

Food and Agriculture Organization of the United Nations



VIRTUAL COURSE



26 March to 15 April 2021

# Design of an Active Surveillance for Tilapia Lake Virus (TILV) Disease and Its Implementation

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus



Food and Agriculture Organization of the United Nations



CHECKLIST #6



02 April 2021

# Checklist 6: TiLV Risk Profile

Win Surachetpong fvetwsp@ku.ac.th

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus





TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

# Learning objectives:

- To understand the requirements and criteria for Checklist 6
- To gain knowledge on the different levels of diagnostics in general
- To get to know the TiLV risk profile



**Jnited Nations** 



TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

# Outline : TiLV risk factors $\rightarrow$ Clustering of the cases

• Host : Susceptible species, Life stages, Stress

• Environment : Season, Climate, Contacts, Locations

• Agent : (Virulence, Survivability)





# Host : Susceptible species

# Life stages

# Stress factors

02 April 2021 5



DEVELOPMENT

# Susceptible fish species for TiLV

- Wild tilapia Tristamellasimonis intermedia
- Hybrid tilapia (O. niloticus × O. aureus hybrids)
- Nile tilapia (O. niloticus)
- Red tilapia (Oreochromis spp.)
- Grey tilapia (O. niloticus x O. aureus)



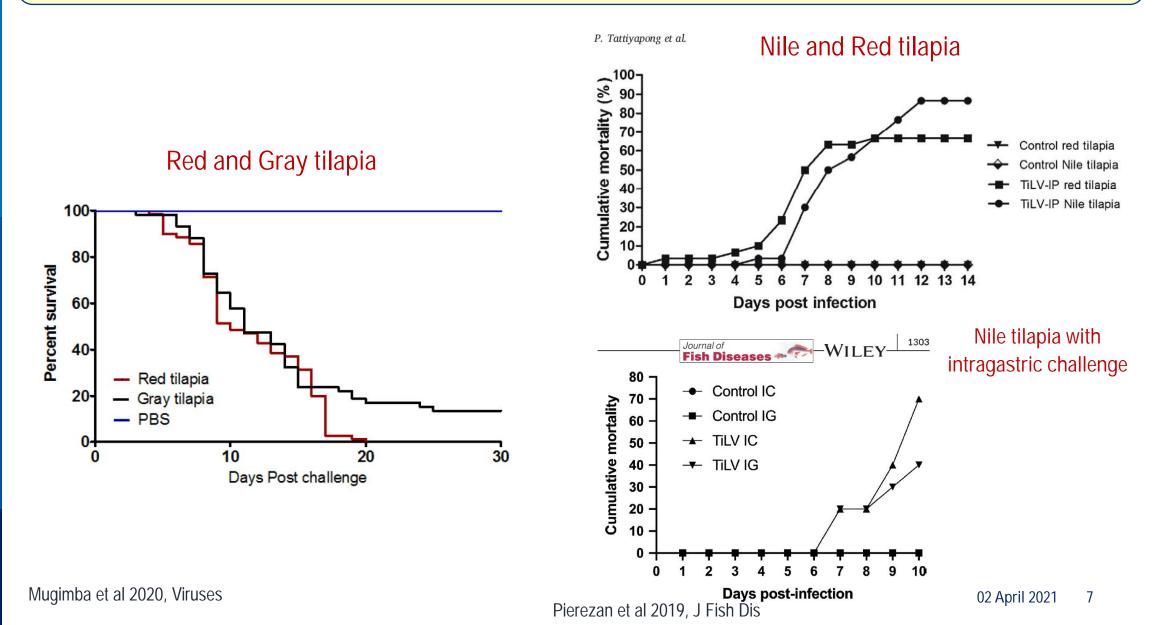
Sarotherodon galilaeus



Tilapia zilli



Oreochromis aureus






https://commons.wikimedia.org/wiki/File:Cichlidae\_(10.3897-zse.96.55837)\_Figure\_9.jpg https://upload.wikimedia.org/wikipedia/commons/0/07/St.\_Peter%27s\_Fish.jpg 02 April 2021 https://commons.wikimedia.org/wiki/File:Blue\_Tilapia.jpg



# High mortalities after TiLV infection in tilapia



#### Aquaculture 497 (2018) 462-468

Contents lists available at ScienceDirect

Aquaculture

Susceptibility of important warm water fish species to tilapia lake virus

Phitchaya Jaemwimol<sup>a</sup>, Pattarasuda Rawiwan<sup>a,b</sup>, Puntanat Tattiyapong<sup>a,b</sup>, Pattrawut Saengnual<sup>c</sup>,

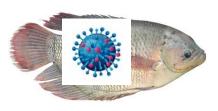


**SUSTAINABLE** DEVELOPMENT

G ALS

journal homepage: www.elsevier.com/locate/aguaculture

Attapon Kamlangdee<sup>d</sup>, Win Surachetpong<sup>a,b,\*</sup>




Most important warm water fish species are resistant to tilapia lake virus (TiLV) infection

TiLV susceptible



Oreochromis spp.



Osphronemus goramy







(TiLV) infection

Lates calcarifer



Anabas testudineus

Clarias macrocephalus



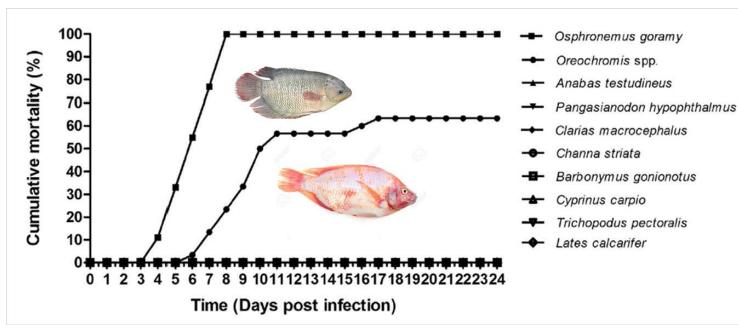
Pangasianodon hypophtthalmus

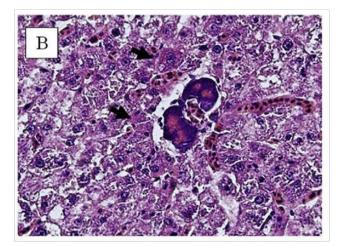




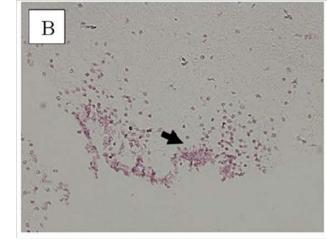
SUSTAINABLE DEVELOPMENT

#### Aquaculture 497 (2018) 462-468


Contents lists available at ScienceDirect
Aquaculture
journal homepage: www.elsevier.com/locate/aquaculture


