```
GCP/RAF/271/FIN-TD/38 (En) June 1995
    RESULTS OF FISH POPULATION BIOLOGY STUDIES
    ON LAKE TANGANYIKA DURING JULY 1993-JUNE 1994
    by
Eero Aro and Piero Mannini
```

FINNISH INTERNATIONAL DEVELOPMENT AGENCY

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

Bujumbura, June 1995

[^0]
PREFACE

The Research for the Management of the Fisheries on Lake Tanganyika Project (Lake Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA) and the Arab Gulf Programme for United Nations Development Organizations
(AGFUND).
This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia).

Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.

Prof. O.V. Lindquist Project Scientific Coordinator

> Dr. George Hanek Project Coordinator

LAKE TANGANYIKA RESEARCH
FAO
B. P. 1250

BUJ UMB URA
BURUNDI
Telex: FOODAGRI BDI 5092
Tel.: (257) 229760
Fax.: (257) 229761

GCP/RAF/271/FIN PUBLICATIONS

Publications of the project are issued in two series:

```
* a series of technical documents (GCP/RAF/271/FIN-TD) related to meetings, missions and research organized by the project;
```

* a series of manuals and field guides (GCP/RAF/271/FIN-FM) related to training and field work activities conducted in the framework of the project.

For both series, reference is further made to the document number (011), and the language in which the document is issued: English (En) and/or French (Fr).

For bibliographic purposes this document should becited as follows:

Aro, E, and P. Mannini, Results of Fish Population Biology
1995 Studies on Lake Tanganyika during July 1993-June 1994. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika.
GCP/RAF/271/FIN-TD/38 (En): 104 p .

Mr, Eero Aro is a senior scientist at the Finnish Game and Fisheries Research Institute and member of LTR scientific team; Mr, Piero Mannini is LTR expert fisheries biologist.

TABLE OF CONTENTS

Page

1. Introduction 1
2. Material and methods 2
3. Results 2
3.1. Catch composition and exploitation 2
3.2. Reproduction and maturity ogive 5
3.3. Growth and Iength.weight relationships 6
3.4. Mortality rates 9
4. Conclusions 10
4.1. Catch composition and exploitation 10
4.2. Reproduction and maturity ogive 12
4.3. Growth and Iength-weight relationships 14
4.4. Mortality rates 15
5. Future tasks and recommendations 15
6. Acknowledgements 17
7. References 18

TABLES

Table 1. Total number of catch samples and Limnothrissa miodon specimens measured in July 1993.june 1994.

Table 2. Total number of catch samples and Stolothrissa tanganicae specimens measured in July 1993•June 1994.

Table 3. Total number of catch samples and Lates stappersii specimens measured in July 1993•June 1994.

Table 4. Total number of samples and Limnothrissa miodon specimens analysed for maturity stage in July 1993•June 1994.

Table 5. Total number of samples and Stolothrissa tanganicae specimens analysed for maturity stage in July 1993•June 1994.

Table 6. Total number of samples and Lates stappersii specimens analysed for maturity stage in July 1993.June 1994.

Table 7. Limnothrissa miodon catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.

Table 8. Stolothrissa tanganicae catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993•June 1994.

Table 9. Lates stappersii catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993.June 1994.

Table 10. Limnothrissa iniodon. Maturity stage data in July 1993•June 1994. Frequency distributions and \% distributions according to maturity stages. (All gears combined).

Table 11. Stolothrissa tanganicae. Maturity stage data in July 1993.June 1994. Frequency distributions and \% distributions according to maturity stages. (All gears combined).

Table 12. Lates stappersii. Maturity stage data in July 1993. June 1994. Frequency distributions and \% distributions according to maturity stages. (All gears combined).

Table 13. Annual catch composition (\%) of Limnothrissa miodon in various gears (weekly samples pooled).

Table 14. Annual catch composition (\%) of Stolothrissa tanganicae in various gears (weekly samples pooled).

Table 15. Annual catch composition (\%) of Lates stappersii in various gears (weekly samples pooled).

Table 16. Maturity ogive (\%) of Limnothrissa miodon, Stolothrissa tanganicae and Lates stappersii according to length groups in Lake Tanganyika. Data from June 1993.July 1994 .

Table 17a, Estimates of growth parameters by species.
Table 17 b . Estimates of growth parameters by species.
Table 18a. Estimates of total mortality rates by species.
Table 18 b . Estimates of mortality parameters.

FI GURES

Figure 1, Lake Tanganyika research stations and substations.

Figure 2. Total annual catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations (all gears combined).

Figure 3. Total annual lift net catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations.

Figure 4. Total annual beach seine catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations.

Figure 5. Total annual purse seine catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations.

Figure 6. Total annual catch composition (\%) of stolothrissa tanganicae according to length groups (mm) in various sampling stations (all gears combined).

Figure 7. Total annual lift net catch composition (\%) of Stolothrissa tanganicae acording to length groups (mm) in various sampling stations.

Figure 8, Total annual beach seine catch composition (\%) of Stolothrissa tanganicae according to length groups (mm) in Kipili and Mpulungu.

Figure 9. Total annual purse seine catch composition (\%) of stolothrissa tanganicae according to length groups (mm) in Kigoma and Mpulungu.

Figure 10. Total annual catch composition (\%) of Lates stappersii according to length groups (mm) in various sampling stations (all gears combined; lift net catches from Moba excluded).

Figure 11. Total annual lift net catch composition (\%) of Lates stappersii according to length groups (mm) in various sampling stations.

Figure 12. Total annual purse seine catch composition (\%) of Lates stappersii according to length groups (mm) in Kigoma and Mpulungu.

Figure 13. Limnothrissa miodon. Per cent of females mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994 .

Figure 14. Limnothrissa miodon. Per cent of males mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 15. Stolothrissa tanganicae. Per cent of females mature (maturity stages 3 and 4) in various sampling stations in June 1993 -July 1994 .

Figure 16. Stolothrissa tanganicae. Per cent of males mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 17. Lates stappersii. Per cent of females mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 18, Lates stappersii. Per cent of males mature (maturity stages 3 and 4) in various sampling stations in June $1993 \cdot$ July 1994 .

Figure 19. Length-weight relationship of Limnothrissa miodon in Lake Tanganyika.

Figure 20, Length-weight relationship of stolothrissa tanganicae in Lake Tanganyika.

Figure 21, Length-weight relationship of Lates stappersii in Lake Tanganyika.

Figure 22. Limnothrissa miodon. Total catch composition and a mount of i mmatures (\%) in the catches.

Figure 23. Stolothrissa tanganicae. Total catch composition and a mount of i mmatures (\%) in the catches.

Figure 24. Lates stappersii. Total catch composition and amount of immatures (\%) in the catches.

1. INTRODUCTION

The main aim of the fish biology and fishery subcomponent of the LTR programme is to collect basic information on fisheries i.e. catch compositions and catch distribution of main target species as well as to estimate exploitation patterns and provide primary data for biological parameter estimation.

Lake Tanganyika's pelagic fish community comprises six endemic species - Lirnnothrissa miodon, Stolothrissa tanganicae and four members of the genus Lates: Lates angustifrons, Lates mariae, Lates microlepis and Lates stappersi.

Three of these, Limnothrissa miodon, Stolothrissa tanganicae and Lates stappersi, are the main target species in artisanal, industrial and traditional fishery in Lake Tanganyika's pelagic zone (Roest 1987, Coulter 1991; Bellemans 1991). Previously, the fishery of these pelagic species showed an increasing trend in catches and CPUE, and at present, these are still increasing lakewide because of the more efficient artisanal fishing units in use (Coenen 1994). The artisinal fishing fleet's efficiency has improved as a result of the introduction of larger nets and canoes, as well as the motorization of the fleet and the introduction of 'Apollo' liftnets in the northern part of the lake (Bellemans 1991). Artisanal fishery is carried out mainly using catamarans and trimarans, the total number of which has been estimated at about 12,700 units in the whole lake area (Hanek et al. 1993). A wide variety of fishing gears is used in traditional fishery i.e. gill nets, hook and line, long lines, traps and mosquito nets. According to Hanek et al. (1993), there are 55 industrial fishing units in the whole lake, but the number of active purse seiners is decreasing especially in the northern part of the lake (Burundi).

Because of the increase in total effort and the introduction of more effective fishing gears, there are already indications of local overfishing of stocks in some parts of the lake. However, in the main part of the lake the stocks are probably underexploited and a controlled increase of total effort might be allowed.

Since July 1993, the LTR project has provided enhanced possibilities for regular sampling of pelagic fish catches lakewide, covering the main fishing areas and fishing gears (artisanal units, industrial units, beach seines). Field stations and substations were established in 1993 for the project, and their personnel was trained to collect detailed data on pelagic fish catch composition and basic parameters such as mean weights at length groups and sexual maturity.

This report provides the results of the regular samples from July 1993 to June 1994.

2. MATERIAL AND METHODS

Abstract

In late July 1993, the regular fish sampling programme started according the general guidelines presented in Aro (1993). The general sampling scheme was amended after the publication of the field manual (Mannini 1993), which was meant to standardise data collection and make sampling more flexible. This was necessary because of the differences in fishery in various parts of the lake. Commercial and artisanal catches have been sampled in Burundi (Bujumbura and Karonda), Zaïre (Uvira, Kalemie and Moba), Zambia (Mpulungu) and Tanzania (Kigoma and Kipili). In all sampling areas, the intention has been to take weekly samples from the main fishing gears (various types of lift nets, beach seine and purse seine) . Information on sampling areas and dates according to species is given in Tables 1-6.

3. RESULTS

In general, the weekly sampling was done almost as agreed, except in some areas where samples could not be obtained. In some periods the number of target species in commercial catches has been very low and thus there are no information available. For Limnothrissa miodon, sampling at permanent stations and substations has not been adequate - in Uvira, April-May 1994, and in Kigoma January- February 1994 and April as well as June 1994. There are also some gaps in sampling for Stolothrissa tanganicae in Mpulungu and at sub-stations in Kalemie and Kipili. However, the information available from these sub-stations has proved to be very important. For Lates stappersi, some monthly samples are missing and these should be taken in the future. Although the western coast, and in particular, the central western part of Lake Tanganyika have been problematic for sampling, the whole lake has been fairly adequately covered.

3.1. CATCH COMPOSITION AND EXPLOITATION

A total of 439 catch samples of Limnothrissa, 443 catch samples of Stolothrissa and 429 catch samples of Lates stappersi were taken in the period from July 1993 to July 1994 . The total numbers of catch samples according to species, area and month are given in Tables 1-3.

For analysis, all weekly samples were pooled according to species, giving monthly samples to provide a clearer picture of the length composition and the changes in main species month by month. All samples according to species, between July 1993 and June 1994, were also pooled, giving a yearly total to provide an overall exploitation pattern. The frequency and percentage distributions by main sampling areas, by month and as yearly totals are given in Tables 7-9.

Limnothrissa is well represented in all sampling areas. The total numbers of specimens and catch per unit of effort are highest in the southern part of the lake and lowest in the north as Coenen (1994) also indicated. The minimum length of Limnothrissa observed in the catches in the northern part of the lake is at the same level as those in the southern part, but smaller than those in the central part. Limnothrissa is fully recruited to fishery at a length of about 65 mm (Table 7 and Figure 2), although areal differences exist.

There is a clear difference in length compositions in the northern, central and southern parts of the lake and also between samples taken in Uvira and Bujumbura (Table 7 and Figure 2). In the southern part of the lake, fishery is exploiting a wider range of length groups than in the northern part. The highest frequencies of specimens observed are already 30 mm long, whereas in the central part of the lake, the highest frequency observed occurs in the length group 80-89 mm.

The length composition of Limnothrissa in Uvira and Kigoma catches is rather similar. There is almost a total lack of immature and recruiting young Limnothrissa in the catch samples and catches show a peak in the length groups $100-109 \mathrm{~mm}$ and $110-$ 119 mm respectively. In Bujumbura and Karonda, the main body of Limnothrissa specimens fall into the length group 40-99 mm and, especially in April and June, an incoming cohort could be seen in length compositions. The lift net catches from the Uvira and Kigoma areas look similar by length distribution, but they differ from those of Bujumbura and Kipili (Table 13 and Figure 3).

Beach seine catches show that exploitation in Bujumbura and Kigoma is directed mainly at the adult part of the stock, whereas in Kipili and Mpulungu, the beach seine also exploit the smaller length groups (Table 13 and Figure 4). This is very pronounced in Mpulungu catches. The same pattern also applies for purse seine catches (Table 13 and Figure 5). In the southern part of the lake young specimens are just more vulnerable to high exploitation because for example of use of mosquito nets as a cover to beach seines.

Stolothrissa tanganicae
Stolothrissa is also well represented in all sampling areas, however, there are some gaps in the sampling scheme in the central western and south-eastern parts of the lake (Table 8). The total numbers of specimens and catch per unit of effort are highest in those areas where the open pelagic zone is closest to the shore line (Uvira, Kigoma). In general, Stolothrissa seems to be more abundant than Limnothrissa (Coenen 1994) . The minimum length of Limnothrissa observed in the catches in the northern, central and southern parts of the lake is at the same level, varying from 20 mm in the north to 29 mm in the central part and 21 mm in the south. Stolothrissa is fully recruited to fishery
at a length of about 62 mm , which is a little less than the Limnothrissa recruiting length (Table 8 and Figure 6), although differences between areas and gears do exist.

The overall catch composition (all gears combined) is similar lakewide, but different gears exploit stock differently, depending on the area. There is a clear difference in length compositions in lift net catches between Bujumbura and Kigoma (Table 14 and Figure 7). In the Kigoma region, lift net catches consist mainly of adult mature specimens and the catches peak in the length group $70-89 \mathrm{~mm}$. In Bujumbura, the catches consist of smaller and thus younger, immature and maturing specimens (Table 14 and Figure 7). In Kipili and Mpulungu, there is a clear difference in beach seine catch compositions (Figure 8) because of the mosquito net cover applied in Mpulungu, and the purse seine catches in the Kigoma region are different from those in the southernmost part of the lake (Mpulungu) (Figure 9).

As with Limnothrissa, Stolothrissa fishery in the southern part of the lake also exploites a wider range of length groups than in the northern part. The length compositions of Stolothrissa in Uvira and Bujumbura catches are rather similar (Table 14). The number of adult Stolothrissa in Kalemie and Kigoma is much higher than in other areas (Table 14). The length distributions are clearly similar (Table 14) and the catch compositions in both areas peak in the length groups 70-79 mm and 80-89 mm.

In Bujumbura and Karonda, an incoming new cohort could be seen in catches in August-September 1993 and again in MarchApril 1994 (Table 8). This pattern is not clear in other areas, except in Mpulungu, where small specimens dominated both purse seine and beach seine catches in September-October 1993 (Table 8).

Comparing the catch compositions by different gears clearly shows that beach seine, even operated as a pelagic fishing gear, exploit the youngest and smallest part of the stock, whereas purse seiners use the adult part of the stock mainly (Table 14 and Figures 8-9). The lift net exploitation pattern is somewhat intermediate between these two (Figure 7). The general catch compositions thus indicate a smaller mean length in the catches in the northern and southern basins of the lake. In the central open part of the lake, the rate of exploitation is moderate or small.

Lates stappersi
Lates stappersi is not abundant in the northern part of the lake, and almost only immature specimens are observed in the catches in the northernmost area (Uvira and Bujumbura) (Table 9, Table 15 and Figure 10). The main distribution area of maturing and mature Lates stappersi seems to be in the central and, especially in the southern parts of the lake, although there are some gaps in the sampling scheme in the lake's central western and south-eastern parts (Table 9).

The total number of specimens and catch per unit of effort is highest in the Mpulungu region. The minimum length of Lates stappersi observed in the catches in the northern part of the lake is $20-30 \mathrm{~mm}$ and the highest frequencies are observed in the length groups $90-99 \mathrm{~mm}$ and $100-109 \mathrm{~mm}$.

In the Kigoma region, the catch composition is bimodal and smaller length groups dominate, especially in purse seine catches (Table 15 and Figure 12). The same pattern is observed in Kipili lift net catches (Figure 10). The purse seiners sampled in the Mpulungu region show a catch composition concentrated on bigger and older specimens, with only very few small immature Lates stappersi caught during the year (Table 9 and Figure 12). The overall catch composition (all gears combined) clearly shows the difference between the sampling areas and fishing gears (Table 15 and Figure 12).

3.2 REPRODUCTION AND MATURITY OGIVE

All available data was used to estimate reproduction patterns. To estimate maturity stages, a total of 330 samples of Limnothrissa, 338 samples of Stolothrissa and 223 samples of Lates stappersi were analysed. The total number of maturity samples according to species, area and month are given in Tables $4-6$. The maturity ogives are given in Table 16 . The maturity stages were classified according to the field manual (Aro 1993).

Limnothrissa miodon
Limnothrissa females grow larger than males. The sex ratio is similar lake-wide, except in samples from Bujumbura, where there is a strong domination of females (Table 10). The overall sex ratio is 1.94 (Table 10). Females reach maturity (maturity stages 3 and 4) at a length of $50-59 \mathrm{~mm}$ in the northern part of the lake, but in the Mpulungu region, the length at first maturity (first specimens attaining maturity) is $30-39 \mathrm{~mm}$. Males ripen in the north at a length of $50-59 \mathrm{~mm}$ and in the south at a length of $30-39 \mathrm{~mm}$ (Table 10). A spawning peak (maturity stages 3 and 4) for Limnothrissa occurs from August to October in the Uvira and Bujumbura regions, with the highest number of spawning specimens observed at the beginning of October (Figures 13 and 14)

The females' breeding activity pattern is not very clear in the Kigoma region, where, according to samples, 20-40\% of females are ripening or ready to spawn all year round (Figure 13). On the other hand, males show a peak in April, but the amount of sampling is inadequate (Figure 14). A greater amount of ripening and spawning specimens is observed from May to September, but the pattern is unclear (Figures 13 and 14). In Mpulungu, the highest proportion of spawning specimens in females is observed in February and March (Figure 13). The males' spawning activity pattern is not very clear (Figure 14). According to sampling, 50% of females are mature at a length of 90-94 mm and 50\% of males at a length of 80-84 mm (Table 16).

The ratio of females to males is also higher in the Stolothrissa population. The sex ratio in the northern part of the lake is 1.8 (females/males) and the proportion of females increases to the south where it is 2.4 in Mpulungu (Table 11). The highest number of spawning specimens in Bujumbura is observed in October-December (Table 11 and Figures 15 and 16). During the rest of the year, specimens are found in the early stages of gonadal development. Females reach maturity (maturity stages 2 and 3) at a length of $80-85 \mathrm{~mm}$ and males at a length of $70-75 \mathrm{~mm}$.

In Kigoma waters, the overall percentage of mature specimens, at any given time, never reaches 50% in males and females. The proportion of immatures is rather high and the maximum is observed in May, when the proportion of immatures is 45\%. Females and males reach maturity at a length of 70-79 mm lake-wide, and 50% of females and males are mature at a length of 75-79 mm (Table 16), although areal differences occur.

In the southern part of the lake, specimens start to mature earlier than in the northern part. The length at first maturity in the north is $45-49 \mathrm{~mm}$, whereas in the Mpulungu region it is $30-39 \mathrm{~mm}$. At the south end of the lake, sampling indicates that reproduction occurs throughout the year and no clear patterns are to be seen (Figures 15 and 16).

