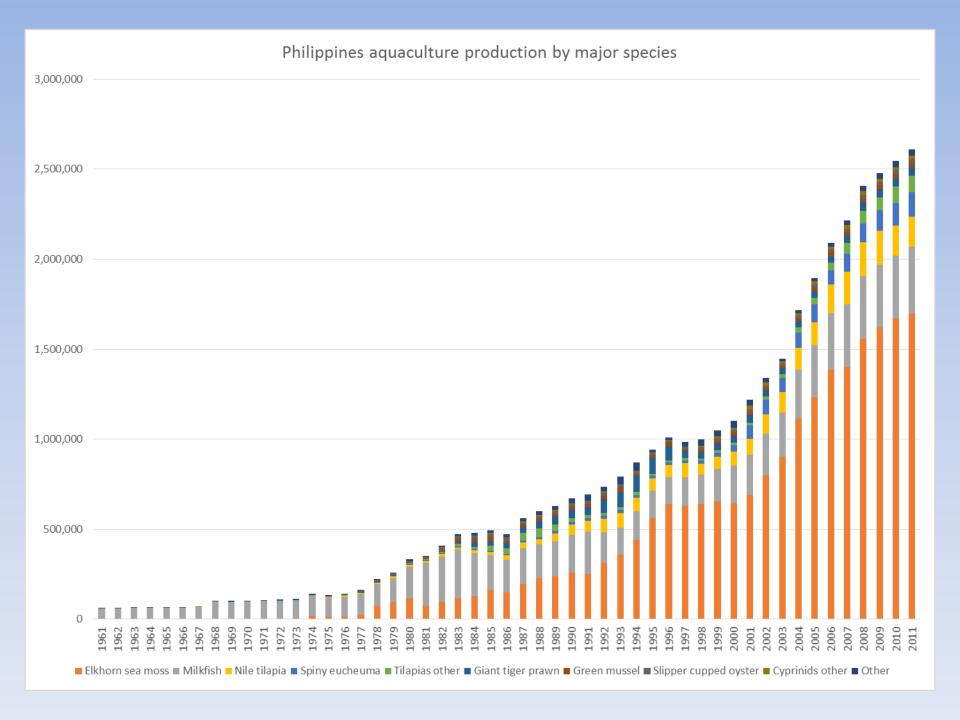
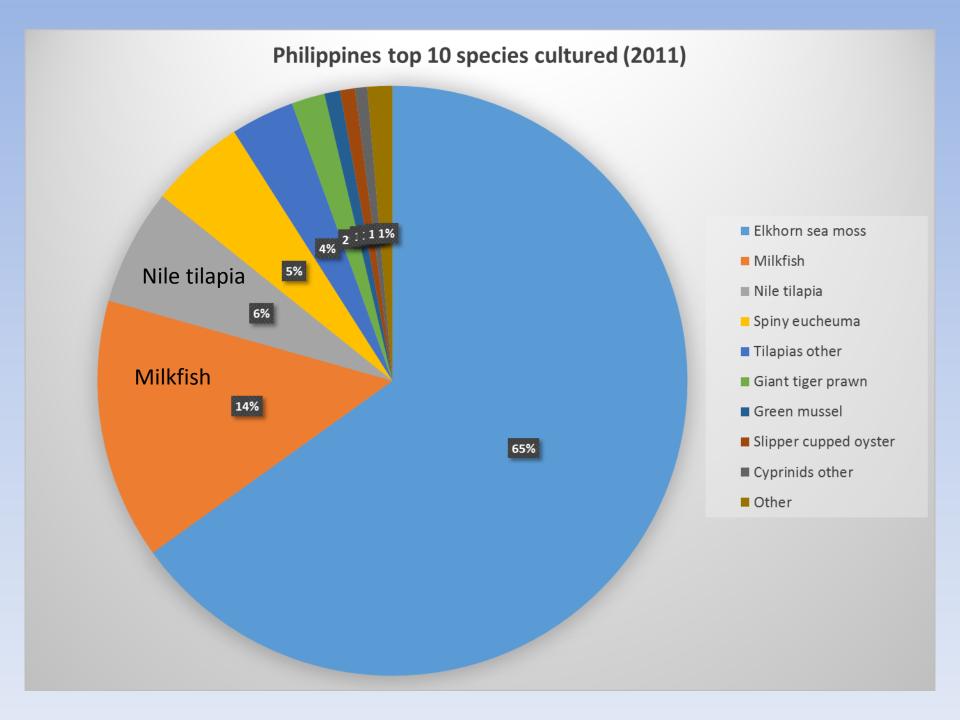
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS TECHNICAL COOPERATION PROGRAMME Philippines TCP /PHI/3404

