconazole at rates of 80 g ai/ha with a PHI of 7–8 days. The Meeting noted that since there were no livestock feeding restrictions a 7 day pre-grazing or feeding interval would be practical.

The ranked order of residues was (n = 21): 0.56, 0.71, 0.73, 0.96, 1.0(2), 1.1, 1.2(3), 1.3, 1.4, 1.6, 1.7, 1.8, 1.9(4), 2.2(2) mg/kg (2.4 mg/kg highest individual). Using scaling a factor of 0.8, scaled residues in ranked order were (n = 21): 0.45, 0.57, 0.58, 0.77, 0.8(2), 0.88, 0.96(3), <u>1.0</u>, 1.1, 1.3, 1.4(2), 1.5(4), 1.8(2) mg/kg (1.92 mg/kg highest individual scaled).

The Meeting estimated a highest residue of 1.92 mg/kg (as received) for metconazole in soya bean forages and a median residue of 1.0 mg/kg (as received).

Soya bean hay

The critical GAP for soya bean hay in the USA allows two outdoor foliar applications of metconazole at 63 g ai/ha with no livestock feeding restrictions.

Field trials conducted with soya bean hay in the USA were performed with two foliar applications of metconazole at rates of 80 g ai/ha and harvest 7–8 or 20 DALA. The Meeting noted that since there were no livestock feeding restrictions a minimum 7 day pre-grazing or feeding interval would be practical.

The ranked order of residues was (n = 21): 0.6, 1.1, 1.3, 1.4(3), 1.7, 2.0(2), 2.1(2), 2.3, 2.6(3), 3.0, 3.2(2), 3.3, 3.4, 3.9 mg/kg (4.0 mg/kg highest individual). Using scaling a factor of 0.8, scaled residues in ranked order were (n = 21): 0.48, 0.88, 1.0, 1.1(3), 1.4, 1.6(2), <u>1.7</u>(2), 1.8, 2.1(3), 2.4, 2.6(3), 2.7, 3.1 mg/kg (3.2 mg/kg highest individual scaled).

The Meeting estimated a highest residue of 3.2 mg/kg (as received) for metconazole in soya bean hay, a median residue of 1.7 mg/kg (as received) and a maximum residue level of 8 mg/kg (DM, based on 85% DM content).

Sugar beet tops

The critical GAP for sugar beet in Canada allows two outdoor foliar applications of metconazole at 113 g ai/ha with no livestock feeding restrictions.

Field trials conducted with sugar beet in the USA were performed with two foliar applications of metconazole at rates of 109–114 g ai/ha and harvest at 14–15 DALA. The Meeting noted that sugar beet tops are normally harvested (or grazed) at the same time as beet harvesting. Hence, the 14 day PHI for beet would also reflect grower practice for sugar beet tops.

The ranked order of residues in sugar beet tops following GAP treatment was (n = 11): 0.09, 0.11, 0.12, 0.13, 0.14, 0.15, 0.58, 0.97, 1.0(2), 1.2 mg/kg as received.

The Meeting estimated a highest residue of 1.2 mg/kg (as received) for metconazole in sugar beet tops and a median residue of 0.15 mg/kg (as received).

Hay (barley, oats, rye, wheat)

The critical GAP for hay of wheat, oat, barley, rye and triticale in the USA allows two foliar applications of metconazole at 112 g ai/ha with no livestock feeding restrictions.

The ranked order of residues in <u>barley</u> hay following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 11): 0.79, 0.82, 1.2, 1.5, 2.2, <u>3.0</u>, 3.1, 3.2(2), 4.1, 4.4 mg/kg.

The ranked order of residues in <u>oat</u> hay following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 12): 2.4, 2.6, 3.7, 3.8, 4.8, <u>4.9, 6.0</u>, 6.1, 6.6, 9.4(2), 11 mg/kg.

The ranked order of residues in <u>wheat</u> hay following GAP treatment for estimating maximum residue levels and dietary risk assessment was (n = 15): 1.4, 2.0, 3.9, 4.2, 5.2, 5.5, 5.9(2), 6.2, 6.3, 6.7, 7.3, 9.7, 11, 13 mg/kg.

The Meeting noted that median residues in barley, oats and wheat hay and straw are within a 5-fold range. However, since the residue populations were significantly different according to the Kruskal-Wallis H-test between cereals, the Meeting decided to estimate a maximum residue level and median residue value based on the highest individual dataset for wheat hay (see JMPR Report 2013, 2.9).

Based on wheat hay, the Meeting estimated a highest residue of 13 mg/kg (as received), a median residue of 5.9 mg/kg (as received) and a maximum residue level of 25 mg/kg (DM, based on 88% DM content) for hay of barley, oat, rye, wheat, extrapolated to triticale.

Straw (barley, oats, rye, wheat)

The critical GAP for straw of wheat, oat, barley, rye and triticale in the USA allows two foliar applications of metconazole at 112 g ai/ha with no livestock feeding restrictions. The Meeting noted that the GAP for barley, oat, rye, triticale and wheat grains in the USA has a PHI of 30 days.

The ranked order of residues in <u>barley</u> straw approximating GAP was (n = 1): 2.6 mg/kg (3.1 mg/kg highest individual).

The ranked order of residues in <u>oat</u> straw approximating GAP was (n = 2): 1.0, 1.8, mg/kg (2.1 mg/kg highest individual).

The ranked order of residues in <u>rye</u> straw approximating GAP was (n = 3): 2.3, 5.0, 8.5 mg/kg (8.8 mg/kg highest individual).

The ranked order of residues in <u>wheat</u> straw approximating GAP was (n = 4): 0.42, 1.2, 2.3, 4.8 mg/kg (5.1 mg/kg highest individual).

The Meeting decided to combine the data sets for straw as they were considered similar. The ranked order of residues in straw following treatment approximating GAP for estimating maximum residue levels and livestock burden was (n = 10): 0.42, 1.0, 1.2, 1.8, 2.3(2), 2.6, 4.8, 5.0, 8.5 mg/kg (8.8 mg/kg highest individual residue).

The Meeting estimated a highest residue of 8.8 mg/kg (as received), a median residue of 2.3 mg/kg (as received) and a maximum residue level of 20 mg/kg (DM, based on 88% DM content) for straw of barley, oat, rye, wheat, extrapolated to triticale.

Maize forage

The critical GAP for maize forage in the USA allows four foliar applications of metconazole at 92 g ai/ha with a PHI of 7 days.

In field trials conducted with maize in the USA, the ranked order of residues in maize forage following GAP treatment (\pm 25) was (n = 25): 0.04, 0.09, 0.10(2), 0.11, 0.17, 0.19, 0.48, 0.52, 0.53, 0.80, 0.82, <u>0.91</u>, 0.97, 1.1, 1.2(4), 1.3(2), 1.5, 1.8, 1.9, 2.7 mg/kg as received.

The Meeting estimated a highest residue of 2.7 mg/kg (as received) for metconazole in maize forage and a median residue of 0.91 mg/kg (as received).

Maize fodder

The critical GAP for maize fodder in the USA allows four foliar applications of metconazole at 92 g ai/ha with a PHI of 20 days.

In field trials conducted with maize in the USA, the ranked order of residues in maize fodder following GAP treatment (\pm 25) was (n = 20): 0.14, 0.94, 1.2, 1.4, 1.5(2), 1.6, <u>1.8(3)</u>, <u>1.9(2)</u>, 2.0(2), 2.1, 2.3, 2.5, 2.7(2), 3.2 mg/kg as received (3.5 mg/kg highest individual value).

The Meeting estimated a highest residue of 3.5 mg/kg (as received) for metconazole in maize fodder, a median residue of 1.85 mg/kg (as received) and a maximum residue level of 7 mg/kg (DM, based on 83% DM content)

Almond hulls

The critical GAP for almonds in the USA allows four outdoor foliar applications of metconazole at 123 g ai/ha with a PHI of 25 days, with no more than 2 sequential applications after petal fall before switching to an alternative fungicide.

No trials provided matched the GAPs. Hence, the Meeting concluded that no maximum residue level could be estimated for metconazole in almond hulls.

Rape seed forage

The critical GAP for oilseed rape in Chile allows two outdoor foliar applications of metconazole at 90 g ai/ha with a PHI of 42 days.