Lates stappersi
In the north of the lake, Lates stappersi specimens consist mainly of immatures and only some maturing and mature specimens are observed (Table 12). Adults are very rare. The amount of females is slightly higher than males in the Lates stappersi population, but he overall sex ratio is close to 1.0. In Mpulungu, the sex ratio is 1.2 (females/males) and in the Kigoma region, 1.0. (Table 12).

The highest number of spawning specimens in Mpulungu is observed in March (Table 12 and Figures 17 and 18) and in the Kigoma region, in August. Females reach 50\% maturity at a length of 280-289 mm and males at a length of 260-269 mm. A high proportion of mature females is observed from November to April in Mpulungu (Figure 17) and in the south, at any given time, about half of the males are ripening or ready to spawn (Figure 18). In Kigoma, the highest proportion of reproducing males is observed in August and the number declines until March of the following year and increases again in April-June (Figure 19).

3.3 GROWTH AND LENGTH-WEIGHT RELATIONSHIPS

Von Bertalanffy growth parameters have been estimated for all target species using the data from main sampling areas. Only a selected sub-set of samples has been included in the analysis, as it was necessary to reject some data because in some areas, the number of samples was considered to be too small, no modal
class projection was observed in the analysis or samples were not representative for parameter estimation. To estimate the growth parameter, the following methods were applied: ELEFAN I (Pauly and Morgan 1987), SLCA (Shepherd 1987) and projection matrix method (Basson et al 1988). The results are summarised in Tables $17 a$ and $17 b$. In Tables $17 a$ and $17 b$ there are different grouping of length distribution data and analysis were made independently by both authors.

To facilitate the comparison of growth performances phi prime values (Pauly and Munro, 1984) are also included in the Table 17b.

All species show fast growth patterns which are quite similar lake-wide. As indicated by the constant K-values, Stolothrissa tanganicae has the fastest growth rate and thus shortest life span, about 1.5 years, with only very few specimens living up to two years. Limnothrissa miodon shows an almost identical growth pattern independently of the area (Table 17a and 17b). According to analysis, the maximum age of Limnothrissa miodon is about 2.6 years. Present material did not allow for the estimation of growth parameters for Lates stappersi in the northern part of the lake (Table 17a and 17b). The reason for this was that commercial catch samples consisted almost entirely of juveniles and the estimates were meaningless, only a part of the population is covered. Adults are very rare in artisanal and industrial catches (Tables 9 and 17a and 17b).

For length-weight relationships, all available mean length at length group data was used and data was pooled to give monthly samples from all sampling stations for all species. No differences in mean weight at length group was observed between the stations or months. The mean weight at length for all three species was estimated using the common allometric equation:

$$
\mathrm{W}=\mathrm{a} * \mathrm{~L}^{\mathrm{b}}
$$

where $W=$ observed mean weight (g) at length group (mm), $L=$ observed mean length (mm) and a and b are constant. The solution used for a and b was an iterative least square technique which minimises the sum squares. The errors involved in using logarithmic transformation were observed to be small in all three cases, and no correction term was used in establishing final relationships. The results are summarised below and in Figures
19-21.
For Limnothrissa miodon the length weight relationship was as follows:

$$
W=\left(4.252 * 10^{-6}\right) * L^{3.124}
$$

```
and the statistics and estimated parameters were:
Number of observations (N)
Regression coefficient (a)
4.252*10-6
Regression coefficient (b) 3.124
Correlation coefficient (r) 0.99
Correction factor (CF) 1.001
Relative error estimate (E) 1.022
Sum of squares errors:
    Uncorrected:
    32.509
    Corrected:
32.076
For Stolothrissa tan ganicae the length weight relationship was: \(W=\left(4.692 * 10^{-6}\right) * L^{3.073}\)
and the statistics and estimated parameters were:
Number of observations (N) 13
Regression coefficient (a) 4.692*10-6
Regression coefficient (b) 3.073
Correlation coefficient (r) 0.99
Correction factor (CF) 1.001
Relative error estimate (E) 1.042
Sum of squares errors:
Uncorrected: 2.547
Corrected: 2.577
For Lates stappersi the length weight relationship was estimated as follows:
\[
W=\left(4.682 * 10^{-6}\right) * L^{3.053}
\]
```

```
and the statistics and estimated parameters were:
```

and the statistics and estimated parameters were:
Number of observations (N) 85
Number of observations (N) 85
Regression coefficient (a)
Regression coefficient (a)
4.682*10-6
4.682*10-6
Regression coefficient (b) 3.053
Regression coefficient (b) 3.053
Correlation coefficient (r) 0.99
Correlation coefficient (r) 0.99
Correction factor (CF) 1.003
Correction factor (CF) 1.003
Relative error estimate (E) 1.019
Relative error estimate (E) 1.019
Sum of squares errors:
Sum of squares errors:
Uncorrected:
Uncorrected:
22564.1
22564.1
Corrected:
Corrected:
22688.4

```
    22688.4
```

All three species fit the allometric growth pattern well, as shown in Figures 19-21, where observed and predicted estimates are plotted.

3.4 MORTALITY RATES

All available data was used to estimate mortality rates. However, some monthly samples were omitted because the number of samples was considered to be too small or the samples were not representative of the estimation of mortalities. Preliminary estimates of total mortality (Z) and natural mortality (M) were attempted by using different methods. Results are reported in Tables 18a and 18b. Total mortality estimates obtained by length-converted catch curve (Pauly, 1983, 1984) are considered as reference values.

The total annual mortality (Z) rates were estimated using the method presented by Beverton and Holt (1956). This method uses estimates of K and L and the minimum length at full recruitment according to length distributions, then produces an estimate of Z for each distribution included in the analysis and a mean Z. The input length distributions are shown in Tables 79, the length groups used for mortality estimation, length at first capture and results are summarised in Table 18a.

Difficulties in estimating natural mortality are well known. Several methods have been used to approximate this parameter, they are empirical equations whose parameters are concerned, for example, with species longevity, growth performance, mean environmental temperature, age of massive sexual maturation. Therefore all of them are somehow related to the species growth. Natural mortalities were estimated according to Pauly's (1980) formula using a mean temperature, $25^{\circ} \mathrm{C}$ (Table 18b) and $27^{\circ} \mathrm{C}$ (Table 18a) for the whole lake area and all three species. The input data is presented in Table 17 and the results in Tables 18a and 18b. The estimated annual fishing mortality rates (F) are a subtraction of Z and M (Table 18a). The exploitation rates were estimated as $F / Z-r a t i o s ~(T a b l e ~ 18 a) . ~$

Stolothrissa exhibits, as expected, the highest natural mortality and annual average value was estimated to 3.6. Limnothrissa displays natural mortality which can be averaged from Pauly's equation as 2.0 annually. It falls between 1.8 and 2.3 per year when considering other available estimates. L. stappersii natural mortality assumes a mean value for the whole lake of $0.8 \mathrm{yr}-\mathrm{l}$, as temperature input was kept constant ($\mathrm{T}=$ $\left.25^{\circ} \mathrm{C}\right)$. Differences in M are explained by differences in growth parameters. Other methods estimate M values which are, although quite close, slightly superior to the above mean value.

For Limnothrissa miodon, the estimated total annual mortality rates are rather high, and mortality increases from north to south (Tables $18 a \operatorname{and} 18 b)$. The highest annual fishing mortality rate is observed in the south (Mpulungu, $F=3.53$),
giving a monthly fishing mortality rate of $\mathrm{F}=0.29$. This means that 25% of the stock is removed monthly in this area by fishing. The exploitation rate is also highest in the southern part of the lake, indicating an intensive exploitation of stock. This is shown clearly by the composition of Limnothrissa catches by various gears and areas, as shown in Table 13. In Mpulungu, Lirnnothrissa is exploited at a very small size both by beach seines and purse seines, as shown in Table 13.

Stolothrissa tanganicae has the highest total mortality (Z), natural mortality (M) and fishing mortality rates lakewide, except in the southernmost part of the lake, where the Limnothrissa fishing mortality rate (F) is virtually the same. The highest total annual mortality rate is observed in the northern part of the lake (Z range 4.2-7.8). Total mortality value of $Z-7.8$ seems to be an overestimation.At the southern end of the lake, mortality is still high, but lower than in other areas (Table 18). The exploitation level ranges from 0.61 to 0.73 , which is less than that observed in Limnothrissa. In the Kigoma region, the total annual mortality estimate, $Z=6.30$ differs from the other areas because the length at first capture is 80 mm , as compared to 40 mm in other areas. The highest numbers of Stolothrissa in Kigoma catches are observed in the length group 70-89 mm, as indicated in Table 8 . To include all length groups from 40 mm onwards in the analysis would give a total annual mortality rate as low as $Z=1.90$, which is obviously an underestimate.

The total annual mortality rate of Lates stappersi ranges from a low level, $Z=0.57$ in Mpulungu to a high level, $Z=2.65$ in the Kigoma area (Table 18a and 18b). The estimated high mortality rates in the Kigoma region are explained by the recruitment of a new cohort into the purse seine fishery in that area and about half of the catches consisting of few length groups (Table 9 and Table 15). The exploitation rate decreases from high in Kigoma to moderate in Kipili and low in Mpulungu (Table 18). However, the simple catch curve analysis shows, that resulsts presented in Table 18 a are likely to be underestimations and those total mortality rates presented in Table $18 b$ are in good accordance with information on spatial distribution of fisheries and fleets as well as total effort.

Unforatunately, there are no total annual mortality estimates from the northern end of the lake because only immatures are represented in the catches there (Table 9).

4. CONCLUSIONS

4.1 CATCH COMPOSITION AND EXPLOITATION

Fishing on Lake Tanganyika is done mainly at night and clupeoids exhibit strong light attraction behaviour. Lates ssp. may also be attracted to fishing lamps, but their presence near fishing lamps is probably due to their predation behaviour at night (Ellis 1978). Fishery also uses the diurnal vertical
migration pattern of clupeoids when they feed in the upper layer of pelagic zone at night. Thus the quality of clupeoid catch samples might be more representative than the samples taken simultaneously from Lates ssp. The present exploitation of three pelagic species in Lake Tanganyika according to catch samples taken between July 1993 - June 1994 are characterised as follows:

Limnothrissa miodon

Different types of liftnets exploit Limnothrissa miodon stock more heavily in the northernmost and southernmost parts of the lake and in the central part of the lake, exploitation is directed at the more mature part of the stock (Table 13). There are significant areal differences in liftnet catches. The liftnets used in Uvira and Bujumbura are fairly similar, and the difference could not be explained by selectivity of gears.

The obvious explanation is the difference between the topography of the coastal area and the behaviour of Limnothrissa. The littoral zone in Bujumbura and Karonda is much wider than in the Uvira and Kigoma areas, and Limnothrissa seems to be more coastbound than Stolothrissa. Beach seine catches in the north mainly exploit the mature part of the stock, whereas in the south, the main body of the catch consists of young immature specimens. Purse seine fishery does not occur in the northern part of the lake and the exploitation rate of juveniles in purse seine fishery increases from Kigoma to the southern areas, where more than a third of the total catch is taken as immatures.

The main reasons for these varying exploitation patterns are the differences in the composition of the fishing fleet, gear composition, the fleet's total effort and obviously, differences in the distribution pattern of juveniles, recruiting cohorts and adults.

The general catch compositions show a decrease in mean length in the catches from north to south, with the exception of the catch composition in Burundi, which resembles the catch composition in the Kipili area (Figure 22). The areal exploitation pattern of Limnothrissa shows that in Burundi, Kipili and Mpulungu, catches are strongly based on the immature part of the stock, whereas in Uvira and Kigoma, it is the mature part of the stock which is almost exclusively exploited (Figure 22). This really indicates a much higher exploitation rate in the south, caused by a higher total effort and differences in the distribution pattern of the Limnothrissa population components.

Stolothrissa tanganicae
Stolothrissa tanganicae stock is heavily exploited by liftnets in the northernmost part of the lake and the exploitation is more moderate in the central and southern parts (Table 14). Beach seine are not used for Stolothrissa fishery in the north, but in the south, the main body of the catches consist of young immature specimens and in the Mpulungu area,
about 70% of the catch is less than 50 mm in length (Table 14). Offshore purse seine fishery in the Kigoma region exploits the mature part of the stock, and the number of immatures in catches increases from Kigoma to Mpulungu.

The general catch compositions show an increase in mean length in the catches from north to south and in the southernmost part of the lake, fishery exploits a wider range of length groups than in the north, as was also indicated by the estimated mortality rates (Figure 23 and Table 18). The Stolothrissa areal exploitation pattern shows that in all areas, catches are strongly based on the immature part of the stock (Figure 23).

Lates stappersi
The catch composition of Lates stappersi varies greatly. These differences in the catch composition between Mpulungu, Kipili, Kigoma, Bujumbura and Uvira clearly indicate that the northernmost part of the lake and the Kigoma region serve as a nursery area for immatures and maturing specimens. At least part of the Lates stappersi immature stock inhabites these areas at any given time and immatures enter fishery in the central and southern parts of the lake at a minimum length of 55 mm (Kigoma region) and about 265 mm in the south.

Lates stappersi catches in the northern part of the lake (liftnet catches) are based entirely on immatures, mature specimens are sporadic in the catches (Table 15 and Figure 11). In the Kigoma region, the liftnet catch composition shows a weak bimodal pattern, which is pronounced in Kipili (Figure 24). Purse seine fishery shows a clear bimodal catch composition pattern in Kigoma and a monomodal pattern in Mpulungu (Figure 12). In Kigoma, purse seine catches are very much influenced by recruiting cohorts (Table 9). The general catch compositions show an increase in mean length in the catches from north to south (Figure 24).

The areal exploitation pattern of Lates stappersi shows that in Burundi, Uvira and Kigoma, catches and by-catches are based on the immature part of the stock, whereas in Kipili and especially in the Mpulungu region, catches are not dependent on recruitment and they are mainly based on mature stock (Figure 24). This also indicates a much more lower exploitation rate in the south, as indicated by mortality estimates (Table 18).

4.2 REPRODUCTION AND MATURITY OGIVE

The reproduction pattern and areal timing of peak spawning for all three species analysed is not very clear. The main reason for this might be the method used to determine the maturity stages and in the low number of samples available. The subjective criteria for maturity have obviously caused difficulties in maturity stage determination, especially between stages 2 and 3
and 5 and 2. As shown in Tables $4-6$, the usable number and frequency of samples has only been obtained for Limnothrissa miodon in Bujumbura and Mpulungu, for Stolothrissa tanganicae in Bujumbura, Uvira and Kigoma and for Lates stappersi in Kigoma and Mpulungu. Thus it is too early to make lake-wide conclusions, only some first observations.

Limnothrissa miodon

The sex ratio for Limnothrissa miodon is similar lake-wide, with one exception, the Bujumbura area, where the females seem to dominate strongly (Table 10). Females reach maturity at a length of $50-59 \mathrm{~mm}$ in the north and in the south, the length at first maturity is $30-39 \mathrm{~mm}$. The same maturation lengths also apply for males (Table 10). A spawning peak is observed from August to October in the Uvira and Bujumbura regions and the highest number of spawning specimens was observed at the beginning of October (Figures 13 and 14).

The breeding activity pattern of females is not very clear in the Kigoma region, where according to samples, $20-40 \%$ of females are ripening or ready to spawn all year round (Figure 13). In the southern end of the lake, the highest proportion of spawning specimens in females is observed in February and March (Figure 13). The spawning activity pattern of males is unclear (Figure 14). Compared to the information available on the reproduction cycle, our data show the same reproduction activity pattern as described by Ellis (1971) and Pearce (1985), but our present material showed no marked seasonal shift on the onset of maturity.

Stolothrissa tanganicae

In the northern part of the lake, the sex ratio of Stolothrissa tanganicae is 1.8 (females/males) and the proportion of females increases to the south (Table 11). In the northern areas, the highest number of spawning specimens is observed in October- December (Table 11 and Figures 15 and 16). Earlier works indicate that peak spawning during the calendar year occurs in August-December in the south (Coulter 1970a), January-April in the Kigoma region (Chapman and Van Well 1978) and February-May in the north (Roest 1977), but our material did not show this pattern. As shown earlier by Ellis (1971), females reach maturity at a length of $80-85 \mathrm{~mm}$ and males at $70-75 \mathrm{~mm}$. In the central part of the lake, the overall percentage of mature specimens, at any given time, never reaches 50% in males and females. The general pattern shows that in the southern part of the lake, specimens start to mature earlier than in the northern part. In the north, the length at first maturity is 45-49 mm, and in the south, it is $30-39 \mathrm{~mm}$. At the southern end of the lake, sampling indicates that reproduction occurs throughout the year and no clear patterns are to be seen. This was also shown by Ellis (1971)

The overall sex ratio for the Lates stappersi population is close to 1.0. In the south, the highest number of spawning specimens is observed in March (Table 12 and Figures 17 and 18) and in the Kigoma region, in August. Females reach 50\% maturity at a length of $280-289 \mathrm{~mm}$ and males at $260-269 \mathrm{~mm}$. In Mpulungu, a high proportion of mature females was observed from November to April (Figure 17), which agrees with earlier results (Pearce 1985). At any given time, about half of the males are ripening or ready to spawn in the southern part of the lake (Figure 18). In Kigoma, the highest proportion of reproducing males is observed in August, then the number declines until March of the following year and increases again in April-June (Figure 19).

4.3 GROWTH AND LENGTH-WEIGHT RELATIONSHIPS

The growth parameters estimated for Limnothrissa miodon indicate higher L and lower or similar K values than were estimated earlier by Pearce (1985) and Ndugumbi et al. (1976). For Zambian waters, Pearce (1985) reported $L=164 \mathrm{~mm}$ and $\mathrm{K}=$ 0.95 (period 1963-1983). Our estimates are 181 mm and 0.81 respectively. For the Kigoma region, Ndugumbi et al. (1976) (period 1974-75) reported $L=175 \mathrm{~mm}$ and $K=0.67$ for specimens smaller than 120 mm and $\mathrm{K}=0.92$ for specimens bigger than 120 mm. Our estimates (Table 17) for Bujumbura and Karonda are $L=$ 184 mm and $\mathrm{K}=0.89$.

For Stolothrissa tanganicae, our estimates of L vary from the lowest, 100 mm in the Kigoma region to 119 mm as the highest in the Mpulungu area. Our estimates for the growth coefficient K were 1.71 as the lowest (Kigoma) and 2.78, the highest (Uvira). Roest (1978) reported $L=93.8 \mathrm{~mm}$ and $\mathrm{K}=2.52$ (period 19721976) in Burundi and Chapman \& Van Well (1978a) L $=90.0 \mathrm{~mm}$ and $K=2.52$ in the Zambia area. Our estimates for the southern part of the lake are $L=119 \mathrm{~mm}$ and $\mathrm{K}=2.48$ in Zambian waters, higher than those estimated by Pearce (1985). Those growth coefficients ($K=1.59$ and 1.56) estimated by Pearce (1985) are very low for a fast growing, short lived fish species like Stolothrissa tanganicae. Our estimate for the Kigoma region, $K=$ 1.71 also falls into this low estimate category.