Patrick White

Improvement of feeding and feed management efficiency in aquaculture production in the Philippines





Output 3

Good on-farm feeding practices and feed management strategies are developed/optimized and government extension workers and farmers are trained

- Optimized feeding practices
- Good feed management
- Training materials and training course

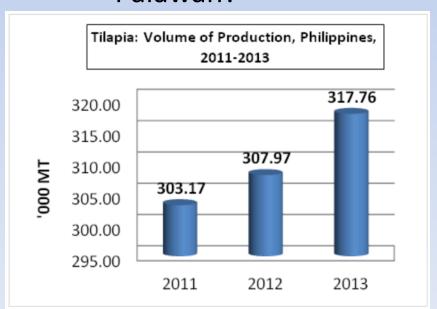
Background - Tilapia

Species and varieties

• GET Excel, Supreme, GIFT, etc

- Systems
 - Semi intensive Ponds

- Intensive Cages (lakes)
- Partial fed cages/pens(Laguna)



Tilapia production

Main provinces for tilapia production 2006

- Farmer trial areas
 - Zambales?
 - NCR (Taal Lake)?
 - Palawan?

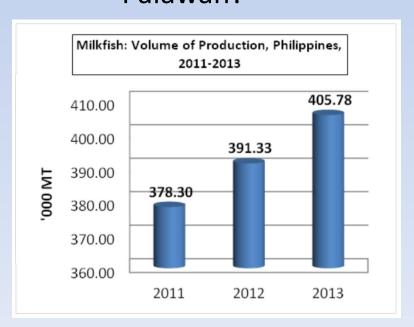
Background - Milkfsh

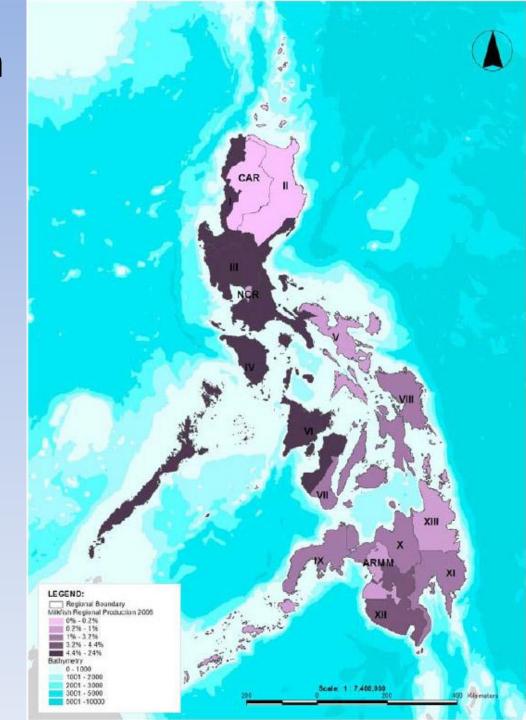
Species

- Wild caught
- Hatchery bred
- Nursery reared

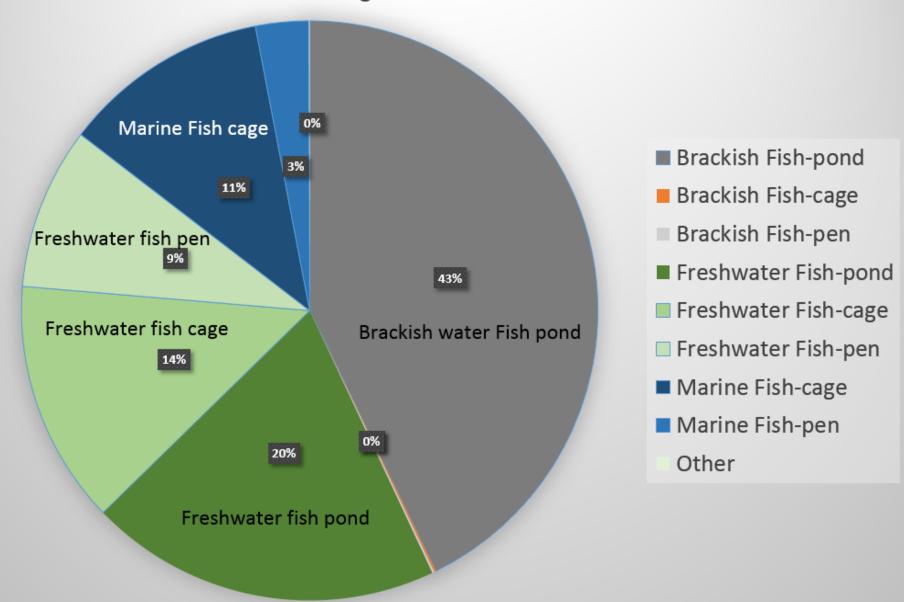
Systems

- Semi-extensiveBrackish-water Ponds
- Intensive brackish and marine cages

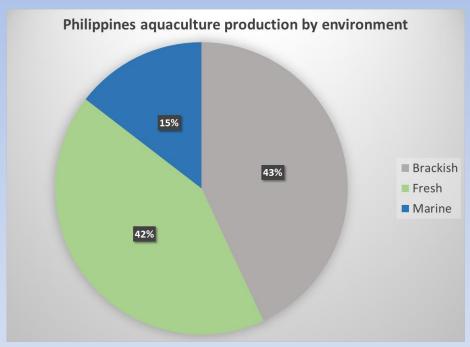


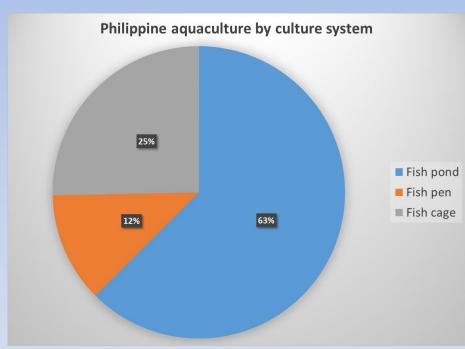


Milkfish production


Main provinces for milkfish production 2006

- Case study areas
 - Pangasinan?
 - Iloilo?
 - Palawan?


Philippines Aquaculture (2011) by environment and culture system excluding molluscs and seaweed



Production by environment and system

Brackish water dominant

Pond culture dominant

Possible project duplication?

- FAO TCP optimizing feed formulation and feeding strategy 2 species (Milkfish and Tilapia)
- USAID/SEAFDEC optimizing feed and feeding strategy – multi species and best practice analysis

Suggest one project chooses pond culture the other chooses cage culture (?) so no duplication or gaps.

Output 3

