

AIRFRESH

Air pollution removal by urban forests for a better human well-being

P. Sicard, ARGANS

F. Coulibaly, J. Lebreton (ARGANS, France) A. Nicault, S. Bergé (Air Climat, France) E. Paoletti, Y. Hoshika, J. Manzini (IRET-CNR, Italy) A. De Marco, G. Pallante (ENEA, Italy)

XIII Workshop of the SILVA MEDITERRANEA Working Group on Urban and Peri-urban forestry - 28 April 2021

Italian national agency for new technologies, energy and sustainable economic development

Project information

Partners: ARGANS (FR), AIR-Climat (FR), ENEA (IT), IRET-CNR (IT)
Coordinator: Pierre Sicard, ARGANS
Technical support: cities of Aix-en-Provence & Florence (+ conurbations)

Expected start date: September 1st, 2020 **Expected end date**: 1st March 2025

Total budget: €1.22 million

Website: www.life-airfresh.eu

Facebook: life.airfresh

AIRFRESH

Italian national agency for new technologies, energy and sustainable economic development

2013

2016

2018

2019

11/2019

Project maturity: Starting, Developing & Maturing

Reduction of NO_x emissions in Europe (e.g., road traffic) => O₃ Image: Constraint of the constraint of the

AIRFRESH funded: a demonstrative & timely project

EU Biodiversity Strategy 2030 & COVID-19 => Urban Greening Plans & 3 billion trees by 2030 in EU.

Urban Forestry & Urban Greening 56 (2020) 12688

Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study

Francesca Ugolini^{**}, Luciano Massetti^{*}, Pedro Calaza-Martínez^b, Paloma Cariñanos^c, Cynnamon Dobbs^d, Silvija Krajter Ostoic^{*}, Ana Marija Marin^{*}, David Pearlmutter¹*, Hadas Saaroni^{*}, Ingrida Šaulienė^b, Maja Simoneti⁺, Andrej Verlič[†], Dijana Vuletić^{*}, Giovanni Saneel[†]

Brussels, 20.	5.2020	
COM(2020)	380 fina	1

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

EU Biodiversity Strategy for 2030

Bringing nature back into our lives

Main challenges – Greener cities

Air pollution & urban heat island: **2 major issues** of public health affecting cities, with > **500,000 premature deaths** in EU.

Urban reforestation & peri-urban reforestation => meet clean air standards in cities.

Win-win solutions for citizens: reduction of air pollution, carbon sequestration, air temperature regulation, noise reduction, social and aesthetic benefits...

Example of "Greening cities" (Green path in Nice, France)

Two front runner cities

Aix-en-Provence (143,000 people) **& Florence** (380,000 people): human exposure regularly exceeds the WHO protection limits (PM_{10} , NO_{2} , O_{3}) & affected by climate change.

- **Ozone**: + 0,24 ppb year⁻¹ over the time period 2009-2018.
- Air temperature: + 1,9-4,6 °C by 2100.
- Heat wave 2019: + 3,5 °C in Aix compared to peri-urban area.

In 2019, **73 & 167 premature deaths** and **309 and 700 hospital admissions** for cardiovascular & respiratory diseases due to AP in Aix & Florence.

> Check for updates

Environmental Science and Pollution Research https://doi.org/10.1007/s11356-019-06445-8

SHORT RESEARCH AND DISCUSSION ARTICLE

Effect of O_3 , PM_{10} and $PM_{2.5}$ on cardiovascular and respiratory diseases in cities of France, Iran and Italy

Pierre Sicard¹ · Yusef Omidi Khaniabadi² · Sandra Perez³ · Maurizio Gualtieri⁴ · Alessandra De Marco⁴

Received: 26 June 2019 / Accepted: 5 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Project Objectives

To efficiently reduce AP in cities, municipalities & city planners need a **quantitative & concrete** assessment of the role of urban trees in affecting air quality and a **suitable selection** of tree species.

For the first time, AIRFRESH aims to:

 Quantify* the air pollution removal by urban forests in both cities/conurbations.

* based on in-situ data

 Quantify* the environmental & health benefits provided by a new reforested test area.

* based on in-situ data

 Propose recommendations for reforestation policies (e.g., number and type of tree species to be planted) for attainment of the air quality standards.

Key actions

Tree level

New Urban Forest Areas: tree species selection, planting, maintenance and data collection.

City level

Estimation & mapping of ES at city scale: AP deposition will be simulated by present forests and test areas.

Conurbation level

Scaling-up & replication: approach scaled-up at conurbation level. Transfer/replication of solutions in **follower cities**.

Assessment of benefits & Knowledge transfer to city planners.

New Forest Areas

Planting, maintenance & data collection

Proper tree selection: which plant species are more suitable to use, and which one should be avoided ?