The material available did not allow us to estimate the growth parameters for Lates stappersi in the northern part of the lake. Estimates from literature show L values between 450470 mm for the southern, central and northern parts of the lake (Pearce 1985, Chapman and Van Well 1978b, Roest 1985) and growth coefficients K between $0.39-0.40$ per annum. Our estimates for the Kigoma area were higher for L and K respectively (Table 17) and for the southern part of the lake, higher for L and somewhat lower for K.

In the weight-length relationships estimated by the allometric growth equation, all three species fit the model well. The results are self explanatory and could be used in the future for the analysis of the productivity of the pelagic fish species.

4.4 MORTALITY RATES

The estimated total annual mortality rates for Limnothrissa miodon are rather high and increase from north to south. The highest annual fishing mortality rate was observed in the south (Mpulungu, $F=3.53$), giving a monthly fishing mortality rate of $\mathrm{F}=0.29$. Pearce (1985) estimated even 13 higher mortalities, $\mathrm{F}=$ 5.80, for Zambian waters for the period 1963-1983, giving a monthly mortality of 0.48. This means that during this period, total mortality has removed about 38% of fully recruited specimens from the stock monthly. Our present estimate indicates a total mortality of $Z=0.37$ monthly (31\% removals) and fishing has taken about 25% of the stock monthly in this area. In the Mpulungu area, Limnothrissa is exploited at a very small size by both beach seines and purse seines, as shown in Table 13.

Stolothrissa tanganicae has the highest total mortality (Z), natural mortality (M) and fishing mortality rates for almost the whole lake area. The highest total annual mortality rates we estimated (Z range 6.30-6.94) were observed in the northern part of the lake. Roest (1978) reported monthly instantaneous mortality rates between $2.76-5.52$, depending on the size and age of the specimens. His figures do not compare directly with our results because in our data, the recruitment pattern is different. As indicated by the results, the mortality of Stolothrissa is still high in the south but lower than in other areas.

According to our analysis, the total annual mortality rate for Lates stappersi ranges from a low level, $Z=0.57$ in Mpulungu, which is an underestimation to a range of $Z=1.61-$ 1.98 in the Kigoma area and very high values in Mpulungu (2.312.58). Those mortalities reported by Pearce (1985) for Zambian waters are much higher than our estimates in Mpulungu and Kipili (Table 18a and 18b). For the Burundi and Tanzania areas, Henderson (1976) estimated a total mortality $Z=0.5$ (Burundi, 1972-74) and $Z=1.2$ (Tanzania, 1974-75). Our total mortality estimates for the Kigoma area are much higher. These mortality rates in the Kigoma region can be partly explained by the recruitment of a new cohort into the purse seine fishery in that area and probably by the emigration of mature specimens to southern areas, as indicated by the length composition of catches in Kipili and Mpulungu (Figure 24). The high mortality rates in the southern part of the lake are explained by the higher fishing pressure in the area.

5. FUTURE TASKS AND RECOMMENDATIONS

The results presented in this report are based on the continuous sampling of artisanal, commercial and industrial catches in Lake Tanganyika. The results describe the catch compositions of the three main pelagic species by area and by fleet. Results are based on catches made by artificial light attraction of target species and so should be considered with caution in relation to population parameters. However, the results give a fairly good picture of the overall fishing pattern
around Lake Tanganyika.

In the near future, our results should be connected with available data on CPUE (Coenen 1994) and with total fishing effort by fleet estimates. Although there are some doubts about the usefulness of CPUE, in the case of a small pelagially shoaling fish, an analysis of links between catch composition and CPUE should be made available. Most of the Lake Tanganyika fishery is mixed and thus estimates of "how mixed is mixed fishery" are necessary.

There is also a vast amount of physical, chemical and biological information available, gained by other subcomponents of the LTR project, and a factor analysis or principal component analysis might be the avenue to take to find more explanations for the phenomena observed in Lake Tanganyika fisheries. There are certainly interactions between hydrological conditions and primary and secondary production as well as between zooplankton production and pelagic fish biomass. The next steps in the fish biology and fishery subcomponent of the project are to:

1. Include catch composition data from July 1994 - December 1994 in our primary database and rerun all analyses made so far with updated and completed data.
2. Connect all CPUE and total effort data with fish biology and fishery data without aggregating by area and fleet, if possible. Also, run analyses on area and fleet basis to estimate the distribution pattern of mortalities for management considerations.
3. Run an analysis on selectivity of various gears based on data already available.
4. Intensify and complete otolith readings and connect the results with fish biology data.
5. Include data on zooplankton and fish prey in the analysis.
6. Draft a detailed programme for a hydroacoustic-trawl survey for March-April and July-August 1995.

6. ACKNOWLEDGEMENTS

The authors would like to express their gratitude to all persons who have participated in the vast continuous collection of data and processing work in LTR stations and sub-station around the lake. We are especially grateful to all persons who have processed the primary data at each of the Lake Tanganyika Research stations. Our special thanks are thus due to G. Milindi and P. Verburg at Mpulungu (Zambia), K. Katonda, A. Kihakwi and M. Kissaka at Kigoma (Tanzania) and Ms P. Paffen in Bujumbura (Burundi), who has processed the large amount of the data from the northern part of the lake. We would also like to acknowledge the good co-operation of the Scientific Co-ordinator, Professor 0 . V. Lindqvist and Project Co-ordinator, Dr G. Hanek as well as the co-operation and assistance of all scientific and technical staff at LTR Headquarters in Bujumbura.

7. REFERENCES

Aro, E. Guidelines for sampling pelagic fish catches on Lake 1993 Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FINFM/04(En): 25 pp.

Algaraja, K. Simple methods for estimation of parameters for 1984. assessing exploited fish stocks. Indian J. Fish, 31: 177-208.

Basson, M., Rosenberg, A.A. and Beddington, J.R. The accuracy 1988 and reliability of two new methods for estimating growth parameters from length-frequency data. J. Cons. MT. Explor. Mer 44: 227-285.

Bellemans, M. Structural characteristics of the Burundian 1991 Fisheries in 1990 and Historical Review. UNDP/FAO Regional Project for Inland Fisheries Planning (IFIP). RAF/87/099/TD/25/91 (En) , 37pp.

Beverton, R.J.H. and Holt, S.J. A review of methods for 1956 estimating mortality rates in fish populations, with special reference to sources of bias in catch sampling. Rapp. P.-v. Reun. Cons. Int Explor. Mer 17A: 1-153.

Chapman, D.W. and Van Well, P. Growth and mortality of 1978a Stolothrissa tanganicae. Trans. Am. Fish. Soc. 107(1): 26-35.

Chapman, D.W. and Van Well, P. Observations on the biology of 1978b Luciolates stappersii in Lake Tanganyika (Tanzania). Trans. Am. Fish. Soc. 107(4): 567-573.

Coenen, E.J. Presentation of SSP Results: Fisheries statistics. 1994 Third Joint Meeting of the LTR's Coordination and International Scientific Committees; Kigoma, Tanzania 28-30.11.1994, LTR/94/3.7, 17 pp . (mimeogr.)

Coulter, G.W. Population changes within a group of fish species 1970 in Lake Tanganyika following their exploitation. J.Fish Biol. 2: 329-353.

Coulter, G.W. (ed.) Lake Tanganyika and its Life. Oxford 1991 University Press, London, Oxford \& New York, 354 pp.

Ellis, C.M.A. The size at maturity and breeding seasons of 1971 sardines in southern Lake Tanganyika. African Journal of Tropical Hydrobiology and Fisheries. 1(1): 59-66.

Ellis, C.M.A. Biology of Luciolates stappersi in Lake Tanganyika 1978 (Burundi). Trans. Am. Fish. Soc. 107(4): 557-556.

```
Gunderson, D.R. and P.H. Dygert, Reproductive effort as a
1988 predictor of natural mortality rate. J. Cons. CIEM,
    44: 200-9.
Henderson, H.F. Notes on Luciolates based on a study on length
1976 frequency diagrams from the ring-net fisheries in Lake
    Tanganyika; and notes on the large size of
    Limnothrissa in the catches of the ring-net fishery in
    Tanzania. FAO Report FI:DP/URT/71/012/29: 1-6.
Mannini, P. Field notes for Fish Biology. FAO/FINNIDA Research
1993 for the Management of the Fisheries on Lake
    Tanganyika. GCP/RAF/271/FIN-FM/08 (En): 34pp.
Ndugumbi, Z., Van Well, P. and Chapman, D.W. Biology of 1976 Limnothrissa miodon in Lake Tanganyika. FAO Report, FI:DP/URT/71/012/38/: 1-7.
Pauly, D. On the interrelationships between natural mortality, 1980 growth parameters and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer 39(2):175192.
Pauly, D., Length-converted catch curve. A powerful tool for 1983 fisheries research in the tropics. (Part I). ICLARN Fishbyte, 1(2): 9-13.
Pauly, D. and Morgan, G.R. (ed.) Length-based methods in 1987 fisheries research. ICLARM, Manila, Philippines and KISR, Safat, Kuwait., 468 pp.
Pearce, M.J. A description and stock assessment of the pelagic 1985 fishery in the south-east arm of the Zambian waters of Lake Tanganyika. Report of the Department of Fisheries, Zambia: 1-74.
Rikhter, V.A. and V.N. Efanov, On one of the approaches to 1976 estimation of natural mortality of fish populations. ICNAF Res. Doc., 76/VI/8: 12 p .
Roest, F.C. Stolothrissa tanganicae: Population dynamics, 1977 biomass evaluation and life history in the Burundi waters of Lake Tanganyika. FAO, CIFA Technical Paper 5: 42-63.
Roest, F.C. Bibliography of fisheries and limnology for Lake 1978 Tanganyika. FAO, CIFA Occasional Papers 6: 1-12.
Roest, F.C. Predator-prey relations in the northern Lake
1985 Tanganyika and fluctuations in the pelagic fish stocks. FAQ, CIFA Symposium SAWG/85/WPI: 1-28.
Roest, F.C. The status of the fisheries of Lake Tanganyika: 1987 Trends, problems and priorities. FAQ, CIFA: DM/LT/87/2: 1-23.
```

Shepherd, J.G. A weakly parametric method for the analysis of 1987 length composition data. In "Pauly, D. and Morgan, G.R. (ed.) 1987. Length-based methods in fisheries research. ICLARM, Manila, Philippines and KISR, Saf at, Kuwait., 468 pp"., pp 113-120.

Table 1.	Total meas	mber d in July	$\begin{aligned} & \text { f catch } \\ & \text { ly } 1993 \end{aligned}$	amples une 19	$\mathrm{d} \text { Limı }$	thrissa	miodon	pecime					
Bujumbura	Jul-93	Aug-93	Sep-93	Oct-93	Nov-93	Dec-93	Jan-94	Feb-94	Mar-94	Apr-94	May-94	Jun94	Year total
No. samples No. measured	$\begin{aligned} & 3 \\ & 190 \end{aligned}$	$\underset{15}{2}$	6 676	$\begin{array}{r} 3 \\ 63 \end{array}$	$\begin{array}{r} 19 \\ 5337 \end{array}$	$\begin{array}{r} 18 \\ 4978 \end{array}$	$\begin{array}{r} 14 \\ 1676 \end{array}$	$\begin{array}{r} 20 \\ 808 \end{array}$	$\begin{array}{r} 18 \\ 2086 \end{array}$	$\begin{array}{r} 19 \\ 1131 \end{array}$	$\begin{array}{r} 16 \\ 879 \end{array}$	$\begin{array}{r} 23 \\ 6679 \end{array}$	$\begin{array}{r} 161 \\ 24518 \end{array}$
Uvira													
No. samples No. measured		$\begin{array}{r} 4 \\ 76 \end{array}$	4 271	4 225	$\begin{array}{r} 4 \\ 111 \end{array}$	3 143	4 336	172	r ${ }^{5}$	1 69	5 19	7 109	$\begin{array}{r} 43 \\ 1790 \end{array}$
Kigoma No. samples No. measured	$\begin{aligned} & 3 \\ & 20 \end{aligned}$	5 195	8 202	5 169	4988888	219	2 18	1 15	4 309	1	$\begin{array}{r}83 \\ \hline 8\end{array}$	${ }_{3}^{6}$	1972
Kipili No. samples No. measured	4	943	4 964	5	53	529 ${ }^{4}$	342	12	2261	$\begin{array}{r} 24 \\ 6310 \end{array}$	2559	$\begin{array}{r} 16 \\ 5003 \end{array}$	$\begin{array}{r} 79 \\ 19964 \end{array}$
Mpulungu No. samples No. measured	$\begin{aligned} & 10 \\ & 2306 \end{aligned}$	$\begin{array}{r} 4 \\ 1114 \end{array}$	$\begin{array}{r} 10 \\ 4022 \end{array}$	1427	2 658	$\begin{array}{r} 12 \\ 3179 \end{array}$	7 883	1631	9 1943	10 2982	11 3805	3273	$\begin{array}{r} 99 \\ 27223 \end{array}$
Total no. of samples	16	19	32	18	38	43	29	30	48	56	48	63	439
Total number measured	2592	2538	6089	1770	6689	9241	3091	2713	6668	10443	7585	16778	72617

Table 2.

Bujumbura
No. samples
No. measured

Total number of catch samples and Stolothrissa tanganicae specimens measured in July 1993-June 1994

Year
total
172
80262

Uvira
No. samples
No. measured

Jul-93	Aug-93
7	4
1899	9386

Sep-93
Oct-93
Nov-93

Dec-93	Jan-94
10	14

Feb-94

Mar-94

Apr-94	May-94	Jun-94
21	26	25

Kalemie

No. samples
No. measured
Kigoma
No. samples
No. measured

Kipili
No. samples
No. measured

2	1
455	276

5	3	1
408	44	1

5
17
113
1297
Mpulungu
No. samples
No. measured
Total no. of samples
Total number

7	3	7	4	1
1506	411	2781	1002	10
$\mathbf{2 6}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{1 9}$	$\mathbf{3 9}$
$\mathbf{7 6 6 4}$	$\mathbf{2 0 1 0 6}$	$\mathbf{1 6 8 3 0}$	$\mathbf{3 7 1 7}$	$\mathbf{6 0 8 4}$

76

6	3	
842	236	
$\mathbf{3 9}$	42	34
$\mathbf{1 4 9 2 8}$	11778	5024

1	42
122	7437
46	443
11033	171830

Table 3.
Total number of catch samples and Lates stappersii specimens measured in July 1993-June 1994

Bujumbura	Jul-93	Aug-93	Sep-93	Oct-93	Nov-93	Dec-93	Jan-94	Feb-94	Mar-94	Apr-94	May-94	Jun-94
No. samples	5		1	6	6	6	6	7	9	2	6	11
No. measured	674		5	795	317	45	115	47	131	98	30	349

Uvira

No. samples
No. measured
$\begin{array}{lr} & 4 \\ 0 & 55\end{array}$
5
105
4
5
267
3
3
3
81
5
4
11
7
126
50
2248

Moba

No. samples
No. measured

Kigoma
No. samples
No. measured

4	9	8	
29	182	265	3

Kipili

No. samples
No. measured
Mpulungu

No. samples
No. measured

Total no. of samples
Total number measured
3
177

6	5	8
1101	500	2018
19	19	25
1338	875	3229

Table 4.

Bujumbura
No. samples
No. measured

Uvira

No. samples
No. measured

Kigoma

No. samples
No. measured

Mpulungu

No. samples
No. measured

Total no. of samples
Total number analysed

Total number of samples and Limnothrissa miodon specimens analysed for maturity stage in July 1993-June 1994

Year
total

138
5946

Table 5.

Bujumbura

No. samples
No. measured
Uvira
No. samples
No. measured

Kalemie

No. samples
No. measured
Total number of samples and Stolothrissa tanganicae specimens analysed for maturity stage in July 1993-June 1994

Jul-93 Aug-93 Sep-93
Oct-93

Nov-93	Dec-93	Jan-94
12	4	8
327	102	217

Feb-94	Mar-94
16	14
517	401

Apr-94
14
696

May-94	Jun-94
15	12
724	556

Year
total
115
4410

4294

Kigoma
No. samples
No. measured

Mpulungu

No. samples
No. measured
Total no. of samples
Total number analysed

7
267
148
325

2
165

1	3
16	270

4
273

129
7973

40
1723
338

Table 6.
Total number of samples and Lates stappersii specimens analysed for maturity stage in July 1993-June 1994

Bujumbura	Jul-93	Aug-93	Sep-93	Oct-93	Nov-93	Dec-93	Jan-94	Feb-94	Mar-94	Apr-94	May-94	Jun-94	Year total
No. samples	5			6	5				2			6	24
No. measured	82			111	75				31			73	372
Uvira													
No. samples		1	4	1	5	3	3	3	3		2	6	31
No. measured		3	104	1	88	43	139	37	128		90	16	649
Kigoma CJ													
No. samples	4	8	4	6	4	2	6	8	9	3	6	8	68
No. measured	15	161	69	179	17	36	240	236	513	136	149	251	2002
Mpulungu													
No. samples	9	6	5	8	10	7	13	11	14	6	6	5	100
No. measured	96	564	330	974	1133	756	1514	1396	1536	652	428	368	9747
Total no. of samples	18	15	13	21	24	12	22	22	28	9	14	25	223
Total number analysed	193	728	503	1265	1313	835	1893	1669	2208	788	667	708	12770

Table 7.	Limnothrissa miodon catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.												
Bujumbura													
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19	0	0	5	0	0	0	0	0	0	0	0	0	5
20-29	0	0	146	0	0	0	1	0	0	12	0	14	173
30-39	0	0	5	0	2	118	0	0	0	92	0	1641	1858
40-49	0	0	146	0	183	378	50	0	85	60	8	2799	3709
50-59	5	0	259	0	1373	861	345	0	583	101	165	552	4244
60-69	12	0	7	0	2099	1762	240	9	189	304	96	581	5299
70-79	82	0	35	0	880	823	318	82	146	204	95	227	2892
80-89	72	6	48	2	535	306	266	211	421	196	92	281	2436
90-99	15	8	21	7	197	594	266	305	544	113	167	355	2592
100-109	3	1	4	8	49	117	143	134	105	39	181	144	928
110-119	0	0	0	11	10	17	20	39	12	5	66	75	255
120-129	1	0	0	24	8	2	17	20	1	5	9	9	96
130-139	0	0	0	10	1	0	6	5	0	0	0	1	23
140-149	0	0	0	1	0	0	2	2	0	0	0	0	5
150-159	0	0	0	0	0	0	2	1	0	0	0	0	3
160-169	0	0	0	0	0	0	0	0	0	0	0	0	0
170-179	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	190	15	676	63	5337	4978	1676	808	2086	1131	879	6679	24518
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
10-19	0.00	0.00	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
20-29	0.00	0.00	21.60	0.00	0.00	0.00	0.06	0.00	0.00	1.06	0.00	0.21	0.71
30-39	0.00	0.00	0.74	0.00	0.04	2.37	0.00	0.00	0.00	8.13	0.00	24.57	7.58
40-49	0.00	0.00	21.60	0.00	3.43	7.59	2.98	0.00	4.07	5.31	0.91	41.91	15.13
50-59	2.63	0.00	38.31	0.00	25.73	17.30	20.58	0.00	27.95	8.93	18.77	8.26	17.31
60-69	6.32	0.00	1.04	0.00	39.33	35.40	14.32	1.11	9.06	26.88	10.92	8.70	21.61
70-79	43.16	0.00	5.18	0.00	16.49	16.53	18.97	10.15	7.00	18.04	10.81	3.40	11.80
80-89	37.89	40.00	7.10	3.17	10.02	6.15	15.87	26.11	20.18	17.33	10.47	4.21	9.94
90-99	7.89	53.33	3.11	11.11	3.69	11.93	15.87	37.75	26.08	9.99	19.00	5.32	10.57
100-109	1.58	6.67	0.59	12.70	0.92	2.35	8.53	16.58	5.03	3.45	20.59	2.16	3.78
110-119	0.00	0.00	0.00	17.46	0.19	0.34	1.19	4.83	0.58	0.44	7.51	1.12	1.04
120-129	0.53	0.00	0.00	38.10	0.15	0.04	1.01	2.48	0.05	0.44	1.02	0.13	0.39
130-139	0.00	0.00	0.00	15.87	0.02	0.00	0.36	0.62	0.00	0.00	0.00	0.01	0.09
140-149	0.00	0.00	0.00	1.59	0.00	0.00	0.12	0.25	0.00	0.00	0.00	0.00	0.02
150-159	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.12	0.00	0.00	0.00	0.00	0.01
160-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 7. (cont) Limnothrissa miodon catch composition. Total numbers in samples
and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.
Uvira

Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19		0	0	0	0	0	0	0	0	0	0	0	0
20-29		0	0	0	0	0	0	0	0	0	0	0	0
30-39		0	0	0	0	0	0	0	0	0	0	0	0
40-49		0	0	0	0	0	0	0	0	0	0	0	0
50-59		0	0	0	0	1	0	0	0	0	0	0	1
60-69		4	0	0	0	4	0	0	0	0	0	0	8
70-79		6	0	0	2	1	0	2	0	0	0	0	11
80-89		16	35	9	17	16	11	28	17	0	1	0	150
90-99		30	126	67	45	74	87	57	148	239	1	10	884
100-109		15	88	86	33	39	145	68	110	508	3	50	1145
110-119		3	20	47	10	4	77	14	44	464	6	47	736
120-129		2	2	14	4	3	16	2	9	186	7	1	246
130-139		0	0	2	0	1	0	1	0	12	1	1	18
140-149		0	0	0	0	0	0	0	0	0	0	0	0
150-159		0	0	0	0	0	0	0	0	0	0	0	0
160-169		0	0	0	0	0	0	0	0	0	0	0	0
170-179		0	0	0	0	0	0	0	0	0	0	0	0
Total		76	271	225	111	143	336	172	328	1409	19	109	3199
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
10-19		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-29		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-39		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-49		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50-59		0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.03
60.69		5.26	0.00	0.00	0.00	2.80	0.00	0.00	0.00	0.00	0.00	0.00	0.25
70.79		7.89	0.00	0.00	1.80	0.70	0.00	1.16	0.00	0.00	0.00	0.00	0.34
80-89		21.05	12.92	4.00	15.32	11.19	3.27	16.28	5.18	0.00	5.26	0.00	4.69
90-99		39.47	46.49	29.78	40.54	51.75	25.89	33.14	45.12	16.96	5.26	9.17	27.63
100-109		19.74	32.47	38.22	29.73	27.27	43.15	39.53	33.54	36.05	15.79	45.87	35.79
110-119		3.95	7.38	20.89	9.01	2.80	22.92	8.14	13.41	32.93	31.58	43.12	23.01
120-129		2.63	0.74	6.22	3.60	2.10	4.76	1.16	2.74	13.20	36.84	0.92	7.69
130-139		0.00	0.00	0.89	0.00	0.70	0.00	0.58	0.00	0.85	5.26	0.92	0.56
140-149		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
150-159		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
160-169		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-179		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		100	100	100	100	100	100	100	100	100	100	100	100

Table 7. (cont) Limnothrissa miodon catch composition. Total numbers in samples

Limnothrissa miodon catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.													
Mpulungu													
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19	16	293	0	0	0	0	0	0	0	151	211	209	880
20-29	428	592	184	71	257	843	0	49	50	1347	2442	1905	8168
30-39	526	24	586	476	343	473	48	85	79	277	885	760	4562
40-49	1009	8	618	78	52	31	29	208	66	373	163	53	2688
50-59	96	4	1144	138	6	11	3	225	91	652	10	24	2404
60-69	11	2	1324	322	0	351	30	156	95	30	1	56	2378
70.79	40	26	145	49	0	1086	153	360	188	19	0	89	2155
80-89	44	99	19	1	0	306	113	323	387	77	0	42	1411
90-99	56	21	2	1	0	76	36	120	532	39	0	15	898
100-109	47	23	0	5	0	0	8	3	150	15	0	24	275
110-119	26	13	0	43	0	0	25	1	7	1	1	25	142
120-129	7	5	0	144	0	0	187	1	58	1	8	33	444
130-139	0	3	0	89	0	1	187	39	147	0	41	19	526
140-149	0	0	0	7	0	0	61	48	73	0	31	6	226
150-159	0	1	0	2	0	1	3	11	16	0	10	12	56
160-169	0	0	0	1	0	0	0	2	4	0	2	1	10
170-179	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	2306	1114	4022	1427	658	3179	883	1631	1943	2982	3805	3273	27223
Length group (mm)	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
10-19	0.69	26.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.06	5.55	6.39	3.23
20-29	18.56	53.14	4.57	4.98	39.06	26.52	0.00	3.00	2.57	45.17	64.18	58.20	30.00
30-39	22.81	2.15	14.57	33.36	52.13	14.88	5.44	5.21	4.07	9.29	23.26	23.22	16.76
40.49	43.76	0.72	15.37	5.47	7.90	0.98	3.28	12.75	3.40	12.51	4.28	1.62	9.87
50-59	4.16	0.36	28.44	9.67	0.91	0.35	0.34	13.80	4.68	21.86	0.26	0.73	8.83
60-69	0.48	0.18	32.92	22.56	0.00	11.04	3.40	9.56	4.89	1.01	0.03	1.71	8.74
70-79	1.73	2.33	3.61	3.43	0.00	34.16	17.33	22.07	9.68	0.64	0.00	2.72	7.92
80-89	1.91	8.89	0.47	0.07	0.00	9.63	12.80	19.80	19.92	2.58	0.00	1.28	5.18
90-99	2.43	1.89	0.05	0.07	0.00	2.39	4.08	7.36	27.38	1.31	0.00	0.46	3.30
100-109	2.04	2.06	0.00	0.35	0.00	0.00	0.91	0.18	7.72	0.50	0.00	0.73	1.01
110-119	1.13	1.17	0.00	3.01	0.00	0.00	2.83	0.06	0.36	0.03	0.03	0.76	0.52
120-129	0.30	0.45	0.00	10.09	0.00	0.00	21.18	0.06	2.99	0.03	0.21	1.01	1.63
130-139	0.00	0.27	0.00	6.24	0.00	0.03	21.18	2.39	7.57	0.00	1.08	0.58	1.93
140-149	0.00	0.00	0.00	0.49	0.00	0.00	6.91	2.94	3.76	0.00	0.81	0.18	0.83
150-159	0.00	0.09	0.00	0.14	0.00	0.03	0.34	0.67	0.82	0.00	0.26	0.37	0.21
160-169	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.12	0.21	0.00	0.05	0.03	0.04
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 8.	Stolothrissa tanganicae catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.												
Bujumbura													
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19	0	0	0	0	0	0	0	0	0	0	0	0	0
20-29	0	21	765	0	0	0	0	0	1	130	0	0	917
30-39	0	3309	1230	0	3	0	180	0	81	1378	0	0	6181
40-49	3	5925	4427	0	29	2	4537	1	202	7704	748	2	23580
50-59	671	128	1736	0	321	189	2678	147	38	5294	6196	165	17563
60-69	1009	2	74	2	242	618	105	4699	105	1680	7186	2520	18242
70-79	180	0	2	100	45	831	297	880	1220	234	2067	3264	9120
80-89	31	0	0	134	239	490	542	580	1255	48	117	612	4048
90-99	5	1	0	39	95	40	44	86	197	7	24	46	584
100-109	0	0	0	2	12	0	0	0	5	3	4	1	27
110-119	0	0	0	0	0	0	0	0	0	0	0	0	0
120-129	0	0	0	0	0	0	0	0	0	0	0	0	0
130-139	0	0	0	0	0	0	0	0	0	0	0	0	0
140-149	0	0	0	0	0	0	0	0	0	0	0	0	0
150-159	0	0	0	0	0	0	0	0	0	0	0	0	0
160-169	0	0	0	0	0	0	0	0	0	0	0	0	0
170-179	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1899	9386	8234	277	986	2170	8383	6393	3104	16478	16342	6610	80262
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
10-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-29	0.00	0.22	9.29	0.00	0.00	0.00	0.00	0.00	0.03	0.79	0.00	0.00	1.14
30-39	0.00	35.25	14.94	0.00	0.30	0.00	2.15	0.00	2.61	8.36	0.00	0.00	7.70
40-49	0.16	63.13	53.76	0.00	2.94	0.09	54.12	0.02	6.51	46.75	4.58	0.03	29.38
50-59	35.33	1.36	21.08	0.00	32.56	8.71	31.95	2.30	1.22	32.13	37.91	2.50	21.88
60-69	53.13	0.02	0.90	0.72	24.54	28.48	1.25	73.50	3.38	10.20	43.97	38.12	22.73
70-79	9.48	0.00	0.02	36.10	4.56	38.29	3.54	13.77	39.30	1.42	12.65	49.38	11.36
80-89	1.63	0.00	0.00	48.38	24.24	22.58	6.47	9.07	40.43	0.29	0.72	9.26	5.04
90-99	0.26	0.01	0.00	14.08	9.63	1.84	0.52	1.35	6.35	0.04	0.15	0.70	0.73
100-109	0.00	0.00	0.00	0.72	1.22	0.00	0.00	0.00	0.16	0.02	0.02	0.02	0.03
110-119	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
120-129	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130-139	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
140-149	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
150-159	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
160-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 8 (cont) Stolothrissa tanganicae catch composition. Total numbers in samples
and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.
Uvira

Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19		0	0	0	0	0	0	0	0		0	0	0
20-29		25	0	0	0	0	0	0	0		0	0	25
30-39		635	0	0	0	0	0	0	46		0	0	681
40-49		2395	0	0	0	0	12	0	428		7	0	2842
50-59		826	7	25	1	1	51	188	291		632	8	2030
60-69		40	4	165	3	4	3	784	48		1557	549	3157
70-79		3	3	45	65	57	77	324	32		1960	1015	3581
80-89		1	1	28	260	143	90	193	63		360	399	1538
90-99		0	1	6	141	127	24	102	88		88	41	618
100-109		0	0	1	11	10	3	7	37		14	7	90
110-119		0	0	0	1	0	0	0	0		0	1	2
120-129		0	0	0	0	0	0	0	0		0	0	0
130-139		0	0	0	0	0	0	0	0		0	0	0
140-149		0	0	0	0	0	0	0	0		0	0	0
150-159		0	0	0	0	0	0	0	0		0	0	0
160-169		0	0	0	0	0	0	0	0		0	0	0
170-179		0	0	0	0	0	0	0	0		0	0	0
Total		3925	16	270	482	342	260	1598	1033		4618	2020	14564
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	
(mm)	\%	\%	\%	\%	\%	\%	\%	$\%$	\%	\%	$\%$	$\%$	\%
10-19		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
20-29		0.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.17
30-39		16.18	0.00	0.00	0.00	0.00	0.00	0.00	4.45		0.00	0.00	4.68
40-49		61.02	0.00	0.00	0.00	0.00	4.62	0.00	41.43		0.15	0.00	19.51
50-59		21.04	43.75	9.26	0.21	0.29	19.62	11.76	28.17		13.69	0.40	13.94
60-69		1.02	25.00	61.11	0.62	1.17	1.15	49.06	4.65		33.72	27.18	21.68
70-79		0.08	18.75	16.67	13.49	16.67	29.62	20.28	3.10		42.44	50.25	24.59
80-89		0.03	6.25	10.37	53.94	41.81	34.62	12.08	6.10		7.80	19.75	10.56
90-99		0.00	6.25	2.22	29.25	37.13	9.23	6.38	8.52		1.91	2.03	4.24
100-109		0.00	0.00	0.37	2.28	2.92	1.15	0.44	3.58		0.30	0.35	0.62
110-119		0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00		0.00	0.05	0.01
120-129		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
130-139		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
140-149		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
150-159		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
160-169		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
170-179		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Total		100	100	100	100	100	100	100	100		100	100	100

Stolothrissa tanganicae catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.													
Kalemie													
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19						0	0	0		0	0		0
20-29						0	0	0		57	1		58
30-39						0	0	0		667	217		884
40-49						1	0	2		1062	1731		2796
50-59						6	0	5		537	2582		3130
60-69						59	103	459		540	3515		4676
70-79						160	455	768		252	6130		7765
80-89						94	887	551		15	5304		6851
90-99						20	173	4		0	2128		2325
100-109						0	0	0		0	245		245
110-119						0	0	0		0	0		0
120-129						0	0	0		0	0		0
130-139						0	0	0		0	0		0
140-149						0	0	0		0	0		0
150-159						0	0	0		0	0		0
160-169						0	0	0		0	0		0
170-179						0	0	0		0	0		0
Total						340	1618	1789		3130	21853		28730
Length group (mm)	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
	\%	\%	\%	\%	\%	$\%$	\%	\%	\%	\%	\%	\%	\%
10-19						0.00	0.00	0.00		0.00	0.00		0.00
20-29						0.00	0.00	0.00		1.82	0.00		0.20
30-39						0.00	0.00	0.00		21.31	0.99		3.08
40-49						0.29	0.00	0.11		33.93	7.92		9.73
50-59						1.76	0.00	0.28		17.16	11.82		10.89
60-69						17.35	6.37	25.66		17.25	16.08		16.28
70-79						47.06	28.12	42.93		8.05	28.05		27.03
80-89						27.65	54.82	30.80		0.48	24.27		23.85
90-99						5.88	10.69	0.22		0.00	9.74		8.09
100-109						0.00	0.00	0.00		0.00	1.12		0.85
110-119						0.00	0.00	0.00		0.00	0.00		0.00
120-129						0.00	0.00	0.00		0.00	0.00		0.00
130-139						0.00	0.00	0.00		0.00	0.00		0.00
140-149						0.00	0.00	0.00		0.00	0.00		0.00
150-159						0.00	0.00	0.00		0.00	0.00		0.00
160-169						0.00	0.00	0.00		0.00	0.00		0.00
170-179						0.00	0.00	0.00		0.00	0.00		0.00
Total						100	100	100		100	100		100

Table 8 (cont)		Stolothrissa tanganicae catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.											
Kigoma													
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19	0	0	0	0	0	0	0	0	0	0	0	0	0
20-29	0	1	0	3	0	0	0	0	0	0	0	0	3
30-39	0	34	4	1	0	0	11	0	154	0	0	0	181
40-49	50	118	220	114	44	0	76	5	333	1	351	0	1085
50-69	535	722	490	92	599	70	45	44	30	13	1066	37	3104
60-69	627	1651	1300	349	589	492	242	160	41	100	1104	650	6524
70-79	1636	2348	2398	1013	788	1247	1602	444	71	59	950	934	12263
80-89	1388	930	1074	583	1548	2158	1554	985	107	316	376	488	13940
90-99	23	123	37	13	619	373	284	121	72	59	46	148	2375
100-109	0	2	0	0	11	3	10	3	1	1	2	24	65
110-119	0	0	0	0	0	0	0	0	0	0	0	0	0
120-129	0	0	0	0	0	0	0	0	0	0	0	0	0
130-139	0	0	0	0	0	0	0	0	0	0	0	0	0
140-149	0	0	0	0	0	0	0	0	0	0	0	0	0
150-159	0	0	0	0	0	0	0	0	0	0	0	0	0
160-169	0	0	0	0	0	0	0	0	0	0	0	0	0
170-179	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	4259	5929	5523	2168	4198	4343	3824	1762	809	549	3895	2281	39540
Length													
(mm)	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
10-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-29	0.00	0.02	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
30-39	0.00	0.57	0.07	0.05	0.00	0.00	0.29	0.00	19.04	0.00	0.00	0.00	0.46
40-49	1.17	1.99	3.98	5.26	1.05	0.00	1.99	0.28	41.16	0.18	9.01	0.00	2.74
50-59	12.56	12.18	8.87	4.24	14.27	1.61	1.18	2.50	3.71	2.37	27.37	1.62	7.85
60-69	14.72	27.85	23.54	16.10	14.03	11.33	6.33	9.08	5.07	18.21	28.34	28.50	16.50
70-79	38.41	39.60	43.42	46.73	18.77	28.71	41.89	25.20	8.78	10.75	24.39	40.95	31.01
80-89	32.59	15.69	19.45	26.89	36.87	49.69	40.64	55.90	13.23	57.56	9.65	21.39	35.26
90-99	0.54	2.07	0.67	0.60	14.75	8.59	7.43	6.87	8.90	10.75	1.18	6.49	6.01
100-109	0.00	0.03	0.00	0.00	0.26	0.07	0.26	0.17	0.12	0.18	0.05	1.05	0.16
110-119	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
120-129	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130-139	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
140-149	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
150-159	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
160-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Stolothrissa tanganicae catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.													
Kipili													
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19		0	0		0	0	0				0		0
20-29		0	0		0	0	0				0		0
30-39		11	3		0	0	0				0		4
40-49		137	37		0	0	0				1		106
50.59		154	98		0	0	0				23		219
60-69		80	71		24	13	0				60		340
70-79		45	43		124	13	0				28		258
80-89		28	24		101	13	0				1		196
90-99		0	0		117	5	0				0		131
100-109		0	0		39	0	1				0		40
110-119		0	0		3	0	0				0		3
120-129		0	0		0	0	0				0		0
130-139		0	0		0	0	0				0		0
140-149		0	0		0	0	0				0		0
150-159		0	0		0	0	0				0		0
160-169		0	0		0	0	0				0		0
170-179		0	0		0	0	0				0		0
Total		455	276		408	44	1				113		1297
Length group (mm)	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
	\%	\%	\%	\%	\%	\%	\%	\%	\%	$\%$	\%	\%	\%
10-19		0.00	0.00		0.00	0.00	0.00				0.00		0.00
20-29		0.00	0.00		0.00	0.00	0.00				0.00		0.00
30-39		2.42	1.09		0.00	0.00	0.00				0.00		0.31
40-49		30.11	13.41		0.00	0.00	0.00				0.88		8.17
50-59		33.85	35.51		0.00	0.00	0.00				20.35		16.89
60-69		17.58	25.72		5.88	29.55	0.00				53.10		26.21
70-79		9.89	15.58		30.39	29.55	0.00				24.78		19.89
80-89		6.15	8.70		24.75	29.55	0.00				0.88		15.11
90-99		0.00	0.00		28.68	11.36	0.00				0.00		10.10
100-109		0.00	0.00		9.56	0.00	100.00				0.00		3.08
110-119		0.00	0.00		0.74	0.00	0.00				0.00		0.23
120-129		0.00	0.00		0.00	0.00	0.00				0.00		0.00
130-139		0.00	0.00		0.00	0.00	0.00				0.00		0.00
140-149		0.00	0.00		0.00	0.00	0.00				0.00		0.00
150-159		0.00	0.00		0.00	0.00	0.00				0.00		0.00
160-169		0.00	0.00		0.00	0.00	0.00				0.00		0.00
170-179		0.00	0.00		0.00	0.00	0.00				0.00		0.00
Total		100	100		100	100	100				100		100

