

Outline

- History of Rainforestation
- Rainforestation Concept
 - Planting Design
 - Native Tree Species used in RF
- Rainforestation Farming
- Rainforestation and Climate Change Mitigation
- Rainforestation Initiatives
- Challenges

Reforestation vs. Forest Restoration

 Reforestation is the natural or intentional restocking of existing forest and woodlands that have been depleted, usually through deforestation.

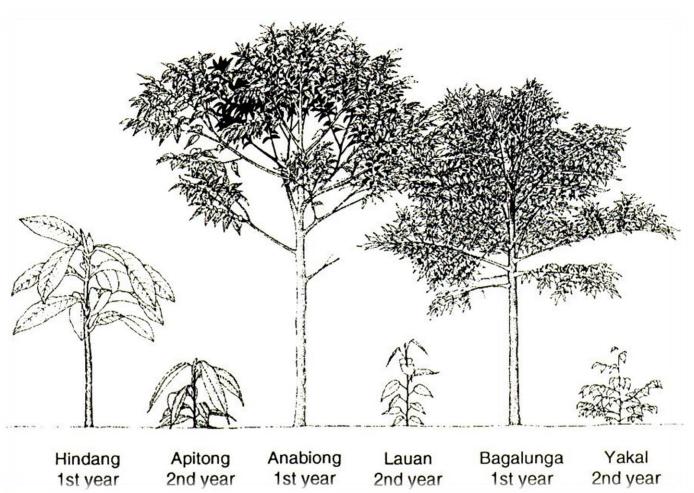
 Forest restoration is a complex task, complicated by diverse ecological and social conditions, that challenges our understanding of forest ecosystems. Most reforestation efforts in the Philippines focus on the development of forestry and agro-forestry system using <u>tree species</u> which are introduced because they are selected for their <u>fast growth</u> and easy germination. The <u>species composition of the original forest</u> that once covered the land prior to logging are rarely taken into account.

Milan and Margraf, 1996

Natural Forest

Plantation Forest

Farmers continue to cut down trees to give way for more agricultural lands and for economic reasons foremost.


Rainforestation is the use of native tree species.

Paradigm Shift in Forest Restoration

Rainforestation

- ✓ as an option for rural development and biodiversity conservation
- ✓ Issuance of DENR MC 2004-06
 - uses native/local trees of the area to be reforested (biodiversity)
 - gives importance on improvement of structural habitat to support wildlife (habitat restoration)
 - restores ecological integrity (watershed)

PLANTING DESIGN

Sun demanding local forest tree species recommended for RF on degraded limestone hills (in decreasing order of productivity).

Local Name	Scientific Name
Tindalo	Afzelia rhomboidea
Kalumpit	Terminalia microcarpa
Bitangol	Calophyllum blancoi
Anislag	Securinega flexuosa
Bagalunga	Melia dubia
Dao	Dracontomelon dao
Ipil	Intsia bijuga
Mntn. Agoho	Casuarina nodiflora
Kamagong	Diospyros philippenensi
Bahay	Ormosia calavensis
Molave	Vitex parviflora
Lingo-lingo	Vitex turczaninowii

Shade loving local forest tree species of Leyte recommended for RF on volcanic soils

Local Name	Scientific Name	Local Name	Scientific Name
Palosapis	Anisoptera thurifera	Guijo	Shorea guiso
Apitong	Dipterocarpus grandiflorus	Yakal-malibato	Shorea malibato
HairyApitong	Dipterocarpus philippinensis	Red lauan	Shorea negrosensis
Hagakhak	Dipterocarpus warburgii	Tangile	Shorea polysperma
Manggachapui	Hopea acuminata	Mayapis	Shorea palosapis
Dalingdingan	Hopea foxworthyi	Kamagong	Diospyros philippensis
Gisok-gisok	Hopea philippinensis	Talakatak	Castanopsis philippinensis
Yakal-kaliot	Hopea malibato	Ulaian	Lithocarpus pruinosa
Bagtikan	Parashorea malaanonan	Dungon	Heritiera sylvatica
White Lauan	Shorea contorta	Kulatingan	Pterospermum obliquum
Almon	Shorea almon	Balobo	Diplodiscus paniculatus

Rainforestation Supports Forest Biodiversity

Many soil organisms help potential decomposers such as Fungi and bacteria speed up decomposition of the soil waste in the environment. Their presence in the ecosystem play an important role. With a cool, moist soil condition in the Rainforestation Farm, their efficiency to decompose is enhanced.

Rainforestation enhances Forest Biodiversity

Many Philippine birds and insects depend on the forest ecosystem for survival.

The famous tarsier is found In Leyte especially in Rehabilitated areas

Frogs and other amphibians and reptiles are also part of the biodiversity whose existence depend on the forest ecosystem.

Native Trees vs. Exotic Trees

 The fast growing exotic trees have low wood quality; hence, high quality native trees still need to be harvested in their natural habitat.

