Estimating household and individual level impacts: the experience of Kenya

Solomon Asfaw

Food and Agricultural Organization (FAO) Agricultural Development Economics Division (ESA) Rome, Italy

Outline of the presentation

- 1. Background of Kenya CT-OVC
- 2. Data issues and estimation strategies
- 3. Impact of the CT-OVC
- 4. Final remarks

Background - Kenya CT-OVC

- Government's flagship social protection program
- Reached 129,526 households as of end of 2011 with the ultimate goal of providing coverage to 300,000 households or 900,000 OVC
- Targets households who are ultra-poor and contain an OVC
- Eligible households receive a flat monthly transfer of 21 USD (Ksh1500)
- Unconditional no punitive sanctions for noncompliance
- Provide a social protection system through regular and predictable cash transfers to families living with OVCs to
 - Encourage fostering and retention of OVCs within their families and communities HETRAN

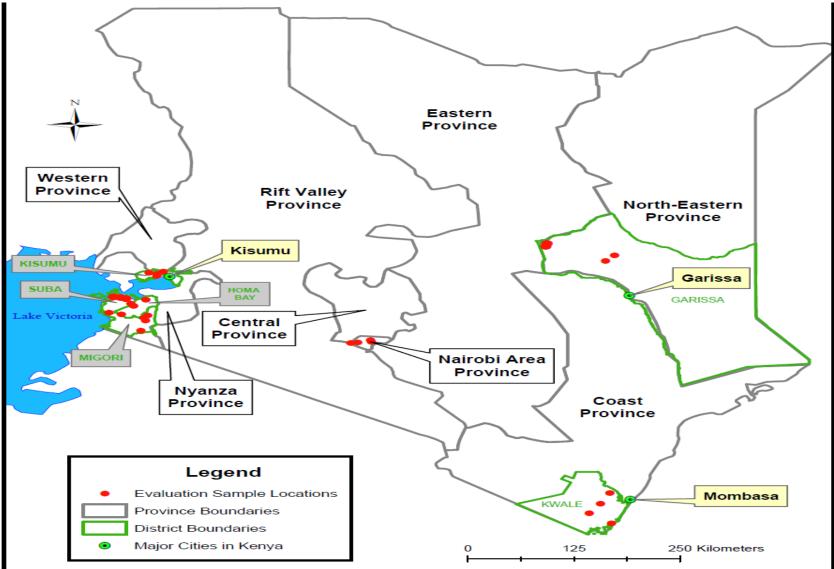
Promote their human capital development

What are we doing with this study?

Provision of small but predictable flow of cash can facilitate change in economic activities

- Investment in productive assets
 - Ownership of livestock and agricultural implements
- Impact on agricultural production
 - Direct impact on agricultural production
 - Crop production, crop and livestock labor and input use, and credit use
 - Indirect impact on agricultural production
 - Share of own production in total consumption
- Impact on non agricultural production
 - Operation of non agricultural business
- Impact on labor supply
 - Participation and intensity of wage labor (overall, agricultural and non agricultural) and own farm labor by gender, for adults and children.

Overall, by gender of household head, and by household size


Impact evaluation design

- 4 year, longitudinal, experimental design
 - Randomization at cluster level (28 units)
 - Baseline (2007) and first follow up (2009) carried out by OPM
 - Second follow up (2011) by UNC and FAO
- In 2011, added topics:
 - Sexual debut, partner characteristics, perceptions about peer behavior, marriage, pregnancy, mental health and risk
 - Economic activities
- 1811 households in second follow up (1783 used in our analysis)
 - 1280 treatment, 531 control

- 18% attrition between R0 and R1; 5% between R1 and R2
 - Attrition was random

Map of the evaluation sites

Data limitations

Baseline and follow up data available on

- Share of own production in total consumption
- Ownership of livestock and agricultural implements (partial, and based on recall)
- Only follow up data available on
 - Crop production, crop and livestock labor and input use, and credit use
 - Operation of non agricultural business
 - Participation and intensity of wage labor (overall, agricultural and non agricultural) and own farm labor

