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Abstract
In many forest inventory applications, 
numerous attributes of interest must be 
estimated using a lookup-table or an equation 
(collectively referred to as a model). Stem 
volume, for instance, is rarely directly 
measured in the field, but is estimated from 
dimensional measurements like diameter or 
height. Individual observations are usually 
aggregated for reporting purposes and may be 
grouped during field data collection, such as 
when trees are tallied by diameter or height 
class. Aggregation simplifies presentation of 
data, but the information content is reduced. 
Variables such as volume, biomass, or 

carbon content are frequently estimated from 
equations (models). It is sometimes difficult to 
judge whether a given equation is applicable 
to a particular situation; an assessment of 
the quality of all equations (models) used 

in an inventory is important. The selection 
of a particular equation (model) should be 
guided by this assessment, as well as modeling 
objective and context. 

Some inventories focus on assessing the state 
of the resource, others on the change in the 
resource over time. Different field procedures 
and sampling designs are preferred for 
different objectives.Sampling with permanent 
plots provides estimates of both state and 
change. Designs with   a smaller (expensive) 
set of permanent plots and a larger set of (less 
expensive) temporary plots can also provide 
good estimates of both state and change, but 
the statistical analysis of such designs is quite 
complex and care must be taken to ensure 
appropriate assessment of accuracy and 
precision.
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1. Introduction
Many forest attributes of interest in forest 
inventory and monitoring applications are not 
measured directly as it would be impractical 
or too costly to do so. The best known example 
includes stem volume where diameters and 
heights are measured on individual trees and 
a table or an equation (collectively referred to 
as a model) is used to estimate the associated 
volume (Köhl et al. 2006, section 2.37). The 
volume of coarse woody debris (CWD) is 
another example (Köhl et al. 2006, section 
6.4.6; Woldendorp et al. 2004). In practice 
only a small number of short segments of the 
CWD are measured for volume, and the total 
amount of  (CWD) in an area of interest is 
estimated through a scaling of the measured 
pieces; the scaling depends on the sample 
design (Woldendorp et al. 2004). Advances 
in remote sensing favor the use of easy to 
measure and readily available variables (say X) 
correlated with the attributes of interest (say 
Y). An estimate of Y for the area or population 
of interest is then obtained from a small 
sample of Y and knowledge of the relationship 
between X and Y (Köhl et al. 2006, p 80)
The types of models available for indirect 

estimation of quantities like wood volume, 
biomass, and carbon content, including 
examples, are given in the following sections. 
Issues to consider in the choice of model for 
a specific application, along with modeling 
objectives and contexts, are also discussed. 

2. Aggregation
Aggregation is the combination of data or 
observations into groups. Aggregation is done 
to simplify measurements and data-processing 
(Stage et al. 1993) or to summarize data and 
observations into groups and categories of 
interest.   
The attribute data to be collected in an 

inventory are defined and prescribed based on 
the information needs of stakeholders in the 
forest resource to be inventoried (Dachang 
and Cossalter 2006, p 5). In a field inventory, 
it is important to measure and record all items 

in a sample plot that meet the definitions/
specification of the desired attribute (for 
more information visit the chapter Sample 
Designs). Data definitions/criteria can be 
based on demographic characteristics. For 
trees, for example, it could be a minimum 
size limit, often expressed as a minimum 
diameter such as, say, 10 cm. Criteria may also 
limit measurements to certain species or tree 
characteristics of interest.
It is important to remember that limiting 

inventory data and observations to items 
(trees, shrubs, snags,…) that meet established 
definitions/criteria equally limits the inference 
and estimates we can derive from these data 
to the parts/units of the forest population that 
satisfy the definitions/criteria (see chapter 
on Observations and Measurements). For 
example, if stem-wood volume estimates for 
live trees are estimated only for trees with a 
diameter at breast height greater than 10 cm, 
then it will not be possible to estimate total 
volume or biomass for the forest of interest. 
To paraphrase, the results apply only to 

population elements with a known positive 
probability of being included in the inventory 
sample (Thompson 1992, p 21) (see section on 
sampling design and estimation).
Sample unit summaries do not usually 

include values for all items measured. For 
example, trees are often aggregated into 
groups based on species, demographics such 
as diameter, height, or social status (section 
2.2), hierarchy such as functional group 
(section 2.3), or the total stand. Aggregation 
may be one-dimensional (e.g., total volume by 
species) or multi-dimensional (e.g., volume 
by diameter class by species) as appropriate. 
Aggregation of inventory items can also 
be based on land-use pattern (e.g. shifting 
cultivation) or future planned use of a resource 
item (e.g. fuel-wood).
The consequences of any aggregation of 

observed/measured items on analysis and 
inference should always be considered 
carefully (Clark and Avery 1976). Once data 
are aggregated, it is usually difficult - if not 
impossible - to recover underlying details at 
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a later stage should it become desired (Ritchie 
and Hann 1997). To conserve a desired 
accuracy and precision of estimates, it is 
often better to postpone aggregation to the 
analytical phase that follows completion of 
field data collection. However, for practical 
and cost-saving reasons, aggregation often 
occurs during field observation. Instead of 
measuring, say, the diameter of each tree in a 
field plot to the nearest 0.1 cm, counts of trees 
by 5- or even 10-cm diameter class are often 
practiced due to expediency. In this case, 
the class mid-points are usually used in the 
analytical phase. Note, an aggregation always 
has the potential to introduce additional error 
and possibly a bias in the resulting estimate 
(Ducey 1999).  Of course, aggregation greatly 
simplifies field procedures and may well result 
in greater overall precision if the savings due 
to efficiency is used instead to collect more 
field data, but the trade-off is far from simple; 
we reiterate our caution against uncritical 
aggregation.

2.1 Aggregation by Species
Estimates of totals and per unit area values 
for a stand, a forest, or a region, are frequently 
aggregated over species meeting a certain 
definition/criterion with respect to size or 
use.  As stated above, it is important that all 
species which enter the inventory sample - 
and otherwise meet the definition/criterion 
- be duly observed and recorded. Otherwise 
the estimates will become biased. Note, when 
a species can’t be identified by a field crew, 
it should be given a name with helpful hints 
towards a later identification (e.g. shape or 
size of foliage, fruit-bodies, branching, bark, 
…). Aggregation by species during field data 
collection may be in order during surveys of 
biodiversity and in count-oriented surveys of 
disease and insect damage, but otherwise is 
not recommended. 
It is common in temperate forests to develop 

estimates of stand characteristics by species. 
In tropical forests, this can be difficult, and 
probably even more difficult to interpret, 
due to complex stand structures or the large 

number of species (Higgins and Ruokolainen 
2004). In some instances, species are combined 
by ecological functional group (e.g., canopy 
dominants). This often results in a manageable 
number of species groups that are relatively 
easy to interpret in terms of forest structure 
(Gadow 1999). Commercial utility and silvics 
are also considered for  species grouping 

In national or continental scale summaries, 
species groups may be developed for reporting 
purposes due to the large numbers of potential 
species (Burns and Honkala 1990). A species 
group labeled “Pine”, for example, may 
include all Pinus species occurring within a 
geographic area of interest. 

