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Abstract
In	 many	 forest	 inventory	 applications,	
numerous	 attributes	 of	 interest	 must	 be	
estimated	using	a	lookup-table	or	an	equation	
(collectively referred to as a model). Stem 
volume, for instance, is rarely directly 
measured	 in	 the	field,	 but	 is	 estimated	 from	
dimensional measurements like diameter or 
height.	 Individual	 observations	 are	 usually	
aggregated	for	reporting	purposes	and	may	be	
grouped	during	field	data	collection,	such	as	
when	 trees	 are	 tallied	 by	 diameter	 or	 height	
class.	 Aggregation	 simplifies	 presentation	 of	
data,	but	the	information	content	is	reduced.	
Variables	 such	 as	 volume,	 biomass,	 or	

carbon	content	are	frequently	estimated	from	
equations	(models).	It	is	sometimes	difficult	to	
judge	whether	a	given	equation	 is	applicable	
to	 a	 particular	 situation;	 an	 assessment	 of	
the	 quality	 of	 all	 equations	 (models)	 used	

in	 an	 inventory	 is	 important.	 The	 selection	
of	 a	 particular	 equation	 (model)	 should	 be	
guided	by	this	assessment,	as	well	as	modeling	
objective	and	context.	

Some inventories focus on assessing the state 
of the resource, others on the change in the 
resource	over	time.	Different	field	procedures	
and	 sampling	 designs	 are	 preferred	 for	
different	objectives.Sampling	with	permanent	
plots	 provides	 estimates	 of	 both	 state	 and	
change.	Designs	with	 	 a	 smaller	 (expensive)	
set	of	permanent	plots	and	a	larger	set	of	(less	
expensive)	 temporary	plots	 can	 also	provide	
good	estimates	of	both	state	and	change,	but	
the	statistical	analysis	of	such	designs	is	quite	
complex	 and	 care	 must	 be	 taken	 to	 ensure	
appropriate	 assessment	 of	 accuracy	 and	
precision.
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1. Introduction
Many	 forest	 attributes	 of	 interest	 in	 forest	
inventory	and	monitoring	applications	are	not	
measured	directly	as	 it	would	be	 impractical	
or	too	costly	to	do	so.	The	best	known	example	
includes stem volume where diameters and 
heights are measured on individual trees and 
a	table	or	an	equation	(collectively	referred	to	
as a model) is used to estimate the associated 
volume	 (Köhl	 et	 al.	 2006,	 section	 2.37).	The	
volume	 of	 coarse	 woody	 debris	 (CWD)	 is	
another	 example	 (Köhl	 et	 al.	 2006,	 section	
6.4.6;	 Woldendorp	 et	 al.	 2004).	 In	 practice	
only	a	small	number	of	short	segments	of	the	
CWD are measured for volume, and the total 
amount of  (CWD) in an area of interest is 
estimated through a scaling of the measured 
pieces;	 the	 scaling	 depends	 on	 the	 sample	
design	 (Woldendorp	 et	 al.	 2004).	 Advances	
in remote sensing favor the use of easy to 
measure	and	readily	available	variables	(say	X)	
correlated	with	 the	attributes	of	 interest	 (say	
Y).	An	estimate	of	Y	for	the	area	or	population	
of	 interest	 is	 then	 obtained	 from	 a	 small	
sample	of	Y	and	knowledge	of	the	relationship	
between	X	and	Y	(Köhl	et	al.	2006,	p	80)
The	 types	 of	 models	 available	 for	 indirect	

estimation	 of	 quantities	 like	 wood	 volume,	
biomass,	 and	 carbon	 content,	 including	
examples,	are	given	in	the	following	sections.	
Issues to consider in the choice of model for 
a	 specific	 application,	 along	 with	 modeling	
objectives	and	contexts,	are	also	discussed.	

2. Aggregation
Aggregation	 is	 the	 combination	 of	 data	 or	
observations	into	groups.	Aggregation	is	done	
to	simplify	measurements	and	data-processing	
(Stage et al. 1993) or to summarize data and 
observations	 into	 groups	 and	 categories	 of	
interest.   
The	 attribute	 data	 to	 be	 collected	 in	 an	

inventory	are	defined	and	prescribed	based	on	
the information needs of stakeholders in the 
forest	 resource	 to	 be	 inventoried	 (Dachang	
and	Cossalter	2006,	p	5).	In	a	field	inventory,	
it	is	important	to	measure	and	record	all	items	

in	 a	 sample	 plot	 that	 meet	 the	 definitions/
specification	 of	 the	 desired	 attribute	 (for	
more	 information	 visit	 the	 chapter	 Sample	
Designs).	 Data	 definitions/criteria	 can	 be	
based	 on	 demographic	 characteristics.	 For	
trees,	 for	 example,	 it	 could	 be	 a	 minimum	
size	 limit,	 often	 expressed	 as	 a	 minimum	
diameter such as, say, 10 cm. Criteria may also 
limit	measurements	to	certain	species	or	tree	
characteristics of interest.
It	 is	 important	 to	 remember	 that	 limiting	

inventory	 data	 and	 observations	 to	 items	
(trees,	shrubs,	snags,…)	that	meet	established	
definitions/criteria	equally	limits	the	inference	
and estimates we can derive from these data 
to	the	parts/units	of	the	forest	population	that	
satisfy	 the	 definitions/criteria	 (see	 chapter	
on	 Observations	 and	 Measurements).	 For	
example,	 if	 stem-wood	volume	 estimates	 for	
live trees are estimated only for trees with a 
diameter	at	breast	height	greater	than	10	cm,	
then	 it	will	 not	 be	 possible	 to	 estimate	 total	
volume	or	biomass	for	the	forest	of	interest.	
To	 paraphrase,	 the	 results	 apply	 only	 to	

population	 elements	 with	 a	 known	 positive	
probability	of	being	included	in	the	inventory	
sample	(Thompson	1992,	p	21)	(see	section	on	
sampling	design	and	estimation).
Sample	 unit	 summaries	 do	 not	 usually	

include values for all items measured. For 
example,	 trees	 are	 often	 aggregated	 into	
groups	based	on	species,	demographics	such	
as diameter, height, or social status (section 
2.2),	 hierarchy	 such	 as	 functional	 group	
(section 2.3), or the total stand. Aggregation 
may	be	one-dimensional	(e.g.,	total	volume	by	
species)	 or	 multi-dimensional	 (e.g.,	 volume	
by	diameter	 class	 by	 species)	 as	 appropriate.	
Aggregation of inventory items can also 
be	 based	 on	 land-use	 pattern	 (e.g.	 shifting	
cultivation)	or	future	planned	use	of	a	resource	
item	(e.g.	fuel-wood).
The	 consequences	 of	 any	 aggregation	 of	

observed/measured	 items	 on	 analysis	 and	
inference	 should	 always	 be	 considered	
carefully (Clark and Avery 1976). Once data 
are	 aggregated,	 it	 is	 usually	 difficult	 -	 if	 not	
impossible	 -	 to	 recover	underlying	details	 at	
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a	later	stage	should	it	become	desired	(Ritchie	
and Hann 1997). To conserve a desired 
accuracy	 and	 precision	 of	 estimates,	 it	 is	
often	 better	 to	 postpone	 aggregation	 to	 the	
analytical	 phase	 that	 follows	 completion	 of	
field	 data	 collection.	 However,	 for	 practical	
and	 cost-saving	 reasons,	 aggregation	 often	
occurs	 during	 field	 observation.	 Instead	 of	
measuring, say, the diameter of each tree in a 
field	plot	to	the	nearest	0.1	cm,	counts	of	trees	
by	5-	or	even	10-cm	diameter	class	are	often	
practiced	 due	 to	 expediency.	 In	 this	 case,	
the	 class	mid-points	 are	 usually	 used	 in	 the	
analytical	phase.	Note,	an	aggregation	always	
has	the	potential	to	introduce	additional	error	
and	 possibly	 a	 bias	 in	 the	 resulting	 estimate	
(Ducey 1999).  Of course, aggregation greatly 
simplifies	field	procedures	and	may	well	result	
in	greater	overall	precision	if	the	savings	due	
to	 efficiency	 is	 used	 instead	 to	 collect	more	
field	data,	but	the	trade-off	is	far	from	simple;	
we reiterate our caution against uncritical 
aggregation.

2.1 Aggregation by Species
Estimates	 of	 totals	 and	 per	 unit	 area	 values	
for	a	stand,	a	forest,	or	a	region,	are	frequently	
aggregated	 over	 species	 meeting	 a	 certain	
definition/criterion	 with	 respect	 to	 size	 or	
use.	 	As	stated	above,	 it	 is	 important	 that	all	
species	 which	 enter	 the	 inventory	 sample	 -	
and	 otherwise	 meet	 the	 definition/criterion	
-	be	duly	observed	and	 recorded.	Otherwise	
the	estimates	will	become	biased.	Note,	when	
a	 species	 can’t	 be	 identified	 by	 a	 field	 crew,	
it	 should	be	given	a	name	with	helpful	hints	
towards	 a	 later	 identification	 (e.g.	 shape	 or	
size	of	 foliage,	 fruit-bodies,	 branching,	 bark,	
…).	Aggregation	by	species	during	field	data	
collection	may	be	in	order	during	surveys	of	
biodiversity	and	in	count-oriented	surveys	of	
disease	 and	 insect	 damage,	 but	 otherwise	 is	
not recommended. 
It	is	common	in	temperate	forests	to	develop	

estimates	 of	 stand	 characteristics	 by	 species.	
In	 tropical	 forests,	 this	 can	 be	 difficult,	 and	
probably	 even	 more	 difficult	 to	 interpret,	
due	 to	complex	stand	structures	or	 the	 large	

number	of	species	(Higgins	and	Ruokolainen	
2004).	In	some	instances,	species	are	combined	
by	 ecological	 functional	 group	 (e.g.,	 canopy	
dominants).	This	often	results	in	a	manageable	
number	 of	 species	 groups	 that	 are	 relatively	
easy	 to	 interpret	 in	 terms	of	 forest	 structure	
(Gadow 1999). Commercial utility and silvics 
are	also	considered	for		species	grouping	

In national or continental scale summaries, 
species	groups	may	be	developed	for	reporting	
purposes	due	to	the	large	numbers	of	potential	
species	(Burns	and	Honkala	1990).	A	species	
group	 labeled	 “Pine”,	 for	 example,	 may	
include	 all	 Pinus	 species	 occurring	within	 a	
geographic	area	of	interest.	

