Consultation Meeting on Saline Agriculture

ICBA: Sustainable, Climate-smart Agriculture in Marginal Environments

Dr. Ismahane Elouafi Director General

Overview

- Steady growth of global population and changes in living standards
- Growing freshwater scarcity
- Accelerating climate change
- Loss of biodiversity

All these factors will have impact on agriculture and food

security, economic development, etc.

Salinization is a global concern

- About 11% of the world's irrigated areas are already affected by some degree of salinization (FAO, 2012)
 Globally 1 billion hectares of lands are salt-affected
- Estimated loss of land due to soil salinization annually could reach 0.5 million hectares
- As a consequence thousands of farmers go out of business annually

Global salinity map

https://salcc.databasin.org/maps/new#datasets=2456df2b123f4f979444139f11f88233

Impact of increasing salinity

Crop Yield t/ha

Climate & topography in most Arab countries

- Salinization of farms

Water scarcity & effect of climate change in marginal environments

- By 2080, 43-50% of the global population will be living in water
 - scarce countries

 Marginal water resources have potential to supplement fresh water resources and reduce expected future fresh water gap

- By 2050, MENA region
 - Hotter and drier
 - Drought will be increasing

Why biosaline agriculture?

- It releases pressure from good quality water and land resources
- Utilizes wastelands and poor quality water resources
- High potential to bring back salinized farms to agricultural production
- It provides new sources of food, fodder, fuelwood, fiber
- It creates CO₂ sinks
- It can sustain local communities

Good progress in biosaline agriculture <u>but</u> <u>not enough</u>

ICBA
 succeeded in
 introducing
 climate-

Alternative salt-tolerant forages

- Farm status: Abandoned due to high salinity of irrigation water, which ranged between 15-18 dS/m
- Four salt-tolerant perennial grasses were planted:
 - ✓ Distichlis spicata,
 - ✓ Sporobolus virginicus
 - ✓ Sporobolus arabicus
 - ✓ Paspalum vaginatum
- Fresh biomass yields determined for the four grasses after one year of growth ranged between 75-150 t/ha/year, which is 66% more compared to Rhodes grass (low salinity 2 ds/m)
- Saved 44% of water use compared to traditional forages

Forage yield t/ha (15-20 dS/m)

Fresh Biomass Yield t/ha (15-20 dS/m)

Date palm trees

Breeding salt-tolerant barley

Crosses between elite barley ${}^{\bullet}$ cultivars adapted to Arabian Peninsula environments and highly salt-tolerant genotypes of wild barley (Hordeum spontaneum) have been selected for planned crosses

Wild barley (*H. spontaneum*)

Cultivated barley (H. vulgare)

Supply of salt-tolerant barley seed to the farmers of salt-effected agricultural lands and the areas where only saline water is available for irrigation

Salinity tolerance study on tomato

- Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for salt tolerance
- At ICBA, 389 lines of 4 species of tomato were grown at low (0.3 dS/m) and high (17 dS/m) salinity levels to study the salt-tolerant mechanism at molecular levels in tomato

Tomato salinity tolerance study at ICBA

Inland modular farm

Coastal modular farm

Sustainable integrated solutions

Pilot integrated farm at ICBA

Farm in Al Dhaid (UAE)

More profitable use of desalinated water and integrated solutions for the reject brine use

Farm in Al Wagan (UAE)

Better management of the available water resources – Introduction of halophytes irrigated with reject brine

Performance to date: return on investment

Salicornia (samphire) = a multi-use halophyte

Halophyte-based products

Rock samphire smoked tilapia with quinoa

Jelly of Salicornia

Crackers of Salicornia and rock samphire

Salicornia and rock samphire bread

Expo Live Innovation Impact Grant Program

1. Greening Eritrea project

https://www.youtube.com/watch?v=ibWYfC8z9co

2. Behar (Ras-Al-Zawr project) Saudi Arabia

- Giant pivot-irrigation arms sprayed seawater pumped straight from the Arabian Gulf to produce the initial *Salicornia* crop in five 50-hectare circles
- Based on feasibility study, circles of *Salicornia* could one day cover up to 200,000 hectares along both coasts of Saudi Arabia, providing up to 120 million kilograms (34 million US gallons) of vegetable oil a year

3. EU project "Saline crops. A contribution to the diversification of the production of vegetable crops by research on the cultivation methods and selection of halophytes (1993-1996)

 Domesticate a number of plant species, naturally growing in saline or brackish soils that are locally gathered for consumption as a vegetable in the EU

The company (spin-off) is active (Belgium): http://www.scrops.com/seeds.html

https://www.scribd.com/doc/102170797/Saline-Crops-From-Halophyte-Research-to-Sea-Vegetable-Markets

4. Salt Farm Texel - Netherlands

Screening salt-tolerant varieties of conventional crops and halophytes for commercial production

<image>

http://www.saltfarmtexel.com/

Salt-tolerant potato varieties

http://www.saltfarmtexel.com/projects/salt-tolerant-potato-to-feed-the-world

Project in Bangladesh:

https://www.youtube.com/watch?v=JahZsRaK_S0&feature=youtu.be

5. Sun drop farm – Australia (2010)

- Applied in the desert
- Desalination of seawater through solar tower
- Solar tower is also used to produce energy to power the plant growing systems and to heat and cool the greenhouses

http://www.sundropfarms.com/

Major crops in human diet

The way forward

- Biodiversity of crops is very important and can help in coping with biotic and abiotic threats to agricultural production.
 Introducing and scaling up proven salt-tolerant crops and conserving local varieties is a priority
- Breeding for salt-tolerant crop varieties is relatively new and needs to be expanded
- Innovative technologies: genomics, metabolomics, nanotechnologies, precision agriculture, drones, remotesensing applications, sensors, other water-saving technologies

Center of Excellence looking at Agriculture for Tomorrow

Thank you www.biosaline.org

ICBA is a founding member of the Association of International Research and Development Centers for Agriculture (AIRCA)