2.2 Aggregation by Size
Trees are often aggregated by demographics, 
meaning that trees of similar sizes or social 
status are combined into groups for data 
summaries or field data collection. Aggregation 
by size for reporting and analysis purposes is 
generally straightforward except when the 
inclusion probabilities (viz. expansion factors) 
associated with the inventory data are linked 
to the size of trees (Köhl et al. 2006, p 155).
In the field an aggregation of trees by diameter 

(e.g., 5-cm diameter class) is probably the most 
common method of aggregation. The number 
of trees in each diameter class is tallied, and 
diameter class midpoints are used in the 
subsequent analyses to estimate variables like 
volume or biomass. A minimum diameter of 
trees to be measured is usually specified in 
field measurement protocols. Thresholds for 
inclusion/measurement are defined according 
to the purpose of the survey. Usually the 
minimal commercial diameter - or one to two 
diameter classes below that threshold is used. 
A stratification of sampling efforts by size is an 
inevitable practical constraint when sampling 
odd-shaped, highly variable and scattered 
objects. An example is sampling for coarse 
woody debris (Roth et al. 2003; Williams et al. 
2005).
Note, if trees are selected with a probability 

proportional to their size, a use of diameter 
classes can be problematic (Ducey 2000). 
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Since forest inventory data are often used 
repeatedly for many diverse purposes, it is 
preferable to keep data in the form they were 
captured. For example, a user who want to 
model the diameter distribution (Cao 2004; 
Gove and Patil 1998) would be better served 
by non-aggregated data.
Trees may also be aggregated by height class, 

which may have bearing on the resulting 
wood products that may be derived (Köhl 
et al. 2006, p 36). Height class may also be 
used to aggregate trees for analysis of grazing 
forage availability or wildlife habitat structure 
(Spetich and Parker 1998).  Height aggregation 
is probably more common in ecological or 
grazing surveys than in surveys that focus on 
assessment of commercial fiber utilization 
opportunities. 
Finally, trees may be grouped by their 

position in the forest canopy, such as canopy 
dominants (Gargaglione et al. 2010; Nigh and 
Love 2004). This type of classification is more 
useful in ecological surveys than in surveys 
attempting to inventory commercial material. 
Structural classification may have a great deal 
of importance in evaluating forage potential 
or other non-fiber commercial potential. 

2.3 Aggregation by Hierarchy
Trees may be aggregated in various 
hierarchical systems for analysis and reporting 
(Mairota et al. 2002). Trees may be aggregated 
in a biological hierarchy (individual trees → 
species → ecological functional group→ stand). 
Trees could also be aggregated in a utilization 
hierarchy (individual trees → diameter class→ 
product class → species → stand). Reporting 
may include summaries for any or all levels of 
the hierarchy. 
Aggregation also occurs at the spatial scale 

(e.g.Wolf 2005). The spatial unit can be a stand, 
or a smaller unit (say a pixel in a remotely 
sensed imaged). Aggregation is then done 
across all units that meet a certain requirement 
related to their forest attributes or data values. 
The purpose of a spatial aggregation could 
be for reporting and analysis, or to improve 
sampling efficiency by stratification (Köhl et 

al. 2006, p 105). In the analysis of spatially 
aggregated data, it is imperative to recover all 
pertinent information as to the genesis of the 
data (observed, sample-based, model-based, 
predicted, imputed, interpolated, …) and 
any available estimates of accuracy and bias. 
Spatial covariance among aggregated forest 
resource data types can greatly complicate the 
statistical analysis of spatially aggregated data 
(Mairota et al. 2002; Rossi et al. 2009; Schwab 
and Maness 2010; Waser and Schwarz 2006).
In spatial aggregations the spatial units 

may be aggregated by forest type (e.g., moist 
tropical) or geographic region for analyses at 
regional or national levels. Geographic region 
may be based on political delineations (e.g. 
state or provincial boundaries) or ecological 
zones, e.g. Holdridge life zones (e.g.Ni et al. 
2005). Aggregation at the stand level may 
occur after estimation (prediction) of the 
variables of interest for each sampling unit in 
a stand.The appropriate methodology for the 
aggregation is determined by the sampling 
design and survey objectives. Aggregation 
may be built into the sampling design through 
use of stratified sampling (De Vries 1986, p 
31). 

2.4 Aggregated Class Estimation
For trees measured on fixed area plots, 
estimates of per hectare values are obtained 
by dividing the respective individual tree 
characteristics by the size of the area sampled: 

1
ijn

ij ijk
k

Y A X−= ∑
Yij = estimated per hectare quantity of the 

measured variable for the ith sampling 
unit and the jth aggregation class with 
nij observations of X; 

Xijk = value of the measured variable for the 
kth tree in the ith sampling unit and jth 
aggregation class;

A = size in hectares of the individual 
sampling unit. 

For trees measured on variable radius 
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sampling units, (see Observations and 
Measurements chapter for more information) 
estimates of per hectare values are obtained 
by dividing the respective individual tree 
characteristics by the basal area of the 
measured tree, and multiplying by the basal 
area expansion factor:

Yij = estimated per hectare quantity of the 
measured variable for the ith sampling 
unit and the jth aggregation class with 
nij observations of X;

BAF = basal area factor, equivalent to the 
basal area per hectare represented by 
each measured tree;

Xijk = value of the measured variable for the 
kth tree in the ith sampling unit and jth 
aggregation class;

Bijk = basal area in m2 of the kth measured 
tree in the ith sampling unit and jth 
aggregation class. 