2.2 Aggregation by Size
Trees	are	often	aggregated	by	demographics,	
meaning that trees of similar sizes or social 
status	 are	 combined	 into	 groups	 for	 data	
summaries or field data collection. Aggregation 
by	size	for	reporting	and	analysis	purposes	is	
generally	 straightforward	 except	 when	 the	
inclusion	probabilities	(viz.	expansion	factors)	
associated with the inventory data are linked 
to	the	size	of	trees	(Köhl	et	al.	2006,	p	155).
In	the	field	an	aggregation	of	trees	by	diameter	

(e.g.,	5-cm	diameter	class)	is	probably	the	most	
common	method	of	aggregation.	The	number	
of trees in each diameter class is tallied, and 
diameter	 class	 midpoints	 are	 used	 in	 the	
subsequent	analyses	to	estimate	variables	like	
volume	or	biomass.	A	minimum	diameter	of	
trees	 to	 be	 measured	 is	 usually	 specified	 in	
field	measurement	 protocols.	Thresholds	 for	
inclusion/measurement	are	defined	according	
to	 the	 purpose	 of	 the	 survey.	 Usually	 the	
minimal	commercial	diameter	-	or	one	to	two	
diameter	classes	below	that	threshold	is	used.	
A	stratification	of	sampling	efforts	by	size	is	an	
inevitable	practical	constraint	when	sampling	
odd-shaped,	 highly	 variable	 and	 scattered	
objects.	 An	 example	 is	 sampling	 for	 coarse	
woody	debris	(Roth	et	al.	2003;	Williams	et	al.	
2005).
Note,	if	trees	are	selected	with	a	probability	

proportional	 to	 their	 size,	 a	 use	 of	 diameter	
classes	 can	 be	 problematic	 (Ducey	 2000).	
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Since forest inventory data are often used 
repeatedly	 for	 many	 diverse	 purposes,	 it	 is	
preferable	to	keep	data	in	the	form	they	were	
captured.	 For	 example,	 a	 user	 who	 want	 to	
model	 the	 diameter	 distribution	 (Cao	 2004;	
Gove	and	Patil	1998)	would	be	better	served	
by	non-aggregated	data.
Trees	may	also	be	aggregated	by	height	class,	

which	 may	 have	 bearing	 on	 the	 resulting	
wood	 products	 that	 may	 be	 derived	 (Köhl	
et	 al.	 2006,	 p	 36).	 Height	 class	may	 also	 be	
used to aggregate trees for analysis of grazing 
forage	availability	or	wildlife	habitat	structure	
(Spetich	and	Parker	1998).		Height	aggregation	
is	 probably	 more	 common	 in	 ecological	 or	
grazing surveys than in surveys that focus on 
assessment	 of	 commercial	 fiber	 utilization	
opportunities.	
Finally,	 trees	 may	 be	 grouped	 by	 their	

position	in	the	forest	canopy,	such	as	canopy	
dominants	(Gargaglione	et	al.	2010;	Nigh	and	
Love	2004).	This	type	of	classification	is	more	
useful in ecological surveys than in surveys 
attempting	to	inventory	commercial	material.	
Structural classification may have a great deal 
of	 importance	 in	 evaluating	 forage	 potential	
or	other	non-fiber	commercial	potential.	

2.3 Aggregation by Hierarchy
Trees	 may	 be	 aggregated	 in	 various	
hierarchical	systems	for	analysis	and	reporting	
(Mairota	et	al.	2002).	Trees	may	be	aggregated	
in	 a	 biological	 hierarchy	 (individual	 trees	 →	
species	→	ecological	functional	group→	stand).	
Trees	could	also	be	aggregated	in	a	utilization	
hierarchy	(individual	trees	→	diameter	class→	
product	 class	 →	 species	 →	 stand).	 Reporting	
may include summaries for any or all levels of 
the hierarchy. 
Aggregation	also	occurs	at	the	spatial	scale	

(e.g.Wolf	2005).	The	spatial	unit	can	be	a	stand,	
or	 a	 smaller	 unit	 (say	 a	 pixel	 in	 a	 remotely	
sensed imaged). Aggregation is then done 
across	all	units	that	meet	a	certain	requirement	
related	to	their	forest	attributes	or	data	values.	
The	 purpose	 of	 a	 spatial	 aggregation	 could	
be	 for	 reporting	 and	 analysis,	 or	 to	 improve	
sampling	 efficiency	by	 stratification	 (Köhl	 et	

al.	 2006,	 p	 105).	 In	 the	 analysis	 of	 spatially	
aggregated	data,	it	is	imperative	to	recover	all	
pertinent	information	as	to	the	genesis	of	the	
data	 (observed,	 sample-based,	 model-based,	
predicted,	 imputed,	 interpolated,	 …)	 and	
any	available	estimates	of	accuracy	and	bias.	
Spatial	 covariance	 among	 aggregated	 forest	
resource	data	types	can	greatly	complicate	the	
statistical	analysis	of	spatially	aggregated	data	
(Mairota	et	al.	2002;	Rossi	et	al.	2009;	Schwab	
and	Maness	2010;	Waser	and	Schwarz	2006).
In	 spatial	 aggregations	 the	 spatial	 units	

may	be	aggregated	by	forest	type	(e.g.,	moist	
tropical)	or	geographic	region	for	analyses	at	
regional	or	national	levels.	Geographic	region	
may	 be	 based	 on	 political	 delineations	 (e.g.	
state	 or	 provincial	 boundaries)	 or	 ecological	
zones, e.g. Holdridge life zones (e.g.Ni et al. 
2005). Aggregation at the stand level may 
occur	 after	 estimation	 (prediction)	 of	 the	
variables	of	interest	for	each	sampling	unit	in	
a	stand.The	appropriate	methodology	for	the	
aggregation	 is	 determined	 by	 the	 sampling	
design	 and	 survey	 objectives.	 Aggregation	
may	be	built	into	the	sampling	design	through	
use	 of	 stratified	 sampling	 (De	Vries	 1986,	 p	
31). 

2.4 Aggregated Class Estimation
For	 trees	 measured	 on	 fixed	 area	 plots,	
estimates	 of	 per	 hectare	 values	 are	 obtained	
by	 dividing	 the	 respective	 individual	 tree	
characteristics	by	the	size	of	the	area	sampled:	

1
ijn

ij ijk
k

Y A X−= ∑
Yij	=	estimated	per	hectare	quantity	of	 the	

measured	variable	for	the	ith	sampling	
unit and the jth aggregation class with 
nij	observations	of	X;	

Xijk	=	value	of	the	measured	variable	for	the	
kth	tree	in	the	ith	sampling	unit	and	jth 
aggregation	class;

A = size in hectares of the individual 
sampling	unit.	

For	 trees	 measured	 on	 variable	 radius	
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sampling	 units,	 (see	 Observations	 and	
Measurements	chapter	for	more	information)	
estimates	 of	 per	 hectare	 values	 are	 obtained	
by	 dividing	 the	 respective	 individual	 tree	
characteristics	 by	 the	 basal	 area	 of	 the	
measured	 tree,	 and	multiplying	 by	 the	 basal	
area	expansion	factor:

Yij	=	estimated	per	hectare	quantity	of	 the	
measured	variable	for	the	ith	sampling	
unit and the jth aggregation class with 
nij	observations	of	X;

BAF	=	 basal	 area	 factor,	 equivalent	 to	 the	
basal	area	per	hectare	represented	by	
each	measured	tree;

Xijk	=	value	of	the	measured	variable	for	the	
kth	tree	in	the	ith	sampling	unit	and	jth 
aggregation	class;

Bijk	=	basal	area	in	m2 of the kth measured 
tree in the ith	 sampling	 unit	 and	 jth 
aggregation class. 

An estimate of a total ( )Ŷ  or a mean ( )Ŷ  
for	 a	 population	 parameter	 -	 obtained	 by	 a	
probability	sampling	design	-	follows	the	basic	
principles	 behind	 the	 Horwitz-Thomson	
estimator (Overton and Stehman 1995):  

1 1ˆˆ ˆ,i ii s
Y Y Y Y Nπ − −

∈
= × = ×∑

where summation is over the units (i) in 

the	sample	(s)	and	 iπ 	is	the	sample-inclusion	
probability	of	the	ith	sampled	unit	(see	section	
on	Sampling	Design).	For	a	population	with	
N units, the estimation is sometimes done 
with	 a	mixture	 of	 n	 sample-based	 unit-level	
observations,	and	N-n	estimates	derived	from	
models	 or	 otherwise	 imputed	 (McRoberts	
2006;	 McRoberts	 et	 al.	 2002).	 In	 this	 case	
the	 estimator	 for	 the	 total	 is	 simply	 the	
sum	 of	 all	 N	 unit-level	 values	 (observations	
and	 estimates).	 The	 associated	 estimator	 of	
accuracy may follow directly from statistical 
theory (Overton and Stehman 1995). In more 
complicated	cases	an	application	of	the	delta-
technique	is	required	(Davison	2003,	p	33-35).

