The long-term outlook for food and agriculture

Expert Meeting 5 Bioenergy policy, markets and trade and food security

Josef Schmidhuber

Global Perspective Studies Unit Food and Agriculture Organization of the United Nations (FAO)

Overview

Overview

1. The driving forces of the outlook

- Continuous population growth, but at a slower pace; rapid urbanization, aging, robust income growth
- Growing, but increasingly saturated food markets; high productivity growth, falling real prices
- 2. The outlook for the *food* markets
- 3. How does *non-food* (bioenergy) use affect the outlook for food and agriculture?
 - The relative size of food and fuel markets
 - Possible price impacts and quantity shifts
- 4. Impacts on food security

Food markets: drivers of the long-term outlook

Continuous global population growth, but at a drastically slower pace

Source: UN, World Population Assessment 2006

Source: UN, World Population Assessment 2006

Food markets: drivers of the long-term outlook

Thailand: Population Structure, Changes from 1950 to 2050

1950

Percentage of population

Based on: UN 2004 (http://www.un.org/esa/population/unpop.htm) Josef Schmidhuber (2006)

Food markets: drivers of the long-term outlook

Overview

1. The driving forces of the outlook

- Continuous population growth, but at a slower pace; rapid urbanization, aging, robust income growth
- Growing, but increasingly saturated food markets; high productivity growth, falling real prices

2. The outlook for the *food* markets

Overview

Food markets: Growing saturation of demand (calories)

Source: FAOSTAT and World agriculture: towards 2015/30 Josef Schmidhuber, 2004

Food markets: Review and outlook to 2030

Energy- and Protein Content of the Diet, Total Availability 1961

2030: The nutrients **Outlook to** The

Food markets: Shift towards more meat in developing countries, saturation in developed countries

Calories from Vegetal and Animal Origin: 1961 - 2030

1961

2030: The nutrients **Outlook to** The

Source: FAO, Global Perspectives Studies Group Josef Schmidhuber, 2004

Food markets: Review and outlook to 2030

Overview

1. The driving forces of the outlook

- Continuous population growth, but at a slower pace; rapid urbanization, aging, robust income growth
- Growing, but increasingly saturated food markets; high productivity growth, falling real prices
- 2. The outlook for the *food* markets
- 3. How does bioenergy use *currently* affect the outlook for food and agriculture?
 - The relative size of food and fuel markets
 - Possible price impacts and quantity shifts

Overview

How big is the market for biofuels?

			⁹ Exajoule/a [10 ¹⁸ Joule]/a			million ha
Energy source:	Potential and actual use	Year	World	OECD	non-OECD	World
All sources (TPES)		1973 ²	253	157(62.3%)	95(37.7%)	
		2004 ²	(463)	231(49.8%)	232(50.2%)	
		2030 ²	691	285(41.2%)	406(58.8%)	
		2050 ²	>850			
Biomass	Actual use	2004 ²	49 ¹¹	8	41	
	Theoretical potential		>>2000	Global photosynthesis: > 3000 EJ		
	Technical potential	1990 ¹	225	48 ¹²	177 ¹²	
		2050 ¹	400	80 ¹²	320 ¹²	
Biofuels	Ethanol ⁷ (actual)	2006 ³	1.06	0.48	0.58	16.5 ⁴
	Biodiesel ⁷ (actual)	2007 ³	0.45	0.27	0.18	4.5 ⁴
	Potential ¹	2050 ¹	5310			
	Use	2030	4.8(8.4) ¹³	2.3(4.0) ¹³	2.5(4.4) ¹³	
Resources:				million ha		
Agricultural land ⁸	Used for agriculture	1007.00	1506	658	848	850 ^{4/5}
	Total suitable	1997-99	4188	1406 ⁶	2782 ⁶	(4730)
	Used for biofuels	2006	23		(=1.5% of land
	7	2030	32.5 (57)	EIA estimate for 2030 =2		=2% of land

Overview

- 1. The driving forces of the outlook
- 2. The food outlook
- 3. How does bioenergy use *currently* affect international agricultural markets and prices?
 - 1. Floor price effects.
 - 2. Tighter links, multi-market effects
 - 3. Ceiling price effects.
 - 4. Differential, non-uniform price changes across agricultural commodity markets.
 - 5. Shrinking quality premia!?
 - 6. Subsidies and lack of market integration

Price effect 1: floor price

The impacts on prices and markets

Price effect 2: Price link tightens with rising energy prices

Price effect 3: Ceiling price effect

Parity prices for cassava

Top technology, mega plant proposed by Thai Oil

Source: own calculations based on EIA, IEA, FAO data. J. Schmidhuber (2005)

