

Urban Trees' Terpenoids: plant-host interactions in a challenging and

changing environment

Maurizio Badiani (mbadiani@unirc.it) Department of Agriculture *Mediterranean* University of Reggio Calabria, Italy

«Secondary» plant metabolites belong to three main groups:

- Phenols
- Alkaloids
- Terpenoids

About terpenoids.....

.....also called **isoprenoids**, because they contain repetitions of the 5-C isoprene unit.

- Monoterpenes C₁₀ **VOLATILE!**
- Sesquiterpenes C₁₅
- Diterpenes $-C_{20}$
- Triterpenes C₃₀
- Tetraterpeni C₄₀

NOI AMIAMO LA NOSTRA TERRA

Besides being precursors of phyotohormones, photosynthetic pigments, electron carriers and membrane components, isoprenoids are also deeply involved in eco-physiological interactions:

Ciclo di VIDEO CONFERENZE UNIVERSITÀ MEDITERRANEA DI REGGIO CALABRIA DIPARTIMENTO DI AGRARIA

Volatile isoprenoids are thought to be involved in defence and chemical communication....

...non-volatile isoprenoids (oleoresins) are not only bioactive molecules, but also valuable raw materials for the chemical and pharmaceutical industry, cosmetics, nutraceuticals and biofuels

AGRICOLTURA | FORESTE, AREE VERDI, AMBIENTE | ALIMENTI, GASTRONOMIA, RISTORAZIONE

NOI AMIAMO LA NOSTRA TERRA

Emission profiles of volatile terpenoids have been studied in two populations of Calabrian pine infested by the pine processionary moth (PPM)

Plant plots were within the premises of the Aspromonte National Park, in the southmost part of continental Italy

• 1st sampling in February

• 2nd and 3rd samplings in March

Collection of pine needles was matched with the biological cycle of the PPM

• 4th and 5th samplings in April

• 6th sampling in August

GC-MS analysis - 1

- Sample preparation (head space):
 - Equilibration

- Adsorption on SPME fiber

 \triangle

• GC-MS analysis - 2

Ciclo di VIDEO CONFERENZE UNIVERSITÀ MEDITERRANEA DI REGGIO CALABRIA DIPARTIMENTO DI AGRARIA

AGRICOLTURA | FORESTE, AREE VERDI, AMBIENTE | ALIMENTI, GASTRONOMIA, RISTORAZIONE

NOI AMIAMO LA NOSTRA TERRA

Twenty-one volatile terpenoids were identified in the head space of Calabrian pine needles

Of these, bornyl acetate [(4,7,7trimethyl-3bicyclo[2.2.1]heptany 1) acetate] was the most frequently and selectively associated with the PPM infestation

Common name	IUPAC name	Type of terpen	RT	KI	Structural formula
Pinene alpha*	(15,55)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene ((-)-α-Pinene)	monoterpenoid	7,38	939	<u>S</u>
Pinene beta*	6.6-Dimethyl-2-methylidenebic yclo[3.1.1]heptane	monoterpenoid	8,35	982	
Myrcene beta	7-Methyl-3-methylene-1,6-octadiene	monoterpenoid	8,75	1000	
Phellandrene alpha	2-Methyl-5-(1-methylethyl)-1,3-cyclohexadiene	monoterpenoid	9,61	1035	
Limonene*	1-Methyl-4-(prop-1-en-2-yl)cyclohex-1-ene	monoterpenoid	9,8	1043	
Ocimene beta*	(Z)-3,7-Dimethyl-1,3,6-octatriene	monoterpenoid	10,06	1053	H ₃ C
Terpinolene*	4-Methyl-1-(1-methylethyl)-1,3-cyclohexadiene	monoterpenoid	11,09	1095	
Thymol methyl ether	2-methoxy-4-methyl-1-propan-2-ylbenzene	monoterpenoid	11,98	1131	
Camphor*	1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one	monoterpenoid	12,48	1152	Ă,Ă
Bornyl acetate	4,7,7-Trimethyl-3-bicyclo[2.2.1]heptanyl) acetate	monoterpenoid	15,82	1292	Ar .
Gurjunene gamma	(1R,3aR,4R,7R)-1,4-dimethyl-7-prop-1-en-2-yl-1,2,3,3a,4,5,6,7-octahydroazulene	Sesquiterpenes	16,4	1318	60
Elemene delta	(3R , $4R$) -1-Isopropil-4-metil-3- (prop-1-en- 2-il) -4-vinylcyclohex-1-ene	Sesquiterpenes	16,99	1344	
Cubebene alpha*	(1R,5S,6R,7S,10R)-10-methyl-4-methylidene-7-(propan-2-yl)tricyclo[4.4.0.0 ¹ , ⁵]decane	Sesquiterpenes	17,27	1357	
Copaene alpha*	(1S,6S,7S,8S)-1,3-dimethyl-8-(propan-2-yl)tricyclo[4.4.0.0 ² , ⁷]dec-3-ene	Sesquiterpenes	17,89	1384	
Bourbonene beta	1-methyl-5-methylidene-8-(propan-2-yl)tricyclo[5.3.0.0 ² , ⁶]decane	Sesquiterpenes	18,82	1427	
Caryophyllene*	(1R,4E,9S)-4,11,11-Trimethyl-8-methylidenebicyclo[7.2.0]undec-4-ene	Sesquiterpenes	18,88	1430	H ₀ C H
Bisabolene alpha	(E)-1-Methyl-4-(6-methylhepta-2,5-dien-2-yl)cyclohex-1-ene	Sesquiterpenes	19,63	1466	
Humulene*	2,6,6,9-Tetramethyl-1,4-8-cycloundecatriene	Sesquiterpenes	19,93	1480	\leq
Murolene gamma*	(1S,4aS,8aR)-7-methyl-4-methylidene-1-propan-2-yl-2,3,4a,5,6,8a-hexahydro-1H-naphthal	Sesquiterpenes	20,4	1492	
Germacrene D*	(1E,5E,8S)-1,5-dimethyl-8-(prop-1-en-2-yl)cyclodeca-1,5-diene	Sesquiterpenes	20,18	1502	
Candinene gamma*	(1S,4aR,8aR)-7-methyl-4-methylidene-1-propan-2-yl-2,3,4a,5,6,8a-hexahydro-1H-naphtha	Sesquiterpenes	20,89	1526	