An estimate of a total ( )Ŷ  or a mean ( )Ŷ  
for a population parameter - obtained by a 
probability sampling design - follows the basic 
principles behind the Horwitz-Thomson 
estimator (Overton and Stehman 1995):  

1 1ˆˆ ˆ,i ii s
Y Y Y Y Nπ − −

∈
= × = ×∑

where summation is over the units (i) in 

the sample (s) and iπ  is the sample-inclusion 
probability of the ith sampled unit (see section 
on Sampling Design). For a population with 
N units, the estimation is sometimes done 
with a mixture of n sample-based unit-level 
observations, and N-n estimates derived from 
models or otherwise imputed (McRoberts 
2006; McRoberts et al. 2002). In this case 
the estimator for the total is simply the 
sum of all N unit-level values (observations 
and estimates). The associated estimator of 
accuracy may follow directly from statistical 
theory (Overton and Stehman 1995). In more 
complicated cases an application of the delta-
technique is required (Davison 2003, p 33-35).

Estimation of population parameters from 
units of observation is done on a routine 
basis in forest inventories (see chapter 
on sampling design). There are two basic 
sampling units commonly used in forest 
inventory applications: 1) fixed area plots, 
and 2) variable radius plots (e.g.Corona et al. 
2010). Transect sampling are special cases of 
fixed area plots and can be treated similarly 
in many applications (Hedley and Buckland 
2004). In most cases, estimates of the variables 
of interest are obtained for each sample unit, 
and then combined to obtain estimates for the 
larger area (aggregate) of interest. The method 
of combining estimates from individual 
sampling units, and the methods of estimating 
associated precision of the estimates, depends 
on the sampling design. 

2.5 Implications of Aggregation 
in Estimation and Modeling
Aggregation at the field data collection 
phase simplifies field data collection and 
may improve the relative accuracy. We have 
already outlined some of the statistical issues 
in connection with data aggregation. A 
summary is provided next.
The potential downside of data aggregation 

during the data collection phase is a possible 
introduction of bias and an almost certain 
reduction in both accuracy and precision of 
resulting estimates due to the introduction of 
error (Clark and Avery 1976). Combining all 
trees within a species class, for example, results 
in a loss of information on individual tree 
sizes. Since forest inventory data are typically 
used for multiple purposes and in multiple 
combinations, it is in general advisable to 
limit any aggregation to the reporting/analysis 
phase of an inventory.
Decisions about aggregation during field 

data collection also affect future utility of 
the collected data. New and emerging issues 
important to forestry may require details 
that were lost due to economic pressures of 
expediency. It is not possible, for example, 
to explore many aspects of biodiversity if 
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species have been aggregated during field 
data collection. The increased use of remote-
sensing techniques in forest inventories 
(Tomppo et al. 2008) can be viewed as an 
aggregation process (in extremis).

A disaggregation of aggregated data is only 
possible if one is willing to make assumptions 
about the frequency distribution of possible 
data values that have been aggregated into a 
single value (Papalia 2010). Only rarely can 
such assumptions be justified. 

3. Volume estimation
Volume is the most widely used measure of 
wood quantity. It is usually estimated for the 
assessment of economic value or commercial 
utilization potential. The wood volume may 
refer to a specific portion or part of a tree 
or the whole tree. The total wood volume 
of a tree includes the volumes of stem(s), 
branches, stump, and roots. For standing trees, 
aboveground volume production is generally 
based on stem wood volume for conifers, but 
may include branch volume for broad-leaved 
tree species. 
Depending on measurement objective 

and local traditions, measurements or 
predictions of wood cubic volume may refer 
to, for example, total stem volume, total tree 
volume (stem and branches), or the volume 
of portions of a tree intended for a specific 
utilization (Köhl et al. 2006, p 47). Volume 
estimates may include or exclude bark and, 
for aboveground estimates, include or exclude 
the stump. Volume is always a cubic measure, 
and usually expressed in cubic meters. 
Merchantable volume, however, is sometimes 
expressed in other units related to commercial 
use (Skovsgaard 2004).

In the field, the volume of standing trees is 
typically estimated from such measurements 
as diameter, or diameter plus some height of 
interest (e.g. merchantable height, total height, 
or height to a usage specified diameter limit). 
A subsequent application of a suitable volume 
equations, taper equations, or a log-rule will 
then produce the desired volume estimate 
(Lynch 1988; 1995; Tesfaye 2005; Tomé et al. 

2007; Yamamoto 1994a; 1994b).
Volume may be measured directly on felled 

trees or logs, but is often estimated from 
dimensions such as minimum diameter 
or piece length (Husch et al. 1972). Direct 
measurement of volume is usually done by 
sectioning a tree into smaller pieces assumed 
to be cylinders (Köhl et al. 2006, p 50). 
Volume may be estimated for stacks of logs 
or processed products by measuring their 
dimensions. Local knowledge is needed to 
make the appropriate transformation to an 
estimate of the solid wood volume. 

With the advance of remote sensing 
technology, especially LiDAR (see chapter 
on Remote Sensing), it is now possible to 
combine field-based estimates of volume for 
a spatial unit (plot) with a suite of remotely 
sensed ancillary variables in order to obtain 
either model-based predictions of per-unit 
area volume or per-tree estimates of volume 
for trees large and distinct enough to be 
identified with a high degree of confidence 
(Maltamo et al. 2004a; Maltamo et al. 2004b; 
Parker and Evans 2004; Popescu et al. 2003).

3.1 Volume Equation Forms
Stem volume (V) is usually expressed 
quantitatively as a function of diameter (D), 
or diameter and height (H) or merchantable 
length. Occasionally, other variables such 
as clear bole length are used to estimate 
volume (Husch et al. 1972). An important 
consideration is that any variable needed to 
predict volume should be observed during 
field data collection. The following two 
‘classic’ models are often used   (Köhl et al. 

2006, p 50) :   ,  alternatively V D H V D Hς ψα β ω= + × × = × × alternatively 
2 ,  alternatively V D H V D Hς ψα β ω= + × × = × ×  where, in both cases, α, β 

and γ are coefficients to be determined from 
specific (small) samples where tree volumes 
are carefully determined, or known from 
previous studies viz. subject knowledge. 
When tree height can be expressed as a 
function of diameter (Begin and Raulier 1995; 
Huang and Titus 1992; Jayaraman and Lappi 
2001; Moore et al. 1996; Nanos et al. 2004; 
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Zhou and McTague 1996) the relationship 
can be built into a volume prediction based 
on diameter alone. Tabulated look-up tables 
of stem volume for a given species, location, 
and stem diameter are called volume-tariffs 
(Fonweban and Houllier 1997; Magnussen 
1998; Paine and McCadden 1988).
Choice of model may depend on modeling 

