The Social Costs and Benefits of Biofuel Policies

Harry de Gorter Cornell University

Policy Objectives

1. Energy

- Reduce dependence on fossil fuels, esp. imports from Middle East
- Improve environment (air pollution, global warming and traffic congestion)

2. Agriculture and Food

- Improve farm incomes
- Reduce tax costs of farm subsidy programs
- Stimulate rural development

Policy categories

- 1. Tax credits
- 2. Mandates

- Farm subsidies
- Import tariffs

The economics of a tax credit

- "Among various support measures, fuel tax exemptions are most widely used" (Kojima, Mitchell and Ward, 2007, p. 54)
- Exempted or reduced biofuel excise taxes cover 65 percent of total world fuel consumption (de Gorter and Just 2007a)

Figure 1: The economics of a biofuel tax credit

Price Relationships in "Flex" Model

Price consumers are willing to pay:

$$P_E^* = \lambda (P_G + t)$$
 where $\lambda = \%$ reduction in mileage (0.70)

 $P_E^* > \text{or } < P_G \text{ depending on relative values of } P_G, t \text{ and } \lambda$

■ <u>Market price</u> in flex model:

$$P_E^{\wedge} = \lambda P_G - (1 - \lambda)t + t_c$$

 $P_E^{\wedge} > or < P_E^{*}$, depending on relative values of t_c , λ and t

 P_{E}^{\wedge} varies with t

if eliminate
$$t_c$$
, then $P_E^{\wedge} = \lambda P_G - (1-\lambda)t$

Price of corn (= price of ethanol in \$/bu):

 β = gals ethanol from 1 bu of corn (= 2.8)

 δ = proportion of the value of corn returned to market in form of by-products (= 0.31)

$$P_{Eb} = \left(\frac{\beta}{1-\delta}\right) (P_G + t_C) - c_0 \qquad \left(\frac{\beta}{1-\delta}\right) = 4.06$$

 $t_c = 0.51$ ¢/gal. = \$2.07/bu (\$2.31/bu if incl. states)

Figure 2: Corn market equilibrium with an ethanol tax credit

The Case of Binding Mandates

- "Virtually all existing laws to promote...biofuels set blending requirements, meaning the percentages of biofuels that should be mixed with conventional fuels" (FAO report by Jull et al. 2007, p. 21).
- In the United States:
- 1. Consumption Mandates (local, state and federal)
- 2. Blend "Mandates"
 - de facto mandates with environmental regulations (CAA in 1990s and MTBE in this decade)
 - Additive value for ethanol a complementary good (oxygenator/octane enhancer)

Figure 5: The Economics of a Biofuel Blend Mandate

Figure 6: The Economics of a Biofuel Consumption Mandate

Figure 6: The Economics of a Biofuel Consumption Mandate

Figure 6: The Economics of a Biofuel Consumption Mandate

Import tariffs

■ "Perhaps the most outrageous example is America's \$0.54 per gallon import tariff on ethanol... This contrasts with the \$0.51 per gallon subsidy that US companies...receive on ethanol. Thus, foreign producers can't compete unless their costs are \$1.05 per gallon lower than those of American producers..." Joseph E. Stiglitz (2006).

Import Tariffs

- If only tax credit, tariff reduces world price by tariff (no change in domestic ethanol prices unless world oil prices decline)
- If only mandate, tariff requires more domestic supply so ethanol price increases
- If both a tax credit and a mandate, 3 parts:
 - □ Net gain for Brazil with tariff (versus no policy)
 - □ But Brazil could gain more if remove tariff
 - □ U.S. producers get a benefit from tariff

Conclusions

- Need to calculate P_{NE} and rectangular deadweight costs
- Cannot justify biofuel policy for reducing tax costs of farm subsidy programs
- Mandate better than tax credit because:
 - □ Reduces gasoline consumption more (implicit tax on gasoline)
 - Save tax costs (reduce deadweight costs in labor market due to income-wage tax)
- As P_{OIL} increases, mandate 'unbinds' at some point but a tax credit continues to distort

- With a mandate, tax credit acts as a gasoline consumption subsidy:
 - □ Increase in gasoline consumption offsets decrease in gasoline consumption due to mandate (<u>partially</u> or <u>all</u>)
 - □ Or offsets even <u>more</u> if tax credit > ethanol price premium due to mandate
- All countries have both tax credits and mandates
- U.S. cellulosic mandates will probably bind and have higher tax credits than previously
- Price premiums are 'subtractive'

- Even if mandate not binding, tax credit implicitly subsidizing gasoline consumption b/c:
 - \square Prevents mandate from binding (with higher P_G)
 - Can increase mandate to get same ethanol price as existing tax credit
- Variable tax credit even worse b/c subsidizes gasoline consumption as P_{OIL} declines (latter already increasing gasoline consumption)
- Farmers better off with mandate over tax credit b/c latter always results in higher $P_{O/L}$ (input costs always higher)

- 1st best, 2nd best and bad: need to go to least bad (going from bottom up; not down from top)
- Eliminate tax credit
- Eliminate import tariffs
 - Meant to offset tax credits
 - Minimal impacts on world oil price
 - Lowest costs for biofuels
 - Encourage switch in biofuel use from food crops to nonstaple and non-food crops in developing countries
- Maintain a mandate
 - Blend mandate better than a consumption mandate
 - Smoothes prices
 - Easier to achieve
 - If tax credit, @ least P_F increases

- International coordination
 - Ideally want average fuel price paid by consumers equal across countries (adjusted for any differentials in local externalities)
- Thumb rule: have mandates inversely proportional to gasoline taxes
- Practical b/c countries with lower gasoline taxes have relatively lower biofuel production costs (e.g., USA, Canada and Australia)

References

- (1) de Gorter, Harry, and David R. Just. (2008). "Water' in the U.S. Ethanol Tax Credit and Mandate: Implications for Rectangular Deadweight Costs and the Corn-Oil Price Relationship", Paper presented at the ASSA annual meetings in New Orleans, 4-6 January 2008. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1071067
- 2) de Gorter, Harry, and David R. Just. (2007a). "The Welfare Economics of an Excise-Tax Exemption for Biofuels and the Interaction Effects with Farm Subsidies", Department of Applied Economics and Management Working Paper # 2007-13, Cornell University, 17 September. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1015542
- (3) de Gorter, Harry, and David R. Just. (2007b). "The Law of Unintended Consequences: How the U.S. Biofuel Tax Credit with a Mandate Subsidizes Oil Consumption and Has No Impact on Ethanol Consumption", Department of Applied Economics and Management Working Paper # 2007-20, Cornell University, 23 October. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1024525
- (4) de Gorter, Harry, and David R. Just. (2007c). "The Economics of U.S. Ethanol Import Tariffs with a Consumption Mandate and Tax Credit", Department of Applied Economics and Management Working Paper # 2007-21, Cornell University, 23 October.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1024532

References (cont'd)

Goulder, Lawrence H. and Roberton C. Williams III. (2003). "The Substantial Bias from Ignoring General Equilibrium Effects in Estimating Excess Burden, and a Practical Solution", Journal of Political Economy, 2003, vol. 111, no. 4:898-927.

Parry, Ian and Kenneth Small (2005). "Does Britain or the United States Have the Right Gasoline Tax?," *American Economic Review* Vol. 95, No.4 (September): 1276-1289.

Parry, Ian W. H., Margaret Walls and Winston Harrington. (2007). "Automobile Externalities and Policies". *Journal of Economic Literature*, June Vol. 45, Issue 2:373-399.