Estimation	 of	 population	 parameters	 from	
units	 of	 observation	 is	 done	 on	 a	 routine	
basis	 in	 forest	 inventories	 (see	 chapter	
on	 sampling	 design).	 There	 are	 two	 basic	
sampling	 units	 commonly	 used	 in	 forest	
inventory	 applications:	 1)	 fixed	 area	 plots,	
and	2)	variable	radius	plots	(e.g.Corona	et	al.	
2010).	Transect	sampling	are	special	cases	of	
fixed	 area	 plots	 and	 can	 be	 treated	 similarly	
in	many	 applications	 (Hedley	 and	 Buckland	
2004).	In	most	cases,	estimates	of	the	variables	
of	interest	are	obtained	for	each	sample	unit,	
and	then	combined	to	obtain	estimates	for	the	
larger	area	(aggregate)	of	interest.	The	method	
of	 combining	 estimates	 from	 individual	
sampling	units,	and	the	methods	of	estimating	
associated	precision	of	the	estimates,	depends	
on	the	sampling	design.	

2.5 Implications of Aggregation 
in Estimation and Modeling
Aggregation at the field data collection 
phase	 simplifies	 field	 data	 collection	 and	
may	 improve	 the	 relative	 accuracy.	We	 have	
already outlined some of the statistical issues 
in connection with data aggregation. A 
summary	is	provided	next.
The	potential	downside	of	data	aggregation	

during	the	data	collection	phase	is	a	possible	
introduction	 of	 bias	 and	 an	 almost	 certain	
reduction	 in	 both	 accuracy	 and	precision	of	
resulting estimates due to the introduction of 
error	(Clark	and	Avery	1976).	Combining	all	
trees	within	a	species	class,	for	example,	results	
in a loss of information on individual tree 
sizes.	Since	forest	inventory	data	are	typically	
used	 for	 multiple	 purposes	 and	 in	 multiple	
combinations,	 it	 is	 in	 general	 advisable	 to	
limit	any	aggregation	to	the	reporting/analysis	
phase	of	an	inventory.
Decisions	 about	 aggregation	 during	 field	

data collection also affect future utility of 
the collected data. New and emerging issues 
important	 to	 forestry	 may	 require	 details	
that	 were	 lost	 due	 to	 economic	 pressures	 of	
expediency.	 It	 is	 not	 possible,	 for	 example,	
to	 explore	 many	 aspects	 of	 biodiversity	 if	
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species	 have	 been	 aggregated	 during	 field	
data	collection.	The	increased	use	of	remote-
sensing	 techniques	 in	 forest	 inventories	
(Tomppo	 et	 al.	 2008)	 can	 be	 viewed	 as	 an	
aggregation	process	(in	extremis).

A disaggregation of aggregated data is only 
possible	if	one	is	willing	to	make	assumptions	
about	 the	 frequency	 distribution	 of	 possible	
data	values	 that	have	been	aggregated	 into	a	
single	 value	 (Papalia	 2010).	 Only	 rarely	 can	
such	assumptions	be	justified.	

3. Volume estimation
Volume is the most widely used measure of 
wood	quantity.	It	is	usually	estimated	for	the	
assessment of economic value or commercial 
utilization	 potential.	The	wood	 volume	may	
refer	 to	 a	 specific	 portion	 or	 part	 of	 a	 tree	
or	 the	 whole	 tree.	 The	 total	 wood	 volume	
of a tree includes the volumes of stem(s), 
branches,	stump,	and	roots.	For	standing	trees,	
aboveground	volume	production	is	generally	
based	on	stem	wood	volume	for	conifers,	but	
may	include	branch	volume	for	broad-leaved	
tree	species.	
Depending	 on	 measurement	 objective	

and local traditions, measurements or 
predictions	of	wood	cubic	volume	may	refer	
to,	 for	example,	 total	stem	volume,	 total	 tree	
volume	 (stem	 and	 branches),	 or	 the	 volume	
of	 portions	 of	 a	 tree	 intended	 for	 a	 specific	
utilization	 (Köhl	 et	 al.	 2006,	 p	 47).	 Volume	
estimates	 may	 include	 or	 exclude	 bark	 and,	
for	aboveground	estimates,	include	or	exclude	
the	stump.	Volume	is	always	a	cubic	measure,	
and	 usually	 expressed	 in	 cubic	 meters.	
Merchantable	volume,	however,	is	sometimes	
expressed	in	other	units	related	to	commercial	
use (Skovsgaard 2004).

In the field, the volume of standing trees is 
typically	estimated	 from	such	measurements	
as	diameter,	or	diameter	plus	some	height	of	
interest	(e.g.	merchantable	height,	total	height,	
or	height	to	a	usage	specified	diameter	limit).	
A	subsequent	application	of	a	suitable	volume	
equations,	 taper	equations,	or	a	 log-rule	will	
then	 produce	 the	 desired	 volume	 estimate	
(Lynch	1988;	1995;	Tesfaye	2005;	Tomé	et	al.	

2007;	Yamamoto	1994a;	1994b).
Volume	may	be	measured	directly	on	felled	

trees	 or	 logs,	 but	 is	 often	 estimated	 from	
dimensions such as minimum diameter 
or	 piece	 length	 (Husch	 et	 al.	 1972).	 Direct	
measurement	 of	 volume	 is	 usually	 done	 by	
sectioning	a	tree	into	smaller	pieces	assumed	
to	 be	 cylinders	 (Köhl	 et	 al.	 2006,	 p	 50).	
Volume	may	 be	 estimated	 for	 stacks	 of	 logs	
or	 processed	 products	 by	 measuring	 their	
dimensions. Local knowledge is needed to 
make	 the	 appropriate	 transformation	 to	 an	
estimate of the solid wood volume. 

With the advance of remote sensing 
technology,	 especially	 LiDAR	 (see	 chapter	
on	 Remote	 Sensing),	 it	 is	 now	 possible	 to	
combine	field-based	 estimates	of	 volume	 for	
a	 spatial	 unit	 (plot)	with	 a	 suite	 of	 remotely	
sensed	 ancillary	 variables	 in	 order	 to	 obtain	
either	 model-based	 predictions	 of	 per-unit	
area	volume	or	per-tree	 estimates	of	 volume	
for	 trees	 large	 and	 distinct	 enough	 to	 be	
identified with a high degree of confidence 
(Maltamo	et	al.	2004a;	Maltamo	et	al.	2004b;	
Parker	and	Evans	2004;	Popescu	et	al.	2003).

3.1 Volume Equation Forms
Stem	 volume	 (V)	 is	 usually	 expressed	
quantitatively	 as	 a	 function	of	diameter	 (D),	
or	diameter	and	height	 (H)	or	merchantable	
length.	 Occasionally,	 other	 variables	 such	
as	 clear	 bole	 length	 are	 used	 to	 estimate	
volume	 (Husch	 et	 al.	 1972).	 An	 important	
consideration	 is	 that	 any	 variable	 needed	 to	
predict	 volume	 should	 be	 observed	 during	
field	 data	 collection.	 The	 following	 two	
‘classic’	 models	 are	 often	 used	 	 (Köhl	 et	 al.	

2006,	p	50)	:		 ,  alternatively V D H V D Hς ψα β ω= + × × = × × alternatively 
2 ,  alternatively V D H V D Hς ψα β ω= + × × = × ×  where,	 in	 both	 cases,	 α,	 β	

and	γ	are	coefficients	to	be	determined	from	
specific	 (small)	 samples	 where	 tree	 volumes	
are carefully determined, or known from 
previous	 studies	 viz.	 subject	 knowledge.	
When	 tree	 height	 can	 be	 expressed	 as	 a	
function	of	diameter	(Begin	and	Raulier	1995;	
Huang	and	Titus	1992;	Jayaraman	and	Lappi	
2001;	Moore	 et	 al.	 1996;	 Nanos	 et	 al.	 2004;	
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Zhou	 and	 McTague	 1996)	 the	 relationship	
can	 be	 built	 into	 a	 volume	 prediction	 based	
on	 diameter	 alone.	 Tabulated	 look-up	 tables	
of	stem	volume	for	a	given	species,	 location,	
and	 stem	 diameter	 are	 called	 volume-tariffs	
(Fonweban	 and	 Houllier	 1997;	 Magnussen	
1998;	Paine	and	McCadden	1988).
Choice	of	model	may	depend	on	modeling	

objective	and	data	(Skovsgaard	2004).	The	listed	
equations	implicitly	assume	a	single-stemmed	
tree	 form	 and	 may	 require	 modification	 or	
replacement	for	species	with	a	more	complex	
form.	At	times	a	volume	equation	is	easier	to	
fit to data after a logarithmic transformation 
because	the	transformation	brings	the	model	
into	 a	 linear	 form.	However,	 a	 negative	 bias	
is	 introduced	 when	 the	 predicted	 logarithm	
of	 V	 is	 converted	 back	 to	 arithmetic	 units	
(Baskerville	 1972;	 Bi	 et	 al.	 2001;	 Lee	 1982;	
Wiant	 and	 Harner	 1979).	 This	 bias	 is	
approximately	the	order	of	magnitude	of	one-
half	of	 the	residual	variance	of	 the	equation,	
at	 least	when	 it	 can	be	 justified	 to	 assume	 a	
normal	distribution	of	model	residuals.
In	 the	 absence	 of	 a	 trusted	 local	 volume	