Susceptibility of important warm water fish species to tilapia lake virus (TiLV) infection

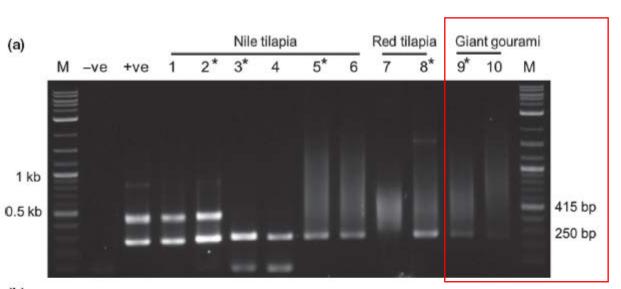



Phitchaya Jaemwimol<sup>a</sup>, Pattarasuda Rawiwan<sup>a,b</sup>, Puntanat Tattiyapong<sup>a,b</sup>, Pattrawut Saengnual<sup>c</sup>, Attapon Kamlangdee<sup>d</sup>, Win Surachetpong<sup>a,b,\*</sup>

#### Mortality of ten species after TiLV challenge






Syncytial cells in liver of giant gourami



In situ hybridization signal in the brain of infected giant gourami



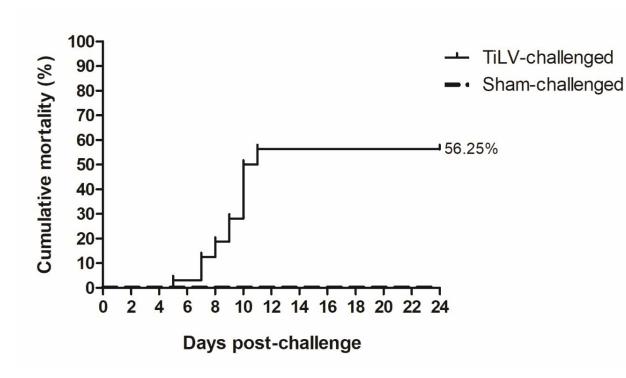
#### SUSTAINABLE DEVELOPMENT **G**ALS



(b)

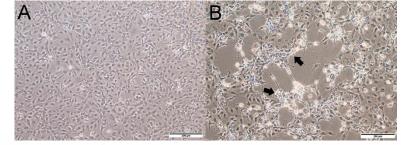
| Samples | Origin          | Amplicon selected<br>for sequencing | % identity to the type<br>strain Til-4-2001<br>(KU751816) |
|---------|-----------------|-------------------------------------|-----------------------------------------------------------|
| 2*      | Farm 1- batch 1 | 250 bp                              | 97.2                                                      |
| 3*      | Farm 1- batch 2 | 250 bp                              | 96.8                                                      |
| 5*      | Farm 1-batch 2  | 250 bp                              | 98.0                                                      |
| 8*      | Farm 1- batch 3 | 250 bp                              | 94.0                                                      |
| 9*      | Farm 1-batch 3  | 250 bp                              | 97.6                                                      |

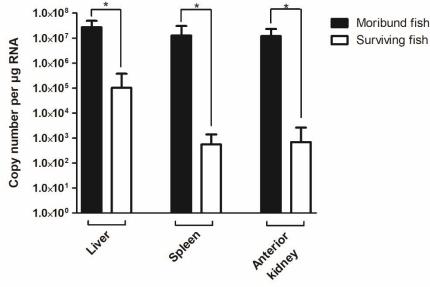
FIGURE 3 A. Representative PCR detection results of liver samples collected from Nile tilapia and blood samples collected from red tilapia and giant gourami. M, marker (NEB); -ve, no template control; +ve, positive control using RNA extracted from TiLV-infected fish as template; 1–10, tested fish samples; \* represents the samples that were sent for sequencing. B. Selected 250-bp amplicons (asterisks) were sequenced, and per cent identity to the type strain Til-4–2001 (KU751816) was indicated


### TiLV was detected in blood samples of two cultured giant gourami



#### SUSTAINABLE DEVELOPMENT GCALS


# TiLV can infect ornamental African cichlids


• High mortality, virus detected in tissues



Yamkasem et al., 2021 (under review)









**SUSTAINABLE** 

DEVELOPMENT

Ge‴e∆i s

# Additional fish species susceptible to TiLV?

*Turk. J. Fish.*& *Aquat. Sci.* 21(4), 205-209 http://doi.org/10.4194/1303-2712-v21\_4\_05

PROOF

SHORT PAPER

Turkish Journal of FISHERIES and AQUATIC SCIENCES • No virus isolation and

histopathology



Detection of Tilapia Lake Virus (TiLV) in Healthy Fish from the Pre-Existing Disease Environment Using Different RT-PCR Methods Patharapol Piamsomboon<sup>1</sup>, Janenuj Wongtavatchai<sup>1,\*</sup>©

 Table 2. TiLV detection in wild Nile tilapia (Oreochromis niloticus, n=29), Climbing perch (Anabas testesdineus, n=12), snakeskin gourami (Trichogaster pectoralis, n=9) and farmed barramundi (Lates calcalifer, n=20)

| Samples           | TiLV RT-PCR result* |
|-------------------|---------------------|
| Collection Site 1 |                     |
| Nile tilapia      | 2/5                 |
| Climbing perch    | 0/5                 |
| Collection Site 2 |                     |
| Nile tilapia      | 5/5                 |
| Climbing perch    | 0/3                 |
| Snakeskin gourami | 0/2                 |
| Collection Site 3 |                     |
| Nile tilapia      | 0/6                 |
| Snakeskin gourami | 0/4                 |
| Collection Site 4 |                     |
| Nile tilapia      | 0/10                |
| Collection Site 5 |                     |
| Nile tilapia      | 0/3                 |
| Climbing perch    | 0/4                 |
| Snakeskin gourami | 0/3                 |
| Farmed barramundi | 2/20                |

