

Emerging practices from Agricultural Water Management in Africa and the Near East

Thematic Workshop

Theme 3

The 3-Pronged Approach

Conjunctive use of ground and harvested water, modern irrigation, solar energy for irrigation

> Motasem Abukhalaf, Project Officer, FAO-Jordan Bari, 29 August 2017

PRESENTATION OUTLINE

- **BACKGROUND/ PILOT AREA**
- WATER HARVESTING
- **METHODOLOGY/ PARTNERS**
- GROUNDWATER
- FIELD MEASUREMENTS/ SYSTEM DESIGN
- **SOLAR COMPONENT**
- **DESIGN OF IRRIGATION SYSTEM**
- **TECHNOLOGY**

BACKGROUND/ PILOT AREA

BACKGROUND/ PILOT AREA

مد الغدير الأبيض Al Ghadeer Al Abyad Dam

Site selection

METHODOLOGY/ PARTNERS

Conducted Studies/ Data Collection & Analysis

 Meteorological Data
 - Least monthly precipitation measurement
 - Min/ Max temperatures
 - Air relative humidity
 - Wind speed
 - Incoming solar radiation

METHODOLOGY

Profile number	Bulk density	Basic infiltration rate (mm/hour)
PG1	1.46	12
PG2	1.31	16
PG3	1.29	26
PG4	1.30	28
PG5	1.26	30
PG6	1.25	18
PG7	1.32	16
PG8	1.31	8
PG9	1.32	14
PG10	1.32	16
PG11	1.22	16
PG12	1.28	20
PG13	1.21	24
PG14	1.23	16
PG15	1.29	12
PG16	1.25	14
PG17	1.30	12
PG18	1.30	12
PG19	1.31	16
PG20	1.24	18

METHODOLOGY IN ACTION

Dam Maintenance/ Sediment Removal

Current capacity of 250 000 m³ Design Capacity of 700 000 m³

Last Maintenance in 1983

METHODOLOGY IN ACTION

Dam Maintenance/ Sediment Removal

Evaluation of current situation

Conduction of full survey

Measurements

METHODOLOGY IN ACTION

Dam Maintenance/ Sediment Removal

Preparation of Maintenance Plan/ Sediment Removal

F

F

(

METHODOLOGY IN ACTION/WATER HARVESTING

Preparation of BoQ

Preparation of complete Tender Document

ITEM	Unit	Quantity	
Excavations in cubic meters (m ³): Removal of sediments and accumulated muds in Al- <u>Ghadeer</u> Al- <u>Abyad</u> dam.	m³	35 000	
Construction of protection wall (in m ²): The price include the supply and construction of bricks. This wall is composed of cement bricks with (20 cm thickness) in high specifications. Mortaring for the bricks during construction in order to prevent the leakage of water. Bricks will be watered daily twice, for a period of three days.	m²	24	
 Norks of an earth berm to protect the site from floods: Construction of an earth berm (350 m length, 4 m height, top width 2 m, 10 m bottom width), with estimated quantity of 6 000 m³. Berm will be constructed based on the provided technical specification or/ The berm would be removed before the initial receipt of the works from works 			

METHODOLOGY IN ACTION/GROUNDWATER

Mapping of Wells

Station Id

Station Name

	Well depths	334 m	**
AD1105	Static Water Level	107 m	
AVVELLA	Pump water level	252 m	*
	Average Flow Rate	18-15 m³/hr	

METHODOLOGY IN ACTION/ SYSTEM DESIGN

METHODOLOGY IN ACTION/ SYSTEM DESIGN

Theme 3: The 3-Pronged Approach

METHODOLOGY IN ACTION/ SYSTEM DESIGN

Reliable Amount 200 000 m³ - with 70,000 more after maintenance

Average need= 5000 m³/ha

Currently Area 2 Surface Water = 0 The well= max 150 000 m³

Theme 3: The 3-Pronged Approach

METHODOLOGY IN ACTION/ SOLAR ENERGY

Area 2 = 15.7 ha

Theme 3: The 3-Pronged Approach

Theme 3: The 3-Pronged Approach

METHODOLOGY IN ACTION/ SYSTEM DESIGN

Conjuntive use (Surface water and Ground water) will be used to irriagte the area 2

75 000 m³ as buffer in case of extesion or water stress

METHODOLOGY IN ACTION/ SYSTEM DESIGN

Slope Map Contour Map

METHODOLOGY IN ACTION/ SYSTEM DESIGN

Rainfall Map

Soil Map

DESIGN OF IRRIGATION SYSTEM

Two Pumps (one for each area) Pressure Head = 36 m Discharge= 35 l/s

Area 2 = 15.7 ha

DESIGN OF IRRIGATION SYSTEM

Area 1 = 17 ha (21 Plots)

A pressurized irrigation system is designed One hydrant provide 5 l/s (irrigate around 2.5 ha) Minimum pressure head = 20 m

(if we put 2.5 l/s per hydrant, on peak you need to irrigate overnight which does not suit solar pumping)

