Global Forum on Food Security and Nutrition (FSN Forum)

Some countries produce large amounts of pulses, but these are not a part of their respective diets. How can the use of pulses be increased in communities where these crops do not play an important role in the local cuisine/traditional meals?

This is especially true for my home country, Canada, one of the largest pulse producers in the world, where the pulse consumption is comparatively low. The 2016 International Year of Pulses is the single largest opportunity to increase awareness on the many health benefits that pulses offer, as well as their versatility and taste as a cooking ingredient.  Governments, health organizations, cooking institutions, food media and the public in general could all play a role to promote pulses.

Many initiatives are taking place in Canada to celebrate the Year. Several illustrate how can pulses be included in daily menus with little to no effort. No time for soaking? No worries, take a can of your favourite pulse (chickpeas, beans, lentils or dry peas) and add it to your vegetable soup, to your morning toast, as a garnish or even to your brownies. Look for pulse flours and get creative when baking.

Considering that Canada has strong links to other countries given its immigration history, many Canadians are still preserving their cultural identities, including the cuisine. Pulses are used throughout the world in many traditional meals, perhaps what we need is a little reminder of the connection between these nutritious seeds and the traditional recipes. 

Do you have any examples on how the consumption of pulses contributes to household food security and nutrition in your community or country, which may be useful in different contexts?

Pulses are a cornerstone of nutritional security for the hungry and malnourished, and of better diets to maintain healthy body weights. This UN International Year of Pulses is an excellent opportunity for governments around the world to start including pulses in their food security and nutrition policies. Pulses are a high fibre, low fat source of protein, contain important vitamins and minerals like iron, potassium, and folate, and  two to three times as much protein as cereals like wheat, corn and rice. For all of these wonderful reason it is recommended to eat at least ½ cup of pulses per day.

What are the main challenges that farmers in your country face with regard to the production of pulses? How should these be addressed?

Many crops don’t’ attract their ‘fair share’ of investment, this is unfortunately true for pulses. The shame is these crops, often known as ‘orphan crops’ because they get ignored by funders, are potentially vital in the fight to deliver the UN’s Sustainable development Goals (SDGs) because of their nutrition-density, affordability and positive impact on soil.

The ‘Global Pulse Productivity & Sustainability Survey´ suggests annual investment in pulses hovers at $175m, whereas billions are invested into other crops such as corn. Not only in Canada, but globally we need a 10-fold increase in pulse research funding. With over 800 million people suffering from acute or chronic undernourishment, increasing pulse research is vital. We can only meet the world’s protein needs with better varieties of chickpeas, peas, beans, and lentils.

Are you aware of any research or studies on the role of pulses in climate change adaptation or mitigation? Please share them with us.

·         Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KPC, Gaur PM, Munier-Jolain N, Larmure A, Voisin A-S, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA. 2012. Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 32(1): 31-44.