equation(s),	it	is	possible	to	utilize	geometric	
relationships	 to	 approximate	 volume.	 The	
volume	 of	 a	 cylinder	 is	 simply	 the	 area	 of	
the	 base	 times	 the	 height,	 and	 the	 volume	
of	 a	 cone	 is	 one-third	 of	 the	 volume	 of	 a	
cylinder	with	 the	 same	 area	 of	 the	 base	 and	
height. Trees are neither cones nor cylinders, 
but	empirical	analyses	often	indicate	that	the	
volume	of	 a	 single-stemmed	 tree	 is	 between	
that of a cone and a cylinder, with tree volume 
often	lying	between	0.40	and	0.45	times	that	of	
an	equivalent	cylinder.	Using	a	value	of	0.42,	
for	example,	we	get	 0.42V B H≈ × ×  where B 
is	tree	basal	area	at	breast	height	and	H	is	tree	
merchantable	height.	This	equation	will	often	
overestimate	volume	of	open-grown	trees	with	
more conic form, underestimate the volume 
of trees with more cylindrical form, and may 
need	 to	 be	 modified	 for	 species	 with	 more	
complex	forms.	Nevertheless,	it	does	provide	
a	 first	 approximation,	 that	 subsequently	 can	
be	modified	following	local	experience.
Volume	 equations	 derived	 from	 remotely	

sensed	predictors	are	typically	linear	(possibly	
after a logarithmic transformation) with 
a	 model	 form	 that	 depends	 on	 the	 sensor	
type,	 data	 resolution	 and	 scale	 (Biggs	 1991;	
Magnusson	et	al.	2007;	McRoberts	et	al.	2007;	
Straub	et	al.	2010;	Yu	et	al.	2008).
Application	 of	 any	 model	 means	 that	 the	

ensuing	 estimates	 are	 not	 exact.	 Estimates	
derived	 from	models	 may	 be	 biased	 due	 to	
limitations of the model, and in all cases they 
are	 predictions	 of	 the	 value	 that	 is	 expected	
given	 the	 value	 of	 the	 predictors	 (Kangas	
1996).	 For	 example,	 if	 you	 predict	 a	 stem	
volume from D and H using a local volume 
equation	then	the	estimated	value	of	V	should	
be	interpreted	as	the	average	value	of	all	trees	
in	the	population	with	the	exact	same	D	and	
H	values.	The	actual	tree	in	question	may	have	
a volume that is either greater or less than the 
expected	value	(Gregoire	and	Williams	1992).	
If	 a	 model	 turns	 out	 to	 produce	 estimates	
with	 an	 unacceptable	 high	 level	 of	 bias	 it	
may	 become	 necessary	 to	 either	 develop	 an	
improved	 model	 or	 to	 calibrate	 an	 existing	
model	(Erdle	and	MacLean	1999;	Kangas	and	
Maltamo	2000;	Lappi	1991).

4. Biomass estimation
Biomass is defined as the total mass of living 
plant	 organic	 matter	 expressed	 as	 oven-
dry	 tons	 or	 oven-dry	 tons	 per	 unit	 area.	
Estimates	of	biomass	may	be	restricted	to	the	
aboveground	 portion	 of	 the	 vegetation,	 to	
trees,	or	to	tree	components	(such	as	foliage,	
wood, etc.) (Gschwantner et al. 2009).
Biomass	of	a	forest	stand	(compartment)	is	

often	 proportional	 to	 the	 volume	 and	 basal	
area	of	the	stand.	Conversely,	the	biomass	of	
a	 single	 tree	 is	 typically	 proportional	 to	 its	
diameter	and	height	(Teobaldelli	et	al.	2009).	
Allocation	 of	 biomass	 to	 various	 functional	
components	 is	 related	 to	 species,	 growing	
conditions,	 and	 the	 water-,	 nutrient-,	 and	
energy-requirements	 of	 individual	 plants	
and	 stands	 (Gargaglione	 et	 al.	 2010;	 Zhang	
and	 Borders	 2004).	 The	 carbon	 content	 of	
vegetation	 is	 directly	 related	 to	 biomass	 as	
discussed in the following section.
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Direct	 estimation	 of	 forest	 biomass	 is	 a	
labor-intensive	 and	 costly	 proposition.	 A	
stratified	sampling	for	a	field-based	estimation	
of	biomass	per	unit	 area	 is	 the	only	 realistic	
approach	(Loaiza	Usuga	et	al.	2010).	Strata	are	
typically	defined	based	on	clearly	identifiable	
components	of	the	living	vegetation	(e.g.	fungi,	
mosses,	 herbs,	 grasses,	 shrubs,	 seedlings,	
saplings,	 trees,	 epiphytes).	 The	 biomass	 in	
each	sampling	unit	is	determined	by	weighing	
after	 drying	 following	 standard	 protocols	
(Gabriëls	 and	 Berg	 1993).	 Sample	 items	
(e.g.	trees)	too	large	for	a	practical	and	cost-
effective handling, are sectioned to smaller 
piece-sizes,	and	a	sample	of	the	smaller	pieces	
is	 then	 taken	 for	 biomass	 estimation.	 It	 is	
critically	 important	 that	 the	 dissection	 and	
sample	plan	ensures	an	unbiased	estimator	of	
the	biomass	of	large	items	(Ahmed	et	al.	1983;	
Cancino	 and	 Saborowski	 2005;	 Good	 et	 al.	
2001;	Gregoire	et	al.	1995).

4.1 Biomass Components
Biomass	may	be	estimated	in	total	for	stands	
or	portions	of	stands	as	noted,	but	information	
on	biomass	distribution	by	plant	component	
is	often	needed.	Biomass	components	may	be	
divided	 as	necessary	 for	 a	 given	 application,	
but	 often	 include	 categories	 such	 as	 stem	
wood,	branch	wood,	foliage,	bark,	roots,	etc.,	
with	more	 or	 fewer	 subdivisions	 as	 needed.	
A common constraint is that the sum of the 
component	biomass	estimates	must	equal	the	
total	 biomass	 for	 the	 stands	 or	 portions	 of	
stands of interest. 
In	 many	 applications,	 only	 above	 ground	

biomass	 estimates	 are	 used.	 There	 are	
obviously	 belowground	 components	 to	
biomass	 (such	 as	 coarse	 roots,	 fine	 roots,	
etc.),	but	studies	quantifying	these	values	are	
difficult	 to	 conduct,	 are	 available	 for	 only	 a	
small	number	of	species	and	ecosystems,	and	
typically	have	low	precision	in	the	data	(Lukac	
and	Godbold	2010;	Macinnis-Ng	et	al.	2010;	
Niiyama	et	al.	2010;	Pramod	and	Mohapatra	
2010;	Zhang	et	al.	2010a).	
At	the	stand	level,	biomass	may	be	estimated	

for	the	overstory,	shrubs,	herbs,	lichens,	moss,	

etc. In forested situations, the overstory 
biomass	 usually	 dominates.	 There	 are	 cases	
where tree cover is low and overstory or tree 
biomass	is	smaller	compared	to	that	of	other	
ecosystem	 components.	 The	 decision	 on	
which	biomass	 components	 are	necessary	 to	
consider	is	dependent	on	the	ecosystems	to	be	
surveyed and the intended use of the resulting 
information. 
Cannell	 (1982)	 presents	 a	 compendium	 of	

worldwide	biomass	data	from	a	cross-sections	
of	 	 ecosystems.	 The	 compendium	 includes	
ratios	for	various	biomass	components	for	many	
forest	 types.	 As	 per	 2010	 this	 compendium	
remains the single most authoritative 
compilation	of	benchmark	biomass	figures.	A	
smaller	set	of	biomass	estimates	can	be	found	
in	a	recent	re-evaluation	of	forest	biomass	and	
carbon	storage	(Keith	et	al.	2009).

