Global Forum on Food Security and Nutrition (FSN Forum)

Luiz A Horta Nogueira

Universidade Federal de Itajubá
Brazil

This document addresses relevant aspects of global development of biofuels, focusing mainly the nexus of ethanol and biodiesel production with staple food availability and prices. It could be considered an improvement compared with previous studies from that UN agency, which have been oscillating between a generic apology of biofuels and a criticism without clear base.

It is really an advance to find in this report a prudent position with regards Jatropha as feedstock (formerly proposed in FAO docs as good choice for biofuels) and about the feasibility of 2nd generation biofuels in the medium-short term. However, the document is fragile in their core analysis, based largely on a partial perspective of biofuel markets, impacts and potential.

Following some remarks about this document are presented.

1. Need to include sugarcane more clearly

The review of current and prospective technologies for biofuel production (Chapter 2. Biofuels and the Technology Frontier, Figure 2 and Tables 1 and 2, pg 17/18, energy balance and GHG emission of biofuels) properly confirms the relevant differences among the several feedstock and process, endorsing the abundant literature indicating sugarcane by far as more sustainable than other alternatives. There is almost a consensus in the scientific community about the superiority of this semi-perennial grass as photosynthetic converter and recent papers reinforce this vision (for example, Runge et al., 2012, and Leal et al., 2013).

These significant differences were apparently no considered in other parts of the FAO document, developing the discussion on biofuels impact and potential essentially based on the production routes adopted in USA and Europe, almost ignoring the sugarcane. It is highly advisable to revise this lack of relevant information.

2. The price question

As mentioned, the document developed an analysis and drawn conclusions about food prices, hunger, poverty, etc., focusing the market of grains, clearly affected by the biofuels production. It is correct in the case of corn in the USA or vegetable oil abroad, but is not applicable for the sugar market, directly related to ethanol in Brazil and other Latin-American countries.

Thus, the evaluation of “change in use for food and feed versus use for biofuel, sugar (2005-2012)” (Figure 10, pg 29) deserves more attention of authors. The price formation mechanisms are complex and should be more discussed. It could be also interesting to mention a study developed the Agricultural Development Unit of ECLAC on the relationship of crude oil price and agricultural commodities (for food and bioenergy), pointing out the lack of relevant co-variance in the case of sugarcane products (see pg 247-250 in BNDES/CGEE/CEPAL/FAO, 2008).

3. The impact of increasing biofuel production

The authors stressed their concern about the expansion of biofuels production by estimating the limited potential of biomass as source of energy to supply the huge current global demand (correctly) and assuming that “providing 10% of the world’s transportation fuel from biofuels would require roughly a quarter of all present crop production”. This last assertion is highly questionable and the footnote in pg 35 (“…and it takes very roughly the same quantity of crop energy to make each exajoule of biofuel – the mix of crops would not greatly vary this percentage”) should be carefully confirmed. There is a clear contradiction between the comparison of feedstock presented previously in this document and this hypothesis of no effect of feedstock.

The calculus procedure and assumptions adopted to estimate the land and feedstock requirement are not clear, but possibly are based on average values of the current situation, which includes the unsustainable production of ethanol from corn and biodiesel from soybean and rapeseed. Again, the sugarcane route was forgotten, with serious implications. Several studies indicate quite different requirements of natural resources if more efficient (and available) routes are adopted.

For instance, detailed evaluation of the expansion of ethanol production from sugarcane in Brazil, taking into account edafo-climatic constraints and the agro-ecological zoning, indicate that just about 23 million ha will be able to produce 5% of global gasoline demand in 2025 (Leite et al., 2009). This area is equal the area currently cultivated with soybean in Brazil and is less than 2% of area available for agricultural expansion indicated in this draft document (1,300 million ha of cropland potentially available, pg 39). Detailed assessment of land requirement of modern bioenergy (using sugarcane) to supply global transportation needs is available (Pacca and Moreira, 2010) and should be included.

As additional information regarding pasture land and taking into account the important increase in the animal protein demand, the evolution of livestock productivity has been remarkable. From 1995 to 2006, the area of grassland in Brazil decreased from 179 Mha to 172 Mha (-4%), while the bovine herd increase (+14%) (IBGE, 2008). This densification of livestock production is far from complete, and it should free up more areas for agriculture and bioenergy in the coming decades, in many wet tropical countries.

4. The electric car alternative

The authors indicated as an alternative more efficient than bioenergy the direct conversion of solar energy in photovoltaic cells: “Converting this biomass energy into electricity in turn reduces that efficiency down to 0.1 to 0.2%. By contrast, standard solar cells now convert 10% of solar energy”.

This comparison is, at least, very controversial. For what conditions? The LCA energy costs were considered? Are the inputs and outputs, the period of analysis, comparable? To compare photosynthesis with direct solar energy conversion impose clear definition of boundary analysis, contexts and aims, and this superficial judgement requires references and more data.

Unfortunately, this kind of mistake sometimes appear in the literature, such as in a recent paper that assumes direct solar radiation as electricity, forgetting the relevant conversion process efficiencies in the comparison of bioenergy and photo cells (Michel, 2012).