objective and data (Skovsgaard 2004). The listed 
equations implicitly assume a single-stemmed 
tree form and may require modification or 
replacement for species with a more complex 
form. At times a volume equation is easier to 
fit to data after a logarithmic transformation 
because the transformation brings the model 
into a linear form. However, a negative bias 
is introduced when the predicted logarithm 
of V is converted back to arithmetic units 
(Baskerville 1972; Bi et al. 2001; Lee 1982; 
Wiant and Harner 1979). This bias is 
approximately the order of magnitude of one-
half of the residual variance of the equation, 
at least when it can be justified to assume a 
normal distribution of model residuals.
In the absence of a trusted local volume 

equation(s), it is possible to utilize geometric 
relationships to approximate volume. The 
volume of a cylinder is simply the area of 
the base times the height, and the volume 
of a cone is one-third of the volume of a 
cylinder with the same area of the base and 
height. Trees are neither cones nor cylinders, 
but empirical analyses often indicate that the 
volume of a single-stemmed tree is between 
that of a cone and a cylinder, with tree volume 
often lying between 0.40 and 0.45 times that of 
an equivalent cylinder. Using a value of 0.42, 
for example, we get 0.42V B H≈ × ×  where B 
is tree basal area at breast height and H is tree 
merchantable height. This equation will often 
overestimate volume of open-grown trees with 
more conic form, underestimate the volume 
of trees with more cylindrical form, and may 
need to be modified for species with more 
complex forms. Nevertheless, it does provide 
a first approximation, that subsequently can 
be modified following local experience.
Volume equations derived from remotely 

sensed predictors are typically linear (possibly 
after a logarithmic transformation) with 
a model form that depends on the sensor 
type, data resolution and scale (Biggs 1991; 
Magnusson et al. 2007; McRoberts et al. 2007; 
Straub et al. 2010; Yu et al. 2008).
Application of any model means that the 

ensuing estimates are not exact. Estimates 
derived from models may be biased due to 
limitations of the model, and in all cases they 
are predictions of the value that is expected 
given the value of the predictors (Kangas 
1996). For example, if you predict a stem 
volume from D and H using a local volume 
equation then the estimated value of V should 
be interpreted as the average value of all trees 
in the population with the exact same D and 
H values. The actual tree in question may have 
a volume that is either greater or less than the 
expected value (Gregoire and Williams 1992). 
If a model turns out to produce estimates 
with an unacceptable high level of bias it 
may become necessary to either develop an 
improved model or to calibrate an existing 
model (Erdle and MacLean 1999; Kangas and 
Maltamo 2000; Lappi 1991).

4. Biomass estimation
Biomass is defined as the total mass of living 
plant organic matter expressed as oven-
dry tons or oven-dry tons per unit area. 
Estimates of biomass may be restricted to the 
aboveground portion of the vegetation, to 
trees, or to tree components (such as foliage, 
wood, etc.) (Gschwantner et al. 2009).
Biomass of a forest stand (compartment) is 

often proportional to the volume and basal 
area of the stand. Conversely, the biomass of 
a single tree is typically proportional to its 
diameter and height (Teobaldelli et al. 2009). 
Allocation of biomass to various functional 
components is related to species, growing 
conditions, and the water-, nutrient-, and 
energy-requirements of individual plants 
and stands (Gargaglione et al. 2010; Zhang 
and Borders 2004). The carbon content of 
vegetation is directly related to biomass as 
discussed in the following section.
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Direct estimation of forest biomass is a 
labor-intensive and costly proposition. A 
stratified sampling for a field-based estimation 
of biomass per unit area is the only realistic 
approach (Loaiza Usuga et al. 2010). Strata are 
typically defined based on clearly identifiable 
components of the living vegetation (e.g. fungi, 
mosses, herbs, grasses, shrubs, seedlings, 
saplings, trees, epiphytes). The biomass in 
each sampling unit is determined by weighing 
after drying following standard protocols 
(Gabriëls and Berg 1993). Sample items 
(e.g. trees) too large for a practical and cost-
effective handling, are sectioned to smaller 
piece-sizes, and a sample of the smaller pieces 
is then taken for biomass estimation. It is 
critically important that the dissection and 
sample plan ensures an unbiased estimator of 
the biomass of large items (Ahmed et al. 1983; 
Cancino and Saborowski 2005; Good et al. 
2001; Gregoire et al. 1995).

4.1 Biomass Components
Biomass may be estimated in total for stands 
or portions of stands as noted, but information 
on biomass distribution by plant component 
is often needed. Biomass components may be 
divided as necessary for a given application, 
but often include categories such as stem 
wood, branch wood, foliage, bark, roots, etc., 
with more or fewer subdivisions as needed. 
A common constraint is that the sum of the 
component biomass estimates must equal the 
total biomass for the stands or portions of 
stands of interest. 
In many applications, only above ground 

biomass estimates are used. There are 
obviously belowground components to 
biomass (such as coarse roots, fine roots, 
etc.), but studies quantifying these values are 
difficult to conduct, are available for only a 
small number of species and ecosystems, and 
typically have low precision in the data (Lukac 
and Godbold 2010; Macinnis-Ng et al. 2010; 
Niiyama et al. 2010; Pramod and Mohapatra 
2010; Zhang et al. 2010a). 
At the stand level, biomass may be estimated 

for the overstory, shrubs, herbs, lichens, moss, 

etc. In forested situations, the overstory 
biomass usually dominates. There are cases 
where tree cover is low and overstory or tree 
biomass is smaller compared to that of other 
ecosystem components. The decision on 
which biomass components are necessary to 
consider is dependent on the ecosystems to be 
surveyed and the intended use of the resulting 
information. 
Cannell (1982) presents a compendium of 

worldwide biomass data from a cross-sections 
of   ecosystems. The compendium includes 
ratios for various biomass components for many 
forest types. As per 2010 this compendium 
remains the single most authoritative 
compilation of benchmark biomass figures. A 
smaller set of biomass estimates can be found 
in a recent re-evaluation of forest biomass and 
carbon storage (Keith et al. 2009).