4.2 Biomass Equations
Biomass	equations	are	used	to	predict	biomass	
from	readily	available	ancillary	variables	(X). 
The	 equations	 may	 predict	 the	 biomass	 of	
a	 single	 tree	 or	 the	 tree	 biomass	 on	 a	 unit	
of	 forest	 land.	 Tree-level	 equations	 express	
biomass	 as	 a	 function	 of	 tree	 dimensions	
(diameter	 and	 height).	 Equations	 for	 unit-
area	 predictions	 of	 biomass	 vary	 according	
to	 the	 ancillary	 variable(s)	 (X).	 Equations	
driven	 by	 field-related	 X-variables	 generally	
apply	stand-level	attributes	such	as	basal	area,	
mean	 tree	 size	 (height/diameter)	 or	 similar	
aggregates	 of	 tree-level	 attributes.	 Equations	
driven	 by	X-variables	 obtained	 via	 remotely	
sensed	 data	 (Gallaun	 et	 al.	 2010;	 Wijaya	 et	
al.	 2010;	 Zhao	 et	 al.	 2009)	 vary	 according	
to	 the	 sensor-type	 and	 resolution	 behind	
X.	 In	 many	 cases,	 the	 biomass	 used	 as	 the	
dependent	 variable	 (Y)	 in	 these	 equations	 is	
rarely	a	direct	estimate	of	biomass	but	rather	
an	estimate	obtained	by	another	set	of	models	
that	‘expands’	available	inventory	estimates	of	
tree	and	stand	attributes	to	the	desired	biomass	
component(s)	(Albaugh	et	al.	2009;	Gallaun	et	
al.	2010;	Jalkanen	et	al.	2005;	Lehtonen	et	al.	
2004;	Levy	et	al.	2004;	Schroeder	et	al.	1997;	
Somogyi	 et	 al.	 2008;	 Teobaldelli	 et	 al.	 2009;	
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Wijaya	et	al.	2010;	Zhao	et	al.	2009).
Equations	 applied	 to	 forest	 inventory	 data	

are	 usually	 developed	 for	 particular	 species	
or	 species	 groups,	 and	 may	 be	 developed	
with	 data	 collected	 from	 narrow	 geographic	
ranges.	 There	 are	 some	 examples	 described	
below	 where	 more	 widely-applicable	
equations	 have	 been	 developed	 through	 a	
synthesis	of	published	studies.	Cannell	(1984)	
presented	 equations	 to	 estimate	 stand	 level	
woody	 biomass	 from	 total	 stand	 basal	 area	
and average tree height for a wide range of 
temperate	and	tropical	stand	types;	most	of	the	
equations	are	for	temperate	coniferous	forest	
types.	 These	 equations	 are	 simple	 to	 apply	
since	 they	use	 variables	 commonly	obtained	
during	field	data	collection.	Application	is,	as	
a	rule,	for	stand	level	(plot)	estimation	rather	
than for tree level estimation.
At	 the	 individual	 tree	 level,	 Jenkins	 et	 al.	

(2003)	 give	 composite	 equations	 applicable	
for	 temperate	 species	across	North	America.	
Teobaldelli	 et	 al.	 (Teobaldelli	 et	 al.	 2009)	
provide	a	similar	set	of	generalized	equations	
for	 five	 species	 groups	 in	 Europe.	 These	
equations	could	be	applied,	with	appropriate	
qualification,	to	other	temperate	forest	types.	
We	 shall	 give	 an	 example	 of	 a	 generalized	

equation	 used	 by	 Jenkins	 et	 al.	 (2003).	
Specifically,	 the	 Schumacher	 equation	where	
total	 aboveground	 biomass	 is	 estimated	
for	 individual	 trees	 based	 on	 an	 allometric	
relationship	 with	 diameter	 at	 breast	 height:		

( )( )0 1 lnb b DB e += 	 where	 B	 is	 total	 aboveground	
biomass	 (kg)	 for	 trees	 2.5	 cm	 and	 larger	 in	
diameter	 at	 breast	 height	 (D).	 Coefficients	
are	given	 for	both	deciduous	and	coniferous	
species	 groups	 throughout	 all	 regions	 of	 the	
United	 States.	 Broad	 species	 groupings	 are	
utilized	(Pine,	 for	 instance,	and	Spruce,	with	
a total of five coniferous and four deciduous 
species	 groups).	 Teobaldelli	 et	 al.	 provide	
equations	 for	 the	 expansion	 factor	 (BEF)	
needed to convert an estimate of growing 
stock	 (X)	 to	 an	 estimate	 of	 biomass	 (B).	 A	
widely	used	expansion	equation	has	the	form		

2
0 1

bBEF b b X −= + ×  whereby	X	is	a	measure	

of the growing stock.
Brown	 (1997)	 presents	 equations	 for	

individual	 trees	 in	 tropical	 forests.	 For	
broadleaved	 species,	 two	 equations	 are	
presented	 for	 Tropical	 Dry	 forests,	 two	 for	
Tropical	Moist	 forests,	 and	 one	 for	 Tropical	
Wet	 forests.	 In	 addition,	 one	 equation	 is	
presented	for	palms	and	another	for	Tropical	
Conifer	 forests.	 All	 of	 these	 equations	
express	individual	tree	biomass	as	a	function	
of diameter and height, though different 
specific	 equation	 forms	 are	used	 in	different	
applications.
The	biomass	of	various	biomass	components	

is commonly estimated from models of the 
distribution	(allocation)	of	the	above-ground	
forest	 tree	 biomass	 to	 specific	 components	
(stem,	 bark,	 stump,	 branches,	 foliage,	 fruit/
seed).	Continuing	the	example	from	Jenkins	et	
al.	(2003),	the	proportion	of	the	total	biomass	
in	 the	 ith	 biomass	 component	 of	 a	 tree	 can	
be	estimated	from,	say,	 the	 tree’s	diameter	at	

breast	height	as	in	
1

0 1b b D
ir e

−+ ×= . 
Note,	 the	 ‘conversion’	 	 from	 one	 or	 more	

readily	 available	 inventory	 attributes	 of	
growing	stock	to	biomass,	and	then	to	biomass	
components	via	a	set	of	generalized	equations	
is	 only	 simple	 in	 principle.	There	 are	 many	
factors	and	circumstances	that	can	cast	doubt	
on	 an	 estimate	 of	 biomass	 obtained	 with	
generalized	 equations	 (Albaugh	 et	 al.	 2009;	
Jalkanen	 et	 al.	 2005;	 Lehtonen	 et	 al.	 2004;	
Retzlaff	et	al.	2001).	It	is	therefore	incumbent	
upon	 the	 analyst	 to	 exercise	 great	 diligence	
with	respect	to	choice	of	model	and	intended	
application	of	a	chosen	model.	The	limitation	
and	 error-structure	 of	 many	 generalized	
models	 and	 allometric	 biomass-allocation	
formulae are often not well documented.

5. Carbon content 
estimation

Regional and national estimates of ecosystem 
carbon	 content,	 and	 change	 in	 ecosystem	
carbon	 content	 over	 time,	 are	 important	
components	 for	 an	 assessment	 of	 global	
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carbon	cycling	and	its	impact	on	atmospheric	
greenhouse	gases	and	climate	(Birdsey	2006;	
Cairns	 and	 Lasserre	 2006;	 Waterworth	 and	
Richards	 2008;	 Watson	 2009).	 International	
agreements	 are	 requiring	 improvements	 in	
the	ability	 to	assess	 forest	carbon	stocks	and	
their	 change	 (Dutschke	 and	 Pistorius	 2008;	
Kägi	and	Schmidtke	2005;	Zhang	et	al.	2009).
In	 this	 context,	 it	 has	 become	 increasingly	

important	to	quantify	the	carbon	content	that	
resides in forests and forested ecosystems and 
its	 contribution	 to	 the	 carbon	 cycle.	 Forest	
inventories	make	significant	contributions	to	
estimates	 of	 carbon	 in	 forested	 ecosystems	
because	 the	 carbon	 content	 is	 relatively	 easy	
to	assess	for	the	components	of	the	vegetation	
captured	by	an	inventory	(Dupouey	et	al.	2010;	
Nabuurs	2010;	Rodeghiero	et	al.	2010;	Tupek	
et	al.	2010).	In	many	cases,	vegetative	carbon	is	
used	as	a	surrogate	for	total	ecosystem	carbon	
since	it	is	relatively	easy	to	derive	from	existing	
information or ongoing inventory efforts. 
Total	 ecosystem	 carbon,	 which	 includes	
inorganic	ecosystem	components	such	as	soil,	
is	 more	 difficult	 to	 assess,	 especially	 if	 the	
precision	of	the	estimates	must	be	quantified	
(Baritz	et	al.	2010;	Loaiza	Usuga	et	al.	2010).	
Expensive	 estimates	 of	 carbon	 are	 typically	
derived	 from	a	 few	 intensively	 studied	plots,	
each	considered	as	representive	of	a	very	large	
area with similar soils, vegetation, and climate.
Today	many	 unit-area	 estimates	 of	 carbon	

content in forest vegetation are generated from 
a	 suite	 of	 explanatory	 variables	 (regressors)	
delivered	 from	 various	 satellite	 or	 air-
borne	 sensors	 (Maselli	 et	 al.	 2010;	 Sánchez-
Azofeifa	 et	 al.	 2009;	 Tagesson	 et	 al.	 2009).	
Invariably	these	estimates	build	on	a	modeled	
relationship	between	field-based	estimates	of	
biomass	 (carbon)	 and	 one	 or	 more	 sensor-
based	ancillary	variable.	