 The exclusive use of exotic tree species in reforestation reduce forest biodiversity as pollinators and tree dependent wildlife will be lost.

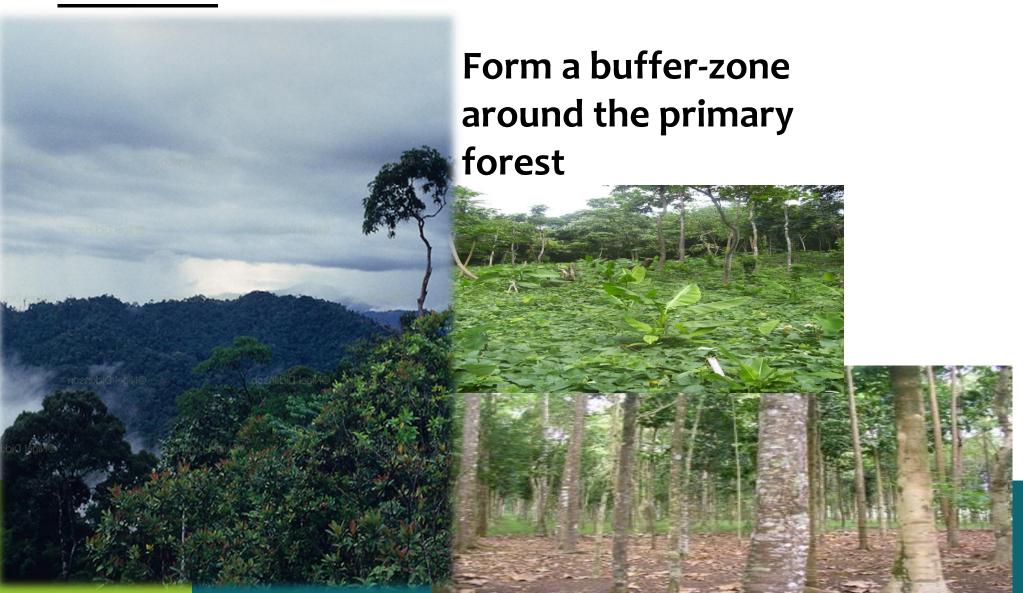
Native Trees vs. Exotic Trees

- Mother trees become rare and seed material is even less available.
- Repeated clear cutting of fast growing exotics deplete soil nutrient fast, making the soil unproductive and reforestation difficult in the long run.

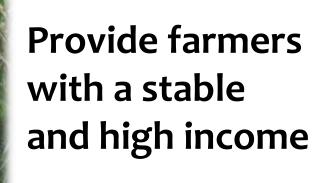
Native Trees vs. Exotic Trees

 Cultivation of monoculture exotic trees are prone to pests infestation hence distorting the landscape.

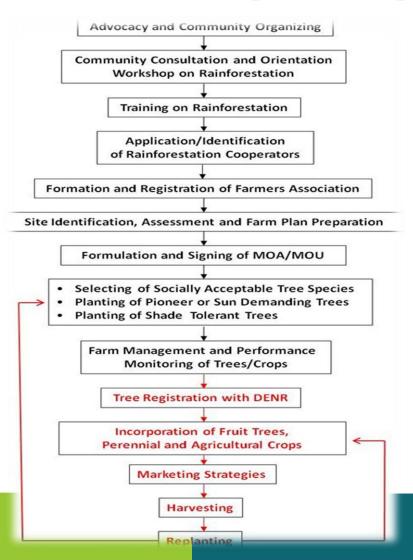
Effects of Rainforestation on site quality


- 1. Improvement of soil chemical properties;
- 2. Improvement of soil structure and water holding capacity;
- 3. Improvement of soil organic matter and soil color;
- 4. Improvement of nutrient status;
- 5. Improvement of biological activity; and
- 6. Improvement of microclimate

Replace the more destructive forms of slash-and-burn or kaingin practices

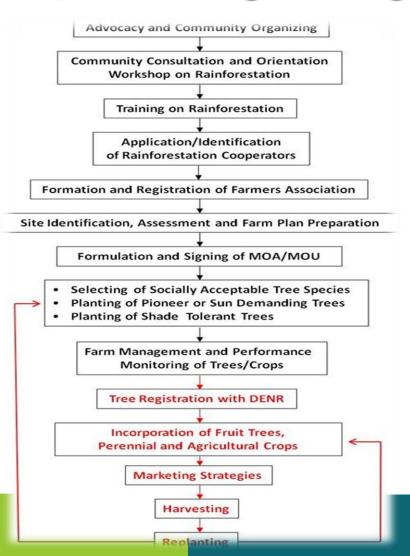


Rainforestation Farming


Rainforestation Farming is a sustainable farming system used as a strategy for forest restoration using native or indigenous tree species in combination with agricultural crops.