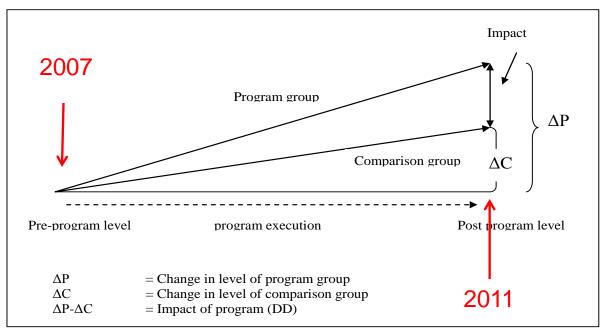
No data on

Time devoted to housework

Agriculture is fundamental part of livelihoods of CT-OVC beneficiaries

- Large majority are agricultural producers
 - Over 80% produce crops; over 75% have livestock
- Most grow local maize and beans, using traditional technology and low levels of modern inputs
- Most have low levels of assets
 - 2.6 acres of agricultural land, few small animals, basic agricultural tools and low levels of education
- Only 16 percent used credit in 2011
- 1/4 of adults worked in wage labor, 1/2 in own agriculture, 1/3 in own business, 1/5 private transfers
 - Women more in agricultural wage labour
 - Almost all wage labour is casual
 - 42% of children worked on family farm

Framework for impact analysis


Difference-in-Difference (DD) estimator for those outcomes for which we have baseline data

Propensity score methods or Inverse probability weighting (IPW) for those outcomes for which we only have data in 2011

Difference-in-Difference (DD) estimator for those outcomes for which we have baseline data

Which type of DD estimator to use?

- 1. Just subtract differences
- 2. With controls in regression framework
- 3. With matching or with IPW
 - Or do them all???

Household level results—DD estimator

Impact on productive assets & consumption

- Positive and significant impact on ownership of small livestock, for both smaller and female-headed households; ownership of troughs
- Increased consumption of higher value animal products
- Increased share of own production in consumption for cereals, animal products and other foods
 - Larger impact for smaller and female-headed households
- Differences between methods a question of significance

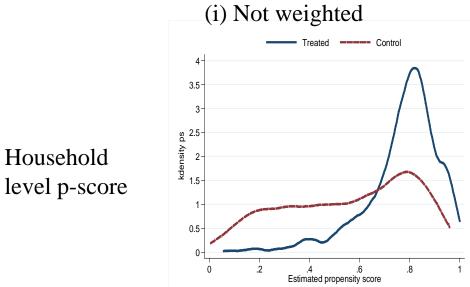
Impact on food consumption from own production (2007-11) **Difference-in-Difference with controls**

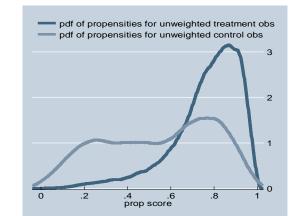
			HH size 5	Female	
	All	HH size <5	& above	head	Male head
Cereals	0.086	0.133	0.047	0.114	0.033
	(1.85)*	(1.59)	(1.02)	(1.92)*	(0.52)
Legumes	-0.005	0.035	-0.023	0.034	- 0.082
	(-0.11)	(0.43)	(-0.54)	(0.58)	(-1.49)
Dairy and eggs	0.097	0.130	0.055	0.101	0.084
	(3.68)***	(3.13)***	(1.61)	(3.00)***	(1.52)
Meat and fish	0.049	0.073	0.023	0.054	0.042
	(1.70)*	(2.57)**	(0.54)	(1.97)*	(0.73)
Vegetables	-0.007	0.028	-0.010	-0.045	0.059
	(-0.15)	(0.42)	(-0.20)	(-0.75)	(1.20)
Fruit	0.013	0.042	-0.004	0.035	-0.024
	(0.35)	(0.89)	(-0.10)	(0.81)	(-0.46)
Cooking oil	0.006	0.016	0.000	0.009	0.001
	(1.15)	(1.64)	(0.01)	(1.38)	(0.18)
Other foods	0.043	0.051	0.042	0.043	0.048
	(4.15)***	(2.56)**	(3.44)***	(3.72)***	(2.53)**
N	1783	698	1085	1137	646

Impact on food consumption from own production (2007-11) Difference-in-Difference Matching