Table 8 (cont) Stolothrissa tanganicae catch composition. Total numbers in samples
and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.
Mpulungu

Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	Total
(mm)	N	N	N	N	N	N	N	N	N	N	N	N	N
10-19	0	0	11	5	0	0	0	0	0		0	0	16
20-29	6	0	224	440	0	0	0	0	0		0	0	670
30-39	4	0	594	391	0	0	0	0	0		0	0	989
40-49	124	0	1741	38	8	0	0	1	0		0	0	1912
50-59	747	0	173	1	2	1	0	1	0		0	0	925
60-69	403	7	25	0	0	13	2	10	1		0	0	461
70-79	75	208	10	11	0	255	5	71	1		0	2	638
80-89	82	85	3	61	0	87	66	92	5		0	86	567
90-99	50	90	0	50	0	66	206	4	22		3	21	512
100-109	15	21	0	5	0	12	505	53	46		10	8	675
110-119	0	0	0	0	0	0	58	4	3		2	5	72
120-129	0	0	0	0	0	0	0	0	0		0	0	0
130-139	0	0	0	0	0	0	0	0	0		0	0	0
140-149	0	0	0	0	0	0	0	0	0		0	0	0
150-159	0	0	0	0	0	0	0	0	0		0	0	0
160-169	0	0	0	0	0	0	0	0	0		0	0	0
170-179	0	0	0	0	0	0	0	0	0		0	0	0
Total	1506	411	2781	1002	10	434	842	236	78		15	122	7437
Length group	Jul. 93	Aug. 93	Sep. 93	Oct. 93	Nov. 93	Dec. 93	Jan. 94	Feb. 94	Mar. 94	Apr. 94	May. 94	Jun. 94	
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%
10-19	0.00	0.00	0.40	0.50	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.22
20-29	0.40	0.00	8.05	43.91	0.00	0.00	0.00	0.00	0.00		0.00	0.00	9.01
30-39	0.27	0.00	21.36	39.02	0.00	0.00	0.00	0.00	0.00		0.00	0.00	13.30
40-49	8.23	0.00	62.60	3.79	80.00	0.00	0.00	0.42	0.00		0.00	0.00	25.71
50-59	49.60	0.00	6.22	0.10	20.00	0.23	0.00	0.42	0.00		0.00	0.00	12.44
60-69	26.76	1.70	0.90	0.00	0.00	3.00	0.24	4.24	1.28		0.00	0.00	6.20
70-79	4.98	50.61	0.36	1.10	0.00	58.76	0.59	30.08	1.28		0.00	1.64	8.58
80-89	5.44	20.68	0.11	6.09	0.00	20.05	7.84	38.98	6.41		0.00	70.49	7.62
90-99	3.32	21.90	0.00	4.99	0.00	15.21	24.47	1.69	28.21		20.00	17.21	6.88
100-109	1.00	5.11	0.00	0.50	0.00	2.76	59.98	22.46	58.97		66.67	6.56	9.08
110-119	0.00	0.00	0.00	0.00	0.00	0.00	6.89	1.69	3.85		13.33	4.10	0.97
120-129	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
130-139	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
140-149	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
150-159	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
160-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100		100	100	100

Table 9.
Bujumbura

Length group (mm)	$\begin{array}{r} \text { Jul. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Aug. } 93 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \mathbf{N} \end{array}$	Nov. 93 N	Dec. 93 N	$\begin{array}{r} \text { Jan. } 94 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Feb. } 94 \\ \mathbf{N} \end{array}$	Mar. 94 N	$\begin{array}{r} \text { Apr. } 94 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { May. } 94 \\ \mathbf{N} \end{array}$	Jun. 94 \mathbf{N}	Total N
10-29	0		0	1	0	0	0	0	0	0	0	0	1
30.49	0		0	0	0	7	17	12	26	0	0	0	62
50-69	3		0	338	0	0	82	1	30	1	0	0	455
70-89	140		0	360	5	3	16	24	20	0	16	19	603
90-109	447		0	20	274	19	0	7	5	42	14	223	1051
110-129	83		0	59	22	4	0	2	0	46	0	40	256
130-149	1		0	8	13	0	0	1	0	9	0	3	35
150-169	0		0	1	3	0	0	0	0	0	0	0	4
170-189	0		0	7	0	0	0	0	1	0	0	0	8
190-209	0		0	1	0	0	0	0	3	0	0	0	4
210-229	0		0	0	0	0	0	0	11	0	0	1	12
230-249	0		0	0	0	0	0	0	16	0	0	1	17
250-269	0		0	0	0	0	0	0	3	0	0	2	5
270-289	0		0	0	0	1	0	0	4	0	0	2	7
290-309	0		0	0	0	0	0	0	1	0	0	18	19
310-329	0		0	0	0	1	0	0	8	0	0	22	31
330-349	0		3	0	0	4	0	0	2	0	0	14	23
350-369	0		1	0	0	5	0	0	1	0	0	4	11
370-389	0		0	0	0	1	0	0	0	0	0	0	1
390-409	0		1	0	0	0	0	0	0	0	0	0	1
410-429	0		0	0	0	0	0	0	0	0	0	0	0
430-449	0		0	0	0	0	0	0	0	0	0	0	0
450-469	0		0	0	0	0	0	0	0	0	0	0	0
470-489	0		0	0	0	0	0	0	0	0	0	0	0
490-509	0		0	0	0	0	0	0	0	0	0	0	0
510.529	0		0	0	0	0	0	0	0	0	0	0	0
530-549	0		0	0	0	0	0	0	0	0	0	0	0
550-569	0		0	0	0	0	0	0	0	0	0	0	0
570-589	0		0	0	0	0	0	0	0	0	0	0	0
>590	0		0	0	0	0	0	0	0	0	0	0	0
Total	674		5	795	317	45	115	47	131	98	30	349	2606
Length group (mm)	$\begin{array}{r} \text { Jul. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Aug. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Nov. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Dec. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Jan. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Feb. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Mar. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Apr. } 94 \\ \% \end{array}$	May. 94 \%	$\begin{array}{r} \text { Jun. } 94 \\ \% \end{array}$	Total \%
10-29	0.00		0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
30-49	0.00		0.00	0.00	0.00	15.56	14.78	25.53	19.85	0.00	0.00	0.00	2.38
50-69	0.45		0.00	42.52	0.00	0.00	71.30	2.13	22.90	1.02	0.00	0.00	17.46
70-89	20.77		0.00	45.28	1.58	6.67	13.91	51.06	15.27	0.00	53.33	5.44	23.14
90-109	66.32		0.00	2.52	86.44	42.22	0.00	14.89	3.82	42.86	46.67	63.90	40.33
110-129	12.31		0.00	7.42	6.94	8.89	0.00	4.26	0.00	46.94	0.00	11.46	9.82
130-149	0.15		0.00	1.01	4.10	0.00	0.00	2.13	0.00	9.18	0.00	0.86	1.34
150-169	0.00		0.00	0.13	0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15
170-189	0.00		0.00	0.88	0.00	0.00	0.00	0.00	0.76	0.00	0.00	0.00	0.31
190-209	0.00		0.00	0.13	0.00	0.00	0.00	0.00	2.29	0.00	0.00	0.00	0.15
210-229	0.00		0.00	0.00	0.00	0.00	0.00	0.00	8.40	0.00	0.00	0.29	0.46
230-249	0.00		0.00	0.00	0.00	0.00	0.00	0.00	12.21	0.00	0.00	0.29	0.65
250-269	0.00		0.00	0.00	0.00	0.00	0.00	0.00	2.29	0.00	0.00	0.57	0.19
270-289	0.00		0.00	0.00	0.00	2.22	0.00	0.00	3.05	0.00	0.00	0.57	0.27
290-309	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.76	0.00	0.00	5.16	0.73
310-329	0.00		0.00	0.00	0.00	2.22	0.00	0.00	6.11	0.00	0.00	6.30	1.19
330-349	0.00		60.00	0.00	0.00	8.89	0.00	0.00	1.53	0.00	0.00	4.01	0.88
350-369	0.00		20.00	0.00	0.00	11.11	0.00	0.00	0.76	0.00	0.00	1.15	0.42
370-389	0.00		0.00	0.00	0.00	2.22	0.00	0.00	0.00	0.00	0.00	0.00	0.04
390-409	0.00		20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
410-429	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
430-449	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
450-469	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
470-489	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
490-509	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
510-529	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
530-549	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
550-569	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
570-589	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
>590	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100		100	100	100	100	100	100	100	100	100	100	100

 		$\begin{aligned} & \text {-I } \\ & \text { IT } \end{aligned}$	 		
	®으́ㄹ			$z \stackrel{\stackrel{c}{\vdots}}{\stackrel{\circ}{\circ}}$	
000000000000000000000000 w urdNo 	花	¢	$00000000000000000000000 \omega \omega$ N゙o	z	
8888888888888888888888888984988	$$	$\stackrel{\rightharpoonup}{\circ}$	0000000000000000000000 N0000	又	
 	$$	${ }_{\infty}^{\infty}$		＜ $\begin{array}{r}\text { ¢ } \\ \substack{\text { ¢ } \\ 0}\end{array}$	
$00000000000000000000000 \rightarrow \vec{\sigma} \mathbf{N}_{N}-00$ 	20	N		z	
 		\％		マ	
○000000000000000000000000 N～NOO $8888888888888888888988988 \omega \underset{\omega}{68} \% 8$		$\stackrel{\rightharpoonup}{8}$	0000000000000000000000 氙v，	28	
 		$\underset{\sim}{\infty}$	$000000000000000000000-\underset{N}{00000}$	2	
888888888888 山 心N	$$	$\stackrel{\text { A }}{\text { ¢ }}$		2	
	$$			2	
 	$\underset{8}{\stackrel{\text { zin }}{8}}$	\％	$00000000000000000000000 \sim \stackrel{N}{N}$	$2 \stackrel{\text { ¢ }}{\substack{\text { 20 }}}$	
$000000000000000000000000 \mathrm{~N} \stackrel{\rightharpoonup}{\omega} \omega \stackrel{\rightharpoonup}{\omega}$ 	气嵩	颈	$0000000000000000000000 \omega \mathrm{NANO}$	2 ¢	
 	$20 \frac{-1}{\underline{\underline{1}}}$	$\begin{aligned} & N \\ & N \\ & \text { H } \end{aligned}$		$2 \stackrel{\stackrel{\rightharpoonup}{\underset{B}{E}}}{ }$	

Table 9. (cont) Lates stappersi catch composition. Total numbers in samples \quad and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.													
Length group (mm)	$\begin{array}{r} \text { Jul. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Aug. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Nov. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Dec. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Jan. } 94 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Feb. } 94 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Mar. } 94 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Apr. } 94 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { May. } 94 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Jun. } 94 \\ \mathrm{~N} \end{array}$	Total N
10-29										0			0
30-49										0			0
50-69										0			0
70-89										0			0
90-109										0			0
110-129										0			0
130-149										0			0
150-169										0			0
170-189										251			251
190-209										1280			1280
210-229										237			237
230-249										0			0
250-269										0			0
270-289										0			0
290-309										0			0
310-329										0			0
330-349										0			0
350-369										0			0
370-389										0			0
390-409										0			0
410-429										0			0
430-449										0			0
450-469										0			0
470-489										0			0
490-609										0			0
510-529										0			0
530-549										0			0
550-569										0			0
570-589										0			0
>590										0			0
Total										1768			1768
Length group (mm)	Jul. 93 $\%$	$\begin{array}{r} \text { Aug. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \% \end{array}$	Nov. 93 \%	$\begin{array}{r} \text { Dec. } 93 \\ \% \end{array}$	Jan. 94 \%	$\begin{array}{r} \text { Feb. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Mar. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Apr. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { May. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Jun. } 94 \\ \% \end{array}$	Total \%
10-29										0.00			0.00
30-49										0.00			0.00
50-69										0.00			0.00
70-89										0.00			0.00
90-109										0.00			0.00
110-129										0.00			0.00
130-149										0.00			0.00
150-169										0.00			0.00
170-189										14.20			14.20
190-209										72.40			72.40
210-229										13.40			13.40
$230-249$										0.00			0.00
250-269										0.00			0.00
270-289										0.00			0.00
290-309										0.00			0.00
310-329										0.00			0.00
330-349										0.00			0.00
350-369										0.00			0.00
370-389										0.00			0.00
390-409										0.00			0.00
410-429										0.00			0.00
430-449										0.00			0.00
450-469										0.00			0.00
470-489										0.00			0.00
490-509										0.00			0.00
510.529										0.00			0.00
$530-549$										0.00			0.00
550-569										0.00			0.00
570-589										0.00			0.00
>590										0.00			0.00
Total										100			100

Length group (mm)	$\begin{array}{r} \text { Jul. } 93 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Aug. } 93 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \mathbf{N} \end{array}$	Nov. 93 N	$\begin{array}{r} \text { Dec. } 93 \\ \mathbf{N} \end{array}$	Jan. 94 N	Feb. 94 N	Mar. 94 N	Apr. 94	$\begin{array}{r} \text { May. } 94 \\ \mathrm{~N} \end{array}$	Jun. 94 N	Total N
10-29	0	0	0	0	0	0	0	0	0	0	0	0	0
30-49	0	0	0	0	0	0	0	0	0	0	0	0	0
50-69	0	28	21	0	0	0	2	43	0	0	0	0	94
70-89	8	20	39	60	0	0	15	75	0	3	3	13	236
90-109	12	3	69	132	322	5	4	397	37	44	14	228	1267
110-129	8	18	97	26	67	98	7	45	571	18	464	203	1622
130-149	1	24	18	0	0	5	54	4	189	0	130	197	622
150-169	0	13	5	0	0	0	6	35	86	0	14	9	168
170-189	0	0	0	0	0	0	0	9	143	10	2	0	164
190-209	0	0	0	0	0	0	3	2	16	18	7	0	46
210-229	0	0	0	1	0	0	5	10	3	10	7	0	36
230-249	0	0	0	0	0	0	18	38	10	18	6	0	90
250-269	0	0	0	0	0	0	49	46	34	52	6	5	192
270-289	0	1	0	4	0	0	53	28	39	46	22	19	212
290-309	0	3	0	41	1	3	33	15	64	57	39	27	283
310-329	0	4	1	58	2	2	23	7	44	25	50	42	258
330-349	0	7	8	32	6	7	14	7	27	12	37	62	219
350-369	0	12	2	15	2	0	8	3	6	2	34	21	105
370-389	0	13	1	6	6	2	14	1	4	2	7	12	68
390-409	0	11	3	1	0	1	0	0	0	0	4	4	24
410-429	0	8	0	2	0	0	0	0	0	0	2	0	12
430-449	0	4	1	0	1	0	0	0	0	0	0	2	8
450-469	0	2	0	0	0	1	0	0	0	0	2	3	8
470-489	0	8	0	0	0	0	0	0	0	0	0	0	8
490-509	0	1	0	0	0	0	0	0	0	0	0	0	1
510-529	0	0	0	0	0	0	0	0	0	0	0	0	0
530-549	0	0	0	0	0	0	0	0	0	0	0	0	0
550-569	0	2	0	0	0	0	0	0	0	0	0	0	2
570-589	0	0	0	0	0	0	0	0	0	0	0	0	0
>590	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	29	182	265	378	407	124	308	765	1273	317	850	847	5745
Length group (mm)	$\begin{array}{r} \text { Jul. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Aug. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Nov. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Dec. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Jan. } 94 \\ \% \end{array}$	Feb. 94	$\begin{array}{r} \text { Mar. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { Apr. } 94 \\ \% \end{array}$	$\begin{array}{r} \text { May. } 94 \\ \% \end{array}$	Jun. 94	Total \%
10-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50-69	0.00	15.38	7.92	0.00	0.00	0.00	0.65	5.62	0.00	0.00	0.00	0.00	1.64
70-89	27.59	10.99	14.72	15.87	0.00	0.00	4.87	9.80	0.00	0.95	0.35	1.53	4.11
90-109	41.38	1.65	26.04	34.92	79.12	4.03	1.30	51.90	2.91	13.88	1.65	26.92	22.05
110-129	27.59	9.89	36.60	6.88	16.46	79.03	2.27	5.88	44.85	5.68	54.59	23.97	28.23
130-149	3.45	13.19	6.79	0.00	0.00	4.03	17.53	0.52	14.85	0.00	15.29	23.26	10.83
150-169	0.00	7.14	1.89	0.00	0.00	0.00	1.95	4.58	6.76	0.00	1.65	1.06	2.92
170-189	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.18	11.23	3.15	0.24	0.00	2.85
190-209	0.00	0.00	0.00	0.00	0.00	0.00	0.97	0.26	1.26	5.68	0.82	0.00	0.80
210-229	0.00	0.00	0.00	0.26	0.00	0.00	1.62	1.31	0.24	3.15	0.82	0.00	0.63
230-249	0.00	0.00	0.00	0.00	0.00	0.00	5.84	4.97	0.79	5.68	0.71	0.00	1.57
250-269	0.00	0.00	0.00	0.00	0.00	0.00	15.91	6.01	2.67	16.40	0.71	0.59	3.34
270-289	0.00	0.55	0.00	1.06	0.00	0.00	17.21	3.66	3.06	14.51	2.59	2.24	3.69
290-309	0.00	1.65	0.00	10.85	0.25	2.42	10.71	1.96	5.03	17.98	4.59	3.19	4.93
310-329	0.00	2.20	0.38	15.34	0.49	1.61	7.47	0.92	3.46	7.89	5.88	4.96	4.49
330-349	0.00	3.85	3.02	8.47	1.47	5.65	4.55	0.92	2.12	3.79	4.35	7.32	3.81
350-369	0.00	6.59	0.75	3.97	0.49	0.00	2.60	0.39	0.47	0.63	4.00	2.48	1.83
370-389	0.00	7.14	0.38	1.59	1.47	1.61	4.55	0.13	0.31	0.63	0.82	1.42	1.18
390-409	0.00	6.04	1.13	0.26	0.00	0.81	0.00	0.00	0.00	0.00	0.47	0.47	0.42
410-429	0.00	4.40	0.00	0.53	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.21
430-449	0.00	2.20	0.38	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.14
450-469	0.00	1.10	0.00	0.00	0.00	0.81	0.00	0.00	0.00	0.00	0.24	0.35	0.14
470-489	0.00	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
490-509	0.00	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
510-529	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
530-549	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
550-569	0.00	1.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
570.589	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
>590	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Lates stappersi catch composition. Total numbers in samples and \% distributions (gears combined) in various sampling areas in July 1993-June 1994.													
Mpulungu													
Length group (mm)	$\begin{array}{r} \text { Jul. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Aug. } 93 \\ \mathrm{~N} \end{array}$	$\begin{array}{r} \text { Sep. } 93 \\ \mathbf{N} \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \mathrm{~N} \end{array}$	Nov. 93 N	Dec. 93 N	$\begin{array}{r} \text { Jan. } 94 \\ \mathrm{~N} \end{array}$	Feb. 94 N	Mar. 94 N	Apr. 94 N	May. 94 N	$\begin{array}{r} \text { Jun. } 94 \\ \mathrm{~N} \end{array}$	Total N
10-29	0	0	0	0	0	0	0	0	0	0	0	0	0
30-49	0	0	0	0	0	0	0	0	0	0	0	0	0
50-69	0	0	0	0	0	0	0	0	0	0	0	0	0
70-89	0	0	0	0	0	0	1	1	0	0	0	0	2
90-109	0	0	0	0	0	0	150	52	42	0	1	0	245
110-129	0	0	0	0	0	1	123	36	20	10	1	22	213
130-149	0	0	0	2	0	0	0	0	1	9	4	20	36
150-169	0	0	0	31	4	6	4	1	0	0	0	4	50
170-189	0	0	0	78	32	76	21	3	0	3	0	4	217
190-209	4	5	0	227	124	264	438	102	25	24	0	35	1248
210-229	6	12	0	328	283	171	654	394	315	129	4	123	2419
230-249	14	60	17	303	323	90	487	361	521	348	69	273	2866
250-269	71	254	80	492	529	84	417	303	417	225	186	352	3410
270-289	54	375	153	303	295	147	374	224	287	183	237	223	2855
290-309	20	240	131	127	107	133	136	101	168	83	135	91	1472
310-329	1	88	65	65	34	107	102	87	195	75	77	41	937
330-349	1	23	16	30	11	89	114	118	221	57	64	12	756
350-369	1	15	8	20	30	59	74	75	176	47	46	5	556
370-389	0	10	7	8	50	48	51	75	96	25	40	1	411
390-409	2	14	7	3	36	33	24	63	63	13	15		274
410-429	2	2	9	1	27	19	14	15	22	4	2	0	117
430-449	0	3	6	0	6	2	6	4	7	1	2	0	37
450-469	0	0	1	0	0	1	2	0	1	0	0	0	5
470-489	1	0	0	0	0	0	0	1	0	0	1	0	3
490-509	0	0	0	0	0	0	0	0	0	0	0	0	0
510.529	0	0	0	0	0	0	0	0	0	0	0	0	0
630-649	0	0	0	0	0	0	0	0	0	0	0	0	0
550-569	0	0	0	0	0	0	0	0	0	0	0	0	0
570-589	0	0	0	0	0	0	0	0	0	0	0	0	0
>590	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	177	1101	500	2018	1891	1330	3192	2016	2577	1236	884	1207	18129
Length group (mm)	Jul. 93	$\begin{gathered} \text { Aug. } 93 \\ \% \end{gathered}$	$\begin{array}{r} \text { Sep. } 93 \\ \% \end{array}$	$\begin{array}{r} \text { Oct. } 93 \\ \% \end{array}$	Nov. 93	$\text { Dec. } 93$	$\begin{array}{r} \text { Jan. } 94 \\ \% \end{array}$	Feb. 94	Mar. 94	Apr. 94	$\text { May. } 94$	Jun. 94	Total
10-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50-69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70-89	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.05	0.00	0.00	0.00	0.00	0.01
90-109	0.00	0.00	0.00	0.00	0.00	0.00	4.70	2.58	1.63	0.00	0.11	0.00	1.35
110-129	0.00	0.00	0.00	0.00	0.00	0.08	3.85	1.79	0.78	0.81	0.11	1.82	1.17
130-149	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.04	0.73	0.45	1.66	0.20
150-169	0.00	0.00	0.00	1.54	0.21	0.45	0.13	0.05	0.00	0.00	0.00	0.33	0.28
170-189	0.00	0.00	0.00	3.87	1.69	5.71	0.66	0.15	0.00	0.24	0.00	0.33	1.20
190-209	2.26	0.45	0.00	11.25	6.56	19.85	13.72	5.06	0.97	1.94	0.00	2.90	6.88
210-229	3.39	1.09	0.00	16.25	14.97	12.86	20.49	19.54	12.22	10.44	0.45	10.19	13.34
230-249	7.91	5.45	3.40	15.01	17.08	6.77	15.26	17.91	20.22	28.16	7.81	22.62	15.81
250-269	40.11	23.07	16.00	24.38	27.97	6.32	13.06	15.03	16.18	18.20	21.04	29.16	18.81
270-289	30.51	34.06	30.60	15.01	15.60	11.05	11.72	11.11	11.14	14.81	26.81	18.48	15.75
290-309	11.30	21.80	26.20	6.29	5.66	10.00	4.26	5.01	6.52	6.72	15.27	7.54	8.12
310-329	0.56	7.99	13.00	3.22	1.80	8.05	3.20	4.32	7.57	6.07	8.71	3.40	5.17
330-349	0.56	2.09	3.20	1.49	0.58	6.69	3.57	5.85	8.58	4.61	7.24	0.99	4.17
350-369	0.56	1.36	1.60	0.99	1.58	4.44	2.32	3.72	6.83	3.80	5.20	0.41	3.07
370-389	0.00	0.91	1.40	0.40	2.64	3.61	1.60	3.72	3.73	2.02	4.52	0.08	2.27
390-409	1.13	1.27	1.40	0.15	1.90	2.48	0.75	3.13	2.44	1.05	1.70	0.08	1.51
410-429	1.13	0.18	1.80	0.05	1.43	1.43	0.44	0.74	0.85	0.32	0.23	0.00	0.65
430-449	0.00	0.27	1.20	0.00	0.32	0.15	0.19	0.20	0.27	0.08	0.23	0.00	0.20
450-469	0.00	0.00	0.20	0.00	0.00	0.08	0.06	0.00	0.04	0.00	0.00	0.00	0.03
470-489	0.56	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.11	0.00	0.02
490-509	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
510-529	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
530-549	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
550.569	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
570-589	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
>590	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 10.
Limnothrissa miodon. Maturity stage data in July 1993 -June 1994.
Frequency distributions and $\%$ distributions according to maturity stages. (All gears combined).

