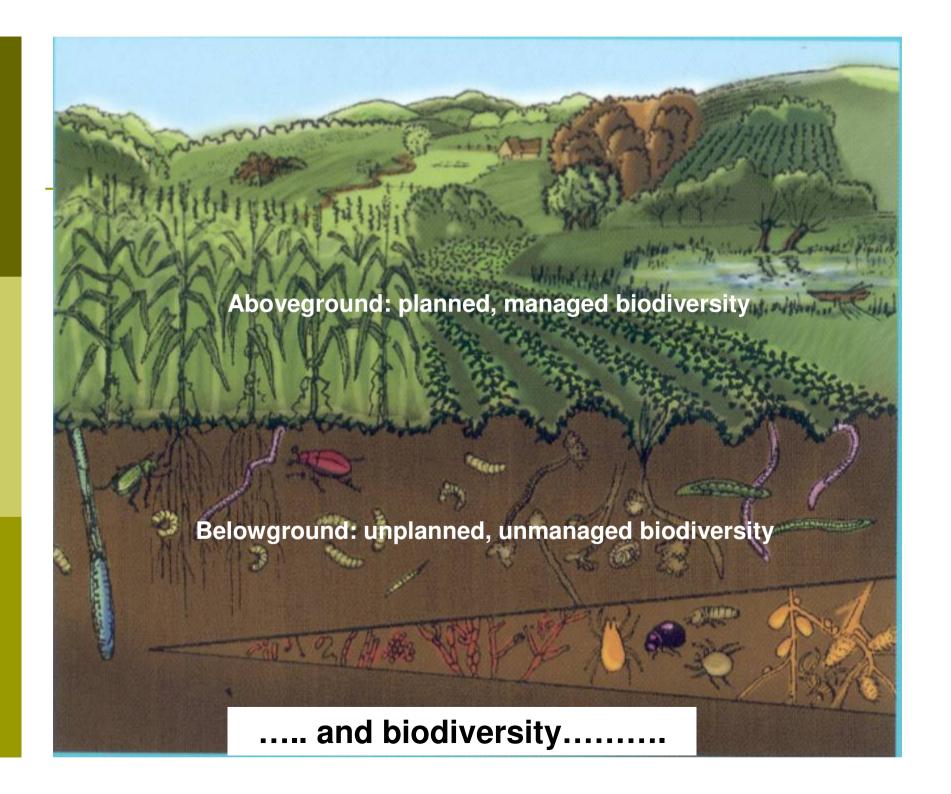
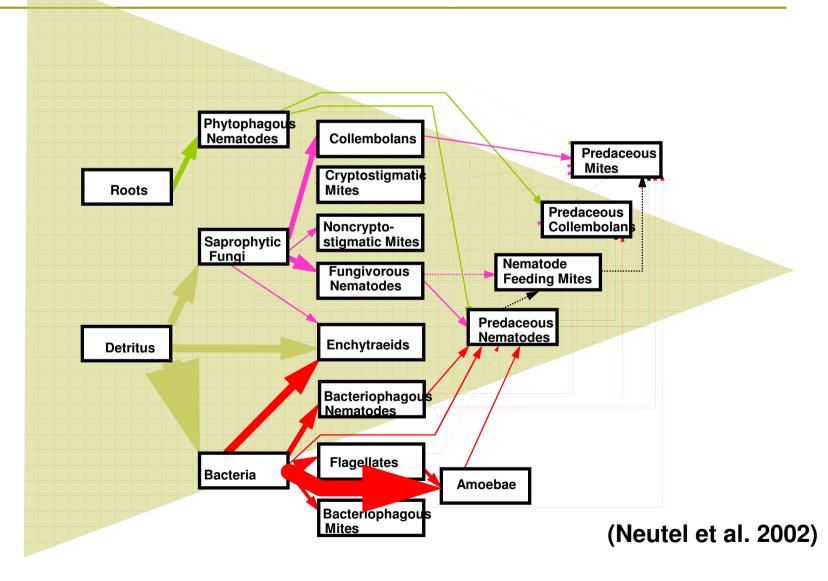
Soil, biodiversity and ecosystem services