- Activity 3.1: Develop an understanding of on-farm feeding and feed management practices and constraints.
- Activity 3.2: Develop better management practices (BMP)/good aquaculture practices (GAqP) guidelines/manuals for on-farm feeding and feed management including processing, handling and storage at the farm level.
- Activity 3.3: Develop feed management tools such as simple feed-back systems to prevent over feeding and appropriate feeding tables.
- Activity 3.4: Organize workshop on BMP/GAqP guidelines/manuals with farmers and develop training materials
- Activity 3.5: Training in BMP/ for feeding and on-farm feed management for farmers and government extension workers.

Feed and feeding considerations

Parameter	Pond	Cage
Natural productivity	Significant pond natural productivity so some nutrient provided by pond. Feed formulation less demanding.	Less natural productivity. Feed formulatio0n should supply all nutrients, vitamins and minerals.
Water temperature	Significant diurnal and seasonal water temperature fluctuations. Need to alter feeding tables seasonally, need to decide optimal feeding time of day	Less diurnal and seasonal water temperature changes. Feeding time not so important.
Oxygen levels	Significant diurnal dissolved oxygen levels. Need to decide optimal feeding time of day	Less dissolved oxygen level change. Feeding time not so important.

Feeding strategy considerations

- Number of feeds per day (changes with life stage). Will affect feeding hierarchy and range of fish size.
- Feeding duration fast feeding, slow feeding.
 Will affect feeding hierarch and feed wastage.
- Feeding rate (% body weight/day) will change with stage of life, fry, fingerling, juvenile, adult and with temperature. Will affect FCR and growth rate.
- Time of feed. Feed to avoid peak temperatures and low oxygen.