4.2 Biomass Equations
Biomass equations are used to predict biomass 
from readily available ancillary variables (X). 
The equations may predict the biomass of 
a single tree or the tree biomass on a unit 
of forest land. Tree-level equations express 
biomass as a function of tree dimensions 
(diameter and height). Equations for unit-
area predictions of biomass vary according 
to the ancillary variable(s) (X). Equations 
driven by field-related X-variables generally 
apply stand-level attributes such as basal area, 
mean tree size (height/diameter) or similar 
aggregates of tree-level attributes. Equations 
driven by X-variables obtained via remotely 
sensed data (Gallaun et al. 2010; Wijaya et 
al. 2010; Zhao et al. 2009) vary according 
to the sensor-type and resolution behind 
X. In many cases, the biomass used as the 
dependent variable (Y) in these equations is 
rarely a direct estimate of biomass but rather 
an estimate obtained by another set of models 
that ‘expands’ available inventory estimates of 
tree and stand attributes to the desired biomass 
component(s) (Albaugh et al. 2009; Gallaun et 
al. 2010; Jalkanen et al. 2005; Lehtonen et al. 
2004; Levy et al. 2004; Schroeder et al. 1997; 
Somogyi et al. 2008; Teobaldelli et al. 2009; 
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Wijaya et al. 2010; Zhao et al. 2009).
Equations applied to forest inventory data 

are usually developed for particular species 
or species groups, and may be developed 
with data collected from narrow geographic 
ranges. There are some examples described 
below where more widely-applicable 
equations have been developed through a 
synthesis of published studies. Cannell (1984) 
presented equations to estimate stand level 
woody biomass from total stand basal area 
and average tree height for a wide range of 
temperate and tropical stand types; most of the 
equations are for temperate coniferous forest 
types. These equations are simple to apply 
since they use variables commonly obtained 
during field data collection. Application is, as 
a rule, for stand level (plot) estimation rather 
than for tree level estimation.
At the individual tree level, Jenkins et al. 

(2003) give composite equations applicable 
for temperate species across North America. 
Teobaldelli et al. (Teobaldelli et al. 2009) 
provide a similar set of generalized equations 
for five species groups in Europe. These 
equations could be applied, with appropriate 
qualification, to other temperate forest types. 
We shall give an example of a generalized 

equation used by Jenkins et al. (2003). 
Specifically, the Schumacher equation where 
total aboveground biomass is estimated 
for individual trees based on an allometric 
relationship with diameter at breast height:  

( )( )0 1 lnb b DB e +=  where B is total aboveground 
biomass (kg) for trees 2.5 cm and larger in 
diameter at breast height (D). Coefficients 
are given for both deciduous and coniferous 
species groups throughout all regions of the 
United States. Broad species groupings are 
utilized (Pine, for instance, and Spruce, with 
a total of five coniferous and four deciduous 
species groups). Teobaldelli et al. provide 
equations for the expansion factor (BEF) 
needed to convert an estimate of growing 
stock (X) to an estimate of biomass (B). A 
widely used expansion equation has the form  

2
0 1

bBEF b b X −= + ×  whereby X is a measure 

of the growing stock.
Brown (1997) presents equations for 

individual trees in tropical forests. For 
broadleaved species, two equations are 
presented for Tropical Dry forests, two for 
Tropical Moist forests, and one for Tropical 
Wet forests. In addition, one equation is 
presented for palms and another for Tropical 
Conifer forests. All of these equations 
express individual tree biomass as a function 
of diameter and height, though different 
specific equation forms are used in different 
applications.
The biomass of various biomass components 

is commonly estimated from models of the 
distribution (allocation) of the above-ground 
forest tree biomass to specific components 
(stem, bark, stump, branches, foliage, fruit/
seed). Continuing the example from Jenkins et 
al. (2003), the proportion of the total biomass 
in the ith biomass component of a tree can 
be estimated from, say, the tree’s diameter at 

breast height as in 
1

0 1b b D
ir e

−+ ×= . 
Note, the ‘conversion’   from one or more 

readily available inventory attributes of 
growing stock to biomass, and then to biomass 
components via a set of generalized equations 
is only simple in principle. There are many 
factors and circumstances that can cast doubt 
on an estimate of biomass obtained with 
generalized equations (Albaugh et al. 2009; 
Jalkanen et al. 2005; Lehtonen et al. 2004; 
Retzlaff et al. 2001). It is therefore incumbent 
upon the analyst to exercise great diligence 
with respect to choice of model and intended 
application of a chosen model. The limitation 
and error-structure of many generalized 
models and allometric biomass-allocation 
formulae are often not well documented.

5. Carbon content 
estimation

Regional and national estimates of ecosystem 
carbon content, and change in ecosystem 
carbon content over time, are important 
components for an assessment of global 
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carbon cycling and its impact on atmospheric 
greenhouse gases and climate (Birdsey 2006; 
Cairns and Lasserre 2006; Waterworth and 
Richards 2008; Watson 2009). International 
agreements are requiring improvements in 
the ability to assess forest carbon stocks and 
their change (Dutschke and Pistorius 2008; 
Kägi and Schmidtke 2005; Zhang et al. 2009).
In this context, it has become increasingly 

important to quantify the carbon content that 
resides in forests and forested ecosystems and 
its contribution to the carbon cycle. Forest 
inventories make significant contributions to 
estimates of carbon in forested ecosystems 
because the carbon content is relatively easy 
to assess for the components of the vegetation 
captured by an inventory (Dupouey et al. 2010; 
Nabuurs 2010; Rodeghiero et al. 2010; Tupek 
et al. 2010). In many cases, vegetative carbon is 
used as a surrogate for total ecosystem carbon 
since it is relatively easy to derive from existing 
information or ongoing inventory efforts. 
Total ecosystem carbon, which includes 
inorganic ecosystem components such as soil, 
is more difficult to assess, especially if the 
precision of the estimates must be quantified 
(Baritz et al. 2010; Loaiza Usuga et al. 2010). 
Expensive estimates of carbon are typically 
derived from a few intensively studied plots, 
each considered as representive of a very large 
area with similar soils, vegetation, and climate.
Today many unit-area estimates of carbon 

content in forest vegetation are generated from 
a suite of explanatory variables (regressors) 
delivered from various satellite or air-
borne sensors (Maselli et al. 2010; Sánchez-
Azofeifa et al. 2009; Tagesson et al. 2009). 
Invariably these estimates build on a modeled 
relationship between field-based estimates of 
biomass (carbon) and one or more sensor-
based ancillary variable. 

