

Global Soil Organic Carbon Sequestration Potential Map GSOCseq v1.1

Guille Peralta
Luciano Di Paolo
Yusuf Yigini
Isabel Luotto

Soil organic carbon (SOC): Climate change

- SOC represents the largest C pool in terrestrial ecosystems
- Due to the magnitude, a small increase in SOC stocks can transform soils from greenhouse gas (GHG) sources to potential sinks (Paustian et al., 2016)
- CO₂ sequestration as SOCthrough sustainable soil management (SSM) practices has been outlined as one of the most cost -effective practices to mitigate GHG emissions (Smith et al., 2008; Lal et al., 2018; IPCC, 2019; Smith et al., 2020).

Conmemoración del Dia Mundial del Suelo Soil organic carbon (SOC): Food security

3

Set attainable and evidence based national targets for carbon sequestration

Identify areas that have high SOC sequestration for SSM projects

Improve technical capacities on sustainable soil management, soil data management, digital soil mapping and modelling

Why GSOGeq?

#DíaMundialDeLosSuelos

GSOCseq a Global Map based on country -driven ("bottom -up") approach

- Local expertise , best available local data and local knowledge
- Interaction from experts from different fields and institutions
- Constitutes a "living product" being continuously updated and improved
- Tool to encourage SSM practices

FAO Members /GSP partners request

Collection of feedback

Action on the ground

Observatories to validate results
Implementation SSM practices

2019

2020

2020-21

Country -driven
GSOGseq

Methodology

Through the support of the GSP's technical networks

Taking into considerations
potential data and computational
limitations

Technical specifications and country guidelines

l Reviewed INSII, ITPS, CIRCASA, 4p1000, UNCCD Capacity Building Program

Online Technical Manual

Online regional trainings https://fao-gsp.github.io/GSOCseq/

National Maps and Submissions

The GSOCseq process?

How? Framework -Summary

- 20-year projections (SOC stocks for the year 2040)
- After the adoption of SSM that increase C inputs
- 0-30 cm Depth
- In current agricultural lands (Each country can model preferred land uses, restoration, etc.)

Conmemoración del Dia Mundial del Suelo Why RothC as standard model?

- Standard method among countries (DayCent, Century, ICBM, YASSO, DAISY, AMG, CLM5, etc.)
- Fewer data requirements; data relatively simple to obtain;
- It has been applied across several ecosystems, climate conditions, soils and land use classes;
- Successfully applied at national, regional and global scales; e.g. Smith et al., (2005), Smith et al., (2007), Gottschalk et al., (2012), Wiesmeier et al., (2014), Farina et al., (2017), Mondini et al., (2018), Morais et al., (2019)
- It (or its modified/derived version) has been used to estimate carbon dioxide emissions and removals in different national GHG inventories as a Tier 3 approach; Smith et al., (2020): Australia (as part of the FullCam model, Japan (modified RothC), Switzerland, and UK (CARBINE, RothC).

Approach based on Smith et al. (2006; 2008); Gottschalk et al. (2012)

- 3 National Online Training Sessions:
 - Costa Rica (56 Participants)
 - Mexico (33 Participants)
 - Bolivia (101 Participants)
- 1 Regional Training for all LAC countries ≥ 95 Participants 285 Participants from 19 LAC Countries

GSOCseq data platform

Relative sequestration rates SSM1 >> SSM3 tonnes.ha-1.y-1

GSOCseq v1.0.0

- SOC sequestration (tC/ha/yr) SSM 1-3
- Agricultural lands
 (croplands + grazing lands)
- 20-year period
- Depth: 0 -30 cm
- 1 x 1 km

http://54.229.242.11 9/GloSIS/

#DíaMundialDeLo

GSOCseq v1.0.0 Uncertainties (%)

Dla Mundialdel Suelo **Evento Regional:** Conmemoración del

SOC sequestration potential GSP

Regions

Considering all agricultural lands in the different GSP regions, the Latin America-Caribbean (LAC) Region shows the greatest sequestration potential under the adoption of Sustainable Soil Management (SSM) practices, being able to sequester over 130 Mt C/yr.

Distribution of SOC sequestration potential –LAC

The GSOCseq v1.1.0 highlights how much and where additional C (t/ha/yr) could be sequestered yearly in agricultural soils by adopting SSM practices compared to the Business as Usual (BAU) scenario.

Evento Regional Conmemoración del

Evento Regional: Conmemoración del

Mitigation Potential – LAC

Agricultural soils play an important role in mitigating GHG emissions: yearly agricultural global emissions could be cut by 48 % in the LAC region.

Thank you for vour attention

Special thanks to

- University of Aberdeen; Thünen -Institut
- 4p1000 SC, CIRCASA, UNCCD
- National SOCseq teams and all experts contributing to the process