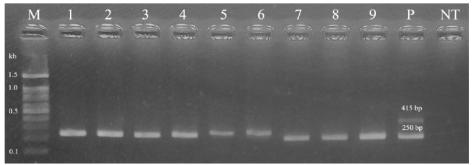


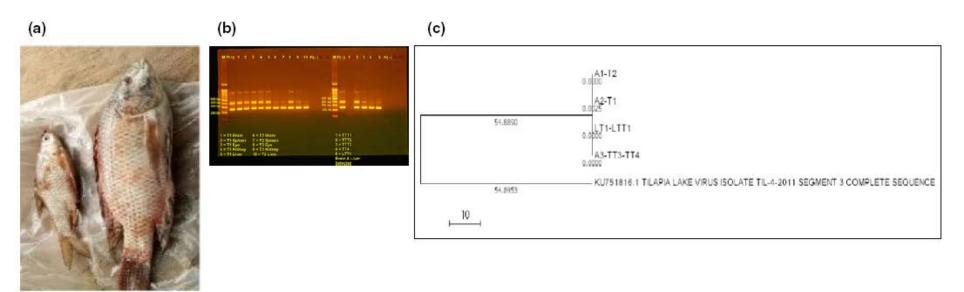

Figure 1. TiLV detection of samples obtained from Nile tilapia in the natural reservoir (Lane 1-7) and farmed barramundi (Lane 8 - 9) using semi-nested RT-PCR. M, 100 bp DNA ladder; NT, negative control; P, positive control.

#### 02 April 2021 12



Received: 28 March 2018 Revised: 29 May 2018 Accepted: 31 May 2018

DOI: 10.1111/jfd.12843


#### SHORT COMMUNICATION

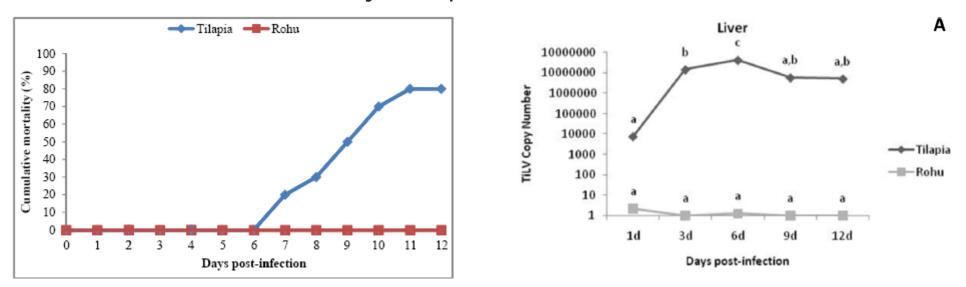


SUSTAINABLE DEVELOPMENT

### First detection of tilapia lake virus (TiLV) in wild river carp (*Barbonymus schwanenfeldii*) at Timah Tasoh Lake, Malaysia

- Azila Abdullah<sup>1</sup> | Rimatulhana Ramly<sup>1</sup> | Mohammad Syafiq Mohammad Ridzwan<sup>1</sup> | Fahmi Sudirwan<sup>1</sup> | Adnan Abas<sup>2</sup> || Kamisa Ahmad<sup>1</sup> | Munira Murni<sup>1</sup> | Beng Chu Kua<sup>1</sup>
- No virus isolation and histopathology




**FIGURE 1** (a) Clinical signs observed in river carp (left) and wild tilapia (right) showing reddish discoloration of fins, body and scales. Photo courtesy: Perlis Biosecurity Division, Department of Fisheries Malaysia. (b) Gel electrophoresis–polymerase chain reaction (PCR) technique showed infected tilapia (TT) and river carps (LTT). N = negative control; M = DNA marker; P = positive control; 1 = TT1; 2 = TT2; 3 = TT3; 4 = TT4; 5 = LTT1. Photo courtesy (b): Lab-Ind. Resources Sdn. Bhd. (c) Phylogenetic tree showing similarity of the sequence from this study with Israel strain



Susceptibility of Indian major carp Labeo rohita to tilapia lake virus

Pravata K. Pradhan<sup>a,\*,1</sup>, Anutosh Paria<sup>a,1</sup>, Manoj K. Yadav<sup>a</sup>, Dev K. Verma<sup>a</sup>, Shubham Gupta<sup>a</sup>, T.R. Swaminathan<sup>b</sup>, Gaurav Rathore<sup>a</sup>, Neeraj Sood<sup>a,\*\*</sup>, Kuldeep K. Lal<sup>a</sup>

• No infection in Indian major carp







SUSTAINABLE DEVELOPMENT GCALS

A

B

# All life stages are susceptible to TiLV

2 3 4 5 5 7 8 3 7 8 10 12 13 VET MICRO KU



VET MICRO KU











Yamkasem et al., 2019

Tattiyapong et al., 2017

02 April 2021 15



#### ORIGINAL ARTICLE



SUSTAINABLE DEVELOPMENT Production-level risk factors for syncytial hepatitis in farmed tilapia (Oreochromis niloticus L)

R M Kabuusu<sup>1</sup> | A T Aire<sup>2</sup> | D F Stroup<sup>3</sup> | C N L Macpherson<sup>4</sup> | H W Ferguson<sup>1</sup>