5.1 Carbon Content of 
Vegetation
The	 carbon	 content	 of	 vegetation	 is	
surprisingly	 constant	 across	 a	 wide	 variety	
of	tissue	types	and	species	(Baritz	et	al.	2010;	

Mäkelä	et	al.	2008;	Munishi	and	Shear	2004;	
Nogueira	et	al.	2008;	Rana	et	al.	2010;	Wauters	
et al. 2008). Schlesinger (1991) noted that the 
C-content	of	biomass	is	almost	always	found	
to	be	between	45	and	50%	(by	oven-dry	mass).
In	 many	 applications,	 the	 carbon	 content	

(C)	of	vegetation	may	be	estimated	by	simply	
taking	a	fraction	of	the	estimate	of	oven-dry	
biomass	(B),	as	in	 ˆ ˆ0.475C B= × .	The	accuracy	
of	 an	 estimate	 of	 this	 nature	 is	 typically	 not	
great due to errors in B̂ , and one should also 
expect	it	to	be	biased.
For	 dead	 material,	 carbon	 content	 is	 a	

function	 of	 the	 state	 of	 decomposition	
(Boulanger	and	Sirois	2006;	Garrett	et	al.	2010;	
Mukhortova	 and	 Trefilova	 2009;	 Vávrová	 et	
al.	 2009;	Yang	 et	 al.	 2010).	For	material	 that	
can	 still	 be	 identified,	 such	 as	 fresh	 litter	
or	 standing	 dead	 trees,	 the	 above	 equation	
may	be	used	to	estimate	the	C-content	if	the	
mass	 of	 the	 material	 can	 be	 estimated,	 see	
section	 5.2	 below.	 For	 severely	 decomposed	
material,	 it	 may	 be	 necessary	 to	 determine	
the	C-content	 in	 subsamples	 taken	 from	 the	
material	collected	at	a	site,	and	then	combine	
this	with	 an	 estimate	of	 the	 total	 (bio)	mass	
of	that	class	of	material	before	the	C-content	
for	 that	 vegetative	 component	 can	 be	
estimated.	Even	small	errors	due	to	sampling,	
measurement and handling of the material 
can	have	a	serious	impact	on	the	accuracy	of	
an	estimate	 for	 a	 vegetation	component	 that	
is orders of magnitude larger than the taken 
sample	(Woodall	et	al.	2008).
Total	 carbon	 content	 of	 vegetation	 goes	

beyond	 trees.	 It	 includes	 all	 parts	 and	
components	 of	 the	 plant	 community,	 such	
as	 herbs,	 shrubs,	 mosses,	 etc.	 Field-based	
estimation	of	carbon	typically	begins	with	an	
estimation	 of	 biomass	 (see	 above)	 and	 then	
a	 conversion	 along	 the	 lines	 detailed	 above.	
To	accomplish	this	task	it	becomes	necessary	
to	 stratify	 the	 community	 and	 sample	 from	
each	 stratum.	 The	 necessary	 strata	 must	 be	
defined	based	on	 the	 composition,	 structure	
and	 extent	 of	 the	 community	 in	 question	
(Clark	 et	 al.	 2008;	 Friedel	 1977;	 Kenow	 et	
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al. 2007). In some cases, it may make sense 
to	 obtain	 C-content	 estimates	 for	 life	 forms	
such	 as	 epiphytes,	 while	 in	 other	 cases	 this	
is	 irrelevant.	The	approach	follows	the	above	
for all classes of vegetation: first estimate the 
biomass	 in	 each	 stratum	 (component)	 using	
appropriate	sampling	methods	and	then	apply	
the	ratio	to	estimate	the	C-content.	

5.2 Ecosystem Carbon Content
In	addition	to	the	carbon	content	of	vegetation,	
it	may	be	necessary	to	estimate	total	ecosystem	
carbon	content	(Jia	and	Akiyama	2005;	Wang	
and	Sun	2008;	Wise	et	al.	2009).	This	includes	
biotic	 as	well	 as	 abiotic	 carbon	pools.	Avian	
(Pautasso and Gaston 2005) and mammalian 
(Desbiez	 et	 al.	 2010;	 Plumptre	 and	 Harris	
1995)	 biomass	 and	 carbon	 content	 is	 often	
ignored since it is usually a small fraction of 
total	 ecosystem	 carbon.	 At	 times	 it	 may	 be	
required	 to	 estimate	 arthropod	 biomass	 and	
carbon	 content	 in	 order	 to	 obtain	 a	 good	
estimate	of	total	ecosystem	C	(Fisk	et	al.	2010;	
Tovar-Sanchez	2009).	Colonizing	insects	may	
comprise	 a	 significant	 portion	 of	 the	 total	
biomass	of	some	systems	(Vasconcellos	2010;	
Yamada	 et	 al.	 2003),	 and	 abiotic	 materials	
incorporated	into	nests	and	colonies	may	also	
be	a	significant	portion	of	total	C.
A	 major	 abiotic	 carbon	 pool	 is	 the	 soil	

organic	matter	(Chang	et	al.	2010;	Rovira	et	al.	
2010;	Tipping	et	al.	2010),	which	is	particularly	
important	at	high	 latitudes	or	high	altitudes.	
This	may	 in	 some	 cases	 be	 greater	 than	 the	
vegetative	carbon.	Dead	plant	material	at	the	
soil	 surface	 and	 in	 the	 upper	 soil	 horizons	
may	 also	 have	 a	 significant	 C-content	 that	
should	 be	 considered	 in	 any	 estimate	 of	
ecosystem	 C-content	 (Fisk	 et	 al.	 2010;	
Gasparini	et	al.	2010).	McKenzie	et	al.	(2000)	
provide	 a	 compendium	of	methods	 for	 field	
data	collection	 for	carbon	estimation	 in	soil,	
litter,	 and	 coarse	woody	debris.	Quantitative	
data	on	forest	 litter	may	be	sparse.	However,	
several countries, with an elevated risk of 
forest	 fires	 may	 have	 extensive	 information	
because	they	conduct	surveys	of	the	elements	
on the forest floor that significantly increases 

the	 fire	 hazards	 during	 periods	 of	 drought	
(Fernandes	2009;	Kessell	et	al.	1978).	
Carbon	 content	 of	 litter	 should	 usually	 be	

determined	 from	 field	 samples	 designed	 for	
this	 specific	 purpose.	The	 carbon	 content	 of	
litter	depends	on	the	stage	of	decomposition.	
Application	of	 a	 ratio	 approach	 such	 as	 that	
described	 for	 vegetation	 can	 be	 used	 -see	
section	5.1	above-	but	will	often	underestimate	
the	 C-content	 of	 the	 litter	 layer	 due	 to	 the	
escape	of	carbonic	gases	during	the	process	of	
decomposition	(Fioretto	et	al.	2007;	Hosseini	
and	Azizi	2007;	MacDicken	1997).
Estimates	 of	 soil	 C	may	 be	 obtained	 from	

field	 sampling,	 and	 this	 is	 the	 most	 precise	
and	 appropriate	 method	 to	 estimate	 site-
specific	carbon	content.	Field	data	collection	
should	 be	 used	 whenever	 precise	 estimates	
of	 soil	 C	 are	 needed,	 but	 it	 is	 important	 to	
consider	 temporal	 variation	 throughout	 a	
growing season in large studies that may 
require	an	extended	sampling	period.	If	a	soil	
classification	map	for	the	area	of	concern	exists,	
there	may	be	information	on	carbon	content	
for	different	soil	types	in	the	area	(Geissen	et	
al.	2009;	Zhang	et	al.	2010b).	A	given	soil	type	
may	yet	have	different	mean	carbon	content	
depending	on	the	dominant	vegetative	cover	
and	land	use;	soil	under	an	agricultural	field	
may	 have	 a	 very	 different	 C-content	 than	 a	
similar soil under a mature forest. Estimates 
of	soil	C-content	may	or	may	not	be	available	
for all conditions in an area of concern. Batjes 
(2009)	provides	access	to	an	extensive	database	
of	global	soil	physical	and	chemical	properties,	
including	 information	 that	 may	 be	 used	 to	
approximate	 soil	 C-content	 in	 the	 absence	
of	 site	 specific	 information.	These	 estimates	
will	be	less	precise	than	those	obtained	from	
field	samples,	but	may	be	cost-efficient	when	
high	precision,	site-specific	estimates	are	not	
required.	 In	 many	 applications,	 it	 may	 be	
more cost effective, and ultimately result in 
higher	precision	in	the	final	estimates,	to	use	
a	greater	number	of	 less	precise	estimates	of	
C-content	for	individual	sampling	units,	than	
to	measure	C-content	of	a	subset	of	sampling	
units	with	high	precision	(MacDicken	1997).	
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The	 trade-offs	 are	 a	 function	 of	 sampling	
design	 and	 cost,	 and	 must	 be	 evaluated	 in	
that	context	(see	chapter	on	Sample	Designs).	
Note,	however,	that	if	expedient	less	expensive	
C-estimates	are	biased,	 the	opportunities	 for	
an	attractive	trade-off	between	a	small	sample	
with	 expensive	 observations	 and	 a	 larger	
sample	with	 less	 expensive	 observations	 can	
be	severely	curtailed	(Köhl	et	al.	2006,	p	79).

6. Judging model quality
A	model	summarizes	a	conceptual	relationship	
between	one	or	more	dependent	variables	(Y) 
and	 one	 or	more	 predictors	 (X).	The	model	
can	be	stated	as	a	single	equation	(for	example,	
Fehrmann et al. 2008), a system of related 
models	(for	example,	Gertner	et	al.	2002)	or	a	
hierarchical	(multi-level)	model	(for	example,	
Pedersen 1998). Models are mostly used for 
predicting	 new	 value(s)	 of	 an	 unobserved	
entity	from	available	predictors.	The	volume,	
biomass	 and	 carbon	 equations	 given	 above	
provide	 examples	 of	 the	most	 basic	 types	 of	
models.	A	model	may	be	formulated	through	
subject	 knowledge	 (Curtin	 1970),	 adopted	
from	other	studies,	or	suggested	by	apparent	
trends	 in	 observed	 data.	 The	 following	
references	provide	access	to	a	broad	selection	
of	forest	models	(Amaro	et	al.	2003;	Dykstra	
and	 Monserud	 2009;	 Schwab	 and	 Maness	
2010;	van	Laar	and	Akça	2007).
In	 forest	 inventory	and	biological	 sciences,	