3 co-design workshops were organized in Aix-en-Provence & Florence with representatives from both municipalities.

=> list of parameters and characteristics to be included for tree selection.

New Forest Areas

Planting, maintenance & data collection

<u>Suitable selection of plant species</u> = Services vs. Disservices

1) **environmental** (e.g., effectiveness in removing air pollutants; CO_2 sequestration, release of biogenic VOCs leading to O_3 formation);

2) **social** (e.g., allergenic pollen);

3) financial (e.g., pruning).

This list will be discussed & released to the municipality in June 2021.

		Net 02	NO2	DM10		1			Dellan	0	Drought	D ⁰ D	1
Genus	Species	(g/tree/dav)	(g/tree/dav)	(g/tree/dav)	CO2 (t/year)	Genus	Species	Carbon stored	allergenicity	sensitivity	tolerance	tolerance	1 Tilia cordata
Abies	alba	0.794	3.651	8,353	0.1095	Abies	alba	1	2	3	3	3	2 Tilia platuphullos
Abutilon	spp.	na	0.021	0.000	0.0033	Abutilon	spp.						2 Tilla platyphyllos
Acacia	dealhata	1 514	1 570	0.851	0.004	Acacia	dealbata	0		-		-	3 Aesculus hinnoc
Acacia	cn	2,021	2,070	0,001	0,004	Acacia	sp.	0	2	3	3	2	
Acar	sp.	4 212	4.016	0.226	0 0292	Acer	ianonicum		1	3	3	2	4 Tilia x europaea
ALEI	cumpestre	4,212	4,010	0,520	0,0282	Acer	monsnessulanum						E Quarque corrie
Acer	japonicum ,	na	0,560	0,035	0,001	Acer	neaundo	1	1	2	3	1	5 Quercus cerris
Acer	monspessulanum	na	2,040	0,147	0,0003	Acer	platanoides	4	2	2	2	3	6 Cedrus libani
Acer	negundo	9,232	9,274	0,884	0,0871	Acer	pseudoplatanus	3	2	2	2	1	
Acer	platanoides	26,040	24,355	2,580	0,0805	Acer	rubrum		1	1	2	3	7 Carpinus betulus
Acer	pseudoplatanus	26,124	24,355	2,580	0,0935	Actinidia	spp.						8 Sonhora ignonica
Acer	rubrum					Aesculus	hippocastanum		2	1	2	1	8 Supriora Japonica
Actinidia	snn	na	0 381	0.017	0.0033	Ailanthus	altissima	1	2	1	3	3	9 Cedrus atlantica
Aosculus	hinnocastanum	26 800	22 474	0.01/	0 1223	Albizia	julibrissin	1	3	2	2	2	
Acsculus	inppocustunum	20,899	22,474	0,914	0,1223	Allous	alutinosa	2	1	2	2	2	10 Celtis australis
Ailanthus	altissima	8.652	8.614	0.380	0,019	minus	giucinosu	3	1	5	<u> </u>	5	

New Forest Areas

Planting, maintenance & data collection

Planting & maintenance (January - March 2022)

Based on the suitable tree species, at least **400 fast-growing trees** (mixed species, > 2 m tall) will be planted in both areas (spacing 5x5m, i.e., 1-ha).

New Forest Areas Planting, maintenance & data collection

Field campaigns to estimate the benefits

Direct contribution of both test areas in AP abatement (PM_{2.5}, PM₁₀, NO₂, O₃, & CO₂) will be evaluated by 4 x **10-day measurement campaigns** in & around the area, above & below the canopy, before & after tree planting.

Air temperature & relative humidity will be measured by sensors.

Biodiversity in soil environments - Environmental DNA - Micro- (bacteria, fungi) and macroorganisms (e.g., invertebrates, plants).

Estimation and Mapping of ES at city scale

Urban tree distribution & classification

Realistic & proper quantification = **consistent tree inventory** at city scale is needed.

Tree inventories of both cities = "public" trees i.e., 15-20% of the total number.

=> avoid a **large underestimation** of the AP removal capacity.

Since 2000, the new generation of satellites at **very high resolution** (e.g., WorldView-2, Pléiades) allows identifying individual tree crowns at fine scale.

Individual Urban Trees from Very High-Resolution Satellite Images

Geo-located UF characteristics from **Pleiades (50cm) & Worldview (30cm) images** by spectral & textural classification & tri-stereo.

Step 1	Detection, location & tree species.
Step 2	Structure variables: tree height, LAI, DBH, crown diameter.
Step 3	Field campaigns vs. Remote Sensing (validation).
Step 4	Quantification of AP removal capacity.