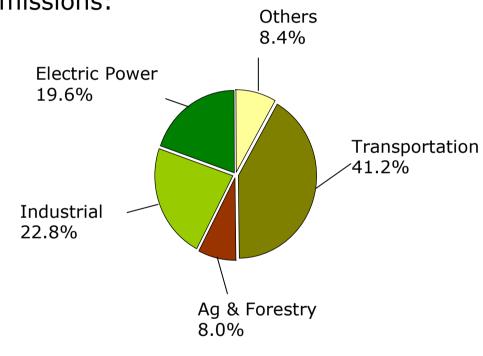

Louise Jackson
Dept. of Land, Air and Water Resources
University of California, Davis
USA

- Soil biota and functions of soil biodiversity
 - Waste recycling, N fixation, bioremediation,.....
 - Soil C and N cycles; relevance to GHG emissions
- Soil effects on crop biodiversity
 - Elevated CO₂ and crop ecophysiology
 - Water, salinity, and nutrient stress
 - Genetic resources
- Soil properties and landscape agrobiodiversity
 - Soil management, land use, and effects on aboveground biodiversity in agricultural landscapes
 - Place-based analysis of climate change responses
- Research needs: a DIVERSITAS viewpoint


- Soil biota and functions of soil biodiversity
 - Waste recycling, N fixation, bioremediation,.....
 - Soil C and N cycles; relevance to GHG emissions
- Soil effects on crop biodiversity
 - Elevated CO₂ and crop ecophysiology
 - Water, salinity, and nutrient stress
 - Genetic resources
- Soil properties and landscape agrobiodiversity
 - Soil management, land use, and effects on aboveground biodiversity in agricultural landscapes
 - Place-based analysis of climate change responses
- Research needs: a DIVERSITAS viewpoint

Soil food webs.....

Pyramids and feeding rates

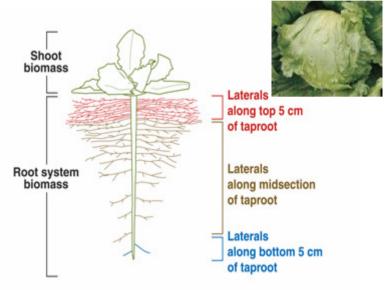

Ecosystem service	Soil organisms involved	Global economic benefits (USD x 10 ⁹ yr ⁻¹)	
Waste recycling	Various saprophytic and litter feeding invertebrates (detritivores), fungi, bacteria, actinomycetes and other microorganisms	760	
Soil formation	Various soil biota facilitate soil formation (e.g., fungi, bacteria, termites, earthworms)	25	
Nitrogen fixation	Various symbiotic and asymbiotic microorganisms (diazotrophic bacteria)	90	
Bioremediation of chemical pollutants	Mostly microorganisms (bacteria, fungi)	121	
Provision of industrial and pharmaceutical goods, including medicines	eutical used for various industrial and pharmaceutical		
Biological control of pests (insects and pathogens)	Many natural enemies of pests live in the soil (e.g., fungi, bacteria, viruses, invertebrates)	160	
Pollination	Many insect pollinators that have an edaphic phase in their life-cycle	200	
Provision of wild products (food)	Mushrooms, insects, roots	180	
TOTAL		1,542	

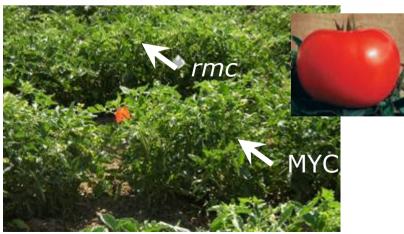
Total estimated economic benefits of soil biota (modified from Pimentel et al. 1997; Brown et al., unpublished; Brussard et al., 2007)

Soil greenhouse gas (GHG) emissions: California

California 2004 statewide GHG emissions:

- Total: 480 MMT CO₂ Eq yr⁻¹
- Agriculture:
 28 MMT CO₂ Eq yr⁻¹
- Agricultural sources:
 - Ag soil management
 8.3 MMT CO₂ Eq yr⁻¹
 - Enteric fermentation
 7 MMT CO₂ Eq yr⁻¹
 - Manure management
 6.9 MMT CO₂ Eq yr⁻¹
 - Energy use/fuel combustion
 4.9 MMT CO₂ Eq yr⁻¹
 - Rice cultivation
 1 MMT CO₂ Eq yr⁻¹
 - Ag residue burning
 <1 MMT CO₂ Eq yr⁻¹