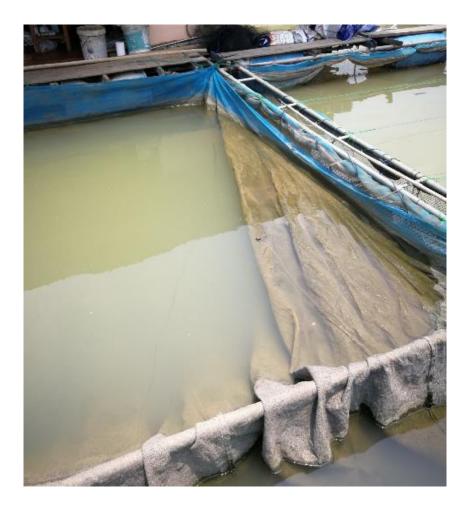
**TABLE 3** Linear regression model for severity of excess tilapia mortality associated with syncytial hepatitis viral infection as function of production factors

| Excess mortality | Coefficient | SE        | F test   | p-Value  |
|------------------|-------------|-----------|----------|----------|
| Stocking density | 365.651     | 59.599    | 37.6400  | <.000001 |
| Initial weight   | -258.106    | 84.566    | 9.3154   | .002405  |
| Temperature      | -1,025.331  | 122.099   | 70.5191  | <.000001 |
| Dissolved oxygen | 5,768.980   | 749.898   | 59.1825  | <.000001 |
| # of pond cycles | 340.179     | 82.853    | 16.8578  | .000048  |
| CONSTANT         | -41,152.417 | 3,456.541 | 141.7449 | <.000001 |

Correlation coefficient:  $r^2 = .24$ ; no confounding or interaction was established in both models.

Chitralada strain had higher risk

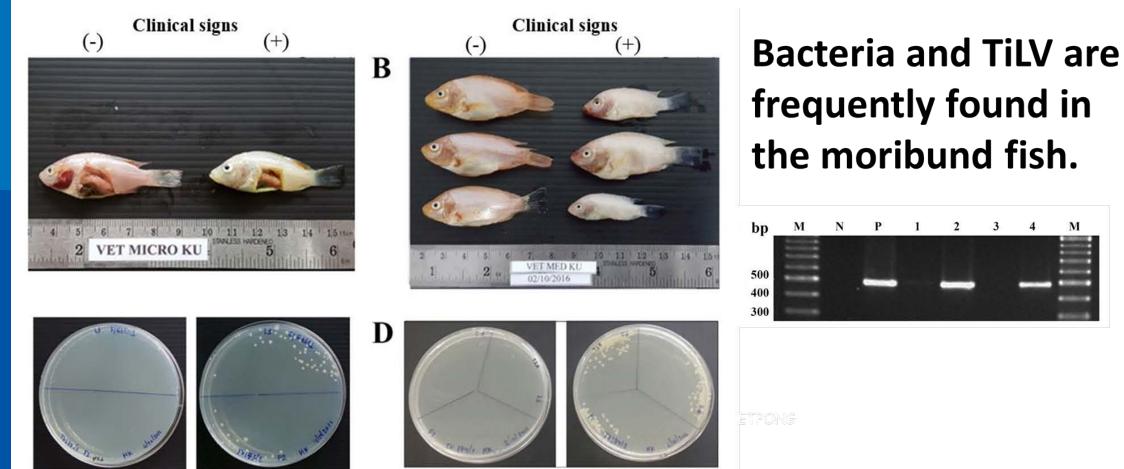
Higher initial weight




SUSTAINABLE DEVELOPMENT GSALS

# Minimize handling to reduce stress that predisposes to disease

Grading or stress factors
e.g. poor water quality, overcrowding
→ predispose fish to TiLV infection