Mapping of tree species in Florence (28 tree species)

Mapping of canopy cover in Aix-en-Provence

Detection & species classification

Bottom-of-atmosphere

Atmospheric correction

Outputs of NDVI classification (area in ha)

Methodology	Study area	Summer	Winter	Broadleaves
Classification with NDVI	7,200	3,511	2,949	562
Bottalico et al. (2017)	10,200	1,064		700

Species	Acer campestre	Celtis	Platanus	Prunus Dome	
Genus	acer	celtis	platanus	prunusDo	
Leaves (yes=1, no=0)	1	1	1	1	
Latitude X _c	677278,9	677914,6	679753,8	677041,9	
Longitude Y _c	4850918,2	4850305,2	4848830,6	4849551,9	
Mean	442,4615	415,9213	540,7962	705,9059	
Standard deviation	117,64817	61,0721	140,2895	115,8303	
Dissimilarity	29,2504	19,7239	40,6051	31,9250	
Corrélation	0,933599	0,913626	0,926803	0,931319	
Energy	1789,4726	653,4891	2866,3472	1813,7250	
Contraste	0,045305	0,051043	0,030626	0,046020	
Homogeneity	0,028516	0,035455	0,031962	0,040805	
Second Order Moment	0,000813	0,001257	0,001021	0,001665	
NDVI	0,726791	0,727576	0,562106	0,319009	

Mapping of main tree species in Florence (x 28 tree species)

✓ Textural classification provides more information

Methodology	Textural (this study)	Spectral (this study)	Bottalico <i>et al.</i> (2017)	Public tree inventory	Acer Aescu
Area of study (ha)	7200	7200	10200	-	Cedru
Area of forest cover (ha)	1080	1080		236,5	Cupre
Number of trees	345 312		-	75 672	Ligust
Deciduous	651,65	562	580,0	133,2	Olea
Evergreen	199,55		24,9	41,3	Pinus
Coniferous	229,33		54,3	49,9	Plata
Mixed Forests			404,7	-	Рори

Species	Area covered (ha)
Acer	75,0
Aesculus	27,5
Cedrus	63,0
Celtis	42,9
Cupressus	37,2
Ligustrum	147,7
Magnolia	20,2
Olea	23,0
Pinus halepensis	50,4
Pinus pinea	178,9
Platanus	197,1
Populus	19,1
Prunus sp	17,4
Prunus dome	1,4
Quercus	32,6
Robinia	55,1
Tamarix	3,8
Thuja	6,1
Tilia	11,9
Ulmus	64,4
Zelkova	5,6
TOTAL	1080,5

Canopy Height Model

Canopy Height Model

Extraction of the highest layer of vegetation

Tree height estimation

Peaks detection by **local maxima filter** = > Each peak is associated to the height of the tree.

Tree peaks in city

Profil of tree heigth along a boulevard

Tree height estimation

Dense vegetated area: domiant tree height can be identify.

Tree peaks in forest

Tree height estimation - Validation

- + Input data: Field measurements with smartphone application & hypsometer
- + Mean squared error: 1.0 m
- + Sources of errors :
 - + Accuracy of tree height measurement
 - + Accuracy of the DTM (70cm)

Tree height estimation

Study area : 30 km² Total : 150,000 dominant trees

Tree height in the city center of Aix-enProvence in France

Description

Individual extraction of trees from a Pleiades ortho-image of 29/08/2018 supplemented by a Canopy Height Model (CHM).The local maxima algorithm was used with an adaptive window size to define treetops. Around 7500 trees are present in this map where lower height are present in residential district (~10m) and higher trees in boulevards (~20m).

Study area

Tri-stereo Pleiades imagery, distributed by Latitude-Geosystem

Software

Qgis, Orfeo ToolBox (OTB) and R

Delineation of individual tree crowns

Segmentation by « Region growing»

Segmentation technique to group pixels or groups of pixels. Starting with some seed pixels, the neighboring pixels are examined 1 by 1 and added to the growth region if their predefined properties are similar to those of the seeds.

Quantification & mapping of benefits

The **annual removal** of $PM_{2.5}$, PM_{10} , NO_2 , CO_2 and O_3 by UF and peri-UF will be quantified & mapped at city scale **before** & **after** reforestation.

Deposition $Q = V_d x C x LAI x T$

Q = amount removed on $1m^2$ of leaf surface (µg m^-2), V_d = deposition velocity, C = concentration (µg m^-3), LAI (m² m^-2) and T (s) = vegetative period.

O₃ & NO₂ absorption Gaseous pollutants

Stomatal & non-stomatal.

Carbon stock & CO₂ equivalent estimation - Biomass model CO2FIX incl. DBH, tree height and the covered area.

Cooling effect - Based on the Pennman-Monteith evapotranspiration equation.

Scaling-up & replication

Estimation & Mapping of ES at conurbation scale

From 2023, the core activities will be upscaled from city to conurbation scale.

