Groundwater Governance in the Zhengzhou region, China

Menggui JIN

School of Environmental Studies China University of Geosciences Wuhan, Hubei 430074, China Email: mgjin@cug.edu.cn

1

Zhengzhou Municipal Region has an area of 7,446 km². **Population 9.10M** (2011); GDP 491.27 billion RMB(2011). **Mean annual precipitation 633 mm** (575-700 mm).

Key issues for GWG (Jin,2007)

 Field investigation, sampling, interview with water users and government officers, database creating, and numerical modeling, ...

Institute of Water Resources, CUG

Water situation of Zhengzhou

- Total water resources is 1.40×10⁹m³/yr. Per capita water is less than 190 m³
- Total water use was 1.6245 billion m³ (2011), in which 0.99 billion m³ from GW
- 43 K ha cultivated lands may be threatened by drought every year because of no water for irrigation in the west mountainous area.

Declining of water level and increase of depression cones

- Area of depression cone & deepest water table for shallow aquifers (Guomian 3)
- declined 30m (50m)

- Area of depression cone & deepest water level for deep aquifers (Guomian 3)
- **declined 30m (60)**

Distribution of lower quality of GW

Shallow GW in many areas of Zhengzhou has been polluted or lower quality.

中国地质大学水资源研究所 Institute of Water Resources, CUG

Safe drinking water for rural people

- □ 1.5 M people can not drink safety water(2006).
- 621 K drinking polluted water;
- > 361 K drinking brackish water;
- > 233 K drinking high fluorine water;
- > and 4.35 K drinking high arsenic water.
- Government launched a project to solve the drink water problems by drilling deep well and rainwater harvest years ago.

Institutions related to GW in Zhengzhou

Water Resources Bureau of Zhengzhou: > Water Resources Management Office - urban GW > Irrigation, Drainage and Rural Water Supply - rural GW > County-level of Water Resources Bureau **Environmental Protection Bureau of Zhengzhou** Henan Institute of Environmental Geology Monitoring **Zhengzhou Water Supply Corporation Municipal Bureau of Zhengzhou** Yellow River Conservancy Commission

Institutional problems of GWG

- MWR has been officially authorized to manage both groundwater and surface water since 1998, but the problems still remain:
- Separate management of GW quantity and quality
- Separate management of urban area and rural area
- Overlapped management of some functions
- Lack of good communication among different departments

Laws and Regulations

- The six laws related to GW:
- water law of PR China
- environmental protection law of PR China
- > law of PR China on the prevention and control of water pollution
- Flood control law of PR China
- law of PR China on water and soil conservation
- > administration of water abstract licensing and collection of water resources charges
- 14+ regulations or policy documents since 1994
- But there are no detail item on GW governance except the regulation on water abstract licensing and water saving irrigation.

Water abstract licensing-rural

- By the regulation, most of water abstract needs getting license
- Many irrigation wells have not got the water abstract license.
- The regulation (version 2006) emphasized that users who fight a drought of agriculture need not applying license.

Water abstract licensing-urban

- has been carried out strictly in urban areas. New tube wells have been forbidden in some overexploited areas.
- IC card system are used to control well pumping for more than 10, 000 tube wells.

IC card irrigation system

IC card system to control well pumping for irrigation in Xinzheng, Zhongmu....

1251

XS-CKQ/ 型 水资源测控器

Reasons for low efficient water management

- □ Water use rights not-well-defined (esp. GW),
- □ Low water prices, or electricity-cost-only of GW abstraction
- Poor consciousness on water-saving practices
- Insufficient investigation and understanding on GW in the area
- Weak public awareness of GW knowledge
- Poor communication/big gaps between researchers, users and managers on water resources (esp. GW)

Suggestions to GW Governance in Zhengzhou

- Efficient use of allocated water from Yellow River and SNWTP
- Changing cropping patterns and industry structures,
- Adapting water saving technologies,
- New wells should be issued based on sustainable schemes of GW use
- Reforming water pricing or subsidy
- Enhance public awareness of groundwater

Summaries

- GW pollution and over-exploitation need to be efficiently controlled urgently. These need further research on both technical and non-technical aspects. It needs efficient approaches for GW governance.
- **GW** governance institutions need to be coordinated
- Sustainable GW development and governance is a complex systems engineering.
- Our proposed schemes/ planning of GW development should be user friendly, easy to be understood on the basis of well investigation and well consideration of user' s demand.

