Liquorice- a viable crop on saline land

Ian W Makin Regional Director (Asia) IWMI

28 May 2018

A water-secure world

Overview

- About IWMI
- Why saline agriculture in Central Asia
- Liquorice a viable biological alternative for salinity management?

About IWMI

Mission: Provide evidence-based solutions to sustainably manage water and land resources for food security, people's livelihoods and the environment

Vision: A water-secure world

Core values: Excellence, objectivity, integrity, knowledge sharing, impact orientation, partnerships and teamwork, and respect for diversity

IWMI used remote sensing to map Salinity Over 80% irrigated area in Karakalpakstan is classified as saline. Source: http://cac-program.org/files/tcp_uzb_2903_final_report.pdf NIR - RNIR - Near Infra Red band $NDVI = \frac{1}{NIR}$ R – Red band of Landsat image Source: Rouse et al. (1974) **Image Data Set** Classified Land Cover Pixel (4 channels per pixel) Signatures Image Grev (based on Result Value Signature training areas) Urban 111 99 78 09 54 River 11 19 22 21 Channel:1 Forest 37 67 50 7 classify

www.iwmi.org

- compare

CACILM 2 - Overview of Central Asia

Country Azerbaijan Kazakhstan Kazakhstan Kyrgyzstan Tajikistan Turkmenistan Uzbekist	Land Area (,000 ha)	Cultivated Area		Irrigated Area		In Kistal'	
		Area (,000 ha)	%	Area (,000 ha)	nain	Jill redi	%
Azerbaijan	8,660	2,160	25%	000	inific?	636	45 %
Kazakhstan	272,490	29,527	10	$100^{\circ}, si$.91 . 4%	404	34%
Kyrgyzstan	19,994	1,28	, over	N ^{e1} ,023	80%	49	5%
Tajikistan	14,255	nate	s lields	5 742	100%	23	3%
Turkmenistan	1109	still tha	<u>ل</u> کار	1,991	100%	1,354	<mark>68%</mark>
	NNIEG	ج ⁰ 4,400	10%	4,198	95%	2,141	<mark>51%</mark>
T 2015	inico	20,706	26%	5,340	26%	1,519	28%
IN ESO	16				Sou	urce: Aquastat	
Jel Fra .er Scarcit	amework on y in Agriculture	<# >		W	ww.fao.or g /l	and-water/overv	iew/ wasag

Why saline agriculture in CA?

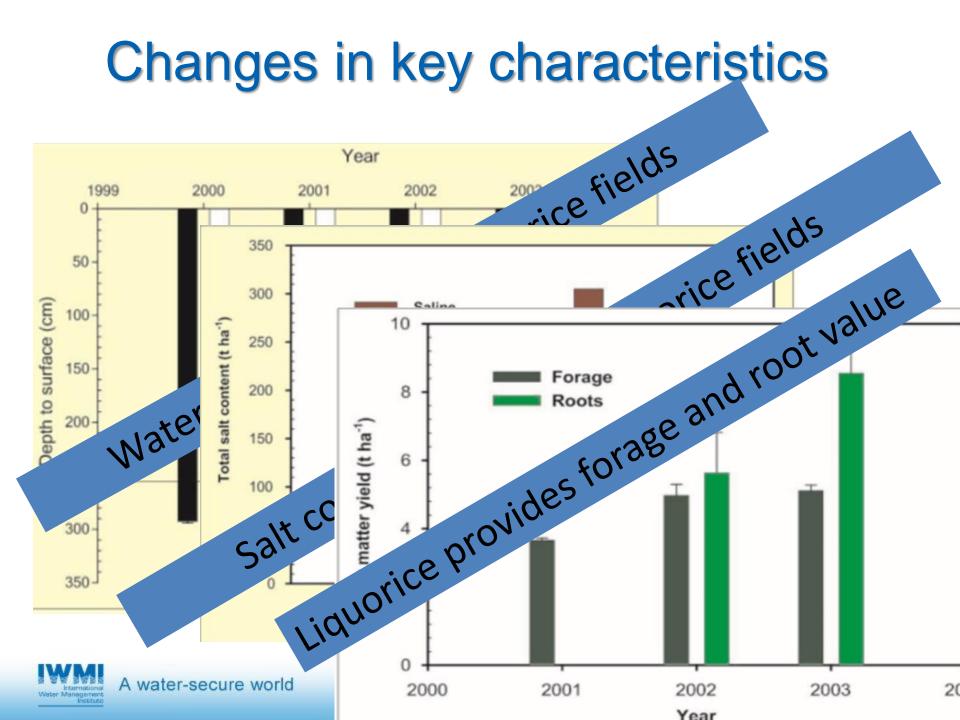
- 20–25% of available surface water allocated to leaching (WEMP, 2003).
- Rehabilitation of salinized soils on Hungry Steppes estimated to require in excess of USD\$ 2 billion (World Bank, 2003)
- Biological reclamation as alternative approach to remediation of salinity for the Hungry Steppes of Uzbekistan

Liquorice cultivation in Central Asia.