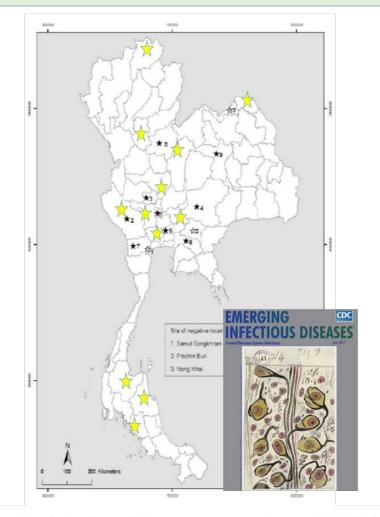







### Co-infections of TiLV and bacteria worsen the clinical outcome

SUSTAINABLE DEVELOPMENT GSALS




Nicholson et al., 2020 Aquaculture. 734746

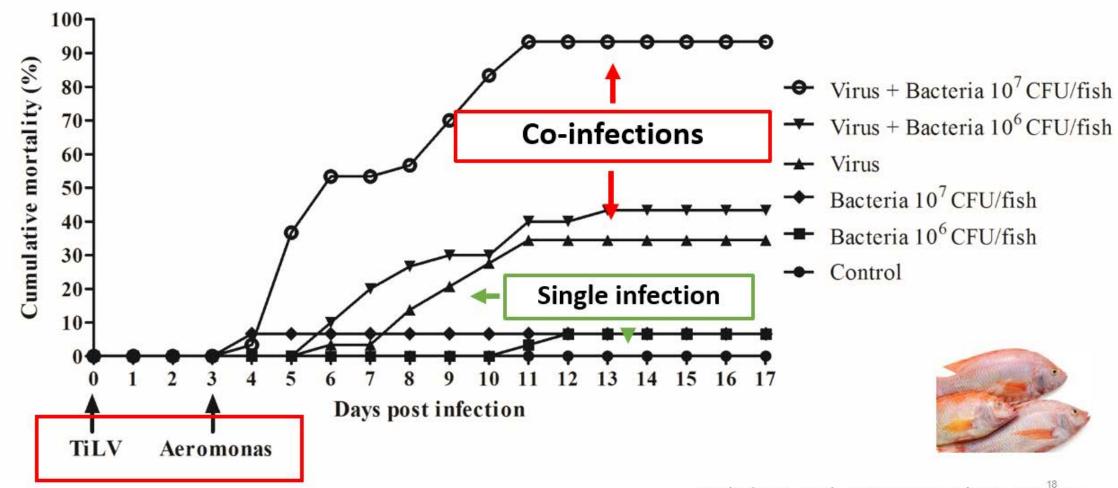


#### SUSTAINABLE DEVELOPMENT GCALS

# Multiple infections of TiLV and other pathogens



|          |            |                      |         | 8<br>         | Laboratory diagnosis      |                     |
|----------|------------|----------------------|---------|---------------|---------------------------|---------------------|
| Outbreak | Date       | Location             | Species | Ectoparasite† | Bacteria identification‡  | TiLV Identification |
| 1        | 15/10/2015 | Ang Thong            | RT      | ND            | ND                        | +                   |
|          | 30/10/2015 | Ang Thong            | RT      | ND            | ND                        | +                   |
| 2        | 11/11/2015 | Ang Thong            | RT      | ND            | ND                        | +                   |
| ł        | 29/12/2015 | Kanchanaburi         | RT      | ND            | No growth                 | <u> </u>            |
| 5        | 29/12/2015 | Chai Nat             | RT      | ND            | Flavobacterium            | +                   |
| ;        | 29/12/2015 | Kanchanaburi         | RT      | ND            | Flavobacterium, Aeromonas | + (TV2)             |
| 7        | 29/12/2015 | Chai Nat             | RT      | ND            | Flavobacterium            | _                   |
| 3        | 05/01/2016 | Nakhon<br>Ratchasima | RT      | 1+            | Flavobacterium            | + (TV3)             |
|          | 05/01/2016 | Pathum Thani         | RT      | ND            | No growth                 | +                   |
| 10       | 15/01/2016 | Pathum Thani         | RT      | 2+            | Aeromonas                 | +                   |
| 11       | 15/01/2016 | Chachoengsao         | Т       | 3+            | Aeromonas                 | + (TV4)             |
| 12       | 15/01/2016 | Pathum Thani         | RT      | ND            | ND                        | -                   |
| 3        | 19/01/2016 | Ratchaburi           | RT      | 1+            | Aeromonas                 | + (TV5)             |
| 4        | 04/02/2016 | Pathum Thani         | RT      | 0             | Aeromonas                 | +                   |
| 15       | 05/02/2016 | Kanchanaburi         | RT      | ND            | Aeromonas                 | +                   |
| 6        | 09/02/2016 | Kanchanaburi         | RT      | 1+            | Aeromonas                 | +                   |
| 7        | 16/02/2016 | Samut Songkhram      | RT      | 2+            | ND                        | -                   |
| 8        | 16/02/2016 | Samut Songkhram      | RT      | 3+            | Aeromonas                 | +                   |
| 19       | 18/02/2016 | Pathum Thani         | RT      | 3+            | Aeromonas                 | -                   |
| 20       | 26/02/2016 | Pathum Thani         | RT      | 2+            | Flavobacterium, Aeromonas | + (TV1)             |
| 21       | 27/02/2016 | Samut Songkhram      | RT      | 1+            | No growth                 | +                   |
| 22       | 30/03/2016 | Pathum Thani         | RT      | ND            | Aeromonas                 | +                   |
| 23       | 28/04/2016 | Nakhon<br>Ratchasima | RT      | ND            | ND                        | +                   |
| 24       | 28/04/2016 | Pathum Thani         | RT      | ND            | ND                        | +                   |
| 25       | 06/05/2016 | Pathum Thani         | RT      | 2+            | Aeromonas                 | +                   |
| 26       | 06/05/2016 | Prachin buri         | Т       | 0             | Streptococcus             | _                   |
| 27       | 10/05/2016 | Pathum Thani         | т       | 1+            | ND                        | -                   |
| 28       | 13/05/2016 | Nong Khai            | Т       | 3+            | ND                        | -                   |
| 29       | 20/05/2016 | Phitsanulok          | RT      | 0             | Aeromonas                 | + (TV6)             |
| 30       | 20/05/2016 | Phitsanulok          | т       | 0             | Streptococcus, Aeromonas  | _                   |
| 31       | 23/05/2016 | Chai Nat             | RT      | 0             | Aeromonas                 | -                   |
| 32       | 24/05/2016 | Khon Kaen            | Т       | 2+            | Aeromonas                 | + (TV7)             |


\*Outbreaks of massive tilapia death were investigated in 9 provinces during Oct 2015 to May 2016. Epidemiologic information and

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, 100.07, 5000 ever shown.



**G**ALS

### Co-infections of TiLV and bacteria worsen the clinical outcome



Nicholson et al., 2020 Aquaculture. 734746



# Environment :

# Season and climate

# • Contacts, locations



# Permissive temperature for TiLV

- Normal temperature for tilapia aquaculture 24-28°C
- In Israel, outbreak occurs during hot season (May to October) Eyngor et al., 2014
- TiLV associated with "Summer mortality" in Egypt
- In Thailand, the disease could be found throughout the

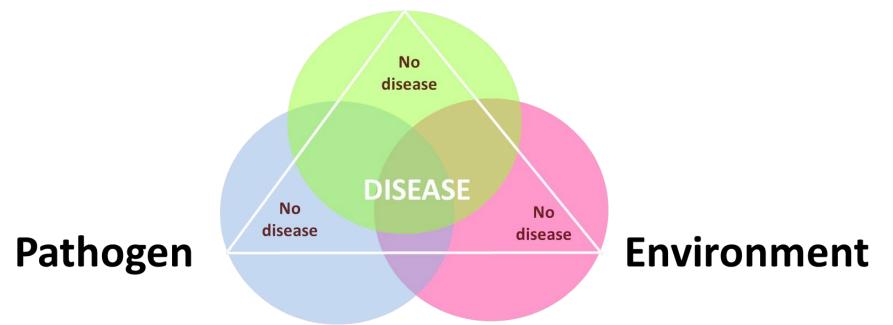


SUSTAINABLE DEVELOPMENT GSALS

| Permissive temperature for TiL | V |
|--------------------------------|---|
|--------------------------------|---|