5.1 Carbon Content of 
Vegetation
The carbon content of vegetation is 
surprisingly constant across a wide variety 
of tissue types and species (Baritz et al. 2010; 

Mäkelä et al. 2008; Munishi and Shear 2004; 
Nogueira et al. 2008; Rana et al. 2010; Wauters 
et al. 2008). Schlesinger (1991) noted that the 
C-content of biomass is almost always found 
to be between 45 and 50% (by oven-dry mass).
In many applications, the carbon content 

(C) of vegetation may be estimated by simply 
taking a fraction of the estimate of oven-dry 
biomass (B), as in ˆ ˆ0.475C B= × . The accuracy 
of an estimate of this nature is typically not 
great due to errors in B̂ , and one should also 
expect it to be biased.
For dead material, carbon content is a 

function of the state of decomposition 
(Boulanger and Sirois 2006; Garrett et al. 2010; 
Mukhortova and Trefilova 2009; Vávrová et 
al. 2009; Yang et al. 2010). For material that 
can still be identified, such as fresh litter 
or standing dead trees, the above equation 
may be used to estimate the C-content if the 
mass of the material can be estimated, see 
section 5.2 below. For severely decomposed 
material, it may be necessary to determine 
the C-content in subsamples taken from the 
material collected at a site, and then combine 
this with an estimate of the total (bio) mass 
of that class of material before the C-content 
for that vegetative component can be 
estimated. Even small errors due to sampling, 
measurement and handling of the material 
can have a serious impact on the accuracy of 
an estimate for a vegetation component that 
is orders of magnitude larger than the taken 
sample (Woodall et al. 2008).
Total carbon content of vegetation goes 

beyond trees. It includes all parts and 
components of the plant community, such 
as herbs, shrubs, mosses, etc. Field-based 
estimation of carbon typically begins with an 
estimation of biomass (see above) and then 
a conversion along the lines detailed above. 
To accomplish this task it becomes necessary 
to stratify the community and sample from 
each stratum. The necessary strata must be 
defined based on the composition, structure 
and extent of the community in question 
(Clark et al. 2008; Friedel 1977; Kenow et 



11

al. 2007). In some cases, it may make sense 
to obtain C-content estimates for life forms 
such as epiphytes, while in other cases this 
is irrelevant. The approach follows the above 
for all classes of vegetation: first estimate the 
biomass in each stratum (component) using 
appropriate sampling methods and then apply 
the ratio to estimate the C-content. 

5.2 Ecosystem Carbon Content
In addition to the carbon content of vegetation, 
it may be necessary to estimate total ecosystem 
carbon content (Jia and Akiyama 2005; Wang 
and Sun 2008; Wise et al. 2009). This includes 
biotic as well as abiotic carbon pools. Avian 
(Pautasso and Gaston 2005) and mammalian 
(Desbiez et al. 2010; Plumptre and Harris 
1995) biomass and carbon content is often 
ignored since it is usually a small fraction of 
total ecosystem carbon. At times it may be 
required to estimate arthropod biomass and 
carbon content in order to obtain a good 
estimate of total ecosystem C (Fisk et al. 2010; 
Tovar-Sanchez 2009). Colonizing insects may 
comprise a significant portion of the total 
biomass of some systems (Vasconcellos 2010; 
Yamada et al. 2003), and abiotic materials 
incorporated into nests and colonies may also 
be a significant portion of total C.
A major abiotic carbon pool is the soil 

organic matter (Chang et al. 2010; Rovira et al. 
2010; Tipping et al. 2010), which is particularly 
important at high latitudes or high altitudes. 
This may in some cases be greater than the 
vegetative carbon. Dead plant material at the 
soil surface and in the upper soil horizons 
may also have a significant C-content that 
should be considered in any estimate of 
ecosystem C-content (Fisk et al. 2010; 
Gasparini et al. 2010). McKenzie et al. (2000) 
provide a compendium of methods for field 
data collection for carbon estimation in soil, 
litter, and coarse woody debris. Quantitative 
data on forest litter may be sparse. However, 
several countries, with an elevated risk of 
forest fires may have extensive information 
because they conduct surveys of the elements 
on the forest floor that significantly increases 

the fire hazards during periods of drought 
(Fernandes 2009; Kessell et al. 1978). 
Carbon content of litter should usually be 

determined from field samples designed for 
this specific purpose. The carbon content of 
litter depends on the stage of decomposition. 
Application of a ratio approach such as that 
described for vegetation can be used -see 
section 5.1 above- but will often underestimate 
the C-content of the litter layer due to the 
escape of carbonic gases during the process of 
decomposition (Fioretto et al. 2007; Hosseini 
and Azizi 2007; MacDicken 1997).
Estimates of soil C may be obtained from 

field sampling, and this is the most precise 
and appropriate method to estimate site-
specific carbon content. Field data collection 
should be used whenever precise estimates 
of soil C are needed, but it is important to 
consider temporal variation throughout a 
growing season in large studies that may 
require an extended sampling period. If a soil 
classification map for the area of concern exists, 
there may be information on carbon content 
for different soil types in the area (Geissen et 
al. 2009; Zhang et al. 2010b). A given soil type 
may yet have different mean carbon content 
depending on the dominant vegetative cover 
and land use; soil under an agricultural field 
may have a very different C-content than a 
similar soil under a mature forest. Estimates 
of soil C-content may or may not be available 
for all conditions in an area of concern. Batjes 
(2009) provides access to an extensive database 
of global soil physical and chemical properties, 
including information that may be used to 
approximate soil C-content in the absence 
of site specific information. These estimates 
will be less precise than those obtained from 
field samples, but may be cost-efficient when 
high precision, site-specific estimates are not 
required. In many applications, it may be 
more cost effective, and ultimately result in 
higher precision in the final estimates, to use 
a greater number of less precise estimates of 
C-content for individual sampling units, than 
to measure C-content of a subset of sampling 
units with high precision (MacDicken 1997). 
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The trade-offs are a function of sampling 
design and cost, and must be evaluated in 
that context (see chapter on Sample Designs). 
Note, however, that if expedient less expensive 
C-estimates are biased, the opportunities for 
an attractive trade-off between a small sample 
with expensive observations and a larger 
sample with less expensive observations can 
be severely curtailed (Köhl et al. 2006, p 79).

6. Judging model quality
A model summarizes a conceptual relationship 
between one or more dependent variables (Y) 
and one or more predictors (X). The model 
can be stated as a single equation (for example, 
Fehrmann et al. 2008), a system of related 
models (for example, Gertner et al. 2002) or a 
hierarchical (multi-level) model (for example, 
Pedersen 1998). Models are mostly used for 
predicting new value(s) of an unobserved 
entity from available predictors. The volume, 
biomass and carbon equations given above 
provide examples of the most basic types of 
models. A model may be formulated through 
subject knowledge (Curtin 1970), adopted 
from other studies, or suggested by apparent 
trends in observed data. The following 
references provide access to a broad selection 
of forest models (Amaro et al. 2003; Dykstra 
and Monserud 2009; Schwab and Maness 
2010; van Laar and Akça 2007).
In forest inventory and biological sciences, 