In field trials conducted with oilseed rape in France, the ranked order of residues in rape forage following GAP treatment (± 25) was (n = 7): 0.050, 0.060, 0.070, <u>0.090</u>, 0.12, 0.13(2) mg/kg.

The Meeting estimated a highest residue of 0.13 mg/kg (as received) for metconazole in oilseed rape forage and a median residue of 0.09 mg/kg (as received).

Cotton gin by-products

The critical GAP for cotton seed in the USA allows three outdoor foliar applications of metconazole at 92 g ai/ha with a PHI of 30 days.

In field trials conducted with cotton in the USA, the ranked order of residues in cotton gin byproducts following GAP treatment (\pm 25) was (n = 6): 0.17, 0.18, <u>2.5, 2.8</u>, 3.7, 4.1 mg/kg (4.6 mg/kg highest individual value).

The Meeting estimated a highest residue of 4.6 mg/kg (as received) for metconazole in cotton gin by-products, a median residue of 2.65 mg/kg (as received) and a maximum residue level of 10 mg/kg (DM, based on 90% DM content).

FATE OF RESIDUES DURING PROCESSING

The Meeting received information on the hydrolysis of *cis*-enriched ¹⁴C-labelled-metconazole, simulating typical processing conditions (pH 4,5 and 6 with 90 °C, 100 °C and 120 °C for 20, 60 and 20 minutes). No significant hydrolysis of metconazole was observed at the conditions studied.

The Meeting concluded that metconazole is stable under the conditions of pasteurisation, boiling, baking and brewing, as well as sterilisation.

The fate of metconazole residues has been examined simulating household and commercial processing of plums, soya bean, potato, sugar beet, barley, oat, maize, wheat, sugar cane, oilseed rape seed, cotton seed and peanut.

Crop	Residue (mg/kg) in RAC			Processed	Individual PF	Median or best estimate	Residue (mg/kg) in processed commodity		
	MRL	STMR	HR	commodity	11	PF	MRL-P	STMR-P	HR-P
Plum	0.1	0.04	0.05	Prunes, dried	2.3	2.3	0.5	0.092	0.115
Soya bean	0.04	0.01	-	Refined oil	< 0.48, < 0.53, 0.69	0.53	-	0.005	-
Sugar beet	0.07	0.02	-	Sugar	0.5, < 0.6, 1.2	0.6	-	0.012	-
Sugar cane	0.06	0.021	0.036	Ref. sugar	< 0.10	< 0.10	-	0.002	-
Sugar cane	0.00 0.	0.021	0.050	Molasses	1.3	1.3	0.08	0.027	-
Rape seed	0.15	0.02		Refined oil	1.5, 1.6, 1.6, 1.8	1.6	0.5	0.032	-
Cotton seed	0.3	0.035	-	Refined oil	0.12	0.12	-	0.004	-
Peanut	0.04(*)	0.04	-	Refined oil	1.4	1.4	0.06	0.056	-

Table 2 Estimated processing factors for maximum residue and dietary exposure of processed commodities according to the residue definition *metconazole (sum of cis and trans isomer)*

RESIDUES IN ANIMAL COMMODITIES

Farm animal feeding studies

The Meeting received feeding studies involving metconazole on lactating cows and laying hens.

The study with lactating cows was conducted at treatment rates of 5, 15 and 50 ppm. In milk, skim milk and cream residues of *cis*- and *trans*-metconazole were <LOQ in the 50 ppm dose group throughout the study. Residues of parent metconazole were <LOQ (< 0.04 mg/kg) in muscle, fat, liver kidney, at the highest dose group. Metabolite M1 (free and conjugated) was quantified in the highest dosing group in kidney and liver at up to 0.02 mg/kg and 0.03 mg/kg, respectively. Additionally, metabolite M12 (free) was quantified only in kidney at the 15 ppm level at 0.02 mg/kg and at the 50 ppm level at 0.04 mg/kg.

The study with laying hens was conducted at treatment rates of 2, 6 and 20 ppm. While residues of parent metconazole in eggs were <LOQ in the lower dose groups, residues ranged between 0.043–0.062 mg/kg at the highest dose group. In tissues, no residues of parent metconazole were detected >LOQ in any dose group. Metabolite M1 (free and conjugated) was quantified in liver only at the 6 ppm level at 0.02 mg/kg and at the 20 ppm level at 0.04 mg/kg. Additionally, metabolite 1,2,4-triazole was quantified in eggs at the 20 ppm dose group ranging between 0.010–0.024 mg/kg as well as in muscle and liver at 0.028 mg/kg and at 0.029 mg/kg, respectively.

Estimated maximum and mean dietary burdens of livestock and animal commodities maximum residue levels

Dietary burden calculations for beef cattle, dairy cattle, broilers and laying poultry are presented in Annex 6. The calculations were made according to the livestock diets from US-Canada, EU, Australia and Japan in the OECD Table (Annex 6 of the 2006 JMPR Report).

Table 3 Estimated livestock dietary burden for <i>metconazole (sum of cis and trans isomer)</i>

Livestock dietary burden, ppm of dry matter diet								
	US-Canada		EU		Australia		Japan	
	max.	Mean	max.	mean	max.	Mean	max.	Mean
Beef cattle	2.5	1.2	8.6	3.2	15 ^a	6.7 ^b	0.010	0.010
Dairy cattle	6.2	2.8	7.9	2.5	15ª	6.7 ^b	3.8	1.4

Livestock dietary burden, ppm of dry matter diet								
	US-Canada		EU		Australia		Japan	
	max.	Mean	max.	mean	max.	Mean	max.	Mean
Poultry – broiler	0.040	0.040	0.028	0.028	0.046	0.046	0.008	0.008
Poultry – layer	0.040	0.040	2.2°	0.94 ^d	0.046	0.046	0.009	0.009

^a Highest maximum dietary burden for beef or dairy cattle; suitable for estimating the maximum residue levels for mammalian meat and milk

^b Highest mean dietary burden for beef or dairy cattle; suitable for estimating STMRs for mammalian meat and milk

^c Highest maximum dietary burden for broiler chickens or laying hens suitable for estimating maximum residue levels for poultry meat, fat, offal, and eggs

^d Highest mean dietary burden for laying hens; suitable for estimating the STMRs for poultry meat, fat, offal, and eggs.

none no relevant feed items

Animal commodities maximum residue levels

For <u>beef and dairy cattle</u>, a maximum and mean dietary burden of 15 ppm and 6.7 ppm were estimated, respectively. The estimated dietary burdens are evaluated against a lactating cow feeding study involving administration of metconazole at 5, 15 and 50 ppm.

For maximum residue level estimation, the Meeting noted that even at the 50 ppm feeding level no residues of metconazole >LOQ were detected in milk and tissues and estimated maximum residues levels of 0.04(*) mg/kg for mammalian meat, milks, fat and edible offal (mammalian).

For STMR and HR estimations in milk and tissues, the mean and maximum dietary burdens of 6.7 ppm and 15 ppm, respectively, were evaluated against the residues in milk and tissues of the lactating cow feeding study at the 15 ppm dosing level. Levels in milk, muscle and fat (parent only measured) and liver and kidney (parent, metabolite M1 (free and conjugated) and M12 (free) measured) were < LOQ at 15 ppm (except for M12 in kidney found at 0.02 mg/kg at 15 ppm). Levels of metabolites M1 (free and conjugated) and M12 (free) in milk, muscle and fat in a goat metabolism study dosed at 24 ppm were < 0.01 mg/kg. Conjugated M12 was not found in the goat metabolism study.

The Meeting estimated STMR and HR values of 0 mg/kg in mammalian meat, milks and fat.

As residues of parent were <LOQ, even at the 50 ppm feeding level, the Meeting decided to set the value at 0 for estimating STMR and HR values in edible offal (mammalian). The Meeting estimated a STMR and HR of 0.037 mg/kg for edible offal (mammalian) based on kidney

For <u>poultry</u>, a maximum and mean dietary burden of 2.2 ppm and 0.94 ppm were estimated, respectively. The estimated dietary burdens are evaluated against a poultry feeding study involving administration of metconazole at 2, 6 and 20 ppm.

For a maximum residue level, the Meeting noted that even at the 20 ppm feeding level no residues of metconazole >LOQ were detected in eggs and poultry tissues and estimated maximum residues levels of 0.04(*) mg/kg in poultry meat, eggs, fat and edible offal.