| TiLV-affected countries | Mortality impact      | Onset of<br>mortality                                             | Susceptible life stages<br>(weight in grams)               | Susceptible temperature<br>(Celsius scale) | References                             |
|-------------------------|-----------------------|-------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|----------------------------------------|
| Israel                  | Mass mortality        | N/A                                                               | N/A                                                        | 22-32°C                                    | Eyngor<br>et al. (2014)                |
| Ecuador                 | >80%                  | 4–7 days post-<br>transfer from<br>hatchery to a<br>farm facility | 3 g                                                        | 25-27°C                                    | Ferguson<br>et al. (2014)              |
|                         | 90%                   | N/A                                                               | 3 g                                                        | N/A                                        | Del-Pozo<br>et al. (2017)              |
| Egypt                   | 5%-15%                | N/A                                                               | >100 g                                                     | >25°C                                      | Fathi et al., (2017)                   |
| Thailand                | 20%-90%               | Peak in 14 days                                                   | 1-50g                                                      | N/A                                        | Surachetpong<br>et al., (2017)         |
|                         | 20%-90%               | N/A                                                               | Fertilized egg, yolk sac larvae,<br>fries, and fingerlings | N/A                                        | Dong, Ataguba,<br>et al. (2017))       |
| Philippines             | 33.79%                | N/A                                                               | Fingerlings                                                | N/A                                        | OIE (2017a)                            |
| Chinese Taipei          | 6.40%                 | N/A                                                               | N/A                                                        | N/A                                        | OIE (2017b)                            |
| Malaysia                | 0.7%-15%              | N/A                                                               | N/A                                                        | N/A                                        | OIE (2017c)                            |
|                         | 25%                   | Peak in<br>5-9 days after<br>the first death                      | 7-20 g                                                     | N/A                                        | Amal et al. (2018)                     |
| India                   | 80%-90%               | N/A                                                               | 20-80 g                                                    | N/A                                        | Behera<br>et al. (2018)                |
| Mexico                  | 0%-2.71%              | N/A                                                               | N/A                                                        | N/A                                        | OIE (2018)                             |
| Peru                    | 100%<br>Low mortality | N/A<br>N/A                                                        | N/A<br>Fingerlings < 2g, 80 g                              | N/A<br>N/A                                 | OIE (2018c)<br>Pulido<br>et al. (2019) |

Surachetpong et al., 2020 J Fish Dis




SUSTAINABLE DEVELOPMENT

# Impact of environment and farm locations

# The disease triangle

### Susceptible host





SUSTAINABLE DEVELOPMENT GSALS

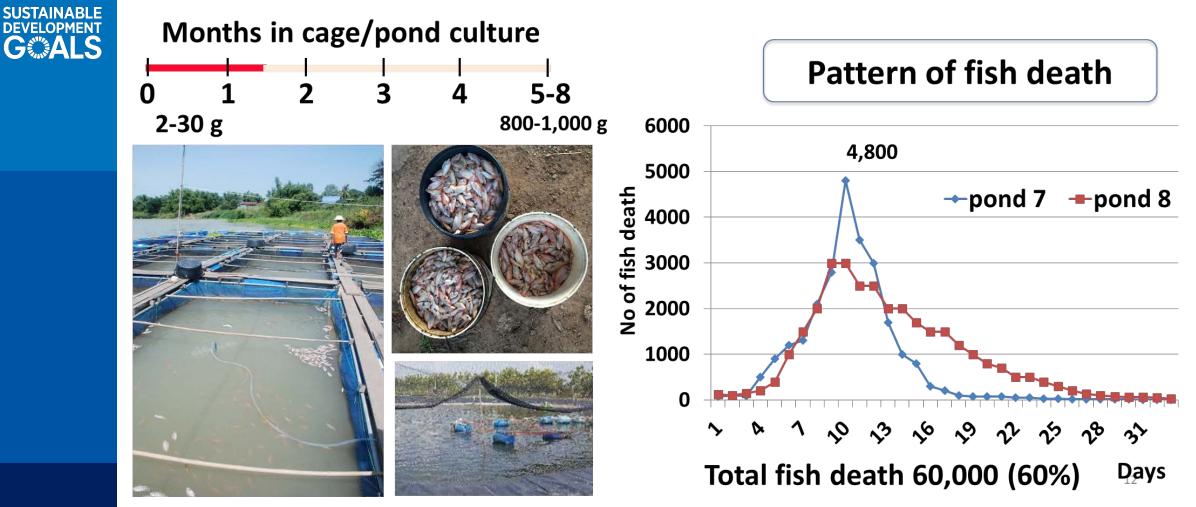
# Critical control points

Tilapia production cycle Fish transfer to grow out pond

Nursery (in ponds, tanks, hapas) 2-3 months

Spawning Fertilization Collects eggs in mouth Eee lavie Incubation, hatching, yolk sac absorption Incubation 10-15 days 5 day Pond Fry collected with a net from side of pond or tank Eggs collected from female's mouth 253 Grade fry through 3.2 mm mesh material to select fry <14 mm Yolk sac absorption tray Hatching jar 5-10 days 0) ------Sex-reversal 21-28 day Use powdered feed containing MT In pond, tank or hapa, 2-3 months Growout In pond, tank or cage, 5-6 months

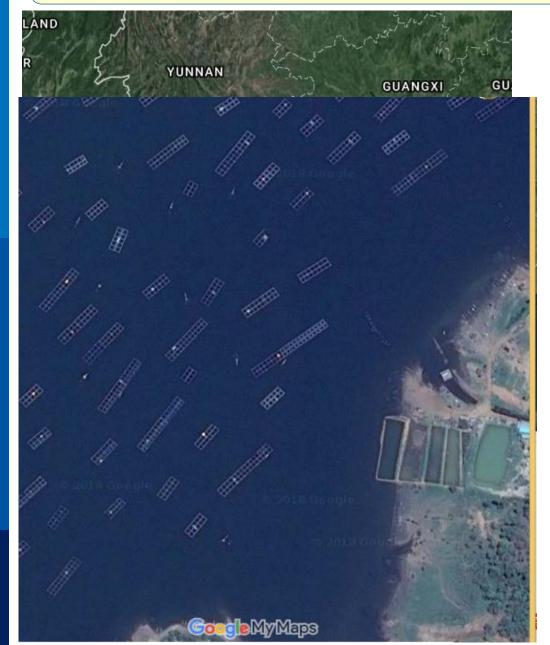
Growout (in ponds, tanks, cages) 5-6 months