5. Ethanol production stagnation in Brazil

In the sentence “Ethanol production in the US shot up from 1.7 billion gallons in 2001 to 13.9 billion gallons in 2011, overtaking Brazil whose ethanol sector only produced 5.5 billion gallons (why not to use cubic meters?) in 2011 after being severely hit by the 2008 financial crisis.” (pg 20), it is advisable to review the causes behind the Brazilian situation.

Although some other causes can be mentioned, such as adverse weather, costs increase and yield reduction due to mechanical harvesting adoption, it is enough clear that the main reason is the progressive lack of competitiveness of ethanol due to the government intervention in gasoline prices. Officially motivated by inflation control, the Brazilian government has kept during the last 5 years the gasoline price at refinery gate (ex-taxes) around 70 US$/barrel, significantly below of the international parity prices formerly adopted, and gradually reduced the taxes on this fossil fuel. In the middle of 2012, the main Federal tax on gasoline was set to zero and currently the gasoline price at gas stations is about 30% below the expected value, if the taxes were kept. As the Brazilian fleet is predominantly flex-fuel, the ethanol demand has been substituted by gasoline and the ethanol production in 2010 shrunk 30% in relation to 2008. Thus, it is not correct to attribute to the financial crisis a situation essentially motivated by the lack of energy policy.

6. Incorrect data

With minor importance compared with the previous remarks, the data presented in the Appendix I, at least those with reference to Brazil, should be revised. The values for ethanol and biodiesel are swapped and must be clarified that the ethanol value does not represent “mandatory demand”, because consumers can choose freely their fuel (gasohol or ethanol). If the values represent production, the correct value for ethanol is 22,6 Mm3, (according to the Ministry of Energy and Mines), and the blending limits are E18-E25.

Final Comments

Despite of the relevant effort of this HLPE to assess globally the biofuel market, impact and perspectives, this draft report presents serious mistakes and naive arguments, essentially imposing an Eurocentric perspective and taking general conclusions based just in few productive routes (feedstock+process) broadly recognized as inefficient and unsustainable. Thus, the inconvenience of use of cereals (corn and wheat for ethanol, soybeans and rapeseed for biodiesel) is correctly stressed in this document, but the authors do not admit sufficiently the profound difference of sugarcane in this context. It is hard to believe that this report was done based on “field research carried out in different regions and localities” (pg 1), since it clearly does not reflect the reality in a large part of developing countries.

FAO plays, mainly in the developing world, an important role, opening desirable scenarios, informing about technologies and building capacities for proper decision making in relevant matters. This document, in this draft format, is evidently biased and do need to be improved, including other perspectives and escaping from the limited vision that the future of biofuels abroad will be the same observed nowadays in USA and Europe.

Biofuels are not equal. If a country as Germany is using 940,000 ha to plant rapeseed for biodiesel and diverting the production of 650,000 ha of crops directly to make biogas (RENI, 2011), consuming inefficiently a lot of natural resources, then the biofuels development is really a worrying issue. But, this can not be generalized, biofuels can also be beneficial and promote sustainable development in many contexts, help to protect natural resources, generate jobs and income, improve health and food security (Lynd and Woods, 2012).

Many developing countries are endowed with natural resources and should be helped to use them correctly, which include sustainable bioenergy. This document must be improved in order to reduce the polarized perception of impacts and benefits, and demonstrate the crucial importance of selecting efficient routes. To evaluate the future using the present situation is surely a mistake.

References

BNDES/CGEE/ECLAC/FAO, Sugarcane bioethanol: energy for sustainable development, Banco Nacional de Desenvolvimento Econômico e Social, Rio de Janeiro, 2008

available in www.sugarcanebioethanol.org

IBGE (Brazilian Institute of Geography and Statistics) Censo Agropecuário (Agriculture and livestock census), Rio de Janeiro, 2008

available in www.sidra.ibge.gov.br/bda/pesquisas/ca/

Leal, MRLV, Nogueira, LAH, Cortez, LAB, Land demand for ethanol production, Applied Energy 102, 2013

doi: 10.1016/j.apenergy.2012.09.037

Leite, RCC, Leal, MRLV, Cortez, LAB, Griffin, WM, Scandiffio, MIG,

Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?

Energy, 34(5), 2009

doi: 10.1016/j.energy.2008.11.001

Lynd, LR, Woods, J, Perspective: A new hope for Africa, Nature, 474, 2011.

doi: 10.1038/474S020a

Michel, H, The Nonsense of Biofuels, Angew. Chem. Int. Ed., 51, 2012

doi: 10.1002/anie.201200218

Pacca S, Moreira JR, A biorefinery for mobility?, Environ Sci Technol, 45(22), 2011

doi: 10.1021/es2004667.

RENI, Biogas: an all-rounder, Renewables Insight: Energy Industry Guides, revised edition, 2011

available in http://www.german-biogas-industry.com/

Runge CF, Sheehan JJ, Senauer B, Foley J, Gerber J, Andrew JJ, Polasky S and Runge CP, Assessing the comparative productivity advantage of bioenergy feedstocks at different latitudes, Environ. Res. Lett., 7, 2012

doi: 10.1088/1748-9326/7/4/045906

 

L A Horta Nogueira/UNIFEI/Brazil

Jan/2013