For STMR and HR estimations in eggs and poultry tissues, the mean and maximum dietary burden of 0.94 ppm and 2.2 ppm were evaluated against the residues in eggs and tissues of the poultry feeding study at the 2 ppm and 6 ppm dosing level, respectively. Levels in eggs (parent only measured) were <LOQ at 2 and 6 ppm. Residues of metabolites M1 and M12 in eggs from a poultry metabolism study dosed at 14 ppm or 13 ppm, scaled to the mean dietary burden of 0.94 ppm were <0.01 mg/kg. In tissues (parent, metabolite M1 (free and conjugated) and M12 (free) measured) were <LOQ at 2 and 6 ppm (except for M1 in liver found at 0.02 mg/kg at 6 ppm). Since no conjugates of M12 were determined, residue levels could be underestimated for total free and conjugated M12 in poultry. However, considering the contribution of conjugated M12 (up to 64% of total M12) and that

residues of M12 (free) were <LOQ at even 20 ppm, no residues of M12 (conjugated) >LOQ are expected at the relevant dietary burden.

The Meeting estimated STMR and HR values of 0 mg/kg for poultry eggs, meat and fat.

As residues of parent and M12 in liver were <LOQ in all dose groups, the Meeting decided to set these values at 0 for estimating STMR and HR values in poultry edible offal. The Meeting estimated a STMR of 0.019 mg/kg and a HR of 0.020 mg/kg in poultry edible offal.

RECOMMENDATIONS

On the basis of the data obtained from supervised trials, the Meeting concluded that the residue levels listed below 1 are suitable for establishing maximum residue limits and for IEDI and IESTI assessments

Definition of the residue for compliance with the MRL for plant and animal commodities: *Metconazole (sum of cis and trans isomer)*

Definition of the residue for dietary risk assessment for plant commodities: <u>Metconazole</u> (sum of cis and trans isomer)

Definition of the residue for dietary risk assessment for animal commodities: Sum of metconazole (cis and trans-isomer) and metabolites (1SR,2SR,5RS)-5-(4-chlorobenzyl)-2-(hydroxymethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol (M1; free and conjugated) and (1RS,2SR,3RS)-3-(4-chlorobenzyl)-2-hydroxy-1-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanecarboxylic acid (M12; free and conjugated), expressed as metconazole

The residue is not fat-soluble.

Commodity		Recommended maximum residue level, mg/kg		STMR or STMR- P, mg/kg	HR or highest residue, mg/kg
CCN	Name	New	Previous		
FI 0327	Banana	0.1(*)		0.1	0.1
FB 0020	Blueberries	0.5		0.14	0.33
VP 0061	Beans with pods (Phaseolus spp.) immature pods and succulent seeds)	0.05(*)		0	0
SO 0691	Cotton seed	0.3		0.0345	
MO 0105	Edible offal (mammalian)	0.04(*)		0.037	0.037
PE 0112	Eggs	0.04(*)		0	
VA 0381	Garlic	0.05(*)		0.05	0.05
TN 0085	Group of tree nuts	0.04(*)		0	0
GC 0645	Maize	0.015		0.01	
MF 0100	Mammalian fats (except milk fats)	0.04(*)		0	0
MM 0095	Meat (from mammals other than marine mammals)	0.04(*)		0	0
ML 0106	Milks	0.04(*)		0	0
VA 0385	Onion, bulb	0.05(*)		0.05	0.05
SO 0697	Peanut	0.04(*)		0.04	
PO 0111	Poultry, Edible offal of	0.04(*)		0.019	0.020
PF 0111	Poultry fats	0.04(*)		0	0
PM 0110	Poultry meat	0.04(*)		0	0
SO 0495	Rape seed	0.15		0.02	

Table 4 Maximum residue levels and dietary exposure

Commodity		Recommended maximum residue level, mg/kg		STMR or STMR- P, mg/kg	HR or highest residue, mg/kg
CCN	Name	New Previous			
FS 0013	Subgroup of cherries	0.3		0.07	00.16
VD 2065	Subgroup of dry beans except soya beans	0.04(*)		0.04	
VD 2066	Subgroup of dry peas	0.15		0.0425	
FS 2001	Subgroup of peaches	0.2		0.045	0.09
FS 0014	Subgroup of plums	0.1		0.040	0.05
SO 2091	Subgroup of sunflower seeds	1.5		0.089	
VR 2071	Subgroup of tuberous and corm vegetables	0.04(*)		0	0
VR 0596	Sugar beet	0.07		0.02	
VD 0541	Soya beans	0.04		0.01	
GS 0659	Sugar cane	0.06		0.0205	0.036
GC 0447	Sweet corn (Corn-on-the-cob)	0.015(*)		0.01	0.01
DF 0014	Prunes, dried	0.5		0.092	0.115
OR 0541	Soya bean oil, refined	-		0.005	
	Sugar, sugar beet	-		0.012	
	Sugar cane, refined sugar	-		0.002	
DM 0659	Sugar cane, molasses	0.08		0.027	
OR 0495	Rape seed oil, Edible	0.5		0.032	
OR 0691	Cotton seed oil, Edible	-		0.004	
OR 0697	Peanut oil, Edible	0.06		0.056	

Table 5 Feed items

Commodity		Recommended maximum residue level, mg/kg	STMR or STMR-P or median mg/kg	HR or highest residue, mg/kg
AS 0640	Barley straw and fodder, dry	25 (dw)	Median: 5.9 (ar) (hay), 2.3 (ar) (straw)	Highest: 13 (ar) (hay), 8.8 (ar) (straw)
AS 0647	Oat straw and fodder, dry	25 (dw)	Median: 5.9 (ar) (hay), 2.3 (ar) (straw)	Highest: 13 (ar) (hay), 8.8 (ar) (straw)
AS 0650	Rye straw and fodder, dry	25 (dw)	Median: 5.9 (ar) (hay), 2.3 (ar) (straw)	Highest: 13 (ar) (hay), 8.8 (ar) (straw)
AS 0653	Triticale straw and fodder, dry	25 (dw)	Median: 5.9 (ar) (hay), 2.3 (ar) (straw)	Highest: 13 (ar) (hay), 8.8 (ar) (straw)
AS 0654	Wheat straw and fodder, dry	25 (dw)	Median: 5.9 (ar) (hay), 2.3 (ar) (straw)	Highest: 13 (ar) (hay), 8.8 (ar) (straw)
	Cotton gin by-products	10 dw	2.65 ar	4.6 ar
	Maize fodder	7 dw	1.85 ar	3.5 ar
	Maize forage	-	0.91	2.7
	Rape seed forage	-	0.09	0.13
	Soya bean forage	-	1.0	1.92
	Soya bean hay	8 dw	1.7 ar	3.2 ar
	Sugar beet tops		0.15	1.2

1393

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The ADI for metconazole is 0–0.04 mg/kg bw. The International Estimated Daily Intakes (IEDIs) for metconazole were estimated for the 17 GEMS/Food Consumption Cluster Diets using the STMR or STMR-P values estimated by the JMPR. The results are shown in Annex 3 of the 2019 JMPR Report.

The IEDIs ranged from 0-2% of the maximum ADI. The Meeting concluded that long-term dietary exposure to residues of metconazole from uses considered by the JMPR is unlikely to present a public health concern.

Acute dietary exposure

The ARfD for metconazole is 0.04 mg/kg bw. The International Estimate of Short Term Intakes (IESTIs) for metconazole were calculated for the food commodities and their processed commodities for which HRs/HR-Ps or STMRs/STMR-Ps were estimated by the present Meeting and for which consumption data were available. The results are shown in Annex 4 of the 2019 JMPR Report.

The IESTIs varied from 0-20% of the ARfD for children and 0-10% of the ARfD for the general population. The Meeting concluded that acute dietary exposure to residues of metconazole from uses considered by the present Meeting is unlikely to present a public health concern.

