

Long-term Outlook for Biofuel Production and Technologies [What has to be done in practice]

> Richard Flavell Ceres, California, USA

Long Term Outlook

Promising:

- World wide concerns
- Government initiatives (esp US)
- Oil companies creating operating divisions
- Growing public and private investment
- Many solutions, local adaptations
- Technologies not especially difficult
- Large research initiatives, public and private
- Power of plant breeding with biotechnology
- Large efficiency gains envisaged
 But Scale envisaged is a big challenge, everywhere

Major Drivers For Production and Technological Successes

- Increasing prices of oils, gas etc and things tied to these prices
- Decline of "easy to get" oil and rising demands
- Security of supply— "home grown" is attractive
- Greenhouse gas increases and global warming

Large-scale Energy from Plant Feedstocks

- Oils from oil seed rape, soybean, palm oil, jatropha etc DIESEL TODAY
- Biomass for electricity production by combustion-TODAY
- Ethanol for fuels from conversion to sugar and then fermentation.- TODAY FROM STARCH AND SUGAR(CANE)—First Generation
- Hydrocarbons for transportation fuel and chemicals from all "feedstocks" from gasification, thermochemical etc Second Generation
- Ethanol etc for transportation fuel from lignocellulose Second Generation

Land Fuel Yields for Crops

- Given finite land resources and competing land uses land fuel yield is critical
- Current US production figures:
 - US Corn kernals (average 85GJ/ha)
 - US soy oil (average 18GJ/ha)
 - US switchgrass lignocellulose, dedicated energy crop, (average 135GJ/ha)

Potential increase for dedicated energy crops is substantial as they have not been bred for biomass

Ethanol from corn v lignocellulose

- First generation technology of conversion of carbohydrates (starch) to ethanol is proven technology and "cheap"
 - Fuel from starch is energetically inefficient and undesirable long term
- Second generation fuel from lignocellulose has much better energy balance, better GHG mitigation, can improve soil fertility, water quality and wildlife habitats
 - There is broad agreement that this is what needs to be developed
 - Second generation technologies are not cost- effective today

Outline of Contribution

- The technical and value chain
- Diverse global scenarios
- Current and future needs for success
- R+D Opportunities and needs to reduce costs
- Projections for cellulosic ethanol production in USA
- Feedstock improvement opportunities via "modern" breeding programs
- Essential Factors for success
- Conclusions

The Technical Chain

The Technical and Value Chain

The Conversion Process Value Chain

Great Diversity in Global Scenarios

- Technical and economic scenarios depend on:
 - Which societies and labor costs
 - Which environments, including climate and water
 - Which technical processes
 - What scale
 - What investment
 - Activities of the global energy/oil companies
 - What plants used to grow biomass
 - Rate of yield improvements
 - Environmental taxes and Subsidies
 - Infrastucture to facilitate large-scale efficient agriculture, harvesting and transport.

Urgent Needs

- Set targets and stimulate investment based on right criteria for:
 - Conversion to biofuels and distribution to societies
 - Feedstock choices
 - Feedstock development
 - Sustainability of supply
 - Environmental sustainability
 - Reduction of costs
 - Food v fuel v greenhouse gases v sustainability of all

R+D Strategies Required

- Bring together governments, private sectors and mobilize manpower, investments, innovation and technology deployment locally and globally
- Meld aspects of biology, process engineering, crop production, land use and distribution of fuel products to:
 - Make chain cost effective
 - Make it scale to meet needs
 - Make it economically/environmentally sustainable for the private sector
 - Manage the agriculture/biofuel feedstock interactions
 - Manage short-term human needs versus sustainable solutions
 - Manage Food v Fuel v Greenhouse gases

In all scenarios

Costs of ethanol production-Feedstock Choices

Reductions in processing costs for various technological advances

US Developments, As An Example

 US example chosen because R+D investment most advanced in first generation (corn-based) and second generation (R+D phase)

State Of The Union Addresses

January 2006

"America is *addicted to oil*, which is often imported from unstable parts of the world"...

..."We will also fund additional research in cutting-edge *methods of producing ethanol, not just from corn but from wood chips, stalks or switchgrass*"

..."Our goal is to make this new kind of ethanol practical and *competitive within six years*"

January 2007

"...we must increase the supply of alternative fuels, by setting a mandatory fuels standard to require **35 billion gallons** of renewable and alternative fuels in 2017 -- and that is nearly five times the current target."