Grain legume production is increasingly confronted with land degradation / competition, soil nutrient deficits, higher and more variable temperatures, and, especially in the semi-arid tropics, water scarcity. Grain legume responses such as water use (e.g., leaf/root resistance to water flow) and vernalization (i.e., onset of flowering, regulated by responses to day length and ambient and low temperature) will affect the severity of climate change impacts in coming decades. New germplasm is needed to improve grain legume water use efficiency (biomass or grain produced per unit of water) through control of leaf water losses under high vapor pressure deficit (i.e., high plant–atmosphere pressure gradients drive water out of the leaves at a faster rate) and increased atmospheric CO2 concentration. (Water-sparing varieties will be beneficial where crops grow on stored soil water, but can lower yields where crops grow on current rainfall in a short rainy season.) Breeding programs to improve plant adaptation (e.g., balance crop duration with available soil water and maximal light capture) should be based on key mechanisms underlying crop phenology and nutrition (e.g., interdependence of C and N). As climate change accelerates, phenology will not change in those genotypes regulated largely by photoperiod, will come earlier in ambient temperature-sensitive types, and will be delayed in those responding to vernalization. In chickpea (and possibly lentil), temperature sensitivity has been strongly correlated to mean vegetative phase temperatures in habitat of origin and, among relatively temperature insensitive varieties, there is a strong compensating relationship with day length response. With increasing frequency of high-temperature events, crops may experience supra-optimal temperatures that delay flowering and exacerbate terminal drought stress. Vernalization response has been eliminated in chickpea and narrow leaf lupin, while other legume crops such as faba bean and pea retain their vernalization response. Overall, it is difficult to predict where and by how much crop phenology is likely to be affected given weak understanding of adaptation of grain legumes to environmental triggers in different habitat types. In the semi-arid tropics, high temperature and prolonged moisture stress in recent years are associated with drought at flowering and reproductive growth stages and large increases in dry root rot in chickpea. High intermittent rain in the last 5 years (>350 mm in 6–7 days) in July–August is associated with outbreak of Phytophthora blight of pigeonpea. The semi-arid topics face increase risk of disease in chickpea (anthracnose, collar rot, wet root rot, stunt diseases) and in pigeonpea (Phytophthora blight, Alternaria blight). Ecophysiological models are needed to identify genotypes appropriate to new growing conditions (e.g., varieties capable of setting / filling seeds at high temperature and responding to altered geographical distribution of pests, diseases, and weeds). Rather than looking at specific traits independently, methods are needed to assess how different traits interact to influence performance under water limitation (e.g., drought research in chickpea has focused only on root morphology).

·         Daryanto S, Wang L, Jacinthe P-A. 2015. Global synthesis of drought effects on food legume production. PLoS ONE, 10(6): e0127401.

Drought has had adverse effects on food legume crop production in major pulse-producing regions of the world (e.g., India, China, many African countries), where rainfed agriculture is common. This study investigated how effects of drought covary with legume species, soil texture, agroclimatic region, and drought timing, through meta-analysis of 110 field studies (1980 to 2014) on yield responses of legume monocrops to drought. Water availability and yield reduction were positively correlated, although yield impact varied with legume species and phenological state during drought. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) exhibit lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Under >65% water reduction, lowest yield reduction occurred with lentil (21.7%) and groundnut (28.6%) and highest yield reduction occurred with faba bean (40%). Under 60–65% water reduction, lowest yield reduction occurred with pigeon pea (21.8%) followed by soybean (28.0%), chickpeas (40.4%), cowpeas (44.3%), green grams (45.3%), and common beans (60.8%). Under <60% water reduction, field pea experienced only half the amount of yield reduction observed when compared with chickpea. Drought that occurred during reproductive stages (i.e., from flowering to maturity) resulted in yield reduction (43.4%) similar to the reduction observed when drought occurred throughout the growing season (42.1%). Yield reduction averaged 37.3% and 26.89% for droughts that occurred during the early and late reproductive stages, respectively. Droughts resulted in 63.8% legume yield reduction in medium-textured soils (i.e., high productive potential) compared to 30.9% in fine-textured (i.e., more difficult water extraction by plant roots) and 19.8% in coarse-textured (i.e., low productive potential) soils. No significant differences in legume yield reduction were observed for different major climatic regions (non-tropical vs. tropics or drylands vs. non-drylands), although meta-analysis was applied to studies for which agricultural input (e.g., pest control and fertilizers) was not a limiting factor. Significant difference in pulse productivity was observed between developed (mostly non-tropical region) countries (1.8 tons ha-1) and developing (mostly tropical region) countries (0.8 tons ha-1). Adaptability of a legume species to drought does not always correspond to dryland origins and groundnut (tropical origins) showed better adaptability compared to common bean or black gram, even under higher level of water reduction. Two mechanisms of drought resistance in legumes include: (i) drought avoidance via efficient stomata regulation (e.g., common bean, cowpea, chickpea, pigeonpea, lupin), which can limit photosynthesis and shoot growth, and (ii) drought tolerance via osmotic adjustment (e.g., common bean, faba bean and cowpea), which usually allows root growth to proceed under drought condition. Authors conclude that phenological plasticity could be an important trait for selecting drought-resistant species (i.e., able to maintain high yield following a period of water stress), given irregular rainfall patterns and large observed impact of drought during reproductive stage.