Code	Author	Year	Title, Institute, Report reference
METCON_001	Mangels G.	1995	AC 900,768 (WL 148271): Determination of the melting point American Cyanamid Co., Princeton NJ, United States of America MK–303-002 GLP: yes Unpublished
METCON_002	Daum A.	2004	Determination of the boiling point of Metconazole (BAS 555 F, Reg.No. 4 056 343) PAI BASF AG, Limburgerhof, Germany Fed.Rep. 2004/1027802 GLP: yes Unpublished
METCON_003	Bashir M.	1995	Product chemistry determination of CL 900,768 (boiling point, surface tension and relative density) Hazleton Wisconsin Inc., Madison WI, United States of America MK-301-003 GLP: yes Unpublished
METCON_004	Tremain S., An D.	2000	Metconazole (AC 900768): Determination of vapour pressure Safepharm Laboratories Ltd., Derby Derbyshire DE1 2BT, United Kingdom MK–306-002 GLP: yes Unpublished

REFERENCES

Code	Author	Year	Title, Institute, Report reference
METCON_005	Martin C.A.	2002	BAS 555 F (Metconazole): Calculation of Henry law constant BASF Corp., Ewing NJ, United States of America MK–336-001 GLP: yes Unpublished
METCON_006	Kramer H.T.	1996	Product chemistry determinations for Metconazole CL 900,768 (TGAI and PAI): Color, physical state and odor Corning Hazleton Inc., Madison WI, United States of America MK-301-004 GLP: yes Unpublished
METCON_007	Jones M.T.	2001	Metconazole spectral database (including report amendment 3) BASF Corp. Agro Research, Princeton NJ, United States of America MK-360-005 GLP: yes Unpublished
METCON_008	Kroehl T.	2014	UV/Vis spectrum of Metconazole (BAS 555 F, Reg.No. 4056343) BASF SE, Limburgerhof, Germany Fed.Rep. 2014/1158207 GLP: yes Unpublished
METCON_009	Madsen S.	1995 a	Solvent solubility of AC 900,768 (WL 148,271) ABC-Analytical Bio-Chemistry Laboratories Inc., Columbia MO, United States of America MK-312-004 GLP: yes Unpublished
METCON_010	Madsen S.	1996 b	Octanol/water partition coefficient of AC 900,768 (WL 148,271) ABC-Analytical Bio-Chemistry Laboratories Inc., Columbia MO, United States of America MK-315-001 GLP: yes Unpublished
METCON_011	Fisk P.R.	1991	WL148271 (KNF-S-474m): Hydrolysis as a function of pH Shell Research Ltd., Sittingbourne Kent ME9 8AG, United Kingdom MK-322-001 GLP: yes Unpublished
METCON_012	Williams M.D., Heim L.G	1996	Determination of the aqueous photolysis rate with AC 900,768 (WL 148,271) ABC-Analytical Bio-Chemistry Laboratories Inc., Columbia MO, United States of America MK-324-001 GLP: yes Unpublished
METCON_013	Knight L.	2015	Metconazole: Photodegradation in water and determination of the quantum yield Huntingdon Life Sciences Ltd., Huntingdon Cambridgeshire PE28 4HS, United Kingdom 2014/1000925 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_014	Knoch E., Martin C.A.	1999	Metconazole AC (900768): Determination of the direct phototransformation in buffered medium at pH 7 Institut Fresenius Chemische und Biologische Laboratorien GmbH, Herten, Germany Fed. Rep. MK-324-003 GLP: yes Unpublished
METCON_015	Williams M.D., Heim L.G	1996	Determination of the aqueous photolysis rate with AC 900,768 (WL 148,271) ABC-Analytical Bio-Chemistry Laboratories Inc., Columbia MO, United States of America MK-324-001 GLP: yes Unpublished
METCON_016	Madsen S., Barton T.E.	1995	Dissociation constant determination of AC 900,768 (WL 148,271) ABC-Analytical Bio-Chemistry Laboratories Inc., Columbia MO, United States of America MK-320-001 GLP: yes Unpublished
METCON_017	Mangels G.	1996	Metconazole (AC 900768): Estimation of the photochemical oxidation rate in the atmosphere American Cyanamid Co., Princeton NJ, United States of America MK-324-002 GLP: yes Unpublished
METCON_018	Helvoirt J.A.M.W. van	1990 a	Determination of the flammability of WL148271 RCC Notox BV, s-Hertogenbosch, Netherlands MK–330-001 GLP: yes Unpublished
METCON_019	Helvoirt J.A.M.W. van	1990 b	Determination of the auto-flammability of WL148271 RCC Notox BV, s-Hertogenbosch, Netherlands MK–330-002 GLP: yes Unpublished
METCON_020	Helvoirt J.A.M.W. van	1990 c	Determination of explosive properties of WL148271 RCC Notox BV, s-Hertogenbosch, Netherlands MK-334-001 GLP: yes Unpublished
METCON_021	Daum A.	2015	Surface tension of Metconazole (BAS 555 F, Reg.No. 4056343) BASF SE, Limburgerhof, Germany Fed.Rep. 2015/1193306 GLP: yes Unpublished
METCON_022	Helvoirt J.A.M.W. van	1990 d	Determination of the oxidizing properties of WL148271 RCC Notox BV, s-Hertogenbosch, Netherlands MK-356-001 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_023	Yacoub R.	2006	BAS 555 F (TGAI): Stability to normal and elevated temperature, metal and metal ions BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006764 GLP: yes Unpublished
METCON_024	Morrissey M.A. et al.	1998	AC 900768: Temperature stability of Metconazole technical, lot no. AC 10575–61 Covance Laboratories Inc., Madison WI, United States of America MK–325-001 GLP: yes Unpublished
METCON_025	Edwards D.	1998	AC 900768 (Metconazole): Evaluation of the thermal stability of the technical grade active ingredient when exposed to metals Covance Laboratories, Harrogate North Yorkshire HG3 1PY, United Kingdom MK–123-001 GLP: yes Unpublished
METCON_026	Edwards V.T.	1991 a	[Triazole ⁻¹⁴ C] WL136184 (KNF-S-474c): Metabolism in wheat Shell Research Ltd., Sittingbourne Kent ME9 8AG, United Kingdom MK-640-001 GLP: yes Unpublished
METCON_027	Edwards V.T.	1991 b	[Cyclopentyl- ¹⁴ C] WL148271(KNF-S-474m): Metabolism in wheat Shell Research Ltd., Sittingbourne Kent ME9 8AG, United Kingdom MK-640-002 GLP: yes Unpublished
METCON_028	Kao M.L.	1997 a	CL 900768 (Metconazole): Metabolism of [triazole–3,5– ¹⁴ C] CL 900768 in canola under field conditions American Cyanamid Co., Princeton NJ, United States of America MK–640-006 GLP: yes Unpublished
METCON_029	Kao M.L.	1997 b	CL 900768 (Metconazole): Metabolism of [p-chlorophenyl-U– 14C] CL 900768 in canola under field conditions American Cyanamid Co., Princeton NJ, United States of America MK–640-007 GLP: yes Unpublished
METCON_030	Kao L.M.	1998	CL 900768 (Metconazole): Metabolism of CL 900768 in banana under greenhouse conditions American Cyanamid Co., Princeton NJ, United States of America MK–640-008 GLP: yes Unpublished
METCON_031	Satoh K.	2002	Metabolic fate of KNF-474m in mandarins The Institute of Environmental Toxicology, Mitsukaido-shi Ibaraki 303-0043, Japan 2002/1028917 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_032	Class T., Schluter H.	2002	Metconazole (BAS 555 F: AC 900768): Metabolism of carbon– 14 labeled AC 900768 in peas PTRL Europe GmbH, Ulm, Germany Fed.Rep. 2002/5003836 GLP: yes Unpublished
METCON_033	Johnston A.M. et al.	1992 a	The disposition of [14C]-WL148271 (KNF-S-474m) in the lactating goat (nature of residue study to EPA guidelines) Inveresk Research International Ltd., Tranent East Lothian EH33 2NE, United Kingdom MK-440-013 GLP: yes Unpublished
METCON_034	Richardson K.A.	1993	[Cyclopentyl- ¹⁴ C]-WL136184 (Metconazole, KNF-S-474c): Fate of WL136184 in the lactating goat following 5 consecutive daily doses (23 mg/day) Shell Research Ltd., Sittingbourne Kent ME9 8AG, United Kingdom MK-440-015 GLP: yes Unpublished
METCON_035	Jalal M.A.F	2006 a	Metconazole (KNF-S-474m): Metabolism by lactation goats Valent Technical Center, Dublin CA, United States of America 2006/1046074 GLP: yes Unpublished
METCON_036	Johnston A.M. et al.	1992 b	The disposition of [14C]-WL136184 (KNF-S-474c) in the laying hen (nature of residue study to EPA guidelines) Inveresk Research International Ltd., Tranent East Lothian EH33 2NE, United Kingdom MK-440-011 GLP: yes Unpublished
METCON_037	Johnston A.M. et al.	1992 c	The disposition of (14C)-WL136184 (KNF-S-474c) in the laying hen (nature of residue study to EPA guidelines) Inveresk Research International Ltd., Tranent East Lothian EH33 2NE, United Kingdom MK-440-012 GLP: yes Unpublished
METCON_038	Jalal M.A.F	2006 b	Metconazole (KNF-S-474m): Metabolism by laying hens Valent Technical Center, Dublin CA, United States of America 2006/1046073 GLP: yes Unpublished
METCON_039	Gedik L., Fullard D.C.	2002	Metconazole (BAS 555 F): Degradation in soil under aerobic conditions Inveresk Research, Tranent East Lothian EH33 2NE, United Kingdom MK–620-020 GLP: yes Unpublished
METCON_040	Dalkmann P., Kibat H.	2015	Soil metabolism of Metconazole (BAS 555 F) under aerobic conditions BASF SE, Limburgerhof, Germany Fed.Rep. 2014/1000901 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_041	Baranowski D., VanDijk A.	1992	Photodegradation study of 14C-WL 136184 on soil RCC Umweltchemie AG, Itingen, Switzerland MK-620-005 GLP: yes Unpublished