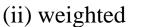
			HH size 5			
	All	HH size <5	& above	Female head	Male head	
Cereals	0.078	0.081	0.096	0.120	0.003	
	(0.044)*	(0.069)	(0.059)*	(0.042)***	(0.061)	
Legumes	-0.010	0.007	-0.01	0.028	- 0.073	
	(0.030)	(0.036)	(0.036) 0(0.036)		(0.057)	
Dairy and eggs	0.134	0.174	0.096	0.130	0.145	
	(0.030)***	(0.071)**	(0.043)**	(0.034)***	(0.065)**	
Meat and fish	0.049	0.039	0.039	0.039	0.018	
	(0.028)*	(0.036)	(0.035)	(0.028)	(0.050)	
Vegetables	-0.023	-0.078	0.003	-0.047	-0.025	
	(0.039)	(0.070)	(0.038)	(0.038)	(0.084)	
Fruit	0.032	0.055	0.012	0.071	-0.047	
	(0.027)	(0.059)	(0.036)	(0.037)*	(0.059)	
Cooking oil	0.002	0.008	-0.002	0.003	0.002	
	(0.004)	(0.010)	(0.004)	(0.006)	(0.005)	
Other food	0.046	0.060	0.037	0.041	0.050	
	(0.010)***	(0.027)**	(0.010)***	(0.012)***	(0.020)**	
Ν	1706	629	1077	1103	603 SFER PRO	

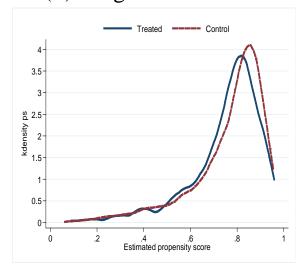
HETRA


Note: Statistical significance at the 99% (***), 95% (**) and 90% (*) confidence levels. The number in brackets shows standard errors.


What about for those outcomes for which we only have data in 2011?

- How do we choose between:
 - PSM
 - Simple comparison or regression framework with controls
 - IPW
 - Do them all and see if robust across methods?
- For individual level outcomes, estimate the p-score at the household or individual level?
 - Is it more appropriate, for individual labor supply, to estimate households p-score or individuals p-score (age, education, health, marital status, and prior work experience)




Kernel density of the propensity score for the treated and control groups

level p-score

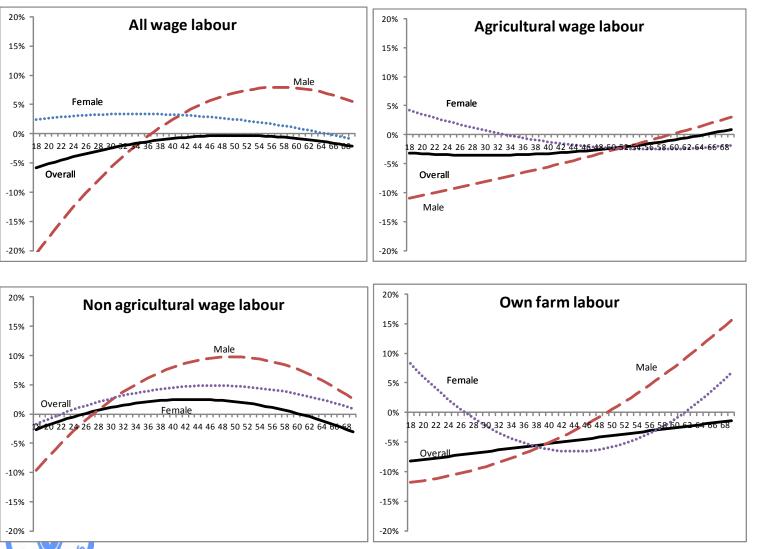
Individual level p-score

Individual labour supply results— IPW estimator

Impact on overall wage labor participation

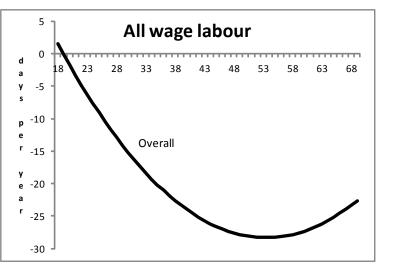
- Overall, for all individuals, no impact on participation in wage labor
- Large positive impact for those (particularly women) who live farther from markets

	Individual level weighting					
	Model 1	Model 2	Model 3	Model 4		
Treatment	-0.026	-0.053*	-0.138	-0.025		
Treatment * distance to market		0.129**				
Treatment * age			0.005			
Treatment * age squared			-0.000			
Treatment * chronic illness				-0.004		
District fixed effect	YES	YES	YES	YES		
Number of observations	3,643	3, 643	3, 643	3, 643		
Adjusted R2	0.098	0.101	0. 098	0. 098		
F-test of joint significance		2.17*	16.20***	0.60		