Agriculture=6% of statewide GHG emissions

California Air Resources Board, 2007

- Soil biota and functions of soil biodiversity
 - Waste recycling, N fixation, bioremediation,.....
 - Soil C and N cycles; relevance to GHG emissions
- Soil effects on crop biodiversity
 - Elevated CO₂ and crop ecophysiology
 - Water, salinity, and nutrient stress
 - Genetic resources
- Soil properties and landscape agrobiodiversity
 - Soil management, land use, and effects on aboveground biodiversity in agricultural landscapes
 - Soils and multifunctionality of ecosystem services: Placebased analysis of climate change responses
- Research directions: a DIVERSITAS viewpoint

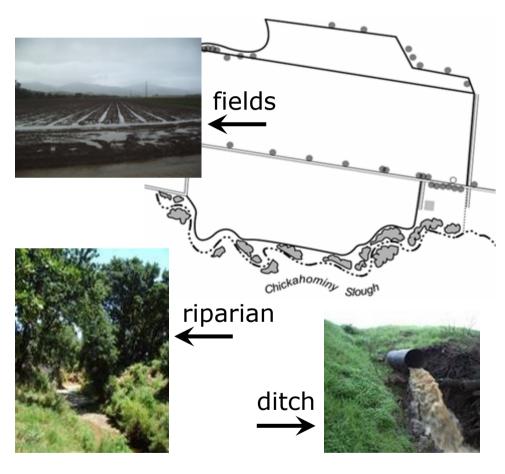
Crop genetic resources to alleviate soil stress

Genes to increase yield with lower inputs of water and nutrients

- Lettuce: Value of genes for deep roots differs according to water availability
 - Genes (QTL) from wild lettuce
 - RILS with QTL for deep taproot vs. deep lateral roots
- Tomato: Value of genes for mycorrhizal colonization differs according to soil type and farming method
 - Non-mycorrhizal mutant (rmc) vs. wild type (MYC)
 - Organic farms

Johnson et al., 2000; Cavagnaro et al., 2006

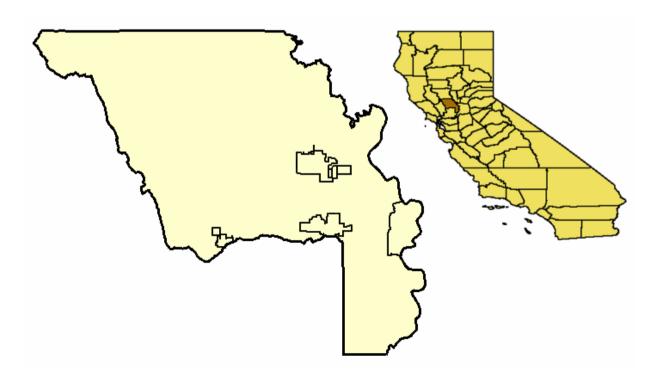
Elevated CO₂ (eCO₂) and crop ecophysiology


- Higher photosynthesis rates of C₃ plants at eCO₂
- Legumes: Increase in N fixation and growth
- Non-legumes: Greater nitrogen (N) limitation at eCO₂
 - Decrease in soluble protein and N content (Cotrufo et al. 1998)
 - Dilution effect
 - Organic matter inputs to soil have higher C:N ratio (Reich et al. 2006)
 - Higher competition with soil microbes for N
 - Lower rates of shoot nitrate assimilation (Rachmilevitch et al. 2004)
 - Photorespiration increases nitrate assimilation
 - Breeding to shift to greater reliance on ammonium
 - More N fertilizer will be required, unless root systems are bred to be more efficient at scavenging N
- Unknowns
 - CO₂ fertilization effect?
 - Increased water use efficiency?
 - Higher ozone damage and thus greater water stress?
 - Extent of salinity stress?