Feed management trials

Choice of feed type

- Compressed Pellets (sinking)
- Extruded Pellets (sinking)
- Extruded pellets (floating)

Choice of feed size

Pellet size vs fish weight

SEA-Asia Soyabean Association feeding

- Measure satiation, feed floating feeds into a feed collar
- Feed satiation level for the next two weeks

Feeding strategy trials

- Feeding strategy
 - Demand feeding (baseline)
 - Feeds per day vs size of fish
 - Feeding rate (% body wt/day)
 - Feed wastage (feeding tray)
 - Intermittent feeding
- Measure growth rate and FCR

Outputs

Report on feed management and strategy trial results

Output 3 - 3.1

Activity 3.1: Develop an understanding of on-farm feeding and feed management practices and constraints.

- Rapid Farmer survey 20 questions around 1 hour
 - 50 tilapia farms
 - 50 Milkfish farms
- Case study area feed availability, distribution and cost
- Laboratory and economic analysis

Data collection – present practice

50 farms in case study area

- Feed type used and cost
- Feed conversion rate
 - Fry
 - Fingerlings
 - Grow-out
- Feeding strategy
 - Feeding rate (% body weight/day) for different sizes
 - Feeds/day

Data collection – present constraints

Data collection – case study area

- Feed availability distributors/shops, brands, feed types and cost
- Feed price compared with ex Factory price (transport and commission charges)
- Feed storage (on shore/on cage) –
 temperature/protection from rain
- Biological and economic FCR
- Feed wastage (feed tray analysis)

Data collection – present constraints

Laboratory and economic analysis

- Feed quality vs cost
- Feed stability in water
- Dust levels in the feed
- Feed quality variability between batches
- Availability and quality of feeding tables

Outputs

Report on existing feeding practices and constraints

Output 3 – 3.3

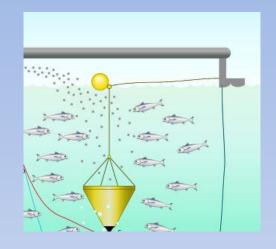
Activity 3.3: Develop feed management tools such as simple feed-back systems to prevent over feeding and appropriate feeding tables.

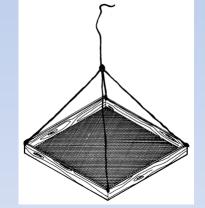
- Appropriate and cost effective feed-back systems to avoid overfeeding
- Accurate feeding tables

- Combine with optimized feeding strategy
- Test at semi commercial scale with farmers

Types of feed wastage monitoring and control

Good control but expensive


- Cameras with pellet counting software
- Cameras and analysis of feeding behavior
- Feeding tray
- Water surface feeding behavior
- Feeding table related to fish size and temperature
- Bags of feed fed to cage/pond during production cycle


Poor control but cheap

Develop feed back systems

Monitoring feeding rate and wastage

Develop simple and effective feed monitoring system

Output

Feedback tool described on BFAR web site

Develop feeding tables

- Develop accurate feeding tables
 - Fish size
 - Water temperature

Output

Feed tables printed on feed sacs and on BFAR web site

Example of an accurate feeding table Mediterranean seabream

					SPEC	IFIC GI	ROWTH	RATE						
									(2 2 2)					
Temp		mean weig	ght (gr.)											
min		35	48	60	80	100	150	200	250	300	350	400	450	500
max		48	60	80	100	150	200	250	300	350	400	450	500	<
12	14	0.19	0.15	0.12	0.11	0.10	0.07	0.07	0.06	0.05	0.05	0.05	0.05	0.04
14	16	0.43	0.34	0.26	0.24	0.22	0.17	0.15	0.14	0.12	0.10	0.09	0.09	0.08
16	18	0.75	0.59	0.46	0.42	0.38	0.31	0.27	0.24	0.21	0.17	0.16	0.14	0.12
18	20	1.28	1.03	0.81	0.74	0.65	0.52	0.46	0.41	0.36	0.30	0.27	0.24	0.20
20	22	1.92	1.59	1.27	1.15	0.99	0.78	0.70	0.62	0.54	0.45	0.40	0.36	0.30
22	24	2.43	2.04	1.66	1.49	1.26	1.00	0.89	0.79	0.69	0.57	0.51	0.46	0.40
24	26	3.02	2.54	2.06	1.85	1.57	1.24	1.10	0.99	0.86	0.71	0.64	0.57	0.50
26	27	3.25	2.74	2.22	1.99	1.69	1.34	1.19	1.06	0.92	0.77	0.69	0.61	0.53
27	28	3.30	2.78	2.25	2.02	1.72	1.36	1.21	1.08	0.94	0.78	0.70	0.62	0.54
28	29	2.60	2.19	1.78	1.59	1.35	1.07	0.95	0.85	0.74	0.62	0.55	0.49	0.42
29	30	1.95	1.64	1.33	1.20	1.02	0.80	0.71	0.64	0.55	0.46	0.41	0.37	0.32