·         Angadi SV, McConkey BG, Cutforth HW, Miller PR, Ulrich D, Selles F, Volkmar KM, Entz MH, Brandt, SA 2008. Adaptation of alternative pulse and oilseed crops to the semiarid Canadian Prairie: Seed yield and water use efficiency. Canadian Journal of Plant Science, 88: 425-438.  [Summary copied from Pulse Canada online Science Library]

This 2008 research paper, published in the peer-reviewed Canadian Journal of Plant Science, studied water use by pulses and other crops. The ability of crops to adapt to different water conditions is important because moisture for crop growth is frequently in short supply. The study included three pulses (chickpea, lentil, and pea) as well as canola, mustard, and wheat. Three different moisture conditions were studied: drought, normal rainfall, and irrigation. The study took place in Saskatchewan over four years. Of the crops studied, wheat and pea had the highest yields and highest water use efficiency, while pea used the least amount of water. Chickpea and lentil produced good yields even when water was limited. Under severe drought conditions, where some crops did not produce any appreciable yields, chickpea and lentil were able to maintain at least some yields. The study concluded that pulse crops are well-suited to low moisture conditions.

Key findings:

§ Compared to high water use by wheat, canola, and mustard, chickpea, lentil had medium water use and pea had low water use (34 and 13 mm less water than high and medium users).

§ Pea and wheat produced most grain / biomass and had highest water use efficiency.

§ Chickpea and lentil had good grain yields under dry conditions and performed better than other crops under drought stress.

§ Pulse crops, especially pea, are well suited to the drier parts of the semiarid prairie.

·         Cutforth HW, Angadi SV, McConkey BG, Entz MH, Ulrich D, Volkmar KM, Miller PR, Brandt SA. 2009. Comparing plant water relations for wheat with alternative pulse and oilseed crops grown in the semiarid Canadian prairie. Canadian Journal of Plant Science, 89: 826-835. [Summary copied from Pulse Canada online Science Library]

Published in the Canadian Journal of Plant Science in 2009, this peer-reviewed study examines the drought tolerance of different crops. Drought tolerance is important because precipitation in the Canadian Prairies can be low and unpredictable. The crops studied were pea, chickpea, canola, mustard and wheat. Each crop was grown under three different water conditions: drought, normal rainfall, and irrigation. It was conducted in Saskatchewan during a two year period. The paper first provides some background about how individual plant cells are affected by water stress before examining each crop’s response to drought in detail. The study found that pea and chickpea had the greatest ability to withstand water stress, followed by wheat and then the two oilseed crops. This research shows the advantage of growing pulses in drought-prone areas.

Key findings:

§ Compared to wheat and Brassica oilseeds, pea and chickpea were better able to adjust to moderate to severe water stress.

§ Pulses maintained positive turgor (i.e., combined strategies of cell wall elasticity and osmotic adjustment) and metabolic activity over a wide range of water potentials.

·         Miller PR, McConkey BG, Clayton GW, Brandt SA, Staricka JA, Johnston AM, Lafond GP, Schatz BG, Baltensperger DD, Neill KE. 2002. Pulse crop adaptation in the Northern Great Plains. Agronomy Journal 94: 261-272. [Summary copied from Pulse Canada online Science Library]

Miller and colleagues reviewed the current research on the production of peas, lentils, beans, soybeans, and chickpeas in western Canada and the northern USA. Published in Agronomy Journal in 2002, this article summarizes how pulse crops affect environmental sustainability in terms of crop yields and efficiency of water use. Key areas for further research are also outlined. Overall, research shows that pulse crops consistently provide a nitrogen benefit to wheat that is grown after a pulse. This nitrogen benefit is demonstrated by higher wheat grain yields and higher wheat protein content (nitrogen is a major building block of protein). This is important because nitrogen supplied by a pulse crop reduces the need for nitrogen fertilizer, an input that is energy-intensive to produce and is responsible for a large portion of the greenhouse gas emissions in agriculture. Peas, lentils, and chickpeas were specifically highlighted as crops that efficiently use water. Research suggests that these three pulse crops respond to drought conditions better than spring wheat. By using less water, pulses conserve water for use by subsequent crops. This is particularly important because water is a major limiting factor in growing crops in the northern Great Plains.