METCON_042	Bissinger H.J.	1996	Photochemical degradation of Metconazole (CL900768) in soil Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-620-013 GLP: yes Unpublished
METCON_043	Knight L.	2015	Metconazole (BAS 555 F): Soil photolysis Huntingdon Life Sciences Ltd., Huntingdon Cambridgeshire PE28 4HS, United Kingdom 2014/1000923 GLP: yes Unpublished
METCON_044	Hill A.D., Standen M.E.	1993	Metconazole: Confined rotational crop study using [cyclopentyl- ¹⁴ C] and [triazole- ¹⁴ C]- WL148271 Shell Research Ltd., Sittingbourne Kent ME9 8AG, United Kingdom MK-640-004 GLP: yes Unpublished
METCON_045	Memmesheimer H.	1996	Metconazole (CL 900768) 60 g ai/l SL (SF09381): Determination of CL 900768 residues in following crops (Germany, 1995) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK–790-010 GLP: yes Unpublished
METCON_046	Memmesheimer H.	1996	Metconazole (CL900768): Validation of method FAMS 050-01 for the determination of residues in cereals (Germany, 1995) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-010 GLP: no Unpublished
METCON_047	Memmesheimer H.	1996	Metconazole (CL 900768): Analytical method FAMS 050-01 for the determination of CL 900768 residues as cis- (CL354801) and trans-isomer (CL 354802) in cereals-Additional validation data Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-026 GLP: no Unpublished
METCON_048	Weeren R.D.	1996	Validation of Cyanamid analytical method FAMS 050-01 for the determination of residues of Metconazole in cereals Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed.Rep. MK-244-016 GLP: yes Unpublished
METCON_049	Memmesheimer H.	1996	Metconazole (CL900768): Validation of method FAMS 059-01 for the determination of residues as cis-(CL354801) and trans- (CL354802) isomer in oil seed rape and rape oil (Germany, 1995) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-014 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_050	Memmesheimer H.	1997	Metconazole (CL 900768): Validation of method FAMS 059-02 for the determination of CL 900768 residues as cis-(CL 354801) or trans-(CL354802) isomer in oilseed rape (Germany, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-019 GLP: yes Unpublished
METCON_051	Memmesheimer H.	1999	Metconazole (CL 900768): Analytical method FAMS 059-02 for the determination of CL 900768 residues as cis- (CL 354801) and trans-isomer (CL 354802) in oil seed rape-Additional validation data Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-025 GLP: no Unpublished
METCON_052	Memmesheimer H.	1997	Analysemethode FAMS 069-01: Metconazole (CL 900768): Methode zur Bestimmung des Wirkstoffes als cis (CL 354801)- und trans (CL 354802) -Isomer in Erbsen und Erbsenstroh Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-021 GLP: no Unpublished
METCON_053	Memmesheimer H.	1997	Metconazole (CL 900768): Validation of method FAMS 069-01 for the determination of CL 900768 residues as cis-(CL 354801) and trans-(CL 354802) isomer in pea seed and pea straw (Germany, 1997) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-020 GLP: yes Unpublished
METCON_054	Memmesheimer H.	1999	Metconazole (CL 900768): Analytical method FAMS 069-01 for the determination of CL 900768 residues as cis-(CL 354801) and trans-isomer (CL 354802) in pea seeds and pea straw-Additional validation data Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-244-027 GLP: no Unpublished
METCON_055	Khunachak A. <i>et al</i> .	1998	CL 900,768 (Metconazole): GC/NP determinative and GC/MS confirmatory methods for the determination of CL 354,801 (cis- isomer) and CL 354,802 (trans-isomer) residues in whole banana and banana pulp American Cyanamid Co., Princeton NJ, United States of America MK-244-022 GLP: no Unpublished
METCON_056	Sweeney R.A., Khunachak A.	1998	CL 900768 (Metconazole): Verification of the extraction efficiency and accountability of American Cyanamid Company method M 2722 used for the determination of CL 354801 (cis- isomer) and CL 354802 (trans-isomer) residues in whole banana and banana pulp American Cyanamid Co., Princeton NJ, United States of America MK-244-024 GLP: no Unpublished
METCON_057	Lehmann A., Mackenroth C.	2004	Validation of the analytical method 550/0 in various plant matrices BASF AG, Limburgerhof, Germany Fed.Rep. 2004/1010555 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_058	Perny A.	2004	Study on the residue behaviour of Metconazole in spring barley after application of BAS 555 00 F under field conditions in France, in 2003 Anadiag SA, Haguenau, France 2004/1000755 GLP: yes Unpublished
METCON_059	Perny A.	2004	Report amendment No. 1 to final report: Study code 159427 Anadiag SA, Haguenau, France 2004/1006466 GLP: yes Unpublished
METCON_060	Fujie G.H.	2006	RM-41C-1-1-Determination of cis-Metconazole and trans- Metconazole in crops Valent Technical Center, Dublin CA, United States of America 2006/1051358 GLP: no Unpublished
METCON_061	Thompson D.C.	2010	Metconazole (V10116): Magnitude of the residue on blueberry United States Department of Agriculture ARS SAA, Tifton GA, United States of America 2010/1232553 GLP: yes Unpublished
METCON_062	Corley J.	2013	Metconazole: Magnitude of the residue on bean (dry) JRF America, Audubon PA, United States of America 2013/1418322 GLP: yes Unpublished
METCON_063	Green C.A.	2010	Magnitude of the residues of Metconazole on dry peas Valent Technical Center, Dublin CA, United States of America 2010/1232555 GLP: yes Unpublished
METCON_064	Corley J.	2013	Metconazole: Magnitude of the residue on pea (dry) JRF America, Audubon PA, United States of America 2013/1418321 GLP: yes Unpublished
METCON_065	Corley J.	2013	Metconazole: Magnitude of the residue on sunflower JRF America, Audubon PA, United States of America 2013/1418320 GLP: yes Unpublished
METCON_066	Green C.A.	2010	Magnitude of the residues of Metconazole on dry beans Valent Technical Center, Dublin CA, United States of America 2010/1232554 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_067	Sweeney R.A., Khunachak A.	1998	Independent laboratory validation of GC/NP determinative method M 2722 for the determination of CL 354,801 (cis-isomer) and CL 354,802 (trans-isomer) of Metconazole (CL 900,768) residues in whole bananas and banana pulp American Cyanamid Co., Princeton NJ, United States of America MK-244-023 GLP: yes Unpublished
METCON_068	Kwasniok A., Pelz S.	1997	Independent laboratory validation (ILV) of Cyanamid analytical method FAMS 059-02 for the determination of residues of Metconazole (CL 900768) in oilseed rape Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed.Rep. MK-244-018 GLP: yes Unpublished
METCON_069	Noon P.	2006	Independent laboratory validation of the analytical method RM– 41C–1, determination of cis-Metconazole and trans-Metconazole in crops North Coast Laboratories Ltd., Arcata CA, United States of America 2006/1051357 GLP: yes Unpublished
METCON_070	Class T.	1999	Metconazole (CL 900768): Assessment and validation of the multi-residue enforcement method DFG S19 with modified extraction for determination of residues in plant material and in foodstuff of animal origin PTRL Europe GmbH, Ulm, Germany Fed.Rep. MK-240-002 GLP: yes Unpublished
METCON_071	Class T.	2003	Assessment and validation of the multi-residue enforcement method DFG S19 with modified extraction for the determination of residues of Metconazole in plant material and in foodstuff of animal origin PTRL Europe GmbH, Ulm, Germany Fed.Rep. 2003/1016623 GLP: yes Unpublished
METCON_072	Tillkes M.	1996	Validation of DFG method S19 (modified extraction) for the determination of the residues of Metconazole in cereals Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed.Rep. MK-244-017 GLP: no Unpublished
METCON_073	Kuhn T.	2014	Metconazole: Validation of the multi-residue enforcement method DFG S19 for the determination of residues in wheat grain, grape, peas, oilseed rape seed and apple using LC/MS/MS PTRL Europe, Ulm, Germany Fed.Rep. 2014/1028662 GLP: yes Unpublished
METCON_074	Richter S.	2014	Report amendment No. 1-Metconazole: Validation of the multi- residue enforcement method DFG S19 for the determination of residues in wheat grain, grape, peas, oilseed rape seed and apple, using LC/MS/MS PTRL Europe, Ulm, Germany Fed.Rep. 2014/1263163 GLP: yes