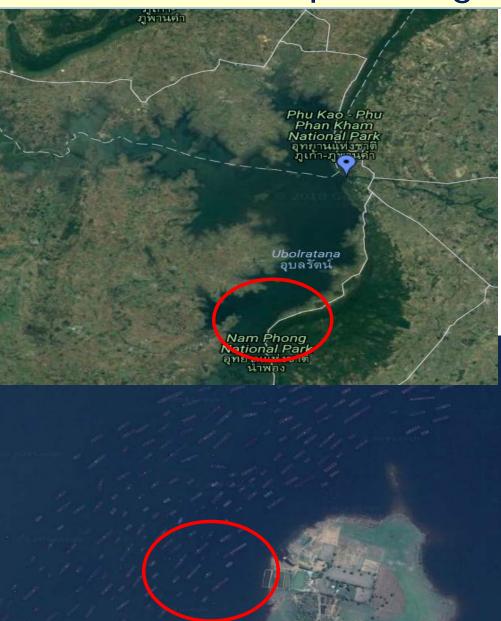










## Tilapia One Month Mortality Syndrome (TOMMS)






SUSTAINABLE DEVELOPMENT GCALS

# Important of farms location and disease spreading







# Stocking fish at different ages/size



### Disease circulation in the farm/environment

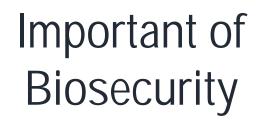


### Farm with good biosecurity is less likely to have TiLV







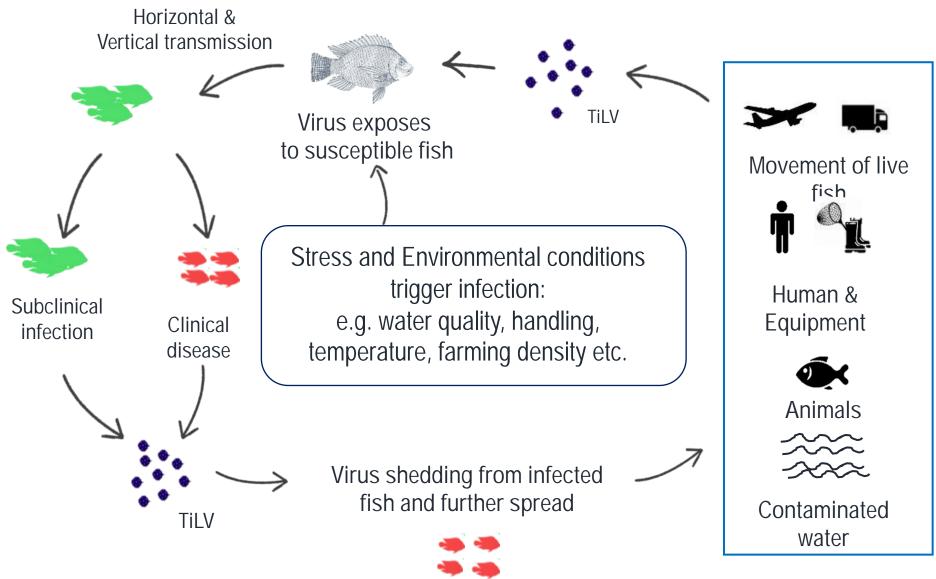

### Farm with clear boundary

### Surrounding wall












**SUSTAINABLE** 

**G**ALS

### TiLV distribution and risk of disease introduction in fish farms



Surachetpong et al., 2020 J Fish Dis





#### SUSTAINABLE DEVELOPMENT GCALS

# How quickly the farmers manage moribund/dead fish









SUSTAINABLE DEVELOPMENT **GÖALS** 

# Transmission by vectors or carriers?











No detection of TiLV in fish parasite and mollusk (manuscript in preparation)

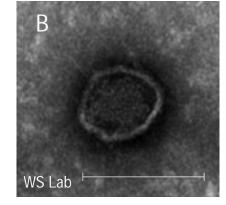
#### Spread the virus?



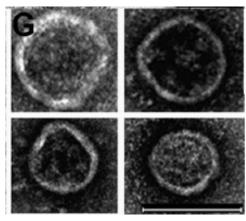




# • Virulence


# • Survivability




# Sequence comparison between Thai and Israel TiLV

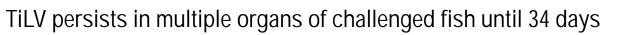
| Isael<br>Thailand | TTGCTCTGAGCAAGAGTACCAGCAGATTTGTAAGGTACAATTCAAGGATTATTT <b>G</b> GAGAT<br>TTGCTCTGAGCAAGAGTACCAGCAGATTTGTAAGGTACAATTCAAGGATTATTT <b>A</b> GAGAT<br>**********************************                     | 60  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Isael<br>Thailand | CGACGGGGTTGTTAAAGTTGGGCACAAGGCATCCTACGATGCTGAGCTAAGGGAACGGCT<br>CGACGGGGTTGTTAAAGTTGGGCACAAGGCATCCTACGATGCTGAGCTAAGGGAACGGCT<br>*******                                                                  | 120 |
| Isael<br>Thailand | ATTGGAACTACCACATCCAAAGAGTGGCCCGAAGCCTCGTAT <b>T</b> GAGTGGGTGGCACCACC<br>ATTGGAACTACCACATCCAAAGAGTGGCCCGAAGCCTCGTAT <b>C</b> GAGTGGGTGGCACCACC<br>*******                                                | 180 |
| Isael<br>Thailand | CAGACTTGCGGACATATCCAAGGA <b>A</b> ACAGCTGAGCTAAAGAGGGCAATATGGATTCTTCGA<br>CAGACTTGCGGACATATCCAAGGA <b>G</b> ACAGCTGAGCTAAAGAGGGCAATATGGATTCTTCGA<br>************************************                 | 240 |
| Isael<br>Thailand | GTGCTCAAAGTTCCTCGCCTGCGGTGAGGAGTGTGGTCTTGACCAAGAGGCAAGAGA <b>A</b> CT<br>GTGCTCAAAGTTCCTCGCCTGCGGTGAGGAGTGTGGTCTTGACCAAGAGGCAAGAGAGA <b>G</b> CT<br>************************************                 | 300 |
| Isael<br>Thailand | TATACT <b>G</b> AACGAGTACGCACGTGATAGAGAATTTGAGTTCCGCAA <b>T</b> GGAGGGTGGATACA<br>TATACT <b>A</b> AACGAGTACGCACGTGATAGAGAATTTGAGTTCCGCAA <b>C</b> GGAGGGTGGATACA<br>****** ***************************** | 360 |
| Isael<br>Thailand | AAGGTATACAGTTGCTTC <b>T</b> CA <b>C</b> AAGCCTGCTACACAGAAGATATTACCTCTACCGGCTAG<br>GAGGTATACAGTTGCTTC <b>C</b> CA <b>T</b> AAGCCTGCTACACAGAAGATATTACCTCTACCGGCTAG<br>************************************ | 420 |
| Isael<br>Thailand | TGC <b>T</b> CCACTTGCTCGTGAGCTTTTGATGTTGATTGCTAGAAGCACAACTCAGGCAGG                                                                                                                                       | 480 |
| Isael<br>Thailand | AGTACTGCATA<br>AGTACGCATA 98% identity                                                                                                                                                                   |     |