Water duty 1 l/sec/ha (suitable to most crops)

Area 2 = 15.7 ha

Velocity= gpm/(2.45*D^2)

Diameter =inches

P = 0.01419 * V^2

Velocity =2652 Q= A* V

P= Bars V = M/S

DESIGN OF IRRIGATION SYSTEM

Hydraulic Calculations & BoQ

P = (Q/(C*D^2 *935.3))^2

P= in Bars Q= L\S D= MM C= Coefficient of Discharge

Head Loss (Hf m)=F * Ku *(Q\C)^1.852 * D^-4.87

F=0.356 Ku=(1.21 * 10^10) C= 150

Water H.P. =(gpm * head in feet) /3960

1 PSI = 2.31 feet

HEAD LOSS IN LATERALS & MANIFOLD

Flow g\min	Flow m3\hr	Flow L\S	I.D Dia. mm	Length m	iction Loss HF (m	Radius M	HF Accu. (mt)	Velocity m\s	Head Loss in PS	Ho
	0.05	0.013889	13	42	0.023050467	0.0065	0.023050467	0.1046914	0.033423178	
	4.2	1.166667	53.6	53	0.107483835	0.0268	0.130534303	0.517306	0.155851561	

HEAD LOSS IN MAIN LINE AND SUBMAIN

Flow g\min	Flow m3\hr	Flow L\S	Diameter mm	Length m	Friction Loss HF (mt.)	Radius (mt.)	Accu. Friction Loss HF (mt.)	Velocity m\s	Head Loss in PSI	Ho
	12.8	3.555556	76.6	190	1.497974718	0.0383	1.497974718	0.7719342	2.172063342	
	30.5	8.472222	93.6	200	2.966415911	0.0468	4.464390629	1.2319015	4.301303071	
	30.5	8.472222	93.6	60	0.889924773	0.0468	5.354315403			
			100.0	100	0.010000011			1 0 100000	1.000.000000	

ITEM	DESCRIPTION	UNIT	QTY	I
1	H.D.P.E. PIPE 10 Bar - 315 mm K.S.A	LM	456	
2	H.D.P.E. PIPE 10 Bar -225 mm K.S.A.	LM	516	T
3	H.D.P.E. PIPE 10 Bar -200 mm K.S.A.	LM	576	T
4	H.D.P.E. PIPE 10 Bar -160 mm K.S.A.	LM	700	T
5	H.D.P.E. PIPE 10 Bar -110 mm K.S.A.	LM	1100	T
6	H.D.P.E. PIPE 10 Bar -90 mm K.S.A.	LM	2200	Т
7	H.D.P.E. PIPE 10 Bar -63 mm K.S.A.	LM	4800	t
8	L.D.P.E. PIPE 4 Bar - 16 mm TH.1.3 K.S.A.	LM	375000	T
9	Trench Cut and Fill	LM	1900	T
10	P.E.Tee Equal 225 mm	Ea	1	t
11	P.E.Tee Equal 200 mm	Ea	1	T
12	P.E.Tee Equal 160mm	Ea	1	T
13	P.E.Tee Equal 110mm	Ea	5	t
14	P.E.Tee Equal 90 mm	Ea	12	T
15	P.E.Tee Equal 63 mm	Ea	20	T
16	P.E.Elbow 45 degree 315 mm	Ea	2	t
17	P.E.Elbow 45 degree 225 mm	Ea	2	T
18	P.E.Elbow 45 degree 200 mm	Ea	1	T
19	P.E.Elbow 90 degree 200 mm	Ea	1	t
20	P.E.Elbow Coupling 110mm	Ea	5	t
21	P.E.Elbow 90 Degree 90 mm	Ea	8	t
22	P.E.Reducer 315x225 mm	Ea	1	T
23	P.E.Reducer 225x200 mm	Ea	2	t
24	P.E.Reducer 225x160 mm	Ea	2	t
25	P.E.Reducer 225x110 mm	Ea	1	t
26	P.E.Reducer 200x160 mm	Ea	4	t
27	P.E.Reducer 200x90 mm	Ea	1	T
28	P.E.Reducer 160x110 mm	Ea	5	T
29	P.E.Reducer 160 x 90mm	Ea	5	t
30	P.E.Reducer 110x90 mm	Ea	4	t
31	P.E.Reducer 90x63 mm	Ea	5	t

Desiget Title + Al Chadges Al Abuadh

Theme 3:

The 3-Pronged Approach

METHODOLOGY IN ACTION/ TECHNOLOGY

NORMAL HYDRANTS

Flow meter and Flow regulator

TECHNOLOGY

ELECTRONIC WATER DELIVERY SYSTEM

- **1.** Other alternative of the Regualar Hydrants
- 2. More efficient
- 3. Represent a "model" to be replicated in other irrigated areas in Jordan
- 4. Each farmer will have his own electronic card
- 5. For the use these devices the role of WUA is important/ Training

Emerging practices from Agricultural Water Management in Africa and the Near East