Price effect 4: Energy/protein differentiation

	An additional 10 million tonnes of						
	Sugar	Maize	Sugar and Maize	Soybeans and Maize	Sugar, Maize and Soybeans		
Corresponding energy [biofuels]	0.195 EJ	0.087 EJ	0.282 EJ	0.167 EJ	0.349 EJ		
Commodity	used for biofuels would change international prices (percent) in the long-run by :						
Sugar	+9.8	+1.1	+11.3	+2.3	+13.8		
Maize	+0.4	+2.8	+3.4	+4.0	+4.2		
Vegetable oils	+0.3	+0.2	+0.2	+7.6	+7.8		
Protein	+0.4	-1.2	-1.2	-8.1	-7.6		
Wheat	+0.4	+0.6	+0.9	+1.8	+2.0		
Rice	+0.5	+1.0	+1.2	+1.1	+1.4		
Beef	+0.0	+0.2	+0.2	+0.4	+0.4		
Poultry	+0.0	-0.4	-0.4	-2.1	-2.0		

Source: @2030 simulation results (2005)

Price effect 5: declining quality premia

Price effect No.6: Distortions through subsidies and protection

The impacts on prices and markets

Policy distortions can affect floor price effect significantly

Oil and sugar - have they lost the track for good?

The impacts on prices and markets

How strong is the impact of policy distortions?

Impacts of EU and US ethanol policy reforms (tariff & subsidy cuts) on international prices for:

Reforms i		Wheat	Maize	other CG	Sugar	Veg. oils	Protein
n:		% change vis-à-vis 2007 baseline					
EU	ST	-8.1	-0.9	-4.7	5.1	-1.2	2.3
	LT	-3.7	-0.5	-2.3	2.9	-0.9	1.3
USA	ST	-11.2	-15.9	-6.3	18.8	-2.3	9.6
	LT	-5.9	-9.1	-3.9	6.3	-1.4	5.1
)		
both	ST	-19.3	-18.5	-12.3	24.9	-3.7	12.3
	LT	-9.6	-11.2	-7.3	9.4	-2.5	6.8

Source: @2030 simulation results (JS/11/2007)

Oil and sugar - the impact of policy EU and US reforms

Data: Nybot and EIA, J. Schmidhuber (2007)

Overview

- 1. The driving forces and the outlook for agricultural markets
- 2. The food outlook
- 3. How does bioenergy use affect international agricultural markets and prices?
 - 1. A new paradigm for global agriculture?
 - 2. Floor price effects.
 - 3. Tighter links, multi-market effects
 - 4. Ceiling price effects.
 - 5. Differential, non-uniform price changes across agricultural commodity markets.
 - 6. Shrinking quality premia?!
 - 7. Subsidies and lack of market integration
- 4. Impacts on food security

Bioenergy can affect all four dimensions of food security

International food security: Boom or bust for trade balances through an increased link between energy and food prices

Poor countries: Winners and losers from the energy transition

Only countries with less than US\$5000 GDP (in constant 95 US\$)

1500 1500 Agricultural Importer and Energy Exporter Agricultural and Energy Exporter capita) lose/win win/win 1200 1200 900 900 per Con Kaz \$s∩ Rus 600 600 Alq Ang current 300 300 Msia Ecu 0 Côt exports (net, Mdiv StL Mol Guy -300 -300 Leb -600 -600 BRus Slk -900 -900 Energy Agricultural and Energy Importer Agricultural Exporter and Energy Importer -1200 -1200 lose/lose win/lose -1500 -1500 -600 -500 -400 -300 -200 -100 100 200 300 400 500 600

The assumed energy price is: US\$30/bbl

Agriculture exports (net, current US\$ per capita)

Energy exports (net, current US\$ per capita)

Data: FAO, OECD-IEA and US-EIA Josef Schmidpuber, ESDG

Summary, Conclusions, Outlook

- 1. Potential: differentiate between theoretical, technical and economic potential
 - Energy markets are "large" compared with agricultural markets; create (perfectly) elastic demand for competitive agricultural produce.
 - Energy markets *drive* agricultural markets but not vice versa.
 - In the long-run, bioenergy can become a noticeable contributor to transportation fuel supplies
- 2. Price and market effects
 - Distinguish short-run from long-run!
 - *Floor price* effect
 - Price *links tighten* with rising energy prices
 - *Ceiling price* effect
 - Lower *quality price* premia, at least short-term
 - Policy distortions can disrupt "energy pricing"
 - Paradigm shift possible with an end to falling real prices, but neo-Malthusian scenarios are unwarranted.

3. Impacts on food security

- Food security: Winners and losers depending on the trade balance and net effects on energy and food prices:
- Food availability likely to decline, access to food to improve? rural-urban shift in food security
- Bioenergy is good news for agriculture (but not necessarily for anything else)

 \geq

The traditional market paradigm

A drastic decline in real prices for food and agriculture

Source: World Bank, "Pink Sheets"

The traditional paradigm