Key findings:

§ In the Northern Great Plains, rotational benefits of pulses on wheat result from complex pulse interactions with soil water, soil nutrient supply, and pest cycles. Pulse crops can have mixed effects on weed cycles.

§ Under very different N-limiting growth conditions, higher grain yields and protein content for wheat grown after a pulse crop indicate pulses consistently provide N benefit.

Peas, lentils, and chickpeas efficiently use water (conserving water for use by subsequent crops) and respond to drought conditions better than spring wheat (i.e., can grow at lower relative water content).

Johnston AM, Clayton GW, Miller PR. 2007. Introduction to "Pulse crop ecology in North America: Impacts on environment, nitrogen cycle, soil biology, pulse adaptation, and human nutrition". Agronomy Journal. 99: 1682-1683. [Summary copied from Pulse Canada online Science Library]

Published in Agronomy Journal in 2007, this is a short article that provides a broad overview of the benefits of pulses as well as key directions for future research. It is the introduction to a symposium about pulse crops held at the annual conference of the American societies for agronomy, crop science, and soil science. To begin with, the current status of land seeded to pulses in North America is reviewed. In the period from 1991 to 2006, the area seeded to pulses increased more than seven times. The nutritional benefits of pulses are then discussed. In addition to their high protein and fibre contents, pulses also contain compounds called phytochemicals that promote good health. Next, the environmental impact of pulses in terms of reducing greenhouse gas emissions is considered. The article also covers the positive impact pulses have on beneficial soil microbes that enhance plant growth. Finally, the ability of pulses to adapt to changing climate conditions is examined. Overall, pulses are playing an increasingly important role in North American agriculture.

Key findings:

§ From 1991 to 2006, area seeded to pulses in North America increased 7-fold (400,000 ha to 3 million ha).

§ Benefits of pulses include:  breaking pest cycles common to monoculture; reducing use of N fertilizer; increasing marketing opportunities.

§ Pulse crops provide residual N via roots and residues (significant N is removed through harvest of high-protein pulse grains). Actual N contribution from pulses may often be <20 kg N ha-1, which doesn’t fully explain improved cereal yield in rotation with pulses.

§ Pulse crop rhizosphere activity enhances P and Zn uptake and increases soil microbial activity overall. Pulse crop residues more readily decomposed by microbes.

§ Reduced use of N fertilizers in pulse-inclusive crop rotations decreases (a) fossil fuel use in N fertilizer manufacture, transport, etc, and (b) N2O emission from soils.

§ Ability of pulses to adapt to changing climate conditions (and available soil water, shifting weed populations, soil fertility changes). Crop management practices (seeding date, fertilizer rate, variety selection) are more important than CO2 fertilization effects.

§ Directions for future research: Characterize genetic diversity of nutrient and phytochemical composition; breeding / selection strategies (e.g., increasing N2 fixation). Role of pulses in influencing nonpulse crop growth and development and impact on plant health and soil biology. Estimating the N credit from pulse crop residue. Variable absorption by livestock of beneficial phytochemicals in pulse crops.

The International Year of Pulses also includes a call for recipes to provide ideas and inspiration on how to consume these nutritious seeds. Would you like to share yours?

I have found cooking inspiration in The World’s Greatest Pulse Dishes recipe collection available at Pulses.org. It has delicious recipes from all over the world, and a special collection of recipes from India, with easy to follow instructions.