data exhibit a large amount of natural 
variation and models are limited to predicting 
the expected value of the dependent variable 
given the input data. The quality of any model 
is judged by its ability to provide unbiased 
(accurate) estimates of these expectations and 
the precision of model predictions. Models 
with deterministic (fixed, invariable) model 
parameters generate a single prediction 
(the expected value) given a set of predictor 
values. Stochastic models contain one or 
several parameters that are random (Biging 
and Gill 1997; Rennolls 1995). Hence, they 
can generate both conditional predictions for 
a random unit (say a tree, a plot, or a forest 

stand) and population averaged predictions 
(Schabenberger and Gregoire 1996).
When fitting a model to data, a comparison 

of values predicted by a model and the actual 
values of the dependent variable provide 
an initial assessment of model quality. It is 
generally desirable for models to be unbiased, 
meaning departures from model predictions 
(residuals) to average to zero for any input, 
and precise, meaning residuals are distributed 
tightly around the predicted values. 
The quality of a model for prediction 

purposes is assessed by comparing a 
prediction of a new observation not used in 
model development to the actual value of 
the new observation. Common criteria for 
assessing model quality include, for examples,  
a t-test of the hypothesis of a zero mean 
model prediction error, the variance of model 
errors, the magnitude of the median absolute 
deviation (Venables and Ripley 1994), the 
sign test for testing equal medians of, say, the 
observed and predicted values (Conover 1980, 
p 122). The Wald-Wolfowitz runs test can be 
used to test the hypothesis that the elements 
of a sequence of model errors along a gradient 
of predictor values are independent (Conover 
1980, p 136). Additional assessments are often 
geared towards: testing the assumption of a 
normal distribution of model residuals (Brown 
and Hettmansperger 1996), an analysis of 
errors in ‘curve’ models (Ducharme and 
Fontez 2004; Huang 1997), and homogeneity 
of error variances across a range of input 
(McKeown and Johnson 1996; O’Brien 1992; 
Shoemaker 2003). Reynolds (1984) provides a 
basic approach to model quality assessment. 
Vanclay and Skovsgaard (1997) provide a 
brief overview and an operational frame for 
judging model quality. It is common to see an 
assessment of model-quality done by excluding 
a portion of the data from the model-fitting 
phase or by a leave-one-out cross-validation 
scheme by which the model is estimated 
repeatedly by leaving out one observation 
and then comparing the actual and predicted 
value for the withheld datum (Efron 2004). 
We prefer the latter approach, since one can 
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rarely afford to withhold a large portion of 
the data without affecting the properties of 
the model to be assessed. To wit, with fewer 
observations for modelling the chosen model 
may be sup-optimal. When sample sizes are 
small, we recommend model-building based 
on robust techniques (Choi et al. 2010; Lange 
et al. 1989; Wang and Leng 2007).
When applying a general model, such as the 

volume and biomass equations given earlier, 
or a model developed for a given species in 
a different geographic area, it is important 
to attempt to assess model quality prior to 
application. This may require the collection 
of new field data, or it may be possible to 
utilize existing data for this purpose. Failure 
to assess model quality forces the user to make 
an untested, implicit assumption that the 
model used is appropriate for the species and 
geographic area to which it is applied, which 
may or may not be true. Users of models 
should always keep in mind that a model may 
generate unusual predictions. Extrapolations, 
i.e. application of the models with one or more 
of the predictor values falling outside the 
range of the data used during model-fitting 
should be avoided whenever possible because 
bias and   precision may quickly become 
unattractive for otherwise well-founded 
models (Schreuder and Reich 1998)

With the advance of models that rely 
on input from remotely sensed data, it is 
increasingly important to consider (check) 
whether the predictors are actually the same 
(i.e. with identical information content, 
collected at identical spatial scales, and with 
identical measurement error-structures) as 
the data used during model-fitting. If not, 
then the impact of errors-in-variables must be 
considered as well (Carroll et al. 1995; Fuller 
1987).
Users of existing models are rarely in a 

position to conduct a full-fledged model-
check, or for that matter a validation. Key 
information about the statistical properties 
and data behind a model is often missing or 
difficult to retrieve. 

Instead of relying entirely on model 

predictions it may be a better strategy to take 
a small probability sample of the variable(s) 
of interest and then combine them with 
predictions from a model. This model-assisted 
type of estimation (Särndal et al. 1992) has 
become popular. In the statistical literature 
the approach goes under the name of “Small 
Area Estimation” (Pfeffermann 2002; Tomppo 
2006). Also, users concerned with the quality 
of a model may adopt a Bayesian paradigm 
whereby user-defined prior distributions 
on model-parameters capture model 
uncertainty and possibly bias and integrates 
this uncertainty in their predictions (Gertner 
et al. 2002; Green et al. 1999; Green and 
Strawderman 1996; Green and Valentine 
1998).
Validation of complex models for large scale 

applications (e.g. ecosystem predictions of 
carbon content) is rarely possible. Validation 
of individual components of the model may 
not guarantee that all the interactions of 
model-components are adequately captured. 
It is always the user’s responsibility to check 
model assumptions and model predictions.

7. Model error 
contribution to total error
Methods of estimating the precision of 
inventory estimates are dependent on the 
sampling design used to collect the data. These 
methods, however, generally assume that the 
individual observations are measured without 
error. For model-based estimates like volume, 
biomass, and carbon, however, there are 
model errors to consider. Consequently, there 
are three main sources of error: measurement 
error, model error, and sampling error. The 
sample-based precision estimates, therefore, 
should be considered to be underestimating 
the variance, or conversely, as implying 
confidence intervals that are too narrow, for 
derived variables such as volume, biomass, 
or carbon content. Similarly, methods of 
estimating the sample requirements to 
achieve a desired level of precision will 
indicate fewer samples than really needed 
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unless consideration of model error is taken 
into account in addition to sampling error. 
For more information see Sampling Designs 
chapter. 
Inventory models are never perfect. The 

discrepancy between the actual (unknown) 
value (YA) and the predicted value from a 
model (YP) is called the model error (εp). In 

equation form, this becomes: A P PY Y ε= + . 
This simple (linear) equation also implies that 
the variance of a series of predicted values is 
less than or equal to the variance of the actual 
values. Equality holds only for perfect models 
with no error variance. For example, if we 
predict the volume of trees in a plot from a 
suitable volume equation then the calculated 
variance of the volume predictions will be less 
than the actual variance of the volume of the 
trees in the plot. Consequently, the standard 
error of a predicted mean volume for a plot 
will be biased downwards. The variance of 
prediction errors must be included to obtain 
an unbiased estimate of the total error.
In many applications it should also be 

considered that the parameters in models used 
in an estimation procedure are themselves 
estimates with associated errors. One may 
choose to include also this extra source of 
uncertainty in the estimation of the total 
errors. For sample surveys with large sample 
sizes this type of model error would usually 
constitute a large portion of the total error 
(variance)
The variance of prediction errors may be 

substantially larger than the residual variance 
obtained during model fitting, especially when 
the mean and covariance of the input variables 
vary from those of the data used for model 
fitting. Application of the model outside the 
recommended application domain raises the 
specter of serious additional underreporting 
of error. 