The **vegetation** will be detected (delineation), categorized as forest categories from satellites images (Sentinel-2, Sentinel-3).

The annual removal of PM, NO₂, CO₂ and O₃ & carbon stock by each forest category will be quantified and mapped.

Replication activities

Know-how transfer & replication in Zagreb from 1st January 2024.

Follower cities e.g., Bucharest in Romania; Birzai, Kretinga, Kupiškis, Rokiskis, Vilkaviskis & Vilnius in Lithuania.

Quantification of benefits

Baseline conditions (2019, 2020). Before reforestation & after reforestation, and by 2030.

<u>Air quality & climate benefits</u> - Based on field measurements & modelling at city & conurbation scales. $CO_2 & O_3$ classified as "Short-Lived Climate Forcer"

<u>Ecological benefits</u> - Singapore Index on Biodiversity to evaluate the progress of biodiversity: greenness, environmental DNA, pollinators, etc.

<u>Health benefits of cleaner air</u> - AirQ+ model (WHO) to estimate the short-term health effects due to AP exposure: mortality & morbidity.

Economic valuation of cleaner air - Monetary benefits of "avoided" premature deaths and hospital admissions, attributed to the reduction of AP after reforestation. Concept of "value of a statistical life".

Core		Indicators	Maximum
Components	-		score
Native	1.	Proportion of Natural Areas in the City	4 points
Biodiversity	2.	Connectivity Measures	4 points
in the City	3.	Native Biodiversity in Built Up Areas (Bird Species)	4 points
	4.	Change in Number of Vascular Plant Species	4 points
	5.	Change in Number of Bird Species	4 points
	6.	Change in Number of Butterfly Species	4 points
	7.	Change in Number of Species (any other taxonomic group selected by the city)	4 points
	8.	Change in Number of Species (any other taxonomic group selected by the city)	4 points
	9.	Proportion of Protected Natural Areas	4 points
	10.	Proportion of Invasive Alien Species	4 points
Ecosystem	11.	Regulation of Quantity of Water	4 points
Services	12.	Climate Regulation: Carbon Storage and Cooling Effect of Vegetation	4 points
provided by	13.	Recreation and Education: Area of Parks with Natural Areas	4 points
Biodiversity	14.	Recreation and Education: Number of Formal Education Visits per Child Below 16 Years to Parks	4 points
		with Natural Areas per Year	
Governance	15.	Budget Allocated to Biodiversity	4 points
and	16.	Number of Biodiversity Projects Implemented by the City Annually	4 points
Management	17.	Existence of Local Biodiversity Strategy and Action Plan	4 points
of	18.	Institutional Capacity: Number of Biodiversity Related Functions	4 points
Biodiversity	19.	Institutional Capacity: Number of City or Local Government Agencies Involved in Inter-agency Co- operation Pertaining to Biodiversity Matters	4 points
	20.	Participation and Partnership: Existence of Formal or Informal Public Consultation Process	4 points
	21.	Participation and Partnership: Number of Agencies/Private Companies/NGOs/Academic	4 points
		Institutions/International Organisations with which the City is Partnering in Biodiversity Activities,	
		Projects and Programmes	
	22.	Education and Awareness: Is Biodiversity or Nature Awareness Included in the School Curriculum	4 points
	23.	Education and Awareness: Number of Outreach or Public Awareness Events Held in the City per Year	4 points
		Native Biodiversity in the City (Sub-total for indicators 1-10)	40 points
		Ecosystem Services provided by Biodiversity (Sub-total for indicators 11-14)	16 points
		Governance and Management of Biodiversity (Sub-total for indicators 15-23)	36 points
		Maximum Total:	92 points

Main expected results

Environmental benefits

Each reforested area will remove annually **3.0 tons O₃**, **2.5t NO₂**, **1.5t PM₁₀**, **0.8t PM_{2.5}**, **10t CO₂**, ambient air **2° C cooler** compared to surrounding area, increase **carbon stocks** (2t per ha).

Socio-economic benefits

With the above AP reduction, **3 premature deaths & 12 hospital admissions** for respiratory and cardio-vascular diseases will be averted annually, i.e., a minimum benefit for healthcare of **€9.1 million each year** from 2024.

Communication

Educational activities

Education of citizens about the good practices for a cleaner air in cities & for a better citizens' well-being by displaying A3 boards in doctor's waiting rooms in Aix & Florence. The target is **240,000 people reached**.

Public events

In 2022, we will organize a **Tree Planting ceremony**, and support the **godfathering** of a tree: **100 trees** will be planted by citizens in private gardens.

Air Pollution & Plants Conference 11-15 October 2021, Paphos (Cyprus) www.cyprus2021.com

Session 2. Urban green: sinks or sources of air pollution and climate change