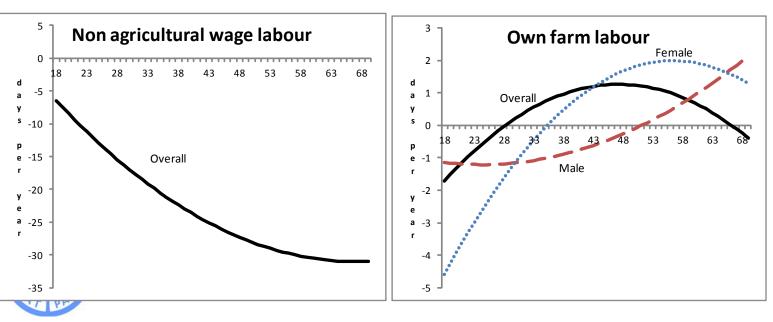

Note: *** p<0.01; ** p<0.05; * p<0.1. .

Control variables: individual level (gender, age, education, health), hh level (gender, age, education, household size, dependency ratio, education), community indictors, district fixed effect

Individual level results—IPW estimator Participation in wage and non wage labor


Males: increasingly positive with age, both wage and own farm

Females: More muted impact, reverses for ag wage labor


Some of positive impact on own farm increasing with age may be due to chronic illness

Individual level results—IPW estimator Intensity of wage and non wage labor

Overall: Negative impact on wage labor intensity—but negative impact is concentrated among chronically ill For both males and females, increasing intensity of own farm labor –substitution between wage and non wage labor?

Individual level results—IPW estimator

- Child labor supply
 - No impact on child participation in wage labor—but few work in the first place
 - Large and significant impact on reducing child labor on farm, for boys.
 - This impact is muted for boys in families living far from markets

Household level results—IPW estimator

- Agricultural production
 - Negative impact on seed and fodder expenditures home production substituting for purchases?
 - Mixed impact for hiring in labor
- Non agricultural production
 - Positive impact on participation in nonfarm enterprise for female headed household, negative impact for male headed households
- No impact on credit use

Final remarks

- ► Our first paper—a lot of growing pains
- Despite data challenges, we find some interesting stories
 - Some impact on own farm production, but we can't tell whether substitution in inputs is occurring
 - Impact on non farm business formation
 - Impact on labor supply decisions
 - Impact varies by gender
- Choice of impact estimation methodology matters

Thank You!

Estimation methodology matters household vs. individual matching

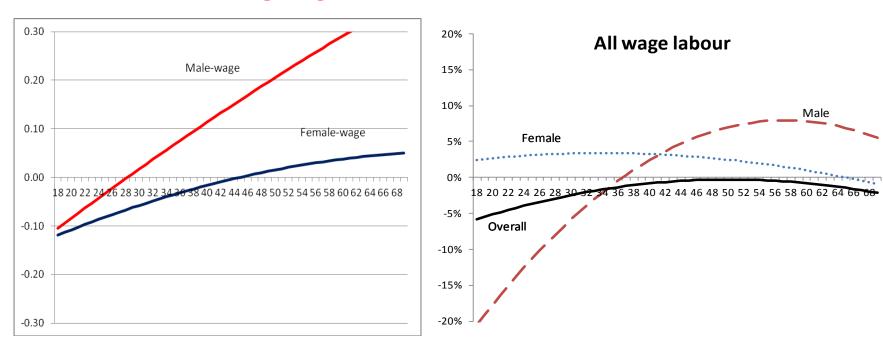
All individuals: participation in any wage labour activity Change in significance

		Household level weighting				Individual l	g	
	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4
Treatment	-0.054**	-0.081***	-0.244**	-0.058**	-0.026	-0.053*	-0.138	-0.025
Treatment * distance to marke	et	0.127**			\checkmark	0.129**		
Treatment * age			0.008				0.005	
Treatment * age squared			-0.000				-0.000	
Treatment * chronic illness				0.021				-0.004
District fixed effect	YES	YES	YES	YES	YES	YES	YES	YES
Number of observations	3,697	3,697	3,697	3,697	3,643	3, 643	3, 643	3, 643
Adjusted R2	0.123	0.125	0.124	0.123	0.098	0.101	0.098	0.098
F-test of joint significance		3.36**	15.30***	3.89***		2.17*	16.20***	0.60

Note: *** p<0.01; ** p<0.05; * p<0.1. . The number in brackets shows standard errors.