8. Monitoring over time
Monitoring over time allows estimation of 
change and trends in forest attributes (Köhl et 
al. 2006, p 143). The changes and trends can 

be estimated from a set of permanent sample 
plots -see section 8.1-or temporary plots -see 
section 8.2- or a combination of both (see 
chapters on sampling design and observations 
and measurements) . Temporary plots can be 
used to obtain estimates of the current state of 
the forest, while permanent plots or a mixture 
of permanent and temporary plots are pre 
requisites for obtaining estimation of change 
over time (Picard et al. 2010). Estimation of 
change is a complex challenge. There are three 
major types of temporal changes in forestry: 
1) change conforming to the expected 
progression of living and dead material in a 
forest during the period of interest (e.g. volume 
increment of living trees), 2) unexpected 
biotic or abiotic disturbances (e.g. mortality 
due to insect, snow, wind, fire, ..), 3) forest 
management activities (thinning, harvesting, 
planting, seeding,..). Each category operates 
at different temporal and spatial scales. Given 
the multivariate nature of forest resources, 
and the wide range of rates and modes of 
change, it follows that the efficiency of most 
sampling designs for estimation of change can 
be highly efficient for one attribute of change 
(e.g. net volume increment), yet inefficient 
for capturing other types of change (e.g. rates 
of deforestation, volume destroyed by fire, 
insect mortality). Few practical designs are 
efficient for capturing change in sensitive 
but small subpopulations (e.g. number of 
specimen of a rare or possibly endangered 
species) (Christman 2000; Magnussen et al. 
2005). To adequately capture changes related 
to abiotic and biotic disturbances and to 
forest management practices, it is common 
to conduct a census of correlated ancillary 
variables via remote sensing (see chapter on 
remote sensing) at the start and the end of 
the period covered by the change estimate(s) 
(Coppin et al. 2004; Stehman 2009; Tomppo 
et al. 2008).
Change estimates are frequently evaluated 

against expectations or a set of targets, and 
estimates of the precision of the change 
estimate are important in this situation. When 
the change is estimated from a combination 
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of field-observations and remotely sensed 
ancillary variables, estimators of change and 
their precision can become very complex 
and the actual estimation may require the 
assistance of a statistician (Stehman 2009). 
Unless it can be argued on statistical grounds, 
that an estimate of change is unbiased one 
should accept that bias could be a potential 
issue.

The simplest change equation is for a trait 
Y observed at time t and then again at some 

future time t + Δt. We have t t t tY Y Y+∆ ∆= + ∆  
where Yt is the initial measurement at time t, 
Yt + Δt is the future measurement at time t + 
Δt, and ΔYΔt is the change in Y from time t 
to time t + Δt.  The variance of the estimate 
of ΔYΔt, depends on the type of plots (or 
mixture of plots) used for the data collection. 
Any correlation between measurements at 
two points in time must be accounted for 
when estimating the variance of a change. 

Continuing our simple example, the estimate 

of change is t t t tY Y Y∆ +∆∆ = − . In this case, the 
variance of the change estimate is equal to:

( ) ( ) ( ) ( ) ( ) ( )var var var 2 , var vart t t t t t t t t tY Y Y Y Y Y Yρ∆ +∆ +∆ +∆∆ = + −

 ( ) ( ) ( ) ( ) ( ) ( )var var var 2 , var vart t t t t t t t t tY Y Y Y Y Y Yρ∆ +∆ +∆ +∆∆ = + −

where var denotes a variance, and 
cov a covariance, and ρ is a correlation 
coefficient (between the original and future 
measurements). A strong positive correlation 
reduces the variance of a change measurement.
When a sample selection has been with 

an unequal probability sampling design, the 
analyst must take into account that these 
probabilities may have changed over time 
(Roesch et al. 1993).
As discussed in section 7, if the above change 

estimation involves the use of quantities that 
are predictions of expected values from one or 
more models, then it will again be necessary to 

account for the ‘hidden’ errors in tY  and tY∆ .  
This will commonly be the case in forestry. 

Compounding the issue is the fact that the 

errors in tY  and tY∆  often tend to be correlated. 
Additional complications arise when the 

method (protocol/process) for obtaining tY  

differs from that of .t tY +∆  The assistance of a 
professional statistician may be called for.

8.1 Estimating Change Using 
Remeasured Permanent Plots
Permanent plots refer to forest sampling 
locations that are monumented or otherwise 
uniquely identified and remeasured at 
different points in time (Köhl et al. 2006, p 
144). 
From a statistical and data-analysis 

perspective the major advantage to permanent 
plots is an improved precision of estimates of 
change due to a typically strong correlation of 
sampling errors (see above expression for the 
variance of a change). A higher data quality 
may also materialize from additional attention 
and quality control. Finally, permanent plots 
permit inference about cause and effect 
(Augustin et al. 2009). For undisturbed and 
carefully measured permanent plots the 
correlation between subsequent measurements 
tends to be both positive and relatively 
strong, which, as outlined above, lowers the 
variance of an estimate of change. Yet the 
correlation between successive measurements 
can deteriorates quickly with the length of a 
measurement interval and disturbances (e.g. 
fire, wind, snow, drought, forest management 
interventions). A high data quality facilitates 
error checking in current data and scanning 
for anomalies in past data. 

8.2 Estimating Change Using 
Temporary Plots
Temporary plots offer a maximum of flexibility: 
Independent surveys can be established at 
different times, with plots only measured at one 
time. Since the surveys at different times are 
taken on different plots, the above advantage 
of the above discussed  positive correlation of 
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plot-specific observations at time t and t t+ ∆  
no longer exists (there is no natural pairing of 
the two sets of observations).
Individual trees on temporary plots are 

usually measured more quickly and with less 
precision than those on permanent plots, 
reducing the precision in the estimates and 
the resulting estimate of change. Less precise 
observations will also make it more difficult 
to spot outliers and anomalies in the data 
(Cerioli 2010). A lower data precision can, to a 
degree, be offset by the use of a greater number 
of temporary plots but the final tradeoff 
depends, in a complicated way, on where and 
how errors enters the observations and on 
the assumed model behind the observations 
(Carroll et al. 1995).
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