Traditional and non-traditional technologies to address water data gaps in small-scale irrigation in Africa

Session II.

Improving water-efficient irrigation: Prospects and difficulties of innovative technologies and practices in agricultural water management

Fethi Lebdi

International consultant
Food and Agriculture Organization
Land and Water Division

Eva Pek

International consultant
Food and Agriculture Organization
Land and Water Division

OUTLINE

Objectives and criteria for discharge measurement techniques

Discharge data collection protocol

Overview of technologies and data acquisition in Burkina Faso and Uganda

Objectives and criteria for discharge measurement techniques

Maximize the effective use of available water supply

Reduce the environmental impact

Maximize the field potential

Reduce the risk of nutrient-leaching

Objectives and criteria for discharge measurement techniques

Water Use Efficiency:
"...to find optimal water
allocation to enhance water use
efficiency."

Water Productivity:
"...to find relation of water supply and crop water productivity."

Criteria

High accuracy

Reliable data collection protocol

Highly scalable

Consistent

Easy to use and access

Low cost

Objectives and criteria for discharge measurement techniques

Overview of technologies

Ben Nafa Kacha - Burkina Faso

- Water withdrawal: large-pump system
- Irrigation method: surface irrigation
- Secondary and tertiary level
- Measurement structure: modules a masques

Mubuku - Uganda:

- Water withdrawal: gravity
- Irrigation method: surface irrigation
- Secondary, tertiary, quaternary level
- Measurement structure: weir, largescale particle image velocimetry

Burkina Faso - Ben Nafa Kacha irrigation scheme "Modules a masques"

- free surface water intake devices to supply controllable constant flow rate
- mono-block metal assemblies that are sealed to the canals
- flow rate can be adjusted by opening or closing the sliding gates
- 4 standardized types of different dimensions:
 - Series X: 10 1/s/dm or 1 1/s/cm
 - Series XX: 20 1/s/dm or 2 1/s/cm
 - Series L: 50 1/s/dm or 5 1/s/cm
 - Series C: 100 l/s/dm or 10 l/s/cm

Overview of technologies - modules a masques

Secondary Canal

to	Design Max Discharge (1/s)	Measured Discharge (1/s)
SC-1	150	238
SC-2	-90	139
SC-3	150	139
SC-4	150	Missing
SC-5	150	119
SC-6	150	104

Tertiary canal

from	Design Max Discharge (1/s)	Measured Discharge (1/s)
SC-1	30	25 - 44
SC-2	30	13 - 32
SC-3	30	18 - 33
SC-4	30	31 - 39
SC-5	30	29 - 41
SC-6	- 30	33 - 41/

Data acquisition - Modules a masques

3 Archimedes' screw operated by 3 large pump with 900 1/s total capacity

Manual control panel to record the opening and closing time

Calibrated modules a masques at secondary level controlled manually by the WUA

Calibrated modules a masques at tertiary level controlled manually by the farmers after irrigation rotation

Measured with water level gauges

Water level

Measured ` with flow meter at a point in time

discharge measurements over time at cross-section

Rating curve

Apply rating curve to convert stage height to discharge time series

Data acquisition Weir Established rating Manual gauge Measured curve by accuracy by measurement according to calibration validation the irrigation schedule 40 (hours) y = 0.8226x + 17.04235 $R^2 = 0.9888$ 220 200 (S) 160 120 100 80 60 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 40 -20 -10 20 25 30 15 20

Gauge Reading (cm)

Gauge Reading (cm)

Division (Secondary Canal)

Data acquisition - LSPIV

Video - video recording

Video - image processing

Data acquisition by gauge measurement