Code	Author	Year	Title, Institute, Report reference
			Unpublished
METCON_075	Schemikau N., Colorado C.	2015	Metconazole: Independent laboratory validation of the BASF method L0259/01 multi residue enforcement method DFG S19 for the determination of residues in wheat grain, grape, peas, oilseed rape seed and apple, using LC/MS/MS Eurofins Agroscience Services Chem GmbH, Hamburg, Germany Fed.Rep. 2014/7000243 GLP: yes Unpublished
METCON_076	Dantas C.	2005	Estudo de validacao do POP-PA.0223 para determinacao de resíduos de Metconazole em soja (grao) LARAL-Laboratorio Agro de Residuos da America Latina, Rio de Janeiro, Brazil 2005/3000400 GLP: yes Unpublished
METCON_077	Saha M.G.	2007	Method validation of BASF analytical method D0604 Entitled: The determination of residues of BAS 555 F and its metabolites in corn and cotton matrices using LC/MS/MS BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7011129 GLP: yes Unpublished
METCON_078	Class T.	2011	Modification M004 of BCS residue analytical method 01062 for the determination of 1,2,4-Triazole, Triazolyl alanine, Triazolyl acetic acid and Triazole lactic acid by LC/DMS/MS/MS in plant materials PTRL Europe GmbH, Ulm, Germany Fed.Rep. 2012/1294644 GLP: yes Unpublished
METCON_079	Mackenroth C., Lehmann A.	2007	Validation of BASF method No. 535/1 in plant matrices BASF AG, Limburgerhof, Germany Fed.Rep. 2006/1039427 GLP: yes Unpublished
METCON_080	Green C.A.	2007	Magnitude of the residues of Metconazole in/on canola and canola processing fractions Valent U.S.A. CorpValent Technical Center, Dublin CA, United States of America 2007/1073345 GLP: yes Unpublished
METCON_081	Dantas C.	2005	Estudo de validacao do POP-PA.0206 para determinacao de residuos de Metconazole em alho (bulbo total) e cebola (bulbo total) BASF SA, Resende, Brazil 2005/3000387 GLP: yes Unpublished
Code	Author	Year	Title, Institute, Report reference
------------	---------------------------	------	---
METCON_082	Weeren R.D., Pelz S.	1999	Metconazole (CL 900768): Validation of DFG method S 19 for the determination of residues of Metconazole (CL 900768) as cis- (CL 354801) and trans-isomer (CL 354802) in plant material, foodstuff of animal origin and soil Dr. Specht & Partner Chemische Laboratorien GmbH, Hamburg, Germany Fed.Rep. MK-240-003 GLP: yes Unpublished
METCON_083	Green C.A.	2006	Magnitude of the residues of Metconazole in dairy cattle and meat Valent Technical Center, Dublin CA, United States of America 2006/1046033 GLP: yes Unpublished
METCON_084	Kuhn T.	2010	Metconazole: Validation of the multi-residue enforcement method DFG S19 for the determination of residues in liver and kidney, using LC/MS/MS PTRL Europe GmbH, Ulm, Germany Fed.Rep. 2010/1080270 GLP: yes Unpublished
METCON_085	Toledo F.	2010	Determination of Metconazole (BAS 555 F) in animal matrices- Independent laboratory validation SGS Institut Fresenius GmbH, Taunusstein, Germany Fed. Rep. 2010/1144332 GLP: yes Unpublished
METCON_086	Kuhn T.	2014	Metconazole: Validation of the multi-residue enforcement method DFG S19 for the determination of residues in milk, egg, meat and fat, using LC/MS/MS PTRL Europe, Ulm, Germany Fed.Rep. 2013/1349767 GLP: yes Unpublished
METCON_087	Schemikau N., Colorado C.	2015	Metconazole: Independent laboratory validation of the multi- residue enforcement method DFG S19 for the determination of residues in milk, egg, meat and fat, using LC/MS/MS Eurofins Agroscience Services Chem GmbH, Hamburg, Germany Fed.Rep. 2014/7000242 GLP: yes Unpublished
METCON_088	Green C.A.	2008	Magnitude of the residues of Metconazole in chicken eggs and tissues Valent U.S.A. CorpValent Technical Center, Dublin CA, United States of America 2008/8000061 GLP: yes Unpublished
METCON_089	Andre M., Stahl F.	2018	Validation of analytical method L0408/01 (RM-41M-1) for the determination of cis- and trans-BAS 555 F (Metconazole) in milk and cream SGS Institut Fresenius GmbH, Taunusstein, Germany Fed. Rep. 2018/1099559 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_090	Poperechna N.	2018	Validation of analytical method L0408/02 (RM-41M-2) for the determination of cis- and trans- BAS 555 F (Metconazole) in animal tissues SGS Institut Fresenius GmbH, Taunusstein, Germany Fed. Rep. 2018/1099560 GLP: yes Unpublished
METCON_091	Stahl F.	2018	Amendment 1: Validation of analytical method L0408/02 (RM– 41M–2) for the determination of cis- and trans- BAS 555 F (Metconazole) in animal tissues SGS Institut Fresenius GmbH, Taunusstein, Germany Fed. Rep. 2018/1222770 GLP: yes Unpublished
METCON_092	Bitter J.	2018	Metconazole: Validation of Valents method RM-41M-3a, determination of Metconazole metabolites M-1 and M-12 in animal matrices Valent Technical Center, Dublin CA, United States of America 2018/1203739 GLP: yes Unpublished
METCON_093	Jooss S., Tussetschlaeger S.	2018	Validation of BASF analytical method L0415/01 for the determination of 1.2.4 Triazole in animal matrices EAG Laboratories GmbH, Ulm, Germany Fed.Rep. 2018/1172561 GLP: yes Unpublished
METCON_094	Memmesheimer H.	1997	Metconazole (CL 900768): Storage stability of CL 900768 residues of cis-(CL 354801) and trans-(CL 354802) isomer at less than or equal to -18 °C in cereal grain (Germany, 1995) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK–326-004 GLP: yes Unpublished
METCON_095	Memmesheimer H.	1997	Metconazole (CL 900768): Storage stability of CL 900768 residues as cis-(CL 354801) and trans-(CL 354802) isomer at less than or equal to -18 degrees C in cereal green plant and straw (Germany, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-326-005 GLP: yes Unpublished
METCON_096	Memmesheimer H.	1997	Metconazole (CL 900768): Storage stability of CL 900768 residues as cis-(CL 354801) and trans-(CL 354802) isomer at less than or equal to-18 degrees C in rape seed and rape oil (Germany, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK–326-007 GLP: yes Unpublished
METCON_097	Memmesheimer H.	1997	Metconazole (CL 900768): Storage stability of CL 900768 residues as cis-(CL 354801) and trans-(CL 354802) isomer at less than or equal to -18 °C in carrots and lettuce (Germany, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK–326-006 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_098	Mueller U.	1998	Metconazole (CL 900768): Storage stability of CL 900768 residues as cis-(CL 354801) and trans-(CL 354802) isomer at less than -18 degrees C in pea seeds and straw (Germany, 1997) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK–326-011 GLP: yes Unpublished
METCON_099	Gooding R., Saha M.	2008	Freezer storage stability of BAS 555 F (Metconazole) and its metabolites in plant samples BASF Agro Research RTP, Research Triangle Park NC, United States of America 2008/7019330 GLP: yes Unpublished
METCON_100	Thompson D.C.	2010	Metconazole (V10116): Magnitude of the residue on blueberry United States Department of Agriculture ARS SAA, Tifton GA, United States of America 2010/1232553 GLP: yes Unpublished
METCON_101	Corley J.	2010	Metconazole: Magnitude of the residue on potato United States Department of Agriculture ARS SAA, Tifton GA, United States of America 2010/1232552 GLP: yes Unpublished
METCON_102	Green C.A.	2010	Magnitude of the residues of Metconazole on dry peas Valent Technical Center, Dublin CA, United States of America 2010/1232555 GLP: yes Unpublished
METCON_103	Corley J.	2013	Metconazole: Magnitude of the residue on pea (dry) JRF America, Audubon PA, United States of America 2013/1418321 GLP: yes Unpublished
METCON_104	Green C.A.	2006	Magnitude of the residues of Metconazole in dairy cattle and meat Valent Technical Center, Dublin CA, United States of America 2006/1046033 GLP: yes Unpublished
METCON_105	Green C.A.	2006	Magnitude of the residues of Metconazole on peaches Valent Technical Center, Dublin CA, United States of America 2006/1052077 GLP: yes Unpublished
METCON_106	Green C.A.	2006	Magnitude of the residues of Metconazole on plums and dried plums Valent Technical Center, Dublin CA, United States of America 2006/1052075 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_107	Green C.A.	2006	Magnitude of the residues of Metconazole on cherries Valent Technical Center, Dublin CA, United States of America 2006/1052076 GLP: yes Unpublished
METCON_108	Kleiner A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Mexico American Cyanamid Co., Princeton NJ, United States of America MK-714-001 GLP: yes Unpublished
METCON_109	Kleiner A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Mexico American Cyanamid Co., Princeton NJ, United States of America MK-714-002 GLP: yes Unpublished
METCON_110	Kleiner A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Mexico American Cyanamid Co., Princeton NJ, United States of America MK-714-003 GLP: yes Unpublished
METCON_111	Garrett A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Ecuador American Cyanamid Co., Princeton NJ, United States of America MK-714-004 GLP: yes Unpublished
METCON_112	Garrett A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 90EC fungicide from a crop residue study conducted in Honduras American Cyanamid Co., Princeton NJ, United States of America MK-714-005 GLP: yes Unpublished
METCON_113	Garrett A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Ecuador American Cyanamid Co., Princeton NJ, United States of America MK-714-006 GLP: yes Unpublished
METCON_114	Garrett A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 90EC fungicide from a crop residue study conducted in Honduras American Cyanamid Co., Princeton NJ, United States of America MK-714-007 GLP: yes Unpublished
METCON_115	Garrett A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 90EC fungicide from a crop residue study conducted in Honduras American Cyanamid Co., Princeton NJ, United States of America MK-714-008 GLP: yes