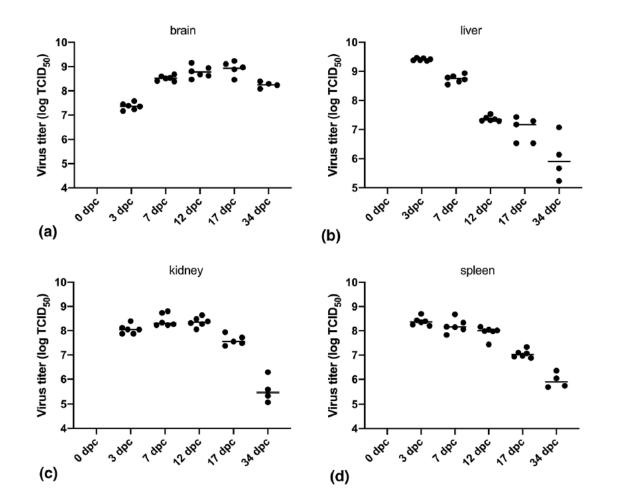
\*\*\*\*\* \*\*\*\*\*



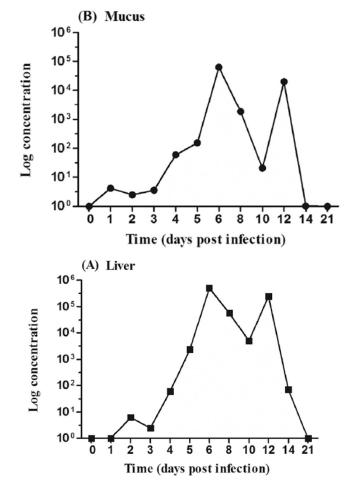
Thai isolate




Israel isolate


Surachetpong et al., 2017 Emerg Infect Dis 02 April 2021 37




# Persistence of TiLV in fish and survival in environment

SUSTAINABLE DEVELOPMENT





TiLV could be detected in mucus of cohabitation fish until 12 days



Mugimba et al., 2020 Sci Reports

Liamnimitr et al., 2018 Aquaculture

02 April 2021 38



### TiLV is detected in faeces and water of TiLV challenge fish/tank.

PIEREZAN ET AL.



**TABLE 2**Quantification of tilapia lakevirus in faeces and water of intragastricand intracoelomic injection-exposed fish10 days post-infection

| Sample ID                  | Status   | Cycle threshold | LOG <sub>GE</sub> /1 ng RNA |
|----------------------------|----------|-----------------|-----------------------------|
| Faeces IC <sub>ch</sub> 7  | Moribund | 20.18           | 5.71                        |
| Faeces IC <sub>ch</sub> 8  | Survivor | 23.76           | 4.72                        |
| Faeces IC <sub>ch</sub> 9  | Survivor | 19.96           | 5.77                        |
| Faeces IC <sub>ch</sub> 10 | Survivor | 19.90           | 5.78                        |
| Faeces IG <sub>ch</sub> 4  | Dead     | 25.98           | 4.11                        |
| Faeces IG <sub>ch</sub> 5  | Survivor | 22.77           | 4.99                        |
| Faeces IG <sub>ch</sub> 6  | Survivor | ND              | ND                          |
| Faeces IG <sub>ch</sub> 7  | Survivor | 22.39           | 5.10                        |
| Faeces IG <sub>ch</sub> 8  | Survivor | 29.84           | 3.05                        |
| Faeces IG <sub>ch</sub> 9  | Survivor | 31.40           | 2.62                        |
| Faeces IG <sub>ch</sub> 10 | Survivor | ND              | ND                          |
| Water IC <sub>ch</sub>     | NA       | 31.95           | 2.30                        |
| Water IG <sub>ch</sub>     | NA       | 32.56           | 2.47                        |
| Water IC <sub>con</sub>    | NA       | ND              | ND                          |
| Water IG <sub>con</sub>    | NA       | ND              | ND                          |

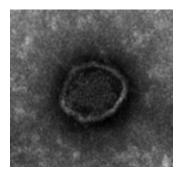
Journal of

Fish Diseases 🖚

Abbreviations:  $IC_{ch}$ , intracoelomic challenge;  $IC_{con}$ , intracoelomic control;  $IG_{ch}$ , intragastric challenge;  $IG_{con}$ , intragastric control; NA, not applicable; ND, no fluorescence detection.

1305

WILEY




# Conclusion

- TiLV risk profile
  - Host: Susceptible species, life stage
- Environment: Stress, temperature and factors that affect the disease progression
- Agent: Virulence and Persistence in fish and environment













# Thank you for your attention!

Win Surachetpong

fvetwsp@ku.ac.th

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

This was also made possible with the support of the Norwegian Agency for Development Cooperation under the project GCP/GLO/979/NOR Improving Biosecurity Governance and Legal Framework for Efficient and Sustainable Aquaculture Production.