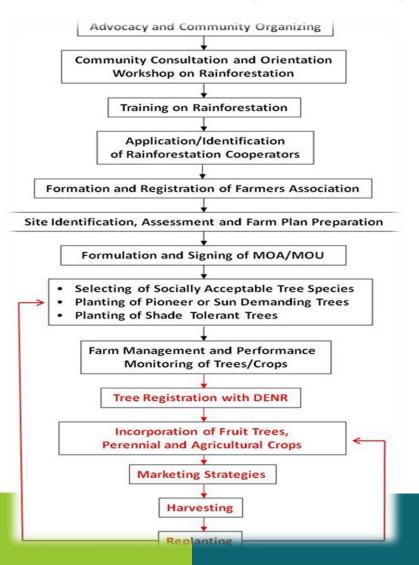
A farming system that closely resembles the structure of a natural Philippine rainforest ecosystems or home gardens that promotes the use of native or local trees commonly growing in the area.

It considers farming systems to support livelihood as an innovation.



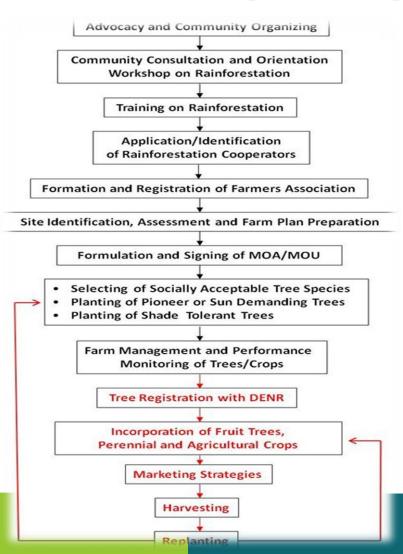
1. RF Training

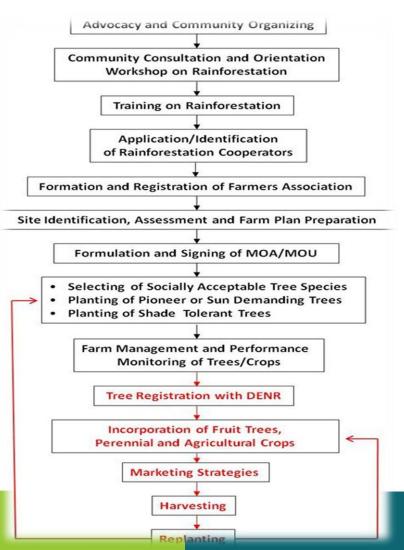
2.Site identification and farm plan preparation



3. MOA Signing

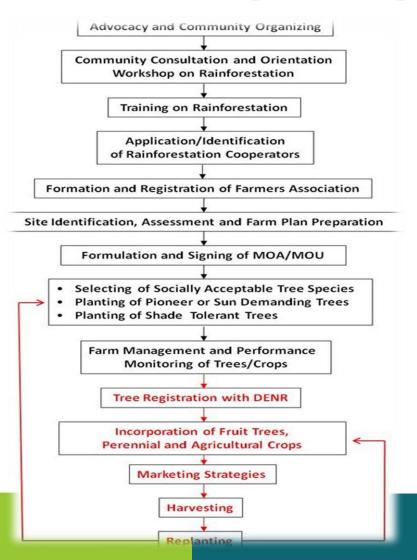
4. Planting of pioneering trees




4.a Planting of shade loving tree species

4.b Integration of livelihood plant species

5. Registration with DENR


			ANNEX B				
NUMBER :	33						
CERTIFICATE OF REGISTRATION OF TREE PLANTATION(S) IN PRIVATE LAND(S)							
the lawful owner of the located in with TREE PLANTA following trees in his	TION RECORD number lot (s):	lhi, Baybay, Ley	ntion No. 28575				
SPECIES	AREA \	EAR PLANTED	STOCKING (Ave. per hectare)				
Assorted Forest							
trees	1.11 hectare	1992-1998					
Fruit trees	0.39 hectare	-do-					
TOTAL AREA:	1.5 hectare	,	CALUMBAY ROFFICER V December 1998				

6. Monitoring

Forest Resilience

Ability of forest to withstand anthropogenic pressures and the capacity to bounce back and adapt to changing conditions

Available scientific evidence strongly support the conclusion that the capacity of forest to resist change or recover after the disturbance is dependent on biodiversity at all scales

After Typhoon Yolanda

Recovery stage (1 month after)

Some Native trees showed resiliency after Yolanda

Local Name

Palosapis

Bagtikan

White Lauan

Mayapis

Tangile

Hagakhak

Guijo

Yakal-malibato

Toog

Scientific Name

Anisoptera thurifera

Parashorea malaanonan

Shorea contorta

Shorea palosapis

Shorea polysperma

Dipterocarpus warburgii

Shorea guiso

Shorea malibato

Petersianthus quadrialatus

Challenges