Estimation methodology matters household vs. individual matching

Females: participation in any wage labour activity

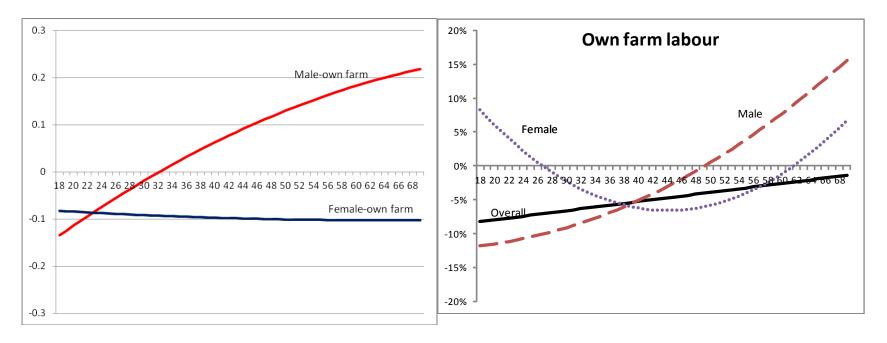

- Change in significance
- Switched sign in chronic illness

	•			, ,				
Household level weighting Individual level weighting								
	Model 1	Model 2	Model 3	Model 4	Model 1 M	lodel 2	Model 3	Model 4
Treatment	-0.060*	0.100***	-0.236*	-0.072*	0.017	-0.009	-0.007	0.022*
Treatment * distance to market		0.197***				0.132*		
Treatment * age			0.007				0.002	
Treatment * age squared			-0.000				-0.000	
Treatment * chronic illness				0.050				-0.026
District fixed effect	YES	YES	YES	YES	YES	YES	YES	YES
Number of observations	2,136	2,136	2,136	2,136	1,743	1,743	1,743	1,743
Adjusted R2	0.126	0.130	0.126	0.126	0.117	0.119	0.116	RPR0.117
F-test of joint significance		4.12***	7.94***	2.45*		2.51*	7.83***	0.26
Wore: *** n<0.01: ** n<0.05: * n<0.1. Th	e number in brackets	shows standard err	ors				TR	

Impact on wage labour participation by adults (age >18) by females

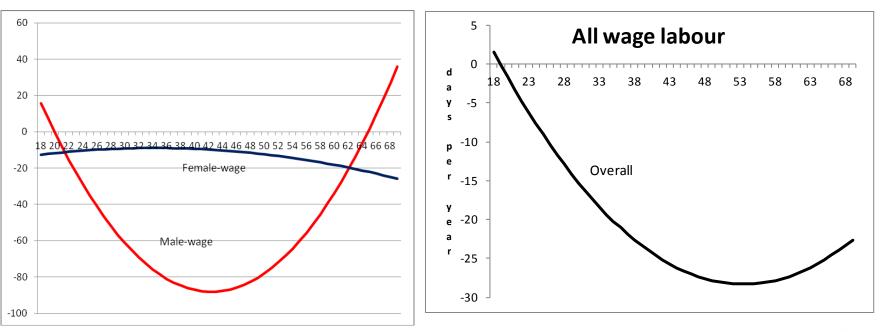
p<0.01

Impact on wage labour participation by age and sex of adult individuals


(i) Household level weighting

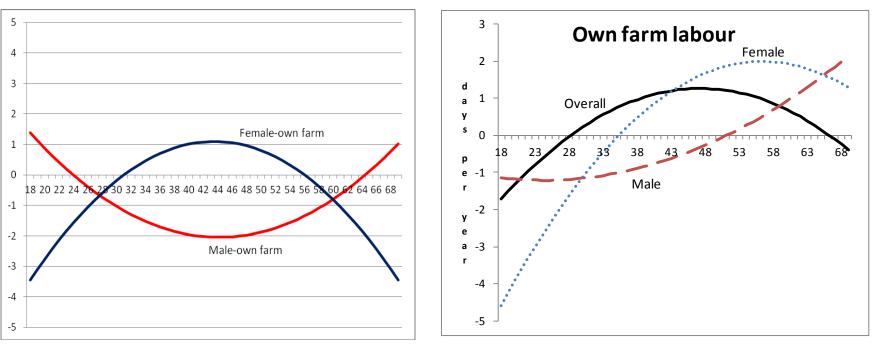
Impact on own farm labour participation by age and sex of adult individuals

(i) Household level weighting



Impact on intensity of wage labour

(i) Household level weighting



Impact on intensity of own farm labour by age and sex of adult individuals

(i) Household level weighting