To meet President's Goal

- To provide maximum yields in 2017 need to:
 - Plant crops in 2014
 - Bulk up seed/propagules in 2011-2014
- To have improved seed in 2011 needed to start breeding in 2002-4

We are short of time. We must hurry

2007 ENERGY ACT: 36 Billion Gallons/Year

Steel in the Ground

- \$385MM in direct DOE funding for cellulosic biorefineries
- \$4B in loan guarantees
- More being developed with state assistance

U.S. Government Activities

- Feedstock Farm Bill currently in conference
 - Payments to farmers to offset biomass crop production costs
 - Payments to biorefineries to offset feedstock purchase costs
- Biorefining technology development
 - 3 DoE centers, Livermore, Madison, Oak Ridge
 - \$125M each over 5 years
- Build biorefineries
 - \$4B in loan guarantees
 - \$365 in direct grants for commercial scale
 - logen, Poet, Abengoa, Range, Alico, Bluefire
 - \$200M in direct grants for 10% scale-up projects
- Mandates
 - New RFS of 36B gallons, 21B "advanced, 16B cellulosic

Government Policies – "Tilting the field"

Feedstock

Crop insurance Crower payments CRP payments V

Refining tech.

Basic R&D

Commercial grants

Biorefineries

Grants
Loan guarantees
Tax treatment
Accounting treatment

Markets

RFS
Blending credits
Taxes
Gov't purchases
CO2

* NAME OF THE PROPERTY OF THE

Technology curves + tilted playing field = economical by 2012

Feedstock Improvement

Feedstock Improvement

The Fast-Lane Forward

Sustainable growth with biotech traits Rapid improvement **Bringing the first** with advanced products to market plant breeding **Broad portfolio of traits** Biomass Sequencing and Agronomic practices and Drought tolerance marker maps logistics Nitrogen use Marker-assisted breeding efficiency Collaborations Disease resistance Hybrids Field trialing Etc. Propagation techniques Seed production

The Perfect Second Generation Energy Crop

High biomass: increased growth rate, photosynthetic efficiency, delayed flowering

Improved composition & structure: higher fuel yield per ton

Disease and pest resistance

Optimized architecture: dense planting, no lodging, easier harvest

Salt, pH and Aluminum tolerance

Perennial: multi-year crop, efficient nutrient use, high fossil energy ratio

Deep roots: drought tolerance, nutrient uptake, carbon sequestration

growing tomorrow's fuel today

Ceres Energy Crops

History of Corn

Trait Optimization is Game Changing

Parts of the Equation	Relevant Traits	Impact
Acres	 Stress tolerance (e.g. drought, heat, cold, salt) 	 Growth on marginal acreage helps enable critical mass
Tons per acre	 Increased yield (e.g. photosynthetic efficiency) 	 Lower production and transport costs and increased carbon sequestration
Dollars per acre	 Nutrient requirements (e.g. nitrogen utilization) 	 Lower fertilizer costs and less N2O emissions
Gallons per ton	 Composition & structure (e.g. C5/C6, cell wall structure) 	 Increase theoretical yield of ethanol per ton of biomass
Capital cost of refinery & variable cost per gallon	 Composition, structure & enzyme production (e.g. cellulases) 	 Reduce cost of pretreatment, reduce need for and cost of enzymes, and bring actual yield closer to theoretical
Co-products	 Metabolic engineering & sequestration 	Enhance overall economics

Germplasm Development

The Fast-Lane Forward

Sustainable growth with biotech traits Rapid improvement **Bringing the first** with advanced products to market plant breeding **Broad portfolio of traits** Biomass Sequencing and Agronomic practices and Drought tolerance marker maps logistics Nitrogen use Marker-assisted breeding efficiency Collaborations Disease resistance Hybrids Field trialing Etc. Propagation techniques Seed production

Associated Essential Requirements

- Education of people, governments and societies
- Training
- Distribution of knowledge
- Agreements with societies
- Investment
- Links with energy companies and fuel users
- Infrastructure, harvesting systems, transport
- Global industrial strategies
- Much more efficient breeding programs for new crops
- Water and sunshine
- Disease management

Long Term Outlook

Promising:

- World wide concerns
- Government initiatives (esp US)
- Oil companies creating operating divisions
- Growing public and private investment
- Many solutions, local adaptations
- Technologies not especially difficult
- Large research initiatives, public and private
- Power of plant breeding with biotechnology
- Large efficiency gains envisaged

BUT HUGE NUMBER OF CHALLENGES ASSOCIATED WITH SCALE OF AGRICULTURE AND INVESTMENT REQUIRED

» END