Table 10. (cont)	Limnothrissa miodon. Maturity stage data in July 1993-June 1994. Frequency distributions and \% distributions according to maturity stages. (All gears combined).											
Kigoma	Number of samples: 56											
Year total												
Length group	Immatures (unident.)	Maturity stages				Maturity stages						Total number
(mm)	1	2	3	4	5	Total	2	3	4	5	Total	analysed
20-24	0	0	0	0	0	0	0	0	0	0	0	0
26-29	0	0	0	0	0	0	0	0	0	0	0	0
30-34	0	0	0	0	0	0	0	0	0	0	0	0
35-39	0	0	0	0	0	0	0	0	0	0	0	0
40-44	0	0	0	0	0	0	0	0	0	0	0	0
46-49	0	0	0	0	0	0	0	0	0	0	0	0
50-54	0	0	0	0	0	0	0	0	0	0	0	0
55-59	0	0	0	0	0	0	0	0	0	0	0	0
60-64	0	0	0	0	0	0	0	0	0	0	0	0
66-69	0	0	0	0	0	0	0	0	0	0	0	0
70-74	0	0	0	0	0	0	0	0	0	0	0	0
75-79	0	0	0	0	0	0	1	0	0	0	1	1
80.84	0	1	0	0	0	1	0	0	0	0	0	1
85-89	0	0	1	0	0	1	4	1	0	0	5	6
$90-94$	0	3	0	0	0	3	4	0	0	0	4	7
95-99	0	7	0	0	0	7	15	1	0	0	16	23
100-104	0	18	2	2	0	22	28	20	1	1	50	72
105-109	0	54	6	0	0	60	39	27	1	0	67	127
110-114	0	69	18	2	0	89	38	30	0	0	68	157
115-119	0	72	23	0	0	95	31	27	0	0	58	153
120-124	0	43	31	1	0	75	34	15	1	0	50	125
125-129	0	55	17	0	0	72	19	10	0	0	29	101
130-134	0	33	12	3	0	48	25	11	0	0	36	84
135-139	0	41	17	1	0	59	16	5	1	0	22	81
140-144	0	16	17	3	0	36	16	4	0	0	20	56
146-149	0	16	18	0	0	34	11	2	0	0	13	47
150-154	0	9	11	1	0	21	6	0	0	0	6	27
155-159	0	7	10	0	0	17	1	0	0	0	1	18
160-164	0	2	4	0	0	6	1	0	0	0	1	7
165-169	0	0	0	0	0	0	0	0	0	0	0	0
170-174	0	0	0	0	0	0	0	0	0	0	0	0
175-179	0	0	1	0	0	1	0	0	0	0	0	1
Total	0	446	188	13	0	647	289	153	4	1	447	1094
Length group	Immatures (unident.) \%	$\%$ of va	Female Fous matu					Males				Per cent of the
$\begin{aligned} & \text { group } \\ & (\mathrm{mm}) \end{aligned}$	1	\% of 2	3	4	5	Total \%	2	3	4	5	Total \%	
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45-49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50-54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
55-59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00
60-64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00
65-69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.71	0.00
70-74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78	0.00
75-79	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	2.30	0.09
80-84	0.00	0.15	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	1.98	0.09
85-89	0.00	0.00	0.15	0.00	0.00	0.15	0.89	0.22	0.00	0.00	1.70	0.55
90-94	0.00	0.46	0.00	0.00	0.00	0.46	0.89	0.00	0.00	0.00	1.35	0.64
95-99	0.00	1.08	0.00	0.00	0.00	1.08	3.36	0.22	0.00	0.00	0.94	2.10
100-104	0.00	2.78	0.31	0.31	0.00	3.40	6.26	4.47	0.22	0.22	0.50	6.58
105-109	0.00	8.35	0.93	0.00	0.00	9.27	8.72	6.04	0.22	0.00	0.30	11.61
110-114	0.00	10.66	2.78	0.31	0.00	13.76	8.50	6.71	0.00	0.00	0.12	14.35
115-119	0.00	11.13	3.55	0.00	0.00	14.68	6.94	6.04	0.00	0.00	0.03	13.99
120-124	0.00	6.65	4.79	0.15	0.00	11.59	7.61	3.36	0.22	0.00	0.07	11.43
125-129	0.00	8.50	2.63	0.00	0.00	11.13	4.25	2.24	0.00	0.00	0.05	9.23
130-134	0.00	5.10	1.85	0.46	0.00	7.42	5.59	2.46	0.00	0.00	0.02	7.68
135-139	0.00	6.34	2.63	0.15	0.00	9.12	3.58	1.12	0.22	0.00	0.00	7.40
140-144	0.00	2.47	2.63	0.46	0.00	5.56	3.58	0.89	0.00	0.00	0.00	5.12
145-149	0.00	2.47	2.78	0.00	0.00	5.26	2.46	0.45	0.00	0.00	0.00	4.30
150-154	0.00	1.39	1.70	0.15	0.00	3.25	1.34	0.00	0.00	0.00	0.00	2.47
155-159	0.00	1.08	1.55	0.00	0.00	2.63	0.22	0.00	0.00	0.00	0.00	1.65
160-164	0.00	0.31	0.62	0.00	0.00	0.93	0.22	0.00	0.00	0.00	0.00	0.64
165-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-174	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
175-179	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.09
Total	0.00	68.93	29.06	2.01	0.00	59.14	64.65	34.23	0.89	0.22	40.86	100.00

Table 11.
Stolothrissa tanganicae. Maturity stage data in Juiy 19 sj-June 1994.
Frequency distributions and \% distributions according to maturity stages.
(All gears combined).

Table 11. (cont)

Kigoma

Kigoma			Number of samples: 129									
Year total												
Length group	Immatures (unident.)	Females Maturity stages					Males		Maturity stages		Total	Total number analysed
(mm)	1	2	3	4	5	Total	2	3	4	5		
20-24	2	0	0	0	0	0	0	0	0	0	0	2
25-29	0	0	0	0	0	0	0	0	0	0	0	0
30-34	11	0	0	0	0	0	0	0	0	0	0	11
35-39	38	0	0	0	0	0	0	0	0	0	0	38
40-44	82	0	0	0	0	0	0	0	0	0	0	82
45-49	157	0	0	0	0	0	0	0	0	0	0	157
50-54	244	0	0	0	0	0	1	0	0	0	1	245
56-59	420	6	0	0	0	6	5	0	0	0	5	431
60-64	534	59	0	0	0	59	39	0	0	0	39	632
65-69	317	280	0	0	0	280	180	1	0	0	181	778
70.74	52	496	29	0	0	525	326	36	1	0	363	940
75-79	5	508	112	3	0	623	357	115	5	0	477	1105
80-84	2	441	208	31	0	680	257	201	14	0	472	1154
85-89	0	417	289	52	1	759	138	166	30	0	334	1093
90-94	0	317	274	56	4	651	61	114	21	0	196	847
95-99	0	129	145	42	1	317	20	34	15	0	69	386
100-104	0	20	21	14	2	57	1	8	2	0	11	68
105-109	0	1	2	0	0	3	0	1	0	0	1	4
110-114	0	0	0	0	0	0	0	0	0	0	0	0
115-119	0	0	0	0	0	0	0	0	0	0	0	0
120-124	0	0	0	0	0	0	0	0	0	0	0	0
125-129	0	0	0	0	0	0	0	0	0	0	0	0
130-134	0	0	0	0	0	0	0	0	0	0	0	0
135-139	0	0	0	0	0	0	0	0	0	0	0	0
140-144	0	0	0	0	0	0	0	0	0	0	0	0
145-149	0	0	0	0	0	0	0	0	0	0	0	0
150-154	0	0	0	0	0	0	0	0	0	0	0	0
155-159	0	0	0	0	0	0	0	0	0	0	0	0
160-164	0	0	0	0	0	0	0	0	0	0	0	0
165-169	0	0	0	0	0	0	0	0	0	0	0	0
170-174	0	0	0	0	0	0	0	0	0	0	0	0
175-179	0	0	0	0	0	0	0	0	0	0	0	0
Total	1864	2674	1080	198	8	3960	1385	676	88	0	2149	7973
Length	Immatures		Females					Males				Percent
group	(unident.) \%	\% of var	ous matur	stage		Females	$\%$ of var	us matur	stage		Males	of the
(mm)	1	2	3	4	5	Total \%	2	3	4	5	Total \%	total
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.48
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.03
45-49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.97
50-54	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	3.07
55-59	0.00	0.15	0.00	0.00	0.00	0.15	0.23	0.00	0.00	0.00	0.07	5.41
60-64	0.00	1.49	0.00	0.00	0.00	1.49	1.81	0.00	0.00	0.00	0.10	7.93
65-69	0.00	7.07	0.00	0.00	0.00	7.07	8.38	0.05	0.00	0.00	0.71	9.76
70-74	0.00	12.53	0.73	0.00	0.00	13.26	15.17	1.68	0.05	0.00	1.78	11.79
75-79	0.00	12.83	2.83	0.08	0.00	15.73	16.61	5.35	0.23	0.00	2.30	13.86
80-84	0.00	11.14	5.25	0.78	0.00	17.17	11.96	9.35	0.65	0.00	1.98	14.47
85-89	0.00	10.53	7.30	1.31	0.03	19.17	6.42	7.72	1.40	0.00	1.70	13.71
90-94	0.00	8.01	6.92	1.41	0.10	16.44	2.84	5.30	0.98	0.00	1.35	10.62
95-99	0.00	3.26	3.66	1.06	0.03	8.01	0.93	1.58	0.70	0.00	0.94	4.84
100-104	0.00	0.51	0.53	0.35	0.05	1.44	0.05	0.37	0.09	0.00	0.50	0.85
105-109	0.00	0.03	0.05	0.00	0.00	0.08	0.00	0.05	0.00	0.00	0.30	0.05
110-114	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00
115-119	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
120-124	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00
125-129	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00
130-134	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
135-139	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
140-144	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
145-149	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
150-154	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
155-159	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
160-164	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
165-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-174	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
175-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	23.38	67.53	27.27	5.00	0.20	49.67	64.45	31.46	4.09	0.00	26.95	100.00

Table 11

Mpulungu

Table 12. Lates stappersi. Maturity stage data in July 1993-June 1994.
Frequency distributions and \% distributions according to maturity stages. (All gears combined).
Bujumbura

Table 12. (cont)

Length group (mm)	Immatures (unident.) \%	Females \% of various maturity stages			5	Females Total \%	Males $\%$ of various maturity stages			5	Males Total \%	Per cent of the total
		2	3	4			2	3	4			
100-109	55.04	1.69	0.00	0.00	0.00	1.69	0.00	0.00	0.00	0.00	0.00	41.40
110-119	26.26	5.08	0.00	0.00	0.00	5.08	2.86	0.00	0.00	0.00	2.86	20.70
120-129	7.19	11.86	0.00	0.00	0.00	11.86	11.43	0.00	0.00	0.00	11.43	8.33
130-139	4.68	23.73	0.00	0.00	0.00	23.73	14.29	0.00	0.00	0.00	14.29	8.60
140-149	2.52	25.42	0.00	0.00	0.00	25.42	20.00	0.00	0.00	0.00	20.00	7.80
150-159	0.36	1.69	0.00	1.69	0.00	3.39	5.71	0.00	0.00	0.00	5.71	1.34
160-169	0.00	3.39	0.00	0.00	0.00	3.39	5.71	0.00	0.00	0.00	5.71	1.08
170-179	0.00	0.00	0.00	0.00	0.00	0.00	2.86	0.00	0.00	0.00	2.86	0.27
180-189	0.00	1.69	0.00	0.00	0.00	1.69	0.00	0.00	0.00	0.00	0.00	0.27
190-199	0.00	5.08	0.00	0.00	0.00	5.08	8.57	0.00	0.00	0.00	8.57	1.61
200-209	0.00	3.39	0.00	0.00	0.00	3.39	5.71	0.00	0.00	0.00	5.71	1.08
210-219	1.08	1.69	0.00	0.00	0.00	1.69	5.71	0.00	0.00	0.00	5.71	1.61
220-229	0.36	3.39	0.00	0.00	0.00	3.39	5.71	0.00	0.00	0.00	5.71	1.34
230-239	1.08	5.08	0.00	0.00	0.00	5.08	2.86	0.00	0.00	0.00	2.86	1.88
240-249	0.72	5.08	0.00	0.00	0.00	5.08	8.57	0.00	0.00	0.00	8.57	2.15
250-259	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.27
260-269	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.27
270-279	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
280-289	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
290-299	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
300-309	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
310-319	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
320-329	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
330-339	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
340-349	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
350-359	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
360-369	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
370-379	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
380-389	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
390-399	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
400-409	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
410-419	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
420-429	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
430-439	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
440-449	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
450-459	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
460-469	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
470-479	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
480-489	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
490-499	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	74.73	98.31	0.00	1.69	0.00	15.86	100.00	0.00	0.00	0.00	9.41	100.00

Table 12. Lates stappersi. Maturity stage data in July 1993-June 1994.
(cont) Frequency distributions and \% distributions according to maturity stages. (All gears combined).