- Saline agriculture Glycyrrhiza glabra (commonly referred to as liquorice) – an alternative approach to salinity management
- 4 year trial of liquorice for amelioration of soils for cotton and wheat cropping
- Trial sites on abandoned highly saline soils in Bayauut district of Syrdarya province, Uzbekistan, on Hungry Steppes

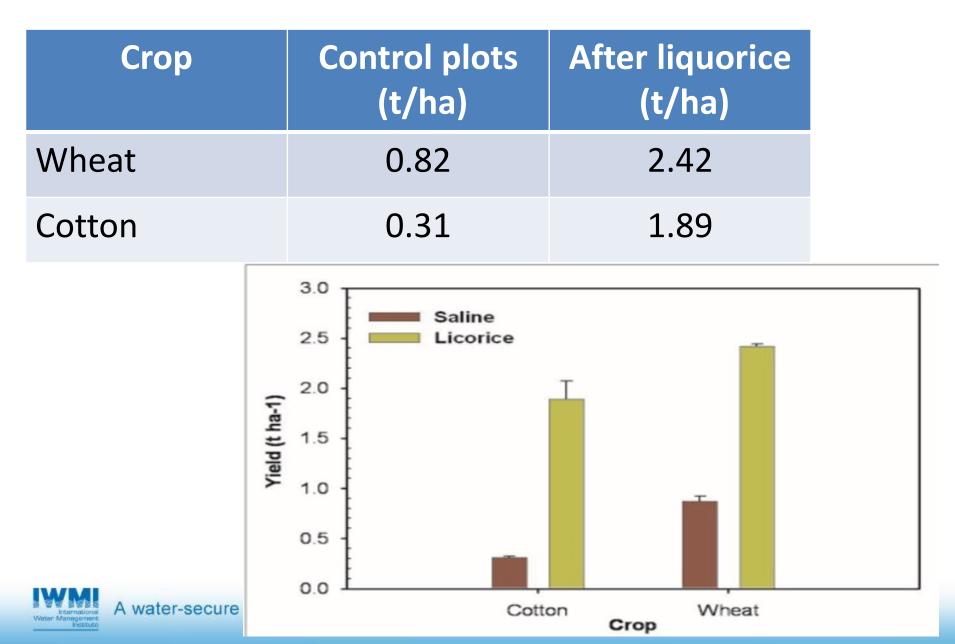
Trial resulted in change in appearance.

Before interventions


After introducing liquorice

Liquorice positive contribution during reclamation

- Market potential for Liquorice root is over 30,000 t/yr
- Improves:
 - soil physical characteristics (lower soil compaction, increase porosity),
 - lowers groundwater table
 - chemical characteristics (reduces concentration of soluble solids) and
 - biological properties.
- Provides animal fodder annually
- Liquorice roots for sale on 3 to 4 year cycle


Income during reclamation

	Liquorice	Cotton	Units
Yield	15.0	1.2	t/ha
Sale Price	212.0	275.0	\$/t
Total Income (4 year cycle)	3,180.0	1,320.0	\$/ha
Average annual income	795.0	330.0	\$/ha
Annual cultivation costs	199.0	297.0	\$/ha
Net profit (USD/ha)	596.0	33.0	\$/ha

Source: IWMI field trials – Karalpakstan 2000-2004

Substantial improvement after Liquorice

Conclusions

Glycyrrhiza glabra (liquorice) cultivation:

- Viable approach to returning saline soils to production
- Expanding market for liquorice medical, food, and chemical products
- Source of:
 - Animal fodder from abandoned land
 - income for farmers (and country as export crop) during reclamation
- But:
 - Finance a constraint in 3-4 year harvest cycle

Thank you

Contact: Ian W Makin – IWMI-Colombo - i.makin@cgiar.org

Contributors: Andrew Noble (currently at SEI, Bangkok) Zafar Gafurov, IWMI-Tashkent Oyture Anarbekov IWMI-Tashkent

IWMI is a CGIAR center focused on research for development. CGIAR is a global research partnership for a food-secure future. Its work is carried out by 15 research centers in collaboration with hundreds of partners across the globe.