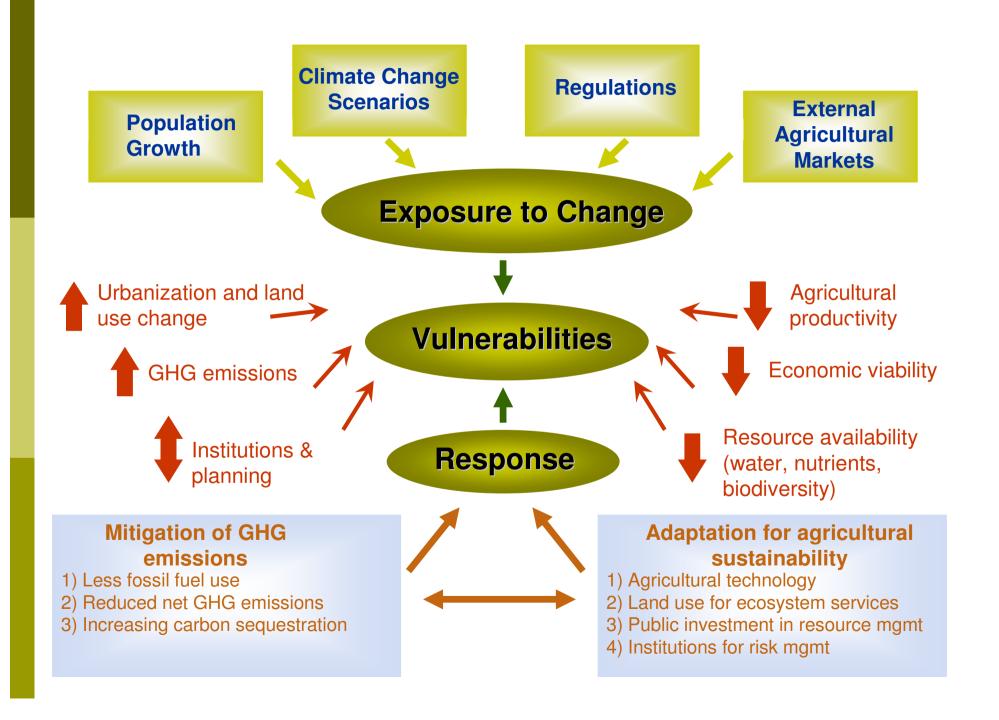
- Soil biota and functions of soil biodiversity
 - Waste recycling, N fixation, bioremediation,.....
 - Soil C and N cycles; relevance to GHG emissions
- Soil effects on crop biodiversity
 - Elevated CO₂ and crop ecophysiology
 - Water, salinity, and nutrient stress
 - Genetic resources
- Soil properties and landscape agrobiodiversity
 - Soil management, land use, and effects on aboveground biodiversity in agricultural landscapes
 - Place-based analysis of climate change responses
- Research needs: a DIVERSITAS viewpoint

Landscape-level functions of agrobiodiversity

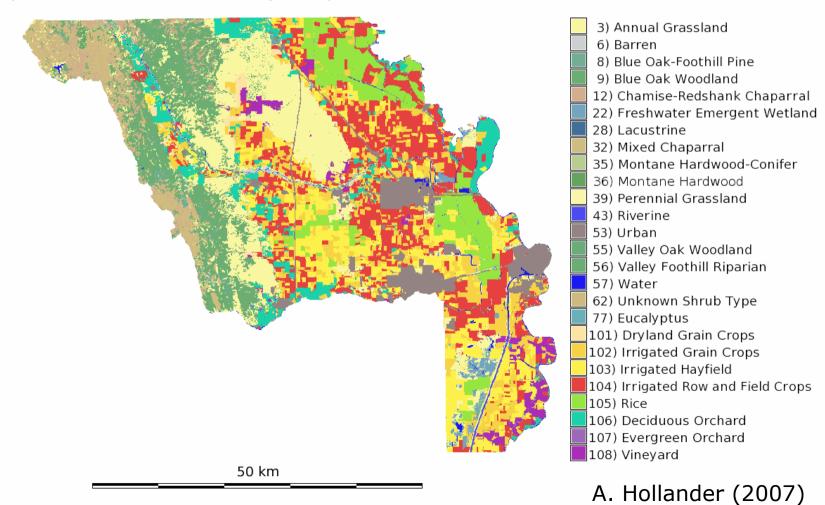
Higher agrobiodiversity in the landscape can increase indirect use value, resilience and risk mitigation (Swift et al., 2004), but valuation of multifunctionality is difficult