Specific growth rate at different temperatures and fish size

Example of an accurate feeding table Mediterranean seabream

					DAI	ILY FEE	DINC I	ATE (S						
					DAI			AIE (S	or K)					
Temp		mean weig	ght (gr.)											
min		35	48	60	80	100	150	200	250	300	350	400	450	500
max		48	60	80	100	150	200	250	300	350	400	450	500	<
12	14	0.8	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3
14	16	0.9	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3
16	18	1.3	1.0	0.8	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.4
18	20	1.9	1.6	1.3	1.2	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.6	0.6
20	22	2.4	2.0	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8	0.7
22	24	2.9	2.4	2.1	2.0	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9
24	26	3.6	3.1	2.6	2.5	2.3	2.0	1.9	1.8	1.6	1.5	1.4	1.2	1.1
26	27	4.1	3.5	3.0	2.8	2.6	2.3	2.2	2.0	1.9	1.7	1.5	1.4	1.3
27	28	4.3	3.7	3.2	3.0	2.7	2.5	2.3	2.2	2.0	1.8	1.6	1.5	1.4
28	29	3.6	3.1	2.7	2.5	2.3	2.1	1.9	1.8	1.7	1.5	1.4	1.3	1.1
29	30	2.8	2.4	2.1	2.0	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9

Daily feeding rate at different temperatures and fish size

Example of an accurate feeding table Mediterranean seabream

					FEED	CONVI	ERSION	RATE	(FCR)					
Temp		mean weig	ıht (gr.)											
min		35	48	60	80	100	150	200	250	300	350	400	450	500
max		48	60	80	100	150	200	250	300	350	400	450	500	<
12	14	4.00	4.07	4.31	4.56	4.87	5.54	5.85	6.13	6.47	6.93	7.15	7.36	7.70
14	16	2.15	2.18	2.31	2.44	2.61	2.97	3.13	3.28	3.47	3.71	3.83	3.94	4.12
16	18	1.72	1.74	1.85	1.95	2.09	2.38	2.51	2.63	2.77	2.97	3.06	3.15	3.30
18	20	1.49	1.51	1.60	1.69	1.81	2.06	2.17	2.28	2.40	2.57	2.65	2.73	2.86
20	22	1.25	1.27	1.34	1.42	1.52	1.73	1.82	1.91	2.01	2.16	2.23	2.29	2.40
22	24	1.18	1.20	1.27	1.34	1.43	1.63	1.72	1.80	1.90	2.04	2.10	2.17	2.27
24	26	1.19	1.21	1.28	1.35	1.45	1.65	1.74	1.82	1.92	2.06	2.12	2.19	2.29
26	27	1.25	1.27	1.34	1.42	1.52	1.73	1.82	1.91	2.01	2.16	2.23	2.29	2.40
27	28	1.32	1.34	1.42	1.50	1.60	1.82	1.92	2.01	2.13	2.28	2.35	2.42	2.53
28	29	1.40	1.42	1.50	1.59	1.70	1.93	2.04	2.14	2.25	2.42	2.49	2.57	2.68
29	30	1.45	1.48	1.56	1.65	1.77	2.01	2.12	2.22	2.35	2.51	2.59	2.67	2.79

Food conversion rate at different temperatures and fish size

Output 3 - 3.2, 3.4 & 3.5

- Activity 3.2: Develop better management practices (BMP)/good aquaculture practices (GAqP) guidelines/manuals at the farm level for;
 - on-farm feeding and feed management,
 - handling and storage.
- Activity 3.4: Organize workshop on BMP/GAqP guidelines/manuals with farmers
 - develop training materials
- Activity 3.5: Training in BMP/ for feeding and on-farm feed management for farmers and government extension workers.

