

Beaumont, W.R.C., Lee, M.J. & Peirson, G. (2004) R&D Technical Report W2-076 TR-2

ElectroCalc: A spreadsheet to calculate power requirements and voltage gradients (E) of electric fishing systems.

To use: Choose either Single anode or twin anode sheet as appropriate.

Enter the diameter of anode being used (both anodes for twin anode systems)

Choose the resistance value of the cathode being used from the list supplied. In twin anode systems if only one cathode used enter 0 value for second cathode

Enter the Ambient water conductivity. Use "Conductivity" Sheet to calculate Ambient from Specific (corrected to 25degC) conductivity

If using pdc enter the duty cycle (%) being used. Calculations are based on SQUARE WAVE pdc.

If pulse output in ms then use "Duty Cycle" Sheet to to find duty cycle for frequency used.

Enter the Input voltage (if known).

Output: Left graph displays Input VA required at a range of applied voltages for the set up and water conductivity entered.

VA for dc is read from the red line and left y-axis

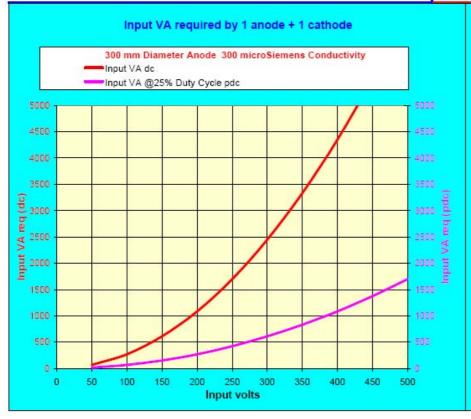
VA for SQUARE WAVE pdc is read from the purple line and right y-axis

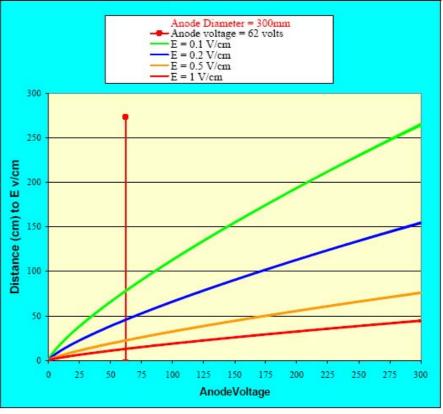
Right hand graph displays estimated values for 4 thresholds of E for the anode diameter being used (only anode 1 in twin anode systems) at a range of anode voltages.

Anode voltage is calculated (from circuit resistance theory) where input voltage is known and displayed as a vertical line on the graph

Note: This is not the interactive version - for example only

FOR COPY OF INTERACTIVE SPREADSHEET PLEASE VISIT:


http://dorset.ceh.ac.uk/River Ecology/Fish Ecology/ElectroCALC.XLS


SINGLE ANODE

		INPUT		
Enter measured	values plus va	lue of cathode resista	nce from table o	n right.
Anode Diameter mm	Cathode Resistance	Ambient Water Conductivity	Duty Cycle (%)	Input Volts
300	20	300	25	100

Proportion of input	Corrected
voltage at Anode	
	voltage
62%	62

CATHODE RESISTANCE VALUES Choose appropriate value or enter known value corrected to 350μScm⁻¹ ambient conductivity. 750mm Braid / 250² mesh 48 1500mm Braid / 500² mesh 27 3000mm Braid / 750² mesh 20

TWIN ANODE + SINGLE / TWIN CATHODE

			T	VIN ANO	DE +	SINGL	E / TWIN	CATE	IODE	
			INPUT						CATHODE RESISTANCE VAL	
		•		ance from table on					Choose appropriate value or enter known valu 350µScm ⁻¹ conductivity.	ae corrected to
				Ambient Water Conductivity	Duty Cycle	Input Volts	Proportion of input voltage		750mm Braid / 250 ² mesh	40
m	mm	Ω	Ω	Condictivity	(%)		at Anodes	voltage	1500mm Braid / 500 ² mesh	48 27
400	400	20	20	300	25	200	57%	114	3000mm Braid / 750 ² mesh	20
	Diameter Anoc Conductivity nput VA de	de 1 = 400 mm:	Twin anode	2 = 400 mm: 300 mice	roSiemens			Anod E = 0. E = 0. E = 0.	e Diameter = 400+400mm e voltage = 114 volts 1 V/cm 2 V/cm 5 V/cm 0 V/cm	
		% Duty Cycle pd			- 600	35	0		•	
4500 -					460	30	0-			/
4000 - 3500 -					251	00 5	0			
0 9 3000 - 9 2 2500 -					266		0			
Ay 1000 -					200	Distan	0			
1500 -					100	00	/			
500 -	1				- apr	5				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	5 50	100 150 2	50 250 580 Input Volts	350 400 450	500		0 25 50	75 10	0 125 150 175 200 225 25	0 275

Conductivity correction: $k_{25} = k_t * 1.023^{(25-t)}$

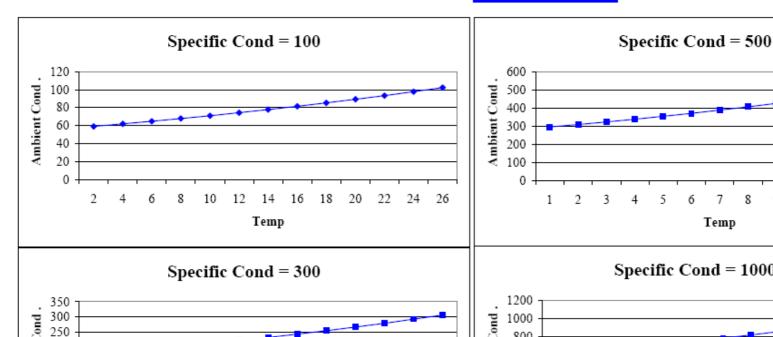
[from Mackereth, FJH, Heron J & Talling JF 1978. FBA Scientific publication No 36].