data	 exhibit	 a	 large	 amount	 of	 natural	
variation	and	models	are	limited	to	predicting	
the	expected	value	of	the	dependent	variable	
given	the	input	data.	The	quality	of	any	model	
is	 judged	 by	 its	 ability	 to	 provide	 unbiased	
(accurate)	estimates	of	these	expectations	and	
the	 precision	 of	 model	 predictions.	 Models	
with	 deterministic	 (fixed,	 invariable)	 model	
parameters	 generate	 a	 single	 prediction	
(the	 expected	value)	given	a	 set	of	predictor	
values. Stochastic models contain one or 
several	 parameters	 that	 are	 random	 (Biging	
and	 Gill	 1997;	 Rennolls	 1995).	 Hence,	 they	
can	generate	both	conditional	predictions	for	
a	 random	unit	 (say	a	 tree,	 a	plot,	or	a	 forest	

stand)	 and	 population	 averaged	 predictions	
(Schabenberger	and	Gregoire	1996).
When	fitting	a	model	to	data,	a	comparison	

of	values	predicted	by	a	model	and	the	actual	
values	 of	 the	 dependent	 variable	 provide	
an	 initial	 assessment	 of	 model	 quality.	 It	 is	
generally	desirable	for	models	to	be	unbiased,	
meaning	departures	 from	model	predictions	
(residuals)	 to	 average	 to	 zero	 for	 any	 input,	
and	precise,	meaning	residuals	are	distributed	
tightly	around	the	predicted	values.	
The	 quality	 of	 a	 model	 for	 prediction	

purposes	 is	 assessed	 by	 comparing	 a	
prediction	of	 a	new	observation	not	used	 in	
model	 development	 to	 the	 actual	 value	 of	
the	 new	 observation.	 Common	 criteria	 for	
assessing	model	quality	include,	for	examples,		
a	 t-test	 of	 the	 hypothesis	 of	 a	 zero	 mean	
model	prediction	error,	the	variance	of	model	
errors,	the	magnitude	of	the	median	absolute	
deviation	 (Venables	 and	 Ripley	 1994),	 the	
sign	test	for	testing	equal	medians	of,	say,	the	
observed	and	predicted	values	(Conover	1980,	
p	122).	The	Wald-Wolfowitz	runs	test	can	be	
used	to	test	 the	hypothesis	 that	 the	elements	
of	a	sequence	of	model	errors	along	a	gradient	
of	predictor	values	are	independent	(Conover	
1980,	p	136).	Additional	assessments	are	often	
geared	 towards:	 testing	 the	 assumption	 of	 a	
normal	distribution	of	model	residuals	(Brown	
and	 Hettmansperger	 1996),	 an	 analysis	 of	
errors	 in	 ‘curve’	 models	 (Ducharme	 and	
Fontez	2004;	Huang	1997),	and	homogeneity	
of	 error	 variances	 across	 a	 range	 of	 input	
(McKeown	and	Johnson	1996;	O’Brien	1992;	
Shoemaker	2003).	Reynolds	(1984)	provides	a	
basic	 approach	 to	model	 quality	 assessment.	
Vanclay	 and	 Skovsgaard	 (1997)	 provide	 a	
brief	 overview	 and	 an	 operational	 frame	 for	
judging	model	quality.	It	is	common	to	see	an	
assessment	of	model-quality	done	by	excluding	
a	portion	of	 the	data	 from	 the	model-fitting	
phase	 or	 by	 a	 leave-one-out	 cross-validation	
scheme	 by	 which	 the	 model	 is	 estimated	
repeatedly	 by	 leaving	 out	 one	 observation	
and	then	comparing	the	actual	and	predicted	
value for the withheld datum (Efron 2004). 
We	prefer	 the	 latter	approach,	 since	one	can	
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rarely	 afford	 to	 withhold	 a	 large	 portion	 of	
the	 data	 without	 affecting	 the	 properties	 of	
the	model	 to	be	assessed.	To	wit,	with	 fewer	
observations	for	modelling	the	chosen	model	
may	 be	 sup-optimal.	When	 sample	 sizes	 are	
small,	we	 recommend	model-building	based	
on	robust	techniques	(Choi	et	al.	2010;	Lange	
et	al.	1989;	Wang	and	Leng	2007).
When	applying	a	general	model,	such	as	the	

volume	and	biomass	 equations	 given	 earlier,	
or	 a	model	 developed	 for	 a	 given	 species	 in	
a	 different	 geographic	 area,	 it	 is	 important	
to	 attempt	 to	 assess	 model	 quality	 prior	 to	
application.	This	 may	 require	 the	 collection	
of	 new	 field	 data,	 or	 it	 may	 be	 possible	 to	
utilize	 existing	data	 for	 this	purpose.	Failure	
to	assess	model	quality	forces	the	user	to	make	
an	 untested,	 implicit	 assumption	 that	 the	
model	used	is	appropriate	for	the	species	and	
geographic	area	to	which	it	is	applied,	which	
may	 or	 may	 not	 be	 true.	 Users	 of	 models	
should	always	keep	in	mind	that	a	model	may	
generate	unusual	predictions.	Extrapolations,	
i.e.	application	of	the	models	with	one	or	more	
of	 the	 predictor	 values	 falling	 outside	 the	
range	 of	 the	 data	 used	 during	model-fitting	
should	be	avoided	whenever	possible	because	
bias	 and	 	 precision	 may	 quickly	 become	
unattractive	 for	 otherwise	 well-founded	
models (Schreuder and Reich 1998)

With the advance of models that rely 
on	 input	 from	 remotely	 sensed	 data,	 it	 is	
increasingly	 important	 to	 consider	 (check)	
whether	 the	predictors	are	actually	 the	same	
(i.e. with identical information content, 
collected	at	 identical	 spatial	 scales,	 and	with	
identical	 measurement	 error-structures)	 as	
the	 data	 used	 during	 model-fitting.	 If	 not,	
then	the	impact	of	errors-in-variables	must	be	
considered	as	well	(Carroll	et	al.	1995;	Fuller	
1987).
Users	 of	 existing	 models	 are	 rarely	 in	 a	

position	 to	 conduct	 a	 full-fledged	 model-
check, or for that matter a validation. Key 
information	 about	 the	 statistical	 properties	
and	data	behind	a	model	 is	often	missing	or	
difficult	to	retrieve.	

Instead of relying entirely on model 

predictions	it	may	be	a	better	strategy	to	take	
a	 small	 probability	 sample	 of	 the	 variable(s)	
of	 interest	 and	 then	 combine	 them	 with	
predictions	from	a	model.	This	model-assisted	
type	 of	 estimation	 (Särndal	 et	 al.	 1992)	 has	
become	 popular.	 In	 the	 statistical	 literature	
the	approach	goes	under	the	name	of	“Small	
Area	Estimation”	(Pfeffermann	2002;	Tomppo	
2006).	Also,	users	concerned	with	the	quality	
of	 a	model	may	 adopt	 a	 Bayesian	 paradigm	
whereby	 user-defined	 prior	 distributions	
on	 model-parameters	 capture	 model	
uncertainty	 and	 possibly	 bias	 and	 integrates	
this	uncertainty	in	their	predictions	(Gertner	
et	 al.	 2002;	 Green	 et	 al.	 1999;	 Green	 and	
Strawderman	 1996;	 Green	 and	 Valentine	
1998).
Validation	of	complex	models	for	large	scale	

applications	 (e.g.	 ecosystem	 predictions	 of	
carbon	content)	is	rarely	possible.	Validation	
of	 individual	 components	 of	 the	model	may	
not guarantee that all the interactions of 
model-components	 are	 adequately	 captured.	
It	 is	 always	 the	user’s	 responsibility	 to	 check	
model	assumptions	and	model	predictions.

7. Model error 
contribution to total error
Methods	 of	 estimating	 the	 precision	 of	
inventory	 estimates	 are	 dependent	 on	 the	
sampling	design	used	to	collect	the	data.	These	
methods, however, generally assume that the 
individual	observations	are	measured	without	
error.	For	model-based	estimates	like	volume,	
biomass,	 and	 carbon,	 however,	 there	 are	
model	errors	to	consider.	Consequently,	there	
are three main sources of error: measurement 
error,	 model	 error,	 and	 sampling	 error.	The	
sample-based	 precision	 estimates,	 therefore,	
should	 be	 considered	 to	 be	 underestimating	
the	 variance,	 or	 conversely,	 as	 implying	
confidence intervals that are too narrow, for 
derived	 variables	 such	 as	 volume,	 biomass,	
or	 carbon	 content.	 Similarly,	 methods	 of	
estimating	 the	 sample	 requirements	 to	
achieve	 a	 desired	 level	 of	 precision	 will	
indicate	 fewer	 samples	 than	 really	 needed	
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unless consideration of model error is taken 
into	 account	 in	 addition	 to	 sampling	 error.	
For	more	 information	 see	Sampling	Designs	
chapter.	
Inventory	 models	 are	 never	 perfect.	 The	

discrepancy	 between	 the	 actual	 (unknown)	
value (YA)	 and	 the	 predicted	 value	 from	 a	
model (YP) is called the model error (εp). In 

equation	 form,	 this	 becomes:	 A P PY Y ε= + . 
This	simple	(linear)	equation	also	implies	that	
the	variance	of	a	series	of	predicted	values	is	
less	than	or	equal	to	the	variance	of	the	actual	
values.	Equality	holds	only	for	perfect	models	
with	 no	 error	 variance.	 For	 example,	 if	 we	
predict	 the	 volume	of	 trees	 in	 a	 plot	 from	a	
suitable	volume	equation	then	the	calculated	
variance	of	the	volume	predictions	will	be	less	
than the actual variance of the volume of the 
trees	 in	 the	plot.	Consequently,	 the	standard	
error	of	 a	predicted	mean	volume	 for	 a	plot	
will	 be	 biased	 downwards.	 The	 variance	 of	
prediction	errors	must	be	included	to	obtain	
an	unbiased	estimate	of	the	total	error.
In	 many	 applications	 it	 should	 also	 be	

considered	that	the	parameters	in	models	used	
in	 an	 estimation	 procedure	 are	 themselves	
estimates with associated errors. One may 
choose	 to	 include	 also	 this	 extra	 source	 of	
uncertainty in the estimation of the total 
errors.	For	sample	surveys	with	large	sample	
sizes	 this	 type	of	model	 error	would	usually	
constitute	 a	 large	 portion	 of	 the	 total	 error	
(variance)
The	 variance	 of	 prediction	 errors	 may	 be	

substantially	larger	than	the	residual	variance	
obtained	during	model	fitting,	especially	when	
the	mean	and	covariance	of	the	input	variables	
vary from those of the data used for model 
fitting.	Application	of	 the	model	 outside	 the	
recommended	application	domain	 raises	 the	
specter	 of	 serious	 additional	 underreporting	
of error. 