Feeding strategy that has worked in other species/countries

Restricted feeding to reduce FCR (but may affect growth rate)

Slight restriction

- Feed 80% of satiation
- Feed 6 days per week then 1 day no feed
- Feed 2 days and then no feeding for 1 day repeat
- Feed every other day
- Starve 1 week feed one week (compensatory growth gains)

Strong restriction

Feeding strategy that has worked in other species/countries

Feeds per day

- Fewer larger feeds per day ensures that most fish will have a chance to feed and ensure a more homogenous size within the population
- Many smaller feeds per day maximizes growth potential but feeding hierarchies may develop leading to less homogenous size within the population.

Feeding strategy that has worked in other species/countries

US Soya Bean Association feeding method

- Uses floating feeds fed to satiation and that ration maintained for 2 weeks before determining satiation again
- Feed fed once per day into a feeding ring

Develop feeding recommendations

- Develop draft Better feeding management practice/ Good Aquaculture practice
- Test recommendations at semi commercial scale
- Get feedback from farmers
- Organise stakeholder BMP/GAqP workshop
- Outputs
 - Workshop report
 - BMP/GAqP guidelines

Technology transfer and training

- Develop training materials
- Undertake farmer training to test training materials – case study areas
- Undertake training of trainers/extension workers
 RFTCs?
- Finalise feeding manuals and training materials
- Get cooperation from feed manufacturers to disseminate feed tables and recommendations with feed sales

Outputs

Report on training for feeding and feed management

Ecosystem Sustainability

- Calculate theoretical (and measure actual?)
 environmental impact reduction by using improved
 feed and feeding management
- Calculate fish-in:fish-out ratio
 - Fish meal use
 - Fish oil use

- Calculate simplified life cycle analysis
 - Energy, Greenhouse gas emission, resource use

Output

Section in Final project report

TCP Proposed timing

OUTPUTS/ACTIVITIES	20	2013 2014 201												15	15								
	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7 8	9	10
Activity 3.1: Develop an understanding of their on-																							
farm feeding and feed management practices and constraints.																							
Activity 3.2: Develop better management practices																							
(BMP)/good aquaculture practices (GAqP)																							
guidelines/manuals for on-farm feeding and feed																							
management strategies including processing,																							
handling and storage at the farm level.																							
Activity 3.3: Develop feed management tools such																							
as simple feed-back systems to prevent over feeding																							
and appropriate feeding tables.																							
Activity 3.4: Organize workshop on BMP/GAqP																							
guidelines/manuals with farmers and finalize the																							
training materials.																							
Activity 3.5: Provide farmers and government																							
extension workers training in BMP/GAqP for on-																							
farm feeding and feed management.																							

Revised timing and missions

OUTPUTS/ACTIVITIES	20	13	2014												2015									
	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6 7	8	9	10	
Activity 1: Data collection for on-farm feeding and																								
feed management practices and constraints.																								
										х														
Activity 2: Small scale field trials on feeding strategy																								
Activity 3: Develop draft better management																								
practices (BMP)/good aquaculture practices (GAqP)																								
guidelines/manuals																								
													х											
Activity 4: larger scale farmer field trials													^											
Activity 5: Develop feed management tools such as																								
simple feed-back systems to prevent over feeding																								
and appropriate feeding tables.																								
Activity 6: Organize workshop on BMP/GAqP																								
guidelines/manuals with farmers and finalize the																	Х							
training materials.																								
Activity 7: Training farmers and government																	Ī							
extension workers in BMP/GAqP for on-farm																		Х						
feeding and feed management.																								
Consultant Missions										1			2				3	3						

Organisation and responsibilities – who, when, where?

- Background data collection on present practice
- Controlled small-scale trials on different feeding practices
- Up scaled farmer trials with improved feeding practice and management
- Development of Better Management Practice manuals/guidelines and testing with farmers
- Development of training materials and test training course for farmers
- Training of trainers course
- Widespread dissemination

Decisions to be made

- Culture systems ponds or cages?
- Cast study areas Tilapia and Milkfish
- Small scale trials CLSU, NIFTDC, SEAFDEC?
- Training partners Universities, RFTCs, NIFTDC?
- Project timing data collection, small scale trials, farmer trials?
- Quantities of feed pellets required and sizes?
- Feed quality tests proximate analysis, digestibility, feed stability?
- Commercial feed partner to make the pellets?