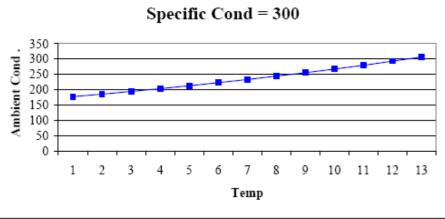
Enter Specific Conductivity (µScm⁻¹) and Temperature (degrees C)

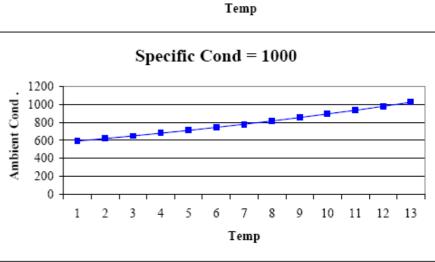
ENTER VALUES

Specific Conductivity (µScm

Water Temperature (degC)


20


CALCULATED VALUES


Ambient Conductivty (µScm

446

500

Appendix III: Duty cycle / pulse width conversion.

Conversi	ion tab	le for	pulse	width	in mi	lliseco	nds to	% du	ty cyc	le for	differ	ent fre	quenc	ies of	pdc						
Frequenc	y (Hz)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
		Pulse Width (ms)																			
	5	10	5	3	3	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10	20	10	7	5	4	3	3	3	2	2	2	2	2	1	1	1	1	1	1	1
	15	30	15	10	8	6	5	4	4	3	3	3	3	2	2	2	2	2	2	2	2
	20	40	20	13	10	8	7	6	5	4	4	4	3	3	3	3	3	2	2	2	2
	25	50	25	17	13	10	8	7	6	6	5	5	4	4	4	3	3	3	3	3	3
	30	60	30	20	15	12	10	9	8	7	6	5	5	5	4	4	4	4	3	3	3
	35	70	35	23	18	14	12	10	9	8	7	6	6	5	5	5	4	4	4	4	4
Cycle (%)	40	80	40	27	20	16	13	11	10	9	8	7	7	6	6	5	5	5	4	4	4
cle	45	90	45	30	23	18	15	13	11	10	9	8	8	7	6	6	6	5	5	5	5
C	50	100	50	33	25	20	17	14	13	11	10	9	8	8	7	7	6	6	6	5	
Duty	55	110	55	37	28	22	18	16	14	12	11	10	9	8	8	7	7	6	6	6	- 6
ă	60	120	60	40	30	24	20	17	15	13	12	11	10	9	9	8	8	7	7	6	- 6
	65	130	65	43	33	26	22	19	16	14	13	12	11	10	9	9	8	8	7	7	7
	70	140	70	47	35	28	23	20	18	16	14	13	12	11	10	9	9	8	8	7	7
	75	150	75	50	38	30	25	21	19	17	15	14	13	12	11	10	9	9	8	8	8
	80	160	80	53	40	32	27	23	20	18	16	15	13	12	11	11	10	9		8	8
-	85	170	85	57	43	34	28	24	21	19	17	15	14	13	12	11	11	10	9	9	9
	90	180	90 95	60	45 48	36 38	30 32	26 27	23 24	20 21	18 19	16 17	15 16	14 15	13 14	12 13	11 12	11 11	10	9	10
	95	190	95	63	48	38	32	27	24	21	19	1 /	10	15	14	13	12	11	11	10	10

CEH Reports and papers dealing with Electric Fishing

Beaumont, W.R.C., Lee, M. J. & Rouen, M. A. (1999) Development of lightweight Backpack Electric Fishing Gear – Phase II. Final Report to Environment Agency (National Coarse Fish Centre) 55 pp

Beaumont, W.R.C., Lee, M. & Rouen, M.A. (2000) An evaluation of some electrical waveforms and voltages used for electric fishing; with special reference to their use in backpack electric fishing gear. *J.Fish.Biol.* 57: 2, 433-445

Beaumont, W.R.C., Taylor, A.A.L., Lee, M.J. & Welton, J.S. (2002) Guidelines for Electric Fishing Best Practice. Report to Environment Agency 179pp EA Technical Report W2-054/TR

Beaumont, W.R.C., Lee, M.J. & Peirson, G (2003) An Investigation of the Equivalent Resistance, Power Requirements and Field Characteristics of Electric Fishing Electrodes. Report to Environment Agency 42pp EA Technical Report W2-076.

Beaumont, W.R.C., Lee, M.J. & Peirson, G (2004) Further Investigations on the Equivalent Resistance, Power Requirements and Field Characteristics of Electric Fishing Electrodes. Report to Environment Agency 35pp EA Technical Report W2-076/2

Beaumont, W.R.C., Lee, M.J., and Peirson, G. (in press) The Equivalent Resistance and Power Requirements of Electric Fishing Electrodes *Fisheries Management & Ecology*

Beaumont, W.R.C. (in press) Factors Affecting Electric Fishing Best Practice. Institute of Fisheries Management Annual Study Course. Nottingham.