Code	Author	Year	Title, Institute, Report reference
			Unpublished
METCON_116	Garrett A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Ecuador American Cyanamid Co., Princeton NJ, United States of America MK-714-009 GLP: yes Unpublished
METCON_117	Kleiner A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Costa Rica American Cyanamid Co., Princeton NJ, United States of America MK-714-010 GLP: yes Unpublished
METCON_118	Kleiner A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Costa Rica American Cyanamid Co., Princeton NJ, United States of America MK-714-011 GLP: yes Unpublished
METCON_119	Kleiner A.	1998	CL 900768 (Metconazole): CL 900768 residues in bananas after multiple treatments with Metconazole 200EC fungicide from a crop residue study conducted in Costa Rica American Cyanamid Co., Princeton NJ, United States of America MK-714-012 GLP: yes Unpublished
METCON_120	Baptista G.C.	1998	Analise de residuos de Caramba 90 em cebola ESALQ-Escola Superior de Agricultura Luis de Queiroz, Sao Paulo, Brazil 1998/3000726 GLP: yes Unpublished
METCON_121	Baptista G.C.	1998	Analysis of residues of Caramba 90 in onions English translation of 1998/3000726 (5.4/1) 1998/1010995 GLP: yes Unpublished
METCON_122	Steling C.	2000	Determinacao de residuo de Metconazole (CL 900,768) em cebola do Brasil Cyanamid Quimica do Brasil Ltda., Paulinia, Brazil 2000/3000660 GLP: yes Unpublished
METCON_123	Steling C.	2000	Determination of Metconazole residues (CL 900,768) in onions from Brazil English translation of 2000/3000660 (5.4/2) 2000/1024653 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_124	Steling C.	2000	Determinacao de residuos de Metconazole (CL 900, 768) LAADL-Latin America Agricultural Development Laboratory, Rio de Janeiro, Brazil 2000/3000737 GLP: yes Unpublished
METCON_125	Steling C.	2000	Determination of Metconazole residues (CL 900768) in onions from Brazil English translation of 2000/3000737 (5.4/3) 2000/1024654 GLP: yes Unpublished
METCON_126	Dantas C.	2006	Estudos de residuos de Metconazole em cebola (bulbo total) apos tratamento com Caramba 90 (BAS 555 01 F) no Brasil LARAL-Laboratorio Agro de Residuos da America Latina, Resende, Brazil 2006/3000666 GLP: yes Unpublished
METCON_127	Dantas C.	2006	Study of Metconazole residues in onions (total bulb) after treatment with Caramba 90 (BAS 555 01 F) in Brazil English translation of 2006/3000666 (5.4/4) 2006/1053713 GLP: yes Unpublished
METCON_128	Baptista C.G. de	1999	Analise de residuos de Caramba 90 em Alho ESALQ-Escola Superior de Agricultura Luis de Queiroz, Sao Paulo, Brazil 1999/3000525 GLP: yes Unpublished
METCON_129	Baptista C.G. de	1999	BAS 555 01 F: Analysis of residues of Caramba 90 in garlic, Brasil English translation of 1999/3000525 (5.4/5) 1999/1015377 GLP: yes Unpublished
METCON_130	Steling C.	2000	Relatorio de estudo de residuo de Metconazole (CL 900,768) em alho (bulbo total) do Brasil (Curva de Degradacao) Cyanamid Quimica do Brasil Ltda., Paulinia, Brazil 2000/3000672 GLP: yes Unpublished
METCON_131	Steling C.	2000	Study report of residue of Metconazole (CL 900768) in garlic (total bulb) from Brazil (degradation curve) English translation of 2000/3000672 (5.4/6) 2000/1024649 GLP: yes Unpublished
METCON_132	Steling C.	2000	Relatorio de estudo de residuo de Metconazole (CL 900,768) em alho (bulbo total) do Brasil Cyanamid Quimica do Brasil Ltda., Rio de Janeiro, Brazil 2000/3000683 GLP: yes Unpublished
METCON_133	Steling C.	2000	Metconazole residue study report (CL 900 768) in garlic (total bulb) from Brazil English translation of 2000/3000683 (5.4/7) 2000/1024650 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_134	Dantas C.	2005	Estudos de residuos de Metconazole em alho (bulbo total) apos tratamento com Caramba 90 (BAS 555 01 F) no Brasil LARAL-Laboratorio Agro de Residuos da America Latina, Resende, Brazil 2005/3000331 GLP: yes Unpublished
METCON_135	Dantas C.	2005	Study of Metconazole residues in garlic (total bulb) after treatment with Caramba 90 (BAS 555 01 F) in Brazil English translation of 2005/3000331 (5.4/8) 2005/1046040 GLP: yes Unpublished
METCON_136	Baptista G.C. de	1999	Analise de residuos de Caramba 90 em vagem ESALQ-Escola Superior de Agricultura Luis de Queiroz, Sao Paulo, Brazil 1999/3000524 GLP: no Unpublished
METCON_137	Baptista G.C. de	1999	Residue analysis of Caramba 90 in green bean pods English translation of 1999/3000524 (5.5/1) 2018/3003649 GLP: no Unpublished
METCON_138	Dantas C.	2004	Estudo de resíduo de Metconazole em feijao (vagem) após tratamento com Caramba 90 (BAS 555 01 F) no Brasil LARAL-Laboratorio Agro de Residuos da America Latina, Resende, Brazil 2004/3000236 GLP: yes Unpublished
METCON_139	Green C.A.	2010	Magnitude of the residues of Metconazole on dry beans Valent Technical Center, Dublin CA, United States of America 2010/1232554 GLP: yes Unpublished
METCON_140	Corley J.	2013	Metconazole: Magnitude of the residue on bean (dry) JRF America, Audubon PA, United States of America 2013/1418322 GLP: yes Unpublished
METCON_141	Green C.A.	2010	Magnitude of the residues of Metconazole on dry peas Valent Technical Center, Dublin CA, United States of America 2010/1232555 GLP: yes Unpublished
METCON_142	Corley J.	2013	Metconazole: Magnitude of the residue on pea (dry) JRF America, Audubon PA, United States of America 2013/1418321 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_143	Leonard R.C.	2005	The magnitude of Metconazole residues in soya beans BASF Agro Research RTP, Research Triangle Park NC, United States of America 2004/5000755 GLP: yes Unpublished
METCON_144	White M.T., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolites in soya beans BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006995 GLP: yes Unpublished
METCON_145	Dantas C.	2006	Study on the residues of Metconazole in soya bean (grain) after treatment with Caramba 90 (BAS 555 01 F) in Brazil BASF SA, Resende, Brazil 2006/1008232 GLP: yes Unpublished
METCON_146	Corley J.	2010	Metconazole: Magnitude of the residue on potato United States Department of Agriculture ARS SAA, Tifton GA, United States of America 2010/1232552 GLP: yes Unpublished
METCON_147	Jordan J.M., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolites in sugar beet BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006726 GLP: yes Unpublished
METCON_148	White M.T., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolies in barley BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006917 GLP: yes Unpublished
METCON_149	Jordan J.M., Saha M.	2006	The magnitude of Metconazole (BAS 555 F) and its metabolites and Pyraclostrobin (BAS 500 F) residues in oats BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006724 GLP: yes Unpublished
METCON_150	Carringer S.J.	2007	Magnitude of the residue of Metconazole and its metabolites in or on field corn and sweet corn raw agricultural commodities and field corn processed commodities following applications of BAS 555 01 F BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7012839 GLP: yes Unpublished
METCON_151	Jordan J.M., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolites in rye BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006725 GLP: yes