Charl D 11%

STREET.

Genes from Calabrian pine encoding for the biosynthetic major enzymes, namely terpene synthases, are being isolated and characterised, and their expression in response PPM to infestation is being quantified

Fig. 5 Phylogenetic true of terpent synthases (TPSs) in gymnospirms: Cuprosacese (nd diamonda), Pinamar (black), Taxacese (group), Ginkgeneouse (brown) and Cycadacone (heavenly). The Physiconitralis patent est-kaurone synthase (PITPS-entKS; vioist diamond) was used to not the true. Branchus indicated with dots ruptum nt bootstrap support more than 80% (100 repetitions). Modifications in the typical y he-domain architecture of TPS and the presence of functional active sites (a yellow cross indicate loss of function) are illustrated corresponding to the different subfamilies of the TPS plant family and to the different groups within the TPS d3 subfamily. For acronyms denoting plants species, are Table S1. DTPSs diterpone syntheses, MIPSs monoterpone syntheses, SIPSs associterrors without

Journal of Molecular Evolution https://doi.org/10.1007/s00239-020-09930-8

REVIEW

On the Evolution and Functional Diversity of Terpene Synthases in the *Pinus* Species: A Review

Enrica Alicandri¹ · Anna Rita Paolacci² · Samson Osadolor² · Agostino Sorgonà¹ · Maurizio Badiani¹ · Mario Ciaffi²

Terpenoids for biocontrol in UPF: prospective projects - 1

Graphical concept of **UTreeTer** showing the overall objective (i.e. the role of terpenoids in the interactions among major tree species of Italian cities, their arthropod pests and pathogens, and natural enemies of these organisms), the organization in workpackages (WPs), and the involved research units.

The UTreeTer project: terpenoids in a north-south transect of Italian UPF species and their hosts, in a changing climate

[tree/pathogen/pest/pest's natural enemies]

- (i) Pinus spp. (pine)/Sphaeropsis sapinea/Thaumetopoea pityocampa/Phrixe caudata, Villa brunnea, Calosoma sycophanta;
- (ii) Quercus ilex (holm oak)/Phyllosticta spp., Microsphaera spp./Lymantria dispar dispar, Thaumetopoea processionea, Corythucha arcuata, Coroebus spp./P. caudata, V. brunnea, Oencyrtus pytiocampae;
- (iii) Platanus × acerifolia (plane tree)/Apiognomonia platani/Corythucha ciliata/Anthocoris spp., Orius laticollis.
- (iv) Special attention will be also given to Aesculus hippocastanum (horse chestnut) nand Populus spp (poplar).

Terpenoids for biocontrol in UPF: prospective projects - 2

TerBioFor -Constitutive and host-inducible terpenoids as prospective biocontrol agents in UPF

Thank you very much for your consideration!