Table 12. (cont)

Length group (mm)	Immatures (unident.) \% 1	Females \% of various maturity stages			5	Females Total \%	Males			5	Males Total \%	Per cent of the	
					\% of various maturity stages								
		2	3	4			2	3	4				
100-109	25.59	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.03
110-119	39.17	2.90	0.00	0.00	0.00	2.90	5.56	0.00	0.00	0.00	5.56	31.59	
120-129	11.02	31.88	0.00	0.00	0.00	31.88	19.44	1.39	0.00	0.00	20.83	14.33	
130.139	1.18	2.90	0.00	0.00	0.00	2.90	11.11	0.00	0.00	0.00	11.11	2.47	
140-149	0.00	1.45	0.00	0.00	0.00	1.45	4.17	0.00	0.00	0.00	4.17	0.62	
150-159	0.59	0.00	0.00	0.00	0.00	0.00	1.39	0.00	0.00	0.00	1.39	0.62	
160-169	10.63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.32	
170-179	7.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.16	
180-189	1.57	8.70	1.45	0.00	0.00	10.14	11.11	2.78	0.00	0.00	13.89	3.85	
190-199	1.18	10.14	5.80	0.00	0.00	15.94	6.94	4.17	0.00	0.00	11.11	3.85	
200-209	0.79	5.80	5.80	1.45	0.00	13.04	5.56	8.33	1.39	0.00	15.28	3.70	
210-219	0.39	5.80	5.80	5.80	0.00	17.39	4.17	4.17	2.78	0.00	11.11	3.39	
220-229	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.39	0.00	0.00	1.39	0.15	
230-239	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
240-249	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
250-259	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
260-269	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
270-279	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
280-289	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	. 0.00	0.00	0.00	
290-299	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
300-309	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
310-319	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.39	0.00	0.00	1.39	0.15	
320-329	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.15	
330-339	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
340-349	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.78	0.00	0.00	2.78	0.31	
350-359	0.00	0.00	2.90	0.00	0.00	2.90	0.00	0.00	0.00	0.00	0.00	0.31	
360-369	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
370-379	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
380-389	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
390-399	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
400-409	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
410-419	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
420-429	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
430-439	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
440-449	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
450-459	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
460-469	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
470-479	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
480-489	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
490-499	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total	78.27	69.57	23.19	7.25	0.00	10.63	69.44	26.39	4.17	0.00	11.09	100.00	

Table 1 (cont)

Lates stappersi. Maturity stage data in July 1993-June 1994.

Kigoma (All gears combined).

Number of samples: 68														
Year total														
Length	Immatures	Females Maturity stages						Males			Total	Total number analysed		
group	(unident.)					aturi	ges							
(mm)	1	2	3	4	5			Total	2	3			4	5
100-109	172	0	0	0	0	0	0	0	0	0	0	172		
110-119	182	0	0	0	0	0	0	0	0	0	0	182		
120-129	176	1	0	0	0	1	5	0	0	0	5	182		
130-139	117	0	0	0	0	0	0	0	0	0	0	117		
140-149	74	0	0	0	0	0	4	0	0	0	4	78		
150-159	34	7	0	0	0	7	16	0	0	0	16	57		
160-169	17	14	0	0	0	14	29	0	0	0	29	60		
170-179	7	22	0	0	0	22	31	0	0	0	31	60		
180-189	0	16	0	0	0	16	16	1	0	0	17	33		
190-199	0	7	0	0	0	7	11	0	0	0	11	18		
200-209	0	1	0	0	0	1	9	1	0	0	10	11		
210-219	0	2	0	0	0	2	6	0	0	0	6	8		
220-229	0	6	1	0	0	7	9	2	0	0	11	18		
230-239	0	11	2	0	0	13	5	1	2	0	8	21		
240-249	0	17	2	0	0	19	24	1	1	0	26	45		
250-259	0	24	6	1	0	31	30	7	0	0	37	68		
260-269	0	22	17	1	0	40	19	13	2	0	34	74		
270-279	0	21	15	0	0	36	24	13	0	0	37	73		
280-289	0	27	16	2	0	45	19	20	1	0	40	85		
290-299	0	30	14	1	0	45	16	26	1	0	43	88		
300-309	0	28	15	0	0	43	24	19	0	0	43	86		
310-319	0	30	12	3	0	45	22	26	3	0	51	96		
320-329	0	25	11	0	0	36	6	29	3	1	39	75		
330-339	0	25	17	1	0	43	8	16	5	0	29	72		
340-349	0	15	19	3	0	37	7	17	5	0	29	66		
350-359	0	11	9	1	0	21	1	9	5	0	15	36		
360-369	0	9	12	1	0	22	1	5	3	0	9	31		
370-379	0	6	7	2	0	15	0	3	1	0	4	19		
380-389	0	2	7	2	0	11	0	3	2	0	5	16		
390-399	0	0	2	3	0	5	0	2	2	0	4	9		
400-409	0	1	6	1	0	8	0	2	1	0	3	11		
410-419	0	0	4	2	0	6	0	2	0	0	2	8		
420-429	0	2	0	2	0	4	0	1	0	0	1	5		
430-439	0	4	2	0	0	6	0	1	0	0	1	7		
440-449	0	0	2	0	0	2	0	1	1	0	2	4		
450-459	0	0	1	1	0	2	0	0	0	0	0	2		
460-469	0	2	2	0	0	4	0	0	0	0	0	4		
470-479	0	0	0	1	0	1	0	0	1	0	1	2		
480-489	0	0	1	1	0	2	0	0	0	0	0	2		
490-499	0	0	0	1	0	1	0	0	0	0	0	1		
Total	779	388	202	30	0	620	342	221	39	1	603	2002		

Table 12. (cont)

Length group (mm)	Immatures (unident.) \%	Females \% of various maturity stages			5	Females Total \%	Males				Males	Per cent of the	
					\% of various maturity stages								
		2	3	4			2	3	4	5	Total \%	total	
100-109	22.08	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.59
110-119	23.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.09	
120-129	22.59	0.16	0.00	0.00	0.00	0.16	0.83	0.00	0.00	0.00	0.83	9.09	
130-139	15.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.84	
140-149	9.50	0.00	0.00	0.00	0.00	0.00	0.66	0.00	0.00	0.00	0.66	3.90	
150-159	4.36	1.13	0.00	0.00	0.00	1.13	2.65	0.00	0.00	0.00	2.65	2.85	
160-169	2.18	2.26	0.00	0.00	0.00	2.26	4.81	0.00	0.00	0.00	4.81	3.00	
170-179	0.90	3.55	0.00	0.00	0.00	3.55	5.14	0.00	0.00	0.00	5.14	3.00	
180-189	0.00	2.58	0.00	0.00	0.00	2.58	2.65	0.17	0.00	0.00	2.82	1.65	
190-199	0.00	1.13	0.00	0.00	0.00	1.13	1.82	0.00	0.00	0.00	1.82	0.90	
200-209	0.00	0.16	0.00	0.00	0.00	0.16	1.49	0.17	0.00	0.00	1.66	0.55	
210-219	0.00	0.32	0.00	0.00	0.00	0.32	1.00	0.00	0.00	0.00	1.00	0.40	
220-229	0.00	0.97	0.16	0.00	0.00	1.13	1.49	0.33	0.00	0.00	1.82	0.90	
230-239	0.00	1.77	0.32	0.00	0.00	2.10	0.83	0.17	0.33	0.00	1.33	1.05	
240-249	0.00	2.74	0.32	0.00	0.00	3.06	3.98	0.17	0.17	0.00	4.31	2.25	
250-259	0.00	3.87	0.97	0.16	0.00	5.00	4.98	1.16	0.00	0.00	6.14	3.40	
260-269	0.00	3.55	2.74	0.16	0.00	6.45	3.15	2.16	0.33	0.00	5.64	3.70	
270-279	0.00	3.39	2.42	0.00	0.00	5.81	3.98	2.16	0.00	0.00	6.14	3.65	
280-289	0.00	4.35	2.58	0.32	0.00	7.26	3.15	3.32	0.17	0.00	6.63	4.25	
290-299	0.00	4.84	2.26	0.16	0.00	7.26	2.65	4.31	0.17	0.00	7.13	4.40	
300-309	0.00	4.52	2.42	0.00	0.00	6.94	3.98	3.15	0.00	0.00	7.13	4.30	
310-319	0.00	4.84	1.94	0.48	0.00	7.26	3.65	4.31	0.50	0.00	8.46	4.80	
320-329	0.00	4.03	1.77	0.00	0.00	5.81	1.00	4.81	0.50	0.17	6.47	3.75	
330-339	0.00	4.03	2.74	0.16	0.00	6.94	1.33	2.65	0.83	0.00	4.81	3.60	
340-349	0.00	2.42	3.06	0.48	0.00	5.97	1.16	2.82	0.83	0.00	4.81	3.30	
350-359	0.00	1.77	1.45	0.16	0.00	3.39	0.17	1.49	0.83	0.00	2.49	1.80	
360-369	0.00	1.45	1.94	0.16	0.00	3.55	0.17	0.83	0.50	0.00	1.49	1.55	
370-379	0.00	0.97	1.13	0.32	0.00	2.42	0.00	0.50	0.17	0.00	0.66	0.95	
380-389	0.00	0.32	1.13	0.32	0.00	1.77	0.00	0.50	0.33	0.00	0.83	0.80	
390-399	0.00	0.00	0.32	0.48	0.00	0.81	0.00	0.33	0.33	0.00	0.66	0.45	
400-409	0.00	0.16	0.97	0.16	0.00	1.29	0.00	0.33	0.17	0.00	0.50	0.55	
410-419	0.00	0.00	0.65	0.32	0.00	0.97	0.00	0.33	0.00	0.00	0.33	0.40	
420-429	0.00	0.32	0.00	0.32	0.00	0.65	0.00	0.17	0.00	0.00	0.17	0.25	
430.439	0.00	0.65	0.32	0.00	0.00	0.97	0.00	0.17	0.00	0.00	0.17	0.35	
440-449	0.00	0.00	0.32	0.00	0.00	0.32	0.00	0.17	0.17	0.00	0.33	0.20	
450-459	0.00	0.00	0.16	0.16	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.10	
460-469	0.00	0.32	0.32	0.00	0.00	0.65	0.00	0.00	0.00	0.00	0.00	0.20	
470-479	0.00	0.00	0.00	0.16	0.00	0.16	0.00	0.00	0.17	0.00	0.17	0.10	
480-489	0.00	0.00	0.16	0.16	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.10	
490-499	0.00	0.00	0.00	0.16	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.05	
Total	38.91	62.58	32.58	4.84	0.00	30.97	56.72	36.65	6.47	0.17	30.12	100.00	

Table 12 (cont)

Lates stappersi. Maturity stage data in July 1993-June 1994.
(cont) Frequency distributions and \% distributions according to maturity stages. (All gears combined).

Table 12. (cont)

Length group (mm)	Immatures (unident.) \% 1	Females $\%$ of various maturity stages			5	Females Total \%	Males $\%$ of various maturity stages			5	Males Total \%	Per cent of the total
		2	3	4			2	3	4			
100-109	20.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
110-119	25.43	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.02	0.46
120-129	18.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.33
130-139	11.56	0.00	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.05	0.24
140-149	3.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
150-159	3.47	0.08	0.02	0.02	0.00	0.11	0.12	0.00	0.00	0.00	0.12	0.17
160-169	4.05	0.11	0.00	0.00	0.00	0.11	0.19	0.05	0.00	0.00	0.23	0.24
170-179	2.31	0.21	0.08	0.02	0.00	0.30	0.26	0.14	0.02	0.00	0.42	0.39
180-189	4.62	0.49	0.13	0.08	0.02	0.72	0.68	0.23	0.33	0.00	1.24	1.02
190-199	2.89	1.15	0.55	0.24	0.06	1.99	1.36	0.52	0.56	0.31	2.75	2.34
200-209	1.16	1.00	0.83	0.53	0.08	2.43	2.28	1.41	1.03	0.52	5.23	3.63
210-219	0.58	1.05	1.11	1.64	0.17	3.97	2.04	1.31	1.41	0.89	5.66	4.65
220-229	0.58	1.05	1.75	1.98	0.17	4.95	2.35	1.81	1.76	1.43	7.35	5.92
230-239	0.00	0.90	1.88	2.41	0.34	5.53	2.07	1.78	1.62	1.41	6.88	6.02
240-249	0.58	1.00	1.99	3.35	0.30	6.64	2.07	1.88	1.62	1.69	7.25	6.80
250-259	0.00	0.96	2.05	3.69	0.56	7.26	1.57	1.92	1.81	1.76	7.07	7.05
260-269	0.00	0.66	1.69	4.78	0.45	7.58	1.38	1.81	2.68	1.81	7.68	7.49
270-279	0.00	0.70	1.56	4.48	0.73	7.47	1.38	1.06	2.84	2.30	7.58	7.39
280-289	0.00	0.75	1.45	4.33	1.05	7.58	1.10	1.13	2.72	2.00	6.95	7.17
290-299	0.58	0.49	0.96	2.99	1.32	5.76	0.61	0.82	2.28	1.81	5.52	5.56
300-309	0.00	0.34	0.75	2.82	1.39	5.31	0.42	0.89	1.88	1.46	4.65	4.92
310-319	0.00	0.23	0.73	2.63	1.54	5.14	0.42	0.75	1.57	1.46	4.20	4.64
320-329	0.00	0.09	0.47	2.50	0.96	4.03	0.23	0.54	1.83	1.01	3.62	3.78
330-339	0.00	0.11	0.62	2.03	0.90	3.67	0.19	0.38	1.60	1.20	3.36	3.47
340-349	0.00	0.02	0.51	2.26	0.68	3.46	0.09	0.26	1.06	1.10	2.51	2.99
350-359	0.00	0.06	0.36	1.94	0.62	2.97	0.02	0.07	1.10	0.63	1.83	2.42
360-369	0.00	0.06	0.51	1.75	0.38	2.69	0.14	0.16	0.89	0.61	1.81	2.26
370-379	0.00	0.04	0.30	1.88	0.43	2.65	0.05	0.07	0.82	0.52	1.46	2.08
380-389	0.00	0.00	0.17	1.54	0.32	2.03	0.02	0.02	0.87	0.66	1.57	1.80
390-399	0.00	0.02	0.17	1.24	0.51	1.94	0.02	0.07	0.54	0.49	1.13	1.55
400-409	0.00	0.00	0.08	1.04	0.36	1.47	0.00	0.07	0.47	0.23	0.77	1.14
410-419	0.00	0.02	0.06	0.60	0.38	1.05	0.02	0.05	0.23	0.09	0.40	0.75
420-429	0.00	0.00	0.06	0.56	0.08	0.70	0.00	0.07	0.21	0.21	0.49	0.60
430-439	0.00	0.02	0.00	0.15	0.08	0.24	0.00	0.02	0.07	0.05	0.14	0.19
440-449	0.00	0.02	0.00	0.11	0.02	0.15	0.00	0.00	0.05	0.00	0.05	0.10
450-459	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.02	0.00	0.02	0.02
460-469	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
470-479	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
480-489	0.00	0.00	0.00	0.02	0.02	0.04	0.00	0.00	0.00	0.00	0.00	0.02
490-499	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.77	11.63	20.83	53.63	13.91	54.52	21.10	19.34	33.90	25.66	43.71	100.00

	Bujumbura	Uvira	Kigoma	Kipili	Bujumbura	Kigoma	Kipili	Mpulungu	Kigoma	Kipili	Mpulungu
	Liftnet	Liftnet	Liftnet	Liftnet	Beach seine	Beach seine	Beach seine	Beach seine	Purse seine	Purse seine	Purse seine
Length group (mm)											
10-19	0.02	0.00	0.00	0.00	0.00	0.00	0.00	2.75	0.00	0.00	0.00
20-29	0.74	0.00	0.00	0.00	0.00	0.00	0.00	34.04	0.00	0.00	3.19
30-39	7.96	0.00	0.12	0.74	0.00	0.00	3.11	17.40	0.00	0.05	18.58
40-49	15.74	0.00	0.00	2.29	0.00	0.00	2.54	9.13	0.00	0.00	16.68
50-59	17.12	0.03	0.00	10.23	0.00	0.00	9.12	10.01	0.00	0.00	5.67
60-69	22.10	0.25	0.00	15.21	0.00	0.00	18.06	10.29	0.00	0.00	8.70
70-79	12.32	0.34	0.00	16.70	1.55	0.00	24.54	8.18	0.00	0.00	3.32
80-89	10.25	4.78	1.09	21.24	3.94	4.26	29.61	4.17	0.00	0.68	3.87
90-99	10.39	27.79	3.02	20.55	21.13	8.51	8.68	2.97	0.29	2.82	3.32
100-109	2.77	35.89	35.27	10.07	39.15	19.15	2.84	0.84	5.69	19.30	6.74
110-119	0.38	22.76	43.36	2.14	23.38	23.40	1.15	0.11	12.15	24.27	7.34
120-129	0.16	7.60	12.44	0.54	8.17	29.79	0.23	0.06	26.71	20.61	9.02
130-139	0.04	0.56	3.86	0.19	1.83	12.77	0.10	0.03	27.97	17.10	9.02
140-149	0.01	0.00	0.72	0.04	0.42	2.13	0.02	0.00	18.32	10.30	3.35
150-159	0.00	0.00	0.12	0.06	0.42	0.00	0.01	0.03	7.14	3.92	0.97
160-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.74	0.94	0.24
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of samples	145	42	43	49	16	1	32	71	13	57	26

	Bujumbura	Uvira	Kalemie	Kigoma	Kipili	Kipili	Mpulungu	Kigoma	Mpulungu
	Liftnet	Liftnet	Liftnet	Liftnet	Liftnet	Beach seine	Beach seine	Purse seine	Purse seine
Length group (mm)									
10-19	0.00	0.00	0.00	0.00	0.00	0.00	3.57	0.00	0.00
20-29	1.14	0.17	0.20	0.00	0.00	0.00	14.94	0.00	0.00
30-39	7.70	4.68	3.08	0.55	0.00	0.54	18.66	0.00	0.52
40-49	29.38	19.51	9.73	3.09	0.18	14.13	32.64	0.44	3.00
50-59	21.27	13.94	10.89	8.49	3.79	26.65	2.01	0.66	23.16
60-69	22.96	21.68	16.28	17.10	16.61	33.38	0.96	4.15	27.08
70-79	11.72	24.59	27.03	31.26	28.88	13.19	10.08	25.09	6.69
80-89	5.07	10.56	23.85	33.55	20.76	10.90	5.46	47.95	12.94
90-99	0.73	4.24	8.09	5.85	22.02	1.21	5.06	20.37	9.62
100-109	0.03	0.62	0.85	0.11	7.22	0.00	6.04	1.35	15.10
110-119	0.00	0.01	0.00	0.00	0.54	0.00	0.56	0.00	1.88
120-129	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130-139	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
140-149	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
150-159	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
160-169	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170-179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of samples	172	55	27	106	11	6	26	15	17

	Bujumbura	Uvira	Kalemie	Kigoma	Kipili	Kipili	Mpulungu	Kigoma	Mpulungu
Length group (mm)	Liftnet Bujumbura	Liftnet Uvira	Liftnet Kalemie	Liftnet Kigoma	Liftnet Kipili	Beach seine Kipili	Beach seine Mpulungu	Purse seine Kigoma	Purse seine Mpulungu
10-19							3.57		
20-29	1.14	0.17	0.20				14.94		
30-39	7.70	4.68	3.08	0.55		0.54	18.66		0.52
40-49	29.38	19.51	9.73	3.09	0.18	14.13	32.64	0.44	3.00
50-59	21.27	13.94	10.89	8.49	3.79	26.65	2.01	0.66	23.16
60-69	22.96	21.68	16.28	17.10	16.61	33.38	0.96	4.15	27.08
70-79	11.72	24.59	27.03	31.26	28.88	13.19	10.08	25.09	6.69
80-89	5.07	10.56	23.85	33.55	20.76	10.90	5.46	47.95	12.94
90-99	0.73	4.24	8.09	5.85	22.02	1.21	5.06	20.37	9.62
100-109	0.03	0.62	0.85	0.11	7.22		6.04	1.35	15.10
110-119		0.01			0.54		0.56		1.88
120-129									
130-139									
140-149									
150-159									
160-169									
170-179									
Number of samples	172	55	27	106	11	6	26	15	17