- Habitats in the farmscape
 - Carbon, nitrogen, and phosphorus retention (GHG, stores)
 - Biodiversity
 - Plant species
 - Soil microbes, nematodes
 - Pests
 - Agricultural production and economic profitability

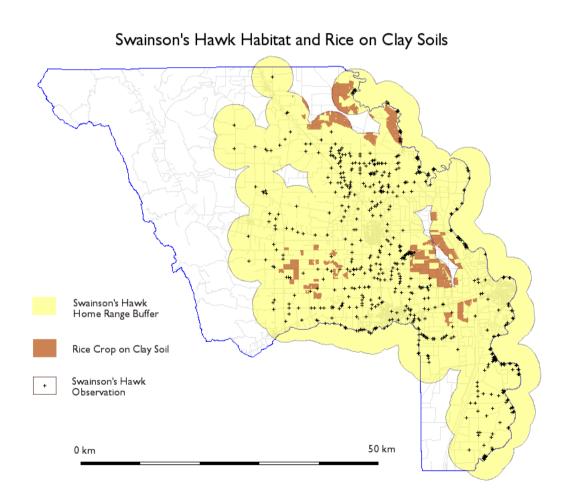
Tomato and grain fields, riparian, hedgerow, drainage ditch and ponds habitats at an organic farm in California


California regional analysis of climate change responses

- Yolo County, Sacramento Valley
- River delta to upland hills
- □ ~10% ag economy; family farms and agribusiness
- □ \$370 million gross agriculture (2006)


Laws and regulations for GHG emissions in California

- AB 32 (Global Warming Solutions Act)
 - Establishes a GHG cap to reduce emissions
 - 2000 levels by 2010
 - 1990 levels by 2020
 - 80% below 1990 by 2050
 - Enforces benchmarks beginning in 2012 that include a multi-sector market-based program to reduce GHG emissions in the most cost-effective manner
 - Requires mandatory reporting of GHG emissions for the largest sectors (oil and gas extraction, oil refining, electric power, cement manufacturing, and solid waste landfills)
- □ AB 1493 (Pavley Bill)
 - Limits the amount of greenhouse gas that may be released from new cars, SUVs, and pickups (2009)


Yolo County land cover

California Wildlife Habitat Relationship (CWHR) and Dept. of Water Resources (DWR) land cover classes

Land Cover

GIS query: soil type, crop production, and wild species habitat

- •Rice production will decrease with water shortages
- •No other crops are grown on clay soils now in rice
- •Swainson hawk preferred habitat is irrigated agriculture
- •Land retirement will decrease habitat for this species of concern
- •Assumes 3.5 km buffer from nest sites
- •Clay soil = >40% clay

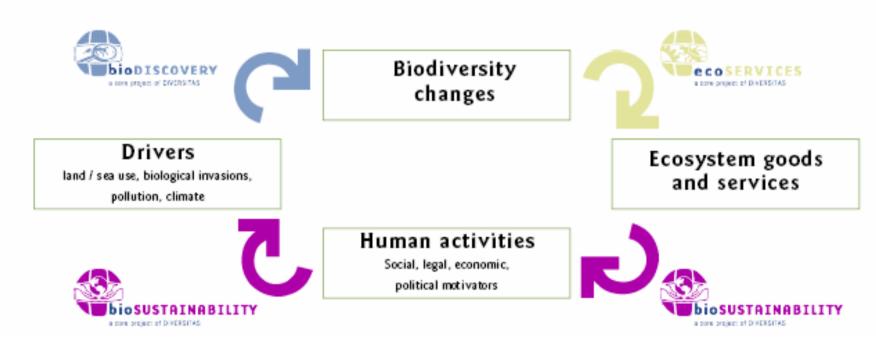
A2 and B1 scenarios for Yolo County

Disciplinary topics:

- Agricultural productivity for major crops
- Effects of reduced water resources on economics
- Agricultural energy budgets
- World market shifts and choice of crops
- Land use change
- Changes in biodiversity

Interdisciplinary synthesis:

- Mitigation+adaptation strategies for whole farms
- Planning horizons
- Grower decision tools
- Multifunctional land use for multiple benefits
- GIS landscape queries
- Environmental justice
- Zoning and city/county planning options


Greatest academic interest

Greatest stakeholder interest

- Soil biota and functions of soil biodiversity
 - Waste recycling, N fixation, bioremediation,.....
 - Soil C and N cycles; relevance to GHG emissions
- Soil effects on crop biodiversity
 - Elevated CO₂ and crop ecophysiology
 - Water, salinity, and nutrient stress
 - Genetic resources
- Soil properties and landscape agrobiodiversity
 - Soil management, land use, and effects on aboveground biodiversity in agricultural landscapes
 - Place-based analysis of climate change responses
- Research needs: a DIVERSITAS viewpoint

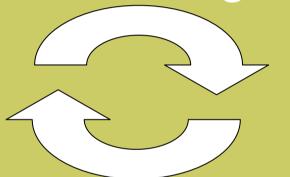
Research needs: a DIVERSITAS perspective

- Earth System Science Partnership (IGBP, IHDP, GWSP, GECAFS): Global change programs
- Interactive biodiversity science, linking biological, ecological and social disciplines to produce

Overview suggestions

- View soil as a major driver of climate change responses
- Place greater emphasis on managing landscapes for unplanned biodiversity for its ecosystem services
 - Food webs and trophic interactions
 - 'integrated soil biological management practices as an integral part of their agricultural and sustainable livelihood strategies' (CBD Soil Biodiversity Initiative)
- Utilize 'place-based' analysis of climate change responses
 - Soil constraints that effect land use change
 - Multifunctionality of biodiversity-based ecosystem services: source of resilience
 - Merging mitigation and adaptation

Policy makers


Local perspectives

'Downstream' stakeholders

Drivers:

initial conditions, time-dependent external parameters

Dynamics of land use change

Consequences:

of resulting land use mosaic for environmental, economic and social criteria and indicators

Scenarios:

specific constellation of driver variables

Local responses to external drivers, with various local feedback loops

National International

Regulation and rewards

SBSTTA—Soil biodiversity

- CBD Soil Biodiversity Initiative
 - awareness raising, knowledge and understanding of key roles, functional groups and impacts of diverse management practices in different farming systems and agro-ecological and socio-economic context
 - promoting ownership and adaptation by farmers of integrated soil biological management practices as an integral part of their agricultural and sustainable livelihood strategies.
 - Soil Biodiversity Manual (<u>Swift & Bignell 2001</u>)