Code	Author	Year	Title, Institute, Report reference
			Unpublished
METCON_152	White M.T., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolites in wheat BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006723 GLP: yes Unpublished
METCON_153	White M.T.	2013	Pyraclostrobin + Metconazole: Magnitude of the residue on sugarcane BASF Agricultural Research Center, Research Triangle Park NC, United States of America 2013/7001632 GLP: yes Unpublished
METCON_154	Green C.A.	2006	Magnitude of the residues of Metconazole on pecans Valent U.S.A. CorpValent Technical Center, Dublin CA, United States of America 2006/7017434 GLP: yes Unpublished
METCON_155	Green C.A.	2006	Magnitude of the residues of Metconazole on almonds Valent U.S.A. CorpValent Technical Center, Dublin CA, United States of America 2006/7017431 GLP: yes Unpublished
METCON_156	Beggs C.J. et al.	1996	Metconazole (CL 900768) 60 g a.i./L SL (SF 09381) at harvest residue study in autumn oil seed rape-(France, 1995) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-750-003 GLP: yes Unpublished
METCON_157	Beggs C.J. et al.	1997	Metconazole (CL 900768) 60 g ai/l SL (SF 09381): Decline curve residue study in oil seed rape (France-south, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-750-004 GLP: yes Unpublished
METCON_158	Beggs C.J. et al.	1997	Metconazole (CL 900768) 60 g ai/l SL (SF 09381): At harvest residue study in oil seed rape (France-north, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-750-005 GLP: yes Unpublished
METCON_159	Dombo P. et al.	1997	Metconazole (CL 900768) 60 g ai/l SL (SF 09381): Decline curve residue study in oil seed rape (France-north, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK–750-006 GLP: yes Unpublished

Code	Author	Year	Title, Institute, Report reference
METCON_160	Dombo P. et al.	1997	Metconazole (CL 900768) 60 g ai/l SL (SF 09381): At harvest residue study in oilseed rape (France-south, 1996) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-750-007 GLP: yes Unpublished
METCON_161	Scharm M. <i>et al</i> .	1999	Metconazole (CL 900768) 90 g ai/l SL (RLF 12307): At harvest residue study on metconazole (CL 900768) in oil seed rape (South-France, 1998) Cyanamid Forschung GmbH, Schwabenheim, Germany Fed.Rep. MK-750-009 GLP: yes Unpublished
METCON_162	Green C.A.	2007	Magnitude of the residues of Metconazole in/on canola and canola processing fractions Valent U.S.A. CorpValent Technical Center, Dublin CA, United States of America 2007/1073345 GLP: yes Unpublished
METCON_163	Corley J.	2013	Metconazole: Magnitude of the residue on sunflower JRF America, Audubon PA, United States of America 2013/1418320 GLP: yes Unpublished
METCON_164	Carringer S.J.	2007	Magnitude of the residue of Metconazole and its metabolites in or on cotton raw agricultural and processed commodities following applications of BAS 555 01 F BASF Agro Research RTP, Research Triangle Park NC, United States of America 2007/7001663 GLP: yes Unpublished
METCON_165	Green C.A.	2006	Magnitude of the residues of Metconazole on peanut nutmeats and peanut processing fractions Valent Technical Center, Dublin CA, United States of America 2006/1051359 GLP: yes Unpublished
METCON_166	Adam D.	2013	 ¹⁴C -Metconazole (BAS 555 F): Simulated processing-Hydrolysis at 90 °C, 100 °C and 120 °C IES-Innovative Environmental Services Ltd., Witterswil, Switzerland 2013/1126040 GLP: yes Unpublished
METCON_167	White M.T., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolites in soya bean processing commodities BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006996 GLP: yes Unpublished
METCON_168	Jordan J.M., Saha M.	2006	Magnitude of residues of Metconazole (BAS 555 F) and its metabolites in sugar beets and sugar beet processed fractions following applications of BAS 555 01 F BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7006727 GLP: yes

Code	Author	Year	Title, Institute, Report reference
			Unpublished
METCON_169	Plier S.	2015	Determination of residues of BAS 555 F (Metconazole) in barley and its processed products after two applications of BAS 555 00 F in Germany, 2012 BioChem agrar Labor fuer biologische und chemische Analytik GmbH, Gerichshain, Germany Fed.Rep. 2013/1037952 GLP: yes Unpublished
METCON_170	Plier S.	2015	Determination of residues of BAS 555 F (Metconazole) in oat and its processed products after two applications of BAS 555 00 F in Germany, 2012 BioChem agrar Labor fuer biologische und chemische Analytik GmbH, Gerichshain, Germany Fed.Rep. 2013/1037951 GLP: yes Unpublished
METCON_171	White M.T., Saha M.	2006	The magnitude of residues of Metconazole (BAS 555 F) and its metabolites in wheat processing commodities BASF Agro Research RTP, Research Triangle Park NC, United States of America 2006/7007147 GLP: yes Unpublished
METCON_172	Tandy R.	2013	Study on the residue behaviour of Pyraclostrobin (BAS 500 F) and Metconazole (BAS 555 F) in oilseed rape and processed fractions after treatment with BAS 556 03 F in Northern Europe during 2011 Eurofins Agroscience Services, Melbourne Derbyshire DE73 8AG, United Kingdom 2013/1256239 GLP: yes Unpublished
METCON_173	Green C.A.	2008	Magnitude of the residues of Metconazole in chicken eggs and tissues Valent U.S.A. CorpValent Technical Center, Dublin CA, United States of America 2008/8000061 GLP: yes Unpublished
METCON_174	Green C.A.	2006	Magnitude of the residues of Metconazole in dairy cattle and meat Valent Technical Center, Dublin CA, United States of America 2006/1046033 GLP: yes Unpublished
METCON_175	Bitter J., Kowalsky W.	2019	Metconazole: Freezer Storage Stability of M–1 and M–12 Metabolites in Animal Matrices Valent Technical Center, Dublin CA, United States of America 201900114, V–18–200800 GLP: yes Unpublished