	Bujumbura	Uvira	Moba	Kigoma	Kipili	Kigoma	Mpulungu
	Liftnet	Liftnet	Liftnet	Liftnet	Liftnet	Purse seine	Purse seine
Length group (mm)							
10-19	0.04	0.00	0.00	0.00	0.00	0.00	0.00
20-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-39	0.77	0.89	0.00	0.00	0.00	0.00	0.00
40-49	1.61	1.38	0.00	0.00	0.00	0.00	0.00
50-59	1.65	2.18	0.00	0.40	0.65	0.24	0.00
60-69	15.81	7.65	0.00	2.18	3.07	0.89	0.00
70-79	14.89	13.92	0.00	3.07	14.34	0.13	0.00
80-89	8.25	24.38	0.00	6.04	5.42	1.26	0.01
90-99	19.69	18.02	0.00	13.17	2.93	5.53	0.31
100-109	20.64	15.26	0.00	12.72	2.17	14.44	1.04
110-119	7.98	10.77	0.00	13.12	1.26	13.02	0.95
120-129	1.84	4.31	0.00	10.54	0.07	17.69	0.23
130-139	0.84	0.67	0.00	4.50	0.00	9.74	0.15
140-149	0.50	0.18	0.00	1.78	0.04	3.54	0.05
150-159	0.15	0.04	0.00	2.87	0.14	0.67	0.09
160-169	0.00	0.04	0.00	3.32	0.25	0.48	0.19
170-179	0.19	0.00	0.00	2.77	0.69	1.40	0.28
180-189	0.12	0.00	14.20	0.74	1.05	1.10	0.92
190-199	0.04	0.00	35.01	0.54	1.63	0.46	2.43
200-209	0.12	0.00	37.39	0.30	2.06	0.32	4.45
210-219	0.23	0.00	13.12	0.15	2.31	0.24	5.90
220-229	0.23	0.04	0.28	0.50	2.38	0.38	7.45
230-239	0.27	0.00	0.00	0.40	2.64	0.43	7.73
240-249	0.38	0.00	0.00	1.63	2.93	0.89	8.08
250-259	0.04	0.00	0.00	1.44	3.97	1.96	9.21
260-269	0.15	0.00	0.00	1.24	4.44	1.74	9.60
270-279	0.12	0.00	0.00	0.89	4.41	2.20	9.04
280-289	0.15	0.00	0.00	1.29	3.61	2.31	6.71
290-299	0.31	0.00	0.00	1.78	3.68	2.98	4.61
300-309	0.42	0.00	0.00	2.13	4.33	2.50	3.51
310.319	0.58	0.04	0.00	2.03	3.61	2.15	2.73
320-329	0.61	0.04	0.00	1.93	4.62	2.63	2.44
330-339	0.46	0.00	0.00	1.44	3.58	2.04	2.31
340-349	0.42	0.09	0.00	1.44	3.32	2.28	1.86
350-369	0.31	0.09	0.00	0.79	1.99	1.02	1.73
360-369	0.12	0.00	0.00	0.69	2.56	0.99	1.33
370-379	0.04	0.00	0.00	0.50	2.35	0.64	1.20
380-389	0.00	0.00	0.00	0.84	2.53	0.46	1.06
390-399	0.04	0.00	0.00	0.10	2.17	0.27	0.83
400-409	0.00	0.00	0.00	0.10	1.48	0.27	0.68
410-419	0.00	0.00	0.00	0.25	0.69	0.03	0.38
$420-429$	0.00	0.00	0.00	0.20	0.07	0.05	0.26
430-439	0.00	0.00	0.00	0.00	0.25	0.08	0.13
440-449	0.00	0.00	0.00	0.00	0.22	0.13	0.08
450-459	0.00	0.00	0.00	0.05	0.07	0.03	0.01
460-469	0.00	0.00	0.00	0.05	0.00	0.13	0.02
470-479	0.00	0.00	0.00	0.10	0.04	0.11	0.01
480-489	0.00	0.00	0.00	0.00	0.00	0.05	0.01
490-499	0.00	0.00	0.00	0.00	0.00	0.03	0.00
500-509	0.00	0.00	0.00	0.00	0.00	0.00	0.00
510-519	0.00	0.00	0.00	0.00	0.00	0.00	0.00
520.529	0.00	0.00	0.00	0.00	0.00	0.00	0.00
530.539	0.00	0.00	0.00	0.00	0.00	0.00	0.00
540-549	0.00	0.00	0.00	0.00	0.00	0.00	0.00
550-559	0.00	0.00	0.00	0.00	0.00	0.03	0.00
560-569	0.00	0.00	0.00	0.00	0.00	0.03	0.00
570.579	0.00	0.00	0.00	0.00	0.00	0.00	0.00
580-589	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$590-599$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of samples	65	11	2	61	124	27	98

Table 15a.	nual catc		促	var	(weer	ples pooled	
	Bujumbura	Uvira	Moba	Kigoma	Kipili	Kigoma	Mpulungu
	Liftnet Bujumbura	Liftnet Uvira	Liftnet Moba	Liftnet Kigoma	Liftnet Kipili	Purse seine Kigoma	Purse seine Mpulungu
10-19	0.04						
20-29							
30-39	0.77	0.89					
40-49	1.61	1.38					
60-59	1.65	2.18		0.40	0.65	0.24	
60-69	15.81	7.65		2.18	3.07	0.89	
70-79	14.89	13.92		3.07	14.34	0.13	
80-89	8.25	24.38		6.04	5.42	1.26	0.01
90-99	19.69	18.02		13.17	2.93	5.53	0.31
100-109	20.64	15.26		12.72	2.17	14.44	1.04
110-119	7.98	10.77		13.12	1.26	13.02	0.95
120-129	1.84	4.31		10.54	0.07	17.69	0.23
130-139	0.84	0.67		4.50	0.00	9.74	0.15
140-149	0.50	0.18		1.78	0.04	3.54	0.05
150-159	0.15	0.04		2.87	0.14	0.67	0.09
160-169		0.04		3.32	0.25	0.48	0.19
170-179	0.19			2.77	0.69	1.40	0.28
180-189	0.12		14.20	0.74	1.05	1.10	0.92
190-199	0.04		35.01	0.54	1.63	0.46	2.43
200-209	0.12		37.39	0.30	2.06	0.32	4.45
210-219	0.23		13.12	0.15	2.31	0.24	5.90
220-229	0.23	0.04	0.28	0.50	2.38	0.38	7.45
230-239	0.27			0.40	2.64	0.43	7.73
240-249	0.38			1.63	2.93	0.89	8.08
250-269	0.04			1.44	3.97	1.96	9.21
260-269	0.15			1.24	4.44	1.74	9.60
270-279	0.12			0.89	4.41	2.20	9.04
280-289	0.15			1.29	3.61	2.31	6.71
290-299	0.31			1.78	3.68	2.98	4.61
300-309	0.42			2.13	4.33	2.50	3.51
310.319	0.58	0.04		2.03	3.61	2.15	2.73
320-329	0.61	0.04		1.93	4.62	2.63	2.44
330-339	0.46			1.44	3.58	2.04	2.31
340-349	0.42	0.09		1.44	3.32	2.28	1.86
350-359	0.31	0.09		0.79	1.99	1.02	1.73
360-369	0.12			0.69	2.56	0.99	1.33
370-379	0.04			0.50	2.35	0.64	1.20
380-389				0.84	2.53	0.46	1.06
390-399	0.04			0.10	2.17	0.27	0.83
400-409				0.10	1.48	0.27	0.68
410-419				0.25	0.69	0.03	0.38
420-429				0.20	0.07	0.05	0.26
430-439					0.25	0.08	0.13
440-449					0.22	0.13	0.08
450-459				0.05	0.07	0.03	0.01
460-469				0.05	0.00	0.13	0.02
470-479				0.10	0.04	0.11	0.01
480-489						0.05	0.01
$490-499$						0.03	
500-509							
510-519							
520-529							
530-539							
540-649							
550-559						0.03	
560-569						0.03	
670-679							
580-589							
590-599							
Number of samples	65	11	2	61	124	27	98

Table 16. Maturity ogive (\%) of Limnothrissa miodon, Stolthrissa tanganicae and Lates stappersi according to length groups in Lake tanganyika. Data from June 1993-July 1994.

Limnothrissa miodon				Stolothrissa tanganicae				Lates stappersi			
Length group (mm)	Maturity ogive			Length group (mm)	Maturity ogive \%			Length group (mm)	Maturity ogive $\%$		
20-24	100	0	0	20-24	100	0	0	100-109	100	0	0
25-29	100	0	0	25-29	100	0	0	110-119	100	0	0
30-34	100	0	0	30-34	100	0	0	120-129	100	0	0
35-39	100	0	0	35-39	100	0	0	130-139	100	0	0
40-44	100	0	0	40-44	100	0	0	140-149	100	1	1
45-49	99	0	0	45-49	99	0	0	150-159	99	1	1
50-54	100	0	0	50-54	100	0	0	160-169	100	1	2
55-59	98	0	1	55-59	98	2	1	170-179	98	2	3
60-64	96	0	1	60-64	96	5	4	180-189	96	3	4
65-69	81	2	7	65-69	81	17	19	190-199	81	5	7
70-74	52	6	22	70-74	52	34	46	200-209	52	7	12
75-79	20	14	41	75-79	20	57	69	210-219	20	11	17
80-84	6	27	58	80-84	6	74	83	220-229	6	15	24
85-89	4	40	72	85-89	4	86	91	230-239	4	20	30
90-94	4	56	83	90-94	4	94	97	240-249	4	27	37
95-99	3	72	91	95-99	3	98	100	250-259	3	34	44
100-104	3	83	95	100-104	3	100	100	260-269	3	41	51
105-109	3	90	98	105-109	3	100	100	270-279	3	48	58
110-114	3	94	99	>110	0	100	100	280-289	3	56	65
115-119	0	96	99					290-299	0	61	71
120-124	4	98	99					300-309	4	67	76
125-129	0	99	100					310-319	0	72	80
130-134	0	99	100					320-329	0	76	84
135-139	0	100	100					330-339	0	80	88
>140	0	100	100					340-349	0	84	91
								350-359	0	87	93
								360-369	0	90	94
								370-379	0	92	96
								380-389	0	94	97
								390-399	0	96	98
								400-409	0	98	99
								410-419	0	99	99
								420-429	0	99	100
								>430	0	100	100

Table 17a. Estimates of growth parameters by species.

	Limnothrissa miodon					Stolothrissa tanganicae				Lates stappersi			
	Estimation method	Observed $\mathrm{TL}($ max $)$	$\underset{(\mathrm{mm})}{\mathrm{L} \text { (infinity) }}$	K	T(zero)	Observed TL(max)	L (infinity) (mm)	K	T(zero)	Observed TL(max)	$\underset{(\mathrm{mm})}{\mathrm{L} \text { (infinity) }}$	k	T(zero)
Sampling area													
Uvira (Zaire)	elefani	-	-	-	-	115	114	2.78	-0.10	-	-	-	-
Bujumbura and Karonda (Burundi)	Elefani	152	184	0.89	-0.21	115	114	2.47	-0.28	-	-	-	-
Kigoma (Tanzania)	ELEFANI	-	-	-	-	106	110	1.71	-0.49	545	540	0.46	-0.54
	SLCA						-	.	-	545	593	0.43	-0.48
	Projection matrix					-	-	-	-	545	575	0.56	-0.26
Kipili (Tanzania)	ELEFANI	157	187	0.87	-0.32	-	-	-	-	475	569	0.37	-0.65
	SLCA					-	-	-	-	475	593	0.36	-0.69
Mpulungu (Zambia)	elefani	161	189	0.81	-0.08	115	119	2.48	-0.05	488	540	0.42	-0.57
	SLCA					-	-	-	-	488	529	0.39	-0.84

Table 17b. Estimates of growth parameters by species

Stolothrissa tanganicae					
Area	Observed TLmax	Method	Asymptotic TL (Loo, mm)	Growth constant (K , annual)	Phi prime
Zaire (Uvira)	115	ELEFAN I	110	2.47	4.48
Burundi (Bujumbura)	108	ELEFAN I	114	2.08	4.44
Burundi (Karonda)	115	ELEFAN I	111	1.90	4.37
Tanzania (Kigoma)	106	ELEFAN I	100	1.85	4.27
Zambia (Mpulungu)	115	ELEFAN I	110	2.00	4.38
Limnothríssa miodon					
Area	Observed TLmax	Method	Asymptotic TL (Loo, mm)	Growth constant (K, annual)	Phi prime
Burundi (Bujumbura)	152	ELEFAN I	176	0.86	4.43
Tanzania (Kipili)	157	ELEFAN 1	175	1.16	4.55
Zambia (Mpulungu)	161	ELEFAN 1	178	0.84	4.42
Lates stappersi					
Area	Observed TLmax	Method	Asymptotic TL (Loo, mm)	Growth constant (K, annual)	Phi prime
Tanzania (Kigoma)	545	ELEFAN 1	582	0.43	5.16
" "	"	SLCA	604	0.41	5.17
\%	"	Proj. Matrix	586	0.35	5.08
Tanzania (Kipili)	475	ELEFAN I	595	0.30	5.03
" "	"	SLCA	578	0.32	5.03
Zambia (Mpulungu)	488	ELEFAN 1	589	0.37	5.10
" "	"	SLCA	545	0.38	5.05

Table 18a. Estimates of total mortality rates by species.

Table 18b. Estimates of mortality parameters. Latin numbers refer to methods used in computation
I) Pauly (1983), II) Beverton and Holt (1956), III) Hoenig in Gayanilo et al. (in press)
IV) Pauly (1980), V) Rikhter and Efanov (1976), VI) Gunderson and

Dygert (1988), VII) and VIII) Alagaraya (1984).

Limnothrissa miodon								
	Total mortality (Z, annual)			Natural mortality (M , annual)				
Area	I	II	III	IV	v	vı	VII	VIII
Burundi (Bujumbura)	4.27	3.89	3.51	1.78	1.79	0.98	1.84	2.76
Tanzania (Kipili)	6.28	6.00	4.74	2.16	1.81	1.30	2.30	3.45
Zambia (Mpulungu)	4.12	3.29	3.74	1.75	1.81	0.96	2.21	3.32
Stolothrissa tanganicae								
Area	Total mortality (Z, annual)			Natural mortality (M, annual)				
	1	II	III	IV	V	VI	VII	VIII
Zaire (Uvira)	6.32	7.41	6.24	4.05	2.18	2.69	3.07	4.61
Burundi (Bujumbura)	7.83	10.50	6.35	3.58	2.10	2.27	3.29	4.93
Burundi (Karonda)	4.23	6.28	3.74	3.40	2.10	2.08	2.09	3.14
Tanzania (Kigoma)	4.60	4.32	5.84	3.44	1.63	2.03	2.30	3.45
Zambia (Mpulungu)				3.53	2.10	2.19	3.07	4.61
Lates stappersi								
	Total mortality (Z , annual)			Natural mortality (M, annual)				
Area	1	11	III	IV	v	vı	VII	VIII
Tanzania (Kigoma)	1.98	1.93	1.29	0.81	1.04	0.53	0.77	1.15
SLCA VBGF parameters	1.61	1.94	1.54	0.78	1.04	0.50	0.77	1.15
Projmat VBGF paramet.	1.66	1.58	2.03	0.71	0.86	0.44	0.71	1.06
Tanzania (Kipili)	1.89	1.30	2.03	0.64	0.80	0.39	0.84	1.26
SLCA VBGF parameters	1.87	1.30	2.03	0.67	0.80	0.41	0.84	1.26
Zambia (Mpulungu)	2.58	2.70	2.03	0.73	0.94	0.46	0.92	1.38
SLCA VBGF parameters	2.31	2.35	1.71	0.79	0.86	0.47	0.77	1.15

Figure 1: Lake Tanganyika research stations and substations

Figure 2. Total annual catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations (all qears combined).

Figure 2. Total annual catch composition of Limnothrissa miodon in various sampling stations (all gears combined).

Figure 3. Total annual lift net catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations.

Figure 3.Total annual lift net catch composition of Limnothrissa miodon in various sampling stations.

Figure 4. Total annual beach seine catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations.

Figure 4. Total annual beach seine catch composition of Limnothrissa miodon in various sampling stations.

Figure 5. Total annual purse seine catch composition (\%) of Limnothrissa miodon according to length groups (mm) in various sampling stations.

Figure 5. Total annual purse seine catch composition of Limnothrissa miodon in various sampling stations.

Figure 6. Total annual catch composition (\%) of Stolothrissa tanganicae according to length groups (mm) in various sampling stations (all gears combined)

Figure 6. Total annual catch composition of Stolothrissa tanganicae in various sampling stations (all gears combined).

Figure 7. Total annual lift net catch composition (\%) of Stolothrissa tanganicae according to length groups (mm) in various sampling stations.

Figure 7. Total annual lift net catch composition of Stolothrissa tanganicae in various sampling stations.

Figure 8. Total annual beach seine catch composition (\%) of Stolothrissa according to length groups (mm) in Kipili and Mpulungu.

Figure 8. Total annual beach seine catch composition of Stolothrissa tanganicae in Kipili and Mpulungu sampling stations.

Figure 9. Total annual purse seine catch composition (\%) of Stolothrissa t according to length groups (mm) in Kigoma and Mpulungu.

Figure 9. Total annual purse seine catch composition of Stolothrissa tanganicae in Kigoma and Mpulungu sampling stations.

Figure 10. Total annual catch composition (\%) of Lates stappersi according to length groups (mm) in various sampling stations (all gears combined: lift net catches from Moba excluded)

Figure 10. Total annual catch composition of Lates stappersi in various sampling stations (all gears combined).

Figure 11. Total annual lift net catch composition (\%) of Lates stappersi according to length groups (mm) in various sampling stations

Figure 11. Total annual lift net catch composition of Lates stappersi in various sampling stations
(Moba samples excluded).

Figure 12. Total annual purse seine catch composition (\%) of Lates stappersi according to length groups (mm) in Kigoma and Mpulungu.

Figure 12. Total annual purse seine catch composition of Lates stappersi in Kigoma and Mpulungu sampling stations.

Figure 13. Limnothrissa miodon. Per cent of females mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 14. Limnothrissa miodon. Per cent of males mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 15. Stolothrissa tanganicae. Per cent of females mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 16. Stolothrissa tanganicae. Per cent of males mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 17. Lates stappersi. Per cent of females mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 18. Lates stappersi. Per cent of males mature (maturity stages 3 and 4) in various sampling stations in June 1993-July 1994.

Figure 19. Length-weight relationship of Limnothrissa miodon in Lake Tanganyika.

Figure 20. Length-weight relationship of Stolothrissa tanganicae in Lake Tanganyika.

Figure 21. Length-weight relationship of Lates stappersi in Lake Tanganyika.

Figure 22. Limnothrissa miodon. Total catch composition and amount of immatures (\%) in the catches.

Figure 23. Stolothrissa tanganicae. Total catch composition and amount of immatures (\%) in the catches.

Figure 24. Lates stappersi. Total catch composition and amount of immatures (\%) in the catches.

[^0]: The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on the Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries.

