

Food and Agriculture Organization of the United Nations

Pathology and diagnosis of TiLV Kathy Tang-Nelson

Project Inception Workshop of GCP/RAF/510/MUL: Enhancing capacity/risk reduction of emerging Tilapia Lake Virus (TiLV) to African tilapia aquaculture Southern Sun Myfair Hotel, 23-24 October 2018, Nairobi, Kenya

- Discovery of TiLV in Israel in 2009, genome size: 10-kb, new species name: *Tilapia tilapinevirus*
- TiLVD gross signs
- Susceptible species
- Diagnostic chart and reporting
- Diagnostic methods
 - 1. Histological examination
 - 2. Virus isolation and cell culture
 - **3. Conventional RT-PCR**
 - 4. Real-time RT-PCR (RT-qPCR)
 - 5. In situ hybridization

Credited to Mr. Natan Wajsbrot

Massive mortality (1,000s dead fish per day) of tilapia from TiLV outbreaks in the Valley of Bet She'an, Israel

The occurrence of mass mortality due to TiLV in hybrid tilapia (*Oreochromis niloticus* x *O. aureus*) cultured in Israel.

The TiLVD mortalities ranged 40-90%.

Credited to Mr. Natan Wajsbrot

Birds were fed on the dead fish during the TiLV outbreaks in Israel

Credited to Mr. Natan Wajsbrot

Gross signs include erosions and ulcerations in the skin and unilateral or bilateral ocular alterations (cataracts).

Credited to Dr. Win Surachetpong

The occurrence of mass mortality due to TiLV in red hybrid tilapia cultured in Thailand.

Credited to Dr. Win Surachetpong

Gross signs of infected red tilapia: distinct skin redness and erosion in skin and tail fin.

June, 6, 2017, Taiwan province Mortality: 100's per day, for 2-weeks clinical signs: abdominal swelling, hemorrhage, loss of scales

Farm operation: tilapia mix culture with other freshwater fishes (perches, grass carp, silver carp, black carp, marble eel), but other fishes were not affected.

Gross signs of TiLVD

(Left photo) diseased Nile tilapia showed skin erosion, hemorrhage on various parts of body, loss of scales, abdominal swelling, and swelling of the eyeball (exophthalmos); (Right photo) diseased wild tilapia (*Sarotherodon galilaeus*) showed shrinkage of the eye and loss of ocular functioning.

Susceptible species

- Nile tilapia (*O. niloticus*)
- blue tilapia (*Oreochromis niloticus x O. aureus* hybrids)
- red tilapia (*Oreochromis* sp.)
- Tilapia zillii
- Sarotherodon galilaeus "St. Peter's" fish
- Oreochromis aureus
- Tristamellasimonis intermedia
- River barb (Barbonymus schwanenfeldii)
- Giant gourami

Diagnostic flowchart

Suspect and confirmation of TiLV infection

• Suspect case

Infection of TiLV is **suspected** if at least one of the following criteria is met:

- (1) mortality and clinical signs consistent with TiLVD
- (2) histopathology consistent with disease
- (3) detection of TiLV by RT-PCR (or RT-qPCR).

- Infection of TiLV is considered to be **confirmed** if two or more of the following criteria are met:
- histopathology consistent with disease
- detection of a TiLV by RT-PCR and amplicons' sequence analysis
- TiLV are isolated from infected fish, followed by performing the cell-culture or laboratory infection in conjunction with the diagnostic methods (histopathology, RT-PCR, sequencing, or RT-qPCR) for TiLV.

A. Histopathology

Credited to Dr. Dong Ha

H&E histopathology of liver in a TiLV-infected tilapia, it demonstrates the presence of syncytial cells as TiLVD was originally named as syncytial hepatitis of tilapia (SHT).

Credited to Dr. Dong Ha

H&E histopathology of liver in a TiLV-infected tilapia, it demonstrates the cellular necrosis, the appearance of pyknotic and karyorrhectic nuclei.

Credited to Dr. Dong Ha

H&E histology of brain from a TiLV-infected tilapia.

TiLV isolation and cell culture

- 1. Remove liver (or brain) from TiLVinfected fish
- Homogenize the tissues in buffer (e.g. Hanks balanced salt solution), centrifuge to remove the cellular debris, keep the supernatant, filtrate through a 0.22 μm membrane.
- 3. The viral solution can be used in inoculating the cell lines, such as E-11, OmB, TmB, etc, and monitored for the appearance of CPE (cytopathic effect).
- 4. From the infected cell culture, the viruscontaining supernatant can be prepared and stored at -80°C as virus stock solution.

Principle of RT-PCR

Principle of Nested RT-PCR

Tilapia tissue sampling for RNA extraction

Kidney

Brain

Fresh, frozen, or preserve in ethanol (70-95%)

Non-invasive: mucus

Conventional RT-PCR

TiLV RT-nPCR (semi-nested PCR)

RT- PCR	Primers	Amplicon size	Sequence (5' to 3')	Reference
1-step	Nested ext-1	4151	TATGCAGTACTTTCCCTGCC	Eyngor et
	ME1	415-бр	GTTGGGCACAAGGCATCCTA	al. 2014; Tsofack et
2-step	7450/150R/ME 2 ME1	250-bp	TATCACGTGCGTACTCGTTCA GT GTTGGGCACAAGGCATCCTA	al. 2016

Pathogen	Temperature (°C)	Time	Number of cycles
	50, 94	30 min, 2 min	1
TiLV-1	94, 60, 72	30 s, 30 s, 30 s	25
	72	5 min	1

Pathogen	Temperature (°C)	Time	Number of
			cycles
	94	2 min	1
TiLV-2	94, 60, 72	30 s, 30 s, 30 s	25
	72	5 min	1

TiLV RT-PCR of RNA extracted from tilapia samples. ++: heavy infection; +: light infection; -: not detected.

250-bp

#1: healthy tilapia;
#2 TiLV-infected tilapia;
#3-5: tilapia samples from countries 1-3;
NTC: none-template control;
+C: positive control (plasmid DNA)

Group E Contamination ^{1st}-step

#1: healthy tilapia;
#2 TiLV-infected tilapia;
#3-5: tilapia samples from countries 1-3;
NTC: none-template control;
+C: positive control (plasmid DNA)

Real-time PCR (qPCR)

- Data taken at each amplification cycle
- Fluorescent detection of PCR products
- Rapid assay, high sensitivity (< 100 copies)
- Low risk of carry-over contamination (closed-tube)

Fluorescence detection chemistry in qPCR (RT-qPCR)

- SYBR Green I
- TaqMan probe

Fluorescence detection chemistry in qPCR (RT-qPCR)

SYBR-Green, DNA-binding dye

TaqMan probe

Credited to Dr. Dong Ha

In situ hybridization (ISH)

Purpose

- To detect and confirm the presence of TiLV (through its RNA) in the tissues and histopathological lesions.
- To identify tissue tropisms of TiLV

In Situ Hybridization Incubator

- Temperature control
- Trough for water to maintain humidity
- Rack to hold slides
- Cover to maintain temperature & humidity

Unrelated probe

TiLV-specific probe

Food and Agriculture Organization of the United Nations

Thank you for your attention ktangnelson@gmail.com

Project Inception Workshop of GCP/RAF/510/MUL: Enhancing capacity/risk reduction of emerging Tilapia Lake Virus (TiLV) to African tilapia aquaculture Southern Sun Myfair Hotel, 23-24 October 2018, Nairobi, Kenya