8. Monitoring over time
Monitoring over time allows estimation of 
change	and	trends	in	forest	attributes	(Köhl	et	
al.	2006,	p	143).	The	changes	and	trends	can	

be	estimated	from	a	set	of	permanent	sample	
plots	-see	section	8.1-or	temporary	plots	-see	
section	 8.2-	 or	 a	 combination	 of	 both	 (see	
chapters	on	sampling	design	and	observations	
and	measurements)	.	Temporary	plots	can	be	
used	to	obtain	estimates	of	the	current	state	of	
the	forest,	while	permanent	plots	or	a	mixture	
of	 permanent	 and	 temporary	 plots	 are	 pre	
requisites	 for	obtaining	estimation	of	change	
over time (Picard et al. 2010). Estimation of 
change	is	a	complex	challenge.	There	are	three	
major	 types	of	 temporal	changes	 in	 forestry:	
1)	 change	 conforming	 to	 the	 expected	
progression	of	 living	 and	dead	material	 in	 a	
forest	during	the	period	of	interest	(e.g.	volume	
increment	 of	 living	 trees),	 2)	 unexpected	
biotic	 or	 abiotic	 disturbances	 (e.g.	mortality	
due to insect, snow, wind, fire, ..), 3) forest 
management activities (thinning, harvesting, 
planting,	 seeding,..).	 Each	 category	 operates	
at	different	temporal	and	spatial	scales.	Given	
the multivariate nature of forest resources, 
and the wide range of rates and modes of 
change,	 it	 follows	 that	 the	efficiency	of	most	
sampling	designs	for	estimation	of	change	can	
be	highly	efficient	for	one	attribute	of	change	
(e.g.	 net	 volume	 increment),	 yet	 inefficient	
for	capturing	other	types	of	change	(e.g.	rates	
of	 deforestation,	 volume	 destroyed	 by	 fire,	
insect	 mortality).	 Few	 practical	 designs	 are	
efficient	 for	 capturing	 change	 in	 sensitive	
but	 small	 subpopulations	 (e.g.	 number	 of	
specimen	 of	 a	 rare	 or	 possibly	 endangered	
species)	 (Christman	 2000;	 Magnussen	 et	 al.	
2005).	To	adequately	capture	changes	related	
to	 abiotic	 and	 biotic	 disturbances	 and	 to	
forest	 management	 practices,	 it	 is	 common	
to conduct a census of correlated ancillary 
variables	 via	 remote	 sensing	 (see	 chapter	on	
remote sensing) at the start and the end of 
the	period	covered	by	the	change	estimate(s)	
(Coppin	et	al.	2004;	Stehman	2009;	Tomppo	
et al. 2008).
Change	 estimates	 are	 frequently	 evaluated	

against	 expectations	 or	 a	 set	 of	 targets,	 and	
estimates	 of	 the	 precision	 of	 the	 change	
estimate	are	important	in	this	situation.	When	
the	 change	 is	 estimated	 from	a	 combination	
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of	 field-observations	 and	 remotely	 sensed	
ancillary	 variables,	 estimators	of	 change	 and	
their	 precision	 can	 become	 very	 complex	
and	 the	 actual	 estimation	 may	 require	 the	
assistance of a statistician (Stehman 2009). 
Unless	it	can	be	argued	on	statistical	grounds,	
that	 an	 estimate	 of	 change	 is	 unbiased	 one	
should	 accept	 that	 bias	 could	 be	 a	 potential	
issue.

The	simplest	 change	 equation	 is	 for	 a	 trait	
Y	observed	at	time	t	and	then	again	at	some	

future time t + Δt. We have t t t tY Y Y+∆ ∆= + ∆  
where Yt is the initial measurement at time t, 
Yt + Δt is the future measurement at time t + 
Δt, and ΔYΔt is the change in Y from time t 
to	 time	t	+	Δt.	 	The	variance	of	 the	estimate	
of ΔYΔt,	 depends	 on	 the	 type	 of	 plots	 (or	
mixture	of	plots)	used	for	the	data	collection.	
Any	 correlation	 between	 measurements	 at	
two	 points	 in	 time	 must	 be	 accounted	 for	
when estimating the variance of a change. 

Continuing	our	simple	example,	the	estimate	

of change is t t t tY Y Y∆ +∆∆ = − . In this case, the 
variance	of	the	change	estimate	is	equal	to:

( ) ( ) ( ) ( ) ( ) ( )var var var 2 , var vart t t t t t t t t tY Y Y Y Y Y Yρ∆ +∆ +∆ +∆∆ = + −

 ( ) ( ) ( ) ( ) ( ) ( )var var var 2 , var vart t t t t t t t t tY Y Y Y Y Y Yρ∆ +∆ +∆ +∆∆ = + −

where var denotes a variance, and 
cov a covariance, and ρ is a correlation 
coefficient	 (between	 the	 original	 and	 future	
measurements).	A	strong	positive	correlation	
reduces the variance of a change measurement.
When	 a	 sample	 selection	 has	 been	 with	

an	 unequal	 probability	 sampling	 design,	 the	
analyst must take into account that these 
probabilities	 may	 have	 changed	 over	 time	
(Roesch et al. 1993).
As	discussed	in	section	7,	if	the	above	change	

estimation	involves	the	use	of	quantities	that	
are	predictions	of	expected	values	from	one	or	
more	models,	then	it	will	again	be	necessary	to	

account	for	the	‘hidden’	errors	in	 tY  and tY∆ .  
This	 will	 commonly	 be	 the	 case	 in	 forestry.	

Compounding	 the	 issue	 is	 the	 fact	 that	 the	

errors in tY  and tY∆  often	tend	to	be	correlated.	
Additional	 complications	 arise	 when	 the	

method	 (protocol/process)	 for	 obtaining	 tY  

differs from that of .t tY +∆  The	assistance	of	a	
professional	statistician	may	be	called	for.

8.1 Estimating Change Using 
Remeasured Permanent Plots
Permanent	 plots	 refer	 to	 forest	 sampling	
locations that are monumented or otherwise 
uniquely	 identified	 and	 remeasured	 at	
different	 points	 in	 time	 (Köhl	 et	 al.	 2006,	 p	
144). 
From	 a	 statistical	 and	 data-analysis	

perspective	the	major	advantage	to	permanent	
plots	is	an	improved	precision	of	estimates	of	
change	due	to	a	typically	strong	correlation	of	
sampling	errors	(see	above	expression	for	the	
variance	of	 a	 change).	A	higher	data	 quality	
may also materialize from additional attention 
and	quality	control.	Finally,	permanent	plots	
permit	 inference	 about	 cause	 and	 effect	
(Augustin	 et	 al.	 2009).	 For	 undisturbed	 and	
carefully	 measured	 permanent	 plots	 the	
correlation	between	subsequent	measurements	
tends	 to	 be	 both	 positive	 and	 relatively	
strong,	which,	 as	 outlined	 above,	 lowers	 the	
variance of an estimate of change. Yet the 
correlation	between	successive	measurements	
can	deteriorates	quickly	with	 the	 length	of	a	
measurement	 interval	 and	disturbances	 (e.g.	
fire, wind, snow, drought, forest management 
interventions).	A	high	data	quality	facilitates	
error checking in current data and scanning 
for	anomalies	in	past	data.	

8.2 Estimating Change Using 
Temporary Plots
Temporary	plots	offer	a	maximum	of	flexibility:	
Independent	 surveys	 can	 be	 established	 at	
different	times,	with	plots	only	measured	at	one	
time. Since the surveys at different times are 
taken	on	different	plots,	the	above	advantage	
of	the	above	discussed		positive	correlation	of	



16

plot-specific	observations	at	time	t and t t+ ∆  
no	longer	exists	(there	is	no	natural	pairing	of	
the	two	sets	of	observations).
Individual	 trees	 on	 temporary	 plots	 are	

usually	measured	more	quickly	and	with	less	
precision	 than	 those	 on	 permanent	 plots,	
reducing	 the	 precision	 in	 the	 estimates	 and	
the	resulting	estimate	of	change.	Less	precise	
observations	will	 also	make	 it	more	difficult	
to	 spot	 outliers	 and	 anomalies	 in	 the	 data	
(Cerioli	2010).	A	lower	data	precision	can,	to	a	
degree,	be	offset	by	the	use	of	a	greater	number	
of	 temporary	 plots	 but	 the	 final	 tradeoff	
depends,	in	a	complicated	way,	on	where	and	
how	 errors	 enters	 the	 observations	 and	 on	
the	 assumed	model	 behind	 the	 observations	
(Carroll et al. 1995).
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