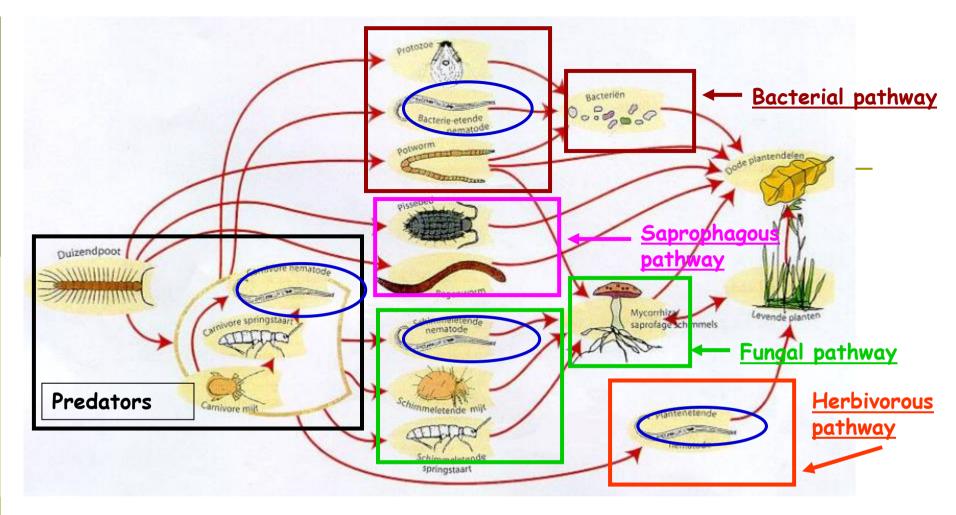
GHG emissions for Yolo Co. agriculture

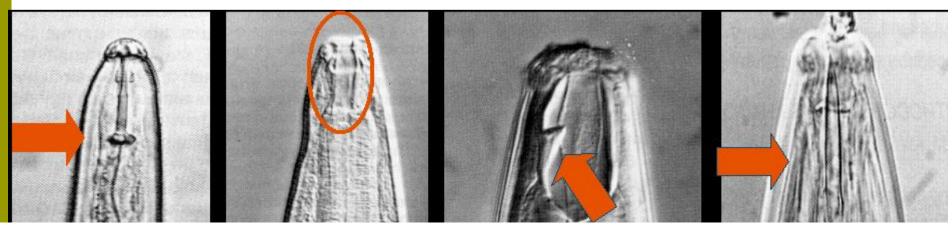
- Attempt a very rough estimate for the County
- Suggest mitigation options (3 scenarios) and rank feasibility given other economic tradeoffs
- Estimate ag reductions in CO₂E for the County

From CARB ETAAC draft report (statewide) of 174 MMTCO₂E by 2020:

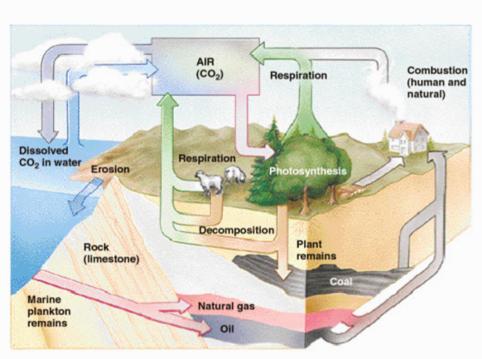
Table 1: Summary of California Agricultural Programs to Reduce GHG Emissions

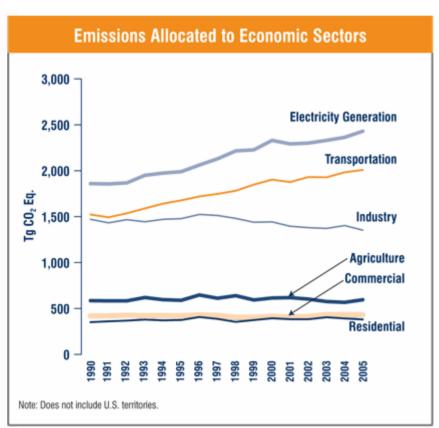
	Potential California Program Size		Estimated Reduction	Net Annual California Reduction Potential		
Technologies	Gross	Technical	Units	Unit Factor	Gross	Technical
	(units/yr)	(units/yr)		(MTCO ₂ E/yr)	(MMTCO₂E)	(MMTCO ₂ E)
Manure-to-Energy Facilities	3,600,000	1,800,000	Head	1.70	6.1	3.1
Enteric Fermentation	4,100,000	2,050,000	Head	0.39	1.6	0.8
Agricultural Biomass Utilization	21,000,000	8,000,000	dry tons	0.51	10.7	4.1
Dedicated Bio-fuels Crops	1,000,000	500,000	acres	1.92	1.9	1.0
Soil Carbon Sequestration	10,000,000	5,000,000	acres	0.61	6.1	3.1
Farmscapes Sequestration	500,000	500,000	acres	5.80	2.9	2.9
Fertilizer Use Efficiency	10,000,000	5,000,000	acres	0.36	3.6	1.8
Total		•			33.0	16.7


Climate change scenarios


Regional Enterprise

- IPCC A2 High climate change scenario
 - High population growth
 - High energy use
 - Med/High land-use change
- Focus: Self reliance, preservation of local entities
- Higher environmental stress
- Environment = commodity which can be traded
- ↓ag subsidies & Îexposure to global markets


Global Sustainability


- IPCC B1 Low climate change scenario
 - Low population growth
 - Low energy use
 - High land-use change
- Focus: Wider, global impacts of individual actions
- Lower environmental stress
- Environmental taxation and subsidies for mitigation and adaptation to climate change

Carbon Cycle

http://www.epa.gov/climatechan ge/emissions/usgginventory.html