Summaries

- To achieve sustainable use of GW needs efforts from all of the world (scientists, decision makers and all individual water users). The most important things are:
 - To enhance public awareness and knowledge of GW; and to create a work desk for better communication among water managements, planners, decision-makers, scientists, water users and others to exchange ideas and knowledge and

+ reduce the gaps between different parties. Institute of Water Resources, CUG

Acknowledgements

- **IWMI and CPWF (PN 42)**
- Yellow River Conservancy Commission (YRCC)
- Water Resources Bureau of Zhengzhou
- Second Team of Hydrogeology and Engineering Geology, Henan Province
- Henan Institute of Geo-environment Monitoring
- Henan Geological Survey

Thank you very much

地下水是水文循环中重要的部分

火文福环是这主人气水、灶麦水和越来餐石空隙 的地下水之间的水漏不、灶麦水、包气节水龙涂水带中 这次小额以及发出被的影响而变为水落产过大大气圈。 水穴能仅裹修、工造官医斗下将以降水、淡致乱地的体 "冰"的"上头"小都记得这比发水、高学们从地下。 "像入枪下的水、停外们算上包气停干、这干的十块水分 石空隙中,成为起下水、灶友水与起下水方的市新高发 型口大气圈,有的烦扰或是不漂点也下冷冻地遮向清洁。

地下水是水馏环的一个重要环节。地下水常以地下 渗渍力式补给问法、财油和闪等,或者以比下径流力式 直接代入药料:在上层上读于的六分又可以喜发或经植 物想紧吸收再散发的方式是入大气。

地下水的补给

地下水的补给来源有大气降水、地衰水、凝结水, 来自其它含水层或含水系统约水等。与人类活动有关 的地下水补给有灌溉回归水、水炸渗漏水,以及专门 性的人工回灌。

地下水的排泄

地下水流过泉、向扫荡滑潇灵蒸发、蒸腾等方式 向外界律訊。此外、还存在一个个水层 (含水系统) 向另一含水是(含水系统)(空速)。 用升孔有强地下水、或用墨道、防道等律验地下 水、均隔地下水的人工作课。

人类活动对地下水的不利影响

人类活动对地下水瓶可以产生有利于人类的影响, 也可以产生不利于人类的影响。人类对地下水产生 不利影响通过三个方面发生;过量F采地下水,过量 补充地下水,污染物进入地下水。

地下水的污染源

汚染物质主要来源于生活污水与垃圾,工业污水与废 渣以及农用1%%与农药。简着人口急剧增长与工农业发 展,产生的污染物质数量+分巨大。

地下水污染后治想的难度

地卡水的冷漠与起来大都冷漠不可。 污染病或达入地 下含水是改在其小运筹的应该都能器等。若不进行专门监 服,存得不发怒行。她下水沙漠。这到和国"雪雪的程度。 地表水后补偿却远远,只是对你污染能。水就能在短期的 或音道心。起于这主个脑不容器段。 吃点地等你狠源。 问题道入地下水的污染物点。将在含水原中长别游响,能 者地下水流动。为海棠和他还不好扩展。因此、要在已经 得处的含水是自然净化。希提很长的时间(几十、几百装 至几千中)。如果采取打开出没污染水的方法消除污染。 服装付出相关式的代价。

为了避免比下水遭受污染。首先要控制污染源,力水污 杂物演经处型后再行排放。其次,要根据后性以及比下水流 动系统分析污染条件,云量将可能发生污染的工矿企业安置 在不易污染地下次的启位。

地下水的过量开采

过量开采地下水, 会造成地下水位下降, 引起一系 列严重的环境退化现象, 如土壤盐演化, 地築缝, 地面 沉降, 海水入侵等。

于旱地区因地下水弧烈蒸发而导致的土壤盐渍化(孙自永柏)

2002年12月10日建築總結新西安署紀常路2米扣的供水管第 (《中国地面流路》、上海科学技术出版社、2005)

户地下水? 华成节水的好习惯,杜绝浪费; 化学物品和生活污水; 已; 吕动,了解地下水的知识。

18日第47届联会国大会上通过了一项决 22日定多,"电界水日"。指在使金世界、 公员调频,过天相信的活动,已建展公 的国情,可是相信的活动,以提展公 7程护意识。可唤地球儿友,要珍惜每一滴水。曾 七人类继续或坏和准费水资源,那么人 水水是鱼自己的服乱。"这并不是做人

1切的事实!

GOVERNANCE

Groundwater Resource Protection 地下水资源保护 宣传手册

水是人们粮以生存的不可缺少的宝贵资源。地球上可 被人类所利用的淡水中,98%是来自地下水。

地下水即是赋存于地面以下岩石空隙中的水。由于其 水质良好,分布广泛,变化稳定以及便于利用,是理想的 供水水源。

在我国半干旱与干旱的华北、西北地区,地下水往往 是主要的,有时甚至是唯一的生活以及工农业生产供水水 源。

2006年全国总用水量5795亿方,地下水用量为1065.5 亿方。其中浅层地下水占80.5%,深层承压水占19%、微成 水占0.5%;南方地下水用量占全国地下水用水量的13%, 北方地下水用量占87%。

地壳表层十余公里恙围内,都或多或少存在着空隙, 特别是深部一、肉公里以内,空隙分布较为普遍,这就 为地下水赋存提供了必要的空间条件,形象的说"地壳表 层成好象是饱含着水的海绵"。

赋存在地下岩土空隙中的水。含水岩土分为两个带; 上部是包气带,即非饱和带,在这里除水以外,还有气 体;下部为饱水带,即饱和带,饱水带岩土中的空隙充 滴水,浆义的地下水是指吃水带中的水。

中国地质大学水资源研究所 Institute of Water Resources, CUG

20